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The Use of Representation Clauses 
and Implementation-Dependent Features 

in Ada: 
I. Overview 

Abstract: This report, the first in a series, presents an overview of the aspects of the Ada 
language relating to representation clauses and implementation-dependent features. Par- 
ticular emphasis is given to the use of Ada for application to packed data structures. This 
report is in part tutorial, and several examples from real-time, mission-critical systems are 
discussed in detail. A brief discussion of design guidelines for the use of representation 
clauses and implementation-dependent features is included. 

1. Introduction 
The Ada language has now been mandated by the Department of Defense (DoD) for use in real-time, 
mission-critical systems as noted in reference [1]. There are many issues which must be given 
consideration for the application of Ada to such systems. These issues apply to the compiler as well 
as the run-time environment support. 

It is the purpose of this report to present a discussion of the issues relating to the use of represen- 
tation clauses and implementatton-dependent features in Ada. The discussion is based on examples 
from characteristic real-time, mission-critical systems. This discussion is in part tutorial. That is, a 
brief overview of the aspects of Ada relating to representation clauses and implementation-dependent 
features is provided. Additionally, examples are discussed from a tutorial viewpoint. In this sense, 
this report may serve as an introduction to the use of representation clauses and implementation- 
dependent features in Ada. 

This report is organized in the following manner: Chapter 2 provides an overview of the problem 
domain to which representation clauses and implementation-dependent features are applicable. 
Chapter 3 gives an overview of those features of the Ada language which are applicable to this 
domain. A basic design principle, and the use of representation clauses from a global perspective, 
are provided in Chapter 4. Chapter 5 presents several case study examples of the use of represen- 
tation clauses and implementation-dependent features. The use of assembler language is discussed 
in Chapter 6. Chapter 7 lists a set of design guidelines for considered use of representation clauses 
and implementation-dependent features. A summary of the report appears in Chapter 8. Finally, 
Appendix I groups together the figures for this report to improve the continuity of the text. 

This is the first in a series of reports dealing with the use of representation clauses and 
implementation-dependent features in Ada. The principal focus of the present report is in part tutorial 
and case study in nature. The second report, reference [2], provides a set of questions deemed 
relevant to the evaluation of support for representation clauses and implementation-dependent fea- 
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tures provided by an Ada compiler. These questions are then related to a general experimental 
context described in reference [3]. A qualitative assessment of the VAX Ada compiler may be found in 
reference [4]. In summary, references [2] and [3] provide a basis for evaluation of a particular Ada 
compiler with regard to representation clauses and implementation-dependent features. This scheme 
may be applied to other compilers, and other qualitative compiler assessments are expected to ap- 
pear as part of this series. 

This report has been prepared by the Ada Embedded Systems Testbed Project at the Software 
Engineering Institute (SEI). The SEI is a federally funded research and development center (FFRDC) 
sponsored by the DoD and established and operated by Carnegie Mellon University. This report was 
prepared by the authors while on sabbatical leave at the SEI. 
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2. The Problem Domain 
A frequent characteristic of real-time, embedded systems is that they make use of packed data 
structures. That is, the basic unit of machine storage (such as a 16-bit word) may be used to store 
several fields. For example, a storage unit may contain several values such as a 4-bit integer, a 2-bit 
integer and a 10-bit integer. Additionally, one frequently encounters "binary scaled" values. These 
are fixed-point objects represented in the form (m, n), meaning there are m binary digits to the left of 
the (binary) decimal place, and n binary digits to the right. Thus, scalings such as (7, 8), (0,15), and 
(17,10) may be found. The application program must therefore provide code which accesses, manip- 
ulates, and performs arithmetic operations on such data structures. 

The principal reasons for the use of packed data structures are two-fold, namely: 

1. To minimize storage allocation. 
2. To conform to constraints imposed by external systems. 

The first case is obvious. That is, storage availability is at a premium in many systems and minimiz- 
ing such storage allocation is often a basic concern. It is understood that the particular application is 
willing to sacrifice additional time to perform the storage operations on the packed data structures. 

A second reason for the use of packed data structures is to conform to the requirements imposed by 
some external system. A relevant example is some hardware device that memory maps data in a 
packed format which the application program must then operate on. In these cases, there is no 
freedom of choice regarding data representation on behalf of the application program. That is, there 
is an explicit requirement that the application must process and perform operations on such packed 
data structures. 

Many mission-critical systems are distributed in nature. For example, a command and control system 
may be composed of several subsystems. A basic feature of the overall system is that the subsys- 
tems communicate via digital intercomputer messages. Often the content of the messages trans- 
mitted and received by a particular subsystem employ packed data structures. Thus, a particular 
application subsystem must be able to process packed data structures; this represents the case 
where the application is constrained to conform to requirements imposed by existing systems. The 
use of packed data structures within the context of intercomputer messages motivates the examples 
discussed later in this report. 

The ability to access and perform operations on packed data structures is directly related to Ada and 
may be illustrated as follows. Consider a distributed system which is composed of subsystems, 
possibly resident in different processors. Assume that one of the subsystems will be upgraded and 
that the upgrade will be done using Ada. Clearly, the new upgrade must conform to interface specifi- 
cations with other existing subsystems. Hence, if interprocessor communication is achieved by 
packed data structures, the upgrade must also conform to the requirements imposed by the existing 
subsystems. In other words, the ability of the Ada compiler chosen for the upgrade to access and 
operate on packed data structures is an issue which must be addressed. 
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3. Discussion of Representation Clauses and 
Implementation-Dependent Features in Ada 

3.1. Introduction 
One of the underlying design principles in the development of the Ada language was the attempt to 
incorporate accepted software engineering practice in elements of the language. One of these prin- 
ciples, as discussed in reference [5], is referred to as the "separation principle." That is, one should 
attempt to separate the logical data representation from the physical representation. The logical 
representation refers to the conceptual, structural representation of data and is machine independent. 
In contrast, the physical representation couples the logical representation to the underlying architec- 
ture. 

It was recognized, however, that there was a need to be able to allow the designer to interact with the 
underlying hardware implementation of data types. For this reason Ada provides representation 
clauses which provide the mechanism through which the logical properties of data types may be 
mapped to the underlying machine architecture. It is through the use of the representation clauses 
that packed data structures may be discussed in Ada. The discussion of representation clauses and 
implementation-dependent features constitutes the so-called "Chapter 13" issues of Ada, as dis- 
cussed in the Reference Manual for the Ada Programming Language, reference [6], 

An important point must be made at the outset of any discussion of representation clauses and 
implementation-dependent features in Ada. The reader must be aware that the use of these lan- 
guage features will considerably affect the portability of the software. Specifically, the use of repre- 
sentation clauses manifests a direct coupling to the underlying architecture. As such, the code will be 
machine-dependent, and portability of the code may no longer be possible. The implementation- 
dependent features are, by definition, implementation specific. The toss of portability must be kept in 
mind; in many cases of embedded systems, this may not be a significant issue. Note that the separa- 
tion of logical and physical data representations can help to minimize the cost of portability. This 
separation should be kept in mind during the software design stage. 

It is the purpose of this chapter to provide a brief overview of the representation clauses in Ada. 
Additionally, we note three pragmas that have particular relevance to the treatment of packed data 
structures and representation attributes that provide a mechanism for obtaining implementation- 
dependent quantities. The following discussion is largely tutorial in nature and is followed by specific 
examples in the next chapter. Some insight into a discussion of representation clauses may be found 
in reference [5]. Note that the application of representation clauses to tasks and interrupt handling 
are beyond the scope of this report and will not be addressed here. 
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3.2. Pragmas Pack, Optimize, and Shared 

Ada provides three compiler-directive statements, or pragmas, which are applicable to the treatment 
of packed data structures. The first of these, pragma PACK, has the syntax: 

pragma PACK (type_simple_name); 

where type_simple_name refers to the name of a type. The PACK pragma indicates that gaps 
between consecutive components of an array or record should be minimized. Note the use of the 

term "minimized." Thus, the use of this pragma does not assure that there will be no gaps between 
consecutive storage components. Rather, it directs the compiler to minimize the gaps between con- 
secutive data components. Hence, the use of this pragma is applicable to minimization of storage 
allocated for records and arrays. It does not, however, allow one to directly map a structure onto the 
underlying hardware. 

The second Ada pragma relevant to the discussion at hand is pragma OPTIMIZE, which has the 
syntax: 

pragma OPTIMIZE (argument); 

where argument can be either TIME or SPACE. The purpose of this pragma is to request optimiza- 
tion according to the argument specified. Note that pragma OPTIMIZE is local in nature in that 
effects of this pragma apply only to the block or body enclosing the declarative part in which it is 
used. That is, one Ada unit may contain a request that the compiler optimize storage, while another 
Ada unit may request that the compiler optimize execution time. The local nature of this pragma 
means that it may be used selectively at the discretion of the designer. 

The third Ada pragma of concern here is pragma SHARED, which has the following syntax: 

pragma SHARED (variable_simple_name); 

indicating two (or more) tasks will be accessing (reading or updating) the specified variable. In a 
sense, use of this pragma provides information to the compiler which may be used in optimizations 
performed for the specified variable. Section 5.5 presents an example requiring the use of this 
pragma. 

The Reference Manual for the Ada Programming Language, reference [6], defines pragmas other 
than those listed above. An implementation may provide additional pragmas to support a particular 

target machine. 
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3.3. Type Representation Clauses 

The Ada language defines two basic representation clauses: type representation clauses and ad- 
dress clauses. Address clauses apply to one of the following: an object, subprogram, package, task, 
or entry. Section 3.4 gives a discussion of address clauses. 

Type representation clauses apply to either a type or a subtype declared by a type declaration (which 
is termed a "first-named subtype"). These clauses apply to all objects of the type or first named 
subtype. Type representation clauses may exist in one of the following forms: 

1. Length clause 
2. Enumeration representation clause 
3. Record representation clause 

Each of these forms is discussed in the following sections. 

3.3.1. Length Clauses 
A length clause specifies the amount of storage to be associated with a particular type. The general 
form of the clause is: 

for attribute use simple_expression; 

The storage allocated for a particular type may be affected by the use of attribute designators SIZE, 
STORAGE_SIZE, and SMALL. 

The SIZE attribute designator indicates the upper bound for the number of bits to be allocated to the 
specified type. Note that the size specification gives an upper bound for the number of bits to be 
allocated, not the exact number of bits to be allocated. The value of the simple_expression must 
allow enough storage for the values of objects of the type specified. 

The STORAGE_SIZE attribute designator applies to access types and indicates the amount of 
storage units to be reserved for the pool of memory from which dynamically created objects of the 
specified type are allocated. 

The SMALL attribute designator is used for fixed-point types. Recall that the basic storage model for 
fixed-point types is sign .mantissa, small, where sign is either +1 or -1, mantissa is a positive integer 
not equal to zero, and small is the largest power of two that is not greater than the delta given in the 
fixed-point type definition. Thus, the SMALL attribute designator indicates that the specified value of 
small should be used for the representation of fixed point values of the particular type. 

Let us consider some simple examples in the use of the length clause. First, suppose we have an 
integer type which ranges over the values -100..100. It is possible that a number within this range 
may be implemented in only eight bits, as indicated below: 

Bits : constant > 1; 
type Smalljnteger Is range -100 .. 100; 
for SmallJnteger'SIZE use 8 * Bits; 
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As an example of the use of the STORAGE_SIZE attribute designator, assume that we wish to 
allocate a page of memory for an access type Keyboard_Buffer. If the memory page is 2000 storage 
units, then the following indicates how to allocate the desired memory: 

Page : constant := 2000; 
type Keyboard_Buffer Is access Buffer; 
for Keyboard_Buffer'STORAGE_SIZE i/se1 * Page; 

Next, we consider an example of the use of the SMALL attribute designator. Suppose there is a 
fixed-point type, Heading, where objects of type Heading are used to store the heading of the ship. 
Assume that the values of Heading are in the range 0.0 .. 1.0, and that the delta for this fixed-point 
type is 0.01. We may obtain a "finer" representation for objects of this type by redefining the value of 
small as illustrated below: 

type Heading Is delta 0.01 range 0.0 .. 1.0; 
for Heading'SMALL use (2.0 ** (-8)); 

In the type definition for Heading, the default value of small for the fixed point representation will 
characteristically be 2 ** (-7), since this value is less than the specified delta and satisfies the in- 
dicated range constraint. Redefining Heading'SMALL to be 2 ** (-8) ensures the accuracy of objects 
of type Heading. The additional bit used to specify small can be used as a "guard digit" to prevent 
round off, truncation, or overflow errors. 

Finally, more than one length clause can be provided for a type. For example, a size specification 
can also be given for type Heading above: 

for Heading'SIZE use 10 * Bits; 

specifying that at most 10 bits be allocated for objects of type Heading. 

3.3.2. Enumeration Representation Clauses 
Ada provides enumerated data types, and it is possible to specify the internal codes to be used for 
the literals of the enumerated types by using an enumeration representation clause. The general 
form of this clause is: 

for type_simple_name use aggregate; 

The mapping from an enumeration literal to the internal representation of the literal is accomplished 
by using an array aggregate, which, in this case, is a one-dimensional array of integers. For ex- 
ample, suppose a system recorded the values of gyro status, which are enumerated as up, down, 
and unknown. If one wanted to map these literals to an internal representation of 0, 1, and 3, 
respectively, then the following would suffice: 

type Gyro_Status /s(UP, DOWN, UNKNOWN); 
forGyro_Status use 

(UP => 0, DOWN => 1, UNKNOWN => 3); 

Each enumeration value must be an integer type which is static, that is, known at compilation time. 
The values which are associated with a particular enumerated literal must appear in increasing order 
in the enumeration representation (the "for" clause, above).   Additionally, the enumerated values 
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must be distinct. In the example above, note that the enumerated values (namely, 0, 1, and 3) are 
not contiguous (since the value 2 is not present). The implementation of enumeration representation 
clauses when the integer codes are not contiguous may be inefficient and thus may effect the effi- 
ciency of the operations performed on the enumeration type. 

At most, one enumeration representation clause is allowed for a given enumeration type, though a 
length clause can also be specified for Gyro_Status: 

forGyro_Status'SIZE use 8 * Bits; 

3.3.3. Record Representation Clauses 
One of the composite data types supported by Ada is a record data type where types of the compo- 
nents of the record may be different. A record representation clause may be used to specify the 
order, position, and size of record components. The general syntax for the record representation 
clause is: 

for type_simple_name use 
record alignment_clause 

component_clause; 
end record: 

where the syntax of an alignment clause is: 

at mod static_simple_expression 

and the syntax of a component clause is: 

component_name at static_simple_expression range static_range 

The use of an alignment clause is optional and, if used, forces each record of the given type to be 
allocated at a starting address which is an integer multiple of the specified expression. The use of the 
component clause specifies two characteristics of the component: 

1. the storage location of the record component, relative to the start of the record, which is 
expressed in system storage units. 

2. the bit positions of the record component, relative to the storage unit, which also im- 
plicitly defines the number of bits to allocate for the component. 

For example, navigation data include ownship position data such as latitude, which is assumed to be 
20 bits in length, and longitude, which is assumed to be 21 bits in length. The record type below and 
its associated representation clause define this data: 

type Ownship_Position_Data is 
record 

Latitude : Latitude_Type; 
Longitude : Longitude_Type; 

end record, 

for Ownship_Position_Data use 
record at mod 4 

Latitude use at 0 range 4 .. 23; 
Longitude use at 3 range 3 .. 23; 

end record, 
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The alignment clause specifies that objects of the record type be allocated on double-word bound- 
aries. The component clauses specify what storage unit and bits each record component occupies. 
As with enumeration representation clauses, at most one record representation clause is allowed for 
a given record type, though a length clause may also be provided. Thus, the following length clause 
can be specified for Ownship_Positk>n_Data: 

for Ownship_Positk>n_Data,SIZE use 64 * Bits; 

The use of records provides a convenient data representation for messages which are transferred 
between systems in a distributed computing environment. Thus, they are the principal structure 
applicable to the definition of intercomputer messages. In the examples to be presented in Chapter 
5, records, as well as record representation clauses, are frequently used. 

3.4. Address Clauses 

The second general class of representation clauses defined by Ada is the address clause. As the 
name implies, an address clause allows for specific address references. The syntax of this clause is: 

for simple_name use at simple_expression; 

where simple_expression is of type ADDRESS defined in package SYSTEM. Note that values of this 
type need not be integers. 

Address clauses may be used in a variety of situations. For instance, they may be used to specify 
addresses where some external device will map data. An example is: 

for Sensor_Mapped_Data use at 16#F200#; 

which specifies that sensor data will be mapped at address F200 hexadecimal. Address clauses may 
also be used to specify an address of machine code which may be referenced in some call statement. 
As another example, an address clause may be used to specify an address where control will be 
transferred upon recognition of an interrupt. 

3.5. Representation Attributes 

We have emphasized that the use of representation clauses is inherently coupled to the implemen- 
tation, or compiler. It is possible to obtain the values of certain implementation-dependent character- 
istics. These may be obtained by interrogating representation attributes. These attributes contain 
values of implementation-dependent quantities. 

Representation attributes have several uses. First, they may be useful during debugging of some 
section of code. Thus, they provide a mechanism for validating the output of a particular compiler. 
For example, if one specifies a length clause for a type and declares an object of that type, represen- 
tation attributes can be used to verify that the size of the object is not greater than that specified in the 
length clause. Second, they may be used to provide information to an application program concern- 
ing basic quantities which may then be referenced by other code sections. An example of this is 
given in Chapter 6. 
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The problem domain for the consideration of this report is in the area of packed data structures. In 
particular, we have considered the use of packed data structures which are forced to conform to 
some particular format, such as that imposed by an external computer system. It is possible, how- 
ever, to use packed data structures where the choice of the packing is done by the compiler with the 
intent of minimizing storage allocation. In this latter case, representation attributes may have consid- 
erable application as an alternative design technique. In fact, the resulting design may be more 
portable, where the portability is assured through the use of the representation attributes. Note, 
however, that there may be an overhead associated with the use of these attributes. 

Two of the representation attributes which are defined by the language, and which have particular 
application to the problem area at hand, are: 

1. X'ADDRESS provides the address of the first storage unit allocated to an object, pro- 
gram unit, label, or entry denoted by X. 

2. X'SIZE, when applied to a type or subtype X, yields the minimum number of bits neces- 
sary to allocate any possible object of the type or subtype; and when applied to an 
object X, provides the number of bits allocated to store X. 

It is also possible to obtain certain information about the location and size of components of a record. 
In particular, the following representation attributes may be used for record-dependent quantities 
where R denotes a record and C denotes a component of R: 

1. R.C'POSITION provides the offset of the first storage unit occupied by the component 
C. The offset is measured from the first storage unit occupied by the record. The value 
of the offset is of type universal_integer. 

2. R.C*FIRST_BIT provides the offset of the first bit occupied by the component C. The 
offset is measured from the first storage unit occupied by C. The offset is measured in 
bits and is of type universal_integer. 

3. R.CLASTJ3IT provides the offset of the last bit occupied by the component C. The 
offset is measured from the first storage unit occupied by C. The offset is measured in 
bits and is of type universal_integer. 

An example of the use of representation attributes, particularly those for obtaining record-dependent 
information, is presented in Chapter 6. 

3.6. Compiler Support 

An overview of representation clauses and implementation-dependent features in Ada has been 
presented. The previous discussions were based on the Ada language, as defined in reference [6], 
as opposed to an implementation of Ada. Thus, the discussions were given independent of any 
particular implementation. It is important to note that the Ada language allows an implementation 
many options for its support of representation clauses and implementation-dependent features, and 
the following discussion is made in view of this. 

The Reference Manual for the Ada Programming Language, reference [6], states that an implemen- 
tation may limit its acceptance of representation clauses. In other words, support of these clauses is 
optional. On the other hand, support of the predefined generic library subprogram 
UNCHECKED_CONVERSION (discussed in Section 4.4) is required. The following features dis- 
cussed in this report are optional for an implementation: 
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• length clause 

• enumeration representation clause 

• record representation clause 

• address clause 

Those features that are required for an implementation are: 

• pragmas PACK, OPTIMIZE, and SHARED 

• representation attributes 

• UNCHECKED_CONVERSION 

• pragma INTERFACE (discussed in Section 6.2) 

Support of any feature listed above, required or not, involves some implementation-specific inter- 
pretation or option. For example, pragma PACK is a language-defined pragma and thus must be 
supported, which only means a compiler must not reject a program containing this pragma. An 
implementation has the option as to whether or not it will actually perform packing. And, if record 
representation clauses are supported, an implementation can choose what values are legal align- 
ments in an alignment clause. It is implementation options such as these that motivate and warrant 
this series of reports. In particular, it is the purpose of reference [2] to aid the application developer in 
determining what support a particular implementation provides. 
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4. A Basic Design Model 

4.1. Introduction 
In the previous chapter we indicated the general use of representation clauses in Ada, noting that 
they are frequently used in the treatment of packed data structures. Any application must consider 
the use of representation clauses in two contexts. First, there is a low-level context. Here, the 
principal issue is the manner in which the relevant data structures may be defined using represen- 
tation clauses. Within this context is the issue of data representation for a particular architecture. 

A second context is one which is at a higher level. Here, we are concerned with the relationship 
between an abstract definition of data and a concrete representation of that data. To successfully 
deal with this level of abstraction, we need some basic design model, or paradigm, to frame a discus- 
sion. 

4.2. Data Abstraction 
We have mentioned that the development of the Ada language was spurred, in part, by emerging 
software engineering principles. One aspect was the inclusion of certain features in the language to 
support the new design methods. One of these methods is of special importance to the consideration 
of representation clauses. This is the approach of data abstraction, which is related to the separation 
principle. In particular, this perspective is based on the following: 

The abstract properties of data should be distinct from data representation. This is tan- 
tamount to a separation of logical properties of data from the physical implementation of the 
data. 

We accept this basic design model and it is used in the examples discussed later. For example, the 
concept of packages is considered in the examples below as a means of encapsulating data. Note 
that the data abstraction paradigm has various applications. On the one hand, it implies that the use 
of representation clauses should be separated from code sections which require only logical 
properties of data. On the other hand, the principle applies to development of large programs. One 
basic example here is the notion of a virtual interface. The example of a virtual interface is ap- 
plicable, particularly in consideration of a distributed computing environment. Thus, one side of the 
interface is concerned with representation of data and details of input/output processing to other 
systems. The other side of the virtual interface is concerned with the logical properties of data and 
operations on the data. 

To satisfy the principle of data abstraction, it is implicit that one must have a mechanism to provide for 
multiple representations of data. Stated differently, one must be able to affect a change of represen- 
tation. In the following subsection we indicate how this change of representation may be accom- 
plished in Ada. 
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4.3. Affecting Multiple Representations 

We now illustrate the concept of multiple representation by a simple example. In Ada, at most one 
representation clause is permitted for a given type and aspect of representation. It is recognized that 
there may be a need to have another representation in addition to the default representation. Thus, if 
an alternate representation is needed, one may declare a second type which is derived from the first 
although it may be represented differently. 

We may illustrate the preceding by considering the example of a virtual interface. Assume that there 
is a set of related data which is of a type Message_Data. The elements of the record will be used in 
computational procedures and are represented as integer or floating point, for example. It will be this 

logical definition of the type Message_Data which will be used on one side of the virtual interface. On 
the other side of the virtual interface, we are concerned with a second type, called Message_Buffer. 
We define a new record type exactly the same as Message_Data, except here the components are 
specified with representation clauses which correspond to the details of the interface to some external 
system. The fact that the type Message_Buffer is derived from the type Message_Data may now be 
illustrated by considering the following: 

type Message_Data Is 
record 

- declare record components 
end record, 

type Message_Buffer is new Message_Data; 

for Message_Buffer use 
record 

-- declare record components in packed format 
end record, 

Consider now an object M, which is of type Message_Data. To affect a multiple representation of 
object M, i.e., change the representation of object M to that specified by type Message_Buffer, the 
following could be performed: 

M : Message_Data; 
N : Message_Buffer; 

N := Message_Buffer(M); 

The expresston Message_Buffer(M) is an explicit conversion of object M, which is of type 
Message_Data, to the type Message_Buffer. That is, the record which is used for computational 
purposes is explicitly converted to a packed representation. 

We see then that the use of different representations satisfies the data abstraction principle. Further- 
more, we may perform conversions from one representation to another. An example illustrating this 
is considered in the following chapter. 
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4.4. Unchecked Conversion 

A characteristic feature of Ada is that the language is strongly-typed. Basically this means two things. 
First, objects of a particular type may assume only those values which are appropriate to the partic- 
ular type. Second, the only operations which are permitted on an object are those defined for the 
type of the object. We see then that typing provides a way for imposing structure on objects which 
the language operates with. 

Ada also permits type conversion in two different forms. First, there is explicit conversion. An ex- 
ample of this is a statement of the form A := FLOAT(I), which causes the value of the object I to be 
converted to the type of A, assumed floating point. Another example of an explicit type conversion 
was illustrated in Section 4.3 concerning changes of representation. 

In addition to explicit type conversions, Ada also supports a generic function which is called 
UNCHECKED_CONVERSION. An instantiation of this generic function allows a bit pattern of some 
source type to be interpreted as a value of some target type. An example of the application of 
UNCHECKED_CONVERSION is provided in the following: 

type Ints is range 0 .. 100; 
type Fixed is delta 0.0001 range 0.0 .. 200.0; 

function Convertjojnts Is new UNCHECKED_CONVERSION 
(Fixed, Ints); 

J: Ints; 
X : Fixed; 

J > Convert_to_lnts( X); 

The result of the above is that the bit pattern representing X, declared as a fixed-point type, will be 
interpreted as a value of the target type, in this case an integer. It must be stressed that the value of 
X will not be equal to the value of J after the conversion has been performed. This statement is true 
notwithstanding the fact that the objects X and J are of different types. Recall that an explicit conver- 
sion is a conversion of values. It is to be emphasized, however, that the use of 
UNCHECKED_CONVERSION represents an interpretation of some particular bit pattern in terms of a 
target type. Clearly, the use of this type of conversion must be treated with special care. In spite of 
this, we provide an example in the following chapter where UNCHECKED_CONVERSION is 
employed and shown to be useful. A full discussion of generics and instantiation of generics may be 
found in references [5] and [6]. 
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5. Examples 

5.1. Introduction 

We now illustrate the application of representation clauses and implementation-dependent features 
by means of several examples. The examples presented should be understood in the sense of a 
case study. That is, there is no attempt to define an exhaustive set of experiments which encompass 
the full range of application of representation clauses. Some discussion, within the context of a 
detailed experimental setting, is provided in reference [3], however. 

To facilitate illustration of representation clauses, intercomputer digital communications used in a 
shipboard Inertial Navigation System (INS) will be the principal domain from which examples are 
chosen. An INS provides some external computer (EC) with time-critical measurements of the ship 
position and motion. Intercomputer digital messages are used for communication between the INS 
and the EC. 

The first example given is introductory and illustrates length, enumeration representation, and record 
representation clauses. Next, an example with data of type integer is presented. We also present 
examples involving multiple data types. An example is given where data is mapped into a particular 
hardware address and processed to obtain specific values. The final example illustrates the use of 
UNCHECKED_CONVERSION to perform a message checksum calculation. 

Several notes are relevant to the following examples. These are: (1) the System.Storage_Unlt is 
assumed to be 8 bits but the message layouts show a 16-bit word. Because of this there will not be a 
direct one-to-one correspondence between the given message layout and implementation. (2) It is 
assumed that a component can overlap a storage boundary (e.g., a word boundary). (3) It is as- 
sumed that the relative ordering of bits within a particular System.Storage_Unit is from left to right 
and that storage units are numbered from left to right with respect to each other. 

5.2. An Introductory Example 

Each message used in the INS has a common message header. Thus, it would be appropriate to 
specify that header only once in a package and make that package available to all message imple- 
mentations. Figure 1 shows the data layout of the message header. The message header is con- 
tained in two 16-bit words and includes the message type (MT) and number of data words (NW) in 
the message.1 

Figure 2 shows an Ada package that implements the message header and associated component 
types. Type MessageJType is an enumeration type and associated with that is an enumeration 
clause that maps the appropriate numeric code to each kind of message. Type Bii Value Type is 
an integer type with range 0 to 1, and thus a length clause is used to specify that objects of this type 
be represented in 1 bit. 

1For purposes of simplicity, all figures are collected together and may be found in Appendix I. 
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Finally, using the three previously defined types, a record type and associated record representation 
clause are used to implement the message header illustrated in Figure 1. Type 
Message_Header_Type contains three components: Type_of_Message, Blt_Constant, and 
Number_of_Words. For each component in the record type, a component clause is given in the 
record clause that specifies its location and size. For example, Number_of_Words is located at 
word 2 and occupies bits 1 through 14. 

5.3. An Example of Integer Types 

A basic procedure in intercomputer communications is to perform a test of the interface between the 
machines. This test is performed as part of the enabling of communications and also at periodic 
intervals thereafter. The test of the interface is accomplished by an exchange of Test Messages. 
Figure 3 shows the format of the Test Message transmitted by the INS. The Test Message is eight 
16-bit words long and consists of a message header, source information, and two test word fields. 
With the exception of the message header, all the data in this message are of type integer. 

An Ada package that implements this test message is given in Figure 4. Test_Message_Type 
consists of four components: Test_Message_Header, which is a record itself of type 
Message_Header_Type; Source of the defined type Source_Type, and Test_Word_3 and 
Test_Word_2 whose type is the predefined type Integer. The associated record representation 
clause lists a component clause for each of the components. It should be pointed out that a compo- 
nent clause is given for Test_Message_Header to ensure that it is positioned first in the record. Note 
that the components of Test_Message_Header need not be specified since this was done previously 
in package Message_Header_Format. 

5.4. An Example of Fixed-Point and Floating-Point Types 

A shipboard INS provides an EC with navigation data that include ownship latitude, longitude, speed, 
heading, pitch and roll, among other things. Figure 5 shows a navigation data periodic message 
layout through which such information is passed to the EC. The navigation message is 30 16-bit 
words long and contains 17 fields of specific navigation data. All navigation data are real types. The 
data scaling applicable to the fields in Figure 5 is indicated in the form (m.n). As noted earlier, an 
(m,n) scaling means that there are m binary digits to the left of the decimal point and n binary digits to 
the right of the decimal point. 

Figure 6 shows an Ada package that contains a record type, record representation clause, and asso- 
ciated component type definitions. Package Navlgatlon_Message_Format contains a set of con- 
stants that are the deltas of the defined fixed-point types. For example, type 
Ownshlp_AttitudeJnformatlon is a fixed-point type whose delta is the constant OAI_Del. Of the 
defined types, type Ownshlp__VelocltyJntegrals is the only floating-point type. 

The record defined shows components of the appropriately defined type that represent the navigation 
data resident in the message shown in Figure 5. The record representation clause appropriately 
positions    each    component.        For    example,    Longitude    is    of    the    fixed-point    type 
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Ownship Longitude_Data, is located at byte 9, and occupies bits 3 .. 23. The delta for this type is 
given by the constant OLOD_Del and has the value 2**(-6), which corresponds to the number of 
binary digits in the scaling for this data. Similarly, lntegral_Veloclty_North is of the floating-point 
type OwnshIp_Veloclty_lntegrals, located at byte 44, and occupies bits 0 .. 31. 

5.5. An Example of Analog Conversion 

As a final example in the use of representation clauses, consider a 24-bit machine which receives 
analog data at a periodic rate. We also assume that the data are DMA mapped to particular ad- 
dresses. Hence, this example requires the use of address representation clauses, noted in Section 
3.4. We assume that the analog data consist of a ship heading, roll, and speed data, and that the 
data are mapped to the octal addresses 101 to 103, respectively. Note that each of these addresses 
is assumed to be 24 bits in length. 

Each 24-bit analog data value is assumed to be in the following format: 

• Bit 24 (the most significant bit) is assumed zero. 

• Bit 23 is used to indicate a scale multiplier; if the bit is set, the multiplier will be used in 
converting the data. 

• Bit 22 is a second scale multiplier, used similarly as above. 

• Bit 21 is reserved for a sign bit. 

• Bits 20 through 10 contain the data bits. In the case of the ship heading and roll, this 
field is interpreted as the arctangent of the respective angle. In the case of the ship 
speed, these bits represent the arctangent of the speed. The data are provided in the 
arctangent form by the hardware device and require conversion by the software. The 
unit of measurement for heading and roll is degrees, while the speed is measured in 
knots. 

• Bit 9 is a validity bit. Thus, if the bit is set, the data are valid; otherwise, the data are 
invalid. If the data are invalid, no conversion of the data should be performed, and an 
exception should be raised. 

• Bits 8 and 7 are used as a code for the particular channel which provided the data. 

• Bits 6 through 1 are spare and not used. 
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The above defines the general format of the data which are mapped into particular memory ad- 
dresses. For each particular value, that is, heading, roll, or ship speed, it is necessary to convert the 
data to obtain specific values. The equations for conversion of the data are defined in the following 

manner: 
Heading = 180 B23 + 90B22 + K Arctan[2-1 B^ + 2'2 B19 + ... + 2-11B10] 

ROIL 90B23 + 45B22 + 0.5  K  Arctanp^B^+2"2B19 + ...+ 2"11B10] 

Speed = 5 {180 B23 + 90 B^ + K Arctan[2"1 B20 + 2 2 B19 + ... + 2"11B10] }/18 

In the above equations, Bj refers to the value of bit i and K is (-1)B2i. 

The preceding has defined the data formats and appropriate addresses where the data are mapped. 
We now consider the software aspects of the problem. In particular, we consider (i) the use of 
representation clauses to allocate storage for the data, and (ii) the software necessary to perform the 

data conversions. Note the following for this example only. (1) SYSTEM.STORAGEJJNIT is as- 
sumed equal to 24 bits; and (2) bit numbering in the figure starts at 1, and Ada requires bit numbering 
to begin at 0; thus there will not be a one-to-one correspondence between the implementation and 
the figure. 

Figures 7a-f show an Ada implementation for this analog conversion. Figure 7a shows an Ada 
package, Analog_Data_Format, that contains type declarations for representing the analog data. 
The distinction between objects of types Blt_Type and Bit_Value_Type must be made. Some bits in 
the analog data are used as boolean bits, e.g., Valldlty_Blt, and are of type Blt_Type, whereas other 
bits are used numerically and are of type Blt_Value_Type. 

Figure 7b shows the main procedure for the data conversions. The procedure Convert_Data uses 
the type definitions in package Analog_Data_Format. Object declarations for the analog data and 
an associated address clause are defined in this procedure. For example, an object 
Roll_Analog_Data is declared to be type Analog_Data_Type, and an address clause is given speci- 
fying that it is located at octal address 102 in memory. Note also the use of pragma SHARED for the 
analog data objects which informs the compiler that some other process will be accessing these 
variables. 

Convert_Data also contains a general purpose data bit conversion function, Convert_Data_Blts, 
which is shown in Figure 7c. Convert_Data_Blts uses an arctangent function ATanD which is as- 
sumed to be contained in a predefined library package, Float_Math_Llb. Convert_Data_Blts is 
called by each of the conversion functions, e.g., heading, roll, and speed. For example, function 
Convert_Headlng, which is shown in Figure 7d, calls Convert_Data_Blts, and, using the returned 
result in the appropriate conversion equation, calculates the heading. Similarly, Figures 7e and 7f 

contain functions Convert_Roll and Convert_Speed, respectively. 

Two points should be made regarding the design of this example. First, note that all the machine- 
dependent data representation code can be found in one package, Analog_Data_Format. This will 
be helpful in maintenance, for example, since all possible changes to the machine dependent repre- 
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sentation values will be made in only one unit. Also note that the package Analog DataFormat 
contains object declarations for heading, roll, and speed analog data where address clauses are 
given specifying the location where the data will be mapped by the external system. 

A second point should be made about the use of modularity. For the purposes of this example, 
separate functions for each of the conversions is plausible, but when designing a mission-critical 
system, one must consider the overhead cost of making the function calls. Depending upon the 
particular emphasis, it may be more efficient to use either pragma INLINE which replaces a function 
call with the actual body of the function, or eliminate the functions altogether and put the code for the 
conversions in the body of the main procedure. 

5.6. Calculation of Message Checksums 

In systems which involve the transmission of data with other systems, there is typically a requirement 
that the integrity of the data transmission be assured. A simple technique to implement such a 
requirement, which is frequently used, involves a checksum procedure on the contents of the mes- 
sage. We now extend the discussion of Section 5.4 to incorporate a simple message checksum. We 
implement the checksum using the UNCHECKED_CONVERSION function of Ada, discussed in Sec- 
tion 4.4. 

In Figure 5, we presented the format of a Navigation Data Message, which contains information about 
a ship position and attitude data. The Ada code to implement this example appears in Figure 6. Let 
us now extend this example to incorporate a simple checksum procedure in the following manner: 
We will perform the algebraic sum of each 16-bit component of the message. The checksum shall be 
computed as a 32-bit integer. 

In the format of the Navigation Data Message, shown in Figure 5, we note that the message compo- 
nents are not allocated in units of 16-bits. At first it may appear that performing the checksum is a 
problem; we certainly cannot merely add up the values of the components, for this would be incorrect. 
Rather, the problem is to add up each 16-bit word in the message, as opposed to message compo- 
nents. We now illustrate a technique to accomplish this using the UNCHECKED_CONVERSION 
function. 

Figure 8 shows a function, Checksum, that given a message of type Navigatlon_Message_Type, 
will return the integer checksum of that message. Prior to calculating the checksum, the message 
must be converted to a format that will allow the 16-bit fields to be accessed. An array type, 
Array_of_Flelds whose components are of type Field_Type, is defined for this purpose. The bit 
pattern of the parameter NavigationMessage is viewed as type Array_of_Flelds using the function 
Convert_to_Fields and assigned to the object CheckSum_Message. The checksum is computed 
from this new representation. The specific conversion function that views the bit pattern of an object 
of type Navlgat!on_Message_Type as the bit pattern of an object of type Array_of_Fields is an 
instantiation of the generic function UNCHECKED_CONVERSION which is made visible by the "with" 
clause. Note that for purposes of this example this function calculates the checksum of messages of 
type Navlgatlon_Message_Type only. A general purpose function to calculate checksums of any 
message could also be implemented. 
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6. The Use of Assembler Language 

6.1. Introduction 

A characteristic alternative to implementing a particular operation in Ada, where an Ada implemen- 
tation does not support the necessary features to implement the operation, is to use assembler lan- 
guage. Traditionally, use of assembler language was warranted because assembler code is typically 
"better" than the code which would be generated by the compiler. Assembler code has found fre- 
quent application to time-critical processing as well as bit-manipulation operations. In view of the 
widespread use of assembler, we believe it is relevant to discuss the mechanism through which an 
Ada program interfaces to a routine written in another language and to consider an example which 
illustrates interfacing an Ada program to an assembler language subroutine. 

6.2. Discussion: Pragma Interface 
Ada provides for the ability to interface to another language through the use of pragma INTERFACE. 
The general form of this predefined pragma is as follows: 

pragma INTERFACE (language_name, subprogram_name); 

For each subprogram name, there must exist a pragma INTERFACE. This pragma specifies the 
language as well as the name of the subprogram. Note that the specification of the language im- 
plicitly specifies the calling conventions. It is not required that an implementation support this 
pragma. Furthermore, an implementation may place restrictions on the permitted forms and places of 
parameters, as well as calls to the subprogram. 

6.3. An Example 
We now consider an example illustrating the use of assembler language. For this example we as- 
sume that there is a need to allocate and access some data structure which contains information 
about the status of an inertial navigation system gyro. Thus, we assume that these data contain 
information about the gyro alignment mode, the current temperature, and the current values of x, y, 
and z torques being applied. Additionally, we assume there are five status indicators which provide 
the status of an A-D converter and multiplexer, a random access memory (RAM) built-in test (BIT) 
status, status of a velocity buffer, and finally, the status of the gyro power supply. We assume that 
the type of data recorded is of the type and ranges indicated below: 

1. Gyro alignment mode, integer, [1,12] 
2. Left Bit Precision (M), integer, [0,15] 
3. Right Bit Precision (N), integer, [0,15] 
4. Gyro temperature, integer, [0,100] 
5. x-gyro torque, fixed-point, [0.0, 360.0] 
6. y-gyro torque, fixed-point, [0.0, 360.0] 
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7. z-gyro torque, fixed-point, [0.0, 360.0] 

8. A-D Converter status, integer, [0,1] 

9. A-D Multiplexer status, integer, [0,1] 

10. RAM BIT status, integer, [0,1] 

11. Gyro power status, integer, [0,1] 

12. Velocity buffer status, integer, [0,1] 

The gyro torque components have been specified as fixed-point types, which is the desired target 
type. In the actual data, however, they are reported as an integer-type bit pattern. The ability to 
convert this pattern is based on the values of the precision, denoted M and N. That is, the value of M 
(N) represents the number of binary places to the left (right) of the binary point. We assume that the 
values of M and N are not constant. In other words, the precision of the gyro torque components will 
vary according to the values of M and N. 

In the example, we assume that the actual locations for the above data items are not fixed. That is, 
the locations are not constrained to conform to some external specification, which is in contrast to the 
preceding examples. However, we require that the total storage for the structure be minimized, and 
we affect this by using the pragma PACK. In other words, the storage allocation is determined by the 
compiler. 

For purposes of the example, we assume that the fixed-point quantities listed above are not neces- 
sarily reported in terms of 32-bit quantities. In particular, we assume that the fixed-point quantities 
listed above are reported with either 16-, 24-, or 32-bit precision. However, we assume that the target 

machine requires the fixed-point quantities to be stored in 32-bit long addresses. Hence, the problem 
is to be able to convert an arbitrary fixed-point quantity, specified by the precision based on M and N, 
to a fixed-point quantity which will be stored in a 32-bit address. To implement the above considera- 
tions, we assume the existence of an assembler language routine that is passed the following 
parameters: 

1. The address of the component in the record. 
2. The bit offset of the component, relative to the address. 

3. The length of the component (in bits). 

4. The values of M and N, which determine the precision of the data. 

Using the above parameters, the assembler routine will convert the data to a fixed-point type, and this 
value is returned with a length of 32 bits and 15 bits of precision. 

Note that since the allocation of the structure is performed by the compiler, we must have a way of 
determining the values of the parameters which are required by the assembler routine. We obtain 
these values by using representation attributes, discussed in Section 3.5. 

The code for solving this problem is shown in Figures 9a-c. In Figure 9a, a package, Gyro_Status, is 
shown which defines a record containing the relevant data. Note that pragma PACK is used, and no 
record representation clause is specified; thus the storage representation of the record is decided by 
the compiler. 
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Shown in Figure 9b is a package, Asem_Convert, that contains the function specification for the 
assembler routine, Asem_Convert_Flxed, and pragma INTERFACE which informs the compiler that 
the function specified is an assembler routine. It should be pointed out that type Address is defined 
in package System, and package System is made visible to package Asem_Convert by the "with" 
clause. 

Shown in Figure 9c is a procedure, Encode_Data, that is passed a record containing gyro status 
data, and upon completion, passes three parameters containing fixed-point values of the torque data. 
Encode_Data invokes the assembler routine, Asem_Convert_Fixed, to perform conversions of the 
torque values. Note the use of representation attributes to query the machine to obtain the 
parameters needed by the assembler routine. 

A final point is worth noting about this example. That is, the storage allocation is performed by the 
compiler, and the use of pragma PACK assures us that the storage be minimized. The actual ad- 
dress of a particular data item is obtained by querying the representation attributes. This implies that 
there is, indeed, a certain portability in the design technique employed. Thus, the same code could 
be executed using two different compilers and would provide the same results, even though the 
storage allocations might be different. This assumes, of course, that the two compilers support 
pragma PACK. Note, again, the possible cost associated with using representation attributes. 
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7. Guidelines for Design 

7.1. Introduction 

In the following we present some guidelines for the use of representation clauses and 
implementation-dependent features. These guidelines are intended for a designer who is considering 
using representation clauses and implementation-dependent features in an application program. To 
some extent, the choice of a design will be a function of the support provided by the compiler as well 
as the run-time environment. Guidelines for an assessment of the support provided by a compiler for 
representation clauses and implementation-dependent features are given in references [2] and [3]. It 
should be noted that we have made no attempt to be all inclusive in our discussion of guidelines. 
Thus, there may be points of interest to some application developer which are not addressed here. 

7.2. System Requirements 
When designing any system, it is important to know the system requirements. This is particularly 
important for contemplated use of Ada with machine-dependent features. Based upon those require- 
ments, separation of logical and physical representations should be attempted at the earliest possible 
phase of the design. 

7.3. Implementation Plan 

The results of an analysis of system requirements will provide a list of the machine-dependent func- 
tional characteristics necessary for a particular application. On the other hand, the results of an 
assessment of compiler support for representation clauses and implementation-dependent features 
will provide a list of the compiler's characteristics in support of these features. Such an assessment 
should be conducted, if it is not available otherwise. An implementation plan for mapping the system 
requirements onto the target processor using the chosen compiler should be performed early in the 
design development. An assessment of the system requirements, as well as the compiler support 
available, may indicate the need for alternative design mechanisms, such as the use of assembler 
language. 

As an example of the above, a system being designed in Ada may be required to interface with other 
subsystems. An assessment of the interface requirements may indicate that external systems trans- 
mit and receive objects of fixed-point types which are of varying size. Several examples of this were 
illustrated previously. An assessment of the compiler chosen for the application, as recommended in 
reference [2] for example, may show that the compiler only provides for fixed-point types of a con- 
stant size, such as 32 bits. Hence, some implementation plan is required to assess the manner in 
which the fixed-point types will be operated on in the application. A common choice is the use of 
assembler language routines to perform the conversion from arbitrarily sized fixed-point types to the 
size required by the compiler. Another choice may be the use of UNCHECKED_CONVERSION 
which would "convert" the bit pattern of the fixed-point value to a type that could vary in size, i.e., view 
a fixed-point type as an integer and then vary the size of the integer.  Keep in mind that the restric- 
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tions on the use and results of an UNCHECKED_CONVERSION are very implementation dependent 
and one must be aware of the behavior of the compiler employed. 

The development of an implementation plan may serve several purposes. First, the development of 
the plan will affect the mapping from system requirements onto a specific architecture/compiler. Sec- 
ond, it will indicate areas where alternative design strategies are warranted. Third, it can indicate the 
possible need for assembler routines. 

7.4. Knowledge of the Compiler To Be Used 

The Ada language gives the compiler implementor many implementation choices, particularly in the 
area of representation clauses. As a result, it is very important for an application programmer to 
know what implementation choices have been made for the particular compiler employed. It is also 
important for an application programmer to know what kind of information the compiler can provide. 
For example, a load map which gives storage locations and sizes of program variables is very useful. 
The questions enumerated in reference [2] can aid one in gaining knowledge about a particular 
compiler, and serious consideration should be given to those questions, prior to design. The choice 
of a particular compiler and the associated characteristics of that compiler may require considering 
alternatives for supporting machine-dependent functionality. 

7.5. Interfacing Code Developed on Different Compilers 

When developing large systems, it is not unusual for the development to be distributed among sev- 
eral different organizations, each of which uses its own particular resources for the development. 
Problems will undoubtedly occur when the system is integrated and code developed on different 
compilers/machines must interface with each other. Knowing the compilers and their associated 
characteristics that were used for each subsystem development will help alleviate problems. Again, 
reference [2] will help in this task. 

7.6. Grouping Implementation Dependencies Together 

If a system requires the use of implementation-dependent features where specific references to ma- 
chine values are made, we recommend that all implementation dependencies be grouped together. 
This will make the code more understandable, easier to maintain, and may simplify the process of 
portability. This grouping will also aid in keeping logical and physical representations separated. This 
recommendation was used in our solution to the analog conversion example, Section 5.5, and is 
illustrated in Figures 7a-f. 
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7.7. Using Numeric Values in Length and Record Representation 
Clauses 

When using representation clauses, the values specified in the clauses are dependent upon the 
underlying machine, and how the values are specified may help to relax this dependency. For length 
clauses, a simple expression of some numeric type may be used when specifying the amount of 
storage. For record representation clauses, a static simple expression of some integer type may be 
used specifying the alignment, the storage unit offset, and the bounds on the range of bits. As an 
example of this, consider a record component, Speed, which is specified with the following compo- 
nent clause: 

Speed at Which_Storage_Unit range First_Bit.. Last_Bit; 

In the examples for this report, we chose to use specific numeric values for these expressions rather 
than objects or constants. The use of objects may make changes to the length and record clauses 
easier but will, in our opinion, affect the readability/understandability of the code. Also, dependency 
on the underlying machine will be hidden by the objects, but there is an overhead cost associated 
with such an approach. This matter is also an issue of style, and tradeoffs must be considered for 
either approach. 

7.8. Pragma Storage_Unit 

Any use of implementation-specific values implies a compromise of portability. A suggestion was 
discussed above on how to ease the loss of portability. As another suggestion, consider the 
predefined pragma, STORAGEJJNIT, which allows one to change the value of 
SYSTEM.STORAGEJJNIT. This pragma may be used to specify the basic storage unit for a partic- 
ular target machine. Referring to our example in Section 5.4, Figures 5 and 6, we could have used 
this pragma to specify SYSTEM.STORAGEJJNIT to be 16 bits instead of the assumed 8 bits. As a 
result, the code would correspond directly to the message layout, and, if ported to another system, 
the specific values used in the record clause would not have to be changed. Use of this pragma 
could eliminate changes to machine-dependent values. Keep in mind that this discussion is only 
relevant for compilers that support this pragma. 

7.9. Referencing Storage 
In many applications and particularly those applications that use intercomputer messages, there are 
specific constraints on the actual placement of data. When representing specific data placements 
such as the message formats illustrated in Figures 1, 3, and 5, it is very important to know the 
ordering schema for storage units and how bits are numbered within storage units. A correspon- 
dence between the requirements and machine Schemas should be documented to ensure correct- 
ness of the representation implemented. 

For example, the format of the messages referenced above uses a left-to-right ordering of storage 
units schema, and numbers the bits within a storage unit from left-to-right. If the underlying machine 
used for implementing these messages numbers bits from right-to-left, then the representations, as 
displayed in Figure 2, for example, will require modification. 
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7.10. Run-Time Issues 

The scope of this document, and related documents in this series, focuses on the compiler support 
for representation clauses and implementation-dependent features in Ada. It must be noted, how- 
ever, that consideration of run-time support may also be an issue. In other words, a compiler may 
implement some feature of representation clauses or other machine-dependent characteristics by 
calls to a run-time library. Hence, the amount of support provided by the run-time environment is an 
issue which should also be considered. Here, one is especially concerned with tradeoff issues, such 
as execution time and storage requirements, which are associated with the use of run-time support. 

7.11. Use of Different Compilers in Development 

A development effort may involve the use of more than one Ada compiler. For example, selected 
portions of the application may be prototyped. Additionally, part of the application may be developed 
with one compiler and then transferred to the target machine. 

The use of two (or more) compilers introduces an additional "layer" in the development effort. That is, 
one must consider the support provided for representation clauses and machine-dependent features 
for the different compilers. A suggested design recommendation would be to implement the machine- 
dependent characteristics for the target processor to the extent possible, attempting to minimize the 
inherent portability issues. 

7.12. Knowledge of Support Facilities 
The use of representation clauses and implementation-dependent features may present unusual 
problems throughout design and coding. Support facilities, namely debugger and system documen- 
tation, should provide relevant functions and information in this area. For example, accessing ad- 
dresses of variables, examining contents of those addresses, and displaying machine code are desir- 
able functions for a debugger to provide in support of representation clauses and implementation- 
dependent features. 

Since compiler implementors have many options as to the support of these features, it is very impor- 
tant to have complete and correct documentation on these features. And, it is conceivable, since 
there are many degrees of support for these features, that upgraded versions of an implementation 
will enhance the support originally provided for these features. The manner in which system docu- 
mentation is upgraded should be of concern in that the usefulness of the documentation may be 
compromised. An application programmer should be knowledgeable about support facilities such as 
those discussed above. 
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8. Summary 
A basic characteristic of real-time, embedded systems is that they must be able to access the under- 
lying architecture of the target machine. This necessitates considering representation clauses and 
implementation-dependent features in the Ada language. Thus, the purpose of this report is to pro- 
vide a discussion of representation clauses and implementation-dependent features as defined by the 
Ada language. Several examples, drawn from mission-critical systems, illustrate the use of represen- 
tation clauses and implementation-dependent features. A set of guidelines for considering the use of 
representation clauses and implementation-dependent features is included with this report. 

This report is the first in a series of reports related to the use of representation clauses and 
implementation-dependent features in Ada. The emphasis in this report is on the use of represen- 
tation clauses and implementation-dependent features from a machine-independent perspective. 
Thus, this report may be viewed as tutorial in nature. Other reports in this series will examine the 
assessment of support provided for representation clauses and implementation-dependent features 
for particular compilers. 

We emphasize that the Ada language satisfies all of the requirements of the case study examples 
presented. Of greater importance, however, is the support provided by a particular compiler for the 
machine-dependent elements of the language. 

The authors would like to acknowledge discussions with colleagues John Nestor, Nelson Weiderman, 
and Linda Bürgermeister. 
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Appendix I:     Figures 
To provide continuity of the text, all figures have been placed together in this appendix. 

Figure 1 

Format for Message Header 

BIT 

WORD 0 M|2|3|4|5|6|7 8 |9|10|11|12|13|14 [15 

MT 0 

1 0 NW — 

CMU/SEI-TR-14 35 



Figure 2 

Package for Message Header 

-- This package contains type definitions for implementing the message 
- header described in Figure 1. 

package Message_Header_Format is 

-- Type definitions for data in the message header 

type Bit_Value_Type is range 0 .. 1; 
for Bit_Value_Type'Size use 1; 

type Message_Type is (Navigation, Attitude, Time_and_Status, Test); 
for Message_Type use (Navigation => 1, Attitude => 2, 

Time_and_Status => 3, Test => 20); 

type Number_of_Words_Type is range 1 ..50; 

-- Record type and record representation clause that implement the message header 
-- Record type specifies the contents of the message and record representation clause 
- specifies the position and length of the contents 

type Message_Header_Type is 
record 

Type_of_Message   : Message_Type; 
Bit_Constant : Bit_Value_Type := 0; -- For 0 bit 
Number_of_Words   : Number_of_Words_Type; 

end record, 

for Message_Header_Type use 
record 

Type_of_Message at 0 range 0 .. 7; 
-- 8 bit filler after 

Bit_Constant at 2 range 0 .. 0; 
Number_of_Words at 2 range 1 ..14; 

--1 bit filler after 
end record, 

end Message_Header_Format; 
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Figure 3 

Format for Test Message 

BIT 

WORD 

4 

5 

0 |1|2|3|4|5|6|7 8 |9 |10 |11|12|13|14| 15 

MT 

0 NW - 

SOURCE 

TW3 (upper half) 

TW3 (lower half) 

TW2 (upper half) 

TW2 (lower half) 
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Figure 4 

Package for Test Message 

- This package contains the types necessary for implementing the 
- test message shown in Figure 3. Notice the use of Message_Header_Type 
- that was defined in package Message_Header_Format shown in Figure 2. 

with Message_Header_Format; 
package Test_Message_Format Is 

type Source_Type Is range 0 .. 100; 

type Test_Message_Type Is 
record 

Test_Message_Header: Message_Header_Format.Message_Header_Type; 
Source : Source_Type; 
Test_Word_3 : Integer; 
Test_Word_2 : Integer; 

end record, 

for Test_Message_Type use 
record 

Test_Message_Header at 0 range 0 .. 31; 
Source at 4 range 0 ..7; 

- 8 bit filler after 
Test_Word_3 at 8 range 0 .. 31; 

-- 1 word filler before 
-- 2 word field 

Test_Word_2 at 12 range 0 .. 31; 
-- 2 word field 

end record, 

end Test_Message_Format; 
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Figure 5 

Format for Navigation Message 

BIT 

WORD oh |2|3|4|5|6|7|8 9 |10|V I |12 |13|14 I 15 

o MT = 1 

1 0 NW = 15 — 

2 0 ±|    LAT 

3 LAT(13,6) 

4 0 ±I    LONG 

5 LONG (14, 6) 

6 
± 

SHIP VELOCITY EAST (7,8) 

7 ± l             SHIP VELOCITY NORTH (7,8) 

8 ± I              OCEAN VELOCITY EAST (7, 8) 

9 ± I             OCEAN VELOCITY NORTH (7, 8) 

10 ± I                        SHIP SPEED (7, 8) 

CMU/SEI-TR-14 39 



Figure 5    (continued) 

Format for Navigation Message 

BfT 

WORD 0;|1 |2|3|4| 5|6|7| 8 | 9 |10 |11 |12|13 |14|15 

11 ± CALIBRATION CONSTANT (7, 8) 

12 SHIP HEADING (0,16) 

13 SHIP PITCH (0,16) 

14 SHIP ROLL (0,16) 

15 
0 ERROR ESTIMATE 

(4,4) 

16 0 TIME OF GYRO RESET 

17 TIME OF GYRO RESET (17,10) 

18 0 GMT 

19 GMT (17,10) 

20 0 SOM GMT 

21 SOM GMT (17,10) 
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Figure 5    (continued) 

Format for Navigation Message 

WORD 

22 

23 

24 

25 

26 

27 

28 

29 

BIT 

0 |1 I 2 |3 |4 15 |6 17 |8 19 |10|11112 |13114 115 

DISTANCE NORTH 

DISTANCE NORTH (31,0) 

DISTANCE EAST 

DISTANCE EAST (31,0) 

TW1 (upper half) 

TW1 (lower half) 

TWO (upper half) 

TWO (lower half) 
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Figure 6 

Package for Navigation Message 

-- This package contains type definitions for implementing the 
-- navigation message described in Figure 5 

with Message_Header_Format; 
package Navigation_Message_Format is 

- Deltas used for fixed-point types 

CC_Del 
DMT_Del 
EE_Del 
OAI_Del 
OCV_Del 
OLAD_Del 
OLOD_Del 
OVM_Del 

■.constants 2.0" (-8), 
: constant :=2.0"(-10); 
: constant :=2.0**(-4); 
constant :=2.0**(-15); 

: constant :=2.0**(-8); 
constant :=2.CT(-6); 
constant :=2.0"(-6); 
constant :=2.0**(-8); 

~ Fixed-point types for data in the navigation message 

type Calibration_Correction Is delta CC_Del 
range -(8.0 - CC_Del).. (8.0 - CC_Del); 

type Data_Message_Times Is delta DMT_Del 
range 0.0 .. (86399.0 - DMT_Del); 

type Error_Estimate Is delta EE_Del 
range 0.0 .. (16.0- EE_Del); 

type Ocean_Current_Velocities Is delta OCV_Del 
range -(11.0 - OCV_Del).. (11.0 - OCV_Del); 

type Ownship_Attitude_lnformation Is delta OAI_Del 
range 0.0 .. (1.0 - OAI_Del); 

type Ownship_Latitude_Data Is delta OLAD_Del 
range -5400.0 .. 5400.0; 

type Ownship_Longitude_Data Is delta OLOD_Del 
range -10800.0 .. 10800.0; 

type Ownship_Velocity_lntegrals Is digits 3 
range-{0.00V(2.0**30 -1.0)).. (0.00r(2.0"30 -1.0)) 

type Ownship_Velocity_Measurement Is delta OVM_Del 
range -(128.0 - OVM_Del).. (128.0 - OVM_Del); 
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Figure 6    (Continued) 

Package for Navigation Message 

- Record type and associated record clause for navigation message 

type Navigation_Message_Type Is 
record 
Navigation_Message_Header : Message_Header_Format.Message_Header_Type; 
Latitude : Ownship_Latitude_Data; 
Longitude : Ownship_Longitude_Data; 
East_Velocity_Component : Ownship_Velocity_Measurement; 
North_Velocity_Component : Ownship_Velocity_Measurement; 
East_Current_Component : Ocean_Current_Velocities; 
North_Current_Component : Ocean_Current_Velocities; 
Ownship_Speed : Ownship_Velocity_Measurement; 
EMLog_Calibration_Correction : Calibration_Correction; 
Ownship_Heading : Ownship_Attitude_lnformation; 
Ownship_Pitch : Ownship_Attitude_lnformation; 
Ownship_Roll : Ownship_Attitude_lnformation; 
Radial_Error_Estimate : Error_Estimate; 
Time_of_Gyro_Reset : Data_Message_Times; 
Greenwich_Mean_Time : Data_Message_Times; 
SOM_Greenwich_Mean_Time : Data_Message_Times; 
lntegral_Velocity_North : Ownship_Velocity_lntegrals; 
lntegral_Velocity_East : Ownship_Velocity_lntegrals; 
Test_Word_1 : Integer; 
Test_Word_0 : Integer; 

end record, 

for Navigation_Message_Type use 
record 

Navigation_Message_Header at 0 range 0 .. 31; 
Latitude at 5 range A ..23; 
Longitude at 9 range 3 .. 23; 
East_Velocity_Component at 12 range 0 ..15; 
North_Velocity_Component at 14 range 0 .. 15; 
East_Current_Component at 16 range 0 ..15; 
North_Current_Component at 18 range 0 .. 15; 
Ownship_Speed at 20 range 0 .. 15; 
EMLog_Calibration_Correction at 22 range 0 .. 15; 
OwnshipJHeading at 24 range 0 .. 15; 
Ownship_Pitch at 26 range 0 .. 15; 
Ownship_Roll at 28 range 0 ..15; 
Radial_Error_Estimate at 31 range 0 .. 7; 
Time_of_Gyro_Reset af 32 range 5 .. 31; 
Greenwich_Mean_Time at 36 ran^e 5 .. 31; 
Som_Greenwich_Mean_Time at 40 range 5 .. 31; 
lntegral_Velocity_North af 44 range 0 .. 31; 
lntegral_Velocity_East af 48 range 0 .. 31; 
Test_Word_1 at 52 range 0 .. 31; 
Test_Word_0 at 56 range 0 .. 31; 

encf record, 

end Navigation_Message_Format; 
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Figure 7a 

Package for Analog Data 

- This package contains type definitions for implementing the 24-bit 
-- analog value described in Section 5.5 of the text 

package Analog_Data_Format Is 

type Bit_Type Is new Boolean; 
for Bit_Type use (False => 0, True =>1); 

type Bit_Value_Type Is range 0 .. 1; 
for Bit_Value_Type'Size use 1; 

type Channel_Type Is range 0 .. 3; 
for ChanneMType'Size use 2; 

type Data_Array lsarray{\ ..11) of Bit_Value_Type; 

type Analog_Data_Type Is 
record 

Channel : Channel_Type; 
Validity_Bit : Bit_Type; 
Data_Bits : Data_Array; 
Sign_Blt : Bit_Value_Type; 
Secondary_Scale_Multiplier : Bit_Value_Type; 
Primary_Scale_Multiplier : B*rt_Value_Type; 
Zero_Blt : Bit_Value_Type:= 0; 

end record, 

Heading_Analog_Data: Analog_Data_Type; 
for Heading_Analog_Data use at 8#101 #; 

-- this address clause specifies the address 
- for object Heading_Analog_Data to be 
-- 101 base 8 

pragma SHARED (Heading_Analog_Data); 

Roll_Analog_Data: Analog_Data_Type; 
for Roll_Analog_Data use at 8#102#; 
pragma SHARED (Roll_Analog_Data); 

Speed_Analog_Data: Anatog_Data_Type; 
for Speed_Analog_Data use at 8#103#; 
pragma SHARED (Speed_Analog_Data); 

end Analog_Data_Format; 

for Analog_Data_Type use 
record 

Channel at 0 range 6 .. 7; 
Validity_Bit at 0 range 8 ..8; 
Data_Blts at 0 range 9 .. 19; 
Sign_Blt at 0 range 20 .. 20; 
Secondary_Scale_Multiplier at 0 range 21 .. 21; 
Primary_Scale_Multiplier at 0 range 22 .. 22; 
Zero_Bit at 0 range 23 .. 23; 

end record: 
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Figure 7b 

Procedure for Analog Data Conversion 

-- Procedure Convert_Data takes the data which are mapped to particular 
-- addresses and using the specified equation computes the appropriate 
- value 

with Analog_Data_Format; 
procedure Convert_Data Is 

- type definitions for computed values 

type Heading_Type Is digits 8 range 0.0 .. 360.0; 
type Roll_Type Is digits 8 range 0.0 .. 180.0; 
type Speed_Type Is digits 8 range 0.0 .. 100.0; 

-- object declarations for data 

Heading: Heading_Type; 
Roll       : RollJType; 
Speed    : Speed_Type; 

package ADF renames Analog_Data_Format; 

-- functions to perform actual conversions 

- See Figure 7C 
function Convert_Data_Bits (Source : ADF.Data_Array; Sign : ADF.Bit_Value_Type) 

return Float Is separate, 

-- See Figure 7D 
function Convert_Heading (SourceJHeading : ADF.Analog_Data_Type) 

return Heading_Type Is separate, 

- See Figure 7E 
function Convert_Roll (Source_Roll: ADF.Analog_Data_Type) 

return Roll_Type Is separate, 

- See Figure 7F 
function Convert_Speed (Source_Speed : ADF.Analog_Data_Type) 

return Speed_Type Is separate, 
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Figure 7b    (Continued) 

Procedure for Analog Data Conversion 

begin - Convert_Data 

- Validity check on analog data is performed prior to attempting 
- any conversion 

-- convert heading data 
If ADF.Heading_Analog_Data.Validity_Bit = True then 

Heading := Convert_Heading (ADF.Heading_Analog_Data); 
else 

-- raise lnvalid_Heading_Data; 
end If, 

- convert roll data 
//ADF.Roll_Analog_Data.Validity_Bit = True then 

Roll := Convert_Roll (ADF.Roll_Analog_Data); 
else 
- raise InvalidJRollJData; 

end It 

-- convert speed data 
ffADF.Speed_Analog_Data.Validity_Bit = True then 

Speed := Convert_Speed (ADF.Speed_Analog_Data); 
else 
- raise lnvalid_Speed_Data; 

end If, 

end Convert_Data; 
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Figure 7c 

Common Data Bits Conversion Function 

- This function converts the data bits found in the analog data 
- This conversion is common in ail three conversion equations 

with Float_Math_Lib; 
separate (Convert_Data) 
function Convert_Data_Bits (Source : ADF.Data_Array; Sign : ADF.Bit_Value_Type) 

return Float Is 

Exponent     : Integer range -11 .. 0 :- -11; 
Result_Sign : Float; 
Temporary   : Float := 0.0; 

begin - Convert_Data_Bits 

-- loop to compute the argument for the Arctan function call 
for Index In Source'Range loop 

Temporary    := Temporary + (2.0**Exponent)*Ftoat(Source(lndex)); 
Exponent       := Exponent + 1; 

end loop, 

Result_Sign := (-1.0)**Float(Sign); 

return ( Result_Sign * Ftoat_Math_Lib.ATanD(Temporary)); 

end Convert_Data_Bits; 
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Figure 7d 

Function to Convert Heading Data 

-- This function takes heading analog data as a parameter and returns 
- a specific heading value 

separate (Convert_Data) 
function ConvertJHeading (SourceJHeading : ADF.Analog_Data_Type) 

return Heading_Type Is 

Temporary : Float; 

begin -- ConvertJHeading 

-- convert data bits 
Temporary := Convert_Data_Bits (Source_Heading.Data_Bits, 

Source_Heading.Sign_Bit); 

-- computed value returned corresponds to equation found in text 
return (Heading_Type( 

180.0*Float(Source_Heading.Primary_Scale_Multiplier) 
+ 90.0*Float(Source_Heading.Secondary_Scale_Multiplier) 
+ Temporary)); 

end ConvertJHeading; 
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Figure 7e 

Function to Convert Roll Data 

- This function takes roll analog data as a parameter and returns 
- a specific roll value 

separate (Convert_Data) 
function Convert_Roll (Source_Roll: ADF.Anak>g_Data_Type) 

return Rolljype Is 

Temporary : Float; 

begin - Convert_Roll 

-- convert data bits 
Temporary := Convert_Data_Bits (Source_Roll.Data_Bits, 

Source_Roll.Sign_Bit); 

- computed value returned corresponds to equation found in text 
return (Roll_Type(90.0*Float(Source_Roll.Primary_Scale_Multiplier) 

+ 45.0*Float(Source_Roll.Secondary_Scale_Multiplier) 
+ 0.5*Temporary)); 

encrConvert_Roll; 
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Figure 71 

Function to Convert Speed Data 

- This function takes speed analog data as a parameter and returns 
-- a specific speed value 

separate (Convert_Data) 
function Convert_Speed (Source_Speed : ADF.Analog_Data_Type) 

return Speed_Type Is 

Temporary : Float; 

begin -- Convert_Speed 

-- convert data bits 
Temporary := Convert_Data_Bits (Source_Speed.Data_Bits, 

Source_Speed.Sign_Bit); 

- computed value returned corresponds to equation found in text 
return (Speed_Type ((5.0/18.0)* 

(180.0*Float(Source_Speed.Primary_Scale_Multiplier) 
+ 90.0Tloat(Source_Speed.Secondary_Scale_Multiplier) 
+ Temporary))); 

enc/Convert_Speed; 
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Figure 8 

Checksum Function for Navigation Message 

-- Function Checksum takes a parameter of type Navigation_Message_Type 
- and returns the integer checksum of the message 

with Unchecked_Conversion; 
function Checksum (Navigation_Message : Navigation_Message_Type) 

return Integer Is 

-- type definitions for representing the message as 
-- an array of 16 bit fields 
type Field_Type Is range -32768 .. 32767; 
for Field_Type'Size use 16; 

type Array_of_Fields Is array (0 .. 29) ofTield_Type; 

-- instantiation that will result in the specific unchecked conversion 
-- function that will take a bit pattern of type Navigation_Message_Type 
- and view it as a bit pattern of type Array_of_Fields 
function Convert_to_Fields Is new Unchecked_Conversion 

(Navigation_Message_Type, Array_of_Fields); 

CheckSum_Message : Array_of_Fields; 
Sum : Integer := 0; 
-- requirements state the sum is to be 
- computed as a 32 bit integer 

begin 

- perform unchecked conversion 
CheckSum_Message := Convert_to_Fields(Navigation_Message); 

- compute and return the sum of the fields 
for\ //) Array_of_Fields' Range loop 

Sum := Sum + Integer (CheckSum_Message(l)); 

end loop, 

return Sum; 

end Checksum; 
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Figure 9a 

Package for Gyro Status Types 

- This package contains the type declarations for representing 
-- data about the status of an inertial navigation system gyro 

package Gyro_Status Is 

type Alignment_Mode_Type Is range 1 .. 12; 
type Brts_to_Left_Type Is range 0 .. 16; 
type Bits_to_Right_Type Is range 0.. 15; 
type Long_Data_Type Is range -(2**31).. (2**31 )-1; 
type Medium_Data_Type Is range -(2**23).. (2**23)-1; 
type Short_Data_Type Is range -(2**15).. (2**15)-1; 
type Status_Type Is range 0 .. 1; 
type Temperature_Type Is range 0 .. 100; 

type INS_Gyro_Data_Type Is 
record 

Gyro_Alignment_Mode 
M 
N 

Gyro_Temperature 
X_Gyro_Torque 
Y_Gyro_Torque 
Z_Gyro_Torque 
A_D_Converter 
A_D_Multiplexer 
RAM_BIT 
Gyro_Power 
Velocity_Buffer 

end record: 
pragma PACK(INS_Gyro_Data 

Alignment_Mode_Type; 
Blts_to_Left_Type; 
Bits_to_Right_Type; 
Temperatu re_Type; 
Short_Data_Type; 
Medium_Data_Type; 
Long_Data_Type; 
Status_Type; 
Status_Type; 
Status_Type; 
Status_Type; 
Status_Type; 

i_Type); 

~ this is the type that the torque values must be converted to 
type Long_Flxed_Type Is delta 2.0**(-15) 

range -(2.0**16).. (2.0**16)-1.0; 

end Gyro_Status; 
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Figure 9b 

Package for Assembler Conversion 

- This package contains a function specification for an assembler 
~ routine used in converting gyro torque values to a fixed-point type 

iv/f/?Gyro_Status; 
with System; 
package Asem_Convert Is 

function Asem_Convert_Fixed (Component: System.Address; 
First_Bit_Offset: Integer; 
Length : Integer; 
Left: Gyro_Status.Bits_to_Left_Type; 
Right: Gyro_Status.Bits_to_Right_Type) 

return Long_Fixed_Type; 

private 

pragma INTERFACE (Assembler, Asem_Convert_Fixed); 

end Asem_Convert; 
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Figure 9c 

Procedure for Data Encoding of Gyro Status Data 

- This procedure converts the torque values given in the parameter 
- to a fixed-point type using an assembler routine 

with Asem_Convert; 
with Gyro_Status; use Gyro_Status; 
with System; 
procedure Encode_Data (System_Gyro_Data : In INS_Gyro_Data_Type; 

Fixed_X_Gyro     : out Long_Fixed_Type; 
Fixed_Y_Gyro     : out Long_Fixed_Type; 
Fixed_Z_Gyro     : out Long_Fixed_Type) is 

Addr        : System.Address; 
Length     : Integer; 
Offset      : Integer; 

package AC renames Asem_Convert; 

begin 

-- convert x-component of gyro torque 
Addr 
Offset 
Length 

= System_Gyro_Data.X_Gyro_Torque'Address; 
= System_Gyro_Data.X_Gyro_Torque'First_Bit; 
- System_Gyro_Data.X_Gyro_Torque'Last_Bit - Offset + 1; 

Fixed_X_Gyro := AC.Asem_Convert_Fixed (Addr, Offset, Length, 
System_Gyro_Data.M, System_Gyro_Data.N); 

-- convert y-component of gyro torque 
Addr        := System_Gyro_Data.Y_Gyro_Torque'Address; 
Offset       := System_Gyro_Data.Y_Gyro_Torque'First_Bit; 
Length     := System_Gyro_Data.Y_Gyro_Torque'Last_Bit - Offset + 1; 

Fixed_Y_Gyro := AC.Asem_Convert_Fixed (Addr, Offset, Length, 
System_Gyro_Data.M, System_Gyro_Data.N); 

- convert z-component of gyro torque 
Addr 
Offset 
Length 

= System_Gyro_Data.Z_Gyro_Torque'Address; 
= SystemJ3yro_Data.Z_Gyro_Torque'First_Bit; 
= System_Gyro_Data.Z_Gyro_Torque'Last_Bit - Offset + 1; 

Fixed_Z_Gyro := AC.Asem_Convert_Fixed (Addr, Offset, Length, 
System_Gyro_Data.M, System_Gyro_Data.N); 

end Encode_Data; 
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