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ABSTRACT

Broken rotor bars are a common cause of induction motor
failures. In the past, the detection of broken rotor bars
has primarily been limited to non-operating, and typically,
disassembled machines. The ability to detect broken rotor
bars while the machine is operating at normal speed and load
is desirable. In support of the ongoing development of a
failure analysis system for electrical machines, this thesis
evaluates the method of using stator currents and voltages
to detect the presence of broken rotor bars in squirrel-cage
induction motors. The hypothesis of this method is that,
given a sinusoidally applied voltage, the presence of
certain harmonics in the stator currents could be used to
detect the presence of broken rotor bars. Jx , ),, ..

To support the evaluation, a system of first-order
differential equations describing the electrical performance
of a three-phase, squirrel-cage induction motor was
devploped using stator phase currents and rotor loop
currents as state variables. A FORTRAN simulation program
was developed to solve the system of equations for a motor
with or without a broken rotor bar. Using an "off-the-shelf"

3-HP motor, numerical and physical experiments were
conducted to test the failure detection hypothesis. Although
the results of the numerical experiments indicated that the
hypothesis was plausible, the experimental results showed
that distinguishing between a manufacturing asymmetry and a
broken rotor bar was impossible due to the existence of
inter-bar currents.

The existence of inter-bar currents in a squirrel-cage
induction motor of the type tested in this thesis
effectively "masks" the effects of a broken rotor bar. Thus,
detection of broken rotor bars based upon a technique using
only stator current measurements appears highly improbable.
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Title: Associate P-ofessor of Electrical Engineering

Thesis Supervisor: Stephen D. Umans
Title: Principal Research Engineer

2
Sl

- --,- . --m =l--re~mnimn ml m m,-m4



The author hereby grants to the U. S. Government
permission to reproduce and to distribute copies of this
thesis document in whole or in part.

Accession For Mark Steven Welsh
NTIS GRA&I

DTIC TAB
Unannounced 0
Justificatio

By C
Di s tr ib u4A t ()nFo
Availability Codes

Av . nd/or 6

Dist

3

A°Now



U IiI I I I I llI i El Ii

ACKNOWLEDGMENTS

This thesis was funded by the Naval Sea Systems Command
under contract no. N00024-87-C-4263.

I am grateful to my thesis advisors, Professor Jeffrey
Lang and Dr. Stephen Umans, for their patience,
encouragement, and timely guidance.

I express my thanks to Fred Barber and Glenn Hottel for
their time and effort to produce the drawings included in
Chapter 2. I also thank Ricky Powell for his time-saving
advice on numerical methods.

For their support, love, and understanding during the
paqt three years, I am deeply indebted to my wife Katherine
and our two daughters, Heather and Holly.

4

eli lll i llI l ~ m' m
-



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .............................. 10
1.1 Thesis Objectives .............................. 10
1.2 Condition Monitoring of Electric Machines ....... 11
1.3 Detection of Rotor Bar Defects .................... 17
1.3.1 Broken Bar Detector (BBD) ................... 19
1.3.2 Leakage Flux Detector ....................... 25

1.4 Significance of Thesis ......................... 33
1.5 Outline of Thesis .............................. 35

CHAPTER 2 THEORETICAL DEVELOPMENT OF SYSTEM ........... 36
2.1 Discussion of Approach ......................... 36
2.1.1 Assumptions ................................. 37

2.2 Development of Equations for an N-bar Rotor .... 39
2.2.1 Stator Relations ............................ 46
2.2.2 Rotor Relations ............................. 51
2.2.3 Stator-rotor Mutual Relations ............... 55
2.2.4 Overall System of Equations ................. 57

2.3 Relation Between System and Single-phase Model . 61
2.4 Summary ........................................ 74

CHAPTER 3 COMPUTER SIMULATION OF SYSTEM .............. 75
3.1 Requirement for a Simulation Routine ............. 75
3.1.1 FORTRAN Simulation Program .................. 77
3.1.2 Determining the Time Step ................... 84
3.1.3 Running the Simulation Program .............. 85
3.1.4 Processing the Simulation Output .............. 86

3.2 "Hand" Verification of Simulation .............. 88
3.2.1 Three-bar Rotor Simulation .................. 91

3.3 Simulation Results For Experimental Motor ....... 104
3.3.1 Case 1: No Broken Rotor Bars ................ 105
3.3.2 Case 2: One Broken Rotor Bar ................ 108

3.4 Summary ........................................ 112

CHAPTER 4 INVESTIGATION OF AN INDUCTION MOTOR WITH A
BROKEN ROTOR BAR ..................................... 114
4.1 Introduction ... ................................ 114
4.2 Description of Experimental Facility ........... 116
4.3 Experimental Results and Analysis of a Motor
With and Without a Broken Rotor Bar ................ 119
4.3.1 Experimental Results for a Motor Without a
Broken Rotor Bar(ROTOR #1) ........................ 119
4.3.2 Experimental Results for a Motor With a
Broken Rotor Bar (one end open--ROTOR #2) ........... 126
4.3.3 Discussion of Simulation and Experimental
Results for a Motor With and Without a Broken Rotor
Bar ............................................... 132

4.4 Experimental Results for a Motor With a Broken
Rotor Bar (both ends open--ROTOR #2.1) ............... 139
4.5 Additional Results for a "Good" Motor (ROTOR #3)
,.. ....... . ,, .. ... .. .. ... .. ., ... .. ..... . ..., ., ... 14 7
4.6 Summary ......... .............................. 153

5



CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH................................................... 157
5.1 Summar y of Thesis................................... 157
5.2 Conclusion...........................162
5.3 Recommendations for Ftre Work ...... ......... 163

REFERENCES................................................. 165

APPENDIX A ELEMENTS FOR SYSTEM MATRICES................ 167
A-i Voltage Matrix (vi.................................. 167
A-2 Inductance Matrix [L] ............................ 167
A-3 Effective Resistance Matrix [Rh).................. 169

APPENDIX B SIMULATION PROGRAMS AND DATA FILES.......... 171
B-1 FORTRAN SIMULATION PROGRAMI........................ 171
a. PROGRAM LISTING.................................... 174
b. SA"MPLE INPUT FTLE.................................. 187
c. SAMPLE OUTPUT iILE.......................88

B-2 PRO-MATLAB EIGENVALUE ROUTI NE.............194
a. PROGRAM LISTING.......................... 194
b. EIGENVALUES FOR 3-BAR RTR.............197
c. FIGENVALUES FOR 45-BAR ROTOR...................... 198

B-3 PRO-MATLAB FFT ROUTINE............................. 199
a. PROGRAM LISTING.................................... 199
b. SAMPLE FFT OUTPUT FILE............................. 201

APPENDIX C EXPERIMENTAL DATA............................ 209
C-i EXPERIMENTAL DATA ROTOR #1......................... 210
C-2 EXPERIMENTAL DATA ROTOR #2 (ONE END OPEN)......... 212
C-3 EXPERIMENTAL DATA ROTOR #2.1 (BOTH ENDS OPEN) .. 214
C-4 EXPERIMENTAL DATA ROTOR *3......................... 216

APPENDIX D INDUCTION MOTOR STATOR PHASE CURRENT
HARMONICS.................................................. 218
D-1 Introduction........................................ 218
D-2 Derivation.......................................... 218

66



_____I. - U

LIST OF FIGURES

Figure 1-1. Proposed failure analysis system ......... 16
Figure 1-2. Airgap flux spectra for asymmetrics ...... 20
Figure 1-3. BBD one-line diagram ..................... 23
Figure 1-4. BBD experimental results for s=0.01 ...... 24
Figure 1-5. Leakage flux monitoring system ........... 31
Figure 1-6. Healthy motor ............................ 31
Figure 1-7. Short-circuited stator winding turn ...... 32
Figure 1-8. Broken rotor bar ........................... 32
Figure 2-1. Coordinate system ......................... 43
Figure 2-2. Rotor loop description .................... 44
Figure 2-3. Coupling between adjacent rotor loops .... 45
Figure 2-4. Integration contour on stator ............ 48
Figure 2-5. Integration contour on rotor ............. 52
Figure 2-6. Single-phase equivalent-circuit model for
an induction machine ................................. 61
Figure 3-1. FORTRAN simulation program flowchart ..... 80
Figure 3-2. 1(60 Hz) with no broken bars .............. 95
Figure 3-3- Ir with no broken bars .................... 96
Figure 3-4. 1(60 Hz) with one broken bar .............. 97
Figure 3-5. I(1-2s)f with one broken bar .............. 98
Figure 3-6. Ir with one broken bar................... 99
Figure 3-7. Stator phase current with no broken bars 100
Figure 3-8. Stator phase current with one broken bar 101
Figure 3-9. Frequency spectrum with no broken bars ... 102
Figure 3-10. Frequency spectrum with one broken bar .. 103
Figure 3-11. Simulation vs. equivalent circuit results

....................................................... 107
Figure 3-12. 1(60 Hz) vs. slip ........................ 109
Figure 3-13. I(1-2s)f vs. slip ........................ 110
Figure 3-14. 1(60 Hz) no vs. one broken bar .......... 111
Figure 4-1. ROTOR #1 1(1-2s)f averaged results ....... 122
Figure 4-2. ROTOR #1 I(1-2s)f "raw" data ............. 123
Figure 4-3. ROTOR #1 1(60 Hz) averaged results ....... 124
Figure 4-4. ROTOR #1 "typical" frequency spectrum .... 125
Figure 4-5. ROTOR #2 I(1-2s)f averaged results ....... 128
Figure 4-6. ROTOR #2 I(1-2s)f "raw" data ............. 129
Figure 4-7. ROTOR #2 1(60 Hz) averaged results ....... 130
Figure 4-8. ROTOR #2 "typical" frequency spectrum .... 131
Figure 4-9. Bar impedance variation I(1-2s)f ......... 136
Figure 4-10. Bar impedance variation 1(60 Hz) ........ 137
Figure 4-11. Ratio of current in a broken bar to a
"healthy" bar ........................................ 139
Figure 4-12. ROTOR #2.1 I(1-2s)f averaged results .... 143
Figure 4-13. ROTOR #2.1 I(1-2s)f "raw" data .......... 144
Figure 4-14. ROTOR #2.1 1(60 Hz) averaged results .... 145
Figure 4-15. ROTOR #2.1 "typical" frequency spectrum . 146
Figure 4-16. ROTOR #3 I(l-2s)f averaged results ...... 149
Figure 4-17. ROTOR #3 I(1-2s)f "raw" data ............ 150
Figure 4-18. ROTOR #3 1(60 Hz) averaged reRults ..... 151
Figure 4-19. ROTOR #3 "typical" frequency spectrum ... 152

7



Figure 4-20. Simulation and experimental results
I(I-2s)f................................................ 155
Figure B-1. Stator phase a current vs. time for sample
simulation. ......................... 192
Figure B-2. Rotor loo0p I ~curentvs. timefor sample*
simulation. .aor aea r;*, ,*c .............................. 193
Figure B-3. Stao phas a frquenc spectum for
sample simulation......................207
Figure B-4. Rotor ioop 1 frequency spectrum for sample
simulation. ............................... 208
Figure D-1. Stato currnt time-harmonics .............. 222

8



LIST OF TABLES

Table 1-1. Motor failures by component ............... 11
Table 1-2. Current harmonics due to broken rotor bars 22
Table 1-3. Axial flux harmonics ....................... 30
Table 3-1. 3-bar rotor parameters ..................... 92
Table 3-2. 3-bar rotor exact results .................. 93
Table 3-3. 3-bar rotor simulation results ............ 93
Table 3-4. Error between exact and simulation results 94
Table 3-5. Experimental motor parameters ............. 105
Table 3-6. Simulation results-no broken bars ......... 106
Table 3-7 Simulation results-one broken bar ......... 108
Table 4-1 Test motor nameplate data .................. 115
Table 4-2 Rotor summary ............................. 115
Table 4-3 ROTOR #1 averaged data ..................... 120
Table 4-4 ROTOR #1 "typical" harmonic frequency data 121
Table 4-5 ROTOR #2 averaged data ..................... 127
Table 4-6 ROTOR #2 "typical" harmonic frequency data 127
Table 4-7 Simulation and experimental results 1(60
Hz) .................................................. 133
Table 4-8. Simulation and experimental results
I(1-2s)f .... ......................................... 133
Table 4-9. Bar impedance variation results ........... 135
Table 4-10. ROTOR #2.1 averaged data .................. 141
Table 4-11. ROTOR #2.1 "typical" harmonic frequency
data ........ ......................................... 141
Table 4-12. Broken bar results I(60 Hz)..............142

Table 4-13. Brcz!cn bar rezu]ts I!-2s)f .............. 142
Table 4-14. ROTOR #3 averaged data .................... 148
Table 4-15. ROTOR #3 "typical" harmonic frequency data

• ., ,,. ,., .,, .. * .,. .i. ,,, e e .*s.... .. ....e. , 148

.. . .. .. ... . . . . . . . . ....................................... 148
Table B-1. Sample simulation input file ............... 187
Table B-2. Sample simulation output file .............. 188
Table B-3. 3-bar rotor eigenvalues ................... 197

Table B-4. 45-bar rotor eigenvalues ................... 198
Table B-5. Sample FFT output file ..................... 201

Table C-I. ROTOR #1 I(1-2s)f raw data ................ 210
Table C-2. ROTOR #1 1(60 Hz) raw data ................ 211
Table C-3. ROTOR #2 I(1-2s)f raw data ................ 212
Table C-4. ROTOR #2 1(60 Hz) raw data ................ 213
Table C-5. ROTOR #2.1 I(1-2s)f raw data .............. 214
Table C-6. ROTOR #2.1 1(60 Hz) raw data .............. 215
Table C-7. ROTOR #3 I(1-2s)f raw data ................ 216
Table C-8. ROTOR #3 1(60 Hz) raw data ................ 217
Table D-1. Predicted stator current harmonics ......... 221

9



CHAPTER I

INTRODUCTION

1.1 Thesis Objectives

In recent surveys [1,2,3] on the reliability of

electric motors, three kinds of faults have been identified

as constituting the majority of failures in induction

motors. These are bearing-related (41%), stator-related

(37%), and rotor-related (10%). Table 1-1 shows a summary

of failures for these areas by components. The remaining

failures (12%) are scattered among a variety of effects. As

* shown in Table 1-1, of the rotor-related failures, cage

faults in the form of broken rotor bars or end rings are

the cause of half of the machine failures. Cage faults

occur due to design and manufacturing defects, misoperation

and misapplication of the machine, lack of preventive

maintenance, and aging/fatigue failure. Rotor cage defects

result in machine failure due to increased frame

vibrations, localized temperature increases on the rotor,

and the "domino" effect in which one broken bar leads to

another broken bar and so on.

The purpose of this thesis is to present the results of

research investigating the detection of broken rotor bars

using stator current and voltage measurements. This

research effort supports the ongoing development of a

10



failure analysis system for electric machines by the M.I.T.

Laboratory for Electromagnetic and Electronic Systems

[4,51.

Bearing-Related Stator-Related Rotor-Related

(41%) (37%) (10%)

Sleeve 16% Ground 23% Cage 5%
Bearings Insulation

Anti-friction 8% Turn 4% Shaft 2%
Bearings Insulation

Seals 6% Bracing 3% Core 1%

Thrust 5% Wedges 1% Other 2%
Bearing

Oil Leakage 3% Frame 1%

Other 3% Core 1%

Other 4%

Table 1-1. Motor Failures by Components [1).

1.2 Condition Monitoring of Electric Machines

The unexpected and sometimes catastrophic failure of

electric machines can result in the rpduction or total loss

of production and operational safety, expensive repairs and

extended downtime, and in most cases, large capital losses.

In the case of military applications, these failures can

result in the degradation of mission effectiveness and

perhaps even the inability to perform a primary mission.

11



For many years, private industry and the military have used

planned maintenance strategies to minimize electric machine

failures. One major drawback of this strategy is that the

need for corrective maintenance cannot be determined

without removing the machine from service, disassembling

it, and inspecting it. Without a method to externally

determine the condition of an operating machine, a machine

in perfect condition may be removed from service while a

machine on the verge of failure maybe ignored. Obviously, a

more efficient and cost-effective maintenance strategy

would be to schedule maintenance and repairs based on a

continuous assessment of the machine's condition while it

is operating at normal speed and load.

There are currently two methods being used and/or

developed to assess the condition of an operating electric

machine [6]. The first method involves the analysis of

vibration data and historical performance records. This

method is commonly referred to as signature trend analysis.

In signature trend analysis, sensor measurements (typically

accelerations) are collected and processed through Fourier

Transform at regular intervals. Each data collection is

compared to previous data and known "good" baseline data in

order to expose signature trends. Based on experience,

these signature trends can be related to specific defects

and failures. Thus, signature trend analysis is essentially

a heuristic method used to assess the condition of a

12
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machine. Although signature trend analysis is a viable and

widely used monitoring system, the requirement for a

database of historical performance and the experience

required to relate a signature trend to a specific defect

or failure are major disadvantages. The second method is

more theoretical by nature and seeks to identify the

fundamental causes of failures and predict their effects.

In this method, a detailed understanding of the machine

response for various operating scenarios including normal

operation as well as for various fault conditions is

required. Thus, for any given operating condition, the

theoretical response of the machine is calculated and

compared to the actual response of the machine. By

comparing these responses an estimate or prediction of the

machine's condition can be made. Although both of these

methods typically require the use of a processor such as a

microcomputer for continuous monitoring, each can be used

both to prevent catastrophic failures by early detection

and to aid in the preparation of routine maintenance

schedules.

A failure analysis system for electrical machines is

currently being developed by the Laboratory of Electromag-

netic and Electronic Systems (LEES) at the Massachusetts

Institute of Technology. The development of this system is

a major task of the Ship Service Power System Development

research sponsored by the Department of the Navy's Naval

13
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Sea Systems Command [5]. The ultimate goal of the proposed

failure analysis system is to provide a tool which can be

used onboard naval ships to prevent, predict, and detect

electric machine failures, and to suggest the corresponding

maintenance. The system is intended for retrofit onto

existing electrical machines or incorporation into future

electrical machines and for implementation with inexpensive

sensors and processors [4]. The following paragraphs,

extracted from the research proposal [5), briefly describe

the proposed failure analysis system. The system will use a

combination of both methods described above to assess the

condition of a machine.

The underlying principle of the system is that

failure prevention, prediction, and detection

should be based on the estimation of states and

parameters in relevant physical models of electri-

cal machines. These models should include failure

modes, mechanisms, or symptoms that are expressed

in terms of the electrical machine states and

parameters. The models, coupled with state and

parameter estimation, then provide a means of

directly and justifiably connecting measured data

to impending or existing failures. Thus, the
0

reliability of the failure analysis is enhanced.

The models also provide a means by which measured

data from a variety of sensors can be processed

14



together in a consistent manner.

A (one-line) diagram of the proposed failure

analysis system is shown in Figure 1-1. Measure-

ments from sensors on the electrical machine are

processed by a model reference state and parameter

estimator. State and parameter estimates are then

passed to a rule based evaluator which suggest the

corresponding maintenance. Initially, the system

will be developed using information readily

available from terminal voltage and current

sensors. The system can be expanded later to

include information from other sensors such as

thermocouples, accelerometers, acoustic sensors,

and gas analyzers.

The development of the failure analysis system

is broken down into four subtasks. These are:

1. Develop physical models which *include

failure modes, mechanisms, and symptoms

expressed in terms of the model states and

parameters.

2. Develop estimators for the model states

and parameters.

3. Develop state and parameter evaluators

that act on the estimated quantities so as to

prevent, predict, or detect electrical

machine failures and suggest corresponding

15
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maintenance.

4. Demonstrate and evaluate the results of

theoretical work through numerical and

physical experimentation.

The results presented in this thesis directly support

the physical model development of subtask (1) above. In

particular, this thesis is concerned with the development

and demonstration of models which include rotor bar

failures in induction motors.

Electrical
Machine

Sensors

Measurments

State end
Parmeter
Estimator

I

Electrical
Machine Estimates

Model

IRule Based Evaluation and
State and _ Maintenance
Parmeter Rules
Evaluator

8u88estund Nateance

Figure 1-1. Proposed failure analysis system [5].
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1.3 Detection of Rotor Bar Defects

In order to detect broken rotor bars, several methods

have been employed. Visual inspection and bench test

methods such as the "growler" and related probe techniques

applied to disassembled motors have been used for many

years (7]. The "single phase" test has also been used as a

standard test for assembled but non-operating motors [7].

Recently, there have been a number of studies [7,8,9,10,11]

to develop theories of the response of induction motors in

the presence of broken rotor bars and/or end rings.

A common result found in each of these studies is the

existence of a lower sideband frequency component in the

stator phase current when the motor is driven by a single

harmonic stator voltage. This component of the stator

current, which is at a frequency of (1-2s)f, where s is the

rotor slip and f is the line frequency, is a result of the

fundamental component of the backwards-rotating airgap

field produced by the induced rotor currents. This field,

which rotates backwards at slip speed with respect to the

rotor, rotates forward with respect to the stator at

(1-2s)N,, where Ns is the synchronous speed. Thus, this

field induces currents of frequency (1-2s)f in the stator

windings. This component of the stator current causes

torque pulsations and speed oscillations at twice the slip

frequency. In addition to these effects, it has been shown

17
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by Kliman et a!. [7] and Penman et al. [ll] that axially

directed fluxes arise due to the asymmetry of the rotor

magnetic circuit with a broken rotor bar.

Based on these results, there have been a number of

instruments developed to give an indication of a broken

rotor bar while the motor is running at normal speed and

load. These instruments detect broken rotor bars using

measurements of one or more of the following parameters:

- stator current

- mechanical speed

- frame vibration (i.e., acceleration)

- air gap flux

- axial leakage flux

The most successful of these instruments has been an

instrument based on detecting the twice slip frequency

speed oscillations via a shaft position measurement [8].

However the sensitivity of the speed variation method is

highly dependent on knowledge of the load inertia and

torque, and results may be confused by other asymmetries.

Recently, two new instruments have been used to

successfully detect broken rotor bars in operating

induction machines. Although both instruments are still in

the "field test" stage of development, they appear quite

promising. The first instrument, developed by Kliman et al.

[7], uses stator current measurements to detect broken

rotor bars. The second instrument, developed by Penman et

18
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al. [11], uses axial flux measurements to detect broken

rotor bars as well as several other fault conditions such

as phase imbalances and short-circuited turns on a stator

winding. The following paragraphs summarize the operating

theory and experimental results for these new instruments.

1.3.1 Broken Bar Detector (BBD)

The BBD being developed by Kliman et al. is based on

existing theories for the performance of induction motors

with broken bars. A broken rotor bar is modeled by

superimposing a fault current, a current equal and

opposite to the normal current, on the rotor bar. The

magnetic field in the airgap caused by the fault current

is always two-pole and rich in harmonics. This field

anomaly rotates at the mechanical frequency of the rotor

since it is attached to the broken bar. The field can be

resolved, using Fourier analysis, into an infinite series

of counter-rotating, slip-frequency waves of smaller and

smaller wavelength on the rotor. In eddition to broken

rotor bars, other fault conditions such as cage

misalignment (rotor out of round), bearing misalignment

(rotating eccentricity), and non-uniform magnetic orienta-

tion of the rotor laminations create airgap field

anomalies with a fundamental component on the same order

as that of a broken bar. However, the higher-order

harmonic components of the airgap field due to these other

fault conditions are predicted to be much smaller than

19



those due to a broken bar. Figure 1-2 (from [71) shows a

comparison of the airgap flux spectra predicted for these

various asymmetries and a broken rotor bar.

0 - 1 Broken rotor bar
2 Rotating eccentricity

- - 3 Magnetic orientation in rotor laminations

2 4 Rotating ovaity (rotor Out of round)
-20 ' q4

- 40

de - 50\

-60 ,- Line frequency

-70

-80

-90

-100 . L _

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Air Gap Harmonic

Figure 1-2. Airgap flux spectra for asymmetries [7).
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Based on this spectra, two conclusions can be drawn.

First, with sensitivity sufficient to detect a broken bar,

these other asymmetries may give rise to a false broken

bar indication. Second, by examination of the higher order

harmonic amplitudes, broken bars can be distinguished from

asymmetries. The analytical expression for the frequencies

present in the airgap flux is [7]

where

f- line frequency
1

k = harmonic index (1.2.3...)

p= number of pole-pairs

s= rotor slip

For a typical motor, due to the design of the stator

windings, only the odd, non-triplet harmonics of airgap
0

flux couple with the stator windings. Thus, only those

harmonic frequencies where k/p is 1,5,7,11,13, etc. appear

in the stator currents. Table 1-2 (from [7]) shows these

predictable stator current harmonics and relative

amplitudes (as a pcrccntage of the input current

amplitude) due to an open rotor bar.

21



HARMONIC FREQUENCY AMPLITUDE

(Hz) (%Iab)

FUNDAMENTAL 60 4

LSB 1 60(1-2s) 4

USB 5 60(5-4s) 0.5

LSB 5 60(5-6s) 0.5

USB 7 60(7-6s) 0.05

LSB 7 60(7-8s) 0.05

LSB - LOWER SIDEBAND USB = UPPER SIDEBAND

Table 1-2. Current harmonies due to broken rotor bars [7].

Based on the above theory, Kliman et al. developed the

computer-based instrument in Figure 1-3. The instrument

performs two basic functions: signal processing and the

implementation of a decision algorithm. The signal

processing involves sampling the external leakage flux and

current signals and transforming these time functions via

the fast Fourier transform into frequency spectra. Since

the harmonic frequencies of interest shown in Table 1-2

are slip dependent, a precise measurement of the rotor

speed is necessary. This is accomplished using an

externally mounted coil which picks up a strong axial

leakage flux from the rotor end ring at the slip frequency

22



(sf). Combining this with a measurement of the line

frequency from the current signal, rotor speed is

determined to within 0.2 rpm. The spectral windows of

interest are computed and a narrow search around the

predicted frequencies is performed. The amplitudes and

frequencies of the broken bar signals are stored in

computer memory, and if desired, can be printed out in a

tabular form. The spectral windows can also be viewed on

the computer screen. Figure 1-4 shows the experimental

results (line current spectra in the vicinity of 60 Hz)

presented in [7] for a test motor with varying degrees of

fault. The increase in the amplitude of the lower sideband

signal with increasing fault is quite evident.

-IAxialI
Motor flux

Coll

I Other inputs
Current Three I(such as vibration)

transformer phase, . a i o

60 Hzo_
1 2 3 4

Sampler

Keyboard ComputerCR
(inc. disk drives) CRT

1S
Printer

Figure 1-3. BBD one-line diagram (7].
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Figure 1-4. BBD experimental results for s0.01 [7].
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Two decision algorithms may be implemented in the BBD.

The first is a "trend" algorithm that recognizes the

change from a healthy motor to a motor with a cage defect.

Two sets of line-current frequency spectra are compared to

detect any changes in the harmonic sidebands. If a

significant change (>20dB) occurs in the first harmonic

lower sideband, the higher-harmonic sidebands are

examined. If any of these harmonics have changed

significantly, a broken bar is declared. Otherwise it is

concluded than an asymmetry other than a broken bar is

present. The second algorithm is a single-test diagnostic.

Based on experimental data gathered from 23 power plant

motors, "good" motors exhibit a first harmonic lower

sideband of -60dB or less relative to the line frequency

component. Thus if the first harmonic lower sideband is

less than -60dB there is probably no fault. If the first

harmonic sideband is greater than -50dB there is probably

a broken rotor bar. These thresholds will be updated, if

necessary, based on the results of further field tests.

1.3.2 Leakage Flux Detector

The leakage flux monitoring system developed by Penman

et al. [11] is based on theories describing the harmonic

content of the axial flux produced by an electric machine

for various fault conditions. Ideally, with no faults, an

electric machine will not prcduce a net axial flux.

However, due to small asymmetries in both the material and
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geometry of a machine, a small, axial leakage field is

produced and can be detected by an externally mounted

coil. Under the assumption that fault conditions represent

a gross change in the electric and/or magnetic circuit

behavior of a machine, the faults can be identified by the

effect these changes produce in the axial leakage field.

In order to use this technique, a master table of all

possible axial flux harmonic components for a given

machine type must be generated. Once this is done, certain

groups of these harmonics can be identified with various

fault conditions.

For an induction motor, the harmonic components of the

airgap flux produced by a balanced 3-phase stator winding

is given by

B- Bcos(w t-pO)+ B~cos(w t+SpO)

Bcos(w t-7p9)+ B , cos(w t+ 1 I pO)... (1-2)

where

p - number of pole pairs

0= angle from a reference point on the stator
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To determine the harmonic components of the induced

rotor currents, a transformation to the rotor reference

frame is necessary. The transformation is made using the

relation

0- ulst,(1-3)

p

where

( rotor angular velocity

p

O=angle between the stator and rotor at t=O

Thus, in the rotor frame of reference, the airgap flux

density is given by

B- Bcos(swt-po)+Bscos((6-5s)wtt+5pO)

*Bcos((7s-6)wt-7po) B,,cos((12-1ls)wt+ llpO)... (1-4)

The harmonic frequencies of the currents induced in the

rotor bars by this field are slip dependent. The small

axial leakage flux, which is produced by the rotor

currents and minor asymmetries in the machine, will

contain these same frequency components. If a fault

condition exists, the expressions for the airgap flux
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density given above are no longer valid. For example, a

phase asymmetry on the stator winding will result in the

airgap flux density

B- B[cos(wt-npO)+cos(ct+npO)] (1-5)

which, in the rotor frame of reference, becomes

BI Bcos[(lkn(I-s))wtinpO] (1-6)
2 odd

Thus, additional frequency components are present in the

induced rotor currents and axial leakage flux.

Using the same methodology, a table of axial flux

frequencies (or harmonics) can be developed for various

fault conditions. Table 1-3 (from [11]) shows the

predicted axial flux harmonics for a 4-pole induction

motor at a slip of 0.02. In the table, stator and rotor

faults are grouped as either symmetrical (related to a

phase) or unsymmetrical (related to a pole). The table

includes effects due to the fundamental (fi) and third

harmonic (f3) components of the supply current. The

numbers in each column represent the component of the

airgap flux wave that produces the associated axial flux

28

.. .. N m llm I m i I mW W 
i m p



harmonic (i.e., 1 is the forward traveling first harmonic

and -3 is the backward traveling third harmonic

component).

By monitoring the spectral components of the axial

leakage flux, a fault group can be identified by comparing

the spectra to the master table. This is the philosophy

incorporated into the leakage flux monitoring system. A

one-line diagram of this system is shown in Figure 1-5.

The transducer (a printed-circuit split coil) is

externally mounted on a machine. The transducer signal

(induced voltage by the leakage flux) is processed and

transferred to the diagnostic unit. The diagnostic unit

analyzes the spectra and identifies any fault conditions

present using the master spectrum table. As stated

previously, this system has successfully detected various

faults imposed on a 4KW squirrel-cage induction motor.

Figures 1-6, 1-7, 1-8 are samples of the experimental

results presented in [11] for various fault conditions.

Figure 1-6 is the axial flux spectra for a healthy motor.

Figure 1-7 shows the large amplitude increase in the

fundamental (50 Hz) component for a short-circuited stator

winding. For a broken rotor bar, increased amplitudes in

the fundamental as well as third (150 Hz) and fifth (250

Hz) components are evident in Figure 1-8.
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Number Frequency Frequency Stator harmonics Rotor harmonics
factor at s = 0 02

Hz Phase Pole Phase Pole

f, f f f, I, 1 1

1 s 10 1 2
2 3s 30 3 6
3 (7s- 1) 2 21 5 7 -1
4 (3s-1) 2 235 3 -I

5 1 -si 2 255 1 1

6 i1 5si2 275 5 1
7 4s - 1 460 -1 -2

8 2s-1 480 -1 -2
9 1 500 1 2

10 2s-1 520 1 2
11 i9s - 312 705 9 -3
12 15s- 3) 2 725 5 -3
13 (3-si2 745 -1 3
14 13 -3si2 765 3 3
15 5s-2 950 5 10
16 3s-2 970 3 6
17 2-s 990 -1 -2

18 2 -s 101 0 1 2
19 Ills-512 1195 11 -5
20 17s -51 2 121 5 7 -5
21 15- 3si 2 1235 -3 5
22 15-s,2 1255 1 5
23 6s-3 1440 -3 -6
24 4s-3 1460 - 3 -6
25 3-2s 1480 3 6
26 3 1500 3 6
27 13s-71 2 1685 13 -7

28 19s-71 2 1705 9 -7
29 j7 - 5s, 2 172 5 - 5 7

30 17-s2 1745 -1 7
31 7s-4 1930 7 14
32 5s -4 1950 5 10
33 4-3s 1970 -3 -6
34 4-s 1990 -1 - 2
35 15s-912 2175 15 -9

36 ills-9,2 2195 11 -9
37 19-7si2 221 5 -7 9
38 t9-3si2 2235 -3 9
39 8s-5 2420 -5 -10
40 6s- 5 2440 -5 -10
41 5 -4s 2460 5 10
42 5-2s 2480 5 10
43 17s- 112 2665 17 -11
44 113s- 1112 2685 13 -11
45 i11 -9si2 2705 -9 11
46 ill -5si2 2725 -5 11
47 9s -6 291 0 9 18
48 7s-6 2930 7 14
49 6 -5s 2950 -5 -10
50 6-3s 2970 -3 -6

Table 1-3. Axial flux harmonics [11].
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1.4 Significance of Thesis

From the discussions presented in the previous

sections, one can see that broken rotor bars can be (or

have been) detected using stator current measurements.

Thus, the results presented in this thesis confirm existing

theories and experimental results [7,8,9,10,11]. However,

several contributions are made to the field of electri-

cal-machine fault analysis.

First, a more general approach is taken to develop the

system of equations describing the electrical performance

of an induction motor. If desired, the system of equations

and computer simulation can be used to analyze other fault

conditions as well as broken rotor bars (subject to the

limitations resulting from the assumptions discussed in

Chapter 2). Although the system of equations and computer

simulation developed consider only fundamental space

harmonics, both can be easily modified to include

additional space harmonics. In order to analyze other fault

conditions and/or include additional space harmonics, the

expressions for the appropriate matrix elements must be

modified. This flexibility is not possible using the method

presented by Williamson and Smith [10], where the equations

were derived for a specific fault condition using specific

stator current harmonics. In order to analyze other fault

conditions or to include additional space harmonics, an

entire new set of equations must be developed.
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Second, a relationship between the standard sin-

gle-phase, equivalent-circuit model of an induction motor

and the system of equations has been derived. With this

relationship, the electrical parameters, for example rotor

bar resistance, rotor bar leakage inductance, and stator

phase leakage inductance needed to solve the system of

equations can be easily calculated from the single-phase

circuit model values. Instead of disassembling the machine

and measuring these parameters or requesting the design

data from the manufacturer, the standard no-load,

locked-rotor, and DC tests can be used to determine the

required parameters.

Finally, Lhe experimental results provide another "data

point" or quantitative comparison between motors with and

without broken rotor bars. Combination of this data with

the previous data collected and presented by others may aid

in determining threshold values for fault analysis system
S

decision algorithms. The experimental results presented

show that the existence uf inter-bar currents (currents

which flow through the rotor iron) in squirrel-cage

induction motors mask the existence of a broken rotor bar

and thus, severely limit the ability to detect a broken

rotor bar using stator current measurements. This finding
0

confirms the analysis of inter-bar currents presented by

Kerszenbaum and Landy [91.
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1.5 Outline of Thesis

The material presented in the following chapters is

organized in the same fashion in which the research was

conducted. Chapter 2 starts out with the development of the

system of equations describing the electrical performance

of an induction motor. The assumptions used to develop the

equations are discussed in detail. In addition, the

relationship between the single-phase, equivalent-circuit

model and the system of equations is presented. The

solution to the system of equations is addressed in Chapter

3. The numerical technique and computer simulation program

used to solve the equations are described. Simulation

results (using the parameters of the experimental test

motor) with and without a broken rotor bar are presented.

In Chapter 4, the experimental results using an

off-the-shelf" 3-HP motor with and without a broken rotor

bar are presented, analyzed, and compared to the simulation

results. Finally, Chapter 5 summarizes the results of the

research, discusses the limitations of the analysis, aad

provides some recommendations for follow-on research.
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CHAPTER 2

THEORETICAL DVELOPENT OF SYSTEM

2.1 Discussion of ApDroach

In order to meet the primary objective of this research

which is to detect broken rotor bars using stator current

and voltage measurements, the system of equations

describing the electrical performance of an induction motor

is developed using stator phase currents and rotor loop

currents as state variables. Each stator phase and rotor

loop is described in terms of resistances and inductances.

The forcing functions for the system are the stator phase

voltages. The rotor is described in terms of loops in order

to facilitate the determination of stator and rotor

coupling.

Using classical field theory and a coupled-circuit

viewpoint in which stator phases and rotor loops are

regarded as circuit elements whose inductances depend on

the angular position of the rotor, flux linkages are

expressed in terms of stator phase and rotor loop currents

and inductances. The stator phase voltages are related to

these flux linkages using Faraday's law. The result is a

system of first-order differential equations describing the

electrical performance of an induction motor. The form of

this system of equations is
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[v~t] d [~)+R it)(-
dt

where

[v(t)]= voltage vector

[CA(t)]= flux linkage matrix = [L(G(t))] [i(t)]

[R]= resistance matrix

[i(t)]- current vector

[L(O(t))]= inductance matrix

O(t) = rotor position

This approach is quite general and can be used to

describe the electrical performance of any induction motor,

healthy or failed. In this analysis, a transformation

matrix will not be used to eliminate the rotor-position-de-

pendent elements of the inductance matrix. The use of a

transformation matrix requires the transformation of rotor

currents as well. Since a broken rotor bar will be

simulated by setting the rotor bar current to zero, the use

of a transformation matrix is undesirable.

2.1.1 Assumptions

Several assumptions are made in order to reduce the

complexity of the analysis. Although each assumption

reduces the generality of the analysis, the goal of

understanding the effect of a broken rotor bar on stator
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currents can still be achieved. It should be noted that

each assumption can be relaxed and the system of equaticns

can be developed using the method presented. The following

paragraphs summarize the assumptions used and their

consequences.

1.) The stator windings are balanced and sinusoidally

distributed. Thus, the airgap field produced by stator

phase currents consists of a fundamental space

component only. In addition, only the fundamental

space component of the airgap field produced by rotor

currents will couple with the stator windings.

2.) With the exception of a fault, the rotor cage is

symmetrical. This dictates that the spacing between

adjacent rotor bars, as well as the rotor radius, is

constant over the surface of the rotor. In addition,

rotor skew is neglected.

3.) The rotor cage end rings are perfectly conducting

disks. Thus, no axial flux is produced and the sum of

the rotor loop currents is zero. Thus, end effects are

neglected.

4.) The rotor bars are insulated from the rotor iron.

Current flows only in the rotor bars and thus,

inter-bar currents which flow through the rotor iron

laminations are neglected.
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5.) The airgap dimension is small compared to the mean

rotor radius. Thus, the airgap magnetic field is

assumed to be only radially directed and to be only a

function of azimuthal angle.

6.) Only the fundamental space component of the airgap

field produced by rotor currents will be considered.

Higher order space harmonics will be neglected since

the stator windings couple with the fundamental

component only.

7.) The mechanical speed of the rutor is consta..t. The

system of equations describe the electrical perfor-

mance of the motor and the mechanical dynamics are not

included. Rotor speed will be considered an input to

the system.

8.) The magnetic backing material on the rotor and

stator has infinite permeability. Thus, the magnetic

field intensity is confined to the airgap region. In

addition, saturation effects are neglected.

2.2 Development of Equations for an N-bar Rotor

Before proceeding with the development of the system of

equations some background information is necessary. The

following paragraphs describe the nomenclature used, the

geometry and coordinate system, and the definit-Dn of a

rotor loop.
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Wherever possible, an attempt has been made to use

"standard" symbols for parameters throughout this thesis.

The following list of symbols is provided to avoid

confusion which juay arise due to the numerous variations of

"standard" symbols. The appropriate MKS units are included

in brackets following the definition of each symbol.

List of Symbols

r.O,z = cylindrical coordinates for stator reference
frame

r',G', z"= cylindrical coordinates for rotor reference
frame

: magnetic flux density [Wb/m 2 ]

B, radial component of flux density [Wb/m 2 ]

d : active length of machine [m]

r electric field intensity [V/mi

g - airgap length [m]

ff magnetic field intensity [A/m]

H, radial component of magnetic field intensity
[A/m]

[ electrical current vector [A]

I :electrical current [A]

- current in stator phase a,b, or c [A]

- current in rotor loop n [A]

* - current in rotor bar n [A]

I : current density [A/mI]

: surface current density [A/m]

K, : axial component of surface current density [A/w]
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[LI - inductance matrix [H]

LLrbn leakage inductance of rotor bar n [H]

LL, : leakage inductance of a stator phase winding [HI

L,..nmL.. mutual inductance between windings m and n [H]

M = mutual inductance coefficient for a rotor loop
and stator phase winding [HI

N, total number of turns of a atator phase winding
[turns]

na.b.c - stator winding azimuthal turns density [turns
per unit azimuthal length]

NRg =number of rotor bars

p = number of machine pole-pairs

[R] resistance matrix [Ohms]

[RR] - effective resistance matrix [Ohms]

R9 mean rotor radius [m]

Rbi - resistance of rotor bar n [Ohms]

R, resistance of a stator phase winding [Ohms]

s = rotor sl:>,

t - time [sec]

[v] voltage vector [VI

V a.b.c - stator phase a,b, or c voltage [V]

0, = electrical angle [radians]

0. angular displacement between stator and rotor
reference frames at t:O [radians]

[A] z flux linkage matrix [Wb]

'ka.b.c :stator phase winding a,b, or c flux linkage [Wb]

XY : rotor loop n flux linkage [Wb]

*0 : permeability of free space [H/m]
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S= stator electrical frequency frad/secj

m = rotor angular velocity [rad/sec]

w r  z rotor electrical frequency [rad/sec]

The standard definitions for electrical angle, rotor

slip, and rotor electrical frequency are shown below.

Unless otherwise specified all angles will be given in

mechanical degrees.

electrical angle: 0,- (2-2)

rotor slip: W-pa( -s= (2-3)

rotor frequency: w, -W- PW -sw (2-4)

The coordinate system chosen to describe the stator and

rotor is a cylindrical system. The stator is described

using a fixed coordinate system (r,Gz). The rotor is

described using a moving coordinate system (r'.0'.z') which

travels at an angular velocity of w. with respect to the

fixed coordinate system. Defining 9. as the angular

separation between fixed and moving systems at t=O, a point

on the rotor in terms of the stator reference frame is

described by
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r r

Z=z "  (2-5)

e= e'+ WMt+e,

STATOR

R~T5g

Figure 2-1. Coordinate system.

As stated previously, the rotor is described in terms 0

of loops. Figure 2-2 shows a section of the rotor cage. A

rotor loop can be thought of as a current path whicK-

includes two adjacent rotor bars and the portions of the

end rings connecting the bars. Thus for an N,,-bar rotor,

there are NRI rotor loops (N.i adjacent single-turn coils).

Since the rotor is symmetric, the separation between 9

adjacent rotor bars is 2x/NR, radians.
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ROTOR LOOP *"-END RING

ROTOR i z
BAR I

I I

END RING - -  ROTOR BARS

Figure 2-2. Rotor loop description.

Rotor loop current is defined as the current flowing in

the single-turn coil (see Figure 2-3). The actual rotor bar

current can be expressed in terms of rotor loop currents.

For example, the current in rotor bar n is given by

i bar .n i , - . (2 - 6 )

Each rotor loop current produces an airgap flux which

couples with each stator phase winding and every other

rotor loop. In addition to this coupling, every rotor loop

couples with the two adjacent rotor loops due to the

resistance and leakage inductance of the common rotor bars

as shown in Figure 2-3.
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1barl br

LLrbl LLrb2 LLrb3

Rrbl Rrb2 rb 3

Figure 2-3. Coupling between adjacent rotor loops.

In order to derive the system of equations, two steps

are required. First, the flux linkage of each winding

(stator phases and rotor loops) must be expressed in terms

of stator phase and rotor loop currents and inductances.

Second, a relationship between the flux linkages and

forcing functions (stator phase voltages) is required. The

flux linkage of each winding will be determined using the 0

principle of superposition. That is, the total flux linked

by a winding is simply the sum of the flux linkages due to

each current flowing in the system. The flux linkages can

be related to terminal voltages using Faraday's law. In

mathematical terms for a system with m windings we have

S
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X. TL.. i. (2-7)
v

d

where

X.-flux linkage of winding n

L.- mutual inductance between windings n and m

i.-current in winding m

v terminal voltage of winding n

R,- resistance of winding n

-i=current in winding n

For an induction motor with Nts rotor bars, there are N,.

+3 windings (N15 rotor loops plus 3 stator phase windings).

Since there is no net axial flux, the sum of the rotor loop

currents is zero and the system of equations can be reduced

from N,+3 to NR,+2. The following sections detail the

calculation of inductances for each winding. The

calculations are broken down into three sections; stator

relations (involving stator terms only), rotor relations

(involving rotor terms only), and stator-rotor relations

(coupling between the rotor and stator).

2.2.1 Stator Relations 0

Each stator phase winding is assumed to be represented

by a sinusoidally distributed surface winding, separated
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by 120 electrical degrees from the adjacent phases. For a

v pole-pair machine, the stator winding azimuthal turns

density is given by

N6

n.()=- cOsp6

nb(O)-Icos p- 2 (2-9)
2RO j 3

- Cs pO+ 2

Open-circuiting phases b and c and exciting phase a

with a current I, a surface current is produced on the

stator according to

NJ
K, - cospO (2- 10)

2RO

Choosing a contour that crosses the airgap at 0=0 and

: =+X/p, the radial magnetic flux density can be

determined using Ampere's law; see Figure 2-4. Thus,

* IT-dl- if .da (2- 11)

H,(O)g-Hr( + n/p)g - 06 'PKzR,dO-- N sinpo (2- 12)
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0 0

STATOR

z

CI I
I AIRGAP

ROTOR

0

Figure 2-4. Integration contour on stator.

Using the symmetry relation -

H,( -- sinp¢ (2- 13)

2gp

B,(O)- y sinpo (2- 14)
2gp

Since 0 is an arbitrary angle, the radial flux density

in terms of 0 is

B,(0)- - sinpO (2- 15)
2gp
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The flux linked by a full-pitch, single-turn coil can

be calculated by integrating over the surface enclosed by

the coil. Note that the surface enclosed by a coil for all

flux linkage calculations is obtained by traversing the

coil in the direction of positive current flow, i.e.,

current flows in the z direction at 0 and in the -z

direction at O.x/p. For the coordinate system being used,

the normal component of this surface is in the -r

direction. In this case,

.( -f f,/ .ida

- d 0sinpOR dO (2- 16)0 2gp

IoNdR I
9p2

Again, since 0 is an arbitrary angle, the flux linked by a

coil extending from angle 0 to angle GOs/p is

0 ()= , 1  ospO (2- 17)
gp 2

The total flux linked by the stator phase windings can

be calculated by integrating the number of turns times

this flux linkage over the winding surface. This results

in
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). -PJ n,(O)'t'(O)R,d6

ponN~dR, l
- 4gp2  

(2- 18)

6 6a/3p

P "PJ2/3, nb(0)-P(9)R dO

--p~aN2dRI (2- 19)

8g p2

p - I/3 n,(O)O(O)Rd@

-Pn,2dRII (2-20)
8gp

2

From these flux linkages, the inductances of the stator

phase windings due to a current in the phase a winding are

Lea + LL.2 (2
I .= 4gp

X - ", tN,

- 2 (2-22)

L 8gp L

A, -ponN2Rg d

Lc T 8(2-23)

where LL. is the leakage inductance of phase a representing

additional phase a flux linkages not accounted for by the

space fundamental component of the airgap flux.
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Defining the inductance due to the space fundamental

component of the airgap flux produced by a stator phase

current as the stator phase airgap inductance (L,), the

following relations are obtained

L.. - Lb - L, - Ls+ LL. (2-24)

Lab m Lc = Lba " Lbc a L c Lca 0 L (2-25)

where

Ls d (2-26)
4gp

2

2.2.2 Rotor Relations

Applying a current I to rotor loop 1 and open-circuit-

ing all other rotor loops, the radial magnetic flux

density can be determined using Ampere's law and Gauss's

law. From Ampere's law, it can be shown that the radial

flux density is a constant (Ba) in the region 00"9'2xlNB

and that the radial flux density is a constant (B,) in the

region 2x/Naa 50'52x (see Figure 2-5). Using Gauss's law and

noting that there is no axial flux, a relation between

these constants can be calculated. In this case
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j fj B IRgdO'+ 2a B2 R d" 0dz-O (2-27)

B, = -(Np8 -I )B2  (2-28)

Choosing a contour which crosses the airgap and

encloses rotor bar 1 (see Figure 2-5), the radial flux

density can be determined from Ampere's law. Following

this analysis,

STATOR

AC I AIGPr13, B2 13, 9

ROTOR

0 2M

Figure 2-5. Integration contour on rotor.

I
H2- H=- (2-29)

0 g

Using B=jtH and equations 2-28 and 2-29, B: can be found as
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B I (/0INR it (2-30)
gN

Since each rotor loop is a single-turn coil, the flux

linkages can easily be determined. In general,

A,~ wj BT(G')(-Rg)de'dz (2- 31)

for rotor loop 1, this yields

klft2 n p d R 91 (NRB- 1 2-2
Ar 1 - gNP (32

and for all other rotor loops this yields

- nrnd (2-33)
gNpb

From these flux linkage values the rotor loop

inductances are determined to be

A,,r 21/,-dN8] 4gN
2

r + LLrb2 (2-34)

IrJr -21p~d LgNb (2-35)
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A, , -21l/pR gd
L r2, = L trb2 (2-36)1 gN B

where LL, b and LL,.2 are leakage inductances of the rotor bars

accounting for flux linkages not accounted for by the

airgap flux distribution.

For the other rotor loops (n=3,4,5 .... Nit-1)

k,, -2nMoR~d
L =-2 0  (2-37)

1 gNkp

From equations 2-34, 2-35, and 2-36 one can see how

the leakage inductance of each rotor bar is associated

with the two adjacent rotor loops. Thus, for each rotor

loop, the leakage inductances of the two rotor bars which

make up the rotor loop are included in the "self

inductance" term. For the two adjacent rotor loops, the

leakage inductance of the common rotor bar is included in

the "mutual inductance" term.

Defining the inductance due to the airgap flux

produced by a rotor loop current as the rotor loop airgap

inductance (L,), the relations
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Lr rn Ls + L-Ltb + LLrb(nf.l) (2-38)

ka,,.,) LR(N _ L-L) bt. (2-39)

L - "(NR - I ) Lrba (2-40)

Lrr,- "or mo n,nal (2-41)
(NAB - 1 )'

are obtained where

L pRd =1(2-42)

gNPB

2.2.3 Stator-rotor Mutual Relations

From section 2.2.1, the radial flux density in the

airgap due to a current I in stator phase a is

B(O) sinpO (2-43)

2gp

To determine the flux linked by a rotor loop, this

flux density must be transformed to the rotor frame of

reference. In the rotor reference frame the radial flux

density is
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B,(O2)-g N sinp(O'+w wt +0o) (2-44)

The flux linked by a rotor loop is

Sf r. B1(0') R)dO'dz (2-45)0', J2x(n-| )/IM B (O )( R

gp= sin sin p 1 0

The mutual inductance between phase a and rotor loop n is
S

gp' si s WO,) (2-46)

Similarly, for currents applied to stator phase b and c,

the results are

Lrgb - -j sin Nisin p(NI at*o- (2-47)

Lr = P I sin N FIB sin N tB 32+'- (2-48)

Using the relation L.=L . and defining M as the

constant coefficient of the mutual inductance between a

stator phase and rotor loop, the relations
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((2n- 1 )it
Lr-a Lam M sinl p (2-49)

L,, Lb,, -Msin (p((2nI) .wm t+O0 - (2-50)

Lrc L,- M sin (P(( 2 1 ) +.t+,*)+2) (2-51)

are obtained where

M 2NRd n (2-52)gp 2

2.2.4 Overall System of Equations

Using the relations derived in the previous sections,

the flux linkages for the system can be expressed in

matrix form

(A]= (I~l[] (2-53)

where

b

] ,(2-54)
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Laa Lab L 4. L !.. L arm L

Lba L Lb, Lbl ... LbrN fB

[L]= (2-55)

L , s a L , . f a b L , ? N ot e L , . , , . .. L ', , , N , 4 o

fi'a

ib

[I] ' lri (2-56)

* irNRB

The flux linkages are related to the stator phase voltages

by Faraday's law. For example, applying Faraday's law to

stator phase a, the following is obtained

-va+R~i" -- (2-57)
dt

Similarly, for rotor loop n (whose net voltage is zero

because it is shorted), Faraday's law yields

(R rb+ Rrb(o.,))io-Rrbir(o,-.) - R rb (..,i)(n.) - d Kr (2-58)
dt
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Defining a resistance matrix, [R), and combining the above

results, the system of equations can be expressed as

[v]-[L]- + [R]+d -L-[i] (2-59)
dt dt

where

V,

[v]- 0 (2-60)

0

[R] ([Rsa, [0] 1) (2-61)

[R S,,,] R 0 (2-62)
0 0 R.

R bi + R rb2 -R b2 0 ... 0 -R rbI

R r2 Rb2 +R h -R rb3 0 0

RR

-R bi 0 0 R tb-R A RB R. AD+R R

(2-63)
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Once again defining a new matrix, the system of equations

can be expressed as

[v ]- [L-+[RR][i] (2-64)
dt

where

d[L]
[RR]-[R]+ L -effective resistance matrix (2-65)dt

The equations for the elements of the voltage,

inductance, and effective resistance matrices are given in

Appendix A.

The system of equations describing the electrical

performance of three-phase induction motor has been

developed. The elements of the inductance and effective

resistance matrices are described in terms of the machine

geometry (airgap active length and width, slot distribu-

tion, rotor radius, etc.) and electrical parameters

(number of turns for a stator phase winding, rotor bar

resistance, and leakage inductances). Thus, in order to

solve the system of equations for stator phase and rotor

loop currents, these quantities must be known.
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2.3 Relation Between System and Single-phase Model

The object of this section is to derive a relationship

between the standard single-phase, equivalent-circuit model

of an induction motor (Figure 2-6) and the system of

equations developed in the preceding section. From this

relationship (equations 2-100 to 2-106 of this section),

the values of the parameters required to solve the system

of equations can be calculated using the single-phase

circuit model parameters.

R j C.oL 1  j coL 2

RI j LI

a 2

V
S j (A) L 2

Figure 2-6. Single-phase equivalent-circuit model for an
induction machine.

The parameter values of the single-phase circuit model

can be obtained from the results of a no-load test, a

locked-rotor test, and measurements of the DC resistances 9
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of the stator phase windings. Section 9-6 of reference [121

provides a detailed discussion of the standard test

procedure and calculations required to obtain the

equivalent single-phase circuit parameters for a

three-phase induction motor.

In order to derive a relationship between the system of

equations and a single-phase equivalent circuit model, some

basic assumptions are necessary. First, the rotor cage is

symmetric. Thus, each rotor bar is assumed to have the same

resistance (M,.) and leakage inductance (L). Second,

balanced currents are assumed in both the stator phase

windings and rotor loops and are given by

i;, = Icosw t (2-66)

ib-Icos(Wt- - .) (2-67)

-= cos t- 2 (2-68)

/(n-I1)2r

i- , Cos( Wt+ -  N) (2-69)

where 0 is the phase angle of rotor loop 1 current with

respect to the stator reference frame at t=O.

Using these assumptions and the system of equations,

the flux linkages for stator phase a and rotor loop 1 are

given by the following relations
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I,, ( Ls+L., )I,coswt

,+ FCOB (wt+O+ -4 q 2-02 NR2 (2-70)

X 3M. C pit iH
Xj 2~" Njtp60 - -I

+ (( i + 4LLbsin2 (-'- 2))Icos(w, t+) (2-71)

The terminal voltage relations for stator phase a and rotor

loop 1 are

dA

va + RdItcoswt 
(2-72)

OM--Xt 4R, sln -9- 1 Co s r( wt+) (2-73)
d t r k.Np8 I

Defining the variables in complex form according to

X. - R@{ A exp( jw t)) (2- 74)

i,= Re{fsexp(jw t)} (2-75)

v. =Re{V.exp(jw t)) (2-76)

,,- Ro{a2, exp( jw, t)} (2-77)

i, - Ro(T, exp(jiwt)} (2-78)

and also defining a new rotor loop current in order to

eliminate phase shifts
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~A nle P0P.+" (2-79)
(( ,))I^,TexpO jp0NRe 2 2-9

the terminal voltage relations become

V. (3Ls + LLI TS+jw MN A + R,6 , (2-80)

Oj .. 23 'i  [ N " L  ( 'P)^

-- L i +"4 LL,,,Sin 2 NJAR

S-- TWAR (2 - 8 )

s e

Now, in order to transform the rotor loop equation into

an equivalent stator phase, a stator-equivalent rotor

current, 12t is defined. This stator-equivalent rotor

current is defined to be the magnitude of the current

required in the stator windings (under balanced three-phase

conditions) to produce the same space fundamental component

of airgap flux as is produced by rotor loop currents of

magnitude IAl. This corresponds to the equivalent rotor

current I. of the single-phase, equivalent-circuit of Figure

2-6.

The flux linked by stator phase a due to the space

fundamental component of airgap flux produced by balanced

rotor loop currents of magnitude ),i is

A.0 N 2. . (2-82)
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The flux linked by stator phase a due to the space

fundamental component of airgap flux produced by balanced

stator phase currents of magnitude 1, is

3LsI2
A at 2 (2-83)

Since the airgap flux must be the same for these currents,

the following relation between a rotor loop current and the

equivalent stator phase current is obtained

IAR = M 12 (2-84)

Using this relation to eliminate IA, equations 2-80 and

2-81 become

v,.= ~ 3LT 2 R
2 R (2-85)

.3M , NpL, + 4 Lpbsin 2 ( 3Ls)T

0 NR- !) N j)/ M Np,

4R b sin' I ( 3Ls T2 (2-86)
S (F)M NJR

Multiplying each term in equation 2-81 by the factor

L,/M the following result is obtained
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3L N L + 4L (siNn (N3 T
O-jW 2  NAB,,N )4MISiI J'N 2N.

4 RbSin ( (2-87)
s M 2 N ,B

The voltage relations for the single-phase, equiv-

alent-circuit model shown in Figure 2-6 are given by

equations 2-88 and 2-89 below

V. = jw L L 1 + jw L212 +R1 8  (2- 88)

0 = a) L AT.* jw(L,2 + L,)T2+ T2 (2-89)

By comparing the terms in equations 2-85 and 2-87 to

the terms in equations 2-88 and 2-89, the following

relations are obtained

R,=R, (2-90)

L, - LL. (2-91)

3L6

L2" N -;) +4LLbsin 3L -L2 (2-93)
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R 4Rrb )sin p (2-94)s N MFN j

From the definitions of L,, L., and M given in the

previous sections, the relationship between the sin-

gle-phase, equivalent-circuit model parameters and the

actual machine geometry and electrical parameters is

RI-R, (2-95)

L LLS (2-96)

(3)ttoa N 2 R 9d

L F. (2-97)

3rt2N2

('UNR)d L (2-98)

R 2- 4NRI R't (2-99)

From the equations for [12, L2, and R2, one cannot

explicitly determine the resistance and leakage inductance

of a rotor bar. To determine these values the number of

rotor bars and either the geometry parameters (R,, d, and
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g) or the number of stator winding turns are required. The

number of rotor bars can be determined from visual

inspection or possibly from test methods discussed by

Hargis et al. (8]. For example, one could use stator frame

vibration frequencies or rotor slot product frequencies

present in the stator phase currents. However, determining

these other parameters will require disassembling the

machine, removing the rotor, and measuring the rotor

diameter and length, stator diameter, and number of turns.

Obviously, this is undesirable.

Because there is no requirement to determine rotor

currents expiicitly (i.e., they can't be measured

directly), it is quite sufficient to deal with equivalent

rotor currents as seen from the stator windings. This will

simply result in rotor currents which are scaled by a

stator-rotor turns ratio and has the effect of rendering

the choice of N, totally arbitrary. By arbitrarily choosing

a value for the number stator phase winding turns, the

rotor loop currents will be scaled by the ratio of the

actual number of turns to the arbitrary number of turns

while not affecting in any way the value of stator currents

or voltages predicted by the model. Although this may not

be entirely obvious, a simple example will illustrate the

point.
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EXAMPLE:

Given: A 3-phase, Y-connected, 100 V (line-to-neutral), 60

Hz, 2-pole induction motor with a 10-bar squirrel-cage

rotor has the following single-phase, equivalent-circuit

parameters

R, -I.012 L, O-.005H L12 - 0.05H

L2_ 0.005H R 2 -0.50

The machine is operating at a rotor slip of 0.1

Equivalent-circuit model solution:

From equations 2-88 and 2-89, the magnitude of the stator

phase and equivalent rotor currents calculated are

1, -)4.961 A 12- 13.222 A

System of equations solution:

a. Assuming N,=I, the parameters of the system of equations

are (calculated using equations 2-90 to 2-94)

R,- 1.0 LL, -0.005H Ls- 0.0333H M-0.0131H

R, -0.676n L,,.-O.0045H L,-O.024H
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The magnitude of the stator phase and rotor loop currents

calculated from equations 2-80 and 2-81 are

1,- 14,961 A IA 10.082 A

Using equation 2-84, the stator-equivalent rotor current is

12 -13.222 A

b. Assuming N= 10, the parameters of the sjstem of

equations are (calculated using equations 2-85 to 2-89)

R- I12 LL, 0.005H Ls - 0.0333H M-0.0013] H

R,b 0.00676f2 LLb - 0.000045H LF, 0.00024H

The magnitude of the stator phase and rotor loop currents

calculated from equations 2-80 and 2-81 are

I, -14.961 A Al 100.8 2  A

Using equation 2-84, the stator-equivalent rotor current is

1,- 13.222 A
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The results of (a) and (b) above show that the value of

the stator current calculated using the system of equations

is independent of the number of stator turns arbitrarily

chosen. Although the rotor loop current calculated is

proportional to the number of stator turns, the

stator-equivalent rotor current is also independent of the

number of stator turns arbitrarily chosen. Thus, the number

of stator turns can be chosen arbitrarily without affecting

the values of the stator currents calculated using the

system of equations developed.

Finally, assuming the number of rotor bars is known and

arbitrarily setting the number of stator turns to one, the

parameters required for the system of equations can be

calculated from the single-phase, equivalent-circuit model

parameters.

R,- R (2-100)

LL - L, (2- 101)

Lsm (2L2 (2- 102)

M" 8 sin L1 2  (2- 103)
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. 4N 'RB
R, 3 R (2- 104)

( [( 2

LLb ' L 2- [ n 3 L 2 ( j (2-105)

(16(NpB- 1 L 12 (2- 106)
3NRB L2

As a final check of the relationship between the system

of equations and the single-phase, equivalent-circuit

model, a comparison of the power transferred across the

airgap will be made. The results must be identical.

The airgap power for the system of equations is given

by

P AGsy N pF ,ban12 R R t ( - 07

bar 0E to r ii- 1)2 1 7

'bar -= in (3-l)

-2lsin(Kjsin wt+O( N FPB (2- 108)

72



41sin P(2- 109)

P^ A. CY 4 N 1 12 sin 2( p Rrb (2- 110)
A (N~t) s

The airgap power for the single-phase circuit model is

(4NpBIAP
1 51- sin N (2- 112)

R 2 = 3 R,b (2- 113)

P A el w 4 NBl sin RI (2- 1 14)
A .Np3) s s0

The airgap power is identical for both the circuit model

and system of equations. Thus, the relationship between the

system of equations and equivalent-circuit model is valid.

0
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2.4 Sunary

The system of equations describing the electrical

performance of a three-phase induction motor has been

developed using stator phase and rotor loop currents as

state variables. Each stator phase and rotor loop is

described in terms of resistances and inductances. The

stator phase voltages are the driving functions for the

system. The assumptions used to develop the equations

impose limitations on the ability of the system to

accurately model any given induction motor. However, each

assumption can be relaxed and the corresponding system of

equations can be developed using the method presented.

A relationship between the standard single-phase,

equivalent-circuit model for an induction motor and the

system of equations has been derived (equations 2-100 to

2-106). With this relationship, the electrical and

geometrical parameters needed to solve the system of

equations can be easily calculated from the single-phase

circuit model values. This relationship is useful in that

the solution to the system of equations can be obtained

without disassembling the motor, removing the rotor, and

physically measuring these parameters. Thus, by performing

the standard no-load, locked-rotor, and DC tests and

knowing the number of rotor bars, the system of equations

can be used to simulate any three-phase induction motor,

subject to the limitations resulting from the assumptions.
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CHAPTER 3

COPUTER SIMULATION OF SYSTEM

3.1 Requirement for a Simulation Routine

Due to the number and complexity of the system of

first-order differential equations developed in Chapter 2,

a numerical integration routine must be used to solve for

the time-varying stator phase and rotor loop currents. In

general, numerical integration methods are used to solve

systems of equations which are expressed in the following

form

d[x(t)- [A][x(t)]+ [B] (3- 1)

dt

There are a variety of numerical integration procedures

and computer simulation programs available which can be

used to solve the above system of equations. The most

widely used integration procedures are Euler's, Milne's,

Runge-Kutta, and Hamming's methods. These methods, which

are described in references [13,14,15,16,17], are typically

used to solve initial-value problems. Initial-value

problems are problems in which the values of the dependent

variables and necessary derivatives are known at the point

the integration begins. These various procedures can be

easily implemented on computers. Several "canned" computer
iI

programs such as SIMNON, a nonlinear system simulation
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program developed by the Department of Automatic Control at

Lund Institute of Technology in Lund, Sweden, and

PRO-MATLAB, a matrix computation software package by The

MathWorks, Inc., Sherborn, MA, either use these procedures

inherently or can be programmed readily to use these

procedures to solv" the system of equations given above.

The system of equations describing the electrical

performance of an induction motor is expressed in the form

(L(t)] d [ i ( t ) 
- [RR(t)][i(t)]+ [v(t)] (3-2)

dt

In order to use a numerical integration procedure to solve

for the time-varying stator phase and rotor loop currents,

the system of equations must be expressed in the form shown

in equation 3-1. Comparison of equations 3-2 and 3-3 shows

that the inductance matrix in equation 3-2 must be

inverted. Since some of the elements in this matrix are

time-dependent, the matrix must be inverted for each value

of time. This inversion is always possible unless the

leakage flux is defined to be zero, in which case the

inverse of the inductance matrix does not exist. With the

inductance matrix inverted, the system of equations can be

expressed in the required form i.e.,
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d[i(t)] [L(t)]'[RR(t)][i(t)]*[L(t)]-'[v(t)] (3-3)

dt

As a result of the inductance matrix inversion

requirement, SIMNON could not be used to solve the system

of equations. On the other hand, PRO-MATLAB could be

programmed to invert the inductance matrix and numerically

integrate the system of equations. For an induction motor

with a 45-bar rotor, using a fourth-order Runge-Kutta

integration procedure, a total CPU run time of five hours

is required on the LEES Vax-750 to simulate 100 time steps

using PRO-MATLAB. The major cause of this lng run time is

the inductance matrix inversion.

In order to reduce the CPU run time required to

simulate the system, a FORTRAN program was developed. Using

this program on the LEES Vax-750 for the 45-bar rotor, 100

time steps can be simulated in five minutes (approximately

60 times faster than PRO-MATLAB). In addition to the

FORTRAN program, which solves the system of equations for

the time-varying stator phase and rotor loop currents, a

PRO-MATLAB fast Fourier transform routine is used to

determine the frequency components of these currents.

3.1.1 FORTRAN Simulation Program S

From the preceding discussion, the computer simulation

program must be capable of performing two major steps.

First, for each value of time, the inductance matrix must

77



be inverted. Second, the resulting system of equations,

namely equation 3-3 above, must be numerically integrated

to determine the time-varying values of the stator phase

and rotor loop currents. Cholesky's method (also known as

Crout's method) with partial pivoting is used to invert

the inductance matrix. This method was selected over the

more common Gauss elimination and Gauss-Jordan elimination

methods since it is more economical with regard to

r-omputer time and memory allocation [13]. Partial pivoting

is used to improve the accuracy of the matrix inversion.

Section 3-4 of reference [13J describes the theory of

Cholesky's method. A fixed-step, fourth-order Runge-Kutta

procedure is used to numerically integrate the system of

equations. This procedure was selected for several

reasons. The Runge-Kutta method is a single-step,

self-starting procedure (i.e., for each integration time

step, only the previous value of the dependent variables

is required). This procedure is relatively easy to program

and has a small per-step error (on the order of the step

size to the fifth power). One disadvantage of this method

is the requirement to perform four function evaluations

per step. Section 6-5 of reference [13] discusses the

theory, implementation, and error analysis of the

fourth-order Runge-Kutta integration procedure.

The FORTRAN simulation program is divided into six

parts, a main program and five subroutines. Subject to the
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assumptions discussed in Chapter 2, the program simulates

the electrical operation of an induction motor (i.e.,

solves the system of equations for the time-varying stator

phase and rotor loop currents) with either no broken rotor

bars or one broken rotL" bar. A flowchart for the program

is shown in Figure 3-1. The FORTRAN source code and sample

input and output data files are included in section B-i of

Appendix B. The following paragraphs describe the purpose

of each part of the simulation program.

Main program: The main program performs several
S

functions. The primary function is to act as a buffer

and pass data between the subroutines. In addition,

the main program keeps track of the simulation time,

calculates the value of the current vector at the end

of each time step, and writes the results to an

external file.

Subroutine INPUT: This subroutine is called once by

the main program. It performs two functions. First, it

reads the data contained in an external input file.

The external input file provides a description of the

machine being simulated. It includes the single-phase,

equivalent-circuit model values, number of rotor bars,

and number of pole-pairs for the machine, the rotor

slip, and the supply voltage and frequency. The
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initialize variables

start simulationlo

calculate fvj-[RRIil
DRIVE
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calculate intermediate current
[ESTJ=[i ]+RK2*inc/2

CURRENT

calculate (vI-(RRI[EST]
DRIVE

third R-K factor
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fourth R-K facto
RK4=d/dt[ ii

CHL SKY
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Figure 3-1.(cont.) FORTRAN simulation program flowchart.
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simulation time parameters (step-size and stop time)

and a broken bar flag are also included in the input

file. Second, using the relations derived in section

2.3, the coefficients for the inductance and effective

resistance matrix elements are calculated and passed

to the main program.

Subroutine MOTOR: This subroutine is called for each

value of time. It performs two functions; it

calculates the elements of the voltage, inductance,

and effective resistance matrices, and it reduces the

system of equations. For the voltage vector, a

balanced three-phase supply is assumed. The inductance

and effective resistance elements are calculated using

the relations given in Appendix A. For both a "no

broken bar" simulation and a "one broken bar"

simulation, the system of equations can be reduced

from N,+3 to Npa+2 since the sum of the rotor loop

currents equals zero. This condition is imposed on the

system of equations by eliminating rotor loop Ng,

current. Column Nx,+3 is subtracted from columns 4

through N,,+2 and column N,,+3 is deleted from the

inductance and effective resistance matrices. Next,

row Nj,+3 is deleted from each matrix to complete the

reduction. In addition, for a "one broken bar"

simulation (assume rotor bar N,,-1 is broken), the
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system of equations can be reduced again by setting

rotor loop N,,-I current equal to rotor loop N,,- 2

current. For this condition, column N",+2 is added to

column N,+l and column N,.+2 is deleted from the

inductance and effective resistance matrices. Fara-

day's law is satisfied by adding row N,,+2 to row NRR+l

and deleting row N,,,+ 2 from each matrix to complete the

reduction.

Subroutine CURRENT: This subroutine is used to

calculate the intermediate values of the current

vector for the Runge-Kutta method.

d[I]
[EST]-[I]+ Jt (3-4)

d t

where

[EST]= intermediate value of current vector

[1]= initial current vector

Subroutine DRIVE: The purpose of this subroutine is to

calculate the "driving function" for each value of

time and current, i.e.,

drivinq function=[V 1 -[RR][lJ 3- 5)
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Subroutine CHLSKY: This subroutine performs the

inductance matrix inversion to calculate the deriva-

tive of the current vector for each time value. For

the fourth-order Runge-Kutta procedure, this calcula-

tion is performed four times per time step.

The program can be modified, if desired, to cimulate a

variety of operating/fault conditions. For example, an

unbalanced voltage supply can be simulated by simply

changing the appropriate statements in subroutine MOTOR.

Similarly, the effects of an increase or decrease in the

impedance of one or more rotor bars can be simulated by

modifying the appropriate statements for the elements of

the inductance and effective resistance matrix in

subroutine MOTOR. In addition, multiple broken rotor bars

can be simulated by repeating the system reduction scheme

in subroutine MOTOR for each broken bar.

3.1.2 Determining the Time Step

An appropriate time step for any simulation can be

determined using a "trial and error" procedure. Basically,

a series of simulations are run with increasing values of

time steps and the output results are compar-d. The

largest time step that gives "good" results (i.e., same

output values as those using a smaller time step) is an

.ppropriate time step.
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Another method which provides an estimate for an

appropriate time step and also provides an indicatiu, uf

the system stability and of the time required for the

solution to reach a steady-state value is to determine the

eigenvalues of the system when the rotor speed is equal to

zero. From equation 3-3, the eigenvalues of interest are

those of the matrix -[L]-[RR]. For a rotor speed of zero

(s=1.0), this matrix is time-invariant and the system is

stable if all the eigenvalues are negative. The inverse of

the magnitude of the largest eigenvalue represents the

"fastest" transient time for the system and thus provides

an estimate for the largest time step. Similarly, the

inverse of magnitude of the smallest eigenvalue represents

the "slowest" transient time for the system and thus

provides an estimate of the time required for the solution

to reach steady-state. PRO-MATLAB, which has a built-in

eigenvalue function, can be used to determine these

eigenvalues. A PRO-MATLAB routine which calculates the

system eigenvalues for s=1.0 and the eigenvalues for a

3-bar rotor and a 45-bar rotor induction motor are

included in section B-2 of Appendix B.

3.1.3 Running the Simulation Progras

In order to start the simulation program, the stator

phase and rotor loop currents must be initialized. Since

the steady-state values of the stator phase and rotor loop

currents for a "one broken bar" case are not known, the
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currents are set to zero initially and the simulation

program runs until steady-state conditions exist. For the

3-bar rotor and 45-bar rotor induction motors simulated,

steady-state conditions were reached after approximately

0.2 seconds of simulation time.

3.1.4 Processing the Simulation Output

In order to determine the harmonic content of the

time-varying stator phase and rotor loop currents, a

transformation from the time to the frequency domain is

necessary. This transformation is accomplished by taking

the fast Fourier transform (FFT) of the time-varying

stator phase and rotor loop currents. For a broken rotor

bar, the stator phase currents will contain a harmonic

component at a frequency of (1-2s)f (refer to section

1.3). Most induction machines are designed to operate at

small slip values on the order of 0.02-0.05. Thus, the

frequency of this harmonic component is very near the

fundamental frequency (0.9f to 0.96f). To distinguish this

component from the fundamental frequency component using

an FFT routine, a frequency resolution on the order of

0.02f is required. From reference [18], the bin width or

frequency resolution of a FFT for N samples is given by

Af - (3-6)
N
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where

Af = frequency resolution

f,-sample frequency

N=number of data samples

In addition to selecting the proper frequency

resolution, a weighting function, or window, can be

applied to the sampled data to aid in distinguishing

frequency components which are relatively close. Refer-

ences [18,19] provide a detailed description of the fast

Fourier transform and common window functions used, their

properties, and their advantages and disadvantages.

PRO-MATLAB, which has a built-in FFT function, is 1,-ed

to transform the stator phase and rotor loop currents from

the time domain to the frequency domain. A frequency

resolution of 0.3 Hz and a second-order Hanning window

[18] are used to enhance the detection of the (1-2s)f

component of the stator phase current. A sample frequency

of 153.6 Hz and a sample size of 512 data points satisfy

the 0.3 Hz frequency resolution requirement and PRO-MAT-

LAB's requirement for a sample size which is an integer

power of two. The PRO-MATLAB FFT routine and a sample

output file is included in section B-3 of Appendix B.

87



The relation between the magnitude of the FFT using a

second-order Hanning window and the magnitude of the

corresponding periodic signal in the time domain is given

by [18]

IF(w) - N f() (3-7)
4

where

jF(w) = magnitude of FFT at w

f (t) = If (t)fcos(Wt

For the PRO-MATLAB FFT routine, the magnitude of the

FFT is converted to a dB reference scale (for graphing

purposes) using the relation

dB= 20logIF(w) (3-8)

3.2 "Hand" Verification of Simulation

For initial validation and "debugging" of the FORTRAN

simulation program and FFT routine, a two-pole, 3-bar rotor

induction motor was chosen. An exact solution for the

stator phase and rotor loop currents can be calculated by
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hand for this simple machine with either no broken rotor

bars or one broken rotor bar. The exact solutions can be

calculated using the method of undetermined coefficients.

No broken rotor bars: The system of equations for this

case can be reduced from six to four by imposing the

following constraints

i+ i + i.-0 (3-9)

i r + i'r,3 0 (3- 10)

Assuming the following form for the stator phase and rotor

loop currents and substituting into the system of

equations, the unknown coefficients (A,B,C,D) can be

determined.

i,- Ac s wt+Bsinwt (3- 11)

ib-Acos Wt- 2 + Bsin Wct- i- (3-12)

i, C cos(s(A t) + Dsin (s w t) (3- 13)

-2 Cos t- 2g +Dsin swt--2i (3-14)
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The amplitude of the stator phase and rotor loop currents

are given by the following relations

I(60 Hz)" -Ii.l i, /A 2 +B2  (3- 15)

Ir= li, I - li, 2 1 - C 2 + (3- 16)

One broken rotor bar: Assuming rotor bar 2 is the

broken bar, the system of equations can be reduced from six

to three by imposing the constraints given by equations 3-9

and 3-10 plus the constraint

iti w
i
1

2  (3- 17)

Again, assuming the following form for the stator phase and

rotor loop currents, the unknown coefficients can be

determined.

i,- A coswt+ Bsinwt+

Ccos((1-2s)ct)+Dsin((1-2s)wt) (3- 18)

'b Acos( wt- 2+ Bsin wt- 2t+

CcOs((l-2s)wt--)+Dsin((l- 2 s)wt--) (3- 19)
3 3
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it, E cos(sw t)+ Fsin(sw t) (3-20)

The amplitude of the stator phase currents (both the 60 Hz

and (1-2s)f components) and the rotor loop currents are

given by the following relations

1(60 Hz)- mi.(60Hz)H= jij(60Hz)- A2 +B2 (3-21)

I(1-2s)f- i(1-2s)f t iib(I-2s)f l-CI D2  (3-22)

Ii- tiJI- E F2  (3-23)

3.2.1 Three-bar Rotor Simulation

To simulate a 3-bar rotor induction motor, the

single-phase, equivalent-circuit model parameters from the

3-HP experimental motor are used as inputs for the FORTRAN

simulation program. The parameters used for the 3-bar

rotor induction motor are listed in Table 3-1.

Using the method described in the preceding para-

graphs, the exact solution of the stator phase and rotor

loop currents were calculated for various rotor slip

values. Table 3-2 shows the results from these

calculations. The results generated from the simulation

program are shown in Table 3-3.
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PARAMETER VALUE

R, 0.8590 ohms

L, 0.0046 H

L i2 0.0704 H

L2  0.0046 H

R 2  0.5612 ohms

NRB 3

p 1

Input Frequency 60 Hz

Input Phase Voltage 169.71 V

Table 3-1. 3-bar rotor parameters.

The correlation between the exact and simulation

results is extremely good. For all cases, the error

between these results is less than 1%. The absolute error

between the simulation and exact results is shown in Table

3-4.

The close correlation between the exact and simulation

results is demonstrated graphically in Figures 3-2, 3-3,

3-4, 3-5, 3-6. Based on the results presented above, the

FORTRAN simulation program and FFT routine can lbe seen to

accurately solve the syRtem of equations developed in

Chapter 2 for the stator phase and rotor loop currents.
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NO BROKEN BARS ONE BROKEN BAR

SLIP I(60 Hz) Ir 1(60 Hz) I(1-2s)f Ir

Amps Amps Amps Amps Amps

0 6.00 0 6.00 0 0

0.05 14.66 1i.60 9.84 6.39 6.18

0.10 23.98 20.02 15.42 11.53 11.15

0.50 43.85 37.30 10.68 0 4.54

1.0 46.71 39.76 41.58 0 19.88

Table 3-2. 3-bar rotor exact results.

NO BROKEN BARS ONE BROKEN BAR

SLIP 1(60 Hz) Ir 1(60 Hz) I(L-2s)f Ir

Amps Amps Amps Amps Amps

S

0 6.01 0 6.01 0 0

0.05 14.59 11.49 9.81 6.35 6.14

0.10 23.85 19.87 15.37 11.49 11.44

0.50 43.83 37.28 10.68 0 4.54

1.0 46.71 39.75 41.58 0 19.87

Table 3-3. 3-bar rotor simulation results.
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NO BROKEN BARS ONE BROKEN BAR

SLIP 1(60 Hz) Ir 1(60 Hz) I(1-2s)f Ir

% error % error % error % error % error

0 0.17 0 0.17 0 0

0.05 0.48 0.94 0.30 0.63 0.65

0.10 0.58 0.75 0.32 0.35 0.36

0.50 0.05 0.05 0 0 0

S1.0 0 0.03 0 0 0.05

Table 3-4. Error between exact and simulation results.

For this simple machine, a broken rotor bar

represents a significant change in the rotor magnetic

circuit. As a result of this change, the stator phase

current is also significantly altered. The drastic change

of the stator phase current (in both the time and

frequency domain) for a rotor slip of 0.05 is shown in

figures 3-7, 3-8, 3-9, 3-10.
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3-BAR ROTOR STATOR PHASE CURRENT
SIMULATION vs. EXACT RESULTS

NO BROKEN BARS

50

40

S <30

20

10

0 I

0.00 0.20 0.40 V.,) 1.)0

* ROTOR RITOR

-#- exact values

Figure 3-2. 1(60 Hz) with no broken bars.
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3-BAR ROTOR ROTOR LOOP CURRENT
SIMULATION vs. EXACT RESULTS

NO BROKEN BARS

50

: 30

20 j ,

10

(t

2 d r) 01.7'2 0.80 1.00

100

POTO T <.I'

Figure 3-3. Ir with no broken bars.
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3-BAR ROTOR STATOR PHASE CURRENT
SIMULATION vs. EXACT RESULTS

ONE BROKEN BAR

50

40

<30

20

10 E

0.00 0.20 0.40 0.60 0.80 1.00

1 rnula tion va I Lus
S exact values

Figure 3-4. 1(60 Hz) with one broken bar.
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3-BAR ROTOR STATOR PHASE CURRENT
SIMULATION vs. EXACT RESULTS

ONE BROKEN BAR

50

<40

z 30

09

4 10

0<
0 9.

0.00 0.20 0.40 0.60 0.80 1.00

ROTOR SLIP

E: simulation values

e exact values0f

Figure 3-5. i(1-2s)f with one broken bar.
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3-BAR ROTOR ROTOR LOOP CURRENT

SIMULATION vs. EXACT RESULTS
ONE BROKEN BAR

50

r 40

.~30

20

200

0.00 0.20 1,. Gi 0.8n i .00

I 'VF I F

4N

Figure 3-6. Ir with one broken bar.
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SIMULATION STATOR PHASE CURRENT
3-BAR ROTOR slip=.O5

NO BROKEN BARS

15 it A

10 )I I ~~

I Ii
LOC l.33u. 1.0 1.3 1.6

TIM 0n I ii
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SIMULATION STATOR PHASE CURRENT
3-BAR ROTOR slip=.O5

ONE BROKEN BAR

CD 10 I

0 ..~ f

-15 1I

-20JI

I.OOJ 1.061 1.133 1.200 1.267 1.333

TI1ME inSECS

Figure 3-8. Stator phase current with one broken bar.
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STATOR PHASE FREQUENCY SPECTRUM
3-BAR ROTOR slip-.05

NO BROKEN BARS

80

70

> - 60

z50

40

30

<20

S10

FREQUENCY iI Iiz

Figure 3-9. Frequency spectrum with no broken bars.
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STATOR PHASE FREQUENCY SPECTRUM
3-BAR ROTOR slip=.05

ONE BROKEN BAR

80

70

>- 60 A
Er'V

Z50 •

" 40

-OJ
30

20

1l0
"i

C) ' 1 i I

w- 5 1 36 58 60 62 6-1 G6 68 70
FREQUYiNC'Y In flz

Figure 3-10. Frequency spectrum with one broken bar.
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3.3 Simulation Results For Experimental Motor

Now that the simulation program has been initially

validated, it can be used to predict the results of a real

induction motor. These predicted results will then be

compared to actual experimental results to validate the

methodology presented in Chapter 2 and the simulation

program. A series of experiments will be conducted using a

3-phase, 3-HP, 230 V (line-to-line), 60 Hz, 1730 rpm

"off-the-shelf" induction motor. Due to testing facility

limitations (explained in Chapter 4), the experiments can

only be conducted for small values of rotor slip (0 to

0.04). Although this is a rather small range, it does cover

the full load operating range of the experimental motor. In

addition, only one rotor bar will broken. The following

sections present the simulation results for the experimen-

tal motor operating at small slip values with and without a

broken rotor bar. For the "no broken bar" simulations, the

simulation results are compared to the results calculated

using the single-phase, equivalent-circuit model for this

machine. The parameters required to simulate the

experimental motor are listed in Table 3-5. The

single-phase, equivalent-circuit model parameters were

determined using a least squares parameter estimation

routine [20].
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PARAMETER VALUE

R, 0.8590 ohms

L, 0 0046 H

L 12 0.0704 H

L2 0.0046 H

R 2  0.5612 ohms

N j 45

p 2

Input Frequency 60 Hz

Input Phase Voltage 169.71 V

Table 3-5. Experimental motor parameters.

3.3.1 Case 1: No Broken Rotor Bars

The simulation results, equivalent-circuit model

results, and the error between these results are given in

Table 3-6. As expected, the error between the simulation

and equivalent-circuit model results is less than 0.5% for

each rotor slip value. Figure 3-11 shows the small

difference between these results.
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SIMULATION EQ. CKT. MODEL % ERROR

SLIP 1(60 Hz) 1(60 Hz)
0

Amps Amps

0.0011 5.98 6.00 0.33

0.01 6.59 6.61 0.30 0

0.02 8.20 8.23 0.36

0.03 10.25 10.29 0.38

0.04 12.42 12.48 0.40

Table 3-6. Simulation results-no broken 'bars.
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SIMULATION RESULTS FOR TEST MOTOR
STATOR PHASE CURRENT

NO BROKEN BARS

15.;F10

N

0n

0.00 0.01 0.0'2 0.03 0.04
F'O TO P SLIU'

sirmulation res

--- equivalent model values

Figure 3-11. Simulation vs. equivalent circuit results.

107

. . .. kn n, u mm a nmmnnnmn u nall~ nll lmml~lllln 11 i



3.3.2 Case 2: One Broken Rotor Bar

The simulation results for a one broken bar case are

given in Table 3-7. Plots of the fundamental and (1-2s)f

component of the stator phase current as a function of

rotor slip are shown in Figures 3-12 and 3-13. The results

show that the (1-2s)f component of the stator phase

current increases approximately linearly with increasing

rotor slip. Unlike the 3-bar rotor case above, there is

only a slight change in the fundamental component with

respect to the no-broken-bar case. This is demonstrated

graphically in Figure 3-14.

0

SLIP 1(60 Hz) I(1-2s)f I(1-2s)f/I(60

Amps Amps Hz)

0.0011 5.98 0 0

0.01 6.57 0.059 0.90

0.02 8.13 0.123 1.51

0.03 10.11 0.186 1.84

0.04 12.23 0.249 2.03

Table 3-7. Simulation results-one broken bar.
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SIMULATION RESULTS FOR TEST MOTOR
STATOR PHASE CURRENT

ONE BROKEN BAR

15 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

10

-1

0.00 0.01 0.02 0.03 0.04

ROTOR SLIP

simulation results

Figure 3-12. 1(60 Hz) vs. slip.
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SIMULATION RESULTS FOR TEST MOTOR
STATOR PHASE I(1-2s)f CURRENT

ONE BROKEN BAR

0.40

0.30

0.20

0.10

0.00 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.00 0.01 U. 0.03 .1
I. 1 I. "-i.1

Figure 3-13. I(1-2s)f vs. slip.
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SIMULATION RESULTS FOR TEST MOTOR
STATOR PHASE CURRENT

GOOD vs BAD ROTOR

* ~10

0.00 0.01 0.02 0.03 0.04

UOTOR SLIP
- no broken bars

-- one broken bar

Figure 3-14. 1(60 Hz) no vs. one broken bar.



3.4 Summary

A FORTRAN simulation routine has been developed to

solve the system of equations describing the electrical

performance of an induction motor derived in Chapter 2. The

routine uses a fixed-step, fourth-order Runge-Kutta

procedure to numerically integrate the system of equations.

A matrix inversion routine, Cholesky's method with partial

pivoting, is required to invert the time-varying inductance

matrix for each value of time. The program can be used to

simulate an induction motor with either no broken rotor

bars or one broken rotor bar. In addition to the FORTRAN

simulation program, two PRO-MATLAB routines, are also

employed. The PRO-MATLAB eigenvalue routine is used to aid

in determining the fixed time step for the Runge-Kutta

integration. A PRO-MATLAB FFT routine is used to transform

the output data of the FORTRAN program from the time domain

to the frequency domain. Thus the harmonic frequency

components of the stator phase and rotor loop currents can

be determined. Appendix B includes the source code and

sample input and output files for these routines.

The FORTRAN simulation program and PRO-MATLAB FFT

routine were initially validated using a 3-bar rotor

induction motor. The error between the simulation results
9

and exact solutions for both a no-broken-bar and a
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one-broken-bar case is less than %. The simulation program

accurately solves the system of equations derived in

Chapter 2 for the stator phase and rotor loop currents.

The simulation results for the experimental motor have

been presented and will be compared to actual experimental

results for final validation of the simulation program in

Chapter 4.
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CHAPTER 4

INVESTIGATION OF AN INDUCTION MOTOR

WITH A BROKEN ROTOR BAR

4.1 Introduction

A series of experiments was conducted using a set of

initially identical "off-the-shelf" 3-HP squirrel-cage

induction motors with various rotors modified so as to

investigate their performance with and without a broken

rotor bar. The magnitudes of the fundamental and (1-2s)f

harmonic components of the stator phase current were

recorded. Two identical, "as manufactured" rotors were used

to collect data corresponding to a "good" motor with no

broken rotor bars. A third rotor, identical to the other

two with the exception that a single rotor bar was

deliberately open-circuited, was used to collect data

corresponding to a "broken rotor bar" motor. A single

stator was used with the rotors being swapped in and out

for the various tests.

The nameplate data for the test motors is given in

Table 4-1. As stated in the preceding paragraph, three

rotors were alternately installed into the same stator for

the experiments. Table 4-2 provides a summary for these

rotors. For the broken bar rotor, one end of a single rotor

bar was initially "disconnected" from the end ring by

removing a small section of the rotor bar at the rotor

bar-to-end ring interface with a milling machine. After the
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initial tests were completed, the opposite end of the same

rotor bar was also "disconnected" from the other end ring

and a series of tests were again conducted using this rotor

(ROTOR #2.1).

Westinghouse Life-Long T AC Motor

3-phase 60 Hz 3-HP 1730 rpm

230/460 V 9.4/4.7 A 182T frame 1.0 s.f.

catalog no.: 05-3H4SBFC-SKB motor style: 773B646G41

Table 4-1. Test motor nameplate data.

ROTOR #1 As manufactured; no broken bars.

ROTOR #2 One broken bar; one end open.

ROTOR #2.1 Same as ROTOR #2 with both ends open.

ROTOR *3 As manufactured; no broken bars.

I0

Table 4-2. Rotor summary.

The experimental data collected for each motor serves

two primary purposes. First, comparison between the

experimental results and predicted results (presented in

Chapter 3) will be used to validate the computer simulation
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program. Of interest is whether the simulation program

accurately solves for the stator phase currents of an

induction motor with and without a broken rotor bar. In

addition, this comparison can provide an indication of the

areas which must be added and/or modified, if required, in

the simulation program to accurately describe the

electrical performance of an induction motor with or

without a broken rotor bar. Second, comparison of the

experimental results for a "good" motor and a "broken rotor

bar" motor can be used to make a quantitative decision

regarding the feasibility of detecting broken rotor bars by

monitoring the magnitude of the (l-2s)f harmonic component

of the stator phase current.

4.2 Description of Experimental Facility

The facilities used to conduct the experiments consists

of four major components; a 208 V rms (line-to-line)

3-phase power supply, a dynamometer, a test motor, and a

signal analyzer. A MAGTROL, Inc. model HD800-8 dynamometer

is used to provide the load necessary to operate the test

motor at various constant speeds (or rotor slips). Due to

the kinetic power dissipation limit of the HD800-8, only

small values of rotor slip (0-0.04) can be safely achieved.

However, this range of rotor slips does cover the full load

operating range of the test motors. For a rotor Flip of

0.04, the test motor can be operated for approximately 10
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minutes every two hours without exceeding the rating of the

dynamometer. The control section for the HD800-8 provides

digital read-outs for the following parameters:

stator phase current [A rms]

stator phase voltage [V rms]

stator phase power [W]

shaft speed [rpm)

shaft power (W)

shaft torque [N-m]

A Hewlett.-Packard model HP-3561A dynamic signal

analyzer is used to fast Fourier transform the stator phase

current measurements and display the resulting frequency

spectrum. The HP-3561A is a single-channel, multi-function

signal analyzer. The analyzer was set-up to calculate and

display the stator phase current frequency spectrum over a

20 Hz span centered at 60 Hz. For this setting, the

frequency resolution of the analyzer is 0.05 Hz and a 0

sample-time record length of 20 seconds is required to

process the stator-current signal. Like the simulation

program, a second-order Hanning window function is used

to aid in distinguishing among frequency components which

are relatively close. In order to increase the sig-

nal-to-noise ratio of the input stator-current signal, a S

time averaging feature is used. Using this feature, five

successive time records are averaged on a point-by-point
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basis. Thus, for each test the analyzer requires

approximately two minutes of stator phase current signals.

The output units of the HP-3561A are volts rms squared. For

the "typical" frequency spectrum plots included in this

chapter (Figures 4-4, 4-8, 4-15, and 4-19), the following

relation can be used to convert the analyzer output to amps

rms

A rms- 2.0i(V rns) 2  (4- 1)

where

(V rms) 2 -analyzer output reading

A major concern throughout the experimental portion of

this research is the issue of data reproducibility. In an

effort to increase the confidence level of the experimental

data gathered, several tests were conducted for each rotor

at each rotor slip value. For each test the magnitudes of

the (1-2s)f and fundamental components of the stator phase

currents were recorded. These values were then averaged and

the standard deviation was determined. The tests were

continually repeated until the measured values were

consistently within one standard deviation of the mean

value. In addition to this, the averaging technique, number

of averages, frequency span and resolution, etc. of the
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HP-3561A were varied to ensure that the choice of analyzer

settings was not introducing any error into the

measurements.

4.3 Experimental Results and Analysis of a Notor With and

Without a Broken Rotor Bar

The following sections provide a summary of the

experimental data collected and corresponding analysis for

each rotor. Appendix C contains tables of the measured data

(the fundamental and (l-2s)f components of the stator phase

current) for each rotor tested.

4.3.1 Experimental Results for a Motor Without a Broken

Rotor Bar(ROTOR #f].

The averaged voltage and current data for ROTOR #1 is

shown in Table 4-3. This is the baseline data. In addition

to the fundamental and (l-2s)f components of the stator

phase current, three other components were apparent, at
S

frequencies (l+2s)f, (l-4s)f, and (1 4s)f. In general, the

(l-4s)f and (l+4s)f components, when detected, were

usually on the order of one-half the magnitude of the

(l-2s)f component. As shown in Appendix D, these

components could be produced by the third and fifth

time-harmonics of the stator phase current. The (1+2s)f

component is typically on the same order as the (1-2s)f

component and is generally attributed to torque pulsations

and the resulting speed oscillations at twice-the-slip
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frequency 17,8,9,10,11]. In addition, this component could

also be produced by the third time-harmonic of the stator

phase current as shown in Appendix D. Table 4-4 lists the

magnitudes of these components for a "typical" test at

each each rotor slip value.

For all values of rotor slip, the non-fundamental

harmonic components detected were less than 0.05% of the

fundamental component of the stator phase current. From

Table 4-3, the variation in the magnitude of the (1-2s)f

component is shown to be on the order of 25-30% of the

mean value for this component. Figures 4-1 and 4-2 show

the averaged data and raw data for the (l-2s)f component.

Figure 4-3 shows the averaged data for the fundamental

component. Figure 4-4 shows the "typical" frequency

spectrum for %arious rotor slip values.

1(60 Hz) I(l-2s)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV.

V rms A rms A rms A rms A rms

0.01 123.3 4.76 0.06 0.0011 0.0003

0.02 123.1 6.00 0.15 0.0015 0.0005

0.03 122.7 7.37 0.11 0.0025 0.0005

0.04 122.5 8.98 0.12 0.0032 0.0009 S

Table 4-3. ROTOR #1 averaged data.
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_________U E U d I I U

COMPONENT 8=0.01 s=0.02 s=0.03 s=0.04

(1-4s)f <0.0001 <0.0001 0.0015 0.0022

(1-2s)f 0.0011 0.0014 0.0024 0.0026

60 Hz 4.940 5.926 7.642 8.626

(142s)f 0.0013 0.0016 0.0051 0.0035

(1+4s)f <0.0001 0.0011 0.0020 0.0024 S

note: all values given in A rms

Table 4-4. ROTOR #1 "typical" harmonic frequency data. 0
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EXPERIMENTAL RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR PI

0.005 -

' 0.004
.

0.003 T

0.002 -

70.001

0.000 ,

0.00 0.01 0.02 0.03 0.04

!-,OTUI, >1I1
0 -one std dc-

> mean \alues

Figure 4-1. ROTOR #1 I(1-2s)f averaged results.
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EXPERIMENTAL ''RAW" RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR # 1

0.005

0.004

-.

0 .0 0 3 .. .. .... .

- 0.002 -

Ir

0.000 1

0.00 0.01 0.02 0.03 0.04

* POTOR SLIP

raw data

Figure 4-2. ROTOR #1 I(1-2s)f "raw" data.
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EXPERIMENTAL RESULTS
STATOR PHASE 60 Hz CURRENT

ROTOR # 1

10.0 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8.0

S6.0

c~4.0

- 2.0

0.0 I

0.00 0.01 0.02 0.03 0.04

RO0TOR SLIPQ
- - one std dev

y mean .-alue

Figure 4-3. ROTOR #1 1(60 Hz) averaged results.
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500
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V 02

CENTER. 60 Hz Ow. 75 mHz SPAN. 20 Hr

(d) slip=O.O4

Figure 4-4. ROTOR #1 "typical" frequency spectrum.
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4.3.2 Experimental Reaults for a Motor With a Broken Rotor

Bar (one end open--ROTOR

The averaged data for ROTOR #2 is shown in Table 4-5.

Like the results obtained for ROTOR #1, the components at

frequencies (1+2s)f, (1-4s)f, and (1+4s)f were detected in

addition to the fundamental and (1-2s)f atator phase

current harmonics. The (1-4s)f and (1+4s)f components,

when detected, were usually on the order of one-half the

magnitude of the (1-2s)f component. The (1+2s)f component

was typically on the same order as the (1-2s)f component.

TaLle 4-6 lists the magnitudes of these components for a

"typical" test at each rotor slip value.

For all values of rotor slip, the non-fundamental

harmonic components detected were less than 0.05% of the

fundamental component of the stator phase current. From

Table 4-5, the variation in the magnitude of the (1-2s)f

component is shown to be on the order of 25-30% of the

mean value for this component. Figures 4-5 and 4-6 show

the averaged data and raw data for the (1-2s)f component.

Figure 4-7 shows the averaged data for the fundamental

component. Figure 4-8 shows the "typical" frequency

spectrum for various rotor slip values.
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1(60 Hz) I(1-2s)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV.

V rms A rus A rms A rms A rms

0.01 122.6 4.59 0.05 0.0013 0.0003

0.02 122.4 5.86 0.10 0.0018 0.0007

0.03 122.1 7.16 0.26 0.0023 0.0007

0.04 121.9 8.78 0.15 0.0023 0.0008

Table 4-5. ROTOR #2 averaged data.

COMPONENT s=0.01 s=O.02 s=0.03 s=0.04

(l-4s)f 0.0016 0.0029 <0.0001 <0.0001

(l-2s)f 0.0013 0.0019 0.0019 0.0020

60 Hz 4.620 5.940 7.746 8.646

(1+2s)f 0.0012 0.0015 0.0018 0.0019

(1+4s)f 0.0029 0.0030 <0.0001 <0.0001

note: all values given in A rms

Table 4-6. ROTOR #2 "typical" harmonic frequency data.
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EXPERIMENTAL RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR #2

0.005 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

r 0.004

0.003

0.000

0.00 0.01 0.02 0.03 0.04

ROTOR SLIP9
4- -- one std dev
>~mean values

Figure 4-5. ROTOR #2 I(I-2s)f averaged results.
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EXPERIMENTAL "RAW" RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR #2

0.005

0.004
0 c'
0

0.003

-0.001

0

0.000

0.00 0.01 0.02 0.03 0.04

ROTOR SLIP

3, raw data

Figure 4-6. ROTOR #2 I(l-2s)f "raw" data.

129
S



EXPERIMENTAL RESULTS
STATOR PHASE 60 Hz CURRENT

ROTOR #t2

10.0

C2 8.0

S6.0

-~4.0

~2.0

0.0 - I

0.00 0.01 0.02 0.03 0.04

ROTOR SI

+ - one std dex-
X mean value

Figure 4-7. ROTOR #2 1(60 Hz) averaged results.
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Figure 4-8. ROTOR #2 "typical" frequency spectrum.
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4.3.3 Discussion of Simulation and Bxgerimental Results

for a Motor With and Without a Broken Rotor Bar

Tables 4-7 and 4-8 show the simulation results from

Chapter 3 and experimental results of the fundamental and

(1-2s)f harmonic components of the stator phase currents

for a motor with and without a broken rotor bar. These

tables show that the simulation program accurately solves

for the fundamental component of the stator phase current

for a motor with and without a broken rotor bar. This was

expected since the input parameters for the simulation

program are determined using the single-phase, equiv-

alent-circuit model values for the test motors. However,

for the (1-2s)f component, the simulation results and

experimental results are significantly different. These

unexpected differences raise two questions which must be

answered.

First, why is the value of the (l-2s)f component of

the stator phase current non-zero in a motor without a

broken rotor bar? This question can be answered by

considering the effect of manufacturing asymmetries on the

stator phase current. From the analysis conducted by

Kliman et al. [7], it was shown that manufacturing

asymmetries (i.e., rotor out of round, rotating eccentric-

ity, or non-uniform magnetic orientation of the rotor

laminations) can also create airgap flux anomalies with a

fundamental component on the same order as that of a
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broken bar. This flux anomaly induces currents at a

frequency of (1-2s)f in the stator phase windings. Thus,

manufacturing asymmetries, which are present to some

degree in all induction motors, can result in a non-zero

(1-2s)f harmonic component of the stator phase current.

1(60 Hz) AMPS rms

"GOOD" MOTOR "BROKEN BAR" MOTOR
SLIP ROTOR #1 SIMULATION ROTOR #2 SIMULATION

0.01 4.76 4.79 4.59 4.65

0.02 6.00 5.95 5.86 5.87

0.03 7.37 7.41 7.16 7.24

0.04 8.98 8.96 8.78 8.79

Table 4-7. Simulation and experimental results 1(60 Hz).

I(I-2s)f AMPS rms

"GOOD" MOTOR "BROKEN BAR" MOTOR
SLIP ROTOR #1 SIMULATION ROTOR #2 SIMULATION

0.01 0.0011 0 0.0013 0.0417

0.02 0.0015 0 0.0018 0.0870

0.03 0.0025 0 0.0023 0.1315

0.04 0.0032 0 0.0023 0.1761

Table 4-8. Simulation and experimental results I(1-2s)f.
0
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The second question which must be answered is why are

the simulation results for the (1-2s)f component on the

order of 40 to 75 times greater than those measured for a

motor with a broken rotor bar. One possible mechanism is

that the bar was not completely broken. This could be the

case in the present experiments if the rotor bar was not

completely disconnected from the end ring during milling

so that path for current to flow still exists. In order to

demonstrate how this mechanism would result in a reduced

magnitude of the (1-2s)f component, the simulation program

was used to calculate the stator phase currents for a

motor with a rotor bar that has a higher series impedance

than the other rotor bars. For a rotor slip of 0.04, the

impedance (both the rotor bar resistance and leakage

inductance) of one rotor bar was varied (relative to the

impedance of a normal rotor bar) and the fundamental and

(]-2s)f components of the stator phase current was

calculated. These results are shown in Table 4-9 and

graphically in Figures 4-9 and 4-10. As expected, the

results show that the fundamental component of the stator

phase current remains approximately constant while the

magnitude of the (1-2s)f component increases as the rotor

bar impedance is increased. In addition, these results

indicate that only a 2% increase in the bar impedance is

required for the simulation program to predict the (1-2s)f

values measured for ROTOR #2. Certainly, the bar impedance
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would increase by a substantially larger factor than 2% if

a section of the rotor bar was removed (i.e., the broken

bar on ROTOR #2).

After removing ROTOR #2 and visually inspecting toie

broken rotor bar, it was concluded that the rotor bar was

completely cut away from the end ring. Thus it appears

certain that current is not flowing into the broken bar

across the break from the end ring.

RATIO OF BAR IMPEDANCE 1(60 Hz) I(l-2s)f
TO ALL OTHER BARS AMPS rms AMPS rms

1.0 ("good" motor) 8.78 0

1.1 8.77 0.0145

1.2 8.76 0.0269

1.5 8.74 0.0546

2.0 8.72 0.0834

5.0 8.68 0.1378

10.0 8.66 0.1566

infinity 8.65 0.1758
("broken rotor bar

motor")

NOTE: all values for rotor slip0.04

Table 4-9. Bar impedance variation results.

135



BAR IMPEDANCE V7ARIATION RESULTS
SLIP=.04 1728 rpm

STATOR PHASE I(1-2s)f CURRENT

0.20 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S0.16

.12

0.08

C.4

4'

Figure 4-9. Bar imipedance variation I(1-2s)f.

136



BAR IMPEDANCE VARIATION RESULTS
SLIP=.04 1728 rpm

STATOR PHASE 60 Hz CURRENT

10

8

6

4

2

0 -1 I I

1 3 10 30 100 300 1000
BAR IMPEDANCE REL,ATIVE TO ALL Olt-t-" P- P

Figure 4-10. Bar impedance variation 1(60 Hz).
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Another mechanism that could result in a current

flowing through a broken rotor bar is that of inter-bar

currents. Inter-bar currents are currents which flow

between a rotor bar and adjacent rotor bars through the

rotor laminations. The presence of such currents could be

expected to "short circuit" the effect of a break in a

rotor bar, hence resulting in a current flow in the broken

bar that would not be predicted by the simulation program.

The existence of large inter-bar currents in

three-phase squirrel-cage induction motors with broken

rotor bars has been analyzed and experimentally verified

by Kerszenbaum and Landy [9]. They have shown that the

magnitude of the inter-bar current is a function of the

rotor-bar impedance and the distributed inter-bar

impedance. The inter-bar impedance is the sum of the •

contact impedance of the rotor bar-to-rotor lamination

interface and the impedance of the rotor core (i.e.,

laminations) between two adjacent rotor bars. As the ratio

of the rotor-bar impedance to the inter-bar impedance

increases, the magnitude of the current flowing into a

broken rotor bar approaches the magnitude of the current

which would flow into a "healthy" (i.e., not broken) rotor

bar for the same operating conditions. This is shown in

Figure 4-9 where

- current flowing in a broken bar

- current flowing in a "healthy" bar
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z, rotor-bar impedance

R, inter-bar impedance

too

90

80

70

60 *
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- 40

* 30 i

I- I -1 0 7 -lo c

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15

Figure 4-11. Ratio of current in a broken bar to a
"healthy" bar [9].

4.4 Experimental Results for a Motor With a Broken Rotor

Bar (both ends open--ROTOR #2.1)

In order to investigate the hypothesis that inter-bar

currents were masking the effects of the break in the rotor

bar during experiments with ROTOR #2, the opposite end of

the broken rotor bar on ROTOR #2 was also cut away from the

end ring, resulting in the rotor known as ROTOR #2.1. This

was expected to result in a further decrease in the

magnitude of the current flowing through the broken rotor

bar thus, increasing the resulting magnitude of the (1-2s)f

component of the stator phase current.
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The averaged data for ROTOR #2.1 is shown in Table

4-10. Once again the (1-4s)f, (1+2s)f, and (l+4s)f harmonic

components were detected. Table 4-11 lists the magnitudes

of these components for a "typical" test at each each rotor

slip value. For all values of rotor slip, the

non-fundamental harmonic components detected were less than

0.25% of the fundamental component of the stator phase

current. From Table 4-10, the variation in the magnitude of

the (1-2s)f component is shown to be on the order of 10-25%

of the mean value for this component. Figures 4-12 and 4-13

show the averaged data and raw data for the (1-2s)f

component. Figure 4-14 shows the averaged data for the

fundamental component. Figure 4-15 shows the "typical"

frequency spectrum for various rotor slip values.

Tables 4-12 and 4-13 show the values of the fundamental

and (1-2s)f components of the stator phase current measured

for ROTOR #2 and ROTOR #2.1, and the simulation results for

a broken rotor bar case. Comparison of the data shown in S

Table 4-12 shows that the fundamental component of the

stator phase currents for both rotors and the simulation

are approximately the same. For the (1-2s)f component shown

in Table 4-13, the values for ROTOR #2.1 are significantly

greater (by a factor of 4 to 8) than those for ROTOR #2.

This result strengthens the hypothesis that inter-bar

currents are present and that significant current is

flowing through the broken rotor bar on ROTOR #2. The
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simulation results for the (1-2s)f component indicates that

current is still flowing in the broken rotor bar on ROTOR

#2.1.

1(60 Hz) I(1-2s)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV.

V rms A rms A rms A rms A rms

0.01 123.1 4.66 0.13 0.0041 0.0011

0.02 122.9 5.93 0.21 0.0073 0.0009

0.03 122.5 7.26 0.20 0.0128 0.0010

0.04 122.2 8.61 0.15 0.0172 0.0023

Table 4-10. ROTOR #2.1 averaged data.

COMPONENT s=0.01 s=0.02 s:0.03 s=0.04

(1-4s)f <0.0001 <0.0001 0.0041 0.0068

(1-2s)f 0.0041 0.0087 0.0121 0.0184

60 Hz 4.757 5.930 7.253 8.420

(1+2s)f 0.0032 0.0074 0.0105 0.0196

(1+4s)f <0.0001 <0.0001 0.0054 0.0089

note: all values given in A rms

Table 4-11. ROTOR #2.1 "typical" harmonic frequency data.
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1(60 Hz) AMPS rms

SLIP ROTOR #2 ROTOR #2.1 SIMULATION

0.01 4.59 4.66 4.65

0.02 5.86 5.93 5.87

0.03 7.16 7.26 7.24

0.04 8.78 8.61 8.79

Table 4-12. Broken bar results 1(60 Hz)

I(1-2s)f AMPS rms

SLIP ROTOR #2 ROTOR #2.1 SIMULATION

0.01 0.0013 0.0041 0.0417

0.02 0.0018 0.0073 0.0870

0.03 0.0023 0.0128 0.1315

0.04 0.0023 0.0172 0.1761

Table 4-13. Broken bar results I(l-2s)f
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EXPERIMENTAL RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR #2.1

0.020

n 0.016

0.012

0.008 T

- T
- 0.004 I

0.00o0-j

0.00 0 01 0.02 0.03 0.04

ROTOP SLIP
- one std dev

Smean values

Figure 4-12. ROTOR #2.1 I(1-2s)f averaged results.
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EXPERIMENTAL "RAW" RESULTS

STATOR PHASE I(1-2s)f CURRENT
ROTOR #2.1

0.025 -

i 0 .0 2 0 . .... . ..... ... ......... ..... . .. ... ..

- 0.015

0 .0 1 0 . ... ... . . .. .... . ....

-0.010

-' 0.005 ""

0.000

0.00 0.01 0.02 0.03 0.04

ROTOR SLIP

C raw data

Figure 4-13. ROTOR #2.1 I(1-2s)f "raw" data.
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EXPERIMENTAL RESULTS
STATOR PHASE 60 Hz CURRENT

ROTOR #2.1

10.0

ti: 8.0

C.
~6.0

c~ 4.0

C

- '2.0

0.0 - I

0.00 0.01 0.02 0.03 0.04

ROTOR SLIP

one std dev
X mean value

Figure 4-14. ROTOR #2.1 1(60 Hz) averaged results.
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Figure 4-15. ROTOR #2.1 "typical" frequency spectrum.
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4.5 Additional Results for a "Good" Motor (iTOR J

In order to see the effects on the stator phase current

due to manufacturing asymmetries, a second "as manufac-

tured" rotor (ROTOR #3) was installed in the test motor.

The averaged data for ROTOR #3 is shown in Table 4-14. Once

again the (1-4s)f, (12s)f, and (1+4s)f harmonic components

were detected. Table 4-15 lists the magnitudes of these

components for a "typical" test at each each rotor slip

value. For all values of rotor slip, the non-fundamental

harmonic components detected were less than 0.05% of the

fundamental component of the stator phase current. From

Table 4-14, the variation in the magnitude of the (1-2s)f

component is shown to be on the order of 20-30% of the mean

value for this component. Figures 4-16 and 4-17 show the

averaged data and raw data for the (1-2s)f component.

Figure 4-18 shows the averaged data for the fundamental

component. Figure 4-19 shows the "typical" frequency

spectrum for various rotor slip values.

Comparison of the data for ROTOR #1 (Table 4-3) and for

ROTOR #3 (Table 4-14) shows that the fundamental component

of the stator phase currents for both motors is

approximately the same. For the (1-2s)f component, the

values for ROTOR #1 are approximately two times greater

than those for ROTOR #3. This result indicates that the

degree of manufacturing asymmetries in ROTOR #1 is somewhat

larger than those in ROTOR #3.
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1(60 Hz) I(1-2s)f
SLIP VOLTAGE MEAN STD. DEV. MEAN STD. DEV.

V rms Arms Arms Arms Arms

0.01 122.7 4.63 0.07 0.0007 0.0003

0.02 122.4 5.84 0.07 0.0006 0.0002

0.03 122.1 7.18 0.18 0.0011 0.0003

0.04 121.8 8.65 0.05 0.0013 0.0002

Table 4-14. ROTOR #3 averaged data.

COMPONENT s=0.01 s=0.02 s=0.03 s=0.04

(1-4s)f <0.0001 <0.0001 0.0015 0.0023

(1-2s)f 0.0005 0.0006 0.0008 0.0016

60 Hz 4.630 5.930 7.156 8.646

(1+2s)f 0.0008 0.0005 0.0007 <0.0001

(1+4s)f <0.0001 0.0015 0.0023 0.0028

note: all values given in A rms

Table 4-15. ROTOR #3 "typical" harmonic frequency data.
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EXPERIMENTAL RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR #3
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Figure 4-16. ROTOR #3 I(1-2s)f averaged results.

149



EXPERIMENTAL "RAW" RESULTS
STATOR PHASE I(1-2s)f CURRENT

ROTOR #3

0.005

' 0.004

: 0.003

- 0.002

itii
OOO -

1).()00 i

0.00 0.01 0.02 0.03 0.04

ROTOR SLIP
raw data

Figure 4-17. ROTOR #3 I(1-2s)f "raw" data.
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EXPERIMENTAL RESULTS
STATOR PHASE 60 Hz CURRENT

ROTOR #3
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Figure 4-18. ROTOR #3 1(60 Hz) averaged results.
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Figure 4-19. ROTOR #3 "typical" frequ.ency spectrum.
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4.6 Summary

The fundamental and (1-2s)f harmonic components of the

stator phase current were recorded for an 'off-the-shelf"

3-HP squirrel-cage induction motor with various rotors

installed. Two "as manufactured" rotors with no broken

rotor bars and a third rotor with a single rotor bar

deliberately open-circuited were used for the experiments.

The broken bar rotor was initially tested with only one end

of the broken bar disconnected from the end ring.

Subsequently, the opposite end of the broken bar was

disconnected from the other end ring and a series of

experiments were completed using this rotor.

For each rotor tested, in addition to the fundamental

and (1-2s)f components of the stator phase current,

significant components at the frequencies (l-4s)f, (l+2s)f,

and (1+4s)f were detected. The (1-4s)f and (1+4s)f

components can be produced by the third and fifth

time-harmonic components of the stator phase currents as

shown in Appendix D. The (l+2s)f component can be

attributed to the torque-pulsations and the resulting speed

oscillations at twice-the-slip frequency [7,8,9,10,11].

This component can also be produced by the third

time-harmonic of the stator phase current. In general, the

magnitudes of the (1-4s)f and (1+4s)f components were on

the order of one-half the magnitude of the (1-2s)f

component. The magnitude of the (1+2s)f component is
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approximately the same as the (1-2s)f component. For the

two "good" rotors (ROTOR #1 and ROTOR #3) and the broken

bar rotor with one end disconnected (ROTOR #2), the

magnitude of these harmonic components was less than 0.05%

of the fundamental component. For the broken rotor bar with

both ends disconnected (ROTOR #2.1), the magnitude of these

components increased five-fold.

Comparison of the experimental and simulation results

for a motor with and without a broken rotor bar has shown

that a more complex simulation model is required to

accurately predict the (1-2s)f component of the stator

phase current. In particular, the model must be able to

account for manufacturing asymmetries which are present to

some degree in all induction motors and it also must be

able to model the effects of inter-bar currents.

The existence of inter-bar currents in a squirrel-cage

induction motor of the type tested in this thesis

effectively "masks" the effects of a broken rotor bar.

These currents reduce the magnitude of the (l-2s)f

component of the stator phase current to a value on the

order of those present in a "good" rotor due to

manufacturing asymmetries. Thus, distinguishing a broken

rotor bar from a manufacturing asymmetry using only the

(1-2s)f component of the stator phase current appears very

difficult. This effect is illustrated in Figure 4-20, where

the values of the (1-2s)f component for the four rotors
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EXPERIMENTAL AND SIMULATION RESULTS
STATOR PHASE I(1-2s)f CURRENT

..20 ......
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0.00 0.01 0.02 0.03 0.04

ROTOR SLIP
E- simulation values

+ rotor #1 values

0 rotor #2 values
-x-- rotor #2.1 values
X rotor #3 values

Figure 4-20. Simulation and experimental results I(1-2s)f.
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tested and for the simulation program are plotted as a

function of rotor slip. A distinction between a broken

rotor bar and a manufacturing asymmetry is only possible

after both ends of the broken rotor bar are disconnected

from the end ring.

As a final note, if the single-test diagnostic

algorithm of Kliman et al. [7] (see Chapter 1) were used, a

motor with either ROTOR #1, ROTOR #2, or ROTOR #3 installed

would be declared a "good" motor. For a motor with ROTOR

#2.1 installed, the measured dB value (-54 dB) falls in the

region between a "good" motor and a "broken rotor bar"

motor and thus would be declared "suspect".

0

156

-- m - ii ilil ii m mmmmm~0



CHAPTER 5

CONCLUSIONS AND RECOMMNDATIONS FOR FUTURE RESEARCH

5.1 Summary of Thesis

The purpose of this thesis was to critically evaluate

one method for the detection of broken rotor bars in

induction motors using stator current and voltage

measurements. This effort supported the ongoing development

of a failure analysis system for electric machines by the

M.I.T. Laboratory for Electromagnetic and Electronic

Systems. The hypothesis of the method, given a sinusoidally

applied voltage, was that the presence of certain harmonics

in the stator currents could be used to detect the presence

of broken rotor bars.

To support the evaluation, a system of first-order

differential equations describing the electrical

performance of a three-phase induction motor was developed

using stator phase currents and rotor loop currents as

state variables. Each stator phase and rotor loop was

described in terms of a resistance and inductance. The

stator phase voltages (assumed to be sinusoidal) were the

driving functions for the system.

A relationship between the standard single-phase,

equivalent-circuit model for an induction motor and the

system of equations was derived (Equations 2-100 to 2-106).

With this relationship, the electrical parameters needed to

solve the system of equations were easily calculated from
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the single-phase, equivalent-circuit parameter values which

are often available from the manufacturer, or are easily

measured in the laboratory. This relationship was useful in

that the solution to the system of equations could be

obtained without disassembling the motor, removing the

rotor, and measuring the geometrical and material

properties of the motor such as the rotor radius, the

airgap length, and conductivity of the rotor bars. Thus, by

performing the standard no-load, locked-rotor, and DC tests

and knowing the number of rotor bars, the system of

equations could be used to simulate a three-phase induction

motor with an arbitrary number of rotor bars.

A FORTRAN simulation routine was developed to solve the

system of equations describing the electrical performance

of an induction motor with or without a broken rotor bar.

The routine uses a fixed-step, fourth-order Runge-Kutta

procedure to numerically integrate the system of equations.

A matrix inversion routine, Cholesky's method with partial S

pivoting, was required to invert the time-varying

inductance matrix for each value of time. In addition to

the FORTRAN simulation program, two PRO-MATLAB routines

were also employed. The PRO-MATLAB eigenvalue routine was

used to aid in determining the fixed time step for the

Runge-Kutta integration. A PRO-MATLAR FFT routine was used

to transform the output data of the FORTRAN program from
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the time domain to the frequency domain. Thus the

fundamental and (1-2s)f frequency components of the stator

phase currents could be determined.

The FORTRAN simulation program and PRO-MATLAB FFT

routine were initially validated using a hypothetical 3-bar

rotor induction motor. The errors between the simulation

results and exact solutions for both the no-broken-bar and

the one-broken-bar cases were less than 1%. The simulation

program accurately solved the system of equations derived

for the stator phase currents and rotor loop currents.

Thus, the simulation permitted numerical experiments which

were used to test the failure detection hypothesis.

For the numerical experiments, the single-phase,

equivalent-circuit parameter values for an "off-the-shelf"

3-HP squirrel-cage induction motor were used as inputs to

the simulation routine. Thus, the simulations represented

the operation of the same motors which were used for the

physical experiments. The results of the simulation for a

no-broken-bar case showed only a fundamental component of

the stator phase currents. However, for the one-broken-bar

case, the simulation showed that an additional component at

a frequency of (1-2s)f was also present in the stator phase

current. The magnitude of this component was approximately

2% of the magnitude of the fundamental component for the

full load operating speed of the motor. Thus, the failure

detection hypothesis appeared plausible and physical
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experiments were undertaken to verify that the (1-2s)f

component of the stator phase current could be used to

detect the presence of a broken rotor bar.

The physical experiments were conducted with

commercially-available induction motors. The fundamental

and (1-2s)f harmonic components of the stator phase current

were recorded for an "off-the-shelf" 3-HP squirrel-cage

induction motor with various rotors installed. Two "as

manufactured" rotors with no broken rotor bars and a third

rotor with a single rotor bar deliberately disconnected

from the end ring by removing a small section of the rotor

bar were used for the experiments. The broken-bar rotor was

initially tested with only one end of the broken bar

disconnected from the end ring. Subsequently, the opposite

end of the broken bar was cut away from the other end ring

and a series of experiments was completed using this rotor.

For the- two "good" rotors tested, the (1-2s)f component

of the stator phase current was detected. The magnitude of

this component was approximately 0.05% of the fundamental

component. The (1-2s)f component was present in a "good"

rotor due to manufacturing asymmetries which are present to

some degree in all machines. The measured values of the

(1-2s)f component for the broken bar rotor with one end

disconnected were also only 0.05% of the fundamental

component. Thus, using only the (1-2s)f component of the

stator phase current, the distinction between manufacturing
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asymmetries and a broken rotor bar was impossible. This

result was significantly different than that predicted by

the simulation program.

In order to explain the differences between the

simulation and experimental results, a hypothesis that

current was still flowing through the broken rotor bar was

investigated. One possible mechanism was that the bar was

not completely broken. This could be the case in the

present experiments if the rotor bar was not completely

disconnected from the end ring during milling so that path

for current to flow still exists. After removing the rotor

and visually inspecting the broken rotor bar, it was S

concluded that the rotor bar was completely cut away from

the end ring. Thus it appeared certain that current is not

flowing into the broken bar across the break from the end

ring.

Another mechanism that could result in a current

flowing through a broken rotor bar was that of inter-bar

currents. Inter-bar currents are currents which flow

between a rotor bar and adjacent rotor bars through the

rotor laminations. The presence of such currents could be

expected to "short circuit" the effect of a break in a

rotor bar, hence resulting in a current flow in the broken

bar that would not be predicted by the simulation program.

In order to investigate the hypothesis that inter-bar

currents were masking the effects of the break in the rotor
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bar during experiments with the broken bar rotor, the

opposite end of the broken rotor bar was also cut away from

the end ring. This was expected to result in a further

decrease in the magnitude of the current flowing through

the broken rotor bar, thus increasing the resulting

magnitude of the (1-2s)f component of the stator phase

current. The measured values of the (1-2s)f component for

this rotor were on the order of 4 to 8 times greater than

the previous results. This strengthened the hypothesis that

inter-bar currents were flowing and that significant

current was flowing through the broken rotor bar with one

end disconnected during the previous tests. In addition,

the simulation results were still an order of magnitude

greater than the measured results for the broken rotor bar

with both ends disconnected, thus indicating that current

was still flowing in the broken rotor bar.

5.2 Conclusion

The existence of inter-bar currents in a squirrel-cage

induction motor of the type tested in this thesis

effectively "masks" the effects of a broken rotor bar.

These currents reduce the magnitude of the (1-2s)f

component of the stator phase current to a value on the

order of those already present in a "good" rotor due to

manufacturing asymmetries. The distinction between a broken

rotor bar and a manufacturing asymmetry is only possible

after both ends of a rotor bar are cut away from the end
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ring. Thus, distinguishing a broken rotor bar from a

manufacturing asymmetry using only the (1-2s)f component of

the stator phase current appears highly improbable.

5.3 Recommendations for Future Work

Although the results of this thesis show that the

detection of a broken rotor bar in a squirrel-cage

induction motor of the type tested is highly improbable

using only the (l-2s)f component of the stator phase

current, examination of the higher-order stator phase

current harmonics may provide a basis for distinguishing

between a broken rotor bar and manufacturing asymmetries.

Kliman et al. [7] has shown that the higher-order harmonic

components of the airgap flux resulting from a broken rotor

bar are typically much larger than those resulting from

manufacturing asymmetries. Thus, an investigation of the

effects on the higher-order stator phase current harmonics

due to a broken rotor bar is needed if the failure analysis

system is to be based solely on the measurements of

terminal voltages and currents. In addition, the effects of

inter-bar currents would have to be modeled in detail.

In order to use the simulation program developed in

this thesis in a failure analysis system for electrical

machines, the program must be modified to include the

effects of inter-bar currents. This requires an in-depth

analysis on the existence of and effects of inter-bar

currents in squirrel-cage induction motors. In addition to
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modifying the simulation program, changes in the current

manufacturing process for squirrel-cage rotors may be

recommended based on this analysis (e.g., insulation

between the rotor bars and laminations).

Axial flux monitoring [111 is another method which has

been successful in detecting broken rotor bars, as well as

various other faults, in operating induction machines.

Although this method requires that an external sensing coil

be attached to a machine, it appears to be very promising

and can be implemented into a failure analysis system. This

method is currently being investigated at the M.I.T.

Laboratory for Electromagnetic and Electronic Systems [21].
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APPENDIX A

ELEMENTS FOR SYSTEM MATRICES

The following sections give the expressions for the
elements of the voltage, inductance, and effective
resistance matrices derived in Chapter 2 (NOTE: m=row,
n~column). Refer to the List of Symbols given in section 2.2
for a definition of symbols.

A-1 Voltage Matrix jyj

for m=]1,2,3

v = v (A-I)

v:=vt (A-2)

= v (A -3)

0

for m=4,,5 .... N +3

v. - 0(A -4)

00

A-2 Inductance Matrix JLJ

for m:n1 ,2,3

L0L .. L "L,(A -5)

where L, is given by" equation 2-26.

for m-n ne,n=1,2,3

-L.

Lm.r, -L,(A -6)2
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for m=1,2,3 n=4,5,...N,+3

..- M sin (P( n ) i w t+O) - (in-i A-7)
•\ N ls

where M is given by equation 2-52.

for m=4,5,...N,+3 n=1,2,3

L...-Msin P( N w.t*9oJ-(n- ) (A -8)

for m=n=4,5, ... N,. 3

Lm.- = LF LLb -3)+ (A -9)

(note: for m=Ne+3 L Lb,_- = LLb,

where L. is given by equation 2-42.

for n~m+l m=4,5, ....N.,3

LO.= (A - 10)

(note: for m:N,+3, n=4 L LLb) )

for n=m-1 m=4,5,...NL,+3

-L,_~ (A-Il)
L.(NB_ I,)

(note: for m=4, n=N,,+3 LL, (3)LLrb
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for nxm,m+.,m-1 n,m-4,5 .... N +3

(A- 12)
L . (NS- I

A-3 Effective Resistance Matrix [ ]

for m=n=I,2, 3

RR.., -R, (A -13)

for m~n m,n=1,2,3

RR., =0 (A -14)

for m=1,2,3 n=4,5,...Np,+3

RR( ((2(n-3)-) 2n)
RR.-p= o p ) wt o-(m-I) (A-1)

(note: this expression assumes the mechanical speed of
the rotor is a constant)

for m=4,5 ,...N..+ 3  n=1, 2 , 3

(p((2(m-3)- I )n 2n',
RR, - pcu,,Mcos N ,t~0 )-(n-) - (A-16)

(note: this expression assumes the mechanical speed of
the rotor is a constant)

for m=n=4,5,...Nk,+3

RR.., - R- 2+ (A- 17)

(note: for m=N, 1+3 Rb(.-.= R,b )
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for nm+1 m=4,5,....N.,+ 3

R Rma -R b(m 2 ) (A -18)

(note: for JnzN.8+3, n=Z4RmR 1 )

for nm-1 m=4,5,....N..+3

RR ..-- R rb(a-3) (A-19)

(note: for m=4, fl=Nft,+3 R~b. -3 )=R,,)

for n~m,n+l m-1 n,m=4,5,..Nj,+3

RRm, -0 (A -20)
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APPENDIX B

SIMULATION PROGRAMS AND DATA FILES

B-i FORTRAN SIMULATION PROGRAM

The FORTRAN simulation program can be used to solve the
system of equations describing the electrical performance of

an induction motor derived in Chapter 2 for the time-varying
stator phase and rotor loop currents. A fixed-step,
fourth-order Runge-Kutta procedure is used to numerically
integrate the system of equations. The time-varying
inductance matrix is inverted for each value of time using
Cholesky's method with partial pivoting. The program can be
used to simulate an induction motor with either no broken
rotor bars or one broken rotor bar. A flowchart for the
program is shown in Figure 3-1. The program is divided into
six parts, a main program and five subroutines. The
following paragraphs describe the purpose of each part of

the simulation program.

Main program: The main program performs several
functions. The primary function is to act as a buffer
and pass data between the subroutines. In addition, the
main program keeps track of the simulation time,
calculates the value of the current vector at the end
of each time step, and writes the results to an
external file.

Subroutine INPUT: This subroutine is called once by the
main program. It performs two functions. First, it
reads the data contained in an external input file. The
external input file provides a description of the
machine being simulated. It includes the single-phase,
equivalent-circuit model values, number of rotor bars,
and number of pole-pairs for the machine, the rotor
slip, and the supply voltage and frequency. The
simulation time parameters ( i.e., step-size and stop
time) and a broken bar flag are also included in the

input file. Second, using the relations derived in
section 2.3, the coefficients for the inductance and
effective resistance matrix elements are calculated and
passed to the main program.

Subroutine MOTOR: This subroutine is called for each
value of time. It performs two functions; it calculates

the elements of the voltage, inductance, and effective
resistance matrices, and it reduces the system of

equations. For the voltage vector, a balanced
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three-phase supply is assumed. The inductance and
effective resistance elements are calculated using the
relations given in Appendix A. For both a "no broken
bar" simulation and a "one broken bar" simulation, the
system of equations can be reduced from N,&+ 3 to N,,+2
since the sum of the rotor loop currents equals zero.
This condition is imposed on the system of equations by
eliminating rotor loop Nit current. Column N,+3 is
subtracted from columns 4 through N&&+2 and column N,,+3
is deleted from the inductance and effective resistance
matrices. Next, row N.+3 is deleted from each matrix
to complete the reduction. In addition, for a "one
broken bar" simulation (assume rotor bar Na1-1 is
broken), the system of equations can be reduced again
by setting rotor loop N,,-I current equal to rotor loop
N,.- 2 current. For this condition, column N,+2 is added
to column N,, + and column N,.+2 is deleted from the
inductance and effective resistance matrices. Faraday's
law is satisfied by adding row Np,+2 to row NR,+I and
deleting row Nf,+ 2 from each matrix to complete the
reduction.

Subroutine CURRENT: This subroutine is used to
calculate the intermediate values of the current vector
for the Runge-hutta method.

[EST)- [1]Id. l Jt
dt

where:

[EST]= intermediate value of current vector

[l]= initial current vector

Subroutine DRIVE: The purpose of this subroutine is to
calculate the "driving function" for each value of time
and current, i.e.,

driving function=[VI-[RR][l]

Subroutine CHLSKY: This subroutine performs the
inductance matrix inversion to calculate the derivative
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of the current vector for each time value. For the
fourth-order Runge-Kutta procedure, this calculation is
performed four times per time step.

1
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a. PROGRAM LISTING

PROGRAM INDUCTION MOTOR
C
C FILENAME: MARK.FOR
C AUTHOR: MARK S. WELSH
C REFERENCES: CHAPTERS 2 AND 3 OF THESIS
C SECTIONS 3-4 AND 6-5 OF REFERENCE [13]
C
C THIS PROGRAM SIMULATES THE ELECTRICAL OPERATION OF A
C 3-PHASE SQUIRREL-CAGE INDUCTION MOTOR WITH NRB ROTOR
C BARS. THE PROGRAM SOLVES THE SYSTEM OF EQUATIONS IN
C THE FORM OF
C [V]=[L]d/dt[I]+[RR][I]
C FOR THE STATOR PHASE AND ROTOR LOOP CURRENTS. A
C FIXED-STEP, FOURTH-ORDER, RUNGE-KUTTA INTEGRATION
C ROUTINE IS USED. IN ADDITION CHOLESKY'S METHOD WITH
C PARTIAL PIVOTING IS USED TO SOLVE FOR THE VALUES OF
C d/dt[I] FOR EACH TIME VALUE (I.E., INVERTS [L] FOR
C EACH TIME VALUE). THE PROGRAM IS BROKEN DOWN INTO
C SIX SECTIONS (MAIN PROGRAM AND FIVE SUBROUTINES).
C THE PROGRAM WILL ALLOW FOR SIMULATION OF EITHER NO
C BROKEN ROTOR BARS OR ONE BROKEN ROTOR BAR.
C
C LIST OF VARIABLES FOR MAIN PROGRAM
C
C NAMOUT OUTPUT FILE NAME
C BKN FLAG FOR A BROKEN ROTOR BAR
C NRB NO. OF ROTOR BARS
C K NO. OF SYSTEM EQUATIONS (NRB+3)
C K1 NO. OF SYSTEM EQUATIONS FOR THE NO BROKEN
C BAR CASE (NRB+2)
C K2 NO. OF SYSTEM EQUATIONS FOR THE ONE BROKEN
C BAR CASE (NRB+I)
C LS STATOR PHASE SELF INDUCTANCE
C LSL STATOR PHASE LEAKAGE INDUCTANCE
C RS STATOR PHASE RESISTANCE
C MSR STATOR PHASE-ROTOR LOOP MUTUAL INDUCTANCE
C COEFFICIENT
C LR ROTOR LOOP SELF INDUCTANCE
C LRLB ROTOR BAR LEAKAGE INDUCTANCE
C RRB ROTOR BAR RESISTANCE
C E INPUT VOLTAGE AMPLITUDE
C W INPUT VOLTAGE ELECTRICAL FREQUENCY
C WM ROTOR MECHANICAL SPEED
C T SIMULATION TIME
C INC TIME STEP FOR INTEGRATION
C TSTOP SIMULATION STOP TIME
C TOUT SIMULATION TIME TO BEGIN WRITING OUTPUT
C FACTOR INTERMEDIATE TIME STEP FOR INTEGRATION
C TIME INTERMEDIATE SIMULATION TIME
C PP NO. OF MACHINE POLE-PAIRS
C AMPS CURRENT VECTOR
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C V VOLTAGE VECTOR

C L INDUCTANCE MATRIX
C R EFFECTIVE RESISTANCE MATRIX
C VRI DRIVE VECTOR (VRI=[V]-[RRI[II)
C EST INTERMEDIATE CURRENT ESTIMATE
C RKI INITIAL VALUE OF d/dt[I] FOR EACH STEP
C RK2 INTERMEDIATE VALUE d/dtiI] FOR EACH STEP
C RK3 INTERMEDIATE VALUE d/dtfl) FOR EACH STEP
C RK4 LAST VALUE OF d/dt[I] FOR EACH STEP
C
C VARIABLE DECLARATIONS
C

CHARACTER*20 NAMOUT
INTEGER BKN,NRBK,K1,K2
DOUBLE PRECISION LSLSLRSMSRLR,LRLB,RRB,E,WWM,T,
*INC,TSTOP,TOUT,FACTOR,TIME,PP,AMPS(100,1),V(100,100),
*L(100,100),R(100,100),VRI(100,1),EST(100,1),
*RKI(100,1),RK2(100,1),RK3(100,1),RK4(100,1)

C
C GET INPUT PARAMETERS
C

CALL INPUT(LS,LSL,RS,MSR,LR,LRLB,RRB,BKN,E,W,WM,NRB,
*TSTOP,TOUT,INC,PP)

C
C SET UP OUTPUT FILE
C

PRINT *,'ENTER OUTPUT FILE NAME'
READ *,NAMOUT
OPEN(UNIT=7,FILEzNAMOUT,STATUS='UNKNOWN')"

C

C DETERMINE NUMBER OF SYSTEM EQUATIONS
C

K:NRB+3
KI=K-1

IF(BKN.LE.0) THEN
K2=K1

ELSE
K2=Kl-1

ENDIF
C
C INITIALIZE SIMULATION TIME AND CURRENTS
C

DO 10 J=1,K2
AMPS(J,I)=0.

10 CONTINUE
T=0.

C
C SET UP SYSTEM MATRICES FOR TIME=T
C

CALL MOTOR(V,L,R,K,KI,K2,T,LS,LSL,RS,MSR,LR,LRLB,RRB,
*BXN,E,W,WM,NRB,PP)

C
C START SIMULATION LOOP
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C
C WRITE OUTPUT TO DATA FILE (TIME, PHASE A CURRENT,
C AND ROTOR LOOP 1 CURRENT)
C
I IF(T.GE.TOUT) THEN

WRITE( 7,999)T,AMPS(1,1) ,AMPS(4, 1)
ENDIF

C
C CALCULATE RK1 ld/dtII) FOR TIME=T
C
C CALCULATE VRI FOR TIME=T, I=AMPS
C

CALL DRIVE(R,K2,AMPS,VIVRI)
C

CALL CHLSKY(L,K2,1{2+1,VRI,RKI)
C
C CALCULATE RK2 (d/dt[II) FOR TIME=T+INC/2
C

TIME=T+ INC/2 .0
FACTOR: INC/2 .0

C
C ESTIMATE CURRENT FOR TIME=T+INC/2 USING RK1
C0

CALL CURRENT(AMPS,RKI ,FACTOR,K2,EST)
C
C SET UP SYSTEM MATRICES FOR TIME=T+INC/2
C

CALL MOTOR(V,L,R,E,1,K2,TIME,LS,LSL,RS,MSR,LR,LRLB,
*RREB,BKN ,E,WM,NRB,PP)

C
C CALCULATE VRI FOR TIME=T+INC/2, I=EST
C

CALL DRIVE(R,K2,EST,V,VRI)
C

CALL CHLSKY(L,K2,K2+1,VRI,RK2)
C
C CALCULATE RK3 (d/dt[II) FOR TIME=T+INC/2
C
C ESTIMATE CURRENT FOR TIME=T+INC/2 USING RK2
C

CALL CURRENT(AMPS,RK2 ,FACTOR,K2 ,EST)
C
C CALCULATE VRI FOR TIME=T+INC/2, I=EST

CALL DRIVE(R,K2,EST,V,VRI)
C

CALL CHLSKY(L,K2,K2+1,VRI,RK3)0
C
C CALCULATE RK4 (d/dt(IJ) FOR TIME=T4INC
C

TIME=T+ INC
C
C ESTIMATE CURRENT FOR TIME=T+INC USING RK3
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C
CALL CURRENT(AMPS,RK3,INC,{2,EST)

C
C SET UP SYSTEM MATRICES FOR TIME=T+INC
C

CALL MOTOR(V,L,R,K,{1,K2,TIME,LS,LSL,RS,MSR,LR,LRLB,
*RRB,BXNEW, WM ,NRB ,PP)

C
C CALCULATE VRI FOR TIME=T+INC, I=EST
C

CALL DRIVE(R,K2,EST,V,VRI)

CALL CHLSKY(L,J{2,K2+1,VRI,RK4)
C
C CALCULATE NEW CURRENT VALUES AND INCREMENT TIME

DO 20 J=1,K2
AMPS (J, 1)=AMPS (J, I +(INC/6.0) *(REl (J,1I) +2*RX2 (J,I) +

*2*RK3 (J,1) +RK4(U, 1))
20 CONTINUE

T=TIME
C

* C CONTINUE SIMULATION IF T<TSTOP ELSE STOP
C

IF(T.LE.TSTOP) GO TO 1
C

CLOSE(UNIT:7)
STOP

C
999 FOIRMAT(3(3X,F12.7))

END
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SUBROUTINE INPUT(LS,LSL,RS,MSR,LR,LRLB,RRB,BKN,E,W,

*WM,NRB,TSTOP,TOUT,INC,PP)
C
C THIS SUBROUTINE IS THE INPUT INTERFACE FOR THE

C SIMULATION PROGRAM. REQUIRED INPUT VALUES ARE READ

C IN FROM AN EXISTING INPUT DATA FILE AND THE VALUES

C OF INDUCTANCES,RESISTANCES,ETC. ARE CALCULATED FROM

C THE RELATIONS DERIVED IN SECTION 2.3 AND PASSED TO

C THE MAIN PROGRAM
C
C LIST OF VARIABLES
C
C NAMEIN INPUT DATA FILENAME

C STEPS NO. OF TIME STEPS PER SECOND

C S ROTOR SLIP

C Pi RADIANS IN A HALF CIRCLE

C K CONSTANT FACTOR FOR CALCULATIONS
C RI CIRCUIT MODEL STATOR PHASE RESISTANCE
C LI CIRCUIT MODEL STATOR PHASE LEAKAGE INDUCTANCE
C L12 CIRCUIT MODEL MUTUAL INDUCTANCE
C L2 CIRCUIT MODEL ROTOR LEAKAGE INDUCTANCE

a C R2 CIRCUIT MODEL ROTOR RESISTANCE
C
C VARIABLE DECLARATIONS
C

CHARACTER *20 NAMEIN
INTEGER BKN,NRB,PP,STEPS
DOUBLE PRECISION TSTOP,TOUT,LS,LSL,RS,MSR,LR,
*LRLBRRB,E,W,WM,S,P1,INC,K,RI,Li,LI2,L2,R2

C
C REAl) IN INPUT DATA FILE
C

PRINT *,'ENTER INPUT FILENAME'

READ *,NAMEIN
OPEN(UNIT=8,FILE=NAMEIN,STATUS='UNKNOWN')

READ(8,*)R1,L1,L12,L2,R2
READ(8,*)NRB,BKN
READ(8,*)E,W,S,PP
READ(8,*)STEPS,TSTOP,TOUT
CLOSE(UNIT=8)

C

C DEFINE PARAMETERS
C

PI=4$ATAN(1.0)
K=PI*PP/NRB

4 LSL=LI
RS=RI
LS=2*L12/3.0
MSR=8*SIN(K)*L12/(3*PI)

LRLB=(L2-(K**2/(SIN(K)**2)-)*LI2)*4*NRB/(3*PI*2)
RRB=4*NRB/(3*PI**2)*R2
LR=16*(NRB-1)*PP**2*LI2/(3*NRB**2)
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INC=I .0/STEPS
WMzW* (1-S)/PP
RETURN
END
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SUBROUTINE MOTOR(V2,L2,R2,K,K1,K2,TIME,LS,LSL,RS,MSR,
*LR,LRLB,RRB,BKN,E,W,WM,NRB,PP)

C
C THIS SUBROUTINE CALCULATES THE ELEMENTS IN
C EACH MATRIX OF THE SYSTEM OF EQUATIONS FOR A GIVEN
C VALUE OF TIME. THE MATRICES ARE SET-UP AND THEN
C REDUCED FOR THE CONDITION THAT THE SUM OF THE ROTOR
C LOOP CURRENTS IS ZERO. FOR A BROKEN BAR THE SYSTEM IS
C AGAIN REDUCED BY ONE SINCE THE ROTOR LOOP CURRENTS
C ASSOCIATED WITH A BROKEN BAR ARE SET EQUAL. FOR THIS
C SIMULATION ROTOR BAR NRB-I IS THE BROKEN BAR.
C
C LIST OF VARIABLES
C
C VI,RI,LI MATRICES V,R,L REDUCED FOR SUM OF ROTOR
C LOOP CURRENT=0 CONDITION
C V2,R2,L2 MATRICES VI,RI,Ll REDUCED FOR BROKEN ROTOR
C BAR CONDITION
C
C VARIABLE DECLARATIONS
C

INTEGER K,KI,K2,BKN,NRB,PP
DOUBLE PRECISION V(100,1),R(100,100),L(100,100),

*VJ (100,1),RI(100,100),LI(100,100),V2(100,1),
*R2(100,100),L2(100,100),TIME,LS,LSL,RS,MSR,LR,LRLB,
*RRB,E,W,WM,PI

C
PI=4*ATAN(1.0)

C
C CALCULATE VOLTAGE VECTOR
C

DO 10 J=I,K
JF(J.GT.3) THEN

V(J,1)=0.0
ELSE

V(J,1)=E*COS(WTIME-(J-1)*2*PI/3.O)
ENDIF

10 CONTINUE
C

* C CALCULATE INDUCTANCE AND EFFECTIVE RESISTANCE MATRIX
C ELEMENTS
C

DO 20 I=1,K
DO 30 J:I,K

IF(I.LE.3.AND.J.LE.3) THEN

• IF(I.EQ.J) THEN
L(I,J)=LS+LSL
R(I,J)=RS

ELSE
LI, J):-LS/2.0
R(I,J)=0.0

* ENDIF
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ELSEIF(I .LE.3.AND.J.GT.3) THEN
L(1,J)=MSR*SIN(PP*WM*TIME+(2*(J-3)-I)*

* PI/NRB-(I-1)*2sP1/3.0)
R(1,J)=PP*WM*MSR*COS(PP*WM*TIME+(2*(J-3,

* -1 )*Pl/NRB-(I-1 )*2*PI/3.0)
ELSE

IF(I.EQ.J) THEN
L(1, J ) LR+2*LRLB
R( I,J ) 2*RRB

ELSEIF( . EQ. (1+1) )THEN

L( I,J)=-LR/(NRB-1)-LL

R( I,J)=O.O
ENDIF

ENDIF
R (J,1) zR(I, 3)
L(J , I )=L(I,J)

30 CONTINUE
20 CONTINUE

L(4,K)=-LR/(NRB-1 )-LRLB
L(K,4)=L(4,H)
R( 4 ,)=-RRB
R (K, 4 )=R (4 ,K)

C
C REDUCE EQUATIONS FOR SUM OF ROTOR LOOP CURRENTS
C EQUAL ZERO CONDITION

DO 40 I=I,KI
1)0 50 J=I,KI

IF(J.LE.3) THEN
R1(I ,J)=R(I ,J)

ELSE
RI (I,J )=R( I,J)-R( I ,1)
Li (1,3)=L(I ,J)-L(I ,K)

END] F
50 CONTINUE

VlI (,1 )V( 1,1)

*40 CONTINUE
C
C FOR A BROKEN BAR REDUCE EQUATIONS AGAIN ELSE
C SET V2=V1,R2=R1,L2=Ll AND RETURN TO MAIN PROGRAM
C

IF(BI{N.LE.0) GO TO 1000
* C

C REDUCING EQUATIONS FOR BROKEN BAR
C

DO 60 1=1,1(1

LI (I ,12 )=LI ( I,2)+LI (I,KI)

*60 CONTINUE
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Do 70 I=1,Hl
Rl(K2,I)=R1(K2,I)+RI(h1,I)

70 CONTINUE
c
C SETTING FINAL VALUES FOR V,R,L MATRICES

C
1000 DO 80 I=1,K2

DO 90 J=11,12
R2( 1,3)=R1 (I,J)

90 CONTINUE

80 CONTINUE
RETURN
ENDI
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SUBROUTINE CURRENT(A,B,C,NRESULT)

C
C THIS SUBROUTINE CALCULATES THE INTERMEDIATE
C VALUES OF CURRENT FOR THE INTEGRATION ROUTINE.

C l(EST)J=[I(start)]+d/dt[I] dt

C
C LIST OF VARIABLES

C
C N NO. OF EQUATIONS
C A INITIAL VALUE OF CURRENTS
C B d/dt[I)
C C dt (INCREMENTAL TIME)
C RESULT ESTIMATED CURRENT (A+B*C)

C
C VARIABLE DECLARATIONS
C

INTEGER N
DOUBLE PRECISION A(100,1),B(100,1),RESULT(100,1),C

C
C CALCULATE CURRENT ESTIMATE

C
DO 10 J=1,N

RESULT(J,I)=A(J,I)+B(J,1)*C
10 CONTINUE

RETURN
END
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SUBROUTINE DRIVE(A,K2,B,C,RESULT)
C
C THIS SUBROUTINE CALCULATES THE VALUE OF
C [V]-[RR]I] FOR EACH VALUE OF TIME.
C
C LIST OF VARIABLES
C
C A EFFECTIVE RESISTANCE MATRIX [RR]
C B CURRENT VECTOR [I)
C C VOLTAGE VECTOR [V]
C RESULT [V]-[RR][I]
C
C VARIABLE DECLARATIONS
C

INTEGER K2
DOUBLE PRECISION A(100,100),B(100,1),C(100,1), S
*RESULT(100,1)

C
C CALCULATE RESULT
C

DO 10 I=I,K2
RESULT(I,1):=0.0

C
C DETERMINE [RR](I]
C

DO 20 J=I,K2
RESULT(I,I)=RESULT(I,1)+A(I,J)*B(J,1)

20 CONTINUE
C

C DETERMINE [VI-IRR]IIl
C

RESULT(1,1)=C (,1)-RESULT(I,1)

10 CONTINUE
RETURN
END
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SUBROUTINE CHLSKY(AI,N,M,B,RESULT)
C
C THIS SUBROUTINE CALCULATES THE VALUES OF d/dt[])
C FOR EACH VALUE OF TIME USING CHOLESKY'S METHOD WITH
C PARTIAL PIVOTING. THE EQUATIONS ARE IN THE FORM:
C [Lld/dt[Ij=[V]-[RRI[I)
C
C LIST OF VARIABLES
C
C A WORKING MATRIX [L:V-RR I]
C Al INDUCTANCE MATRIX [L]
C B DRIVE VECTOR [Vj-[RRj[I]
C RESULT CURRENT DERIVATIVES d/dt[I]
C PIVOT VALUE OF PIVOT ELEMENT
C SWAP DUMMY VARIABLE FOR CHANGING ROWS
C SUM VARIABLE FOR MULTIPLICATION OPERATIONS 0

c
C VARIABLE DECLARATIONS
C

INTEGER N,M
DOUBLE PRECISION A(lO0,101),AI(100,100),B(100,1),
*RESULT(100,1),PIVOT,SWAP,SUM 4

C
C SET UP A MATRIX [A]=[AI:B]
C (ADD DRIVE COLUMN TO INDUCTANCE MATRIX)
C

DO I I:I,N
DO 2 J=I,M S

IF(J.NE.M) THEN
A(1,J) AI(I,J)

ELSE

ENDIF
2 CONT I NUE S

I CONTINUE
C
C PERFORM PARTIAL PIVOTING
C

DO 10 I=1,N
C
C FIND LARGEST PIVOT
C

PIVOT=A(I,I)
IL=I
DO 20 J=I+1,N

IF(ABS(A(J,I)).LE.ABS(PIVOT)) GO TO 20
PIVOT=A(J,I)
IL=J

20 CONTINUE
IF(IL.EQ.I) GO TO 10

C
C INTERCHANGE ROWS TO PUT PIVOT ON DIAGONAL
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C
DO 30 K=1,M

SWAP=A(I,K)
A(I,K)=A(IL,K)
A(IL,K)=SWAP

30 CONTINUE

10 CONTINUE
C
C CALCULATE FIRST ROW OF UPPER TRIANGULAR MATRIX
C

DO 40 J=2,M
A(1,J)=A(1,J)/A(1,1)

40 CONTINUE

c
C DETERMINE ALL OTHER ELEMENTS OF UPPER AND LOWER
C TRIANGULAR MATRICES

DO 50 1=2,N
C
c LOWER TRIANGULAR MATRIX ELEMENTS
C

DO 60 J:I,N
SUM:O.0
DO 70 K=1,I-1

SUM=SUM+A(J,K)*A(K,I)
70 CONTINUE

A(J,I)=A(J,I)-SUM
60 CONTINUE
C
C UPPER TRIANGULAR MATRIX ELEMENTS
C

DO 80 J:I+I,M
SUM:O.0

DO 90 K=1,I-1
SUM=SUM+A(I,K)*A(K,J)

90 CONTINUE
A(I,J)=(A(I,J)-SUM)/A(I,I)

80 CONTINUE
50 CONTINUE
C
C USE BACK SUBSTITUTION TO FIND d/dt[Ij
C

RESULT(N,I)=A(N,M)
DO 100 I=I,N-I

J:N-I
SUM=0.0
DO 110 K=J+I,N

SUM=SUM+A(J,K)*RESULT(K,1)
110 CONTINUE

RESULT(J,I)=A(J,M)-SUM
100 CONTINUE

RETURN
END
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b. SAMPLE INPUT FILE

The following input file is for a 45-bar rotor with a
broken rotor bar at s=0.04. The values are in the following
format (i.e., refer to subroutine input above):

equivalent-circuit values (R,,L,,Liz,L2 ,R,)
no. of rotor bars, broken bar flag
input voltage, electrical frequency, slip, pole-pairs
no. of steps/sec, stop time, start print time

.859,.0046,.0704,.0046,.5612
45,1
169.71,377,.04,2
1536,4.3334,1.0

Table B-i. Sample simulation input file.

1
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c. SAMPLE OUTPUT FILE

The following output file is for a 45-bar rotor with a
broken rotor bar. This is a portion of the output file
generated from the simulation program using the input file
given in section 1.1.1. Plots of stator phase a current and
rotor loop I current are included.

TIME (sec) STATOR PHASE A ROTOR LOOP 1
CURRENT (amps) CURRENT (amps)

1.0000 9.388 2.926
1.0007 10.963 2.902
1.0013 11.878 2.878
1.0020 12.080 2.854
1.0026 11.556 2.830
1.0033 10.340 2.805
1.0039 8.503 2.780
1.0046 6.158 2.754
1.0052 3.444 2.729
1.0059 0.525 2.703
1.0065 -2.424 2.676
1.0072 -5.225 2.650
1.0078 -7.711 2.623
1.0085 -9.733 2.596
1.0091 -11.169 2.569
1.0098 -11.933 2.542
1.0101 -11.980 2.514
1.0111 -11.308 2.486
1.0117 -9.957 2.458
1.0124 -8.008 2.430
1.0130 -5.580 2.401
1.0137 -2.817 2.372
1.0143 0.114 2.343
1.0150 3.036 2.314
1.0156 5.775 2.284
1.0163 8.165 2.254
1.0169 10.064 2.224
1.0176 11.357 2.194
1.0182 11.968 2.164 0
1.0189 11.858 2.133
1.0195 11.037 2.102
1.0202 9.552 2.071
1.0208 7.494 2.040
1.0215 4.986 2.009
1.0221 2.179 1.977
1.0228 -0.758 1.945
1.0234 -3.648 1.913
1.0241 -6.319 1.881

Table B-2. Sample simulation output file.
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TIME (sec) STATOR PHASE A ROTOR LOOP I
CURRENT (amps) CURRENT (amps)

1.0247 -8.609 1.849
1.0254 -10.380 1.816
1.0260 -11.528 1.783
1.0267 -11.982 1.751
1.0273 -11.716 1.718
1.0280 -10.745 1.684
1.0286 -9.129 1.651
1.0293 -6.964 1.617
1.0299 -4.380 1.584
1.0306 -1.534 1.550
1.0313 1.404 1.516
1.0319 4.258 1.482
1.0326 6.855 1.447
1.0332 9.040 1.413
1.0339 10.682 1.378
1.0345 11.681 1.344
1.0352 11.977 1.309
1.0358 11.554 1.274
1.0365 10.435 1.239
1.0371 8.689 1.204
1.0378 6.421 1.168
1.0384 3.766 1.133
1.0391 0.885 1.097
1.0397 -2.050 1.062
1.0404 -4.862 1.026
1.0410 -7.382 0.990
1.0417 -9.458 0.954
1.0423 -10.966 0.918
1.0430 -11.815 0.882
1.0436 -11.953 0.846
1.0443 -11.373 0.810
1.0449 -10.109 0.773
1.0456 -8.237 0.737
1.0462 -5.869 0.700
1.0469 -3.147 0.664
1.0475 -0.236 0.627
1.0482 2.691 0.591
1.0488 5.456 0.554
1.0495 7.895 0.517
1.0501 9.859 0.480
1.0508 11.232 0.443
1.0514 11.930 0.406
1.0521 11.910 0.369
1.0527 11.175 0.332 S
1.0534 9.768 0.295
1.0540 7.773 0.258

Table B-2. (cont.) Sample simulation output file.
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TIME (sec) STATOR PHASE A ROTOR LOOP 1
CURRENT (amps) CURRENT (amps)

1.0547 5.310 0.221
1.0553 2.526 0.184
1.0560 -0.410 0.147
1.0566 -3.324 0.110
1.0573 -6.038 0.072
1.0579 -8.392 0.035
1.0586 -10.242 -0.002
1.0592 -11.477 -0.039
1.0599 -12.024 -0.076
1.0605 -11.848 -0.113
1.0612 -10.960 -0.151
1.0618 -9.413 -0.188
1.0625 -7.300 -0.225
1.0632 -4.746 -0.262
1.0638 -1.906 -0.299
1.0645 1.050 -0.336
1.0651 3.945 -0.373
1.0658 6.604 -0.410
1.0664 8.869 -0.447
1.0671 10.602 -0.484
1.0677 11.700 -0.521
1.0684 12.095 -0.558
1.0690 11.765 -0.594
1.0697 10.727 -0.631
1.0703 9.045 -0.668
1.0710 6.819 -0.704
1.0716 4.181 -0.741
1.0723 1.291 -0.777
1.0729 -1.679 -0.813
1.0736 -4.551 -0.850
1.0742 -7.151 -0.886
1.0749 -9.323 -0.922 0
1.0755 -10.938 -0-958
1.0762 -11.897 -0.994
1.0768 -12.143 -1.030
1.0775 -11.660 -1.066
1.0781 -10.477 -1.101
1.0788 -8.t65 -1.137 0
1.0794 -6.331 -1.172
1.0801 -3.616 -1.207

Table B-2. (cont.) Sample simulation output file.
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TIME (sec) STATOR PHASE A ROTOR LOOP 1
CURRENT (amps) CURRENT (amps)

1.0807 -0.681 -1.243
1.0814 2.297 -1.278
1.0820 5.139 -1.313
1.0827 7.675 -1.347
1.0833 9.752 -1.382
1.0840 11.246 -1.417
1.0846 12.067 -1.451
1.0853 12.165 -1.485
1.0859 11.533 -1.519
1.0866 10.209 -1.553
1.0872 8.272 -1.587
1.0879 5.838 -1.621
1.0885 3.051 -1.654
1.0892 0.080 -1.688
1.0898 -2.899 -1.721
1.0905 -5.706 -1.754
1.0911 -8.173 -1.787
1.0918 -10.152 -1.820
1.0924 -11.524 -1.852
1.0931 -12.207 -1.884
1.0938 -12.158 -1.917
1.0944 -11.381 -1.949

Table B-2. (cont.) Sample simulation output file.
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SIMULATION STATOR PHASE CURRENT
SLIP=.04 1728 rpm

ONE BROKEN ROTOR BAR

15

10
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SIMULATION ROTOR LOOP CURRENT
SLIP=.04 1728 rpm

ONE BROKEN ROTOR BAR

6

4 -

,0 1.133. . 26 / .0 .6

0 -/
z 2

2: /\
Z" -9/ //

-- 6T I I E Ii1j

N /

1.000 1.133 1.267 1.,400 1.C,:33 1.667
TIME iL >.1r I

Figure B-2. Rotor loop 1 current vs. time for sample
simulation.
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B-2 PRO-KATLAB EIGENVALUE ROUTINE

PRO-MATLAB is a matrix computation software package
developed by The MathWorks, Inc. of Sherborn, MA. This
PRO-MATLAB script file calculates the eigenvalues of the
[RR]/[L] matrix. The eigenvalues are computed for rotor
slip=l.0 (i.e., the rotor is stationary).

a. PROGRAM LISTING

% program EIGENVALUES

% filename: root.m
% author: Mark S. Welsh
% references: PRO-MATLAB user's guide

% PRO-MATLAB routine to calculate eigenvalues for induction
% motor system of equations ([r]/[l]).

% variable list
% sf~rotor slip
% t=time
% nrb:no. of rotor bars
% rleq,lleq,ll2eq,l2eq,r2eq:eq. circuit model values
% pp~machine pole-pairs
% w:input electrical frequency
% wm:mechanical speed
% kconstant
% lslstator phase leakage inductance
% rs~stator phase resistance
% ls:stator phase self inductance
% mzmutual inductance coefficient for stator-rotor
% lrlrotor bar leakage inductance
% rrrotor bar resistance
% lr~rotor loop self inductance
% l,l1]inductance matrix
% r,rl:resistance matrix
% meig~eigenvalues
% tl~smallest time constant
% t2=longest time constant
%

% input parameters
sf:O;
t:O;

nrb=45;
rleq=.859;
lleq=.0046;
112eq:.0704;
12eq=.0046;
r2eq=.5612;
pp=2;
w=377

% calculate electrical and mechanical parameters
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WMw*( 1-sf)/pp;
kpi *pp/nrb;
lsllleq;
rs~rleq;
1s=2*ll2eq/3;
m=8$sin(k)$Il2eq/(3 *pi);
lrl=(12eq-(k2/(sil(k)2)I)112eq)*4*lrb/(3*pi^2);
rr=4*nrb/ (3*pi ̂ 2) *r2eq;
lr=16*(nrb-l)$pp^2*l12eq/(3flrb-2);

% calculate elements of r and 1 matrix
for i=1:3;

for j=1:3;
r( i , j=
1 (i ) =-ls/2;

end
r (i , i)=rs;
1( i ,i )=ls+1s1;
for j=4:nrb43;
l(i,.j)=m*sin(pp*wm~t+(2$(j-3)-1)*pi*pp/nrb-(i-l)*

2$pi/3);
r(i,j)=pp*wm~m*COS(pp*wm*t+(2*(j-3)-1)*pi*pp/nrb-

(i-I )*2$pi/3);
end

end
for i=4:nrb+3;

for ji:nrb+3;

l( i,j)=-lr/(nrb-1)
if j=zi+1;

1(i,j)=-lr/(nrb-1)-lrl;
r( i,j):-rr;

end
end
r(i , i)=2*rr;
1 ( i ,i)=lr+2*lrl;

end
1(4,nrb+3)=-lr/(nrb-l)-lrl;
r (4 ,nrb+3 )=-rr;
for i1l:nrb+3;

for j=i:nrb+3;
r(j, i)=r( i,j);

10(j,j)=:1( i , j
end

end
% reduce system for sum of rotor loop currents=O

for i=1:nrb+2;
for j=1:nrb+2;

if j<4;
ri U .j)=r(i ,j);

else;

r1(i,j)=r(i,j)-r(i,nrb+3);
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endmm

end
end

% calculate eigenvalues

% determine smallest time constant
tl=l/max(abs(meig) );

% determine largest time constant
t2=1/min(abs(meig))

% save values
save eigs.mat;
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b. RIGENVALUES FOR 3-BAR ROTOR

The following values are the eigenvalues calculated for
the 3-bar rotor discussed in Chapter 3.

-186.740
-154.590
-154.590

-4.662
-4.662

Table B-3. 3-bar rotor eigenvalues.
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c. EIGENVALUBS FOR 45-BAR ROTOR

The following values are the eigenvalues calculated for
the 45-bar rotor ( i e., experimental motor) discussed in
Chapter 3.

-186.740 -80.344
-154.590 -80.344

-4.662 -84.698
-154.590 -88.364
-4.662 -88.364
-1.961 -93.992
-1.961 -91.436

-15.636 -91.436
-15.636 -93.992
-25.273 -96.101
-25.273 -96.101
-35.354 -97.817
-35.354 -97.817
-45.124 -99.185
-45.124 -99.185
-54.129 -101.010
-54.129 -101.510
-62.161 -101.010
-62.161 -101.510
-69.171 -100.240
-69.171 -100.240
-75.203 -101.760
-75.203 -101.760
-84 .698

Table B3-4. 45-bar rotor eigenvalues.0
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B-3 PRO-KATLAB FFT ROUTINE

This PRO-MATLAB script file computes the fast Fourier
transform of the stator phase and rotor loop current
outputs of the FORTRAN simulation program. The magnitude of
the FFT values are converted to dB and written to a file for
future plotting if desired.

a. PR9OGRAM LISTING

% program FFT

% filename: fast.m
% author: Mark S. Welsh
% references: PRO-MATLAB user's guide
%references 1183,[19)
%

% PRO-MATLAB procedure to calculate the FFT of the stator
% phase and rotor loop current outputs from the FORTRAN
% simulation program. The input data is sampled at a
% frequency of 153.6 Hz (or 512 data points are taken).
% A second-order Hanning window is used to aid in
% resolution of harmonic frequency components present.
% The power spectral density function is computed and
% converted to a dB scale.

% variable list
' a~input signals array (t,ia,irl)
% t~time
% ia:stator current
% ir~rotor loop I current
% s=FFT of ia
% r=FFT of ir
% ps=power spectral density of ia
% pr~power spectral density of ir S
% wzhanning weight factors

% sample data at 153.6 hz
t=a(1:10:5120,1);
ia~a(1:10:5120,2);
ir~a(1:10:5120,3);

% calculate window function
w=.5*(ones(1:512)-cos(2*pi*(0:511)/512));

% weight inputs using window function
iaw=ia.*w''
irw=ir. *w';

% determine ffts
s:FFT(iaw);
r:FFT(irw);

% determine spectral densities
ps=s.$conj(s);
prr.*conj(r);

% convert to dB
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pszlO*loglO(ps);
pr=10*loglO(pr);

% determine frequencies
f=153 .6* (0:255)/512;

% save values and put in plot format
b=[f' ps(1:256)J;
c=[f' pr(1:256)];
save ffts.mat;
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b. SAMPLE FFT OUTPUT FILE

The following table is the output from the PRO-MATLAB
FFT routine. The values given are the power spectral
densities for the FORTRAN simulation program output currents
of section 1.1.2 above. Plots of the frequency spectrum for
stator phase a and rotor loop 1 currents are included.

FREQUENCY STATOR PHASE A ROTOR LOOP I
(Hz) CURRENT PSD CURRENT PSD

(dB) (dB)

0.0 -120.490 -48.451
0.3 -117.140 -53.454
0.6 -121.350 -68.221
0.9 -117.370 -63.254
1.2 -117.610 -56.369
1.5 -119.050 -48.357
1.8 -115.980 -36.333
2.1 -120.710 47.687
2.4 -118.420 53.710
2.7 -117.390 47.692
3.0 -120.740 -36.337
3.3 -120.190 -48.388
3.6 -117.220 -56.358
3.9 -118.840 -62.401
4.2 -117.980 -67.268

1 120,120 -71.393
4.8 -117.740 -74.918
5.1 -120.040 -78.041
5.- -118.100 -80.848
5.7 -118.700 -83.388
6.0 -117.840 -85.617
6.3 -118.500 -87.782
6.6 -116.340 -89.849
6.9 -119.570 -91.454
7.2 -117.290 -93.317
7.5 -118.280 -94.946
7.8 -115.270 -96.140
8.1 -119.600 -98.164
8.4 -116.090 -98.824
8.7 -116.310 -100.810
9.0 -119.770 -101.670
9.3 -113.980 -102.490
9.6 -118.430 -104.630
9.9 -116.180 -104.240

10.2 -117.560 -106.670
10.5 -115.430 -106.870

Table B-5. FFT output file.
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FREQUENCY STATOR PHASE A ROTOR LOOP I
(Hz) CURRENT PSD CURRENT PSD

(dB) (dB)

10.8 -115.520 -107.940
11.1 -116.440 -109.460
11.4 -114.510 -108.920
11.7 -118.390 -111.340
12.0 -114.800 -112.150
12.3 -113.590 -110.150
12.6 -116.000 -116.330
12.9 -114.220 -111.390
13.2 -114.280 -115.520
13.5 -116.640 -115.190
13.8 -113.160 -115.720
14.1 -113.980 -115.860
14.4 -114.900 -119.660
14.7 -114.180 -118.010
15.0 -113.710 -116.340
15.3 -113.610 -118.070
15.6 -113.860 -125.450
15.9 -113.600 -119.010
16.2 -111.620 -117.840
16.5 -113.520 -124.520
16.8 -112.260 -120.970
17.1 -112.840 -121.440
17.4 -112.180 -122.970
17.7 -112.190 -124.910
18.0 -112.020 -121.540
18.3 -111.010 -125.780
18.6 -112.460 -120.890
18.9 -110.760 -120.280
19.2 -112.040 -115.820
19.5 -110.670 -124.750
19.8 -109.900 -121.160
20.1 -111.180 -125.260
20.4 -111.230 -124.470
20.7 -108.920 -142.480
21.0 -110.990 --122.410
21.3 -99.670 -131 .490
21.6 -98.796 -123.640
21.9 -99.621 -127.000
22.2 -109.030 -129.970
22.5 -109.380 -128.540
22.8 -108.480 -125.770
23.1 -108.520 -126.560
23.4 -107.810 -135.920
23.7 -108.910 -125.290

Table B-5. (cont.) Sample FFT output file.
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FREQUENCY STATOR PHASE A ROTOR LOOP I
(Hz) CURRENT PSD CURRENT PSD

(dB) (dB)

24.0 -107.210 -129.800
24.3 -107.170 -127.430
24.6 -108.180 -132.510
24.9 -107.020 -130.390
25.2 -106.790 -133.600
25.5 -106.530 -129.600
25.8 -107.180 -124.460
26.1 -105.870 -126.050
26.4 -105.780 -125.480
26.7 -105.290 -131.720
27.0 -106.050 -132.720
27.3 -105.470 -140.190
27.6 -104.450 -122.270
27.9 -105.650 -129.900
28.2 -104.010 -135.800
28.5 -104.180 -125.730
28.8 -104.100 -134.130
29.1 -103.810 -134.500
29.4 -103.620 -124.620
29.7 -102.930 -125.320
30.0 -103.550 -126.870
30.3 -102.190 -125.760
30.6 -102.490 -119.520
30.9 -102.120 -123.740
31.2 -102.120 -129.180
31.5 -101.730 -124.990
31.8 -101.060 -132.810
32.1 -101.390 -135.670
32.4 -100.340 -129.790
32.7 -100.610 -126.290
33.0 -100.460 -132.600
33. 3 -99.795 -130.500
33.6 -99.354 -126.870
33.9 -99.584 -137.510
34.2 -98.968 -136.360
34.5 -98.627 -144.390
34.8 -98.221 -131.530 0
35.1 -98.288 -145.710
35.4 -97.o58 -126.560
35.7 -97.524 -76.744
36.0 -96.991 -70.852
36.3 -96.985 -76.980
36.6 -96.150 -128.330
36.9 -96.247 -128.480
37.2 -95.819 -124.140

Table B-5. (cont.) Sample FFT output file.

203



FREQUENCY STATOR PHASE A ROTOR LOOP 1
(H7) CURRENT PSD CURRENT PSD

(dB) (dB)

37.5 -95.310 -129.900
37.8 -95.145 -148.670
38.1 -94.592 -128.070
38.4 -94.500 -131.560
38.7 -94.062 -129.210
39.0 -93.424 -130.500
39.3 -93.278 -123.870
39.6 -92.801 -133.130
39.9 -92.563 -127.250
40.2 -92.018 -136.670
40.5 -91.743 -110.170
40.8 -91.323 -104.290
41.1 -90.756 -110.790
41.4 -90.485 -126.750
41.7 -89.964 -133.240
42.0 -89.702 -128.000
42.3 -89.106 -129.450
42.6 -88.737 -129.520
42.9 -88.230 -133.660
43.2 -87.867 -139.180
43.5 -87.242 -128.160
43.8 -86.899 -144.760
44.1 -86.351 -127.010
44.4 -85.971 -127.780
44.7 -85.277 -129.190
45.0 -84.879 -135.890
45.3 -84.398 -140.460
45.6 -83.763 -128.750
45.9 -83.270 -128.910
46.2 -82.767 -132.750
46.5 -82.112 -132.010
46.8 -81.559 -131.580
47.1 -81.015 -131.070
47.4 -80.360 -138.210
47.7 -79.759 -125.470
48.0 -79.152 -129.590
48.3 -78.467 -137.420
48.6 -77.825 -130.090
48.9 -77.168 -135-140
49.2 -76.467 -132.980
49.5 -75.738 -131.590
49.8 -75,034 -136.100
50.1 -74.285 -148.390
50.4 -73.528 -136.750
50.7 -72.760 -131.330

Table B-5. (cont.) Sample FFT output file.
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FREQUENCY STATOR PHASE A ROTOR LOOP 1
(Hz) CURRENT PSD CURRENT PSD

(dB) (dB)

51.0 -71.924 -141.820
51.3 -71.151 -136.470
51.6 -70.303 -157.810
51.9 -69.445 -133.010
52.2 -68.565 -129.240
52.5 -67.630 -132.530
52.8 -66.607 -127.240
53.1 -65.291 -134.450
53.4 -63.277 -131.820
53.7 -59.719 -136.240
54.0 -53.913 -134.880
54.3 -45.531 -130.020
54.6 -33.052 -128.300
54.9 23.979 -131.300
55.2 30.056 -134.000
55.5 24.092 -135.190
55.8 -32.168 -123.950
56.1 -41.944 -124.990
56.4 -44.745 -130.200
56.7 -44.090 -121.450
57.0 -42.096 -123.830
57.3 -39.464 -126.810
57.6 -36.775 -123.950
57.9 -33.185 -125.870
58.2 -29.069 -132.570
58.5 -24.232 -138.080
58.8 -18.225 -134.530
59.1 -10.281 -134.520
59.4 1.728 -133.890
59.7 57.809 -129.160
60.0 63.892 -135.130
60.3 57.932 -137.680
60.6 1.878 -129.910
60.9 -10.194 -131.000
61.2 -18.165 -129.220
61.5 -24.193 -127.560
61.8 -29.059 -126.040
62.1 -33.145 -123.560
62.4 -36.669 -134.160
62.7 -39.769 -132.280
63.0 -42.536 -136.570
63.3 -45.037 -128.000
63.6 -47.316 -124.010
63.9 -49.412 -127.040
64.2 -51.350 -134.290

Table B-5. (cont.) Sample FFT output file.
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FREQUENCY STATOR PHASE A ROTOR LOOP I
(Hz) CURRENT PSD CURRENT PSD

(dB) (dB)

64.5 -53.152 -130.420
64.8 -54.841 -130.330
65.1 -56.422 -133.160
65.4 -57.911 -145.320
65.7 -59.326 -135.670
66.0 -60.656 -125.890
66.3 -61.930 -127.300
66.6 -63.138 -139.560
66.9 -64.300 -128.220
67.2 -65.392 -132.960
67.5 -66.459 -125.600
67.8 -67.466 -127.090
68.1 -68.455 -128.730
68.4 -69.369 -143.340
68.7 -70.296 -135.280
69.0 -71.153 -128.240
69.3 -71.998 -128.200
69.6 -72.792 -133.360
69.9 -73.598 -127.150
70.2 -74.317 -121.150
70.5 -75.079 -123.520
70.8 -75.729 -128.960
71.1 -76.456 -137.850
71.4 -77.050 -149.120
71.7 -77.736 -134.230
72.0 -78.304 -132.220
72.3 -78.885 -135.290
72.6 -79.435 -139.460
72.9 -79.952 -126.330
73.2 -80.441 -127.550
73.5 -80.928 -131.900
73.8 -81.307 -129.540
74.1 -81.752 -136.740
74.4 -82.122 -129.350
74.7 -82.474 -132.450
75.0 -82.672 -131.340

Table B-5. (cont.) Sample FFT output file.
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Figure B-3. Stator phase a frequency spectrum for sample

simulation.
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Figure B-4. Rotor loop I frequency spectrum for sample
simulation.
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APPENDIX C

EXPERIMENTAL DATA

The following sections contain tables of the measured
data (the fundamental and (1-2s)f components of the stator
phase current) for the four rotors tested. This is the data
recorded using the HP-3561A dynamic spectrum analyzer as
discussed in section 4.2. Included in each table is the
average value and standard deviations for each data set. In
addition, the average stator phase voltage is included in
the tables for the fundamental component of the stator plasc
current. An analysis of the data presented below is included
in Chapter 4.

0

2

0

0
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C-1 EXPERIMENTAL DATA ROTOR #1

ROTOR #1

1(1-2s)f COMPONENT OF STATOR CURRENT
AMPS rms

TEST NO. s=0.01 s=0.02 s=0.03 s=0.04

1 0.0014 0.0026 0.0027 0.0031

2 0.0010 0.0017 0.0019 0.0034

3 0.0009 0.0013 0.0027 0.0041

4 0.0012 0.0023 0.0032 0.0027

5 0.0008 0.0013 0.0030 0.0049

6 0.0011 0.0017 0.0034 0.0017

7 0.0006 0.0016 0.0019 0.0041

8 0.0007 0.0013 0.0016 0.0033

9 0.0012 0.0013 0.0019 0.0024

10 0.0006 0.0011 0.0028 0.0037

11 0.0010 0.0015 0.0024 0.0018

12 0.0007 0.0003 0.0019 0.0040

13 0.0013 0.0013 0.0027 0.0039

14 0.0012 0.0015 0.0024 0.0020

15 0.0014 0.0016 0.0023 0.0029

16 0.0014 0.0012 0.0023 0.0023

17 0.0015 0.0012 0.0030 0.0038 S

18 0.0012 0.0014 0.0027 0.0026

MEAN 0.0011 0.0015 0.0025 0.0032

STD DEV. 0.0003 0.0005 0.0005 0.0009

Table C-I. ROTOR #1 I(1-2s)f raw data.
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ROTOR #I
FUNDAMENTAL COMPONENT OF STATOR CURRENT

AMPS rms

TEST NO. s=0.01 s=0.02 s=0.03 s=0.04

1 4.68 5.97 7.50 8.96

2 4.87 6.26 7.20 9.17

3 4.74 5.86 7.38 8.94

4 4.81 6.13 7.51 8.77

5 4.75 5.91 7.30 9.02

6 4.71 5.87 7.30 9.02

MEAN 4.76 6.00 7.37 8.98

STD DEV. 0.06 0.15 0.11 0.12

AVG INPUT
VOLTAGE 123.3 123.1 122.7 122.5
(V rms)

Table C-2. ROTOR #1 1(60 Hz) raw data.

2
0

0
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C-2 EXPERIMENTAL DATA ROTOR #2 (ONE END OPEN)

ROTOR *2
I(1-2s)f COMPONENT OF STATOR CURRENT

AMPS rms

TEST NO. s=0.01 a=0.02 s=0.03 s=0.04

1 0.0020 0.0018 0.0029 0.0012

2 0.0012 0.0011 0.0013 0.0030

3 0.0009 0.0036 0.0015 0.0019

4 0.0011 0.0014 0.0020 0.0011

5 0.0009 0.0028 0.0036 0.0023

6 0.0013 0.0032 0.0009 0.0038

7 0.0015 0.0011 0.0023 0.0020

8 0.0015 0.0013 0.0020 0.0032

9 0.0010 0.0019 0.0022 0.0015

10 0.0010 0.0016 0.0029 0.0017

11 0.0016 0.0012 0.0021 0.0028

12 0.0014 0.0013 0.0019 0.0024

13 0.0007 0.0028 0.0026 0.0020

14 0.00111 0.0016 0.0028 0.0017

15 0.0012 0.0020 0.0031 0.0022

16 0.0013 0.0013 0.0025 0.0028

17 0.0015 0.0019 0.0019 0.0025

18 0.0011 0.0013 0.0020 0.0039

MEAN 0.0013 0.0018 0.0023 0.0023

STD DEV. 0.0003 0.0007 0.0007 0.0008

Table C-3. ROTOR #2 I(1-2s)f raw data.
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ROTOR # 2
FUNDAMENTAL COMPONENT OF STATOR CURRENT

AMPS rms

TEST NO. s=0.0I s=-0.02 s=0.03 s=0.04a

1 4.53 5.83 7.40 8.81

2 4.65 5.71 6.97 8.84

3 4.53 5.85 6.79 8.71

4 4.58 6.03 7.04 8.56

5 4.62 5.94 7.57 8.70

6 4.64 5.79 7.22 9.06

MEAN 4.59 5.86 7.16 8.78

STD DEV. 0.05 0.10 0.26 0.15

AVG INPUT
VOLTIAGE 122.6 122.4 122.1 121.9
(V rins)

Table C-4. ROTOR #2 1(60 Hz) raw data.
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C-3 EXPERIMENTAL DATA ROTOR #2.1 (BOTH ENDS OPEN)

ROTOR #2.1
I(1-2s)f COMPONENT OF STATOR CURRENT

AMPS rms

TEST NO. s=0.01 s=O.02 s=0.03 s=0.04

* 1 0.0034 0.0083 0.0101 0.0169

2 0.0036 0.0082 0.0117 0.0169

3 0.0042 0.0070 0.0121 0.0184

4 0.0056 0.0067 0.0120 0.0175

5 0.0040 0.0064 0.0129 0.0188

6 0.0077 0.0075 0.0125 0.0194

7 0.0046 0.0078 0.0131 0.0135

8 0.0048 0.0087 0.0147 0.0148

9 0.0034 0.0070 0.0131 0.0159

10 0.0034 0.0089 0.0127 0.0172

11 0.0041 0.0077 0.0144 0.0239

12 0.0030 0.0078 0.0124 0.0163

13 0.0036 0.0066 0.0129 0.0181

14 0.0033 0.0058 0.0138 0.0188

15 0.0036 0.0059 0.0124 0.0179

16 0.0030 0.0061 0.0124 0.0142

17 0.0042 0.0069 0.0136 0.0171

18 0.0041 0.0077 0.0139 0.0145

MEAN 0.0041 0.0073 0.0128 0.0172

STD DEV. 0.0011 0.0009 0.0010 0.0023

Table C-5. ROTOR #2.1 I(1-2s)f raw data.
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ROTOR #2.1

FUNDAMENTAL COMPONENT OF STATOR CURRENT
AMPS rms

TEST NO. s=0.01 s=0.02 s=0.03 s=0.04 a

1 4.87 6.33 7.66 8.67

2 4.76 5.93 7.25 8.42

3 4.67 5.93 7.28 8.64

4 4.60 5.71 7.21 8.87

5 4.57 5.72 7.13 8.58

6 4.48 5.98 7.03 8.46

MEAN 4.66 5.93 7.26 8.61

STD DEV. 0.13 0.21 0.20 0.15

AVG INPUT
VOLTAGE 123.1 122.9 122.5 122.2
(V rms)

Table C-6. ROTOR #2.1 1(60 Hz) raw data.
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C-4 EXPERIMENTAL DATA ROTOR J3

ROTOR #3
I(1-2s)f COMPONENT OF STATOR CURRENT

AMPS rms

TEST NO. 6=0.01 s=0.02 s=0.03 s=0.04

1 0.0008 0.0003 0.0011 0.0013

2 0.0007 0.0006 0.0014 0.0013

3 0.0011 0.0012 0.0012 0.0013

4 0.0005 0.0006 0.0012 0.0016

5 0.0009 0.0006 0.0011 0.0016

6 0.0005 0.0008 0.0001 0.0013

7 0.0013 0.0005 0.0012 0.0012

8 0 0005 0.0008 0.0014 0.0012

9 0.0006 0.0006 0.0012 0.0011

10 0.0005 0.0006 0.0011 0.0013

11 0.0006 0.0006 0.0012 0.0015

12 0.0003 0.0008 0.0014 0.0015

13 0.0009 0.0006 0.0012 0.0016

14 0.0008 0.0006 0.0008 0.0011

15 0.0009 0.0006 0.0012 0.0012

16 0.0007 0.0004 0.0008 0.0015

17 0.0003 0.000-1 0.0014 0.0013

18 0.0005 0.0007 0.0011 0.0012

MEAN 0.0007 0.0006 0.0011 0.0013

STD DEV. 0.0003 0.0002 0.0003 0.0002

Table C-7. ROTOR #3 I(1-2s)f raw data.
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ROTOR #3

FUNDAMENTAL COMPONENT OF STATOR CURRENT'
AMPS rms

TEST NO. s=0.01 s=0.02 s=0.03 s=0.04

1 4.60 5.80 7.40 8.61

2 4.54 5.73 6.84 8.74

3 4.63 5.94 7.16 8.65

4 4.72 5.92 7.34 8.64

5 4.72 5.80 7,19 8.57

6 4.59 5.82 7.13 8.67

MEAN 4.63 5.84 7.18 8.65

STD DEV. 0.07 0.07 0.18 0.05

AVG INPUT
VOLTAGE 122.7 122.4 122.1 121.8
( rms)

Table C-8. ROTOR #3 ](60 Hz) raw data.

217

S



APPENDIX D

INDUCTION MOTOR STATOR PHASE CURRENT HARMONICS

D-I Introduction

In addition to the fundamental and (1-2s)f frequency
components of the stator phase current, components at
frequencies (1-4s)f, (1+2s)f, and (1+4s)f were also
detected for each rotor tested as shown in Chapter 4. In
order to examine the source of these additional frequency
components, an expression for the frequency components
which can exist in the stator phase currents due to both
time- and space-harmonic components of the airgap flux is
derived.

D-2 Derivation

Assume initially that the airgap flux density due to
currents flowing in the stator phase windings is given by
the following expression

B; 3 {B, sin(mw t -npO)
M - odd t - odd

+ Bosin(m(t- np)} (D- 1)

where

B,_.B Fourier coefficents

m a m stator time-harmonic

n n'b stator space-harmonic

Using the transformation rclation given by equation S
2-5, in the rotor reference frame equation D-1 becomes

B, = {B 0 sin(mwt+np6' n(1-s)wt)
M - odd 0- odd

*B,,osin(mwt-np'-n(l-s)wt)) (D-2)
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From equation D-2, it can be seen that airgap flux will

couple with the rotor loops and induce currents of
frequencies

(m±n(I-s))wu for m,n odd (D-3)

These induced rotor currents also produce an airgap
flux which can be expressed in the following form

B, = Z E {B_=si((rng(l-s))awt+qpO')
4-o44 M -od4d -o4

+ B*°sin((m n(I-s))w t-qpO')

+ Bq ,,sin((m-n(1-s))wt+ qpO')

- B -sin((m -n( I -s))wt- qp6')} (D-4)

where

B B B , B Fourier coefficients

q- qt rotor space-harmonic

In the stator reference frame this becomes

B.- = < B 0sn((mn(J-s)-q(J-s)). qp9)

q-odd dd - ti -o44

+ Bq= sin((m+n(I-s) q(l-s))wt-qpO)

*B = sin((m-n(I-s)-q(l-s))wut+qpO)

+Bqmsin=((m -n(I-s)+q(I-s))Wt-qpO)} (D-5)

This component of the airgap flux will couple with the
stator phase windings and induce currents with the
following frequencies
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(n -in(I-s)-q(I-s))w for m.n.q odd (D-6)

(m n(I-s)-q(I-s))w for m,nq odd (D-7)

(m-n(I-s)-q(I-s))w for m.nq odd (D-8)

(m-n(J-s)*q(J-s))w for m.n,q odd (D-9)

Thus for each combination of m, n, and q there can be
as many as four distinct frequencies of currents induced in
a stator phase winding. Table D-I shows the possible stator

phase current harmonics for m,n,q=1,3,5. This table shows
that the (I-4s)f and the (1+2s)f components are produced by
the third time-harmonic and that the (1+4s)f component is
produced by the fifth time-harmonic component of the stator
phase current.

For the experimental motor with ROTOR #3 installed and
operating at a slip of 0.0011, the stator phase current
frequency spectrum measured using the HP-3561A signal
analyzer is shown in Figure D-1. This spectrum shows that
the magnitudes of the third and fifth time-harmonics are
approximately the same and that they are larger than all
other harmonic components except the fundamental component
of the stator phase current. This would indicate that for
the motors tested, the (l-4s)f, (1+2s)f, and (1+4s)f
components can be attributed to the third and fifth
time-harmonics of the stator phase current.
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time/space STATOR PHASE CURRENT HARMONICS
component normalized to the fundamental frequency
m n q (eqn D-6) (eqn D-7) (eqn D-8) I(eqn D-9)

1 I I I 3-2s -1+2s I

1 1 3 -1+2s 5-4s -3+4s 3-s

1 1 5 -3+4s 7-69 -5+6s 5-4s

1 3 1 3-2s 5-4s -3+4s -1+2s

1 3 3 1 7-6s -5+6s 1

1 3 5 -1+2s 9-8s -7+8s 3-2s

1 5 1 5-4s 7-6s -5+6s -3+4s

1 5 3 3-2s 9-8s -7+8s -1+2s

1 5 5 1 11-l0s -9+10s 1

3 1 1 3 5-2s 1+2s 3

3 1 3 1+2s 7-4s -1+4s 5-2s

3 1 5 -1+4s 9-6s -3+6s 7-4s

3 3 3 3 96 36

3 3 5 1+2s 11-8s -5+8s 5-2s

3 5 5 3131s -+03

5 1 1 5 7-2s -3+2s 5

5 1 13 3+2s 9-4s 1+4s 7-2s

5 1 5 1+4s 11-6s -1+6s. 9-4s

5 3 1 7-2s 9-4s 1+4s 3+2s

5 3 3 5 11-6s -1+6s 5

5 3 5 3+2s 13-8s -3+8s 7-2s

5 5 1 9-4s 11-6s -1+6s 1+4s

5 5 3 7-2s 13-8s -3+8s 3+2s

5 5 5 1 5 15-109 -5+10s 5

Table D-1. Predicted stator current harmonics.

221



Am STORED ROTOR 3 TIME,5

20
dBV

dBv

0 Hz
."75 d8V

dB

CENTERs 400 Hz BWv 3 Hz SPANt 800 Hz

Figure D-I. Stator current time-harmonics.
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