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\x// ABSTRACT

Broken rotor bars are a common cause of induction motor
failures. In the past, the detection of broken rotor bars
has primarily been limited to non-operating, and typically,
disassembled machines. The ability to detect broken rotor
bars while the machine is operating at normal speed and load
is desirable. In support of the ongoing development of a
failure analysis system for electrical machines, this thesis
evaluates the method of using stator currents and voltages
to detect the presence of broken rotor bars in squirrel-cage
induction motors. The hypothesis of this method is that,

given a sinusoidally applied voltage, the presence of
certain harmonics in the stator currents could be used to
detect the presence of broken rotor bars. jALa*g, ')hat-ﬁ;f(

To support the evaluation, a system of first-order
differential equations describing the electrical performance
of a three-phase, squirrel -cage induction motor was
developed wusing stator phase currents and rotor loop
currents as state variables. A FORTRAN simulation program
was developed to solve the system of equations for a motor
with or without a broken rotor bar. Using an "off-the-shelf”
3-HP motor, numerical and physical experiments were
conducted to test the failure detection hypothesis. Although
the results of the numerical experiments indicated that the
hypothesis was plausible, the experimental results showed
that distinguishing between a manufacturing asymmetry and a
broken rotor bar was 1impossible due to the existence of
inter-bar currents.

The existence of inter-bar currents in a squirrel-cage
induction motor of the type tested in this thesis
effectively "masks" the effects of a broken rotor bar. Thus,
detection of broken rotor bars based upon a technique using
only stator current measurements appears highly improbable.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Objectives

In recent surveys (1,2,3} on the reliability of
hl electric motors, three kinds of faults have been identified
as constituting the majority of failures in induction

motorse. These are bearing-related (41%X), siator-related

(37%), and rotor-related (10%). Table 1-1 shows a summary
of failures for these areas by components. The remaining
failures (12%) are scattered among a variety of effects. As
shown in Table 1-1, of the rotor-related failures, cage
faults in the form of broken rotor bars or end rings are
the cause of half of the machine failures. Cage faults
occur due to design and manufacturing defects, misoperation
and misapplication of the machine, lack of preventive
maintenance, and aging/fatigue failure. Rotor cage defects
result in machine failure due to increased frame
vibrations, localized temperature increases on the rotor,
and the "domino" effect in which one broken bar leads to
another broken bar and so on.

The purpose of this thesis is to present the results af
research investigating the detection of broken rotor bars
using stator current and voltage measurements. This

research effort supports the ongoing development of a
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failure analysis system for electric machines by the M.I1.T.

Laboratory for Electromagnetic and Electronic Systems

[4,5]).
Bearing-Related Stator-Related Rotor-Related
(41%X) (37%) (10%)
Sleeve 16% Ground 23% Cage 5%
Bearings Insulation
Anti-friction 8% Turn 4% Shaft 2%
Bearings Insulation
Seals 6% Bracing 3% Core 1%
Thrust 5% Wedges 1% Other 2%
Bearing
01l Leakage 3% Frame 1%
Other 3% Core 1%
Other 4%

Table 1-1. Motor Failures by Components [1].

1.2 Condition Monitoring of Electric Machines

The unexpected and sometimes catastrophic failure of
electric machines can result in the reduction or total loss
of production and operational safety, expensive repairs and
extended downtime, and in most cases, large capital losses.
In the case of military applications, these failures can
result in the degradation of mission effectiveness and

perhaps even the inability to perform a primary mission.
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For many years, private industry and the military have used
planned maintenance strategies to minimize electric machine
failures. One major drawback of this strategy is that the
need for <corrective maintenance cannot be determined
without removing the machine from service, disassembling
it, and inspecting 1it. Without a method to externally
determine the condition of an operating machine, a machine
in perfect condition may be removed from service while a
machine on the verge of failure maybe ignored. Obviously, a
more efficient and cost-effective maintenance strategy
would be to schedule maintenance and repairs based on a
continuous assessment of the machine’s condition while it
is operating at normal speed and load.

There are currently two methods being used and/or
developed to assess the condition of an operating electric
machine [6]. The first method involves the analysis of
vibration data and historical performance records. This
method is commonly referred to as signature trend analysis.
In signature trend analysis, sensor measurements (typically
accelerations) are collected and processed through Fourier
Transform at regular intervals. Each data collection is
compared to previous data and known "good" baseline data in
order to expose signature trends. Based on experience,
these signature trends can be related to specific defects
and failures. Thus, signature trend analysis is essentially

a heuristic method used to assess the condition of a

12
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machine. Although signature trend analysis is a viable and
widely used monitoring system, the requirement for a
database of historical performance and the experience
required to relate a signature trend to a specific defect
or failure are major disadvantages. The second method is
more theoretical by nature and seeks to identify the
fundamental causes of failures and predict their effects.
In this method, a detailed understanding of the machine
response for various operating scenarios including normal
operation as well as for various fault conditions 1is
required. Thus, for any given operating condition, the
theoretical response of the machine 1is calculated and
compared to the actual response of the machine. By
comparing these responses an estimate or prediction of the
machine’s condition can be made. Although both of these
methods typically require the use of a processor such as a
microcomputer for continuous monitoring, each can be used
both to prevent catastrophic failures by early detection
and to aid 1in the preparation of routine maintenance
schedules.

A failure analysis system for electrical machines is
currently being developed by the Laboratory of Electromag-
netic and Electronic Systems (LEES) at the Massachusetts
Institute of Technology. The development of this system is
a major task of the Ship Service Power System Development

research sponsored by the Department of the Navy’s Naval

13




Sea Systems Command [8]. The ultimate goal of the proposed
failure analysis system is to provide a tool which can be
used onboard naval ships to prevent, predict, and detect
electric machine failures, and to suggest the corresponding
maintenance. The system 1is intended for retrofit onto
existing electrical machines or incorporation into future
electrical machines and for implementation with inexpensive
sensors and processors [4]. The following paragraphs,
extracted from the research proposal [§], briefly describe
the proposed failure analysis system. The system will use a
combination of both methods described above to assess the
condition of a machine.

The underlying principle of the system is that
failure prevention, prediction, and detection
should be based on the estimation of states and
parameters in relevant physical models of electri-
cal machines., These models s8hould include failure
modes, mechanisms, or symptoms that are expressed
in terms of the electrical machine states and
parameters. The models, coupled with state and
parameter estimation, then provide a means of
directly and justifiably connecting measured data
to impending or existing failures. Thus, the
reliability of the failure analysis is enhanced.

The models also provide a means by which measured

data from a variety of sensors can be processed




together in a consistent manner.

A (one-line) diagram of the proposed failure
analysis system is shown in Figure 1-1. Measure-
ments from sensors on the electrical machine are
processed by a model reference state and parameter
estimator. State and parameter estimates are then
passed to a rule based evaluator which suggest the
corresponding maintenance. 1Initially, the system
will be developed using information readily
available from terminal voltage and current
sensors. The system can be expanded later to
include information from other sensors such as
thermocouples, accelerometers, acoustic sensors,
and gas analyzers.

The development of the failure analysis system
is broken down into four subtasks. These are:

1. Develop physical models which "include
failure modes, mechanisms, and symptoms
expressed in terms of the model states and
parameters.

2. Develop estimators for the model states
and parameters.

3. Develop state and parameter evaluators
that act on the estimated quantities so as to
prevent, predict, or detect electrical

machine failures and suggest corresponding

15
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maintenance.

4.

Demonstrate and evaluate the results of

theoretical work through numerical and

physical experimentation.

The results presented in this thesis directly support

particular,

Rlectrical
Machine
Model

the physical model development of subtask (1) above. 1In
this thesis is concerned with the development
and demonstration of models which include rotor Dbar

failures in induction motors.

Electrical
Machine

Sensors

Measuremente

4

State and
— — — — > Parameter
Estimator

Estimates

Rule Based Evaluation and

State and — —— — i
= T = "> Parmeter < h‘::“"“
les

Evaluator

Suggested Maintenance

Figure 1-1. Proposed failure analysis system [5].

16




s e
!
f
}
}

1.3 Detection of Rotor Bar Defects

In order to detect broken rotor bars, several methods
have been employed. Visual inspection and bench test
methods such as the '"growler"” and related probe techniques
applied to disassembled motors have been used for many
yvears [7]). The "single phase” test has also been used as =a
standard test for assembled but non-operating motors [T7].
Recently, there have been a number of studies [7,8,9,10,11]
to develop theories of the response of induction motors in
the presence of broken rotor bars and/or end rings.

A common result found in each of these studies is the
existence of a lower sideband frequency component in the
stator phase current when the motor is driven by a single
harmonic stator voltage. This component of the stator
current, which is at a frequency of (1-2s)f, where s is the
rotor slip and f is the line frequency, is a result of the
fundamental component of the backwards-rotating airgap
field produced by the induced rotor currents. This field,
which rotates backwards at slip speed with respect to the
rotor, rotates forward with respect to the stator at
{1-2s)Ns, where Ns is the synchronous speed. Thus, this
field induces currents of frequency (1-2s8)f in the stator
windings. This component of the stator current causes
torque pulsations and speed oscillations at twice the slip

frequency. In addition to these effects, it has been shown

17
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by Kliman et ai. [7] and Penman et al. [11] that axially
directed fluxes arise due to the asymmetry of the rotor
magnetic circuit with a broken rotor bar.

Based on these results, there have been a number of
instruments developed to give an indication of a broken
rotor bar while the motor is running at normal speed and
load. These instruments detect broken rotor bars using

measurements of one or more of the following parameters:

stator current

- mechanical speed

- frame vibration (i.e., acceleration)

-~ air gap flux

- axial leakage flux
The most successful of these instruments has been an
instrument based on detecting the twice slip frequency
speed oscillations via a shaft position measurement [8]).
However the sensitivity of the speed variation method 1is
highly dependent on knowledge of the 1load inertia and
torque, and results may be confused by other asymmetries.

Recently, two new 1instruments have been used to
successfully detect broken rotor  bars in operating
induction machines. Although both instruments are still in
the "field test"” stage of development, they appear quite
promising. The first instrument, developed by Kliman et al.
[T)], uses stator current measurements to detect broken

rotor bars. The second instrument, developed by Penman et

18
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al. [11), uses axial flux measurements to detect broken
rotor bars as well as several other fault conditions such
as phase imbalances and short-circuited turns on a stator
winding. The following paragraphs summarize the operating

theory and experimental results for these new instruments,

1.3.1 Broken Bar Detector (BBD)

The BBD being developed by Kliman et al. is based on
existing theories for the performance of induction motors
with broken bars. A broken rotor bar is modeled by
superimposing a fault current, a current equal and
opposite to the normal current, on the rotor bar. The
magnetic field in the airgap caused by the fault current
igs always two-pole and rich in harmonics. This field
anomaly rotates at the mechanical frequency of the rotor
since it is attached to the broken bar. The field can be
resolved, using Fourier analysis, into an infinite series
of counter-rotating, slip-frequency waves of smaller and
smaller wavelength on the rotor. In addition to broken
rotor  bars, other fault conditions such as cage
misalignment (rotor out of round), bearing misalignment
({rotating eccentricity), and non-uniform magnetic orienta-
tion of the rotor laminations create airgap field
anomalies with a fundamental component on the same order
as that of a broken bar. However, the higher-order
harmonic components of the airgap field due to these other

fault conditions are predicted to be much smaller than

19
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those due to a broken bar. Figure 1-2 (from [T]) shows a
comparison of the airgap flux spectra predicted for these

various asymmetries and a broken rotor bar.

or 1. Broken rotor bar
2 Rotating eccentncity
_t0 3 Magnelic onentation i rotor laminations

4 Rotating ovality (rotor out of round)

-20

-30

-40

d8 -50

-60 — \ \\ *, -~ Line frequency
) X
L[y

A —

o [V D
- ) A
[ ]

L]
N
L] =~ —~—
ol ANRR
-100 LI | S O N B | L1
0 1 2 3456 78 9101 1213141516
Air Gap Harmonic

Figure 1-2. Airgap flux spectra for asymmetries [T7].
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Based on this spectra, two conclusions can be drawn.
First, with sensitivity sufficient to detect a broken bar,
these other asymmetries may give rise to a false broken
bar indication. Second, by examination of the higher order
harmonic amplitudes, broken bars can be distinguished from
asymmetries. The analytical expression for the freguencies

present in the airgap flux is [7]

f,-f,r(li)(l—s)ts-l (1-1)
l p J

where

f,=line frequency
k = harmonic tndex (1.2.3...)
p=number of pole-pairs

s=rotor slip

For a typical motor, due to the design of the stator
windings, only the odd, non-triplet harmonics of airgap
flux couple with the stator windings. Thus, only those
harmonic frequencies where k/p is 1,5,7,11,13, etc. appear
in the stator currents. Table 1-2 (from [7]) shows these

predictable stator current harmonics and relative

amplitudes (as a pecrcentage  of the input current

amplitude) due to an open rotor bar.
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HARMONIC FREQUENCY AMPLITUDE
(Hz) (%I ia)
FUNDAMENTAL 60 4
LSB 1 60(1-28) 4
USB § 60(5-48) 0.5
LSB 5 60(5-68) 0.5
USB 7—_ 60(7-68) 0.05
LSB 7 60(7-8s) 0.05
LSB = LOWER SIDEBAND USB = UPPER SIDEBAND

Table 1-2. Current harmonics due to broken rotor bars (7].

Based on the above theory, Kliman et al. developed the
computer-based instrument in Figure 1-3. The instrument
performs two basic functions: signal processing and the
implementation of a decision algorithm. The s8ignal
processing involves sampling the external leakage flux and
current signals and transforming these time functions via
the fast Fourier transform into frequency spectra. Since
the harmonic frequencies of interest shown in Table 1-2
are s5lip dependent, a precise measurement of the rotor
speed is necessary. This 1is accomplished using an
externally mounted coil which picks up a strong axial

leakage flux from the rotor end ring at the slip frequency
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(sf). Combining this with a measurement of the 1line
frequency from the current signal, rotor speed is
determined to within 0.2 rpm. The spectral windows of
interest are computed and a narrow search around the
predicted frequencies is performed. The amplitudes and
frequencies of the broken bar signals are stored in
computer memory, and if desired, can be printed out in a
tabular form. The spectral windows can also be viewed on
the computer screen. Figure 1-4 shows the experimental
results (line current spectra in the vicinity of 60 Hz)
presented in [7] for a test motor with varying degrees of
fault. The increase in the amplitude of the lower sideband

signal with increasing fault is quite evident.

- - /™
|
Axial I l
flux
coll : :
| lOther nputs
Current| Three | {{such as vibration)
transtormer | phase.
60 Hz 3y '
3

-1 2 4
njcliiajo
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¥

Computer
{inc. disk drives)

:

Printer

Keyboard = = CRT

Figure 1-3. BBD one-line diagram [7).
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Figure 1-4. BBD experimental results for s=0.01 [7].

24




- g -

Two decision algorithms may be implemented in the BBD.
The first is a "trend” algorithm that recognizes the
change from a healthy motor to a motor with a cage defect.
Two sets of line-current frequency spectra are compared to
detect any changes in the harmonic sidebands. If a
significant change (>20dB) occurs in the first harmornic
lower sideband, the higher-harmonic sidebands are
examined. If any of these harmonics have changed
significantly, a broken bar 1is declared. Otherwise it is
concluded than an asymmetry other than a broken bar is
present. The second algorithm is a single-test diagnostic.
Based on experimental data gathered from 23 power plant
motors, "good" motors exhibit a first harmonic 1lower
sideband of -60dB or less relative to the line frequency
component. Thus if the first harmonic lower sideband 1is
less than -60dB there 1is probably no fault. If the first
harmonic sideband is greater than -50dB there is probably
a broken rotor bar. These thresholds will be updated, if

necessary, based on the results of further field tests.

1.3.2 Leakage Flux Detector

The leakage flux monitoring system developed by Penman
et al. [11) is based on theories describing the hsrmonic
content of the axial flux produced by an electric machine
for various fault conditions. Ideally, with no faults, an
electric machine will not prcduce a net axial flux.

However, due to small asymmetries in both the material and
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geometry of a machine, a small, axial leakage field is
h produced and can be detected by an externally mounted
coil. Under the assumption that fault conditions represent
a gross change in the electric and/or magnetic circuit
% behavior of a machine, the faults can be identified by the
effect these changes produce in the axial leakage field.
In order to use this technique, a master table of all
% possible axial flux harmonic components for a given
machine type must be generated. Once this is done, certain

groups of these harmonics can be identified with various

fault conditions.
For an induction motor, the harmonic components of the
airgap flux produced by a balanced 3-phase stator winding

is given by

B= B,cos(wt-pB)+B.cos(w t+Sph)

+B,cos(wt-7p6)+B,, cos(wt+11ph)... (1-2)

where

p=number of pole pairs

6=angle from a reference point on the stator
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To determine the harmonic components of the induced
_ rotor currents, a transformation to the rotor reference
frame is necessary. The transformation is made using the

relation

So(l-s)

0 ¢ (1-3)
P
where
w(l-s)

> = rotor angular velocity

¢ =angle between the stator and rotor at t=0

Thus, in the rotor frame of reference, the airgap flux

density is given by

B= B,cos(swt-p¢p)+Bscos((6-Ss)w t+Spo)

+B,cos((7s=-6)w t-7po)+ B, cos((12-11s)wt+]1lpé)... (1-4)

The harmonic frequencies of the currents induced in the

rotor bars by this field are s8lip dependent. The small

axial leakage flux, which 1is produced by the rotor

currents and minor asymmetries in the machine, will

contain these same frequency components., If a fault

condition exists, the expressions for the airgap flux
27




density given above are no longer valid. For example, a
phase asymmetry on the stator winding will result in the

airgap flux density

B=1 3 B.[cos(wt-np)+ cos(w t+npo)) (1-5)

n odd

which, in the rotor frame of reference, becomes

B-;—Z B,cos[(l+n(l-s))wtsnpo) (1-6)
o odd

Thus, additional frequency components are present in the
induced rotor currents and axial leakage flux.

Using the same methodology, a table of axial flux
frequencies (or harmonics) can be developed for various
fault conditions. Table 1-3 (from [11]}) shows the
predicted axial flux harmonics for a 4-pole induction
motor at a slip of 0.02. In the table, stator and rotor
faults are grouped as either symmetrical (related to a
phase) or unsymmetrical (related to a pole). The table
includes effects due to the fundamental (f;,) and third
harmonic (f;) components of the supply current. The
numbers in each column represent the component of the

airgap flux wave that produces the associated axial flux
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harmonic (i.e., 1 is the forward traveling first harmonic
and -3 is the backward traveling third harmonic
component).

By monitoring the spectral components of the axial
leakage flux, a fault group can be identified by comparing
the spectra to the master table. This is the philosophy

incorporated into the leakage flux monitoring system. A

one-line diagram of this system is shown in Figure 1-5.
The transducer (a printed-circuit split coil) is
externally mounted on a machine. The transducer signal
(induced voltage by the leakage flux) is processed and
transferred to the diagnostic unit. The diagnostic unit
analyzes the spectra and identifies any fault conditions
present using the master spectrum table. As stated
previously, this system has successfully detected various
faults imposed on a 4KW squirrel-cage induction motor.
Figures 1-6, 1-7, 1-8 are samples of the experimental
results presented in {11]) for various fault conditions.
Figure 1-6 is the axial flux spectra for a healthy motor.
Figure 1-7 shows the large amplitude increase in the
fundamental (50 Hz) component for a short-circuited stator
winding. For a broken rotor bar, increased amplitudes‘in
the fundamental as well as third (150 Hz) and fifth (250

Hz) components are evident in Figure 1-8.
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Number Frequency Frequency Stator harmonics Rotor harmonics
factor ats =002
Hz Phase Poie Phase Pole
f, A i A f f f, h

1 s 10 1 2

2 3s 30 3 6

3 (7s - 1) 2 215 7 -1
4 (3s-1)2 235 3 -1

5 (1 =512 255 1 1

6 1+5s12 275 5 1
7 4s -1 460 -1 -2
8 25 -1 480 -1 -2

9 1 500 2

10 2s -1 520 1 2
" i9s - 312 705 9 -3
12 158 - 312 72% 5 -3

13 3-512 745 -1 3

14 13-3512 765 3 3
15 5s - 2 950 5 10

16 3s-2 970 3 6

17 2-5s 990 -1 -2

18 2+s 1010 1

19 Ms-52 1195 " -5
20 17s ~5) 2 1215 7 -5
21 15-3512 1235 -3 5
22 15 «512 1255 1 5
23 6s -3 1440 -3 -6
24 4s -3 146 0 -3 -6
25 3-2 1480 3 6
26 3 1500 3 6
27 13 -712 1685 13 -7
28 19s-712 1705 9 -7
29 17-5512 1725 -5 7
30 17 -5 2 1745 -1 7
31 7s -4 1930 7 14

32 55 -4 1950 5 10

33 4-3s 1870 -3 -6

34 4-5 1990 -1 -2

35 1155 -9 2 2175 15 -9
36 1t1s -9 2 2195 11 -9

37 19-7512 2215 -7 9

38 19-3s12 2235 -3 9
39 85 -5 2420 -5 ~10
40 6s -5 2440 -5 -10
41 5-4s 2460 5 10

42 5-2s 2480 5 10
43 17s-1112 2665 17 -1
44 113s-11,2 2685 3 -1

45 111 -9512 2705 -9 1"

46 11 -552 2725 -5 1
47 95 -6 2910 9 8

a8 7s -6 2930 7 14

49 6 -5s 2950 -5 ~-10

50 6-3s 2970 -3 -6

Table 1-3. Axial flux harmonics [11].
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Figure 1-8. Broken rotor bar [11].
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1.4 Significance of Thesis

From the discussions presented in the previous
sections, one can see that broken rotor bars can be (or
have been) detected using stator current measurements,
Thus, the results presented in this thesis confirm existing
theories and experimental results [(7,8,9,10,11]. However,
several contributions are made to the field of electri-
cal-machine fault analysis.

First, a more general approach is taken to develop the
system of equations describing the electrical performance
of an induction motor. If desired, the system of equations
and ccmputer simulation can be used to analyze other fault
conditions as well as broken rotor bars (subject to the
limitations resulting from the assumptions discussed in
Chapter 2). Although the system of equations and computer
simulation developed consider only fundamental space
harmonics, both can be easily modified to include
additional space harmonics. In order to analyze other fault
conditions and/or include additional space harmonics, the
expressions for the appropriate matrix elements must be
modified. This flexibility is not possible using the method
presented by Williamson and Smith [10], where the equations
were derived for a specific fault condition using specific
stator current harmonics. In order to analyze other fault
conditions or to include additional space harmonics, an

entire new set of equations must be developed.
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Second, a relationship between the standard sin-
gle-phase, equivalent-circuit model of an induction motor
and the system of equations has been derived. With this
relationship, the electrical parameters, for example rotor
bar resistance, rotor bar leakage inductance, and stator
phase leakage inductance needed to solve the system of
equations can be easily calculated from the single-phase
circuit model values. Instead of disassembling the machine
and measuring these parameters or requesting the design
data from the manufacturer, the standard no-load,
locked-rotor, and DC tests can be used to determine the
required parameters.

Finally, Lhe experimental resulils provide another "data
point” or quantitative comparison between motors with and
without broken rotor bars. Combination of this data with
the previous data collected and presented by others may aid
in determining threshold values for fault analysis system
decision algorithms. The experimental results presented
show that the existence of inter-var currents (currents
which flow through the rotor iron) in s8quirrel-cage
induction motors mask the existence of a broken rotor bgr
and thus, severely limit the ability to detect a broken
rotor bar using stator current measurements. This finding
confirms the analysis of inter-bar currents presented by

Kerszenbaum and Landy [9}.

34




1.5 Outline of Thesis

The material presented in the following chapters is
organized in the same fashion in which the research was
conducted. Chapter 2 starts out with the development of the
system of equations describing the electrical performance
of an induction motor. The assumptions used to develop the
equations are discussed in detail. In addition, the
relationship between the single-phase, equivalent-circuit
model and the system of equations is presented. The
solution to the system of equations is addressed in Chapter
3. The numerical technique and computer simulation program
used to solve the equations are described. Simulation
results (using the parameters of the experimental test
motor) with and without a broken rotor bar are presented.
In Chapter 3, the experimental results using an
"off-the-shelf" 3-HP motor with and without a broken rotor
bar are presented, analyzed, and compared to the simulation
results. Finally, Chapter 5 summarizes the results of the
research, discusses the limitations of the analysis, aad

provides some recommendations for follow-on research.
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CHAPTER 2

. THEORETICAL DEVELOPMENT OF SYSTEM

2.1 Discussion of Approach

In order to meet the primary objective of this research
which is to detect broken rotor bars using stator current
and voltage measurements, the system of equations

describing the electrical performance of an induction motor

is developed using stator phase currents and rotor loop
currents as state variables. Each stator phase and rotor
loop is described in terms of resistances and inductances.
The forcing functions for the system are the stator phase
voltages. The rotor is described in terms of loops in order
to facilitate the determination of stator and rotor
coupling.

Using classical field theory and a coupled-circuit
viewpoint in which stator phases and rotor 1loops are
regarded as circuit elements whose inductances depend on
the angulatr position of the rotor, flux 1linkages are
expressed in terms of stator phase and rotor loop currents
and inductances. The stator phase voltages are related to
these flux linkages using Faraday's law. The result is =a

system of first-order differential equations describing the

electrical performance of an induction motor. The form of

this system of equations is
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[v (D)1= S [A(D]* [R] [i(D)) (2-1)

where

fv(t))= voltage vector

[A(t)]= flux linkage matrix = [L(8(t))] [i(t)]
[R])=resistance matrix

[i(t)]=~ current vector
[L(8(t))]=inductance matrix

@(t)=rotor position

This approach is quite general and can be used to
describe the electrical performance of any induction motor,
healthy or failed. In this analysis, a transformation
matrix will not be used to eliminate the rotor-position-de-
pendent elements of the inductance matrix. The use of a
transformation matrix reguires the transformation of rotor
currents as well. Since a broken rotor bar will be
simulated by setting the rotor bar current to zero, the use

of a transformation matrix is undesirable.

2.1.1 Assumptions

Several assumptions are made in order to reduce the
complexity of the analysis. Although each assumption
reduces the generality of +the analysis, the goal of

understanding the effect of a broken rotor bar on stator
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currents can still be achieved. It should be noted that
each assumption can be relaxed and the system of equaticns
can be developed using the method presented. The following
paragraphs summarize the assumptions wused and their
consequences.
1.) The stator windings are balanced and sinusoidally
distributed. Thus, the airgap field produced by stator
phase currents <consists of a fundamental space
component only. In addition, only the fundamental
space component of the airgap field produced by rotor
currents will couple with the stator windings.
2.) With the exception of a fault, the rotor cage is
symmetrical. This dictates that the spacing between
adjacent rotor bars, as well as the rotor radius, is
constant over the surface of the rotor. In addition,
rotor skew is neglected.
3.) The rotor cage end rings are perfectly conducting
disks. Thus, no axial flux is produced and the sum of
the rotor loop currents is zero. Thus, end effects are
neglected.
4.) The rotor bars are insulated from the rotor iron.
Current flows only in the rotor bars and thus,
inter-bar currents which flow through the rotor iron

laminations are neglected.

38




5.) The airgap dimension is small compared to the mean
rotor radius. Thus, the airgap magnetic field 1is
assumed to be only radially directed and to be only a
function of azimuthal angle.

6.) Only the fundamental space component of the airgap
field produced by rotor currents will be considered.
Higher order space harmonics will be neglected since
the stator windings couple with the fundamental
component only.

7.) The mechanical speed of the rotor is ccnsta..t. The
system of equations describe the electrical perfor-
mance of the motor and the mechanical dynamics are not
included. Rotor speed will be considered an input to
the system.

8.) The magnetic backing material on the rotor and
stator has infinite permeability. Thus, the magnetic
field intensity is confined to the airgap region. In

addition, saturation effects are neglected.

2.2 Development of Equations for an N-bar Rotor

Before proceeding with the development of the system of
equations some background information is necessary. The
following paragraphs describe the nomenclature used, the
geometry and coordinate system, and the definition of a

rotor loop.
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Wherever possible, an attempt has been made to use
"standard” symbols for parameters throughout this thesis.
The following 1list of symbols 1is provided to avoid
confusion which may arise dpe to the numerous variations of
"standard"” symbols. The appropriate MKS units are included

in brackets following the definition of each symbol.

List of Symbols

r. 6,z = cylindrical coordinates for stator reference
frame

r',6°,z° = cylindrical coordinates for rotor reference
frame

B = magnetic flux density [Wb/m?]

B, = radial component of flux density [Wb/m?]

d = active length of machine [m]

E = electric field intensity [V/m]

g = airgap length [m]

A = magnetic field intensity {A/m]

H, = radial component of magnetic field intensity
[A/m]

(1] = electrical current vector [A]

1 = electrical current [A]
= current in stator phase a,b, or ¢ [A]
= current in rotor loop n [A]

= current in rotor bar n [A]

] = current density [A/m?)
K = surface current density [A/m)
K, = axial component of surface current density [A/mn] j
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[(A]
A'a.b.c

M,

= inductance matrix [H]

= leakage inductance of rotor bar n ([H]

= leakage inductance of a stator phase winding (H]
= mutual inductance between windings m and n [H]

= mutual inductance coefficient for a rotor loop
and stator phase winding [H]

H

total number of turns of a stator phase winding
{turns]

= stator winding azimuthal turns density [turns
per unit azimuthal length]

= number of rotor bars

= number of machine pole-pairs

= resistance matrix [Ohms]

= effective resistance matrix ([Ohms]
= mean rotor radius [m]

= resistance of rotor bar n [Ohms]

= resistance of a stator phase winding [Ohms]
= rotor sl:i, .

= time [sec]

= voltage vector [V]

= stator phase a,b, or c voltage [V]
= electrical angle [radians]

= angular displacement between stator and rotor
reference frames at t=0 [radians]

= flux linkage matrix [Wb]
=z stator phase winding a,b, or ¢ flux linkage [Wb]
= rotor loop n flux linkage [Wb]

= permeability of free space [H/m]
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w = stator electrical frequency {[rad/sec])
w, = rotor angular velocity [rad/sec]
w, = rotor electrical frequency [rad/sec]

The standard definitions for electrical angle, rotor
slip, and rotor electrical frequency are shown below.
Unless otherwise specified all angles will be given in

mechanical degrees.

electrical angle: f,=pb (2-2)
rotor slip: w-pw
S-__JL_E (2-3)
w
rotor frequency: W, " W-pwW, =Sw (2-4)

The coordinate system chosen to describe the stator and
rotor 1is a cylindrical system. The stator is described
using a fixed coordinate system (r,8,2). The rotor is
described using a moving coordinate system (r".0°.z°) which
travels at an angular velocity of w, with respect to the
fixed coordinate system. Defining 8, as the angular
separation between fixed and moving systems at t=0, a point
on the rotor in terms of the stator reference frame is

described by
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z=z° (2-5)

STATOR

ROTOR

Figure 2-1. Coordinate system.

As stated previously, the rotor is described in terms
of loops. Figure 2-2 shows a section of the rotor cage. A
rotor loop can be thought of as a current path which-
includes two adjacent rotor bars and the portions of the
end rings connecting the bars. Thus for an Nung-bar rotor,
there are N, rotor loops (N,, adjacent single-turn coils).
Since the rotor is symmetric, the separation between

ad jacent rotor bars is 2a/N,, radians.
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Figure 2-2. Rotor loop description.

Rotor loop current is defined as the current flowing in
the single-turn coil (see Figure 2-3). The actual rotor bar
current can be expressed in terms of roter loop currents.

-

For example, the current in rotor bar n is given by

ibarn'.irn-ir(lvl) ] (2-6)

Each rotor loop current produces an airgap flux which
couples with each stator phase winding and every other
rotor loop. In addition to this coupling, every rotor loop
couples with the two adjacent rotor 1loops due to the
resistance and leakage inductance of the common rotor bars

as shown in Figure 2-3.
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'bars

Figure 2-3. Coupling between adjacent rotor loops.

In order to derive the system of equatioﬁs, two steps
are required. First, the flux 1linkage of each winding
(stator phases and rotor loops) must be expressed in terms
of stator phase and rotor loop currents and inductances.
Second, a relationship between the flux linkages and
forcing functions (stator phase voltages) is required. The
flux linkage of each winding will be determined using the
principle of superposition. That is, the total flux linked
by a winding is simply the sum of the flux linkages due to
each current flowing in the system. The flux linkages can
be related to terminal voltages using Faraday’s law. 1In

mathematical terms for a system with m windings we have
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Anmzl-'nmim (2'7)
d .
vV, a;ln R.i, (2-8)
where

A,=flux linkage of winding n

L,, = mutual inductance between windings n and m
ip=current in winding m

v,=terminal voltage of winding n

R,=resistance of winding n

i;=current in winding n

For an induction motor with N, rotor bars, there are N,
+3 windings (N, rotor loops plus 3 stator phase windings).
Since there is no net axial flux, the sum of the rotor loop
currents is zero and the system of equations can be reduced
from Nu+3 to Np+2. The following sections detail the
calculation of inductances for each winding. The
calculations are broken down into three sections; stator
relations (involving stator terms only), rotor relations
(involving rotor terms only), and stator-rotor relations

(coupling between the rotor and stator).

2.2.1 Stator Relations

Each stator phase winding is assumed to be represented

by a sinusoidally distributed surface winding, separated
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by 120 electrical degrees from the adjacent phases. For a
v pole-pair machine, the stator winding azimuthal turns

density is given by

N
n,(6)= é—ﬁ—cospe
]

N, 2n
n,(O)-—z—R—cos(pO——é—> (2-9)
¢ .
6) = s ( 9 ")
- > —
n.(8) 2R'COS P 3

Open-circuiting phases b and ¢ and exciting phase a
with a current I, a surface current is produced on the

stator according to
K NI 8 2-10
+= SR COSP ( )

Choosing a contour that crosses the airgap at 6=¢ and
6=¢+n/p, the radial maghetic flux density can be

determined using Ampere’s law; see Figure 2-4. Thus,

fcn-dz-[fsl-ﬁda (2-'11)

boarh N.I
H,(0)g-H,(p+n/p)g= [ K,R,d0=—sinpo (2-12)
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Figure 2-4. Integration contour on stator,

Using the symmetry relation H,¢l=-H. {¢~n/p),

N.l
H,(¢)= 290 sinp¢ (2-13)

'’ Nsl ,
B.(¢)= oTT) sinpé (2-14)

Since ¢ is an arbitrary angle, the radial flux density

in terms of 0 is

B.(6)=

“u N e (2-15)
sS1n -
2gp P
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The flux linked by a full-pitch, single-turn coil can
be calculated by integrating over the surface enclosed by
the coil. Note that the surface enclosed by a coil for all
flux linkage calculations is obtained by traversing the
coil in the direction of positive current flow, i.e.,
current flows in the 2z direction at ¢ and in the -z
direction at ¢+an/p. For the coordinate system being used,
the normal component of this surface 1is in the -r

direction. In this case,

[] $on/p
&(0) -[ f B 7da
0 [

dfw”“N‘l inp6R.dO (2-16
= sSin -
' 2gp PP )

_u°N¢dR,I

2

gp

cospé¢

Again, since ¢ is an arbitrary angle, the flux linked by a

coil extending from angle 6 to angle 0+na/p is

NL.dR, I
@(0)= "0 cospo (2-17)
gp

The total flux linked by the stator phase windings can
be calculated by integrating the number of turns times

this flux linkage over the winding surface. This results

in
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A, = pfo“'n,(e)&b(ﬂ)R,dO

_uoandR,l

2-18
agp’ ( )
Sx/3p
A, =p n,(0;?(6)R,dé
28/
-u,mN2dR,I
-— 2-19
8gp°’ ¢ )
78/3p
A, -pf n (8)®(6)R,d6
4x/3p
-u,nN2dR,1
-__u___—' (2-20)

8gp’

From these flux linkages, the inductances of the stator

phase windings due to a current in the phase a winding are

A, u,nNZiR,d

Laa-T 4gpz +LL: ‘ (2-21)
A, -u,AN?R,d

Lba-_]_b-__”__s_;_z__‘__ (2_22)
A, -u,nN2R,d

L= = = (2-23)

I 8gp°’

where L,, is the leakage inductance of phase a representing
additional phase a flux linkages not accounted for by the

space fundamental component of the airgap flux.
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Defining the inductance due to the space fundamental
component of the airgap flux produced by a stator phase
current as the stator phase airgap inductance (Ls), the

following relations are obtained

Laa-Lbb.LC(-LS+LLs (2-24)
L
Lal.Ltc-Lla.Lbc-Lca-ch.-_2_ (2-25)
where

uo”NfRﬂd

2-26
4gp’ ( )

2.2.2 Rotor Relations

Applying a current I to rotor loop 1 and open-circuit-
ing all other rotor loops, the radial magnetic flux
density can be determined using Ampere’s law and Gauss's
law. From Ampere’'s law, it can be shown that the radial
flux density is a constant (3,) in the region 0<0°<2a/Ng
and that the radial flux density is a constant (B,) in the
region 2r/Nup<8°<2n (see Figure 2-5). Using Gauss's law and
noting that there is no axial flux, a relation between

these constants can be calculated. In this case
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d ZII/N‘. A
j.(j’ B,R,de'*j’ BzR,dO’)dz-O (2-27)
0 0 28/ K gy

B,=-(Ng-1)B, (2-28)

Choosing a contour which crosses the airgap and
encloses rotor bar 1 (see Figure 2-5), the radial flux
density can be determined from Ampere's law. Following

this analysis,

STATOR

W/ #%WM

| | AIRGAP

Figure 2-5. Integration contour on rotor.

H,-H, =~ (2-29)

Using B=p,H and equations 2-28 and 2-29, B, can be found as
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-u I{Ngpg-1
Bl- U, ( RB J

i aNre (2-30)

Since each rotor loop is a single~turn coil, the flux

linkages can easily be determined. In general,

4 280/ N,y

Atn -j
0 28(p=1)/Ny,

B,(0°)(-R,)d8°dz (2- 31)

for rotor loop 1, this yields

2”#odRQI[NRg"])

2-32
rl gN%g ( )
and for all other rotor loops this yields
-2nu,dR,1
il bl e (2-33)
N e

From these flux linkage values the rotor loop

inductances are determined to be

L A” 2””0R'd(NRB_])
rlrt ngw

+ L+ L (2-34)

L A'INRB ‘2”[10Rad
tNpgr! l gN%B

'LLrn (2-35)
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A, -2np.R,d

L= e 8 ) s 2-36
rarel l gNﬁB Lrp2 ( 3 )

where L., and L.,, are leakage inductances of the rotor bars
il : accounting for flux 1linkages not accounted for by the
airgap flux distribution.

For the other rotor loops (n=3,4,5....Nu-1)

A, -2nu,R,d

L=—r=——s— 2-37
e =Y YR ( )

° From equations 2-34, 2-35, and 2-36 one can see how
the leakage inductance of each rotor bar is associated
with the two adjacent rotor loops. Thus, for each rotor
loop, the leakage inductances of the two rotor bars which
make up the rotor loop are included 1in the ‘"self
inductance” term. For the two adjacent rotor 1loops, the
leakage inductance of the common rotor bar is included in
the "mutual inductance” term.

Defining the inductance due to the airgap flux
produced by a rotor loop current as the rotor loop airgap
inductance (L,), the relations

o

54

(]




Lrnrn-LR‘*LLrbn"LLrb(n‘l) (2“38)
- L,
! Lrur(nol)'m-lﬂ.rb(n'l) (2‘39)
L BLLEY 2- 40
rar(n-})) (N"_ l } Lrbn ( )
L
L for m¥n,nsl (2-41)

rarm (N—”_—'l—)

are obtained where

2”#0Rgd{\NP.E-l)
gNis

(2-42)

R

2.2.3 Stator-rotor Mutual Relations

From section 2.2.1, the radial flux density in the

airgap due to a current I in stator phase a is

“u NI
BJ9)--7Z5;—Slnp9 (2~43)

To determine the flux linked by a rotor loop, this
flux density must be transformed to the rotor frame of
reference. In the rotor reference frame the radial flux

density is

55

j'




B(G’)-:iﬁjklsnx(6’+a)t +8,) (2-44)
r 2gp p m o

The flux linked by a rotor loop is

¢ [2nn/N“

B,(6°)(-R,)d8°dz (2-45)

0 JZn(n-l)/N"

N.dR,! -
u___Sln(ﬂ)sin p((_z_n._l)_n+wmt+eo)
gp N ks Ngs

The mutual inductance between phase a and rotor loop n is

Ao H:N,R.d ( ap\ /(2n-1)n
T b b

3
+w 1+, 2-46
gp Nn ‘} ( )

Similarly, for currents applied to stator phase b and c,

the results are

uoNngd X (ﬂp) . ( ((21'1_1)” ) 2]‘[\
L.,y = ——————sin| — |sin —+tw, t+0 - 2-47
’ 992 Ngs - P N e 3 ) ( )
N:R,d 2n-1)n 2
Lrnc-g—o——ﬁg_—sin(ﬂ)sin(p(g__n—)__ t¢9 ) __’_( (2_48)
gp- Nrs Nzs 3

Using the relation La.=l., &and defining M as the
constant coefficient of the mutual inductance between a

stator phase and rotor loop, the relations
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e

2n-1)rm
L“-Lu,-Msmp(QJL—l—+w,t+m) (2-49)
Nis
. (2n-1)n \ 2n
Liap ®Lyis Msm(p( N *w,t+9°/ 3 (2-50)
2n-1)nm 2n
L"c-L",-hAﬂn(p(LlL—l—+¢u_t+9°)+—— (2-51)
N e 3
are obtained where
_N.R.d
M=ttt mn(”p) (2-52)
gp Nzs

2.2.4 Overall System of Egquations

Using the relations derived in the previous sections,

the flux linkages for the system

matrix form

(AT= (L1t
where

A,

Ay

A(

[A]= A

AWRB
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b
Laa Lab La: Lar! Lar!;‘g
h Lha Lbb Lb: Lbrl e LbrNRa
(L]=
h Lr!..a LrN“) Ln‘“t I-nl“rl Lxll"nl“
i,
N
I
)=y 1
[ ] irlpp

(2-595)

(2-56)

The flux linkages are related to the stator phase voltages

by Faraday’s law. For example,

stator phase a, the following is obtained

-da,
dt

_Va+Rsia.

Similarly, for rotor loop n (whose net voltage

because it is shorted), Faraday’s law yields

'dkrn

o (an" Rr)(n'l))irn-Rrbnir(n-l)_ Riveenylreny = = d_t
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applying Faraday’'s law to

(2-357)
is zero
(2-58)




Defining a resistance matrix, [R], and combining the above

results, the system of equations can be expressed as

dfi L
1= i ((rye L)

where
va
Vi
vC
0

RStner 0
[R]_([ ] 10 )

(017 [Ruiewr]

(vi=

R, O 0
[RS(ator]' 0 Rs 0
0 0 R,

R+ R -Ra: 0

-R, Riy:*Rys =Ry,
[Rketu]- ’ ) :

-Rrbl 0 0
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(2-60)

(2-61)

(2-62)
»

-Rrbl
0]
Y,
Rowpe* Riny

(2-63) .
¢
.‘
1
f
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Once again defining a new matrix, the system of equations

can be expressed as

dfi]

[V]-[L]—&t—ﬂRR][i] (2-64)
where
d(L} . ‘ .
[RR}-[R]+—E¥—-effmnxveremstancernatnx (2-65)

The equations for the elements of the voltage,
inductance, and effective resistance matrices are given in
Appendix A.

The system of equationgs describing the electrical
performance of three-phase induction motor has Dbeen
developed. The elements of the inductance and effective
resistance matrices are described in terms of the machine
geometry (airgap active length and width, slot distribu-
tion, rotor radius, etc.) and electrical parameters
(number of turns for a stator phase winding, rotor bar
resistance, and leakage inductances). Thus, in order to
solve the system of equations for stator phase and rotor

loop currents, these quantities must be known.
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2.3 Relation Between System and Single-phase Model

The object of this section is to derive a relationship
between the standard single-phase, equivalent-circuit model
of an induction motor (Figure 2-6) and the system of
equations developed in the preceding section. From this
relationship (equations 2-100 to 2-106 of this section),
the values of the parameters required to s8olve the system
of equations can be calculated wusing the single-phase

circuit model parameters.

I, > | <— 1, 3
\/0 Jw L

Figure 2-6. Single-phase equivalent-circuit model for an
induction machine.

The parameter values of the single-phase circuit model

can be obtained from the results of a no-load test, a

locked-rotor test, and measurements of the DC resistances
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of the stator phase windings. Section 9-6 of reference [12]
provides a detailed discussion of the standard test
procedure and calculations required to obtain the
equivalent single-phase circuit parameters for a
three-phase induction motor.

In order to derive a relationship between the system of
equations and a single-phase equivalent circuit model, some
basic assumptions are necessary. First, the rotor cage is
symmetric. Thus, each rotor bar is assumed to have the same
resistance (R,,) and leakage inductance (L,). Second,
balanced currents are assumed in both the stator phase

windings and rotor loops and are given by

i,=l,coswt . (2-66)
2
i,-l‘cos(wt-——a—'-l—) (2-67)
i‘-l‘cos(ww?—aﬁ) ’ (2-68)
-1)2
i,,-l,cos(w,t+¢—££—)—’lg) (2-69)
NRB_

where ¢ is the phase angle of rotor loop 1 current_with
respect to the stator reference frame at t=0.

Using these assumptions and the system of equations,
the flux linkages for stator phase a and rotor loop 1 are

given by the following relations
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A,-(2L5+L“)Lcoswt
b MI. N n n
+ 3 Rscos(wt*¢+m%+p90—§) (2-70)
3MI, pn n
- t-pf, - —+—
A, cos(a), po, Nan+2)
Nus L,
+ L +4L,,sin’ il 4 l,cos(w,t+¢) (2-71)
Ngs— 1 Ngp

The terminal voltage relations for stator phase a and rotor

loop 1 are

dA,

v,=——+ R l . coswt (2-72)
dt

0-=d "+ 4R suﬁ(ﬂy)lcoda)t+¢) (2-73)
dt b NRB t A r '

Defining the variables in complex form according to

A,=Re{A,exp(jwt)} (2-74)
i,= Re{l,exp(jw t)} (2-75)
V.=Re(V exp(jwt)) (2-76)
A, =Re{A exp(jw, t)) (2-77)
i,, = Re{l exp(jw,t)} (2-78)

and also defining a new rotor loop current in order to

eliminate phase shifts
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(. pr_nm AR _
IAR-T,exp“(pO.*N—R;-Q ¢)) (2-79)

the terminal voltage relations become

3L M Nyl
Va-jw S+LL5 T‘*]'w_M*R‘I‘ (2-80)
2 2
 3MT, NausL o n
C=jw 5 +]w((N::-l)+4LL,.Sln2(r_ﬁ;))TAk
4Rlb L2 ’tp
+ S sin (m)TAR (2 8])

Now, in order to transform the rotor loop equation into
an equivalent stator phase, a &8stator-equivalent rotor
current, |I,, is defined. This stator-equivalent rotor
current is defined to be the magnitude of the current
required in the stator windings (under balanced three-phase
conditions) to produce the same space fundamental component
of airgap flux as is produced by rotor loop currents of
magnitude 1,,. This corresponds to the equivalent rotor
current I; of the single-phase, equivalent-circuit of Figure
2-6.

The flux linked by stator phase a due to the space
fundamental component of airgap flux produced by balanced

rotor loop currents of magnitude |, is

M N!Bl.‘..‘.

A, > (2-82)

64

e

i




m

The flux linked by stator phase a due to the space
fundamental component of airgap flux produced by balanced

stator phase currents of magnitude I, is

3Ll
A= —— (2-83)

Since the airgap flux must be the same for these currents,

the following relation between a rotor loop current and the

equivalent stator phase current is obtained

3L,
IAR=( )h (2-84)

Using this relation to eliminate 1,;, equations 2-80 and

2-81 become

3L,
Vo sw( L e e

NulL, ,
Nt ) atein|

R.I, (2-85)

( )}(M3;Sna)rz
()

)
o

- 3MI, {
O=jw 5 +jw

Z

R

4R, ,z(ﬂp)
+——sin N

Multiplying each term in equation 2-81 by the factor

1,/M the following result is obtained

65




4R, n 3L¢
+ bsmz(——p—) > ) (2-87)
S NRB M ng
The voltage relations for the single-phase, equiv-

alent-circuit model shown in Figure 2-6 are given by

equations 2-88 and 2-89 below

Vo=Jw(l,~L )T, jwl,T,+R T, (2-88)

R
o-,wLDL*uuun+LJL+;ﬁz (2-89)

By comparing the terms in equations 2-85 and 2-87 to
the terms 1in equations 2-88 and 2-89, the following

relations are obtained

R, =R, (2-90)
Ly=L (2-91)
L 3L (2-92)
12 2
Nes L, . ;(llp) 3L 3L,

- b - -93

Ls <(Nna‘1)+4LUan Neo J I\ MZN,, )~ 2 (2-93)
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R 4R ,, _2(np) 3L? 0-04
. - sin - -
‘ S NRB MZNRQ ( )

From the definitions of L, L., and M given in the
previous sections, the relationship between the sin-
gle-phase, equivalent-circuit model parameters and the

actual machine geometry and electrical parameters is

R, =R, (2-95)
L,=L (2-96)
3\u.ANZIR d
FEITELEE.
2

) f3\u.rN2R,d / np | 3n2Nf) (2-98)
'7= ~ - + - t -

- kQJ 4gp* NnSln( ) 4 Nge kb

R 3N, R 2-99
2 4NRB Ty ( )
From the equations for L, L;, &and R;, one cannot

explicitly determine the resistance and leakage inductance
of a rotor bar. To determine these values the number of

rotor bars and either the geometry parameters (R,, d, and
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g€) or the number of stator winding turns are required. The
number of rotor bars can be determined from visual
inspection or possibly from test methods discussed by
Hargis et al. (8]. For example, one could use stator frame
vibration frequencies or rotor slot product frequencies
present in the stator phase currents. However, determining
these other parameters will require disassembling the
machine, removing the rotor, and measuring the rotor

diamet2r and length, stator diameter, and number of turns.

Obviously, this is undesirable.

Because there is no requirement to determine rotor
currents exXplicitly (i.e., they can't be measured
directly), it is quite sufficient to deal with equivalent
rotor currents as seen from the stator windings. This will
simply result in rotor currents which are scaled by a
stator-rotor turns ratio and has the effect of rendering
the choice of N, totally arbitrary. By arbitrarily choosing
a value for the number stator phase winding turns, the
rotor loop currents will be scaled by the ratio of the
actual number of turns to the arbitrary number of turns
while not affecting in any way the value of stator currents
or voltages predicted by the model. Although this may not
be entirely obvious, a simple example will illustrate the

point.

68




EXAMPLE:

Given: A 3-phase, Y-connected, 100 V (line-to-neutral), 60
Hz, 2-pole induction motor with a 10-bar squirrel-cage
rotor has the following single-phase, equivalent-circuit

parameters

R,=1.00 L,=0.005H L,~0.05H
L,=0.005H R,=0.50

The machine is operating at a rotor slip of 0.1

Equivalent-circuit model solution:

From equations 2-88 and 2-89, the magnitude of the stator

phase and equivalent rotor currents calculated are

I,=14.961 A I,=13.222 A

System of equations solution:

a. Assuming N,=1, the parameters of the system of equations

are (calculated using equations 2-90 to 2-934)

R,=1.00N L,,=0.005H L;=0.0333H M=0.0131H

R,=0.6761 L.»=0.0045H Ly,=0.024H
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The magnitude of the stator phase and rotor loop currents

h calculated from equations 2-80 and 2-81 are

I;=14.961 A [ar=10.082 A

Using equation 2-84, the stator-equivalent rotor current is

1,=13.222 A

b. Assuming N,=10, the parameters of the cystem of

equations are (calculated using equations 2-85 to 2-89)

R.=1.00n L.=0.005H L,=0.0333H M=0.00131H
R, =0.0067610 L., =0.00004SH L,=~0.00024H

The magnitude of the stator phase and rotor loop currents

calculated from equations 2-80 and 2-81 are

I.=14.961 A I,,=100.82 A

Using equation 2-84, the stator-equivalent rotor current is

1,=13.222 A
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The results of (a) and (b) above show that the value of
the stator current calculated using the system of equations
is independent of the number of stator turns arbitrarily
chosen. Although the rotor 1loop current calculated is
proportional to the number of stator turns, the
stator-equivalent rotor current is also independent of the
number of stator turns arbitrarily chosen. Thus, the number
of stator turns can be chosen arbitrarily without affecting
the values of the stator currents calculated using the
system of equations developed,

Finally, assuming the number of rotor bars is known and
arbitrarily setting the number of stator turns to one, the
parameters required for the system of equations can be

calculated from the single-phase, equivalent-circuit model

parameters.
R.=R, (2-100)
L,-L, (2-101)
Ls-(gjL,z (2-102)
M-(%)sin(gﬁ)hz (2-103)




4N
Rn'( RB)Rz (2-104)

n 4N
L,={L,- ——-3—77— -11L, (322) (2-105)
anm(,—,.—)
lé(an‘])Pz
L, = L 2-106
R ( 3N:B 12 ( )

As a final check of the relationship between the system
of equations and the single-phase, equivalent-circuit
model, a comparison of the power transferred across the

airgap will be made. The results must be identical.

The airgap power for the system of equations is given

by

. Z/Rrb
PAGsys.NRE,IDarn, k? (2"]07)

lyaro ®lin " Va1

-2I,sin(ﬂ)sin(a},t+o— (2-108)

RB

(2n-3)pn)
Nrs
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v, V2 A A pﬂ\
bpar =4]/sin"| —
o = st 25
n
-4liksin2(P——) (2-109)
NRB
n\R,
PAC:yc-4NRBI2ARSin2(L)_D (2-110)
NRB S

The airgap power for the single-phase circuit model is

R
PAQmoael=3“2!2(?2) (2‘]]])

Z 4Npplae PR :
]2 ( 3 sm(m)) (2 112)
3n?
R.= R -
2 (4Nna) tb (2-113)
N n\R,
PAGmodel-4NRBIiRSin‘(£;)—;i (2-114)

The airgap power is identical for both the circuit model

and system of equations. Thus, the relationship between the

system of equations and equivalent-circuit model is valid.

73




2.4 Summary

The system of equations describing the electrical
performance of a three-phase induction motor has been
developed using stator phase and rotor loop currents as
state variables. Each stator phase and rotor loop is
described in terms of resistances and inductances. The
stator phase voltages are the driving functions for the
system. The assumptions wused to develop the equations
impose limitations on the ability of the system to
accurately model any given induction motor. However, each
assumption can be relaxed and the corresponding system of
equations can be developed using the method presented.

A relationship between the s8tandard single-phase,
equivalent-circuit model for an induction motor and the
system of equations has been derived (equations 2-100 to
2-106). With this relationship, the electrical and
geometrical parameters needed to solve the system of
equations can be easily calculated from the single-phase
circuit model values. This relationship is useful in that
the solution to the system of equations can be obtained
without disassembling the motor, removing the rotor, and
physically measuring these parameters. Thus, by performing
the standard no-load, 1locked-rotor, and DC tests and
knowing the number of rotor bars, the system of equations
can be used to simulate any three-phase induction motor,

subject to the limitations resulting from the assumptions.
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CHAPTER 3

‘ COMPUTER SIMULATION OF SYSTEM

3.1 Requirement for a Simulation Routine

Due to the number and complexity of the system of
first-order differential equations developed in Chapter 2,
a numerical integration routine must be used to solve for
the time-varying stator phase and rotor loop currents. In
general, numerical integration methods are used to solve
systems of equations which are expressed in the following

form

d[x(t)]
t

T = [ALx(1)]+ [B) (3-1)

There are a variety of numerical integration procedures
and computer simulation programs available which can be
used to solve the above system of equations. The most
widely used integration procedures are Euler’s, Milne’s,
Runge-Kutta, and Hamming’s methods. These methods, which
are described in references [13,14,15,16,17], are typically
used to solve initial-value problems. Initial-value
problems are problems in which the values of the dependent
variables and necessary derivatives are known at the point
the integration begins. These various procedures can be

easily implemented on computers. Several "canned" computer

programs such as SIMNON, a nonlinear system simulation
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program developed by the Department of Automatic Control at
Lund Institute of Technology in Lund, Sweden, and
PRO-MATLAB, a matrix computation software package by The
MathWorks, Inc., Sherborn, MA, either use these procedures
inherently or can be programmed readily to use these
procedures to solv~ the system of equations given above.
The system of equations describing the electrical

performance of an induction motor is expressed in the form

dli(n)]

(L) I—3— = ~[RR(O]L( ]+ [v(1)] (3-2)

In order to use a numerical integration procedure to solve
for the time-varying stator phase and rotor loop currents,
the system of equations must be expressed in the form shown
in equation 3-1. Comparison of equations 3-2 and 3-3 shows
that the inductance matrix in equation 3-2 must be
inverted. Since some of the elements in this matrix are
time-dependent, the matrix must be inverted for each value
of time. This inversion 1is always possible unless the
leakage flux is defined to be =zero, in which case the
inverse of the inductance matrix does not exist. With the
inductance matrix inverted, the system of equations can be

expressed in the required form i.e.,
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d‘—“[i(:)]- - [L(H) ' [RRDID I+ [LDT ' [v(D)] (3-9)

d

As a result of the inductance matrix inversion
requirement, SIMNON could not be used to solve the system
of equations. On the other hand, PRO-MATLAB could be
programmed to invert the inductance matrix and numerically
integrate the system of equations. For an induction motor
with a 45-bar rotor, using a fourth-order Runge-Kutta
integration procedure, a total CPU run time of five hours
is required on the LEES Vax-750 to simulate 100 time steps
using PRO-MATLAB. The major cause of this leong run time is
the inductance matrix inversion.

In order to reduce the CPU run time required to
simulate the system, a FORTRAN program was developed. Using
this program on the LEES Vax-750 for the 45-bar rotor, 100
time steps can be simulated in five minutes (approximately
60 times faster than PRO-MATLAB). In addition to the
FORTRAN program, which solves the system of equations for
the time-varying stator phase and rotor loop currents, a
PRO-MATLAB fast Fourier transform routine is wused to

determine the frequency components of these currents.

3.1.1 FORTRAN Simulation Program )

From the preceding discussion, the computer simulation

program must be capable of performing two major steps.

First, for each value of time, the inductance matrix must o
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be inverted. Second, the resulting system of equations,
namely equation 3-3 above, must be numerically integrated
to determine the time-varying values of the stator phase
and rotor loop currents. Cholesky's method (also known as
Crout’s method) with partial pivoting is used to invert
the inductance matrix. This method was selected over the
more common Gauss elimination and Gauss-Jordan elimination
methods since it is more economical with regard to
romputer time and memory allocation [13]. Partial pivoting
is used to improve the accuracy of the matrix inversion.
Section 3-4 of reference [13) describes the theory of
Cholesky’'s method. A fixed-step, fourth-order Runge-Kutta

procedure is used to numerically integrate the system of

equations. This procedure was selected for several
reasons. The Runge-Kutta method is a single-step,
self-starting procedure (i.e., for each integration time

step, only the previous value of the dependent variables
is required). This procedure is relatively easy to program
and has a small per-step error (on the order of the step
size to the fifth power)}. One disadvantage of this method
is the requirement to perform four function evaluations
per step. Section 6-5 of reference [13] discusses the
theory, implementation, and error analysis of the
fourth-order Runge-Kutta integration procedure.

The FORTRAN simulation program is divided into six

parts, a main program and five subroutines, Subject to the
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assumptions discussed in Chapter 2, the program simulates
the electrical operation of an induction motor (i.e.,
solves the system of equations for the time-varying stator
rhase and rotor loop currents) with either no broken rotor
bars or one broken rotc» bar. A flowchart for the program
is shown in Figure 3-1. The FORTRAN source code and sample
input and output data files are included in section B-1 of
Appendix B. The following paragraphs describe the purpose

of each part of the simulation program.

Main program: The main program performs several

functions. The primary function is to act as a buffer
and pass data betwecn the subroutines. In addition,
the main program keeps track of the simulation time,
calculates the value of the curr=2nt vector at the end
of each time step, and writes the results to an

external file.

Subroutine INPUT: This subroutine is called once by

the main program. It performs two functions. First, it
reads the data contained in an external input file.
The external input file provides a description of the
machine being simulated. It includes the single-phase,
equivalent-circuit model values, number of rotor bars,
and number of pole-pairs for the machine, the rotor

slip, and the supply voltage and frequency. The
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start
1

declare variables
1
input parameters
INPUT
L
initialize variables
t=0,[1)=0,time=0
1

calculate system matrices
for time
MOTOR

start simulation loop
|
calculate [v]-[RR][1i]
DRIVE
1
first R-K factor
RK1=d/dt[i]
CHLSKY
|
time=t+inc/2
B

calculate intermediate current
[EST)=[{i]+RKl%irmrc/2
CURRENT

Figure 3-1.

1

calculate system matrices
for time
MOTOR

1

calculate [(v]-[RR]}{EST]
DRIVE
—
second R-K factor
RK2=d/dt[i]
CHLSKY

6

FORTRAN simulation program flowchart. 4
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?

calculate intermediate current
[{EST])=([i]+RK2%inc/2

CURRENT
1
calculate (v]-[RR]J[EST]
DRIVE
1
third R-K factor

RK3=d/dtli]
CHLSKY
I
time=t+inc
1
calculate intermediate current
[ESTI=[i])+RK3*inc
Cui NT |
1
calculate system matrices
for time
MOTOR
1
calculate [v]-[RR][EST]
DRIVE
1
fourth R-K factor
RK4=d/dt[i]
CHLSKY
1
calculate new current values
and increment simulation time
{1)]=[11+(inc/6) (RK1+2*RK2+2*RK3+RK4)
t=t+inc
1
write t,[i) to output file

{(--- true

t ¢ stop time

(--- false

stop

Figure 3-1.(cont.) FORTRAN simulation program flowchart.
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simulation time parameters (step-size and s8top time)
and a broken bar flag are also included in the input
file. Second, using the relations derived in section
2.3, the coefficients for the inductance and effective
resistance matrix elements are calculated and passed

to the main program.

Subroutine MOTOR: This subroutine is called for each

value of time. It performs two functions; it
calculates the elements of the voltage, inductance,
and effective resistance matrices, and it reduces the
system of egquations. For the voltage vector, a
balanced three-phase supply is assumed. The inductance
and effective resistance elements are calculated using

the relations given in Appendix A. For both a "no

1 1"

simulation and a one broken bar

broken bar
simulation, the system of equations can be reduced
from N,+3 to Nuu+2 since the sum of the rotor 1loop
currents equals zero. This condition is imposed on the
system of equations by eliminating rotor loop Ngu
current. Column N,+3 1is subtracted from columns ‘4
through N;;+2 and column Npw+3 1is deleted from the
inductance and effective resistance matrices. Next,

row Ng+3 is deleted from each matrix to complete the

reduction. In addition, for a "one broken bar”
simulation (assume rotor bar Ns-1 is broken), the
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system of equations can be reduced again by setting
h rotor loop Nu-1 current equal to rotor loop Np~2
current. For this condition, column N,+2 is added to
column N,+1 and column N, +2 is deleted from the
h inductance and effective resistance matrices. Fara-
day's law is satisfied by adding row Ngy+2 to row Ng+l

and deleting row N,+2 from each matrix to complete the

reduction.

Subroutine CURRENT: This subroutine is used to

calculate the intermediate values of the current

vector for the Runge-Kutta method.

d[1]
dt

[EST]=[1]+ At (3-4)

where

[EST]=intermediate value of current vector

[I]=1nmit1al current vector

Subroutine DRIVE:.: The purpose of this subroutine is to

calculate the "driving function” for each value of

time and current, i.e.,

driving function=[V'-[RR][I] (3-5)

83




Subroutine CHLSKY: This subroutine performs the

inductance matrix inversion to calculate the deriva-
tive of the current vector for each time value. For
the {ourth-order Runge-Kutta procedure, this calcula-

tion is performed four times per time step.

The program can be modified, if desired, to cimulate a
variety of operating/fault conditions. For example, an
unbalanced voltage supply can be simulated by simply
changing the appropriate statements in subroutine MOTOR.
Similarly, the effects of an increase or decrease in the
impedance of one or more rotor bars can be simulated by
modifying the appropriate statements for the elements of
the inductance and effective resistance matrix in
subroutine MOTOR. In addition, multiple broken rotor bars
can be simulated by repeeting the s8ystem reducticn ccheme

in subroutine MOTOR for each broken bar.

3.1.2 Determining the Time Step

An appropriate time step for any simulation can be
determined using a "trial and error" procedure. Basically,
a series of simulations are run with increasing values of
time steps and the output results are compared. The
largest time step that gives "good" results (i.e., same
output values as those using a smaller time step) is an

~ppropriate time step.




Another method which provides an estimate for an
appropriate time step and also provides an indication of
the system stability and of the time required for the
solution to reach a steady-state value is to determine the
eigenvalues of the system when the rotor speed is equal to
zero. From equation 3-3, the eigenvalues of interest are
those of the matrix -[L]-t{RR}]. For a rotor speed of zero
(s=z1.0), this matrix is time-invariant and the system is
stable if all the eigenvalues are negative. The inverse of
the magnitude of the largest eigenvalue represents the
"fastest" transient time for the system and thus provides
an estimate for the largest time step. Similarly, the
inverse of magnitude of the smallest eigenvalue represents
the "slowest" transient time for the system and thus
provides an estimate of the time required for the solution
to reach steady-state. PRO-MATLAB, which has a built-in
eigenvalue function, can be wused to determine these
eigenvalues. A PRO-MATLAB routine which calculates the
svstem eigenvalues for s=z1.0 and the eigenvalues for a
3-bar rotor and a 45-bar rotor induction motor are

included in section B-2 of Appendix B.

3.1.3 Running the Simulation Program

In order to start the simulation program, the stator
phase and rotor loop currents must be initialized. Since
the steady-~state values of the stator phase and rotor loop

currents for a "one broken bar” case are not known, the
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currents are set to =zero initially and the simulation
program runs until steady-state conditions exist. For the
3-bar rotor and 45-bar rotor induction motors simulated,
steady-state conditions were reached after approximately

0.2 seconds of simulation time.

3.1.4 Processing the Simulation Output

In order to determine the harmonic content of the
time-varying stator phase and rotor loop currents, a
transformation from the time to the frequency domain is
necessary. This transformation is accomplished by taking
the fast Fourier transform (FFT) of the time-varying
stator phase and rotor loop currents. For a broken rotor
bar, the stator phase currents will contain a harmonic
component at a frequency of (1-2s)f (refer. to section
1.3). Most induction machines are designed to operate at
small slip values on the order of 0.02-0.05. Thus, the
frequency of this harmonic component is very near the
fundamental frequency (0.9f to 0.96f). To distinguish this
component from the fundamental frequency component using
an FFT routine, a frequency resolution on the order of

0.02f is required. From reference [18], the bin width or

frequency resolution of a FFT for N samples is given by

Af-—N— (3-6)
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where

Af = frequency resolution
f.=sample frequency

N=number of data samples

In addition to selecting the proper frequency
resolution, a weighting function, or window, can be
applied to the sampled data to aid in distinguishing
frequency components which are relatively close. Refer-
ences [18,19] provide a detailed description of the fast
Fourier transform and common window functions used, their
properties, and their advantages and disadvantages.

PRO-MATLAB, which has a built-in FFT function, is weed
to transform the stator phase and rotor loop currents from
the time domain to the frequency domain. A frequency
resolution of 0.3 Hz and a second-order Hanning window
[18} are used to enhance the detection of the (1-2s)f
component of the stator phase current. A sample frequency
of 153.6 Hz and a sample size of 512 data points satisfy
the 0.3 Hz frequency resolution requirement and PRO-MAT-
LAB's requirement for a sample size which is an integer
povwer of two. The PRO-MATLAB FFT routine and a sample

output file is included in section B-3 of Appendix B.
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The relation between the magnitude of the FFT using a
second-order Hanning window and the magnitude of the
corresponding periodic signal in the time domain is given

by [18]

Ulawl-gﬂ(ﬂf (3-7)

where

[F(w)|=magnitude of FFT at w

f(t)=[f(t)|[cos(wit~¢)
For the PRO-MATLAB FFT routine, the magnitude of the

FFT is converted to a dB reference scale (for graphing

purposes) using the relation

dB = 20log|F(w)| (3-8)

3.2 "Hand"” Verification of Simulation

For initial validation and "debugging" of the FORTRAN
simulation program and FFT routine, a two-pole, 3-bar rotor
induction motor was chosen. An exact solution for the

stator phase and rotor loop currents can be calculated by
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hand for this simple machine with either no broken rotor
bars or one broken rotor bar. The exact solutions can be

calculated using the method of undetermined coefficients.

No broken rotor bars: The system of equations for this

case can be reduced from 8ix to four by imposing the

following constraints

i,+i,+i,=0 (3-9)

in+1.2+1,5=0 (3-10)

Assuming the following form for the stator phase and rotor

loop currents and substituting into the system of

equations, the unknown coefficients (A,B,C,D) can be
determined.
i1, Acoswt+Bsinwt (3-11)
2 n
i,-Acos(wt-—”)+Bs‘m(wt~2—) (3-12)
3 3
i,,=Ccos(swt)+Dsin(swt) (3-13)
2n
LZ-Ccos(swt-—g—)+Dsin(sa)t—%g) (3-14)
e
89
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The amplitude of the stator phase and rotor loop currents

are given by the following relations

1(60 Hz)=|i,|=]i,|=VAZ+B? (3-15)

Ir=li,|=]i,}l=yC?+D? (3-16)

One broken rotor bar: Assuming rotor bar 2 1is the

broken bar, the system of equations can be reduced from six

to three by imposing the constraints given by equations 3-9

@
and 3-10 plus the constraint
=1, (3-17)
®
Again, assuming the following form for the stator phase and
rotor loop currents, the unknown coefficients can be
®
determined.
i, Acoswt+Bsinwt+
®
Ccos((1-2s)w t)+Dsin({1-2s)wt) (3-18)
2n 2n
I,= Acos(wt——a—)'rBsin(wt-?)*f ®

Ccos((l-23)wt-%’—l)+bsin((l~23)wt—23£) (3-19)




o

T

i, *Ecos(swt)+Fsin(swt) (3-20)

The amplitude of the stator phase currents (both the 60 Hz
and (1-2s)f components) and the rotor loop currents are

given by the following relations

1(60 Hz)=|i,(60Hz)|=|i,(60Hz)| =y A?+B? (3-21)
I(1-2s)f=1{i,(1-2s)f|=]i,(1-2s)f|=yC*+D? (3-22)

Ir=1i, |=yE?+F? (3-23)

3.2.1 Three-bar Rotor Simulation

To simulate a 3-bar rotor induction motor, the
single-phase, equivalent-circuit model parameters from the
3-HP experimental motor are used as inputs for the FORTRAN
simulation program. The parameters used for the 3-bar
rotor induction motor are listed in Table 3-1.

Using the method described in the preceding para-
graphs, the exact solution of the stator phase and rotor
loop currents were calculated for various rotor slip
values. Table 3-2 shows the results from these
calculations. The results generated from the simulation

program are shown in Table 3-3.
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PARAMETER VALUE
R, 0.8590 ohms
L, 0.0046 H
Ly, 0.0704 H
L, 0.0046 H
Rz 0.5612 ohms
Nxs 3
P 1
Input Frequency 60 Hz
Input Phase Voltage 169.71 V

Table 3-1. 3-bar rotor parameters.

The correlation between the exact and simulation
results is extremely good. For all cases, the error
between these results is less than }%. The absolute error
between the simulation and exact results is shown in Table
3-4.

The close correlatiop between the exact and simulation
results is demonstrated graphically in Figures 3-2, 3-3,
3-4, 3-5, 3-6. Based on the results presented above, the
FORTRAN simulation program and FFT routine can bHe seen to
accurately solve the system of equations developed 1in

Chapter 2 for the stator phase and rotor loop currents.
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NO BROKEN BARS ONE BROKEN BAR
SLIP I(60 Hz) Ir I1(60 Hz) | I(1-28)f Ir
Amps Amps Amps Amps Amps
0 6.00 0 6.00 0 0
0.05 14.66 11.60 9.84 6.39 6.18
0.10 23.98 20.02 15.42 11.53 11.15
0.50 43.85 37.30 10.68 0 4.54
1.0 46.71 39.76 41.58 o] 19.88
Table 3-2. 3-bar rotor exact results.
NO BROKEN BARS ONE BROKEN BAR
SLIP 1(60 Hz) Ir I1(60 Hz) | I(1-28)f Ir
Amps Amps Amps Amps Amps
0 6.01 0 6.01 0 0
0.05 14.59 11.49 9.81 6.35 6.14
0.10 23.85 19.87 15.37 11.49 11.44
0.50 43.83 37.28 10.68 0 4.54
1.0 46.71 39.75 41.58 0 19.87
Table 3-3. 3-bar rotor simulation results.
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figures 3-7,

stator

frequency domain)

3-8,

phase

for a rotor slip of 0.05

current
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current is also significantly altered.

(in

both

The drastic change

the

time

NO BROKEN BARS ONE BROKEN BAR
SLIP I(60 Hz) Ir I(60 Hz) | I(1-2s)f Ir
% error % error % error % error % error
0 0.17 0 0.17 0 0
0.05 0.48 0.94 0.30 0.63 0.65
0.10 0.58 0.75 0.32 0.35 0.36
0.50 0.05 0.05 0 0 0
1.0 0 0.03 0 0 0.05
Table 3-4. Error between exact and simulation results.
For this simple machine, a broken rotor  bar
represents a significant change in the rotor magnetic
circuit. As a result of this change, the stator phase

is shown

and




3—-BAR ROTOR STATOR PHASE CURRENT
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Figure 3-2. I(60 Hz) with no broken bars.
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Figure 3-3. Ir with no broken bars.
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3—-BAR ROTOR STATOR PHASE CURRENT
SIMULATION vs. EXACT RESULTS
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Figure 3-4., I(60 Hz) with one broken bar.
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Figure 3-5. I(1-2s)f with one broken bar.
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Figure 3-8. Stator phase current with one broken bar.
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SPECTRAL

Figure 3-9. Frequency spectrum with no broken bars.
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Figure 3-10. Frequency spectrum with one broken bar.
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3.3 Simulation Results For Experimental Motor

Now that the simulation program has been initially
validated, it can be used to predict the results of a real
induction motor. These predicted results will then be
compared to actual experimental results to validate the
methodology presented in Chapter 2 and the simulation
program. A series of experiments will be conducted using a
3-phase, 3-HP, 230 V (line-to~line), 60 Hz, 1730 rpm
"off-the-shelf” induction motor. Due to testing facility
limitations (explained in Chapter 4), the experiments can
only be conducted for small values of rotor slip (0 to
0.04). Although this is a rather small range, it does cover
the full load operating range of the experimental motor. In
addition, only one rotor bar will broken. The following
sections present the simulation results for the experimen-
tal motor operating at small slip values with and without a
broken rotor bar. For the "no broken bar" simulations, the
simulation results are compared to the results calculated

using the single-phase, equivalent-circuit model for this

machine. The parameters required to gsimulate the
experimental motor are listed in Table 3-5. The
single-phase, equivalent-circuit model parameters were

determined wusing a least &8quares parameter estimation

routine [20].
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PARAMETER VALUE

R,

0.8590 ohms
Ly 0.0046 H
L 0.0704 H
L, 0.0046 H
R, 0.5612 ohms
Ny 45
P 2
Input Frequency 60 Hz
Input Phase Voltage 169.71 V

Table 3-5. Experimental motor parameters.

3.3.1 Case 1: No Broken Rotor Bars

The simulation results, equivalent-circuit mode]
results, and the error between these results are given in
Table 3-6. As expected, the error between the simulation
and equivalent-circuit model results is less than 0.5% for
each rotor 8lip value. Figure 3-11 shows the s8small

difference between these results.
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SIMULATION EQ. CKT. MODEL % ERROR
SLIP 1(60 Hz) I1(60 Hz)
Amps Amps

0.0011 5.98 6.00 0.33
0.01 6.59 6.61 0.30
0.02 8.20 8.23 0.36
0.03 10.25 10.29 0.38
0.04 12.42 12.48 0.40

Table 3-6. Simulation
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SIMULATION RESULTS FOR TEST MOTOR
STATOR PHASE CURRENT
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Figure 3-11., Simulation vs. equivalent circuit results.
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3.3.2 Case 2: One Broken Rotor Bar

The simulation results for a one broken bar case are
given in Table 3-7. Plots of the fundamental and (1-2s)f
component of the stator phase current as a function of
rotor slip are shown in Figures 3-12 and 3-13. The results
show that the (1-2s)f compcnent of the s8tator phase
current 1increases approximately linearly with increasing
rotor slip. Unlike the 3-bar rotor case above, there 1is
only a slight change in the fundamental component with
respect to the no-broken-bar case. This is demonstrated

graphically in Figure 3-14.

SLIP 1(60 Hz) 1(1-2s)f 1(1-28)f/1(60

Amps Amps Hz)

%

0.0011 5.98 0 0
0.01 6.57 0.059 _ 0.90
0.02 8.13 0.123 1.51
0.03 10.11 0.186 1.84
0.04 12.23 0.249 2.03

Table 3-7. Simulation results-one broken bar.
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Figure 3-12. 1(60 Hz) vs. slip.
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SIMULATION RESULTS FOR TEST MOTOR
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Figure 3-13, I(1-2s8)f vs. slip.
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3.4 Summary

A FORTRAN simulation routine has been developed to
solve the system of equations describing the electrical
performance of an induction motor derived in Chapter 2. The
routine uses a fixed-step, fourth-order Runge-Kutta

procedure to numerically integrate the system of equations.

A matrix inversion routine, Cholesky's method with partial
pivoting, is required to invert the time-varying inductance
matrix for each value of time. The program can be used to
simulate an induction motor with either no broken rotor
bars or one broken rotor bar. In addition to the FORTRAN
simulation program, two PRO-MATLAB routines, are also
employed. The PRO-MATLAB eigenvalue routine is used to aid
in determining the fixed time step for the Runge-Kutta
integration. A PRO-MATLAB FFT routine is used to transform
the output data of the FORTRAN program from the time domain
to the frequency domain. Thus the harmonié frequency
components of the stator phase and rotor loop currents can
be determined. Appendix B includes the source code and
sample input and output files for these routines.

The FORTRAN simulation program and PRO-MATLAB FFT
routine were initially validated using a 3-bar rotor
induction motor. The error between the simulation results

and exact solutions for both a no-broken-bar and a




one-broken-bar case is less than 1%. The simulation program
accurately solves the system of equations derived in
Chapter 2 for the stator phase and rotor loop currents.

The simulation results for the experimental motor have
been presented and will be compared to actual experimental
results for final validation of the simulation program in

Chapter 4.
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CHAPTER 4
INVESTIGATION OF AN INDUCTION MOTOR

WITH A BROKEN ROTOR BAR

4.1 Introduction

A series of experiments was conducted using a set of
initially identical "off-the-shelf" 3-HP squirrel-cage
induction motors with various rotors modified so as to
investigate their performance with and without a broken
rotor bar. The magnitudes of the fundamental and (1-2s)f
harmonic components of the stator phase current were
recorded. Two identical, "as manufactured" rotors were used
to collect data corresponding to a "good" motor with no
broken rotor bars. A third rotor, identical to the other
two with the exception that a single rotor bar was
deliberately open-circuited, was used to collect data
corresponding to a ‘"broken rotor bar" motor. A single
stator was used with the rotors being swapped in and out
for the various tests.

The nameplate data for the test motors is given in
Table 4-1. As stated in the preceding paragraph, three
rotors were alternately installed into the same stator for
the experiments. Table 4-2 provides a summary for these
rotors. For the broken bar rotor, one end of a single rotor
bar was 1initially “disconnected” from the end ring by
removing a small section of the rotor bar at the rotor

bar-to-end ring interface with a milling machine. After the
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initial tests were completed, the opposite end of the same
rotor bar was also "disconnected” from the other end ring
and a series of tests were again conducted using this rotor

(ROTOR #2.1).

Westinghouse Life-Long T AC Motor

3-phase 60 Hz 3-HP 1730 rpm
230/460 V 9.4/4.7 A 182T frame 1.0 s.f,
catalog no.: 05-3H4SBFC-SKB motor style: 773B646G41

Table 4-1. Test motor nameplate data.

ROTOR #1 As manufactured; no broken bars.
ROTOR #2 One broken bar; one end open.

ROTOR #2.1 Same as ROTOR #2 with both ends open.
ROTOR #3 As manufactured; no broken bars.

Table 4-2. Rotor summary.

The experimental data collected for each motor serves
two primary purposes., First, comparison between the
experimental results and predicted results (presented in

Chapter 3) will be used to validate the computer simulation




program. Of interest 1is whether the simulation program
accurately solves for the stator phase currents of an
induction motor with and without a broken rotor bar. In
addition, this comparison can provide an indication of the
areas which must be added and/or modified, if required, in
the simulation program to accurately describe the
electrical performance of an induction motor with or
without a broken rotor bar. Second, comparison of the
experimental results for a "good"” motor and a "broken rotor
bar” motor can be used to make a quantitative decision
regarding the feasibility of detecting broken rotor bars by
monitoring the magnitude of the (1-2s)f harmonic component

of the stator phase current,

4.2 Description of Experimental Facility

The facilities used to conduct the experiments consists
of four major components; a 208 V rms (line-to-line)
3-phase power supply, a dynamometer, a test motor, and a
g8ignal analyzer. A MAGTROL, Inc. model HD800-8 dynamometer
is used to provide the load necessary to operate the test
motor at various constant speeds (or rotor slips). Due to
the kinetic power dissipation limit of the HD800-8, only
small values of rotor slip (0-0.04) can be safely achieved.
However, this range of rotor slips does cover the full load
operating range of the test motors. For a rotor elip of

0.04, the test motor can be operated for approximately 10
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minutes every two hours without exceeding the rating cf the
dynamometer. The control section for the HD800-8 provides
digital read-outs for the following parameters:

stator phase current [A rms]

stator phase voltage (V rms])

stator phase power fwl
shaft speed (rpm]
shaft power (W]
shaft torque (N-m])

A Hewlett-Packard model HP-3561A dynanmic signal
analyzer is used to fast Fourier transform the stator phase
current measurements and display the resulting frequency
spectrum. The HP-3561A is a single-channel, multi-function
signal analyzer. The analyzer was set-up to éalculate and
display the stator phase current frequency spectrum over a
20 Hz span centered at 60 Hz. For this setting, the
frequency resolution of the analyzer is 0.05 Hz and a
sample-time record length of 20 seconds is required to
process the stator-current signal. Like the simulation
program, &8 second-order Hanning window function is wused
to aid in distinguishing among frequency components which
are relatively close. 1In order to increase the sig-

nal-to-noise ratio of the input stator-current signal, a

time averaging feature is used. Using this feature, five

successive time records are averaged on a point-by-point




basis. Thus, for each test the analyzer requires
approximately two minutes of stator phase current signals.
The output units of the HP-3561A are volts rms squared. For
the "typical"” frequency spectrum plots included in this
chapter (Figures 4-4, 4-8, 4-15, and 4-19), the following
relation can be used to convert the analyzer output to amps

rms

A rms=2.0Y(V rms)? (4-1)

where

(V rms)’=analyzer output reading

A major concern throughout the experimentQI portion of
this research is the issue of data reproducibility. In an
effort to increase the confidence level of the experimental
data gathered, several tests were conducted for each rotor
at each rotor slip value. For each test the magnitudes of
the (1-2s)f and fundamental components of the stator phase
currents were recorded. These values were then averaged and
the standard deviation was determined. The tests were
continually repeated until the measured values were
consistently within one standard deviation of the mean
value. In addition to this, the averaging technique, number

of averages, frequency span and resolution, etc. of the
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HP-3561A were varied to ensure that the choice of analyzer
settings was not introducing any error into the

measurements.

The following sections provide a summary of the

experimental data collected and corresponding analysis for

each rotor. Appendix C contains tables of the measured data
(the fundamental and (1-2s)f components of the stator phase

current) for each rotor tested.

———— e —— e——, =

Rotor Bar(ROTOR #1)

The averaged voltage and current data for ROTOR #1 is
shown in Table 4-3. This is the baseline data. In addition
to the fundamental and (1-2s8)f components of the stator
phase current, three other components were apparent, at
frequencies (142s)f, (1-4s)f, and (1+44s)f. In general, the
(1-4s}f and (1448)f components, when detected, were
usually on the order of one-half the magnitude of the
(1-2s)f component. As shown in Appendix D, these
components could be produced by the third and fifth
time-harmonics of the stator phase current. The (1+2s)f
component is typically on the same order as the (1-2s)f
component and is generally attributed to torque pulsations

and the resulting speed oscillations at twice-the-slip
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frequency {(7,8,9,10,11]). In addition, this component could
also be produced by the third time-~-harmonic of the stator

phase current as shown in Appendix D. Table 4-4 lists the

magnitudes of these components for a "typical” test at
each each rotor slip value.
For all values of rotor 8lip, the non-fundamental

harmonic components detected were less than 0.05% of the

fundamental component of the stator phase current. From
Table 4-3, the variation in the magnitude of the (1-28)f
component is shown to be on the order of 25-30% of the

mean value for this component. Figures 4-1 and 4-2 show

the averaged data and raw data for the (1-2s)f component.

Figure 4-3 shows the averaged data for the fundamental
component. Figure 4-4 shows the "typical” frequency
spectrum for various rotor slip values.
1(60 Hz) 1(1-2s)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV.
V rms A rms A rms A rms A rms
0.01 123.3 4.76 0.06 0.0011 0.0003
0.02 123.1 6.00 0.15 0.0015 0.0005
0.03 122.7 7.37 0.11 0.0025 0.0005
0.04 122.5 8.98 0.12 0.0032 0.0008
Table 4-3. ROTOR #1 averaged data.
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COMPONENT 8=0.01 8=0.02 §=0.03 s=0.04
(1-4s)f <0.0001 <0.0001 0.0015 0.0022
(1-2s8)f 0.0011 0.00114 0.0024 0.0026
60 Hz 4.940 5.026 7.642 8.626
(142s8)f 0.0013 0.0016 0.0051 0.0035
(1+4e)f <0.0001 0.0011 0.0020 0.0024

note: all values given in A rms

Table 4-4. ROTOR #1 "typical"” harmonic frequency data.
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EXPERIMENTAL RESULTS
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Figure 4-1. ROTOR #1 1(1-2s)f averaged results.
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Figure 4-2. ROTOR #1 I(1-2s)f "raw" data.
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Figure 4-3. ROTOR #1 1(60 Hz) averaged results.
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Figure 4-4. ROTOR #1 "typical” frequency spectrum.
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4.3.2 Bxperimental Results for a Motor With a Broken Rotor

Bar (one end open--ROTOR $2)

The averaged data for ROTOR #2 is shown in Table 4-5.
Like the results obtained for ROTOR #1, the components at
frequencies (1+42s8)f, (1-48)f, and (1+48)f were detected in
addition to the fundamental and (1-28)f stator phase
current harmonics. The (1-4s)f and (1+48)f components,
when detected, were usually on the order of one-half the
magnitude of the (1-2s)f component. The (1+42s)f component
was typically on the same order as the (1-28)f component.
Table 4-6 lists the magnitudes of these components for a
"typical"” test at each rotor slip value.

For all values of rotor slip, the non-fundamental
harmonic components detected were less than 0.05% of the
fundamental component of the stator phase current. From
Table 4-5, the variation in the magnitude of the (1-2s)f
component is shown to be on the order of 25-30% of the
mean value for this component. Figures 4-5 and 4-6 show
the averaged data and raw data for the (1;23)f component.
Figure 4-7 shows the averaged data for the fundamental
component. Figure 4-8 shows the "typical"” frequency

spectrum for various rotor slip values.
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1(60 Hz) I(1-28)f

SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV,
V rms A rms A rms A rms A rms
0.01 122.6 4.59 0.05 0.0013 0.0003
0.02 122.4 5.86 0.10 0.0018 0.0007
0.03 122.1 7.16 0.26 0.0023 0.0007
0.04 121.9 8.78 0.15 0.0023 0.0008

Table 4-5. ROTOR #2 averaged data.

COMPONENT 8=0.01 8=0.02 8=0.03 8=0.04
(1-4s8)f 0.0016 0.0029 <0.0001 <0.0001
(1-2s)f 0.0013 0.0019 0.0019 0.0020
60 Hz 4.620 5.940 7.746 8.646
(1+42s8)f 0.0012 0.0015 0.0018 0.0019
(1+4s)f 0.0029 0.0030 <0.0001 <0,0001

note: all values given in A rms

Table 4-6.

ROTOR #2 "typical"” harmonic frequency data.
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EXPERIMENTAL RESULTS
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Figure 4-5. ROTOR #2 I(1-2s)f averaged results.
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Figure 4-6. ROTOR #2 I(1-2s)f "raw" data.
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Figure 4-7. ROTOR #2 1(60 Hz) averaged results.
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Figure 4-8. ROTOR #2 "typical" frequency spectrum.
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4.3.3 Discussion of Simulation and Bxperimental Results

—— ——————— - =R E D Nl e s 22

Tables 4-7 and 4-8 show the simulation results from
Chapter 3 and experimental results of the fundamental and
(1-2s)f harmonic components of the stator phase currents
for a motor with and without a broken rotor bar. These
tables show that the simulation program accurately solves
for the fundamental component of the stator phase current
for a motor with and without a broken rotor bar. This was
expected since the input parameters for the simulation
program are determined wusing the s8ingle-phase, equiv-
alent-circuit model values for the test motors. However,
for the (1-28)f component, the simulation results and
experimental results are significantly different. These
unexpected differences raise two questions which must be
answered.

First, why 1is the value of the (1-2s)f component of
the stator phase current non-zero in a nptor without a
broken rotor bar? This question can be answered by
considering the effect of manufacturing asymmetries on the
stator phase current. From the analysis conducted by
Kliman et al. {7], it was shown that manufacturing
asymmetries (i.e., rotor out of round, rotating eccentric-
ity, or non-uniform magnetic orientation of the rotor
laminations) can also create airgap flux anomalies with a

fundamental component on the same order as that of a
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broken bar. This flux anomaly induces currents at a
frequency of (1-2s)f in the stator phase windings. Thus,
manufacturing asymmetries, which are present to sgome
degree in all induction motors, can result in a non-zero

(1-23)f harmonic component of the stator phase current.

I1(60 Hz) AMPS rms
"GOOD" MOTOR "BROKEN BAR" MOTOR

SLIP ROTOR #1 SIMULATION ROTOR #2 SIMULATION

0.01 4,76 4.79 4.59 4.65

0.02 6.00 5.95 5.86 5.87

0.03 7.37 7.41 7.16 7.24

0.04 8.98 8.96 8.78 8.79
Table 4-7. Simulation and experimental results I(60 Hz).

1(1-2s)f AMPS rms
"GOOD" MOTOR "BROKEN BAR" MOTOR
SLIP ROTOR #1 SIMULATION ROTOR #2 SIMULATION
0.01 0.0011 0 0.0013 0.0417
0.02 0.0015 0 0.0018 0.0870
0.03 0.0025 0 0.0023 0.1315
0.04 0.0032 0 0.0023 0.1761

Table 4-8. Simulation and experimental results I(1-2s)f.
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The second question which must be answered is why are
the simulation results for the (1-2s8)f component on the
order of 40 to 75 times greater than those measured for a
motor with a broken rotor bar. One possible mechanism is
that the bar was not completely broken. This could be the
case in the present experiments if the rotor bar was not
completely disconnected from the end ring during milling
so that path for current to flow 8till exists. In order to
demonstrate how this mechanism would result in a reduced
magnitude of the (1-2s)f component, the simulation program
was used to calculate the stator phase currents for a
motor with a rotor bar that has a higher series impedance
than the other rotor bars. For a rotor slip of 0.04, the
impedance (both the rotor bar resistance and leakage
inductance) of one rotor bar was varied (relative to the
impedance of a normal rotor bar) and the fundamental and
({1-2s)f components of the stator phase current was
calculated. These results are shown in Table 4-9 and
graphically in Figures 4-9 and 4-10. As expected, the
results show that the fundamental component of the stator
phase current remains &approximately constant while the
magnitude of the (1-2s)f component increases as the rotor
bar impedance 1is increased. In addition, these results
indicate that only a 2% increase in the bar impedance 1is
required for the simulation program to predict the (1-28)f

values measured for ROTOR #2. Certainly, the bar impedance

134




would increase by a substantially larger factor than 2% if
a section of the rotor bar was removed (i.e., the broken
bar on ROTOR #2).

After removing ROTOR #2 and visually inspecting the
broken rotor bar, it was concluded that the rotor bar was
completely cut away from the end ring. Thus it appears
certain that current is not flowing into the broken bar

across the break from the end ring.

RATIO OF BAR IMPEDANCE I1(60 Hz) I1(1-28)f
TO ALL OTHER BARS AMPS rms AMPS rms
1.0 ("good"” motor) 8.78 0

1.1 8.77 . 0.0145
1.2 8.76 0.0269
1.5 8.714 0.0546
2.0 8.72 0.0834
5.0 8.68 0.1378
10.0 - 8.66 0.1566

infinity 8.65 0.1758

("broken rotor bar
motor")
o

NOTE: all values for rotor 8lip=0.04

Table 4-9. Bar impedance varjation results.
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BAR IMPEDANCE VARIATION RESULTS
h . SLIP=.04 1728 rpm
STATOR PHASE I{1-2s)f CURRENT

0.16

0.12

0.08

CURRENT in AMPS rins

C.04

0.00 1 T T T

1 3 10 30 100 300 1000
BAR IMPEDANCE RELATIVE TO ALL OTHER BARS

Figure 4-9. Bar impedance variation I(1~2s)f.
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BAR IMPEDANCE VARIATION RESULTS
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Figure 4-10. Bar impedance variation I(60 Hz).
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Another mechanism that could result in a current
flowing through a broken rotor bar is that of inter-bar
currents. Inter-bar currents are currents which flcw
between a rotor bar and adjacent rotor bars through the
rotor laminations. The presence of such currents could be
expected to "short circuit” the effect of a break in a

rotor bar, hence resulting in a current flow in the broken

bar that would not be predicted by the simulation program.

The existence of large inter-bar currents in
three-phase squirrel-cage induction motors with broken
rotor bars has been analyzed and experimentally verified
by Kerszenbaum and Landy ([(9]). They have shown that the
magnitude of the inter-bar current is a function of the
rotor-bar impedance and the distributed inter-bar
impedance. The inter-bar impedance is the sum of the
contact impedance of the rotor bar-to-rotor lamination
interface and the impedance of the rotor core (i.e.,
laminations) between two adjacent rotor bars. As the ratio
of the rotor-bar impedance to the integ-bar impedance
increases, the magnitude of the current flowing into a
broken rotor bar approaches the magnitude of the current
which would flow into a "healthy” (i.e., not broken) rotor
bar for the same operating conditions. This is shown:in

Figure 4-9 where

I, current flowing in a broken bar

1, = current flowing in a "healthy" bar
.4
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Figure 4-11. Ratio of current in a broken bar to a
"healthy" bar [9].

4.4 Experimental Results for a Motor With a Broken Rotor

Bar (both ends open—--ROTOR $2.1)

In order to investigate the hypothesis that inter-bar
currents were masking the effects of the break in the rotor
bar during experiments with ROTOR #2, the opposite end of
the broken rotor bar on ROTOR #2 was alsoc cut away from the
end ring, resulting in the rotor known as ROTOR #2.1. This
was expected to result in a further decrease in the
magnitude of the current flowing through the broken rotor
bar thus, increasing the resulting magnitude of the (1-2s)f

component of the stator phase current.
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The averaged data for ROTOR #2.1 is shown in Table
4-10. Once again the (1-4s)f, (1+2s8)f, and (l1+44s)f harmonic
components were detected. Table 4-11 lists the magnitudes
of these components for a "typical"” test at each each rotor

slip value. For all values of rotor slip, the

non-fundamental harmonic components detected were less than
0.25% of the fundamental component of the stator phase
current. From Table 4-10, the variation in the magnitude of
the (1-2s)f component is shown to be on the order of 10-25%
of the mean value for this component. Figures 4-12 and 4-13
show the averaged data and raw data for the (1-2s)f
component. Figure 4-14 shows the averaged data for the
fundamental component. Figure 4-15 8hows the "typical"”
frequency spectrum for various rotor slip values.

Tables 4-12 and 4-13 show the values of the fundamental
and (1-2s)f components of the stator phase current measured
for ROTOR #2 and ROTOR #2.1, and the simulation results for
a broken rotor bar case. Comparison of the data shown in
Table 4-12 shows that the fundamental component of the
stator phase currents for both rotors and the simulation
are approximately the same. For the (1-2s)f component shown
in Table 4-13, the values for ROTOR #2.1 are significantly
greater (by a factor of 4 to 8) than those for ROTOR #2.
This result strengthens the hypothesis that inter-bar

currents are present and that significant current is

flowing through the broken rotor bar on ROTOR #2. The
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simulation results for the

m

(1-28)f component indicates that

current is still flowing in the broken rotor bar on ROTOR
#2.1.
1(60 Hz) I(1-28)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV,
V rms A rms A rms A rms A rms
0.01 123.1 4.66 0.13 0.0041 0.0011
0.02 122.9 5.93 0.21 0.0073 0.0009
0.03 122.5 7.26 0.20 0.0128 0.0010
0.04 122.2 8.61 0.15 0.0172 0.0023
Table 4-10. ROTOR #2.1 averaged data.
COMPONENT 8=0.01 8=0.02 8=0.03 8=0.04
(1-4s)f <0.0001 <0.0001 |, 0.0041 0.0068
(1-2s)f 0.0041 0.0087 6.0121 0.0184
60 Hz 4.757 5.930 7.253 8.420
(1+2s8)f 0.0032 - 0.0074 0.0105 0.0196
(1+44s8)f <0.0001 <0.0001 0.0054 0.0089
note: all values given in A rms
Table 4-11. ROTOR #2.1 "typical" harmonic frequency data.
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I1(60 Hz) AMPS ras

SLIP ROTOR #2 ROTOR #2.1 SIMULATION
0.01 4.59 4.66 4.65
0.02 5.86 5.93 5.87
0.03 7.16 7.26 7.24
0.04 8.78 8.61 8.79
Table 4-12. Broken bar results I(60 Hz)
1(1-2s)f AMPS rms

SLIP ROTOR #2 ROTOR #2.1 SI&ULATION
0.01 0.0013 0.0041 0.0417
0.02 0.0018 0.0073 0.0870
0.03 0.0023 0.0128 0.1315
0.04 0.0023 0.0172 0.1761

Table 4-13. Broken bar results I(1-2s8)f
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EXPERIMENTAL RESULTS
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Figure 4-12. ROTOR #2.1 I(1-28)f averaged results.
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Figure 4-13. ROTOR #2.1 1(1-2s)f "raw" data.
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Figure 4-14. ROTOR #2.1 I1(60 Hz) averaged results.
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4.5 Additional Results for a "Good" Motor (ROTOR #3)

In order to see the effects on the stator phase current
due to manufacturing asymmetries, a second "as manufac-
tured” rotor (ROTOR #3) was installed in the test motor.
The averaged data for ROTOR #3 is shown in Table 4-14. Once
again the (1-4s)f, (1+2s)f, and (1+48)f harmonic components
were detected. Table 4-15 lists the magnitudes of these
components for a "typical” test at each each rotor slip
value. For all values of rotor s8lip, the non-fundamental
harmonic components detected were less than 0.05% of the
fundamental component of the stator phase current. From
Table 4-14, the variation in the magnitude of the (1-2s)f
component is shown to be on the order of 20-30% of the mean
value for this component. Figures 4-16 and 4-17 show the
averaged data and raw data for the (1-2s)f component.
Figure 4-18 shows the averaged data for the fundamental
component. Figure 4-19 sghows thq‘ "typical” frequency
spectrum for various rotor slip values.

Comparison of the data for ROTOR #1 (Table 4-3) and for
ROTOR #3 (Table 4-14) shows that the fundamental component
of the stator phase currents for both motors is
approximately the same. For the (1-28)f component, the
values for ROTOR #1 are approximately two times greater
than those for ROTOR #3. This result indicates that the

degree of manufacturing asymmetries in ROTOR #1 is somewhat

larger than those in ROTOR #3.




1(60 Hz) I(1-2s8)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV.
V rms A rms A rms A rms A rms
0.01 122.7 4.63 0.07 0.0007 0.0003
0.02 122.4 5.84 0.07 0.0006 0.0002
0.03 122.1 7.18 0.18 0.0011 0.0003
0.014 121.8 8.65 0.05 0.0013 0.0002
Table 4-14. ROTOR #3 averaged data.

COMPONENT s=0.01 8=0.02 8=0.03 s=0.04
(1-48)f <0.0001 <0.0001 0.0015 0.0023
(1-2s)f 0.0005 0.0006 0.0008 0.0016

60 Hz 4.630 5.930 7.156 8.646
(1+2s8)f 0.0008 0.0005 0.0007 <0.0001
(1+48)f <0.0001 0.0015 0.0023 0.0028

note: all values given in A rms
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4.6 Summary

The fundamental and (1-2s)f harmonic components of the
stator phase current were recorded for an "off-the-shelf"
3-HP squirrel-cage induction motor with various rotors
installed. Two "as manufactured” rotors with no broken
rotor bars and a third rotor with a single rotor bar
deliberately open-circuited were used for the experiments.
The broken bar rotor was initially tested with only one end
of the broken bar disconnected from the end ring.
Subsequently, the opposite end of the broken bar was
disconnected from the other end ring and a series of
experiments were completed using this rotor.

For each rotor tested, in addition to the fundamental
and (1-2s)f components of the stator phase current,
significant components at the frequencies (1-4s)f, (1+42s8)f,
and (1+44s)f were detected. The (1-4s)f and (1+4s)f
components can be produced by fhe third and fifth
time-harmonic components of the stator phase currents as
shown in Appendix D. The (1+42s)f component can Dbe
attributed to the torque pu1sations and the resulting speed
oscillations at twice-the-slip frequency 1(7,8,9,10,11].
This component c¢can also be produced by the third
time-harmonic of the stator phase current. In general, the
magnitudes of the (1-4s)f and (1+48)f components were on

the order of one-half the magnitude of the (1-2s)f

component., The magnitude of the (1+428)f component is
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approximately the same as the (1-2s)f component. For the
two "good" rotors (ROTOR #1 and ROTOR #3) and the broken
bar rotor with one end disconnected (ROTOR #2), the
magnitude of these harmonic components was less than 0.05%
of the fundamental component. For the broken rotor bar with
both ends disconnected (ROTOR #2.1), the magnitude of these
components increased five-fold.

Comparison of the experimental and simulation results
for a motor with and without a broken rotor bar has shown

that a more complex simulation model 1is required to

accurately predict the (1-2s)f component of the stator
phase current. In particular, the model must be able to
account for manufacturing asymmetries which are present to
some degree in all induction motors and it also must be
able to model the effects of inter-bar currents.

The existence of inter-bar currents in a squirrel-cage
induction motor of the type tested in +this thesis
effectively "masks" the effects of a broken' rotor Dbar.
These currents reduce the magnitude of the (1-2s)f
component of the stator phase current to a value on the
order of those ©present in a "good" rotor due to
manufacturing asymmetries. Thus, distinguishing a broken
rotor bar from a manufacturing asymmetry using only the
(1-28)f component of the stator phase current appears very
difficult. This effect is illustrated in Figure 4-20, where

the values of the (1-2s)f component for the four rotors
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tested and for the simulation program are plotted as a
function of rotor slip. A distinction between a broken
rotor bar and a manufacturing asymmetry is only possible
after both ends of the broken rotor bar are disconnected

from the end ring.

As a final  note, if the single-test diagnostic
algorithm of Kliman et al. {7) (see Chapter 1) were used, a
. motor with either ROTOR #1, ROTOR #2, or ROTOR #3 installed
would be declared a "good" motor. For a motor with ROTOR
#2.1 installed, the measured dB value (-54 dB) falls in the
region between a "good" motor and a "broken rotor bar"

motor and thus would be declared "suspect”.
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CHAPTER b

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Summary of Thesis

The purpose of this thesis was to critically evaluate
’ one method for the detection of broken rotor bars in
induction motors using stator current and voltage
measurements. This effort supported the ongoing development
of a failure analysis system for electric machines by the
M.I.T. Laboratory for Electromagnetic and Electronic
Systems. The hypothesis of the method, given a sinusoidally
applied voltage, was that the presence of certain harmonics
in the stator currents could be used to detect the presence
of broken rotor bars,

To support the evaluation, a system of first-order
differential equations describing the eléctrical
performance of a three-phase induction motor was developed
using stator phase currents and rotor 1loop currents as
state variables. Each stator phase and rotor loop was
described in terms of a resistance and inductance. The
stator phase voltages (assumed to be sinusoidal) were the
driving functions for the system.

A relationship between the standard single-phase,

equivalent-circuit model for an induction motor and the

system of equations was derived (Equations 2-100 to 2-106).
With this relationship, the electrical parameters needed to

solve the system of equations were easily calculated from
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the single-phase, equivalent-circuit parameter values which
are often available from the manufacturer, or are easily
measured in the laboratory. This relationship was useful in
that the solution to the system of equations could be
obtained without disassembling the motor, removing the
rotor, and measuring the geometrical and material
properties of the motor such as the rotor radius, the

' airgap length, and conductivity of the rotor bars. Thus, by

performing the standard no-load, locked-rotor, and DC tests
and knowing the number of rotor bars, the system of
equations could be used to simulate a three-phase induction
motor with an arbitrary number of rotor bars.

A FORTRAN simulation routine was developed to solve the
system of equations describing the electrical performance
of an induction motor with or without a broken rotor bar.
The routine uses a fixed-step, fourth-order Runge-hutta
procedure to numerically integrate the system of equations.
A matrix inversion routine, Cholesky's method with partial
pivoting, was required to invert the time-varying
inductance matrix for each value of time. In addition to
the FORTRAN simulation program, two PRO-MATLAB routines
were also employed. The PRO-MATLAB eigenvalue routine was
used to aid in determining the fixed time s8tep for £he
Runge-Kutta integration. A PRO-MATLAB FFT routine was used

to transform the output data of the FORTRAN program from
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the time domain to the frequency domain. Thus the
fundamental and (1-2s)f frequency components of the stator
phase currents could be determined.

The FORTRAN simulation program and PRO-MATLAB FFT
routine were initially validated using a hypothetical 3-bar
rotor induction motor. The errors between the simulation
results and exact solutions for both the no-broken-bar and
the one-broken-bar cases were less than 1%X. The simulation
program accurately solved the system of equations derived
for the stator phase currents and rotor loop currents.
Thus, the simulation permitted numerical experiments which
were used to test the failure detection hypothesis.

For the numerical experiments, the single-phase,
equivalent-circuit parameter values for an "off-the-shelf”
3-HP squirrel-cage induction motor were used as inputs to
the simulation routine. Thus, the simulations represented
the operation of the same motors which were used for the
physical experiments. The results of the simulation for a
no-broken-bar case showed only a fundamental component of
the stator phase currents. However, for the one-broken-bar
case, the simulation showed that an additional component at
a frequency of (1-2s)f was also present in the stator phase
current. The magnitude of this component was approximately
2% of the magnitude of the fundamental component for the
full load operating speed of the motor. Thus, the failure

detection hypothesis appeared plausible and physical
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experiments were undertaken to verify that the (1-2s)f
component of the stator phase current could be used to
detect the presence of a broken rotor bar.

The physical experiments were conducted with
commercially-available induction motors. The fundamental
and (1-2s)f harmonic components of the stator phase current
were recorded for an "off-the-shelf” 3-HP squirrel-cage
induction motor with various rotors installed. Two "as
manufactured” rotors with no broken rotor bars and a third
rotor with a single rotor bar deliberately disconnected
from the end ring by removing a small section of the rotor
bar were used for the experiments. The broken-bar rotor was
initially tested with only one end of the broken bar
disconnected from the end ring. Subsequently, the opposite
end of the broken bar was cut away from the other end ring
and a series of experiments was completed using this rotor.

For the two "good” rotors tested, the (1-2s)f component
of the stator phase current was detected. The magnitude of
this component was approximately 0.05% of the fundamental
component. The (1-2s)f component was present in a "good"
rotor due to manufacturing asymmetries which are present to
some degree in all machines. The measured values of the
(1-2s)f component for the broken bar rotor with one end
disconnected were also only 0.05% of the fundamental
component. Thus, wusing only the (1-2s8)f component of the

stator phase current, the distinction between manufacturing
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asymmetries and a broken rotor bar was impossible. This
result was significantly different than that predicted by
the simulation program.

In order to explain the differences between the
simulation and experimental results, a hypothesis that
current was still flowing through the broken rotor bar was
investigated. One possible mechanism was that the bar was
not completely broken. This could be the case in the
present experiments if the rotor bar was not completely
disconnected from the end ring during milling so that path
for current to flow still exists. After removing the rotor
and visually inspecting the broken rotor bar, it was
concluded that the rotor bar was completely cut away from
the end ring. Thus it appeared certain that current is not
flowing into the broken bar across the break from the end
ring.

Another mechanism that could result in a current
flowing through a broken rotor bar was that of inter-bar
currents. Inter-bar currents are currents which flow
between a rotor bar and adjacent rotor bars through the
rotor laminations. The presence of such currents could be
expected to "short circuit” the effect of a break in a
rotor bar, hence resulting in a current flow in the broken
bar that would not be predicted by the simulation program.

In order to investigate the hypothesis that inter-bar

currents were masking the effects of the break in the rotor
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bar during experiments with the broken bar rotor, the
opposite end of the broken rotor bar was also cut away from
the end ring. This was expected to result in a further
decrease in the magnitude of the current flowing through
the broken rotor bar, thus increasing the resulting
magnitude of the (1-2s)f component of the stator phase
current. The measured values of the (1-2s)f component for
this rotor were on the order of 4 to 8 times greater than
the previous results. This strengthened the hypothesis that
inter-bar currents were flowing and that significant
current was flowing through the broken rotor bar with one
end disconnected during the previous tests. In addition,
the simulation results were still an order of magnitude
greater than the measured results for the broken rotor bar
with both ends disconnected, thus indicating fhat current

was still flowing in the broken rotor bar.

5.2 Conclusion -

The existence of inter-bar currents in a squirrel-cage
induction motor of the type tested in this thesis
effectively "masks" the effects of a broken rotor bar.
These currents reduce the magnitude of the (1-2s)f
component of the stator phase current to a value on the
order of those already present in a "good” rotor due to
manufacturing asymmetries. The distinction between a broken
rotor bar and a manufacturing asymmetry 1s only possible

after both ends of a rotor bar are cut away from the end
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ring. Thus, distinguishing a broken rotor bar from a
manufacturing asymmetry using only the (1-2s)f component of

the stator phase current appears highly improbable.

5.3 Recommendations for Future Work

. Although the results of this thesis s8how that the

detection of &a broken rotor bar in a squirrel-cage

induction motor of the type tested is highly improbable
using only the (1-2s8)f component of the stator phase
current, examination of the higher-order stator phase
current harmonics may provide a basis for distinguishing
between a broken rotor bar and manufacturing asymmetries.
Kliman et al. [7] has shown that the higher-order harmonic
components of the airgap flux resulting from a broken rotor
bar are typically much larger than those resulting from
manufacturing asymmetries. Thus, an investigation of the
effects on the higher-order stator phase current harmonics
due to a broken rotor bar is needed if the failure analysis
system 1is to be based solely on the measurements of
terminal voltages and currents. In addition, the effects of
inter-bar currents would have to be modeled in detail.

In order to use the simulation program developed in
this thesis in a failure analysis system for electrical
machines, the program must be modified to include the
effects of inter-bar currents. This requires an in-depth

analysis on the existence of and effects of inter-bar

currents in squirrel-cage induction motors. In addition to
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modifying the simulation program, changes in the current
manufacturing process for squirrel-cage rotors may be
recommended based on this analysis (e.g., insulation
between the rotor bars and laminations).

Axial flux monitoring [11] is another method which has
been successful in detecting broken rotor bars, as well as
various other faults, 1in operating induction machines.
Although this method requires that an external sensing cocil
be attached to a machine, it appears to be very promising
and can be implemented into a failure analysis system. This
method 1is currently being investigated at the M.I.T.

Laboratory for Electromagnetic and Electronic Systems [21].
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APPENDIX A
ELEMENTS FOR SYSTEM MATRICES
The following sections give the expressions for the
elements of the voltage, inductance, and effective
resistance matrices derived 1in Chapter 2 (NOTE: m=row,

n=column). Refer to the List of Symbols given in section 2.2
for a definition of symbols.

A-1 Voltage Matrix [v]

for m=z1,2,3

VoS v, (A-1)

V.o®mNy (A-2)

V.=V, (A-3)
for m=4,5, Nip+3

v,=0 » (A-1)

A-2 Inductance Matrix [L]

for m=zn=1,¢,3
Ln..n:l- ‘Lls (\_5)

where L, 1s given by equation 2-26.

for m=n m,n=1,2,3

-1,
2

L= (A-6)
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for m=1,2,3 n=4,5,...Nu+3

Lln-kdﬁn(p((Q(n_?}4)”+(u.t+90)—(m-l)2£> (A-7)
\ N s 3

where M is given by equation 2-52.

» for m=4,5,...Nut+3 n=1,2,3
2(m-3)-1 2
L...-Msm(p(( (m=3) )"+w.t*o,)-(n-l)—’5) (A-8)
N ro 3

for mzn=4,5,...Nut+3

Lm.:-LF'LU::m-Zi)*LLer-Z, (A_g)
{note: for m=N..+3 l-upxm-}:‘-um)
where L, is given by equation 2-42.
for n=m+1 m=4,5,...Nu+3
L L 10
oo TN o]l hreE | (A-10)
(note: for m=Ng+3, n=4 Livem-2:= Lunt )
for n=m-1 m=4,5,...Nu+3
-L,
L — (A-11)

)’ Lrb(m-

D.ﬂ.(NaB_l

(note: for m=4, N=Ng+3 LL.-(--:\=Lm|)
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for n:m,m+1,m-1 n,m=4,5,...Nyu+3

L “Ls A-12
oz (Nn"ll ( )

A-3 Rffective Resistance Matrix [RR]

for m=n=1,2,3

RR,, =R, (A-13)

for m*sn m,n=1,2,3

RR..=0 (A-14)

for m=1,2,3 n=4,5,...Ng+3

\

( /(2(n-—3)'l)n¢w0“90)_(m_])23".) (A-1S)

RR,..= ~Mcos: p; -
mo TP os\p& N ke

{note: this expression assumes the mechanical speed of
the rotor is a constant)

for m=4,5,...Nw+3 n=1,2,3

21\
*wmt*eo)-(n-l)?’z’ (A-16)

( ((2(m—3)- 1Yn
/

RR,,.=pu - Mcos;
P \p\ Nra

{note: this expression assumes the mechanical speed o
the rotor is a constant)

for m=nz=4,5,.. .Nu+3

RRn.u-va(n-S)"'Rn(n-Z) (A‘l?)

‘note: fOI‘ mle|"3 Rrh(n-?)‘Rlbl)

169




SN

for n=m+]1 m=4,5,.. . Nu+3

RRn.n == Rn(n—Z)

(note: for m=N.,+3, n=4 Ryw-2=R,.)

for n=m-1 m=4,5,...Nu+3

RR mao " " R (m-3)

(note: for m=4, n=Npx+3 Ruyw.3, =R )

for nzm,m+1,m-1 n,m=4,5,...N,+3

RRg,:.=0
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APPENDIX B

SIMULATION PROGRAMS AND DATA FILES

B-1 FORTRAN SIMULATION PROGRAM

The FORTRAN simulation program can be used to solve the
system of equations describing the electrical performance of
an induction motor derived in Chapter 2 for the time-varying

stator phase and rotor loop currents. A fixed-step,
fourth-order Runge-Kutta procedure is used to numerically
integrate the system of equations. The time-varying

inductance matrix is inverted for each value of time using
Cholesky's method with partial pivoting. The program can be
used to simulate an induction motor with either no broken
rotor bars or one broken rotor bar. A flowchart for the
program is shown in Figure 3-1. The program is divided into
six parts, a main program and five subroutines. The
following paragraphs describe the purpose of each part of
the simulation program.

Main program: The main program performs several
functions. The primary function is to act as a buffer
and pass data between the subroutines. In addition, the
main program keeps track of the simulation time,
calculates the value of the current vector at the end
of each time step, and writes the results to an
external file.

Subroutine INPUT: This subroutine is called once by the
main program. 1t performs two functions. First, it
reads the data contained in an external input file. The
external input file provides a description of the
machine being simulated. It includes the single-phase,
equivalent-circuit model values, number of rotor bars,
and number of pole-pairs for the machine, the rotor
slip, 8and the supply voltage and frequency. The
simulation time parameters ( i.e., step-size and stop
time) and a broken bar flag are also included in the
input file. Second, using the relations derived in
section 2.3, the coefficients for the inductance and
effective resistance matrix elements are calculated and
passed to the main program.

Subroutine MOTOR: This subroutine is called for each
value of time. It performs two functions; it calculates
the elements of the voltage, inductance, and effective
resistance matrices, and it reduces the system of
equations. For the voltage vector, a balanced
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three-phase supply 1is assumed. The inductance and
effective resistance elements are calculated using the
relations given in Appendix A. For both a "no broken
bar" simulation and a "one broken bar' simulation, the
system of equations can be reduced from Ny,+3 to N,+2
since the sum of the rotor loop currents equals zero.
This condition is imposed on the system of equations by
eliminating rotor loop N, current. Column N,+3 is
subtracted from columns 4 through N,,+2 and column N.+3
is deleted from the inductance and effective resistance

- matrices. Next, row Ny+3 is deleted from each matrix
to complete the reduction. In addition, for a "one
broken bar"” simulation (assume rotor bar Np,-1 is

broken), the system of equations can be reduced again
by setting rotor loop Nun-1 current equal to rotor loop
Nap-2 current. For this condition, column N,+2 is added
to column N,+l and column N, +2 is deleted from the
inductance and effective resistance matrices. Faraday's
law is satisfied by adding row N,+2 to row Njp+l and
deleting row N,+2 from each matrix to complete the
reduction.

Subroutine CURRENT: This subroutine is used to
calculate the intermediate values of the current vector
for the Runge-hkutta method.

d{!]

at
dt

(EST])=11]+

where:

(EST]=1ntermediate value of current vector

{1J=1nmit1al current vector

Subroutine DRIVE: The purpose of this subroutine is to
calculate the "driving function” for each value of time
and current, i.e.,

driving function=[V]-[RR][I] ﬂ
Subroutine CHLSKY: This subroutine performs the
inductance matrix inversion to calculate the derivative
.1
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of the current vector for each time value. For the
fourth-order Runge-Kutta procedure, this calculation is
performed four times per time step.

173
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PROGRAM INDUCTION MOTOR

FILENAME: MARK.FOR
AUTHOR: MARK S. WELSH
REFERENCES: CHAPTERS 2 AND 3 OF THESIS
SECTIONS 3-4 AND 6-5 OF REFERENCE [13]

THIS PROGRAM SIMULATES THE ELECTRICAL OPERATION OF A
3-PHASE SQUIRREL-CAGE INDUCTION MOTOR WITH NRB ROTOR
BARS. THE PROGRAM SOLVES THE SYSTEM OF EQUATIONS IN
THE FORM OF

(V]1=(L)d/dt[I]1+[RR][I]
FOR THE STATOR PHASE AND ROTOR LOOP CURRENTS. A
FIXED-STEP, FOURTH-ORDER, RUNGE-KUTTA INTEGRATION
ROUTINE IS USED. IN ADDITION CHOLESKY'S METHOD WITH
PARTIAL PIVOTING IS USED TO SOLVE FOR THE VALUES OF
d/dt[1] FOR EACH TIME VALUE (I.E., INVERTS [L] FOR
EACH TIME VALUE). THE PROGRAM IS BROKEN DOWN INTO
SIX SECTIONS (MAIN PROGRAM AND FIVE SUBROUTINES).
THE PROGRAM WILL ALLOW FOR SIMULATION OF EITHER NO
BROKEN ROTOR BARS OR ONE BROKEN ROTOR BAR.

LIST OF VARIABLES FOR MAIN PROGRAM

NAMOUT OUTPUT FILE NAME

BKN FLAG FOR A BROKEN ROTOR BAR

NRB NO. OF ROTOR BARS

K NO. OF SYSTEM EQUATIONS (NRB+3)

K1 NO. OF SYSTEM EQUATIONS FOR THE NO BROKEN
BAR CASE (NRB+2)

K2 NO. OF SYSTEM EQUATIONS FOR THE ONE BROKEN
BAR CASE (NRB+1) :

LS STATOR PHASE SELF INDUCTANCE

LSL STATOR PHASE LEAKAGE INDUCTANCE

RS STATOR PHASE RESISTANCE

MSR STATOR PHASE-ROTOR LOOP MUTUAL INDUCTANCE
COEFFICIENT

LR ROTOR LOOP SELF INDUCTANCE

LRLB ROTOR BAR LEAKAGE INDUCTANCE

RRB ROTOR BAR RESISTANCE

E INPUT VOLTAGE AMPLITUDE

W INPUT VOLTAGE ELECTRICAL FREQUENCY

WM ROTOR MECHANICAL SPEED

T SIMULATION TIME

INC TIME STEP FOR INTEGRATION

TSTOP SIMULATION STOP TIME

TOUT SIMULATION TIME TO BEGIN WRITING OUTPUT

FACTOR INTERMEDIATE TIME STEP FOR INTEGRATION

TIME INTERMEDIATE SIMULATION TIME

PP NO. OF MACHINE POLE-PAIRS

AMPS CURRENT VECTOR
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v VOLTAGE VECTOR

L INDUCTANCE MATRIX

R EFFECTIVE RESISTANCE MATRIX

VRI DRIVE VECTOR (VRI=[V]-[RR](I])

EST INTERMEDIATE CURRENT ESTIMATE

RK1 INITIAL VALUE OF d/dt[I) FOR EACH STEP
RK?2 INTERMEDIATE VALUE d/dt(I] FOR EACH STEP
RK3 INTERMEDIATE VALUE d/dt[I] FOR EACH STEP
RK4 LAST VALUE OF d/dt[I] FOR EACH STEP

VARIABLE DECLARATIONS

CHARACTER$20 NAMOUT

INTEGER BKN,NRB,K,K1,K2

DOUBLE PRECISION LS,LSL,RS,MSR,LR,LRLB,RRB,E,W,WM,T,
*INC,TSTOP,TOUT,FACTOR, TIME, PP,AMPS(100,1),V(100,100),
xL(100,100),R(100,100),VRI(100,1),EST(100,1),
*RK1(100,1),RK2(100,1),RK3(100,1),RK4(100,1)

GET INPUT PARAMETERS

CALL INPUT(LS,LSL,RS,MSR,LR,LRLB,RRB,BKN,E,W,WM,NRB,
*TSTOP, TOUT, INC, PP)

SET UP OUTPUT FILE

PRINT *,’ENTER OUTPUT FILE NAME'
READ ¥ ,NAMOUT
OPEN(UNIT=7,FILE=NAMOUT,STATUS='UNKNOWN' )

DETERMINE NUMBER OF SYSTEM EQUATIONS

K=NRB+3
Kl=K-1
IF(BKN.LE.O) THEN
K2=K1
ELSE
K2=K1-1
ENDIF

INITIALIZE SIMULATION TIME AND CURRENTS
DO 10 J=1,K2
AMPS(J,1)=0.
CONTINUE
T=0.
SET UP SYSTEM MATRICES FOR TIME=T

CALL MOTOR(V,L,R,K,K1,K2,T,LS,LSL,RS,MSR,LR,LRLB,RRB,
*BKN,E,W,WM,NRB, PP)

START SIMULATION LOOP
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WRITE OUTPUT TO DATA FILE (TIME, PHASE A CURRENT,
AND ROTOR LOOP 1 CURRENT)

IF(T.GE.TOUT) THEN
WRITE(7,999)T,AMPS(1,1),AMPS(4,1)

ENDIF

CALCULATE RK1 {(d/dt[I]) FOR TIME=T

CALCULATE VRI FOR TIME=T, I=AMPS

CALL DRIVE(R,KZ2,AMPS,V,VRI)

CALL CHLSKY(L,K2,K2+1,VRI,RK1)

CALCULATE RKZ2 (d/dt[1])) FOR TIME=T+INC/2

TIME=T+4+INC/2.0
FACTOR=INC/2.0

ESTIMATE CURRENT FOR TIME=T+INC/2 USING RKl
CALL CURRENT(AMPS,RK1,FACTOR,KZ2,EST)
SET UP SYSTEM MATRICES FOR TIME=T+INC/2

CALL MOTOR(V,L,R,K,K1,K2,TIME,LS,LSL,RS,MSR,LR,LRLB,
tRRB, BKN,E,WM,NRB, PP)

CALCULATE VRI FOR TIME=T+INC/2, I=EST

CALL DRIVE(R,KZ2,EST,V,VRI)

CALL CHLSKY(L,K2,K2+1,VRI,RK2)

CALCULATE RK3 (d/dt[I1)) FOR TIME=T+INC/2
ESTIMATE CURRENT FOR TIME=T+4INC/2 USING RK2
CALL CURRENT(AMPS,RKZ2,FACTOR,K2,EST)
CALCULATE VRI FOR TIME=T+INC/2, I=EST

CALL DRIVE(R,K2,EST,V,VRI)

CALL CHLSKY(L,K2,K2+1,VRI,RK3)
CALCULATE RK4 (d/dt{1]) FOR TIME=T+4INC
TIME=T+INC

ESTIMATE CURRENT FOR TIME=T+INC USING RK3 .1
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CALL CURRENT({AMPS,RK3,INC,K2,EST)
SET UP SYSTEM MATRICES FOR TIME=T+INC

CALL MOTOR(V,L,R,K,K1,K2,TIME,LS,LSL,RS,MSR,LR,LRLB,
*RRB,BKN,E,W,WM,NRB, PP)

CALCULATE VRI FOR TIME=T+INC, I=zEST

CALL DRIVE(R,KZ2,EST,V,VRI)

CALL CHLSKY(L,KZ2,K2+1,VRI,RK4)

CALCULATE NEW CURRENT VALUES AND INCREMENT TIME

DO 20 J=1,K2
AMPS(J,1)=AMPS(J,1)+({INC/6.0)%(RK1(J,1)+2%RK2(J,1)+

*  2%RK3(J,1)+RK4(J,1))

CONTINUE

T=TIME

CONTINUE SIMULATION IF T<TSTOP ELSE STOP

IF(T.LE.TSTOP) GO TO 1

CLOSE(UNIT=7)
STOP

FORMAT(3(3X,F12.7))
END
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SUBROUTINE INPUT(LS,LSL,RS,MSR,LR,LRLB,RRB,BKN,E,W,
*WM,NRB, TSTOP, TOUT, INC, PP)

THIS SUBROUTINE IS THE INPUT INTERFACE FOR THE
SIMULATION PROGRAM., REQUIRED INPUT VALUES ARE READ
IN FROM AN EXISTING INPUT DATA FILE AND THE VALUES
OF INDUCTANCES,RESISTANCES,ETC. ARE CALCULATED FROM
THE RELATIONS DERIVED IN SECTION 2.3 AND PASSED TO
THE MAIN PROGRAM

LIST OF VARIABLES

NAMEIN INPUT DATA FILENAME
STEPS NO. OF TIME STEPS PER SECOND

S ROTOR SLIP

PI RADIANS IN A HALF CIRCLE

K CONSTANT FACTOR FOR CALCULATIONS

R1 CIRCUIT MODEL STATOR PHASE RESISTANCE

L1 CIRCUIT MODEL STATOR PHASE LEAKAGE INDUCTANCE
L12 CIRCUIT MODEL MUTUAL INDUCTANCE

L2 CIRCUIT MODEL ROTOR LEAKAGE INDUCTANCE

R2 CIRCUIT MODEL ROTOR RESISTANCE

VARIABLE DECLARATIONS

CHARACTER ¥20 NAMEIN

INTEGER BKN,NRB, PP,STEPS

DOUBLE PRECISION TSTOP,TOUT,LS,LSL,RS,MSR,LR,
*LRLB,RRB,E,Ww,WM,S,PI,INC,K,R1,L1,L12,L2,R2

READ IN INPUT DATA FILE

PRINT %,'ENTER INPUT FILENAME’

READ * NAMEIN

OPEN(UNIT=8,FILE=NAMEIN, STATUS="'UNKNOWN"')
READ(&,*)R1,L1,L12,L2,R2

READ (8, x)NRB, BKN

READ(8,*)E,W,S,PP

READ(8, ¥)STEPS, TSTOP, TOUT

CLOSE(UNIT=8)

DEFINE PARAMETERS

PI=4%ATAN(1.0)

K=PI*PP/NRB

LSL=L1

RS=zR1

LS=2*L12/3.0

MSR=8*SIN(K)*L12/(3%PI)
LRLB=(L2-(K¥%22/(SIN(K)%22)-1)%L12)%4sNRB/(3*%PI%%2)
RRB=4%*NRB/(3%PI1*%2)sR2
LR=16¥(NRB-1)3PPs%2%,12/(3*NRBx%*2)
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INC=1.0/STEPS
WM=Ws$(1-S)/PP
RETURN

END
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SUBROUTINE MOTOR(VZ2,L2,R2,K,K1,K2,TIME,LS,LSL,RS,MSR,
tLR,LRLB,RRB,BKN,E,W,WM,NRB, PP)

THIS SUBROUTINE CALCULATES THE ELEMENTS IN

EACH MATRIX OF THE SYSTEM OF EQUATIONS FOR A GIVEN
VALUE OF TIME. THE MATRICES ARE SET-UP AND THEN
REDUCED FOR THE CONDITION THAT THE SUM OF THE ROTOR
LOOP CURRENTS 1S ZERO. FOR A BROKEN BAR THE SYSTEM IS
AGAIN REDUCED BY ONE SINCE THE ROTOR LOOP CURRENTS
ASSOCIATED WITH A BROKEN BAR ARE SET EQUAL. FOR THIS
SIMULATION ROTOR BAR NRB-1 1S THE BROKEN BAR.

LIST OF VARIABLES

Vi,R1,L1 MATRICES V,R,L REDUCED FOR SUM OF ROTOR
LOOP CURRENT=0 CONDITION

v2,R2,L2 MATRICES V1,R1,L1 REDUCED FOR BROKEN ROTOR
BAR CONDITION

VARIABLE DECLARATIONS

INTEGER K,K1,KZ2,BKN,NRB,PP

DOUBLE PRECISION V(100,1),R(100,100),L(100,100},
*V1(100,1),R1(100,100),L1(100,100),Vv2(100,1),
*R2(100,100),L2(100,100),TIME,LS,LSL,RS,MSR,LR, LRLB,
*RRB,E,W,WM,PI

PI=4¥ATAN{1.0)

CALCULATE VOLTAGE VECTOR

DO 10 J=1,K
JF(J.GT.3) THEN

V(J,1)=0.0
ELSE
V(J,1)=E*COS(WsTIME-(J-1)%2%*P1/3.0)
ENDIF
CONTINUE

CALCULATE INDUCTANCE AND EFFECTIVE RESISTANCE MATRIX
ELEMENTS

DO 20 1=1,K
DO 30 J=I,K
IF(I.LE.3.AND.J.LE.3) THEN
IF(1.EQ.J) THEN
L(I,J)=LS+LSL

R(I,J)=RS
ELSE
L(I,3)=-LS/2.0
R(1,J)=0.0
ENDIF
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ELSEIF(I.LE.3.AND.J.GT.3) THEN
L(1,J)=MSR¥SIN(PP*WM*TIME+(2%(J-3)-1)%

% PI/NRB-(I-1)%2xP1/3.0)
i R(1,J)=PP*WM¥MSR*COS(PP*WMsTIME+(2%(J-3)
. x -1)*P1/NRB-(1-1)%2%P1/3.0)
ELSE

IF(1.EQ.J) THEN
L(I,J)=LR+2¢LRLB
R(I,J)=2%RRB

ELSEIF(J.EQ.(I+1))THEN

_ ’ L(I,J)=-LR/(NRB-1)-LRLB
| R(1,J)=-RRB
ELSE
L(I,J)=-LR/(NRB-1)
R(1,J)=0.0
ENDIF

ENDIF
R(J,1)=R(1,J)
L(J,I)=L{(I,J)
30 CONTINUE
20 CONTINUE
L(4,K)=-LR/(NRB-1)-LRLB
L(K,4)=L(4,Kk)
R{4,K)=-RRB
R(K,4)=R(4,k)

C
Cc REDUCE EQUATIONS FOR SUM OF ROTOR LOOP CURRENTS
c EQUAL ZERO CONDITION
C
DO 40 1=1,Kkl
DO 50 J=1,Kk]
IF(J.LE.3) THEN
R1(I,J)=R(1,J)
L1(1,J)=L(1,J)
ELSE
R1(I,J)=R(1,J)-R(I,K)
L1(I,J)=L(T,J)-L(I,K)
ENDIF
50 CONTINUE
VI(I,1)=V(I,1)
40 CONTINUE
C
C FOR A BROKEN BAR REDUCE EQUATIONS AGAIN ELSE
C SET V2=V1,R2=R1,L2=L1 AND RETURN TO MAIN PROGRAM
C
IF(BKN.LE.O) GO TO 1000
C
C REDUCING EQUATIONS FOR BROKEN BAR
C
DO 60 I=1,Kl
R1(I,K2)=R1(I,K2}+RI1(I,K1)
L1(1,K2)=L1(1,K2)+L1(I,K1)
60 CONTINUE

181




po 70 1=1,K1
R1(K2,1)=R1(K2,I)+R1(K1,1)
L1(K2,1)=L1(K2,1)+L1(K1,1)

70 CONTINUE

c

c SETTING FINAL VALUES FOR V,R,L MATRICES
C

1000 DO 80 I=1,K2
DO 90 J=1,K2
R2(1,J)=R1(I,J)
L2(1,J)=L1(1,J)

S0 CONTINUE
v2(1,1)=V1i(I,1)
80 CONTINUE
RETURN
END
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SUBROUTINE CURRENT(A,B,C,N,RESULT)

THIS SUBROUTINE CALCULATES THE INTERMEDIATE
VALUES OF CURRENT FOR THE INTEGRATION ROUTINE.
{I(EST)i}i=[I(start)]+d/dt[I]*dt

LIST OF VARIABLES

NO. OF EQUATIONS

INITIAL VALUE OF CURRENTS
d/dt[1]

N dt (INCREMENTAL TIME)
RESULT ESTIMATED CURRENT (A+Bx(C)

D> Z

VARIABLE DECLARATIONS

INTEGER N
DOUBLE PRECISION A(100,1),B(100,1),RESULT(100,1),C

CALCULATE CURRENT ESTIMATE

DO 10 J=1,N
RESULT{J,1)=A(J,1)+B(J,1)*C

CONTINUE

RETURN

END
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SUBROUTINE DRIVE(A,K2,B,C,RESULT)

THIS SUBROUTINE CALCULATES THE VALUE OF
[VI-{RR][1] FOR EACH VALUE OF TIME.

LIST OF VARIABLES

A EFFECTIVE RESISTANCE MATRIX (RR]
B CURRENT VECTOR (1)

C VOLTAGE VECTOR (V]

RESULT [V])-[RR]{1]

VARIABLE DECLARATIONS

o000 n00n0n

INTEGER K2
DOUBLE PRECISION A(100,100),B(100,1),C(100,1),
*RESULT(100,1)

Cc CALCULATE RESULT

Do 10 I=1,K2
RESULT(1,1)=0.0

DETERMINE [RR](I]

aoan

DO 20 J=1,K?2
RESULT(I,1)=RESULT(I,1)+A(I,J)%B(J,1)
0 CONTINUE

DETERMINE {V]-[RR]{1]

RESULT(1,1)=C(I,1)-RESULT(I,1)
10 CONTINUE
RETURN
END
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SUBROUTINE CHLSKY(A1,N,M,B,RESULT)

c
c THIS SUBROUTINE CALCULATES THE VALUES OF d/dt[1)
C FOR EACH VALUE OF TIME USING CHOLESKY'S METHOD WITH
C PARTIAL PIVOTING. THE EQUATIONS ARE IN THE FORM:
C (L1d/dt{I1}=[V]-[RR][I]

c
c LIST OF VARIABLES
c
’ c A WORKING MATRIX (L!V-RR 1]
C Al INDUCTANCE MATRIX [L]
c B DRIVE VECTOR (V]-[{RR][I]
C RESULT CURRENT DERIVATIVES d/dt(1]
c PIVOT VALUE OF PIVOT ELEMENT
c SWAP DUMMY VARIABLE FOR CHANGING ROWS
c SUM VARIABLE FOR MULTIPLICATION OPERATIONS
C
c VARIABLE DECLARATIONS
c
INTEGER N,M
DOUBLE PRECISION A{100,101),A1(100,100),B(100,1),
*RESULT(100,1),PIVOT,SWAP, SUM
c
C SET UP A MATRIX [A)=[Al!B)
c (ADD DRIVE COLUMN TO INDUCTANCE MATRIX)
c
DO 1 1=1,N
DO 2 J=1,M
IF(J.NE.M) THEN
A(l1,J)=A1(1,J)
ELSE
A(1,J)=B(I,1) -
ENDIF
2 CONTINUE
1 CONTINUE
C
c PERFORM PARTIAL PIVOTING
c _
DO 10 I=1,N
C
c FIND LARGEST PIVOT
C
PIVOT=A(I,1)
IL=1
DO 20 J=I+1,N
IF(ABS(A(J,1)).LE.ABS(PIVOT)) GO TO 20
PIVOT=A(J,1)
IL=J
20 CONTINUE
IF(IL.EQ.I) GO TO 10
C
C INTERCHANGE ROWS TO PUT PIVOT ON DIAGONAL
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DO 30 K=1,M
SWAP=A(],K)
A(I,K)=A(IL,K)
A(1L,K)=SWAP

CONTINUE

CONTINUE

CALCULATE FIRST ROW OF UPPER TRIANGULAR MATRIX
DO 40 J=2,M

A(1,J)=A(1,J)/A(1,1)
CONTINUE

DETERMINE ALL OTHER ELEMENTS OF UPPER AND LOWER
TR1IANGULAR MATRICES

po 50 1=2,N
LOWER TRIANGULAK MATRIX ELEMENTS
DO 60 J=1,N
SUM=0.0

DO 70 K=1,1-1
SUM=SUM+A(J,K)*A(K, 1)

CONTINUE
A(J,I1)=A(J,1)-SUM
CONTINUE

UPPER TRIANGULAR MATRIX ELEMENTS

DO 80 J=I+1,M
SUM=0.0
DO 90 K=1,1-1

SUM:SUM+A(11K)‘A(K1J)

CONTINUE
A(1,J)=(A(I,J)-SUM)/A(I,I)

CONTINUE

CONTINUE

-

USE BACK SUBSTITUTION TO FIND d/dtl[I]

RESULT(N, 1)=A(N,M)
DO 100 I=1,N-1
J=N-1
SUM=0.0
DO 110 K=J+1,N
SUM=SUM+A(J,K)*RESULT(K, 1)
CONTINUE
RESULT(J,1)=A(J,M)-SUM
CONTINUE
RETURN
END
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b. SAMPLE INPUT FILE

The following input file is for a 45-bar rotor with a
broken rotor bar at s=z0.04. The values are in the following
format (i.e., refer to subroutine input above):

equivalent-circuit values (R;,L,,L:2,L:2,R2)

no. of rotor bars, broken bar flag

input voltage, electrical frequency, slip, pole-pairs
no. of steps/sec, stop time, start print time

.859,.0046,.0704,.0046,.5612
45,1

169.71,377,.04,2
1536,4.3334,1.0

Table B-1. Sample simulation input file.
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c. SAMPLE OUTPUT FILE

The following output file is for a 45-bar rotor with a
broken rotor bar. This is a portion of the output file
generated from the simulation program using the input file
given in section 1.1.1. Plots of stator phase a current and
rotor loop 1 current are included.

. TIME (sec) STATOR PHASE A ROTOR LOOP 1
CURRENT (amps) CURRENT (amps)
1.0000 9.388 2.926
1.0007 10.963 2.902
1.0013 11.878 2.878
1.0020 12.080 2.854
1.0026 11.556 2.830
1.0033 10.340 2.805
1.0038 8.503 2.780
1.0046 6.158 2.754
1.0052 3.444 2.729
1.0059 0.525 2.703
1.0065 -2.424 2.676
1.0072 -5.225 2.650
1.0078 -7.711 2.623
1.0085 -9.733 2.596
1.0091 -11.169 2.569
1.0098 -11.933 2.542
1.0104 -11.980 2.514
1.0111 -11.308 2.486
1.0117 -9.957 2.458
1.0124 -8.008 2.430
1.0130 -5.580 2.401
1.0137 -2.817 2.372
1.0143 0.114 2.343
1.0150 3.036 2.314
1.0156 5.775 2.284
1.0163 8.165 2.254
1.0169 10.064 2.224
1.0176 11.357 2.194
1.0182 11.968 2.164
1.0188 11.858 2.133
1.0195 11.037 2.102
1.0202 9.552 2.071
1.0208 7.494 2.040
1.0215 4,986 2.009

1.0221 2.179 1.977 °
1.0228 -0.758 1.945
1.0234 -3.648 1.913
1.0241 -6.319 1.881

Table B-2. Sample simulation output file. o
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TIME (sec) STATOR PHASE A ROTOR LOOP 1
CURRENT (amps) CURRENT (amps)

b 1.0247 -8.609 1.849
1.0254 -10.380 1.816
1.0260 -11.528 1.783
1.0267 -11.982 1.751
1.0273 -11.716 1.718
] 1.0280 -10.745 1.684
1.0286 -9,129 1.651
° 1.0293 -6.964 1.617
1.0299 -4.380 1.584
1.0306 -1.534 1.550
1.0313 1.404 1.516
1.0319 4.258 1.482
1.0326 6.855 1.447
1.0332 9.040 1.413
1.0339 10.682 1.378
1.0345 11.681 1.344
1.0352 11.977 1.309
1.0358 11.554 1.274
1.0365 10.435 1.239
1.0371 8.689 1.204
1.0378 6.421 1.168
1.0384 3.766 1.133
1.0391 0.885 1.097
1.0397 -2.050 1.062
1.0401 -4.862 1.026
1.0410 -7.382 0.990
1.0417 -9.458 0.954
1.0423 ~10.966 0.918
1.0430 -11.815 0.882
1.0436 -11.953 0.846
1.0443 -11.373 0.810
1.0149 -10.109 0.773
1.0456 -8.237 0.737
1.0462 -5.869 0.700
1.0469 -3.147 0.664
1.0475 -0.236 0.627
1.0482 2.691 0.591
1.0488 5.456 0.554
1.0495 7.895 0.517
1.0501 9.859 0.480
1.0508 11.232 0.443
1.0514 11,930 0.406
1.0521 11.910 0.369
1.0527 11.175 0.332
1.0534 9.768 0.295
1.0540 7.773 0.258

Table B-2. (cont.) Sample simulation output file.
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TIME (sec) STATOR PHASE A ROTOR LOOP 1
CURRENT (amps) CURRENT (amps)

1.0547 5.310 0.221
1.0553 2.526 0.184
1.0560 -0.410 0.147
1.0566 -3.324 0.110
1.0573 -6.038 0.072
1.0579 -8.392 0.035
1.0586 -10.242 ~-0.002
1.0592 -11.477 -0.039
1.0599 -12.024 -0.076
1.0605 -11.848 ~0.113
1.0612 -10.960 ~0.151
1.0618 -9.413 -0.188
1.0625 -7.300 -0.225
1.0632 -4.746 -0.262
1.0638 -1.906 -0.299
1.0645 1.050 ~0.336
1.0651 3.945 -0.373
1.0658 6.604 -0.410
1.0664 8.869 -0.447%
1.0671 10.602 -0.4814
1.0677 11.700 -0.521
1.0684 12.095 -0.558
1.0650 11.765 -0.594
1.0697 10.727 -0.631
1.0703 9.045 -0.668
1.0710 6.819 -0.7014
1.0716 4.181 -0.741
1.0723 1.291 -0.777
1.0729 -1.679 -0.813
1.0736 -4.551 -0.850
1.0742 -7.151 -0.886
1.0749 -9.323 -0.922
1.0755 ~10.938 -0.958
1.0762 ~11.897 -0.994
1.0768 ~12.143 -1.030
1.0775 -11.660 -1.066
1.0781 ~10.477 -1.101
1.0788 -8.665 -1.137
1.0794 -6.331 -1.172
1.0801 -3.616 -1.207

Table B-2. (cont.) Sample simulation output file.
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TIME (sec)

STATOR PHASE A

ROTOR LOOP 1

Table B-2. (cont.) Sample simulation output file.
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CURRENT (amps) CURRENT (amps)
1.0807 -0.681 -1.243
1.0814 2.297 -1.278
1.0820 5.139 -1.313
1.0827 7.675 -1.347
1.0833 9.752 -1.382
1.0840 11.246 -1.417
1.0846 12.0617 -1.451
1.0853 12.165 -1.485
1.0859 11.533 -1.519
1.0866 10.209 -1.553
1.0872 8.272 -1.587
1.0879 5.838 -1.621
1.0885 3.051 -1.654
1.0892 0.080 -1.688
1.0898 -2.899 -1.721
1.0905 -5.706 -1.754
1.0911 -8.173 -1.787
1.0918 -10.152 -1.820
1.0824 -11.524 -1.852
1.0931 -12.207 -1.884
1.0938 -12.158 -1.917
1.0944 -11,381 -1.949

e,
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B-2 PRO-MATLAB EIGENVALUE ROUTINE

PRO-MATLAB is a matrix computation software package
developed by The MathWorks, Inc. of Sherborn, MA. This
PRO-MATLAB script file calculates the eigenvalues of the
[RR)/[L) matrix. The eigenvalues are computed for rotor
8lip=1.0 (i.e., the rotor is stationary).

a. PROGRAM LISTING
program EIGENVALUES

filename: root.m
author: Mark S. Welsh
references: PRO-MATLAB user's guide

PRO-MATLAB routine to calculate eigenvalues for induction
motor system of equations ({r}/[11]).

variable list
sfzrotor slip
t=time
nrbzno. of rotor bars
rieq,lleq,112eq,12eq,r2eqzeq. circuit model values
pp=machine pole-pairs
wzinput electrical frequency
wm=mechanical speed
k=constant
lsl=stator phase leakage inductance
rs=stator phase resistance
ls=stator phase self inductance
m=mutual inductance coefficient for stator-rotor
lri=zrotor bar leakage inductance
rr=rotor bar resistance
lr=rotor loop self inductance
1,11zinductance matrix
r,rlzresistance matrix
meig=zeigenvalues
tl=smallest time constant
t2z]longest time constant

3T 3 2 2T 2T € 28 22 2R R 3 38 T 3R 30 30 3@ IR 0 FV 3R 30 3R ¢ 0 0 2T 30 0 0 R

input parameters

8f=0;

t=0,;

nrbz=15;
rleq=.859;
lleq=.0046;
112eq=.0704;
12eq=.0046;
r2eq=.5612;
PP=2;

w=377;

% calculate electrical and mechanical parameters
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wm=w¥(1-sf)/pp;
k=pitpp/nrb;
l1sl=zllegq;
rszrleq;
1s=2%112eq/3,;
m=8%sin(k)s112eq/(3%pi);
lrl=(12eq-(k~2/(8in(k)"2)-1)%112eq)%4%nrb/(3%pi~2);
rr=4%nrb/(3%pi~2)*¥rleq;
lr=16%(nrb-1)spp~2%112eq/(3*nrb~2);
- % calculate elements of r and 1 matrix
for 1=1:3;
for j=1:3;
r{(i,j)=0;
1(1,5)=-18/2;
end
r{i,i)=rs;
1(i,1)=1ls+lsl;
for j=4:nrb+3;
1(i,j)=m¥sin{pp¥wmst+(23%(j-3)-1)¢pi*pp/nrb-(i-1)%
2%pi/3),;
rii,;)=pp¥wmtmicos(ppswm¥t+(2%¥(j-3)-1)%pi*pp/nrb-
(i-1)%23pi/3);

end
end
for i=z4:nrb+3;
for j=zi:nrb+3;
rii,j)=0;
1(i,j)==1r/(nrb-1);
if J==i+1;
1(i,j)=-Ir/(nrb-1)-1rl;
r(i.j)=~rr;
end
end
r{i,i)=2%rr,;
1(i,1)=1r+2%irl;
end
1(4,nrb+3)=-1Ir/(nrb~-1)-1rl;
r{(4,nrb+3)=-rr;
for izl:nrb+3;
for j=i:nrb+3;
r{(j,i)=r(i,j);
end
end
X reduce system for sum of rotor loop currents=0
for i=l:nrb+2;
for j=l:nrb+2;
if j<4;
ri{i j)=r(i,j);
11(i,jr=1{(1,j);
else;
ri(i,jl=r(i,j)-r{i,nrb+3);
17(3,3Y=1(1,3)-1(i,nrb+3);
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end
end
end
% calculate eigenvalues
meig:zeig(-11\r1l);
% determine smallest time constant
tl=z1l/max{(abs(meig));
% determine largest time constant
t2z1/min{abs(meig));
% save values
save eigs.mat;

i
M.




b. EIGENVALUES FOR 3-BAR ROTOR

The following values are the eigenvalues calculated for
the 3-bar rotor discussed in Chapter 3.

-186.740
-1564.590
-154.590
-4.662
-4.662

Table B-3. 3-bar rotor eigenvalues.
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c. EIGENVALURS FOR 45-BAR ROTOR

The following values are the eigenvalues calculated for

the 45-bar rotor (i.e., experimental motor) discussed 1in
Chapter 3.
-186.740 -80.344
. -154.590 -80.344
-4.662 -84.698
-154.580 -88.364
-4.662 -88.364
-1.961 -93.992
-1.961 -91.436
-15.636 -91.436
-15.636 -93.992
-25.273 -96.101
-25.273 -96.101
-35.354 -97.817
-35.354 -97.817
-45.124 ~-98.185
-45.124 -99.185
-54.129 ~-101.010
-54.,129 -101.510
-62.161 ~-101.010
-62.161 ~-101.510
-69.171 ~100.240
-69.171 ~-100.240
-75.203 ~101.760
-75.203 ~101.760
-84.698

e

Table B-4. 45-bar rotor eigenvalues.
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3 PRO-MATLAB FFT ROUTINE

This PRO-MATLAB script file computes the fast Fourier

transform of the stator phase and rotor loop current
outputs of the FORTRAN simulation program. The magnitude of
the FFT values are converted to dB and written to a file for
future plotting if desired.

a. PROGRAM LISTING

3T 20 2R R IR R 3R 3R X 3 IR 3R R 8 R HO R R 3R R 0 JT 0 AT T R Rt

program FFT

filename: fast.m

author: Mark S. Welsh

references: PRO-MATLAB user’s guide
references [18]),[19]

PRO-MATLAB procedure to calculate the FFT of the stator
phase and rotor loop current outputs from the FORTRAN
simulation program. The input data is sampled at a
frequency of 153.6 Hz (or 512 data points are taken).

A second-order Hanning window is used to aid in
resolution of harmonic frequency components present.
The power spectral density function is computed and
converted to a dB scale. '

variable list
azinput signals array (t,ia,irl)
t=time
iazstator current
irz=rotor loop 1 current
s=FFT of ia
r=FFT of ir
ps=power spectral density of ia
pr=power spectral density of ir
wzhanning weight factors

sample data at 153.6 hz
t=a8(1:10:5120,1);
iaza(1:10:5120,2);
ir=a(1:10:5120,3);

%X calculate window function

w=.5¢(ones(1:512)-cos(2%pi*(0:511)/512));
weight inputs using window function
iawzia.tw’;
irwsir.sw';
determine ffts
s=FFT(iaw);
r=FFT(irw);
determine spectral densities
ps=s.%conj(s),;
pr=r.*conj(rj);
convert to dB ®
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T

ps=10%1lo0g10(ps);
pr=10%xlogl0(pr);

%X determine frequencies
f=153.6%(0:255)/512;

X save values and put in plet format
b={f’ ps(1:256)1};
c={f’ pr(1:256)];
save ffts.mat;
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b. SAMPLE FFT OUTPUT FILE

The following table is the output from the PRO-MATLAB
FFT routine. The values given are the power spectral
densities for the FORTRAN simulation program ocutput currents
of section 1.1.2 above. Plots of the frequency spectrum for
stator phase a and rotor loop 1 currents are included.

FREQUENCY STATOR PHASE A ROTOR LOOP 1
(Hz) CURRENT PSD CURRENT PSD
(dB) (dB)

0.0 ~120.490 -48.451
0.3 -117.140 -53.454
0.6 -121.350 -68.221
0.9 -117.370 -63.254
1.2 -117.610 -56.369
1.5 -119.050 -48.357
1.8 -115.980 -36.333
2.1 -120.710 47.687
2.4 ~-118.420 53.710
2.7 -117.390 47.692
3.0 ~120.740 ~-36.337
3.3 -120.190 -48.388
3.6 -117.220 -56.358
3.9 ~118.840 -62.401
4.2 ~117.980 -67.268
7.5 120.120 -71.393
4.8 -117.740 -74.918
5.1 ~-120.040 -78.041
5.1 ~118.100 -80.848
5.7 -118.700 ~-83.388
6.0 -117.840 -85.617
6.3 ~118.500 -87.782
6.6 -116.340 -88.849
6.9 -119.570 -91.454
7.2 -117.290 -93.317
7.5 ~-118.280 -94.946
7.8 -115.270 -96.140
8.1 -119.600 -98.164
8.4 -116.090 -98.824
8.7 -116.310 ~100.810
9.0 -119.770 ~101.670
9.3 -113.980 -102.490
9.6 -118.430 ~-104.€30
9.9 -116.180 -104.240
10.2 -117.560 -106.670
10.5 -115.430 -106.870

Table B-5. FFT output file.
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r-F""-—'-"'"""-"'-'-""-"""

FREQUENCY STATOR PHASE A ROTOR LOOP 1
(Hz) CURRENT PSD CURRENT PSD
(dB) (dB)
10.8 -115.,520 -107.940
11.1 -116.440 -109.460
11.4 -114.510 -108.920
11.7 -118.390 -111.340
12.0 -114.800 -112.150
12.3 -113.590 -110.150
- 12.6 -116.000 -116.330
12.9 -114.220 -111.390
13.2 -114.280 -115.520
13.5 -116.640 -115.190
13.8 -113.160 -115.720
14.1 -113.980 -115.860
14.4 -114.900 -119.660
14.7 -114.180 -118.010
15.0 -113,710 -116.340
15.3 -113.610 -118.070
15.6 -113.860 -125.450
15.9 -113.600 -119.010
16.2 -111.620 -117.840
16.5 -113.520 -124.520
16.8 -112.260 -120.970
17.1 -112.840 -121.440
17.4 -112.180 -122.970
17.7 -112.190 -124.910
18.0 -112.020 -121.540
18.3 -111.010 -125.780
18.6 -112.460 -120.890
18.9 -110.760 -120.280
19.2 -112.040 -115.820
19.5 -110.670 -124.750
19.8 -109.900 -121.160
20.1 ~111.180 -125.260
20.4 -111.230 -124.470
20.7 -108.920 -142.480
21.0 -110.,990 ~122.410
21.3 -99.670 -131.490
21.6 -98.796 -123.640
21.9 -99.621 -127.000
22.2 -109.030 -129.970
22.5 -109.380 -128.540
22.8 -108.480 -125.770
23.1 -108.520 -126.560
23.4 -107.810 -135.920
23.7 -108.910 -125.290
Table B-5. (cont.; Sample FFT output file.
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FREQUENCY STATOR PHASE A ROTOR LOOP 1
(Hz) CURRENT PSD CURRENT PSD
(dB) (dB)
24.0 -107.210 -129.800
24.3 -107.170 -127.430
24.6 -108.180 -132.510
24.9 -107.020 -130.390
25.2 -106.790 -133.600
. 25.5 -106.530 -129.600
25.8 -107.180 -124.460
26.1 -105.870 -126.050
26.4 -105.780 ~-125.480
26.7 -105.290 -131.720
27.0 -106.050 -132.720
27.3 -105.470 -140.190
27.6 -104.450 -122.270
27.9 -105.650 -129.900
28.2 -104.010 -135.800
28.5 -104.180 -125.730
28.8 -104.100 -134.130
29.1 -103.810 -134.500
29.4 -103.620 -124.620
29.7 -102.930 -125.320
30.0 -103.550 -126.870
30.3 -102.190 -125.760
30.6 -102.490 -119.520
30.9 -102.120 -123.740
31.2 -102.120 -129.180
31.5 -101.730 -124.990
31.8 -101.060 -132.810
32.1 -101.390 -135.670
32.4 -100.340 -129.790
32.7 -100.610 -126.290
33.0 -100.460 -132.600
33.3 ~99.795 -130.500
33.6 -99.354 -126.870
33.9 -99.584 -137.510
34.2 -98.968 -136.360
34.5 -98.627 -144.390

34.8 -98.221 -131.530 o,
35.1 -98.288 -145.710
35.4 -97.058 -126.560
35.7 -97.524 -76.744
36.0 -96.991 -70.852
36.3 -96.985 -76.980

36.6 -96.150 -128.330 LJ
36.9 -96.247 -128.480
37.2 -95.819 -124.140

Table B-5. (cont.) Sample FFT output file.
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FREQUENCY STATOR PHASE A ROTOR LOOP 1
(Hz) CURRENT PSD CURRENT PSD
(dB) (dB)
37.5 -95.310 -129.900
37.8 -95.145 ~148.6170
38.1 -94.592 -128.070
38.4 -94.500 -131.560
38.17 -94.062 -129.210
39.0 -93.424 -130.500
39.3 -93.278 -123.870
39.6 -92.801 -133.130
39.9 ~92.563 -127.250
40.2 -92.018 -136.670
40.5 -91.743 -110.170
40.8 -91.323 -104.290
41.1 -90.756 -110.790
11.4 -890.485 -126.750
41.7 -89.964 -133.240
42.0 -89.702 -128.000
42.3 -89.106 ~129.450
42.6 -88.737 -129.520
42.9 -88.230 -133.660
43.2 -87.867 -139.180
43.5 ~-87.242 -128.160
43.8 -86.899 -144.760
44,1 ~86.351 -127.010
44.4 -85.971 : -127.780
44.7 ~85.277 -129.190
45.0 -84.879 -135.890
45.3 ~-84.398 -140.460
45.6 ~-83.763 -128.750
45.9 -83.270 ‘ -128.910
46.2 ~-82.767 -132.750
46.5 ~-82.112 -132.010
46.8 ~B81.559 -131.580
47.1 -81.015 -131.070
47.4 ~-80.360 -138.210
47.1 ~79.759 -125.470
48.0 ~79.152 -129.590
48.3 -78.467 -137.420 ®;
48.6 ~-77.825 -130.090
48.9 ~77.168 -135.140
49.2 -76.467 -132.980
48.5 ~-75.738 -131.590
49.8 ~75.034 -136.100
50.1 -74.285 -148.390 J
50.4 ~73.528 -136.750
50.7 -72.760 -131.330
Table B-5. (cont.) Sample FFT output file. .
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FREQUENCY STATOR PHASE A ROTOR LOOP 1

(Hz) CURRENT PSD CURRENT PSD

(dB) (dB)
51.0 -71.924 -141.820
51.3 -71.151 -136.470
51.6 -70.303 -157.810
51.9 -69.445 -133.010
52.2 -68.565 -129.240
52.5 -67.630 -132.530
52.8 -66.607 -127.240
53.1 -65.291 -134.450
53.4 -63.2717 -131.820
53.7 -59.719 -136.240
54.0 -53.913 -134.880
54.3 -45.531 -130.020
54.6 -33.052 -128.300
54.9 23.979 -131.300
55.2 30.056 -134.000
55.5 24.092 -135.190
55.8 -32.168 -123.950
56.1 -41.944 -124.990
56.4 -44.745 -130.200
56.7 -44.090 -121.450
57.0 -42.096 -123.830
57.3 -39.464 -126.810
57.6 -36.775 -123.950
57.89 -33.185 -125.870
58.2 -29.069 -132.570
58.5 -24.232 -138.080
58.8 -18.225 -134.530
59.1 -10.281 -134.520
59.4 1.728 -133.890
59.7 57.809 -129.160
60.0 63.892 -135.130
60.3 57.932 -137.680
60.6 1.878 -129.910
60.9 -10.194 -131.000
61.2 -18.165 -129.220
61.5 -24.193 -127.560
61.8 -29.059 -126.040
62.1 ~-33.145 -123.560
62.4 -36.669 -134.160
62.17 -39.769 -132.280
63.0 -42.536 -136.570
63.3 -45.037 -128.000
63.6 -47.316 -124.010
63.9 -49.412 -127.040
64.2 -51.350 -134.290

Table B-5. (cont.) Sample FFT output file.
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! FREQUENCY STATOR PHASE A ROTOR LOOP 1
i (Hz) CURRENT PSD CURRENT PSD
(dB) (dB)

64.5 -53.1562 -130.4720
64.8 -54.841 -130.330
65.1 -56.422 -133.160
65.4 -57.911 -145.320
65.7 -59.326 -135.670
66.0 -60.656 -125.890
- 66.3 -61.930 -127.300
66.6 -63.138 -139.560
66.9 -64.300 -128.220
67.2 -65.392 -132.960
67.5 -66.459 -125.600
67.8 -67.466 -127.090
68.1 -68.455 -128.730
68.4 -69.369 -143.340
68.17 -70.296 -135.280
69.0 -71.153 -128.240
69.3 -71.998 ~128.200
69.6 -72.792 -133.360
69.9 -73.598 -127.150
70.2 -74.317 -121.150
70.5 -75.079 _ -123.520
70.8 ~75.729 -128.960
71.1 ~-76.456 ~-137.850
71.4 -77.050 -149.120
71.7 -77.736 -134.230
72.0 -78.304 -132.220
72.3 ~78.885 -135.290
72.6 -79.435 -139.460
72.9 ~-79.952 -126.330
73.2 -80.441 -127.550
73.5 -80.928 -131.900
73.8 ~81.307 -129.540
74.1 ~-81.752 -136.740
74.4 -82.122 -129.350
74.7 ~82.474 -132.450
75.0 ~-82.672 -131.340

Table B-5. (cont.) Sample FFT output file.

206




STATOR PHASE FREQUENCY SPECTRUM
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Figure B-3. Stator phase a frequency spectrum for sample
simulation.
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APPENDIX C

EXPERIMENTAL DATA

The following sections contain tables of the measured
data (the fundamental and (1-2s8)f components of the stator
phase current) for the four rotors tested. This is the data
recorded using the HP-3561A dynamic s8pectrum analyzer as
discussed in section 4.2. Included in each table is the
average value and standard deviations for each data set. In
addition, the average stator phase voltage 1is included in
the tables for the fundamental component of the stator plase
current. An analysis of the data presented below is included
in Chapter 4.
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C-1 EXPERIMENTAL DATA ROTOR #1

ROTOR #1
1(1-2s)f COMPONENT OF STATOR CURRENT
AMPS rms

TEST NO. §=0.01 8=0.02 8=0.03 8=0.04
1 0.0014 0.0026 0.0027 0.0031
2 0.0010 0.0017 0.0019 0.0034
3 0.0009 0.0013 0.0027 0.0041
4 0.0012 0.0023 0.0032 0.0027
5 0.0008 0.0013 0.0030 0.0049
6 0.0011 0.0017 0.0034 0.0017
7 0.0006 0.0016 0.0019 0.0041
8 0.0007 0.0013 0.0016 0.0033
9 0.0012 0.0013 0.0019 0.0024
10 0.0006 0.0011 0.0028 0.0037
11 0.0010 0.0015 0.0024 0.0018
12 0.0007 0.0003 0.0019 - 0.0040
13 0.0013 0.0013 0.0027 0.0039
14 0.0012 0.0015 0.0024 0.0020
15 0.0014 0.0016 0.0023 0.0029
16 0.0014 0.0012 L 0.0023 0.0023
17 0.0015 0.0012 0.0030 0.0038
18 0.0012 0.0014 0.0027 0.0026
MEAN 0.0011 0.0015 0.0025 0.0032
STD DEV. 0.0003 0.0005 0.0005 0.0009

Table C-1. ROTOR #1 I(1-28)f raw data.
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ROTOR #1
FUNDAMENTAL COMPONENT OF STATOR CURRENT

AMPS rms
TEST NO. §=0.01 8§=0.02 8=0.03 5=0.04
1 4.68 5.97 7.50 8.96
2 4.87 6.26 7.20 9.17
3 4.74 5.86 7.38 8.94
* 4 4,81 6.13 7.51 8.77
5 4.75 5.91 7.30 9.02
6 4.171 5.87 7.30 9.02
MEAN 4.76 6.00 7.37 8.98
STD DEV. 0.06 0.15 0.11 0.12

AVG INPUT
VOLTAGE 123.3 123.1 122.7 122.5
(V rms)

Table C-2. ROTOR #1 1(60 Hz) raw data.
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C-2 EXPERIMENTAL DATA ROTOR $2 (ONE END OPREN)
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ROTOR #2
1(1-2s)f COMPONENT OF STATOR CURRENT
AMPS rms
TEST NO. 8=0.01 80,02 8=0.03 8=0.04
. 1 0.0020 0.0018 0.0029 0.0012
2 0.0012 0.0011 0.0013 0.0030
3 0.0008 0.0036 0.0015 0.0019
4 0.0011 0.0014 0.0020 0.0011
5 0.0009 0.0028 0.0036 0.0023
6 0.0013 0.0032 0.0009 0.0038
7 0.0015 0.0011 0.0023 0.0020
8 0.0015 0.0013 0.0020 0.0032
9 0.0010 0.0019 0.0022 0.0015
10 0.0010 0.0016 0.0029 0.0017
11 0.0016 0.0012 0.0021 0.0028
12 0.0014 0.0013 0.0019 0.0024
13 0.0007 0.0028 0.0026 0.0020
14 0.0014 0.0016 0.0028 0.0017
15 0.0012 0.0020 0.0031 0.0022
16 0.0013 0.0013 0.0025 0.0028
17 0.0015 0.0019 0.0019 0.0025
18 0.0011 0.0013 0.0020 0.0039
MEAN 0.0013 0.0018 0.0023 0.0023
STD DEV. 0.0003 0.0007 0.0007 0.0008
Table C-3. ROTOR #2 1(1-28)f raw data.




ROTOR #2
FUNDAMENTAL COMPONENT OF STATOR CURRENT
AMPS rms
TEST NO. s=0.01 8s-0.02 sz0.03 8=0.04
1 4.53 5.83 7.40 8.81
2 4.65 5.71 6.97 8.84
3 4.53 5.85 6.79 8.71
4 4.58 6.03 7.04 8.56
5 4.62 5.94 7.517 8.70
6 4.64 5.79 7.22 9.06
MEAN 4.59 5.86 7.16 8.78
STD DEV. 0.05 0.10 0.26 0.15
AVG INPUT
VOLTAGE 122.6 122.4 122.1 121.9
(V rms)

Table C-4. ROTOR #2 1(60 Hz) raw data.
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C-3 EXPERIMENTAL DATA ROTOR #2.1 (BOTH ENDS OPEN)
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ROTOR #2.1
I1(1-28)f COMPONENT OF STATOR CURRENT
AMPS rms
TEST NO. 8=0.01 8=0.02 8=0.03 8=0.04
1 0.0034 0.0083 0.0101 0.0169
2 0.0036 0.0082 0.0117 0.0169
3 0.0042 0.0070 0.0121 0.0184
4 0.0056 0.0067 0.0120 0.0175
5 0.0040 0.0064 0.0129 0.0188
6 0.0077 0.0075 0.0125 0.0194
7 0.0046 0.0078 0.0131 0.0135
8 0.0048 0.0087 0.0147 0.0148
9 0.0034 0.0070 0.0131 0.0159
10 0.0034 0.0089 0.0127 0.0172
11 0.0041 0.0077 0.0144 0.0239
12 0.0030 0.0078 0.0124 0.0163
13 0.0036 0.0066 0.0129 0.0181
14 0.0033 0.0058 0.0138 0.0188
15 0.0036 0.0059 0.0124 0.0179
16 0.0030 0.0061 0.0124 0.0142
17 0.0042 0.0069 0.0136 0.0171
18 5 0.0041 0.0077 0.0139 0.0145
MEAN 0.0041 0.0073 0.0128 0.0172
STD DEV. 0.0011 0.0009 0.0010 0.0023
Table C-5. ROTOR #2.1 I(1-2s8)f raw data.
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ROTOR #2.1
FUNDAMENTAL COMPONENT OF STATOR CURRENT
AMPS rms
TEST NO. s=0.01 8=0.02 s=0.03 8=0.04
1 4.87 6.33 7.66 8.67
2 4.76 5.93 7.25 8.42
3 4.67 5.93 7.28 8.64
H : 4 4.60 5.71 7.21 8.87
5 4.57 5.72 7.13 8.58
4 6 4.48 5.98 7.03 8.46
MEAN 4.66 5.93 7.26 8.61
STD DEV. 0.13 0.21 0.20 0.15
AVG INPUT
VOLTAGE 123.1 122.9 122.5 122.2
{V rms)

Table C~6. ROTOR #2.1 1(60 Hz) raw data.
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C-4 EXPERIMENTAL DATA ROTOR #3

ROTOR #3
I1(1-28)f COMPONENT OF STATOR CURRENT
AMPS rms
TEST NO. 8:0.01 8=0.02 8z0.03 8=0.04
* 1 0.0008 0.0003 0.0011 0.0013
2 0.0007 0.0006 0.0014 0.0013
3 0.0011 0.0012 0.0012 0.0013
4 0.0005 0.0006 0.0012 0.0016
5 0.0009 0.0006 0.0011 0.0016
6 0.0005 0.0008 0.0001 0.0013
7 0.0013 0.0005 0.0012 0.0012
8 0 0005 0.0008 0.0014 0.0012
9 0.0006 0.000€ 0.0012 0.0011
10 0.0005 0.0006 0.0011 0.0013
11 0.0006 0.0006 0.0012 0.0015
12 0.0003 0.0008 0.0014 0.0015
13 0.0009 0.0006 0.0012 0.0016
14 0.0008 0.0006 0.0008 0.0011
15 0.0009 0.0006 0.0012 0.0012
16 0.0007 0.0004 0.0008 0.0015
17 0.0003 0.0007 0.0014 0.0013
18 0.0005 0.0007 0.0011 0.0012
MEAN 0.0007 0.0006 0.0011 0.0013
STD DEV. 0.0003 ] 0.0002 0.0003 0.0002

Table C-7. ROTOR #3 I(1-28)f raw data.
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ROTOR #3
FUNDAMENTAL COMPONENT OF STATOR CURRENT '
AMPS rms
TEST NO. sz0.01 8z0.02 s=0.03 s=0.04
1 4.60 5.80 7.40 8.61
2 4.54 5.73 6.84 8.74
3 4.63 5.94 7.16 8.65
4 4.72 5.92 7.34 8.64
5 4.72 5.80 7.19 8.57
6 4.59 5.82 7.13 8.67
MEAN 4.63 5.84 7.18 8.65
STD DEV. 0.07 0.07 0.18 0.05
AVG INPUT
VOLTAGE 122.7 122.4 122.1 121.8
(V rms)

Table C-8. ROTOR #3 1(60 Hz) raw data.
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APPENDIX D

INDUCTION MOTOR STATOR PHASE CURRENT HARMONICS

D-1 Introduction

In addition to the fundamental and (1-28)f frequency
components of the s8tator phase current, components at
frequencies (1-4s)f, (1+428)f, and (1+448)f were also
detected for each rotor tested as shown in Chapter 4. In
order to examine the source of these additional frequency
components, an expression for the frequency components
which can exist in the stator phase currents due to both
time- and space-harmonic components of the airgap flux is
derived.

D-2 Derivation

Assume initially that the airgap flux density due to
currents flowing in the stator phase windings is given by
the following expression

B,= ) ) (B, sin(mwt+npf)

m-oeddt-o0dd

+B_,sain(mwt-npb)) (D-1)

where

B..

B, =Fourier coefficents
m=m "stator time-harmonic

n=n'"stator space-harmonic

Using the transformation rclation given by equation
2-5, in the rotor reference frame equation D-1 becomes

B, - Z Z {B,,sin(mwt+npf ' +n(i-s)wt)

+Bo.sin(mwt-npf ' -n(l-s)wt)) (D-2)
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From equation D-2, it can be seen that airgap flux will
couple with the rotor loops and induce currents of
frequenciles

(m:n(l-s))w for m,n odd (b-3)

These induced rotor currents also produce an airgap
flux which can be expressed in the following form

B,= ) ) 2 {Busin((m+n(l-s)wt+qp8°)
q-odd m - edd B -0dd
+B.sin{((m+n(l-s))wt-qp8’)

+ B

q@m3o

sin((m-~-n(l-s))wt+qpb’)

+Besin({m=-n(l-s))wt-qpb’)} (D-4)

where

Bi,. Bi; .Bin. .Bino = Fourier coefficients

q~q'“rotor space-harmonic

In the stator reference frame this becomes

B. = Z Z Z (B sin((m+n(l-s)-q(l-s))wt+qph)

+ B sin((m+n(l-s)+q(l-s))wt-qpb)
+ B;;Dsin((m-n(l-s)—q(l-s))wt+ qp6)

+* B sin({m-n(l-s)+q(l-s))wt-qpb)} (D-5)

This component of the airgap flux will couple with the
stator phase windings and induce currents with the
following frequencies
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m

(m+n(l-s)-q(l-s))w for m.n.q odd (D-6)
(m-+n(l-s)-q(l-s))w for m.,n,q odd (D-7)
(m-n(l-s)-q(l-s))w for m.n.q odd (D-8)
(m-n(l-s)+q(l-s))w for m.,n,q odd (D-9)
. Thus for each combination of m, n, and q there can be

as many as four distinct frequencies of currents induced in
a stator phase winding. Table D-1 shows the possible stator
phase current harmonics for m,n,q=1,3,5. This table shows
that the (1-4s)f and the (142s8)f components are produced by
the third time-harmonic and that the (1+4s8)f component is
produced by the fifth time-harmonic component of the stator
phase current.

For the experimental motor with ROTOR #3 installed and
operating at a slip of 0.0011, the stator phase current
frequency spectrum measured wusing the HP-3561A signal
analyzer is shown in Figure D-1. This spectrum shows that
the magnitudes of the third and fifth time-harmonics are
approximately the same and that they are larger than all
other harmonic components except the fundamental component
of the stator phase current. This would indicate that for
the motors tested, the (1-4s)f, (142s)f, and (1+44s)f
components can be attributed to the third and fifth
time-harmonics of the stator phase current.
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m

time/space STATOR PHASE CURRENT HARMONICS
component normalized to the fundamental frequency
m n q (eqn D-6) (egn D-T7) (eqn D-8) {eqn D-9)
1 1 1 1 3-2s ~-1+2s 1
1 1 3 -1+42s 5-48 ~3+4s 3-2s8
1 1 5 -3+4s 7-68 -5+6s 5-4s
1 3 1 3-2s 5-48 -3+4s -1+2s
1 3 3 1 7-6s8 -5+6s8 1
1 3 5 -142s 9-8s -7+8s 3-2s8
1 5 1 5-4s 7-6s8 ~-5+6s -3+4s
1 5 3 3-2s 9-8s -7+8s -142s
1 5 5 1 11-10s -9+10s 1
3 1 1 3 5-2s 1428 3
3 1 3 1+42s 7-4s -1+4s 5-2s
3 1 5 -1+4s 9-6s -3+6s 7-4s
3 3 1 5-2s 7-48 -1+4s 142s
3 3 3 3 9-6s -3+6s 3
3 3 5 1+2s 11-8s -5+8s 5-28
3 5 1 7-1s 9-6s8 -3+6s -144s
3 5 3 5-2s 11-8s -5+8s 1428
3 5 5 3 13-10s ~7+410s 3
5 1 1 5 7-28 3+28 5
5 1 3 3428 9-4s 1448 7-2s8
5 1 5 1+44s 11-6s ~146s 9-4s
5 3 1 7-28 9-4s 1448 3+2s
5 3 3 5 11-68 -146s 5
5 3 5 3+2s 13-8s -3+8s 7-28
5 5 1 9-4s 11-6s -1+6s8 1+4s
5 5 3 7-28 13-8s -3+8s 3+2s
5 5 5 5 15-10s ~5+410s 5
Table D-1. Predicted stator current harmonics.
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Figure D-1. Stator current time-harmonics.
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