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P. Nicolas

Executive Summary: The demand for more sensitive per« 2ption of sub-
marins signals buried within ocean noise requizes siatistical methods of
=nalysis A ststistical sonar theory is concerned with the development of
probabiiity models for signals, interferences, and underwater experiment
conditions, and, based on these models, the developmeant of methods for the
detection, identification, and classification of submatines.

Studies dealing with prcpagation in shailow wa‘er generally model the ie-
ceived signal as a convolution between a transmitted pulse (or wavalet) sad
the medium response. In this final report of one such study the principal
aim is to extract more information on the medivin ~ s4ch as backscattering
cflects and mudtipath struciuie fivii a sigial ieceived vin a puint ied tiver vt
ar arrey st a lower signal-to-noise ratio - than has heen achieved previously.
This clearly could have a ditect impact on futute sonar systems.

The princspa) edvantage of the so-called method is that it does not require
the usual wssumption of minimum phase signals (or that all signais have a
welt behzved phase sliuciuic) andt is thereluie capabie of coping with mere
reatistic propagution conditions where, in general, the various signal arrivals
have a complex mixed-phasge structure.

The petfosmance of the method is demonstrated using both simulated and
real at-sea deta. Witk the simulated data, deconvolution of the wavelet can
be¢ achieved down io a signal-to-noaise ratio of -5 dB, while the multipaths
are well separated at a signal-to-noise ratio of 5 dB. Using an explosive
source and a vertical arrsy receiver at sea one can separate the vesy close
reflected and refracted pathe nzar the surface in the order of I or 2 ms.
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Deconvolution by homomorphic and
Wiener flltering

P. Nicolas
1"

Abstrace: This study is concerned with deconvolution methods applied
to underwater propagation in shallow water, whereby the received signal is
modelled as the convolution between the transmitted pulse and the medium
impulse response. The aim of the method is to extract information on
backscattering, travel time delays, boundary reflection and refraction from
the received signal on a point receiver ot an array for both seismic and
active sonar data. Since experimental data are generally mixed phase, due
in part to the multiple reflections (bottom and surface), the conventional
linear filtering which assumes the minimum phase property, loses in efficacy.
In order to handle this mixed phase characteristic of the data, we proceed
in two steps. We first apply a homomorphic filter (complex cepstrum) to
deconvolve the wavelet. Then we deconvolve the medium impulse response
by means of Wiener filter. The eficacy of the method is shown on both

simulated and real data for explosive and active sonar data. ./
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1. Introduction

In many fields of physics, such as geophysics, seisinics and sonar, we are faced with
problems of deconvolution. The observed signal received from a sensor in these
fields is often considered to be formed by the convolution of the transmitted signal
with the propagation medium impulse response. The goal of deconvolution filter-
ing is to recover the medium impulse response from the recorded signal. Different
methods have evolved according to the type of a priort information included in the
signal modelling. If the transmitted signal is known exactly, Wiener filtering is con-
ventionally applied under the assumption of minimum-phase signals! {1-3). If the
source signal is not known exactly (which is the case for an explosive) but can be
modelled by a parametric transfer function, linear prediction methods can be used
with success [4-6]. However these methods require the minimum phase condition.
In real life the received signal is generally mixed-phase which is the case for seismic
data. When considering this real constraint, another appreach is non-linear filter-
ing based on the generalized superposition principle proposed by Oppenheim and
called homomorphic deconvolution {7]. This is based on the separation of the sco-
called wavelet and the medium impulse response in the cepstral domain [8,9]. Here
we present a method which combines linear and non-linear filtering (10]. The aim
of this method is to extract information on backscattering, travel-time delays, and
boundary reflection and refraction from the received signal at a point receiver or an
array- -for both scismic and active sonar data. Since nu asswmption of minimum
phase is made, we first apply a homomorphic technique (complex cepstrum) in order
to deconvolve the wavelet.? The deconvolved wrvelet is then taken as the known
signal, and we estimate the boundary reflections and travel time-delays by means of
Wiener filtering.

The report is structured as follows: first, we define the wavelet and the modelling
of the medium behaviour; second, we advance the concept of homomnorphic de-
convolution and its mathematical formulation; third, we apply Wiener filtering to
the recovery of boundary reflection and propagation time-delays; fourth we propose
an improvment of the deconvolution method based on a combination of homomor-
phic deconvolution and Wicner filtering; and fifth the application to seismic and
active sonar experiments is illustrated. We present results obtained on both simu-
lated and field-recorded arine seismic data apd active sonar data. We point out
how the method can be used succesfully in active sonar to analyse backscattering
statistics. The important notion of minimum-phase signals, phase unwrapping and
mathematical investigation of the complex cepstrum through models are expanded
in appendices.

The term ‘minimum-phase signal’ is defined in Appendix A.
The term wavelet was introduced by among other people, Tribolet [11], and is defined and
explained in the first part of the present report.

et
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2. Definition of the wavelet

This section is devoted to the definition of the wavelet. It will be shown later that
the wavelet contains information on the probability characteristics of reverberation
and propagation conditions. The study of the statistical features of reverberation
presents two points of specific interest: one is the propertien of reverberation as
sonar inte;{erence; the other is reverbeiation as a phenomenon which helps us to
estimate the properties of the water medium and its boundaries. Reverberation
can be classified into three types: volume reverberation, reverberation from a layer;
and reverberation from a boundary. A propagation signal can originate from an
explosion or can be a controlled pulse trarsmitted from a pcint source and received
on an array of hydrophones (here a vertical array). As it propagates through the
medium it follows three paths: ihe direct path; th: surface reflected path; and the
bottom-layer reflccted path. Figure 1 represents the case of a source and an array
closer to the surface as opposed than in Fig. 2, which shows a source and an array
closer to the bottom. These figures present a simplified propagation model and do
not take into account the ghosts and multiple arrivals; in a more realistic model
these can be removed by adaptive linear filtering [12].

The backscatterings at the sea surface and at the layer boundary are defined respec-
tively by the impulse response functions h,(t) and h;(t). The medium propagation
is defined by the impulse response h,,(t). These three impulse responses are ran-
dom processes. In the first case (Fig. 1), the received signal is dominated by the
direct arrival and the surface-reflected arrival. The layer-bottom reflected arrival
comes much later and is therefore not included. Assuining that the medium and the
surface boundary act as linear fiters, the signal y; (t)—composed of the direct and
surface-reflected paths—is given in the time interval [0,T] by

Y1(t) = hm(t) » 2(t) + A (t) « h(t) x 6(t - 7,) » z(t), (1)
where z(t) is the tranamitted signal and r, the propagation time-delay along the
sur.ace path. In the second case (Fig. 2) and under the same assumption, the signal

y3(t)—composed of the direct and bottom-laye: reflected arrivals—is given, in the
time interval [0,T], by

Ya(t) = Am(t) » z(t) + Am(t) » hy(t) » 5(t — 11) = 2(2), (2)
where 7y is the propagation time-delay along the bottom-layer path.

Because the impulse responses A, (t), Ai(t) and h,(t) are random processes, y;(t)
and y;(t) defined on (0,T] are to be considered as particular realisations of random
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signals. By taking the fourier transform of both sides of (1) and (2), we have

Vi(f) = Ha(£)X(F) + Hul F)H(£)X(f)e™ "0, (3)
Ya(f) = Half)X(S) + Hm( ) H(f)X (fe7 07, (4)

where Y| (f) and Y3(f) are particular realizaticns of the spectrum of the signals y,(t)
and y;(¢) respectively. Both of the equations (3) and (4) can be factored in two ways

Yi(f) = Hal DX ()1 + Hi(Ple 7] (5a)
= Ha(DHAOX (e 14 gret™in], (5)
Ya(f) = Hal )X (F)[L+ Hi(fle™77] (69)
= Ha(NH(NX(fe 7714 ;!Tt-f—)ef"m]. (6b)

By definition, the wavelet is given, with respect to the factore 1 expression by

W _ | Ha(F)X(S) (first factored expression)
)=V Ho()H(F)X(f) (second factored expression),

Wol f) = Ho(f)X(f) {first factored expression)
wf) = Ho(f)HI(f)X(f) (second factored expression).

Depending on the factored expression, the wavelet contains information on only
medium propagation or on both medium propagation and boundary backscattering.
In order to separate the wavelet from the other components, we can take the complex
logarithm of Y;(f) and Y3(f). If the surface impulse response is minimum phase
(definition and details on minimum-phase signals are given in Appendix A), the
modulus of H,(f) is less than unity and nne uses the first factored expression.

logYi(f) = logHm(f)X(f)[l + H.(f)e—jzw/f,]
= log Wi(f)+ H.(f)e /2 I™ _ {-H,(f)’e"“"f".

If the surface impulse response is not minimum phase, the module of H,(f) is greater
than unity and the second factored expression is used:

log Yi(f) = log Hm(f)log H,(f)X(f)e 9?1 + 7 l(f)enm.]

A _ L iAntre _ gitnir,

1
=leWi(N)+ 71 2H AT
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We can do the same for the bottom-layer reflected path. Then, by using an appro-
priate filter and suppressing the linear phase component when the impulse response
is not minimum phase, we can extract the wavelet from the received signal. In fact,
instead of filtering the signal in the frequency domain, we filter the inverse fourier
transform of the complex logarithm, whkich is the complex cepstrum by definition
(see Sect. 3).

In brief, the wavelet is an artificial transmitted signal in the sense that it represents
the transmitted signal modified by the propagation and backscattering characteris-
tics. Depending on the boundary properties, the wavelet carries more information or
less information (minimum or not minimum phase property). By extracting the im-
pulse response functions h,,(¢t), h,(t) and hi(t), we improve the modelling of medium
propagation and backscattering statistics which can be compared to existing theo-
retical models.

Py NV
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3. Homomorphic deconvolution

3.1. ROUMOMORPHIC SYZTEMS

In reverberation we are faced with the problem of filtering signals that have been
combined by convolution. It would be avantageous to transform these non-linear
systems into linear systems by applying the appropriate filtering. This leads to
systems which obey the ‘generalized principle of superposition’. Given two inputs
fet us assume that they are related together by a rule o. If s is a scalar let : be
a rule to combine s with any of the two inputs. Siumrilarly, we denote o the rule to
combine the outputs together and e a rule to combine a scalar with an output. If
H is the system transformation, we state:

H{z\(t)oz2(t)] = Hlz1(t)] o H{z(t)],
H[S . xl(t)] =3 H[Il(t)]

The systems that verify the two preceding equations are said to obey a ‘generalized
principle of superposition’ [9]. It can be shown that if the system inputs constitute a
vector space with the operations ¢ and : corresponding to vector addition and scalar
multiplication and the system outputs constitute a vector space with the operation o
and e corresponding to vector additior end scalar multiplication, then all systems of
this kind can be represented as a cascade of three systems referred as the ‘canonical
representation of homomncrphic systems’, shown in Fig. 3.

The first system D, has the following property:
Do[z,(t) o 22(t)] = Dofza(t)] + Dofz2(t)] = 21(t) + 22(2),
Dofs : 21()] = sDa[z1(t)] = 581 (2).

The effect of the system D, is to transform the signals z,(¢) and z,(t) according to
the rule o into a conventional linear combination of corresponding signals D[z (t)]
and D,[z,(t)]. The system L is a linear system:

L{21(t) + 22(t)) = L{2(t)] + L{22(t)] = n(t) + Ga(2),
L[szy(t)] = sL[1(t)] = sya(t).
The system D;! transforms from addition to the rule o:
DM () + 92(6)) = D3 [i1(8)]) o DM g2(2)] = wi(t) 0 y2(¢),
D7 sgi(t)) = s DM G ()] = s e (1)
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All the homomorphic systems with the same input and the sam. outpui differ only
in the linear part. Consequently, by choosing the transformations L', and D, we
are left with a linear problem.

We are going to apply these results to convolved inputs signals. The rule ¢ becomes
the convolution . We choose the output rule o to be equal to the input rule and
therefore o is also equal to t} 2 convolution *. The canonical representation of an
homomorphic deconvolution system is shown in Fig. 4.

3.2. COMPLEX CEPSTRUM

@ 3.2.1. Mathematical representation of the system D. and definition of the complex
cepstrum

The system D, is defined by the property that the z-transform (or the fourier trans-
form on the unit circle) of its output is equal to the complex logarithm of the
z-transform (or the fourier transform on the unit circle) of its input:

#(n) = D.jz(n}],
X(z) = log X (z),

where 2(n) is the nth sample of 2(¢). According to this definition, the characteristic
system D, of the homomorphic deconvolution is as shown in Fig. 5.

The output of the system D., dencted #(n), is called the complex cepstrum of the
input signal z(n). This terminology is used by analogy to the power cepstrum defined
by Bogert, Healy and Tukey. Specifically, the cepstrum of a signal was defined as
the power spectrum of the logarithm of the power spectrum.

Remark These quantities are not too far from each other, because the power
cepstrum is proportional to the even part of the complex cepstrum.

w 3.2.2. Definition of the complex logarithm

In this section the complex logarithm chosen as the homomorphic system D. is
defined. One first sets the definition of the logarithm and then considers more
particularly the phase unwrapping problem. Its prevalent 10le and the critical points
of the different phase unwrapping methods are nointed out. To finish, some examples
of phase unwrapping are given.

® 3.2.2a. Definition

Let he z(n) a real sequence and X(z) its z-transform, one wants to define the
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logarithm of X (2). The complex logarithm is a ‘multi-valued function’ and therefore
one must choose a determination for which the logarithm is a continuocus function.
Usually one takes the ‘principal value determination’ defined by

log X (2) = iog X (2)] + j Avg[X ()],
where Arg(X(z)j € (-7, +7).

All the otner determinations are obtained by adding a multiple of 27 to Arg[X (z})]
In our case the sequence z(n) is a convolution of two sequences, z,(n) and z,(n):

log X (z) = log X1(z) + log X»(=).

The principal value of the logarithm ot the predact 7 complex s:qiepces is not
always the sum of the principal value of each of the signals. This is in contradic-
tion with the unicity of the homomorphic system D,, and means that the complex
logarithm cannot be defined from the principal determination alone. Besides given
properties of the sequences z(n) one needs another definition of the complex loga-
rithm.

The complex logarithm will be defined from its derivative. If one assumcs a single-

value differentiable complex logarithm {principal value) and the analyticity of X (z)
one can derive the phase as follows:

L R(2) = S llog X(2)] = ~llogl X ()| + jarg(X (2)] = 5= 2.

The evaluation of the complex logarithm on the unit circle z = e/* is performed in
the following manner:

~ ¥ Jw oJw
ix(z):Tl_dX(e )= 1‘ dX(e __)L‘
dz jz  dw X(ev) dw j:z
8o o _
dX(</v) 1 dX(e¥)

dw  X(e%)  dw

Given X (/) = Xp(e’*) + 7 X 1(e7*), we have

dX(e) _ dXn(e™) , . dXi(e)
w T dw TTaw

X'(e) = Xp(e?™) + i X 1(e?),

where the prime indicates the differentiation with respert to w.
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Hence, . . , '
X'(e™) _ [Xp(e™) + i X(e )X a(e?) = i X1(ei*)]
X(eiw) © (X(er)l? !
= Staeyp |[XR(@)Xale) + Xi(e)Xi(e)
X ) XR(e™) = Xp(e) X r(e™)].
Since o d 4
~1 Jw . .
Rer) = T = - log X () + 5 g srelX ()
we have

Y (I X RleI) - X p(ei)Xi(e™)
X ()2

A
I arg X(e'¥)) =

Property of the phase derivative: The phase derivative is an even function of
w since z(t) is a real function.

Proof: oo
X(ev) = / z(t)e ™ dt = Xn(e’™) + j X (e7*)
X(e7¥) = / z(t)e? At = Xa(ei) + j X 1(e¥)
= Xgl(e™) - jX1(e™)
X(e7*) = Xa(e*)+iXr(e77*),
and hence, ' ) ) )
Xrle %) = Xn(e™),  Xile™*) = -X (),
Xp(e™) = =Xple?™),  Xyle ™) = X (™),
and

- arglX () = 5 srglX (7).

Assumption: both X (z) and X(z) are analytic in a region included the unit circle
X(z) and X(z) have no singularitivs on the unit circle. Consequently the functions
X(e*), Xp(e?¥), X (e/*) and X p(e’) are analytic and the phase derivative is
snalytic in the convergence domain of X(z) and X (2). Let us recall the following
theorem:
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Theorem: Let §1 be a continuum of the complex plane and f a continuous function
on 1. The necessary and sufficient condition for the function f to have a primitive

is that the integral
/ f(2)d:z
C

is null for any contour C included in 2. Under this condition all the primitives Fyz)
are obtained by the formula

F(z) = / flu)du + K,

where zg is a point of ) and K and arbitrary complex constant. j:o f(u)du is the
integral of f on any path of Q, starting from the point 2y and joining the point z.

As d/dz X(z) is analytic in the convergence domain of X(z) and )?(z), we have
according to the Cauchy theorem,

[c %arg[)((z)]dz =0

on any contour C included in the convergence domain. According to previous results
the phase is defined without any ambiguity on the unit circle to within an integration
constant:

arg X (e7¥)] = /o : d_i arg[X (¢')] dw + K.

The constant K is evaluated in the following way: the complex logarithm must fulfill
the requirement, given two sequences z,(n) and z;(n),

log X1 (e7“) X3(e?) = log X1 (e?) + log X(e’)
which is equivalent to
log | Xy (e7“) X2(e?)| + j arg[ X1 (e?*) X2 (7))
= log | X\ (e’¥)] + j arg|X1{e'*)] + log | X2(e?¥)| + j arg[X2(e)].

One must have arg[X,(e?¥)X;(e’*)] = arg[ X (e’*)] + arg[X2(e’¥)], or

w d ) : w d R
/0 Earg[X,(e’”)Xg(e’”)]dw+Klz:/; Earg[X;(e’”)]dw+K1

¥ «/ouafS[Xz(e’”)] dw + K.

To have this equality verified for any sequences z;(n) and z;(n), the constants
K1, K; and K3 must vanish. To have the constant K = 0 means arg[X (e/*)|, o] =

0; but X(e9) 20 = S.¥ _ 2(n), and so arg(3"} > z(n)] = 0.

s N=—-00 n=-0o00
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@ 3.2.2b. Properties of the phase arg[X (e/*)] and requirements for the signal z(n)

The determination of the constant K leads to a specific property for the sequence
z(n): the dc component (polarity) must be positive.

And the phase has the following properties:
(1) arg[X(e?*)] is an odd function of w such that

arg|X (e 7¥)] = ./o— ?d‘;arg[X(e'j"’)] dw

= /hw Id- arg{X (e’*)} dw
0 ()

- arg[X (e™),

It

(2) arg[X(e’“)] is a continuous function of w,

(3) arg[X (e/*)|u=n] = f; d/dwarg(X(e/*)]dw = 0 because arg[X (e’“)] is peri-
odic in w with a period 27 and is an odd function of w.

Since the phase derivative is an even function of w, we have

’ 0
/,, E%“g[x(ej“)l dw = ‘/, E%arg[X(e-:‘w)]dw

= /; Ti% arg(X (¢’*)] dw.

And so,

1 d - 1 f" d :
—_ —_— jw == — jw
oy /-’r dwarg)((e ) dw 7"/0 dwargX(e )dw,

and the previous requirement, for w = x, leads to a second property of the sequence
z(n): z(n) must have a zero-mean phase derivative.

Conclusion: On the space of the sequences z(n) with a positive dc component (po-
larity) and zero-mean phase derivative, the complex logarithm defines an invertible
homomorphic system.

® 3.2.3. Phase unwrapping

s 3.2.3a. Principle

The phase unwrapping involves computing a continuous phase from the set of princi-
pal phase samples. Various techniques have been developed. A basic one is Schafer's
Algorithm, which is based on the the following:

-10 -
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(1) whenever a jump —2x is detected while unwrapping along the positive w-axis
a constant 2x is added to the principal value at that point, and

(2) whenever a jump of 2 is detected while unwrapping along the positive w-axis
a constant —2x is added to the principal value at that point, with a ‘jump’
defined as the difference between a new principal value and an old one.

A jump has a threshold defined in terms of the difference between the two principal
values at adjacent frequencies; below this threshold the jump does not exist. This
implies a frequency sampling fine enough to set the difference in the principal values
of two adjacent samples be detected as a jump. However although this algorithm is
simple to implement it does not provide accurate results in the case of a sharp phase
curve, since there is only principal value phase information and this is not sufficient.

To overcome this, we have completed the phase unwrapping by a modified Tribolet
Algorithm, which takes into account the information in the first derivative of the
phase. Let us recall briefly the principle of the Tribolet Algorithm [11].

One calculates the phase at the frequency w from the mean of the integral

, v q _
) = —_— 7)) dw.
arg X (e’*) _/0‘ dwargX(e ) dw
This integral is approximated by the trapezoidal rule. Assuming that the phase is

known at the frequency w;, one estimates the phase at the frequency w;;y (w41 > ;)
by

arg(X (e +1)/wi] = arg X (¢**) + LAw [_CT(: arg X (e/“+1) + d;tmgx(ejw,) '

where Aw = w4 — w;.

A phase estimate is called consistent if

Ik(wisr) 3 |&TR[X (e7+1) /w;] — Arg[X (e7“')] + 2xk(wiy1 )| < THLD1 < .

The idea of the algorithm is to adapt the step size Aw until the phase estimate be-
comes consistent. The algorithm requires a second threshold THLD?2 in order to con-
trol the phase increase between two consecutive frequency samples. The unwrapped
phase argX (e/“i+1) at frequency f is used to estimate the phase at frequency w2
and so on. One recalls that the phase derivative is given by

X;(e7%)A g(c?) = X g(e3*) X1(e?*)

d .
4 X = X ()

dw

~11-
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Thus it can be computed very fast using the FFT &ccording that

Xg(e®) + j X (&) = - jFFT{nz(n)).

This algorithm works well as long as the spectrum does not have any zeros close tc
the unit circle. In this case the phase derivative given by the previous relationship
and computed by FFT has singularities and presents big spikes. Thus the phase
increase is no larger controlled. To improve the Tribolat algorithm, an idea has
been suggested by [13]. It consists of fitting a curve to the phase derivatives before
performing the numerical integration: one fits cubic splines S(w), having continuous
first and second derivatives, to the phase derivative. The phase is then given by

arg X(e?¥) = / S(e’*) dw,
o

or, according to [14]

a-/r\g[X(ej“'.+l)/w|'] = argX(eiu.) + ‘;‘AU [_Ed;; argx(ejwl+l) + Ei_"gX(eJ«q)]

1 2 _d. Jwisn) d Jw;
lew [de(e \ de(e )",
where

?

d : d .
—_— Wy — Juw
de(e ) 3o arg X (e’).

This can be also computed by FFI as

dl , , . ",
315 88X () = g [IX () (Xa() X ()

~ X1(e#*) X p(e7)) + 2Xr(e’*) X 1(e7*)
[(XR(e7))? = (X(e5“))}) + 2X g(e7) X 1 (&™)
[(X3(e™) - Xi(e™)]

and

Xgp(e™) + jX[(e7) = ~FFT[n*z(n)).

~-12 -
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m 3.2.3b. Examples of phase unwrapping
(a) First example

Let y(n) be a time series which is the convolution of two time series: w(n) which is
a CW pulse windowed by a Hanning window and r(n) given by

r(n) =6(n-n )+ 8(n—m)+8n-n;).

The following processing is applied to the time series y(n):
(1) compute the spectrum of y(n) by FFT,;
{2) band-pass filter the spectrum around the CW pulse frequency;
(3) apply the band-pass mepping system,

(4) compute the first and second derivatives of the shifted and stretched spec-
trum;

(b} compute the unwrapped phase.

y(n) is a 256 time-sample series. The normalized CW frequency is 0.25 and the
Hanning window length is 64 time-samples. The time series r(n) is given by

r(n) = §{(n - 55) + §(n — 90) + é(n - 125).
The band-pass mapping is definad as in Subschsect. 3.2.6:

) }r[e(ju)] # 0, for wy < le < wy,
Y (€] = { Yaleti“)] £0, for jw| = wy,ws,
0, otherwise.

The spectra of w(n),r(n) and y(n) after band-pass mapping are depicted in Figs. 9,
10 and {1 respectively. The phases of w(n),r(n) and y(n), before unwrapping, are
represented in Figs. 12, 13 and 14. The first and second derivatives of the CW pulre
phase are represerted in Figs. 15 and 16. The first and second derivatives of the
medium response phase are represented in Figs. 17 and 18. The first and second
derivatives of the received signal phase are depicted in Figs. 19 and 20 respectively
The unwrapped phase of the wavelet, the medium response, and the received signal
before removal of the linear phase, are repiesented in Figs. 21, 22 and 23 respectively.
The unwrapped phase of the wavelet, the medium response, and the received signal
after removal of the linear phase, ure represented in Figs. 24, 256 and 26 respectively.

Remark The band-pass mapping introduces some small instabilities into the phase

around the cut-off frequencies w; and w;. The instabilities are well shown on the
first and second phase derivatives of the wavelet phase.

-13 -
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(b) Second example

Field marine explosive data have been recorded at the output of a vertical array of
32 hydrophones. The received signal path is composed of a direct path followed by
a refracted and a reflected path at the sea surface. The bottom interaction comes
much later and is not accounted for in the present data. One is looking at the output
of th~ hydrophone 17. The phase unwrapping is processed on the full frequency hand
(no band-pass mapping) and the results are shown in Figs. 27 and 28.

@ 3.2.4. Properties of the complex cepstrum
The complex cepstrum has some properties which are useful for the design of filters
and transmitted signals. Some of these properties are summarized below.

Property 1: The complex cepstrum of a convolution of two (or more) signals is
the sum of the individual complex cepstra.

Property 2: The complex cepstrum y(n) of a minimum phase sequence y(n) is
zero for n < 0, and the complex cepstrum of a maximum phase
sequence is zero for n > 0. (See the definition of a minimum and
maximwm phase sequence in Appendix A).

Property 3: The complex cepstruin of a pulse whose spectrum is smooth tends
to be concentrated around low frequency values.

Property 4: The complex cepstrum of a periodic iinpulse train is a periodic
impulse train with the same period.

@ 3.2.5. Sensitivity of the compiex cepstrum to the noise

The mote critical part of the complex cepstrum is the unwrapping of the phase due
to its sensitivity to the additive noise. In the following discussion we tzy to show
how the behaviour of the signal phase depends of the signal-to-noise ratio and the
noise phase. The received aignal plus addivive noise can be expressed as

o(t) = y(t) + n(d),

where y(t) is the convolution of two or more signals and n(t) is the additive noise.
In the frequency domain this equation bacomes

S(w)=Y(w)+ N(w)
and

log §{(w) = log[Y (w) + N (w)]. (M

Equation (7} can be rewritten as

N(w)

log S(w) = logY(w) + log [l + Vo)

- 14 -
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If we consider a signal-to-noise ratio which is relatively high, we can assume that

N(w)

7(-;7411.

and Eq. (7) can be expanded into its Taylor series as follows:

2
log S(w) = log ¥ (w) + %(:—)) - % (?,,—((f)l) +....

If we consider the terms of the series of the second order and higher to be negligible
the phase of S(w) can be expressed as follows:

Nw) sin[$n(w) - By (w)], (8)

Py(w) + Y(@)

where #n{w) and ®$y(w) are respectively the phase of the noise and the signal. If
we now consider that the signal-to-noise ratio is low such that

N(w)
Yo >

Equation (7) can be approximated as
log S(w) = log W(w) + ——

and the phase of S(w) is equali to

En(w) + ,f,‘(:’) sin[ By (w) — Fn(w)] (9)

Equations (8) and (9) show that the phase of the received signal s(t) can become
unpredictable (random) because of the noise. When the signal-to-noise ratio is low
(Eq. 9) the phase is dominuted by the phase of the ndise. The part of the noise
spectrum which is not overlapped by the signal spectrum can be removed by band-
pass filtering in order to avoid the situation of a low signal-to-noise ratio.

Remark The use of band-pass filters before the homomorphic deconvolution leads
to the notion of band-pass systems (see Subsubsect. 3.2.6).

-16-
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@ 3.2.6. Definition of the band-pass mapping system

In many applications the signals have band-pass characteristics. In general the
signals are band- pass filtered before being sampled in order to increase the signal-to-
noise ratio. The homomorphic deconvolution as described above cannot be applied
directly to the band-pass signal: the logarithm is not defined in the frequency domain
where the signal vanishes. Before applying any cepstrum analysis one must find a
system which transforms the band-pass signal into a full-band signal. Such a system
is called a band-pass mapping system.

e 3.2.6a. Principle

This notion of a band-pass mapping system has been introduced by Tribulet [11].
Let z(n) be a stable sequence and X [el/“)] its fourier transform satisfying

Xr[eU) # 0, for |w| = wy,w,

‘ X)) £0, foruw < |w|<ws
X[e(-"")] =
0, otherwise,

where wy,w; are the cut-off frequencies. Let BP denote the band-pass mapping
system operator defined by
z(n) = BP[z(n))

such that the fourier transform of #(n) verifies

X[e9¥) = X[, o0<|@<n, (10)
where
Bw) = 1= w < |w| < ws
wy - wy

Remark This frequency transformation is a scaling operation that shifts and
stretches the signal’s pass-band to occupy all of the frequency band.

Tribolet has verified that this band-pass mapping is an invertible homomorphic
operation with convolution as input and output operations. The inverse operation
is defined by

4 . Wy —wy '
w =uw tw v W Sw Swy,
k4

X'[(eV99) = { X[e499)], for w; < |wl < wy,
0, otherwise.
From Eq. {10}, we have

X'[e(j“ N = X[, forw=w,

- 16 -
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and thus ,
z (n) = z(n).

The block diagram of the band-pass complex cepstrum system D, is illustrated in
F:g. 6. The band-pass mapping system is illustrated in Fig. 7 using simulated data.
The received signal is the convolution of a Hanning- windowad CW pulse with three
Dirac.

@ J.2.6b. Implementation of the band-pass niapping system

Let z(n) be a N (power of 2) samples sequence and X (n) the corresponding DFT
sequence. One may suppose the sampled spectruin to be symmetrically band-pass
filtered around the normalized frequency 0.5, which corresponds to the frequency
sample 1 N; the sampled cut-off frequencies are 1 N - N; and { N + N, .The band-pass
mapping operation can be decomposed into the four following phases:

(1) shift the band-pass spectrum to 0,

(2) compute the 2N, + i inverse DFT of the sequence X(n) for ‘lN -N<nc
;!; + N, in order to get a 2N, + 1 time s~-ies,

(3) zero-pad this new time series to get a time sequence of N samples,
(4) compute the N inverse FFT.

Operations 2, 3 and 4 corsespond to the stretching of the spectrum (spectrum in-
terpolation).

The inverse band-pass mapping operation can be hroken down into the four following
phases:

(1) cut the N samples deconvolved sequence at the first 2N, 2- 1 samples;

{2) compute the 2N, + 1DFT of the 2N, + 1 sequence;

(3) shift the spectrum to the {—N — N, frequency sample; set the spectrum value
X(n)atOfecx 1<n<iN -N-landi+ N +1<n< }N;

(4) compute the N inverse FFT.

@ 3.2.7. Noimalization of the signal before applying the complex cepstrum

w 3.2.7a. Principle

When the time series £(n) does not fulfiil the requirewuerts tiat its de component
(polarity) is positive and its mean phase derivative is tqual to zero, the input se-
quence £(n) must be normalized in order to be able to app.y the complex cepstrum.

- 17 -
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We recall that if 2(n) has a mean phase derivative no null,

L j—arg X[eV)dw = T,
x J_, dw
1

+w ~ 1 )
_/ ..(.i_ arg X[e““")] dw = —arg X[e"w)]]w:. =T
rJy dw r

The first part of the normalization consists of multiplying X[el/*)] by e(=i7),

L[t e et el =97 du = - (w) _l/' i = -
—-/(; —d:arg[)([e Je ]dw— ’rm'gX[e ] - ) rav=r1-1=0.

x

The second part of the normalization consists of multiplying X [e{7*)] by the polarity
e

m 3.2.7b. Restoration of the linear phase components

Consider a signal z(t) which is the convolution of two signals z,(¢) and z;(t) and
the respective spectra for which are given by

Xu(f) = Xim(fe 2

X3(f) = Xai(fle™ 27
where X,n(f) and X2, (f) are respectively the non-linear phase components of
X(f) and X;3(f). Then take the logarithm of X( f)

log X{f) =log|Xint(f) + jarg Xyni(f) + log | Xsni( f)
+ jarg Xani(f) - j2rfr — j2x fr;.

And then remove the the linear phase component:

log Xni(f) = log ! X\ ni( f)] + j arg Xy ni(f) + log | Xam(f)| + j arg Xzni( f).

This last reiation shows that we get an infinity of solutions romprising all the signals
with the same non-linear phase components. Assuming that we are able to separate
£ and #3, in the cepstral domain, we must restore the proper linear phase to
each of the deconvolved signals 2, and £3,(. This task becomes infeasible if we do
not have a priort information on the original signals z,(t) and z;(¢). For example,
if we assume that one of the signals has no linear phase component, let us say z,(¢),
then ry equals zero and the global linear phase is restored to 2;(¢). At this point it
is more a matter of experimentai conditions, as we can see in the example treeted in
Appendix B. In the results concerning the active sonar simulation, the deconvolved

- 18 -
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wavelet is rescaled in time by computing the cross-correlation with the transmitted
pulse.

The same problem arises for the signal polarity.

) The global complex cepstrum deconvolution system is depicted in Fig. 8a.
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4. Deconvolution of the medium response by Wiener filtering

The goal of this section is to provide a method of deconvolving the medium impulse
response. Since the homomorphic deconvolution was not the best one for estimating
the medium response (see Appendix B) in the presence of additive ncise, we use
a digital Wiener filter. It belongs to the class of linear time-invariant filters with
a criterion of minimization of the mean gquadratic error [27,28]. It attempts to
optimally transform a given signal to another, here the received signal, into the
medium impulse response. It is stressed that the estimation of the length and
the lag of the Wiener filter are not treated here; those are discussed in {16]. The
Wiener filter assumes that we know the wavelet, and therefore we can use the wavelet
deconvolved by the complex cepstrum as the input signal of the filter. We derive
two different but complementary filters: a causal Wiener filter which assumes a
minimum phase wavelet and an anti-causal filter which assumes a maximum phase
wavelet. This section considers (a) the assumptions about the signals and (b) the
derivation of the Wiener filter.

4.1. ASSUMPTIONS ABOUT THE SIGNALS

We recall that the received signal has the following form:
s(m) = r{m) = w(m) + n(m) = y(m) + n(m),

where
y(m) = r(m) » w(m).

w(m) and r(m) are respectively the wavelet and the medium response. The station-
arity of the signals and the noise is assumned up to the second order. We know the
second-order statistics E{rim)?] and E[r(m)s(m)], or equivalent statistics—as we
will see further on. Under these assumptions we estimate the medjumn response by
using an estimator which is .. linear function of the observation s(m) and is given
by

f(m) = s(m) « h(m).

The Wiener filter characterized by A(m) is defined by the minimization of the mean

quadratic error
2

+ou
e = E l Y h(k)s(m k) - r(m)} |,

k=-no

where E irdicates the expected value. The filter h(m) is characterized by its length
P sud the located interval [-L, P — L +1]: h(m; P,L). P and L are respectively
called the order and the lag of the filter.

-20 -
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4.2. DERIVATION OF THE WIENER FILTER

8 4.2.1. Derivation of the zero-lag Wiener filter for minimum phase signals

The zero-lag Wiener filter characterized by hA(m, P) is defined by the minimization
of the mean quadratic error

00 2
el = E ([ > h(k)s(m—lc)-—r(m)] )

k= -o00

The filter h(m, P) is characterized by its length P and the located interval [0, P - 1].

Derivation of the normal equations Let us define the prediction error e¢; by

pP-1 P-1
er = h(k)y(m-k)+ Y h(E)n(m-k)-r(m), mel0,P-1).

k=0 k=0

Then we have
e? = E (e er).

Let H be the matrix
[R(0),R(1),...,A(P —1)],
Y the matrix
ly(m),y(m~1),...,y(m - P +1}],
and V the 1natrix
(n(m),n{m -1),...,n(m - P +1)]

The mean quadratic error can be rewritten in the following form for each m:
e =E(YHT + NHT - r(m)|T(YHT + NHT - r(m)})).

If we assume that the sequences y(m) and r{m) are uncorrelated with the noise
n(m) and if one =xpands the r.h.s. of this equality one gets

e = HE[YTY|HT + HE(NTNIHT - 2E[r(m)Y]HT + E[r(m)}).

Ry, R.. and R, are respectively the autocorrelation matrix of the sequence g{m),
the autocorrelation matrix of the noise n(m), and the correlation vector of the
sequence y{m) with the scalar r(m). We denote R, (k), Rn.(k) and R, (k) respec-
tively the quantities Ely(m+{)y(m+I+k)], E[nim+}n(m+14 k)], E[r(m)y(m+k)).
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If we assume a white noise, R,, is a diagonal matrix R,,.(0), where I is the unit
matrir and the mean quadratic error e? is given by

e? = HR, HT + Ran(0)HHT - 2R, HT 4 Elr(m)?).

Now we want to minitnize the mean quadratic error and, classically, e? has a global
minimum if the two following ccnditicns are fulfilled:

(1) Tuet =0,
(2) Vu(wHe?) is positive definite ,

where 7 ye? and 7 {7 ye?) are respectively the gradient and the hessian of the

mean quadratic error e2.

The first condition leads to
2HR,, + 2Rna(0jH - 2R, =0

and the second condition requires the matrix Ry, + Ran{0)] to be positive definite.
Thus the minimum is reached when

2H(Ry, + Ran(0)I) = R,,. (11)

The linear system (11) is called the set of normal! equations for the Wiener filter
h{m, P), and explicitly the set of normal equations is

)

A
I

™ bk, PYByy(m — k) + Ron(0)8(m - ) = R.y(m), melo,P-1). (12)

x»
\
i\
o

Remark i 1f the matrix Ry, + Rnan(0)] is positive definite, one can directly find

the solution, and e? can be expanded into a quadratic form as follows:
1
¢ = [H = Rey(Ryy + RonlO)D)™} [Riy + Ran (0] [HT = (R, .+ Ran(0)1) 'R, ]
~ Ryr(Ry, + R,m(O)I)Rf,, + E[r(m)?].

e? vanishes if and only if H ~ R,,( Ry, + Rnan(0)]) ! vanishes and the filter oefficients
are given by the exact solvtion

H = Ry(Ryy+ Rnnl0)V
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In Eq. (12) we cannot access the correlation matrices R, and K,,, and so we replace
them by well-known second-order statistics.

If we take the 2-transform of both sides of Eq. (12), we get after some straightforward
derivations

P-1 oo a0
N Ak, P)z* [ 3" (Ryy(m) + Ran(0)8(m))z"™ | = > Ry(m)z™™.
k=0 m=-00 m=-o00

According to the Blackman and Tukey definition of the Power Spectral Density, one

gets
P-1

Z h("’P)"_k (Tyy(2) + Ran(0)) = T\y(2), (13)
k=9

where Iy, (z) is the power spectral density of the sequence y(n) and I, (z) is the
cross-spectral density of the sequence r(n) with the sequence y(n).

If the sequence r(n) is uncorrelated
T.y(z) =T (2)W(2)* = R, (0)W(z)", (14)

and

Fy(2) = Tor(2)Tuuw(z) = Ree(0)Luw(2), (15)

where I',.(z) and [, (2) are respectively the power spectral density of the sequences
r(n), w(n) and R,, the correlation function of r(n).

Then Eq. (13) can be rewritten

= ; Run(0) :
g h(k, P)z~* (rww(z) + m) =W(2)". (16)

Coming back in the time domain, Eq. (16) assumes the form

= Ron(0) _ .
é h(k, P) (Rw(m —k)+ m&(m - k)) =w(-m), melo,P~i]. (17)

In this new set it does not matter if we do not know the autocorrelation R,,., exactly
as we can estimate it—through w(t) being the wavelet deconvolved by the complex.
cepstium. However we do not know R,.(0)/R..(0), and sc we have to estimate it.

~-23-
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Estimation of Ran(0)/R.+(0) The principle of this estimation is the eigenvalue

decompositior: of the correlation matrices Ry, + R.n(0)J (26] and R,,. According
to classical linear algebra these matrices can be decomposed into the following forms:

Ry, + Ran(0)I = U,Z,UT,

in which Xy is the diagonal matrix diag(o,,7;,...,0p), with o; the eigenvalues of
Ry, + Rnn(0).
wa - UwEwU,r,

Iy is the diagonal matrix diag(u;,as,...,ap), where the a, are the eigenvalues
of Ryw. The columns of U, are the orthonormalized eigenvectors associated with
these eigenvalues. I our case the eigenvalues are given by

o, = A + Rm-.(O), 1€ [l,P],

with }; the eigenvalues of the correlation matrix R,,. At this point let us assume
that the rank of R, is smaller than P. Because of the equality (15) the eigenvalues
A; and a, are linked together by the relation

A" = R"-(O)Q.'.

Thus the rank of the matrix Ry, is equal to the rank of the matrix R,,,,. The previous
assumption is equivalent to assuming than the order of the wavelet is smaller than
P. On the basis of this assumption the estimation procedure is as jollows:

(1) estimate the correlation matrix Ry, + Ran(0); compute the eigenvalues o;
and the eigenvectors of this matrix;

(2) estimate the correlation matrix Ry.; compute the eigenvalues a, and the
eigenvectors of this matrix;

(3) estimate the rank Q of the correlation matrix R,,;

(4) estimate Rnna(0) by taking the average of the P — Q smallest eigenvalues o,
(the eigenvalues are arranged in decreasing order):

] P
Ran(0) = F-0 Z o

=Q+1

(5) estimate the eigenvalues A, from A; = o; ~ R,,(0).
(6) estimate R,.(0) by means of R..(0) = Q' T Ai/a;.
(7) compute R,..(9)/R..(0).

The rank Q is estimated by applying the AIC Akaike test to the correlation matrix
Ruw + Rnn(0)/R.(0)1 [15]. One recalls that this test consists of estimating the

- 924 -
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otder of a model at the minimum of the {function

_ (number of free parameters)
flg) = -#(g) + 5

where ®(g) is the Maximum Likelihood Function of the order q , N is the number
of observations and P the order of the correlation matrix. In our case the function
f(q) is (see Appendix C)

P P
f(9)=(P‘q)h‘('F1:-; Z 0.’) - Z ln(o.-)+q(P+lN— 1/21)' (18)

iz=g+l i=q+!

Figure 29 represents the eigenvalues of the correlation matrix Ry, for different
transmitted pulses of 16 time-samples length (in these simulations, the wavelet was
exactly the transmitted pulse):

¢ CW signal windowed by a rectangular window,

e CW signal windowed by a rectangular window,

o CW signal windowed by a half-cycle sinusoidal window,
¢ CW signal windowed by a Hanning window,

e Cw signal windowed by a Hamming window.

In Fig. 30 we present the eigenvalues of R,.,(0) for the same pulses but of 64 time-
samples length.

In Figs. 31 and 32 we present the Akaike functions f(g) applied to the matrix
Ry, + Rnn(0)! for pulse lengths of 16 and 64 time-samples respectively.

In Figs. 33 and 34 we present the estimate of R,n(9)/R...(0) for the four windows
mentioned above for respectively 16 and 64 time-samples length. Theae results shows
that the Hanning window is the one which is best at discriminating the eigenvalues
corresponding to the wavelet and the eigenvalues corresponding to the noise.

Solution of the normal equations Taking into account the Toeplitz form of R, +
Rnan(0)/ R.r(0), the normal Egqs. (17) are solved by the Levinson Algorithm [16].

Stability of the filter Since the wavelet w(n) is minimum phae, Eq. (15) ensures
the stability of the Wiener filter defined by h(k, P).

- 25 -
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® 4.2.2. Derivation of the sero-lag Wiener filter for maximum phase signals

The derivation is similar to the derivation for minimum phase signals. This time, the
filter A(m, P) is characterised by its length P and the located interval [~ P 4+ 1,0].

Derivation of the normal equations Here, the prediction error ¢, is defined by

~-P+1 -P+1
er=Y hkym-k)+ > h(k)n(m-k)-r(m), me(-P+1,0]
h=0 h=0

and we want to minimise the mean quadratic error

e = E(e]e).

Using the same derivations that for minimum phase signals, we g:t to the set of
normal equations which define the Wiener filter A(m, P)

-P41
3" h(k, P)[Ryy(m — k) + Ran(0)(m - k)] = Rey(m),  m e [-P+1,0]. (19)

k=0

If we assume that the sequence r(n) is uncorrelated and by means of derivations
similar at the minimum phase case, Eq. (17) becomes

-P41 Ron(0) B
;.2;0 h(k, P) (Rw(k ~-m)+ m&(k - m)) = w(-m),

me[-P+1,0). (20)

The estimation of R,.(0)/R,.(0) is identical to the estimation for minimum phase
signals. Since Ry + Rnn(0)/R,-(0)] has a toeplits form, the solutions of Eq. (20}
are obtained by the Generalised Levinson Algorithm. Since the wavelet w(n) is
maximum phase, Eq. (20) ensures the stability of the Wiener filter defined by h(k, P).

- 26 -
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5. Combination of homomorphiec
deconvolution and Wiener filtering

As we saw in Sect. 4, the Wiener filter is well defined for a minimum or maximum
phase input sequence, but it is rather unstable for a mixed phase sequence. Since
the received signal and the wavelet are mixed phase in real life (see Appendix B),
and idea is to factorized the received signal and the wavelet into their minimum and
maximum phase components. Then, in order to improve the deconvolution method,
we can apply a tero-lag causal Wiener filter to the minimum phase component and
an sero-lag anticausal Wiener filter to the maximum phase component. This idea
has already been used by Oppenheim et al. [10}, using a linear predictor instead of
a Wiener filter. (Note that we do not present any results here on the combination
of homomorphic deconvolution and Wiener filtering.)

6.1. FACTORIZATION OF THE MIXED PHASE SIGNALS

Let us assume, as in the previous chepters, that the received signal y(t) is the
convolution of the wavelet w(t) with the medium response r(t)

y(t) = w(t) » r(t),

or in the z-domain
Y(z) = W(2)R(2).

If we assume that Y (z) is a rational transfer function, W(z) can be factorised as
follows:

W(z) = Wiin p(2)Wenax p(2),

where Wi, p(2) and Wyay p(2) are respectively the minimum and maximum phase
components of W(z). In the same way, R(z) can be factorized as follows:

R(Z) = Rmia p(Z)Rmu p(z)1

where Rpin p(2) and Rmaa p(2) aze respectively the minimum and maxinmum phase
compornents of R(z). Therefore, Y (z) ~an be rewritten in the following form:

Y(l) = [Wmln P(")Rmin P(Z)][Wm.l p(z)Rmn p(z)li

or

Y(z) = Ymin p(z)ymu p(z)'
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where
Ymin p(‘) = Wmin p(z)len p(z).

Yomesx p(z) = Whex p(z)Rmu p(l)-

In the cepstral domain, the previous equations become

ﬂ(t) = Ymin p(t) + gmtx p(t)'
= [":’min p(t) + "'min p(t)l + l'-i’mu p(t) + '.'mn P(t)]'

According to the properties of the complex cepstrum recalled in Sect. 3, gmia p(t) is
equal to zero for the negative frequencies and ymax p(t) is equal to sero for the posi-
tive frequencies. Then, by applying the complex cepstrum, we are able to factorised
y(t) and w(t) into their minimum and maximum phase components.

5.32. PROCEDURE TO DECONVOLVE THE WAVELET AND THE MEDIUM
RESPONSE

We first apply the complex cepstrum to the received signal y(t). We filter the com-
plex cepstrum g(t) by means of two rectangular windows. The first window is defined
for the positive frequencies in order to extract the cepstrum §min p(t). The second
window is defined for the negative frequencies in order to extract jmax p. Then, we
low-pass filter ymia p(t) to separate Wy, p(t) and Foiq p(t), and we high-pass filter
Jmaex p(t) to separate wmas p(t) and oy p(t). Thus we get both the minimum and
maximun phase components of the received signal and the deconvolved wavelet.
The next step of the procedure consists of simultaneously applying a causal Wiener
filter Amin (t) t0 Ymin p(t) With Wmia p(¢) in input and an anti-causal Wiener filter
Rmaz (t) 0 Ymax p(t) With Wy (t) in input.

The medium response r(t) is estimated by the inverse filter hp,in(t) * Amax (t) as
follow:

#(t) = Amin (£) * Amaz (t) * y(t).

The deconvolution procedure is shown schematically in Fig. 8b. The system D, is
nothing other than the complex cepstrum as defined in Sect. 3.
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6. Results

6.1. RESULTS OBTAINED BY SIMULATIONS

The results presented in this section relate to active sonar reverberation. They are
summary-type representative results, proving the feasibility of the methods, but also
pointing out their limitations. The transmitted signals are windowed CW pulses and
the reverberated signals are received on a horisontal towed array.

® 6.1.1. Reverberation in active sonar

We assume that reverberation is measured in deep water with a low-frequency om-
nidirectional source and a towed, horizontal array. We are looking at reverberated
signals after beamforming. The simulations try to be an accurate copy of the exper-
iments carried out for backscattering studies in active sonar (surface, volume and
bottom-layer backscattering).

The simulations are described in terms of two models.

@ 6.1.1a. First model

The scenario is depicted in Fig. 35. Remember that it is the simulated signals after
beamforming that are simulated. The simulation does not take any beamforming
processing into account.

Description of the signais

Transmitted signal The transmitted signal is a Hanning-windowed CW puise. The
pulse length ia taken as a parameter of the simulation. The sampled CW pulse is
modelled in time 23

&(n) = sin[2x fo(n - 1)](1 = cos(2x({n - 1)/L))),

where L is the pulse length expressed in time-samp'es and f, is the normalized
frequency of the CW signal. The CW pulse is represented in Fig. 36.

Medium impulse response  The reverberation model has three paths: the direct

path, the reflection un the surface and the reflection on the bottom. We do not
model the transfer function of the surface, nor the bottom transfer function. The
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travel times along the three paths are three parameters of the simulation, and de-
pend on the source depth and its distance from the array, and the array and wa.
ter depths. 7p,rs,7. are respectively the arrival times for the direct path, the
surface reflected path, and the bottom-layer reflected path. The three discrete-
time paths are modelled as three Dirac at the time-samples np,ns and nz(where
Tp = npAt,7s = nsAt,7p = n  At; At is the time sampling interval) and is given
by
r(n) = —ré(n — np) + r*6(n — ng) - r¥6(n — ny)

Additive noise  The noise is charact rigzed by its spectrum and the signal-to-noise
ratio, and is defined as the response of a linear filter to an input white gaussian noise
(random normal sequence). Because of the frequency step feature of the complex
cepstrum, we are interested in the SNR ut each frequency. Hence, three SNRs are
defined. One of these, calladd SNRT, is the transmitted signal-to-noise ratio and
another, called SNRR, is the received signal-to-noise ratio. These two SNRs are
processed in the full frequency band as follows:

B 2
SNRTq4p = 10log (—flﬁ,—lm)
Jo IN(F)2df
B
SNRRgp = 1010g ( Jy IS(f)Izdf)
Jo IN(£12af

where X(f), S(f), and N(f) are respectively the spectrum of the transmitted signal
z(t), the received signal s(t), and the noise n(t); B is the frequency band. We recall
that the normalized Hanning CW pulse bandwith is given by the well-known relation

Bew =4n/L.

The third signal-to-noise ratio, called SNRF, is defined at each frequency of the
filtered bandwith as follows:

2
SNRF4s = 10log (%‘%‘F) .

Description of the processing  An observation time of 256 time-samples has becn
used and the pulse length is equal \o 64 time-samples. The normalized frequency
fo of the CW signal is equal to 0.25. First of all the received signal is band-pass
filtered in frequency with a rectangular window defiued by the lowest normalised
frequency fmin and the highest normalized frequenty fo.x. These two frequencies
are given bere a8 fyin = 0.222 and fmes = 0.277. Then we apply the band-pass
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mapping and the complex cepstrum to get the deconvolved wavelet. The medium
impulse response is deconvolved by both complex cepstrum and Wiener filtering.

Results and their interpretation  For a given pulse length and multipath configu-
ration, we first look at the effect of the noise on the deconvolved signal accuracy.
The results are summarized in Table 1 (the pulse length is 64 time-samples, the
delays rp, s, 71 are respectively equal to 80, 110 and 170 time-samples).

Table 1

Classification of the results with the number of the corresponding figure. Active sonar
simulation: Hanning CW pulse with 3 multiples

Deconvolved Deconvolved

SNRR  Received Power Deconvolved medium medium

(dB) signal spectrum wavelet response response

(cepstrum) (Wiener)

13 Fig. 38 Fig. 39 Fig. 40 Fig. 41 Fig. 42

8 Fig. 43 Fig. 44 Fig. 45 failed Fig. 46

3 Fig. 47 Fig. 48 Fig. 49 failed Fig. 50
-1 Fig. 51 Fig. 52 Fig. 53 failed failed
-6 Fig. 54 Fig. 55 Fig. 56 failed failed
-1 Fig. 57 Fig. 58 Fig. 59 failed {ailed

We conclude that the wavelet is rather well deconvolved up to a SNRR of -6 4B
and seems relatively insensitive to additive noise. The wavelet can be rescaled by
correlation with the transmitted pulse. The correlatic a function of the deconvolved
wavelet with the CW pulse for a received signal-to-noise ratio of 15 dB is depicted
in Fig. 37. On the other hand, the medium impulse response suffers more from the
additive noise, as we can see in Fig. 41. The complex cepstrum cannot deconvolve
the medium response at lower signal-to-noise ratio. These results agree with the
mathematical derivation in Appendix B, where it is shown that the mediuri impulse
response deconvolved by the complex cepstrum is more affected by additive noise
than the wavelet is. The Wiener filter, with the original pulse as input, can accept-
ably separate, the three multipaths shown in Fig. 42. It does so successfully up to a
SNR of 3 dB (the corresponding SNRF values are given in Table 2). In Figs. 42, 46
and 50, we see that the Wiener filter resolution is not ‘optimal’, as a consequence of
the fact that we add a ‘white noise' parameter to the zero-lag element of the auto-
correlation matrix in order to stabilize the computation of the inverse [24]. Here, the
white noise parameter is equal to 0.005. The ill-conditioned problem arises because
the order of the received signal is smaller than the order of the linear system, as
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shown by the Akaike test in the Sect. 4. Another reason is the non-minimum phase
characteristic of the transmitted pulse.

Table 2

Signal-to-noise ratio of the received signal at each
frequency of the bandwidth: Hanning CW pulse
with 3 multiples

Normalited frequency SNRF

(dB)
0.222 - 90
0.229 8
0.230 8
0.234 4
0.238 4
0.242 12
0.246 17
0.250 18
0.254 17
0.258 24
0.261 17
0.285 14
0.269 12
0.273 -9
0.277 -4

SNRT = 10 dB SNRR =3dB

@ 6.1.1b. Second model

Descripticn of the signals

Transmitted signa’ ‘The same transmitted pulse described in the previous section

is used.

Medium impulse response  Five equi-spaced multiples defired by the time delays

n, N, 73, T, and 7y, with vulues, respectively, of 80, 110, 140, 170 and 200 time-
sanples.
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Additive noise The same characteristics as that in the previous section.

Description of the processing  The same processing as that in the previous section.

Results and their interpretation The results are summarized in Table 3.

Taole 3
P Signal-to-noise ratio of the received signal at each frequency of the bandwidth: Hanning
CW pulse with 3 multiples

-~

——— —w

Deconvolved Deconvolved
) SNRR Received Power Deconvolved medium medium
(dB) signal sy sctrum wavelet Iesponse response
(cepstrum) (Wiener)
16 Fig. 61 Fig. 62 Fig. 63 Fig. 64 Fig. 65
11 Fig. 66 Fig. 67 Fig. 68 Fig. 69 Fig. 70
6 Fig. 71 Fig. 72 Fig. 73 Fig. 71 Fig. 75
1 Fig. 76 Fig. 77 Fig. 78 Fig. 79 Fig. 80
-4 Fig. 81 Fig. 82 Fig. 83 failed failed

Table 4
Location of the poles of Ho(z) given in polar coordinates

Pole Radius Angle Pole Radius Angle

1 (no.) (dg) (mo.) (dg)
’ 1 0.1 0 11 0.7 100
, 2 0.2 10 12 0.75 110
3 0.3 20 13 0.8 120

4 0.3 30 14 0.8 130

5 0.4 40 15 0.8 140

6 0.45 50 16 0.85 150

7 0.5 80 17 C.85 160

8 0.55 70 18 0.9 170

9 0.6 80 19 0.95 180

10 0.65 90 20 0.5 180
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We conclude that the wavelet is well deconvolved up to a SNRR of 0 dB. The
deconvolved wavelet can be rescaled by correlation with the transmitted pulse (as
in the previous model). Figure 60 depicts this correlation function for a SNRR of
15 dB. The deconvolutions of the medium impulse response by the complex cepstrum
and Wiener filtering are equivalent, and successful up to 0 dB. The time delay in the
medium response deconvolved by the complex cepstrum is due to the linear phase
not being recovered properly, but the relative positions of the multiples are correct.

¢.2. RESULTS OBTAINED WITH EXPERIMENTAL DATA

@ 6.2.1. Reverberation in active sonar

Experiment configuration The purpose of the experiment was to measure rever-
beration with an activated towed array at low frequency. The geometrical configu-
ration is depicted in Fig. 84 [23]. The towed array has 32 hydrophones spaced at
one halt-wavelength (1.96 m for the measurements processed here). The array depth
was around 100 m and was separated from the towship by 900 m. The water depth
was around 3500 m.

Signal characteristics The transmitted signal was a Hanning-windowed CW puise.
Its duration was 2 s at a frequency of 370 kHz. The signal received on the array
is beamformed and band-pass filtered in frequency. The sampling frequency at the
beamformer output was 70 Hz, and the observation time was 3.66 s (256 time-
samples). The resolution in time provided by this transmitted signal is

1
ty = e,
bandwidth
or in this case
t. = 1.438 s.

The blocks of recorded data are characterized by the number of the beam, the
number of the ping, and the range.

Description of the processing  The processing was the same as that for the simu-
lated data of Subsubsect. 6.1.1a.

Results Figure 85 depicts the transmitted pulse in time. The received signal
corresponding to beam 6, ping ¢ and range 8 is represented in Fig. 86. The wavelet
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deconvolved by means of the complex cepstrum is represented in Fig. 87. When we
compared the deconvolved medium response for two different inputs of the Wiener
filter (the deconvolved wavelet and the transmitted pulse). The results depicted
Figs. 88 and 89 were obtained. The results are similar in both figures, except that
we get a better resolution with the transmitted pulse (Fig. 89 . The deconvolved
weavelet looks like the transmitted pulse, which is a promising 1 'sult. However, the
pulse length reduces the credibility of the results significantly, .. bviously not the
type of signal one should use to study reverberation. (In order to measure surface,
volume and boitom backscattering, the transmitted pulse must have a significant
bandwidth, and instead of using CW pulses of 2 s it would be more sensible to
transmit pulses of 0.1 s, for example.)

® 6.2.2. Explosive data

Experiment configuration The data come from an acoustic propagation experi-
ment made by the Centre’'s Environmental Acoustics Group in the Tyrrhenian sea.
The aim of the experiment was to estimate the transfer function of the ocean over
a broad acoustic frequency range. The broadband signal arising from an explosive
source was recorded (a) at a range of 4.5 km with a vertical array of 32 hydrophones
spaced at 2 m, and (b) close to the source with a portable array of 4 hydrophones.
The experiment configuration, with its various geometrical parameters, is presented
in Fig. 90. Before any kind of processing one can expect at least four arrivals: one
direct, one by reflection and one by refraction at the sea surface, and !ater one by
reflection at the seabed. Since it is a deep water environment, we do not consider
the bottom reflection.

Signal characteristics The explosive is a broad band source. The power spectzum
of the signal received on hydrophone 17 of the vertical array is depicted in Fig. 93.
The sampling frequency was 6 kHz. Therefore, according to Fig. 93 the received sig-
nal band with was almost 2.5 kHz. The time series at the output »f each hydrophone
is represented on Fig. 91.

Description of the processing The observation time was 170 ms (or 1024 time-

samples). We processed the full frequency band (no band-pass mupping). The
wavelet was deconvolved by the complex cepstrum, ard the paths reflected and
paths refracted at the surface were resolved by Wiener filtering.

Results  The received time series for hydrophones 4 and 17 are depicted on Figs. 92
and 94. The deconvolved wavelets are presented in Figs. 95 and 96. The minimum
phase property of the wavelet can be studied in Fig. 97, which shows the partial
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energy of the two deconvolved wavelets. The partial erergy is defined as follows [22]

Ey(m) =Y |w(n)l’,
n=1

The two deconvolved wavelets carry the same quantity of energy. The wavelct for
hydrophone 4 has more energy at the beginning; the wavelet for hydrophone 17 has
more energy at the end. Their power spectra are identical, as we can see in Figs. 98
and 99. It seems that some poles or zeros of the transfer function of the wavele has
been transferred outside of the unit circle. We can see that the wavelets arz not
minimum phase, most definitely for the waveiet corresponding to hydrophone 17. If
we compare the results to a theoretical wavelet, it seems the original shot has been
perturbed by the propagation medium and perhaps also the layer conditions (the
sea-surface was flat during the experiment and introduced cnly a time-delay). If we
use the deconvolved wavelet in order to resolve the reflected and refracted paths, we
have no success. Therefore, e use the first arrival as the input of the Wiener filter.
The deconvolved reflected and refracted arrivals corresponding to hydrophones 4
and 17 are presented respectively in Figs. 100 and 101. The resulte for the entire
vertical array are presented in Fig. 102, with the direct arrival taken as the time
origin.

These results confirm the hypothesis of three main arrivals, one direct, one refracted
and one reflected. The assumed propagation model is depicted in Fig. 102b, which
also shows the mean sound-velocity profile estimated from the measurements.
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7. Conclusions

The study carried out in this report has pointed out the importance of the phase
information in the understanding of propagation and reverberation mechanisms.
Since the phase behaviour is rather complicated due, in part to its randomness, we
need some accurate signal processing methous to perform the analysis. By modelling
the propagation medium, the bottom-layer, and the surface as linear filters one may
apply techniques such as deconvolution and identification methods.

The complex cepstrum used to deconvolve the wavelet does not postulate a minimum
or maximum phase characteristic for the signals, and therefore is very useful in
propagation and reverberation application, for which the signals are mostly mixed
phase. Although the complex cepstrum requires a relatively high signal-to-noise
ratio, because of the phase unwrapping, its application to seismic and active sonar
reverberation is meaningful. The results obtained and presented in Sect. 6 with
simulated data are quite satisfactory up to a signal-to-noise ratio of -5 dB for the
wavelet, but only up to 5 dB for the medium response. These results confirm the
derivation made in Appendix B, proving that the coraplex cepstrum does not succeed
in deconvolving the medium response as well as it does for the wavelet, due to the
presence of additive nojse. We have seen that the deconvolved wavelet carries a
lot of information on the medium and a further focus would be to fit a parametric
model and control its behaviour with the propagation conditions. This can be done
by using autoregressive {AR) or autoregressive-moving average (ARMA) modelling
of the wavelet.

The results shown in Sect. 6, on explosive measured data, emphazise the impor-
tance of the phase. We have seen that the deconvoived wavelet at two separate
hydrophones of the vertical array can Fave the same power spectrum but not the
same energy distribution (shown by the partial energy curves). The transfer function
treated in Appendix A is an example of how an all-pass filter can modify the en=rgy
distribution inside a signal, transforming it from & minimum phase signal to a mixed
phase signal. This can arise when the transmitted pulse goes through a layer which
has an all-pass-filter transfer function (Appendix B). In this environmental technique
like the power cepstrum method is not powerful enough One deficiency underlined
in this report, concerning the complex cepstrum technigue, is the restoration of the
linear phase once the diftferent components have becn decon 'olved. In the described
simulations in Sect. 6, this equipment has been solved by -omputing the cresscorre-
lation between the deconvolved wavelet and the transmitted pulse. However, some
more attention hes to be put on this particular but significant part of the complex
censtrumn.
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The combination of homomorphic deconvolution and Wiener filtering is well adapted
to reverberation studies in that it capitalises on the individual advantages of both
the techniques. The homomorphic deconvolution handles the mixed phase char-
acteristics of the wavelet while the Wiener filter provides high resolution of the
medium response, as, for example time-of-arrivals estimation. Some results using
this promising mixed technique will be the subject of a subsequent report.
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Appendix A

Minimum-phase signals and their properties

The notion of minimum-phase signals is of considerable importance in signal process-
ing [9). In this section it will be shown that the fourier tranform of a minimum-phase
signal can be recovered from its magnitude or its phase. Because most of the digital
filters are defined in term of magnitude, it is important to know the phase in order
to design stable filters. The minimum-phase condition gives some nice properties to
the complex cepstrum (8] and allow us to design inverse filters [16).

Before giving the definition of a minimum phase signal, let us recall the definition

of a causal signal in order to make an analogy between the complex cepstrum of a
minimum-phase sequence and a causal signai.

A.l. DEFINITION OF A CAUSAL SIGNAL-PROPERTY OF ITS FOURIER
TRANSFORM

The values of a causal signal z(t) are null for the negative values of t. We can always
write z(t) as a sum of an odd function z,44(t) and even function z,yea(t) :

z(t) = zodd(t) + zcvon(t)u

where
Zevea(t) = $(2(2) + 2(-0)), (A1)
Zoaa(t) = L(2(t) - z(-t)). (A.2)

For the positive values of t we have
Zaven(t) = Zoaa(t) = }2(t),
and for the negative values
Zodd(t) = —Zeven(t) = —}z(-1),

and we can rewrite
zoc‘ld(t) = oig(t)zonn(t)» (A3)

Zeven(t) = 8ig(t)Toaa(t). (A.4)
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By taking the fourier transform of both of the sides of the equality (Eq. A.1) and
calling respectively X,,.o(f) and X(f) the fourier transform of z,,..(t) and z(t) ,
we have

+oco

Xevealf) = /_ Zeven(t)e 3" de = %/fm z(t)e Mt §/_+w r(-t)e 12"t e

- -]

‘*/+m“”f”"d*'%/+mqna"uu
= $X(f) - X(f)) = ImX(f).

By taking the fourier transform of hoth the sided of Eq. (A.2) and calling X,q4q4(f)
the fourier transform of z,44(t), we get

Xodal f) = ¥/+w z(t)e P de - }/No,(__t)ejht dt
= HX(f) + X(f)] = ReX(f).

If we take now the fourier transform of (A.3) we have

Xodd(f) = lourier transform[sig(¢t)] = Xevea(f),

= FB(Z) e imX (),

where vp(1/f) is the Cauchy principal value of [ (1/f)df.

Then 1 = {ImX (v)
Xoaa(f) = ;‘”P[ *?Tv—dv
or N
ReX(f) = "”p/ Im.X(v) dv = hilbert transform{lmz( f)].

It we take the fourier transform of (A.4), we have

Xuvalf) = 770p(3) * ReX (1),
+00 ReX (V)
- f-v

= inverse hilbert transform[Re(X(f)).

= =
'UP
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By performing the inverse process we show that if Im X (f) and Re X (f) are related
through a hilbert transform, the signal z(¢) is causal.

Therefore a causal signal is characterised by the fact that the real part and the
imaginary part of its fourier transform are related through a hilbert transform.

The z-transform of a causal sequence z(n) converges in the domain
(R, +00)

but this necessary condition is rot sufficient to steady the causality of z(n). A
necessary and sufficient condition is given by the following theorem.

Theorem: X (z) is the z-transform of a causal sequence z(n) if and only if X(z) is
bounded when z reaches the infinity.

A.2. DEFINITICN OF A MINIMUM-PHASE SIGNAL

@ 4.2.1. Definition
Let X(z) be defined by

X(z) = log X{z) = log | X ()| + i arg X(z),

and let Z(n) be the inverse z-transform of X!{z); #(n) is by definition the complex
cepstrum of z(n) [see Sect. 3.

The minimum-phase condition is that the complex vepstrum () is causal or, ac-
cozding to the previous section, that

log | X (z)] = hilbert transfcrm|arg X (z)]. (A5)

For a minimum-phase signal z(¢), the phase o. X{f) is uniguely defined from the
magnitude log | X (f)|. Another condition is that there is caural, stable inverse system
X ~%(z) such that

XY 2)X(2)=1

There is a consequential a properiy of the minimum-phase scquenres z(n): the poles
and the zeros of the z-transform X (z) are ineide the unit cizele.

® A.2.2. Justification of the terminology ‘minisuum-phase signal’ [22)

Let X(z) be the z-transform of any signal z(t). X(z) can be written as a product
of two functions
X(z) = Xo(2)G.p(2) (A.3)
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where Xo(z) is the z-transform of a minimum-phase signal z¢(t) and G, (z) the
transfer function of an all-pass filter. The role of G, ;.(z) is to transfer M zeros of
Xo(z) outride the unit circle without modifying the magnitude response | Xo(z)| and
X(z) can be rewritten in the following form

M
X(z) = Go(2) [] (z - zm),

m=1

where z,, are the M geros of X (z) outside the unit circle. To render the terminology
‘minium-phase’ explicit, let G, ;, (z) be an all all-pass transfer function of order
one w'th only one real sero. 7, (z) is given by

z4+ ¢
1+ecz

Gap.(2)= withje| < 1.
Gap.(2) has a zero (Z) at z; = —¢ and a pole (P) at z; = 2} The zero-pole diagram
of G, p.(z) is presented in Fig. 103.

The phase-lag angle of G, ; (z) is given by
®(z) = —(®z(2) - ®p(2)) = ®p(z) - ¥2(2),

where 4'2(z) and ®p(z) are respectively the angles of the vectors PM and ZM
with the axis O,. For the normalized frequency f in the range [0, 1] the phase-lag
is always positive. Let & x(z) and ® x,(z) be the phases of X(z) and Xo(z), and we
have

x(z) = By(2) - B(2)

or

~®x(s) = ~Bx,(2) + ¥(2), (A.7)

and therefore the phase-lag angle of the function X(z) is always greater than the
phase-lag angle of the function Xo(z). The all-pass transfer function G, (z) can
be decomposed intv a product of M all-pass transfer functions of order one, and
consequently following (A.7) the phase-lag angle of any function X(z) is always
greater than the phase-lag angle of the function Xo(z), which is why zq(t) is called
a minimum phase-lag signal or by abreviation minimum-phase signal.

Remark Given two functions X,(z) and X;(z), one has
|X1(2)l = |Xa(z)l  and  &x,(2) # &x,(2)

if
X1(2) = Xo(2)Gap,(2)

X)(z) = XO(Z)GLP.,(Z)-
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Hence for a given magnitude | X (z)| = [X;(z)| = | X1(z)|, the phasc-lag is not defined
uniquely. It is uniquely defined if z,(¢) and z;3(t) are minimum phase.

Now, let us consider examples of minimum-phase and mixed-phase signals. Let
Xo(z) be the z-transform of a minimum-phase signal zo(t). X¢(z) is represented by
an all-pole model of order 20 as follows

20 s :
Xo(2) = ‘1;11 —_(z L

where P; represents the poles of the z-transform located inside the unit circle. Their
positions are shown in Fig. 104 and the exact values given in Table 4. The signal
zo(t) is represented in Fig. 107. Let z,(¢) be the signal obtained by applying an
all-pass filter to z¢(t). The all-pass filter is defined by its transfer function in the

z-domain by
7

_ (z - F)
G‘.p.;(z) - ‘l=-[, (l _ P‘..z)'

The all-pass filter moves the seven first poles of Xo(z) outside the unit circle. The
poles of X,(2) are represented in Fig. 105; the signal z,(t) is represented in Fig. 108.
Let z3(t) the signal obtained by applying to zo(t) the all-pass filter defined by

This all-pass filter moves the ten first poles of Ho(z) outside of the unit circle. The
poles of X;(z) are represented in Fig. 106; and z;(t) in Fig. 109. The partial energies
of the three signals are compared in Fig. 110. We recall that the partial energy of a
signal z(¢) is defined by

m

E(m)=)_z(i)"

i=1

The minimum-phase signal is the one which has the energy concentrated at the
beginning.

Thus the all-pass filter can partially model some bottom-layers and incidentally show
their influence on a propagating wavelet.
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A.3. RELATION BETWEEN THE POWER CEPSTRUM AND THE COMPLEX
CEPSTRUM

We recall that the power cepstrum proposed by Bogert, Healy and Tukey, is defined
by

£(t) = [fourier transform(log | X (f)I?)]?
where X ( f) isjhe fourieitransformofz(t). Because )?(f) =log X(f) = log | X(f)|+
iarg X(f) = Rr(f) +iX1(f) we have

log | X (f)I* = 2Xr(f),

because X g(f) is an even function of the frequency f

+ 0o - )
| / 2R a(f)e 0 a g,
E(t) = et

| / +°°2)?a(f)e""“df|’.

oo

The integral [ Xr(f)e/*™/tdf is the even part of the complex cepstrum #(t),
denoted by Z,ven(t). Consequently we have the relation

|£qven(t))? = TE(),

One can always decompose the complex cepstrum Z(t) to the sum of its even part
and its odd part

2(t) = devan(t) + 2oaa(t),
where Z4y4n(t) = $(2(t) + #(—t)) and z.q44(t) = $(£(t) — 2(-1)).
If the complex cepstrum vanishes for the negative values of ¢,
Zeven(t) = §2(t)
and then

12(e))° = #(¢). (A.8)

We will see that the complex cepstrum vanishes for the negative values of ¢ in the
case of minimum signals.

We can conclude that for a minimum phase input sequence, the power cepsirum and
the complex cepstrum are equivalent.
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Appendix B

An example derivation of the complex cepstrum

In this section we consider a two-path propagation model with reflection at the
bottor and the surface. The backscattering mechanism at each of the boundaries
is modelled by a linear filter. The objective is to show how the modelling of the
propagation medium affects the complex cepstrum technique (with regard to the
fundainental notion of minimum phase signals) and to point out the limitation of
this technique for deconvolution of the medium response. The propagation model is
simple and highlights the parameters which have a determining effect on the method.

B.1. DERIVATION OF THE COMPLEX CEPSTRUM FOR THE TWO-PATHS
DISTORTION CHANNEL PLUS NOISE

a B.1.1. Lxpression of the complex cepstrum

The general scenario is described in Fig. 111. Here, we consicer the case where
the direct path is not taken into account. In practice, this means that the observa-

tion time starts with the direct arrival. Under this assumption, the received signal
assumes the form

s(t) = hy(t — 7)) » z(t) + h,(t — 7,) * () + n(t),
where we recall that h(t) and h,(t) are respectively the impulse response associated

with the bottom Jayer and the surface and the additive noise n(t); 7, and 7, are the

reflected time arrivals with respect to the direct arrival. In the frequency domain
the equality becomes

S(w) = Hi(w)X(w)e " + H (w)X(w)e ™™ + N(w). (B.1)

Equation (B.1) can be factorized into the following form:

S(v) = X (w)Hi(w)e [1 + %:%e-jw(r.—r,) ' _H_l(.z_g‘;_ )(u)ejw'} ,

By normalizing S(w) (removing the lincar phase ¢ /“" and taking the complex
logarithm of both sides of the initial equality), we have

r _ v [ w H,(U) —jw(rs—1y) N(W) JJw
Sw)=X(w)+ Hi(w) + log [l + ——-—H‘(w)e 4 + —_-—H;(w)X(w)d "] ,
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where

S(w)=logS(w), X(w)=logX(w), Hw)=logH(w).

Under the assumption that

Hi) sy o W) om
Hi(w) Hi(w)X(w)

<1,

the logarithm can be expanded into its Taylor series and §(w) takes tle form
H,(W) —jw(Te—T11) N(w) Jwy
Hiw)© T H@OX )¢
L M]’e«juz(r.-n) _L N(“’)_._]ze:‘wm

*LH (w PLH {w) X (w)
_HAOING) o,

Hy(w) X (w)

Sw) = X(w) + y(w) +

Femark 1 The medium response introduces a linear phase term e ~7“7and there-

fore the mean phase derivative of s(t) is uot eqal to 0. After deconvolution tnis
linear phase must be restored to the deconvolve. medium response.

The complex cepstrur is obtained by taking the inverse fourier transform of §(w)
and is given by

(1) = &(t) + hult) + halt = (7, ~ 7)) + ha(t + 7)) = Lha(t) & haft - 2(7, — 7))
~ tha(t) = ha(t + 2m) — hy(t = =), (B.2)
where hy(t), h3(t) and h,(t) are respectively thz inverse fourier transforms of

Hy(w) N(w) H,(w)N(w)
Hw)' HwXw) Hiw)iX{w)

Remark 2 The expression (B.2) of the complex cepstrum reveals that the received

signal is not minimum phase (the complex cepsirum has negative componerts in-
troduced by the noise). This illustszates that we must be very careful when we wani
to apply inverse fiitering.
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B.2. DERIVATION OF THE COMPLEX CEPSTRUM OF THE
HANNING-WINDOWED CW PULSE

Let us now calculate the complex cepstrum cf the transmitted signal z(t). Here z(t)
is a Hanning-windowed CW pulse given Ly

z(t) = 0.5(1 - cos 2xt/T) cos wot,

where wy is the CW pulsation and T is the length of the Hanning window. The
spectrum X (w) of z(t) is
X(w) = [0.5Qo(w) + 0.25Q¢ (w + 2%/2T) - 6.25Q¢ (w ~ 27 /2T)}
* %[6(@! —wo)+ 8 (w+wp)],
where .
sinwT
wT

Qo(w)=T
Alternatively
X{w) = 0.25Q0 (w -- wo) + 0.125Qq (w — wp + 2% /2T)
+ 0.125Q¢ (w -- wo — 20 /2T') + 0.25Q¢ (w + wo)
+0.125Q¢ (w -~ wo + 2% /2T) 4 6.125Q0 (w + wo — 27/2T).

The first sidelobe of X (w) is quite low compared to the principal lobe (X (first lobe)/
X {(wy) = 0.00843) and thus, one Goes not make a serious error if one derives the
complex logarithm of X{w) from only the principal lobes 0.5Q¢(vs -- wo)T and
0.5@0(w + wg)T. Under this assumption X (w) is given by

X(w)=log} [Tsm(w - wo)T | sin{w + ‘\'o)T] _

(w— wo)T (w+ wo)T
We now opply the bund-pass mapping defined in Subsubsect. 3.2.6. We recall that
it cunsists cf band-pass filtering the spectrum X (w) followed by the mapping trans-

formation. Here the spectra is filtered around the frequencies —w, and wy in such a
way that

X(w), f0<|(w-wo)T|<n and 0<|(w+wy)T) <y
, ntherwise.

Xfitered(w) = {

» B.2.1. Derivation of X(w) for 0 < |(w -~ wo)T| < %
Yor the values of w close to wo, one can assume that the quantity

fil("’ + wp)T
(w+ wo)T
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is negligible and write

Ruo(w) = log 4T + log [——————"“‘“"“"”T].

(w = wo)T

(This condition is fulfilled when wp is much larger than 1/T.) If one now applies
band-pass mapping, the frequency w is transformed into w' by

o e (wo -~ x/T) - LY (wo -- x/T)
B wo+1r/T—(wo~1r/T) 2x/T '

and therefore )
w=2w [T +wy—=/T.

The expression of X,,(w) becomwes, with respect to w',

Xoy(w') = sin(2w — 1r).

2w - w

T

Chj-

And then the logarithm can be expanded in series as follows:

( 1n22n IB

X, w)=logir+ 3y "t e

n=1

L A N
where B,, sre the bernouiili numbers.
& B.2.2. Derivation of X(w) for 0 < |[(w +wo)T| <

For the values of w close to --wp, one can assume that the quantity

sin(w — wy)T
(u) - wo)T

is negligible und wri'e

X —uo(w) = log 4T + log [2"(_‘”_“_0)2] .

(w + W )T

If onc now epplies band-pass mapping, the frequency w is transfcrmed into o' by

w'=1r w-—{~wo+»/T) —t“'+wo-,r/T
~wy, +7/T - (~wo - n/T) 2»/T

and therefora '
@ = 2w /T—wo+ I’/T
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The expression of X, (w) becomes, with respect to W,

sin( ~2w 4w

L) = 47— +x

Then the logarithin can be expanded into series as follows:

( 1)n22n lB

) T Trow - )

7 W) =logiT + Z

The sum )?h,o(w') + )?_wo(w') is called Xpp(w').

® B.2.3. Invesse fourier transform of )?Bp(w')

Let ZTpp(t) be the inverse fourier transform of fgp(w'), given by
#pp(t) :/ Xop(w')e* tdo'

0 ' , LA R o R
= / X_uo(w')ej” tdw +/ Xug(w )e? fdw .
— )

0 ! ' PN o '
Let I_,, be the integral/ X_wplw )’ *dw and I, the integr&l/ Xup(w )e?* fdw.
- 0
I_., is given by

n22n IB
I_,, =log %T/- e"” ¢’ + Z )] (2w + R)z"e"" tdy'.

And if the variable w' is changed into the variable w = 2w’ + 2x the integral I_,,

becomes .

Iy =277 [105 LT / e’/ du

( l)nz!n lB / 2n_jw/dt
+ E n(2n . w"e dw| .
I,, 18 given by

U 1n22n lB b ‘ “'w: .
1081‘7/ e tdw' +Z(——)—2W'——/; (2w —l’)’ e’ tdw .
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And if the variable w' is changed into the variable w = 2' - 2x the integral J .
becomes

-
I, = 277 [log }T/ et/ duw
(=y)r2’~'B, 'Bn / 2n_jwt/2
L n(zn)! . e dw| .

Consequently zpp(t) assumes the form

t noin-1 L4 )
zpp(t) = 4 cos(}xt) [logTw i ) Z (= 1)n(22n)' B. / wineiwt/? dw] _

This can be simplified as follows. When [ = / winel“t/? 4t is integrated by parts

it has the followingz form:

[ = it/ [gz_" + 4nw?"=!  8n(2n - 1)win-?

jt 12 it
o (—1)"'2(271)!22"'2«)’ ' (—1)""(2n)!2"‘w (_1)n22ﬂ+l
jtZrl—l tin jt2n+l ]’

L 4

and consequently the integral I, = / winedUt/2 4t is given by
-n
LIt sin(1xt)  4nx?" cos(int) 8n(2n - 1)x¥"1sin(}xt)

I
" Lxt ¢ Ixt 0 Lt

(=) 3(2n)i2in e sin(dxt)  (—1)""}(2n)!12%"x cos(}rt)
$tn-2 11’! tin=1 }{*t '

or

I, = r[(x"‘ _ 8n(n _tzl)tz“-l =y :(iﬂ-)'?" lx ’)smfl:rt)

4nxin-t (-1)""1(2n)122"x \ cos(int)
+(——r‘+“‘+ fin-T ) Tt ]

And if we define the variables C,(t) and D,(t) as

8n(2n - 1)xin-1? (-1)""2(2n)123"-142
—_ ain
Cn(t) = - T T tin-1 '
n-1 - n-1 192n
n(t)_4nr +...+( 1) z(37;).2 x
gin-1
-52-



SACLANTCEN SM-203

The simplified form of £pp(t) becomes

© (-1)"2*-18, (C (t)sm(i‘ + Dot )coa( wt))

zpp(t) = 4 cos(xt)r Z ——;-(—-2-'-2—)'——- _}___ L

n=1
sm(*ﬂ)
} xt

+ 4 cos(rt)log }Tix (B.4)

B.3. DER{VATION OF THE COMPLEX CEPSTRUM OF THE BCTTOM IMPULSE
RESPONSE

We consider Hi(w) as the transfer function of ore finite-thickness layer given by [25]

=i (1- Toe’*")(1 + \/Foe’*T)
(l —_ \/Fo-e-.iul?)(l + \ﬁ-?e—jwr)v
where 7 is the time delay across the layer and ro(ro < 1) is the reflection coefficient

of the first layer boundary. One must normalize H(w) by removing the component
-e~7“T and we end up with the simnplitied form of Hi(w):

Hiw) = AL L+ froel)
BT = e (1 + Jroe o)

If one derives the complex cepstrum in the full frequency band, the following ex-
pression is ubtained for hy(i):

H;(w)

hy(t) = - rob(t +27) - Lrds(t +4r) - Lrlé(t + 67)
+ o+ rob(t—2r)+ drds(e - 4r) + %rﬁ&(t -67)4 -

Under the assumption that the terms higher or equal to }rg can be neglected, one
arrives at the complex cepstrum expression of the second order:

hi(t) = —re8(t + 27) — Lrb(t + 47) + rob(t - 27) + Lrid(t - 47).

The problem is thet the bottom transfer function has been band-pass filtered as che
Hanning-windowed C'W pulse. Consequently the same band-pass mapping must be
used beforc deriving the complex cepstrum. We recall that the frequency transform
is defincd by

w— (~wp + */T)

- <
' x Sx /T for 0 < |{(w — wp)T} < =,
YY) w-(wo+#/T)
o T R/ < x.
% 2% T for 0 < j(w+w)T|< x
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Let us now derive the expression of Hj(w') around the two frequencies wy and —wy.

@ B.3.1. Derivation ol‘Hg(w') for0 < |(w-wp)T|< =
H,(w') is given by

[l_ﬁej(:u'/rwo-w/r)f] [l+ﬁej(2w'/T+wo—t/T)1
[1 - ﬁe—j(’“'/T‘*%"'/Th'] ll + 'oe-j(zy'/T+wo-l/T)f].

H,(w') =

Let us call a the quantity wg — x/T, and take the logarithm of both sides of the
equation and expand it into its Taylor series

AWw') = - \/ﬁej(zw'/n a)yr _ }roejz(lw‘/T+a)r
~ Lrgyrged¥ 0 T4l _ 4 fei(2)' T + a)r
_ %foej(’“’ IT+a)r %ro\/'r';eja(iu'/ir-}-a)r
Foot \/;;e-i(zw'/m-a)f + %,oe—jz(zw'/rn)f
+ bro fFee= B THa) _ L fee-il3u THa)r

+ Lrged30 /THa)T _ oo oo -3%(3w [Talr |

All the odd terms disappear and the expression becomar
I?;(w) - roeji(Iu'/T-i»a)r _ }r(l,ejl(tu'/"r-}-a)f
_ }rge,'e(zw'/r\»o)v b oot pgei20W Tradr

+ g_rgc-j‘(Iu'/T-O-a)f + }:‘:e-,ﬂ(iw,/T{-o)r +

» B.3.2. Derivation of Hi(w') for 0 < (w+w)T| <=

Bv the same kind of derivatior as in the previous case, one ends up with the following
expression for Hj(w ):

ﬁ,(w') : _rae,'z(z.,,'/r-o.)f _ &r;ejd(u,'/j'-a)r
_ g_rgejﬂhl'/T—a)r + .“+roe-j2(2w'/1‘~~a)v

+ }rge—jl(iw'/T-a)r + %rge—jﬂ(tu'/f-a)r_‘_”.‘
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@ B.5.3. Derivation of the complex cepstrum hy(t)

Teke the inverse fourier transform of }71( u')

Rty = [ Fiyw)e’™ tdw

-"

o ! ' o v [
= ﬁ;(w')ej“ tdw 4-/ Hy(w )e' t dw
0

—-®

and derive the integrals corresponding to the terms rg of fI,(w'), since the derivation
of the higher order terms(rj, r3, ... ) is similar. Define first the function g(t) as

0 '
-n
0 ' f
+ / e-—j?(zw /T—a)'rejw tdw'
-

- [} '
_./ I3 /Tra)r jw ’dw'
0

» ¢
0

which gives
£
)= ——__pftar |y _ ,~i(t-47/T)
90 = =) [1-e |
r _p—J3ar [ _j(e-ar/T) _
YT [ 1]

Vi's . .
_ siar | _j(t4+47/T) _
Jx(t + 4‘r/T)c [e l]

- sy - R,

or

sinx(t — 47/T)

sin’ {x(t - 4r/T)
(¢t - 4r/T)

+ sin(2ar)—}t—(t—_-rr/—T)_

g(t)=2n [cos(l.’ar)

cosx(t + 47/T)
X+ 47/T)

— sin(2ar)

o [cos(2a-r) sin? i’l’(t + 4r/T)] .

Lx(2 +47/T)
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Now define the functions A, (¢t + 47/T) and h,(t — 47/T) a3 follows:

. t 4
hy(t +41/T) = -2x [cos(2ar)%%u — sin(2aT)

sin? h’(t +4r/T)
fr(t+ar/T) |’

; inx(t -4r/T) | in? Lx (¢t - 47/T
ha (¢~ 47/T) = 2x [cos(zar)?i:—’(it‘f;/'—# " s.nqzm)‘i‘g;; ( w’T/) )]

The derivations of the integrals of higher order are completed in the same way and
finally the complex cepstrum assuines the form

hi(t) = rohy (¢t + 47/T) + Lr3h (¢ + 87/T) + Lrohy (¢ + 127/T)
+ o+ rohy(t —d4r/T) + bedhi(t — 87/T) + Lephy (¢ - 127/T) + .
In the second order, the complex cepstrum will have the form

ilg(t) = roin (t + 41‘/T) + Jz'rgil‘ (t + 8‘/T) + ro’-lg (t - 4T/T) + %Tgill (l - ST/T) .

Let us now discuss the expression for the complex cepstrum with respect to the
different parameters involved. The nost important is the time delay T whose value
determines whether or not we will be able to separate the bottom complex cepstrum
from the ‘boundary reflectioas’. r is obviously a function of the layer depth and
the layer sound velocity (i.e. it depends on bottom composition). Figure 112a,
[18], represents the sound velocity in the layer function of the porosity of the layer
components. Figure 112b, {19], shows the dependence of the sound velocity function
on relative density, porosity and reflection coefficient. Let us consider two relatively
opposite situations. The first one consists of a layer of low density, high porosity and
low cocfficient of reflection. Let us take the case where these three parameters have
respectively the values 1.3, 80(%) and 0.1. According to Fig. 112b the corresponding
velocity equals 1400 m/s if one assumes a water sound velocity of 1500 m/s. Let
the layer depths be respectively equal to 50 in and 100 m. The incidencs angle 8y,
being 60°, the time delays 7 are respectively 0.041 s and 0.082 5.The corresponding
complex cepstra h;(t) are depicted in Figs. 113a and b. The second case corresponds
to a layer of high density, low porosity and high reflection coefficient with parameter
values respectively of 2.1, 32(%) and 0.4. Thus the sound velocity within the layer
is 1800 m/s, and for the same layer thicknesses and incidence angle as previously,
the time delays are 0.032 s and 0.064 s. The complex cepstra h;(t) are presented in
Figs. 114a end b.

It is meaningful to assume that the time delay 47 is much smaller thar n and
therefore h;(t) can be band-pass-filtered.
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B.4. DERIVATION OF THE SURFACE IMPULSE RESFONSE AFTER BAND-PASS
MAPPING

We consider the case of low frequencies and a very smooth curfa'e. Under these
assumptions the surface transfer function assumes the fo:m { Fraunhofer diffraction),
(20],
H,(w,t)= —€,
where 5
¥ = -cﬁcosa.c(n.,t.).

8, is the incidence angle of the wave with respect to the normal to the surface;
¢(R,,t,) is the surface profile at the point of specular reflection. ((R,.t,) is a
random function of the sea surface elevation (swiface rovnghness). Cur purpose is to
derive the impulse response h,(t) after the band-pass mapping has been applied. As
before let us distinguish the two cases 0 < |w — wp)T| < x and 0 € |w + wy)T| < 7.

w B.4.1. Derivation of H,(w) for 0 < |w — we)T| < x
The frequency transform is defined by

w=2 /T +wp- =/T.

Thus,

4 '
2w

H,(w') = exp [—J; (’TT—* + wo — %) COSO.C(Rntc)] ’

H,(w') = exp [—)g‘—? cos O,C(R,,t,)] exp [—]% cusé’,((R,,t.)] ,

where a = wp — = /T.

@ B.4.2. Derivation of H,(w) for0 < |w + «)T| < =
The frequency transform is defined by

'

2w
T

w =

=

Thus,

H,(w') = exp ['12 (‘2‘;“ —wy + %) CO!O,C(R,,!,)

c
= exp [Jgg cosO,((R,,t,)] exp [-ji‘c‘—;,— coaﬂ,((R.,t,)} .
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Take the inverse fourier transform to get h,(t)
ho(t) = / H,(a')e tdw
-

0 ! ' . vt [
h,(t) = / Hy(w)e'tdow + / H,(w)e’™ *dw .
- [

By replacing H.(w') by its values h,(t) becomes

0
hi0) = exp [12 cos@ciRuta)] [ exp [’ (¢ 252200 R11) )| a0

4cos0,

e [522 cont, (Rat)] [ es [ (- 2002 (vts))| @
ie.

ho(t) = exp []ch-cos(o,)(,'(R,,t,)] [

1~ exp|—jm(t- (4 cow./cT)c(R.,t.))l]
j(t—(4cos8,/cT)((R,,t,))
1 -explin(t—~(4 cos0,/cT);'(R,,t,))]]
j(t-(4cos8,/cT){(R,,ts)) '

~ exp [—j?cﬁ cos(e.)c(R..t.)] [

Finally we end up with
sin {r (¢t - (4co0s8,/cT){(R,.1,))]
x(t - (4cosb,/cT)(R,,t,))

sin? l§1r (t - (4cos8,/cT)(R,,t,))]
Lw(t - (4cos8,/cT)(R,,t.))

hule) = con | 22 con (6)C(Rurt)] »

+ sin [27“ c03(0,)((R,,t,)] x

Let us assume that the random function [{R,,t,) is described by the roughness
parameter, which is the random wave height. If A = hyh,., where hy is the basic
wave height and h, is a random number following a normal distribution with zero
mean and unit standard deviaticn. and the incidence angle is equal to 60°, the
surface impulse response shown in Fig. 115 is obtained.

The problem now is to properly filter the complex cepstrum in order to deconvolve
the wavelet and the medium response(boundary reflection). Ir the time delay r, is
smail with respect to the signal z(t) length, then A,(t - 7,) - bho(t) s hy(t - 27,)
will be overlapped by z(t){(in our example the time delay r, is equal to 0.133 5). It
would thus be reasonable to filter in such a way that

su(t) = &(2) + hu(t), (B.5)
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ie.

dm(t) = Re[t = (74 — )] - }h,(t) s ha[t — 2(r, - n)] + hs(t + m)
- %h,(t) s hy(t 4+ 2m) — he(t - 1,). (B.6)

3,(t) is the band-pass-filtered cepstrum around ¢ = 0 and represents an estimation
of the complex cepstrum of the wavelet; §,,(t) is equal to (t) — §,,(¢t) and represents
tn estimation of the complex cepstrum of the so-called medium response (boundary
reflection).

Remark 3 The complex cepsirum component corresponding to the medium re-

spcnse is more sensitive to the noise than the wavelet component: in our case the
noise efect on the deconvolved wavelet is null.

Let us assume that the complex cepstrum is iiltered in such a way that i, (¢) and
3m(t) are given by Eqgs. (B.6) and (B.6). We now apply the inverse homomorphic
transform to get th=: deconvolved wavelet and the deconvolved medium response.

R.5. DERIVATION OF THE DECONVOLVED WAVELET
Take the fourier transform of both sides of Eq. (B.5)
Su(w) = X(w) + Bi(w).
Take the complex exponentisl of both sides of the previous equation
Sw(w) = X(w)Hiw).
Take the inverse fourier transform to get the deconvolved wavelet given by

sult) = 2(t) * Iu(t). (B.7)
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B.6. DERIVATION OF THE DECONVOLVED MEDIUM RESPONSE

Before proceding with the derivation, we stress that §,(t) is strongly perturbed by
the noise component n(¢t) (Eq. (B.6)). Since we recall that 3,,(t) is given by

$m(t) = Balt = (r, = m)] 4 ha(t + ) - Fha(t) « ha[t - 2(7s = mi))]
— Lhg(t) « hg(t + 2m) — he(t = 7).

Take the fourier transform

Semlw) = Ha(w)e™77=™) & Hy(w)ed™ — L Hy(w)? e’

_ ;_Hz(w)ze-juﬂ(n‘fl) _ H‘(“.)e-jwn_

Hs(w)e*™t — L Hy(w)?e/?T can be :onsidered as the Taylor expansion of log[l +
Hy(w)e?n) to the second order. Hj{w)e /(™M) - 1H,(w)te~ /¥ -7) can be
considered as the Taylor expansion of log[1 + Hy(w)e 7“(T+=7)] to the second order.
Thus, Sm(w) will have the form
Semlw) = log(l + Hy(w)e 3«(re=m0)
+ log[l + H3(w)e?“ ™) — Hy(w)e 4.

Take the complex exponential of both sides of the previous equation ard reintroduce
the linear phase component e~/%M

Sm(w) =1+ H;(w)e“j"’(""")e"-"“" + H3(w))

exp(~ Hy(w)e 7™},

Let H,(w) be the perturbation exp[~ Hy{w)e /7] and take the inverse fourier trans-

form of the previous equation to get the deconvolved medium response betore resti-
tution of the linear phase component

3m(t) = [6(4) + halt — (7, = 7)) ¢ [5(t — 1) + Rha(2)) = Ap(2). (B.8)
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B.7. APPLICATION TO PARTICULAR CASES

We now consider the reflected paths to be solely reflections at the bottom and
bottom-surface without any modification of the tranfer function of the transmitted
signal up to a time delay. In other words the bottem transfer function Hy(w) and
tlke surface transfer function H,(w) verify

H,w)=1 foreny0 < w < .

We also assume that the signal-to-noise ratio is high enough to allow all terms

containing N(w)/X (w) to be neglected. Under thesz assumptions the relations (B.7)
and (B.8) assume the simplified form

3u(t) = z(t) (B.9)
3ml(t) = [8(L) + 8[t = (T4 — T)] * 6(t - 7). (B.10)

B.a. CONCLUSIONS

The derivation of the complex cepstrum using this simple propagation r.:odel evokes
two major observations:

(1) The received signal after reverberation is not minimur: phase (Eq. (B 2)).

(2) The derivation of the layer complex cepstrum shows that it is difficult in
the cepstral domain tu separate by rectangular windowing the transmitted
pulse from the layer response, because they uccupy the same cepstral space
(Figs. 113a,b and 114a,b). Therefore, what we deconvolve is the waveiet, from

the boundary reflections, and incidentally obtain some inforrnation about the
layer.

The location of the source and the array (closer to the surface or closer to the

bottom) allowva us to estimate the bottom impulse resnons= or the surface impulse
response.
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Appendix C

Estimation of the rank of the correlation
matrix R,,

C.). TEST OF AIC AKAIKE

The method developed in this appendix has been already used in passive array
processiug [29). The purpose was to estimate the number of sources {rom the cross-
spectral matrix measured at the output of the array.

Let X = (X,,X3,...,Xpn) be a series of independent, zero-mean, gaussian vector
random variables of order P and variance matrix

R, =ai + R,,.
Their probability density is given by
N
p(X[a Rys) = 20 NP (det R ) M P exp(- 4 Y XTRIIX,).
n=1

Let us define the likelihood funciion by
B(X/a, Ryy) = irglnp(X/a, R..) - Pln2r

N
=IndetR.. + Y XTR!X,

n=1
= Indet(al + R,,) + $tr{al + R,,)"'R,,

where

1 &
P _ T
Ree = N n§=‘ XX,

One wants to estimate, in the maxiinum likehood sense, the two unknowns (a, R,,),
which is equivalent to minimizing the function #(X/a, R,,)
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m C.1.1. Minimigation of the likelihood function ${ X /a, R,,)

Let us assume that the matrix R,, is of rank Q. R,, can be cxpanded into its
eigenvalues and eigenvectors decomposition

Q
R,, = Z Aus u{.

The inverse of al + R,, is given by

(al + R )“:-1-[1—‘:“ AT
oAl Hetd ]
and then
tr(ai + R,,) 'R -1 trR —XQ: al uT R, .u;
[ Ay d a Tz pooe Q+A‘ 1 TEZ ]
and

Q
det(al + Ry,) = P2 J[(a + N).

=1

Thus tie function #(X/a, K,,) will have the form

P

Q
~ ¢ ~
(X /o,y w) = (P~ Q)Ina + ¥ In(a+ )+ 2—1& [nR,, -3 pr ‘\'u?}l,,u,] :

i=1 i=1

To globally the function ®(X/a, A;, u;) minimize one minirmizes it for vach of the
three variables with other two fixed.

C.1.1a. Minimization of ® with respect to u;, i € (1,Q], with A;, i € {1,Q), and « fixed

Q

) VR
Z u,-TR,,u,-.
i=t a+t A‘

One recalls that a quadratic form uR.-uT. || u ||< 1, is maximumn if u is the
eigenvector of R, corresponding to the largest eigenvalue. Becauze we have the
sum of ¢ quadratic forms, the maxinum is reached ‘or the Q eigenvectors @; of
R,-. Thus the minimum of the function % is given by

P Q .
B(X/a,Mii) = (P - QYina+ ) In(a+ )+ 31; [trﬁu -3 aidi ] , (C.i)

i=1
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where #;,7 € [1,Q], are the eigenvalues of Rew arranged in decreasing crder.

C 1.15. Minimisation of & with respect te A;, i € {1,Q), with i,,i € [1,Q], an4d a fixed
Noting that

A( =1 [4 4
(a+A) (a+ A)

and
tl‘ﬁ;x = Z a;.

it follows that

X il N Q.
; 1 . i
@( /a.,\.-,ﬂ.-):.-(P—Q)]na+ E h\(a-}_Ai)+2a E : & 4 %Z UA'.
=1 i=Q+1 i=1 t

The function is minimun for the gradient equal to zero and the hessian positive, It
can be easily verified that the hessian is elways positive. The gradient equals zero
when
1 ;i
(a+ ) (a+X)?

=0, 1<i{<P,

which gives us the solution
A,’ = 5.‘ - Q.

The minimum of the function  assumes the form

R Q 1 N Q
¥(X/a,dirii) = (P~ Q)Ina+ Y In(6) + o= Y &+ 3
i=l i=Q+1 “

C.1.1c. Mininuzation of & with respect to a, i, i € (1, Q] with X, i € [1,Q) fixed As
previously, & is minimum for

Po@_ L v 4o,
a a?
1=Q+1

and the solution is given by
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The globa! minixmm of ¢ is given by

T .4,

r Q
‘I’(X/dw'\-.ﬁ.)=(1’—0)ln[ : 3 c‘r.-] +Zln¢'r.-+§

= Q) + 52)- + IndetR,,, (C.2)

where

l’ 1 P P
¢(Q)=(P~-Q)1n|L(—,r_—5) > vn] - ) o

i=Q+1 i=Q+1

C.2. AKAIKE CRITERION, APPLICATION TG THE ESTIMATION OF THE RANK
OF R,,

The Akaike estimate of the order of a mode! at the minimum cf the function is

number of free parameters
N

flg) = -¥(q) +

where $(g) is the maximum likehood fuvction of the model at the order ¢. In our
cese $(g) is given by Eq. (C.2). Using the Choleski decomposition, we have

RI. = LLT’

where L is 4 lower-triangular matrix with P rows avd @ columns. Then the aumber
of free parameters is

P+(P-1)+(P-2)+ (P-Q+1)=QP-1}Q'=Q(P-}q),

and the function f(q) takes the following forin
r P P P‘“ 1
f(@)=(P-Q)n ‘[——‘—— > a.] - Y Iéit %—ﬁl

in which the constaut term has been removed.
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hg (). Ts it

urie

Direct arrival hm(V)

Fig. 1. Three-path propagation model (source and array close to the
surface).

h s “). Ts o

ARRAY

Direct arrival  hg(D)

Fig. 2. Three-path propagation model (source and array close to the
bottom).
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Fig. 3. Canonical representation of a homomorphic syatem.
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Fig. 4. Canonical representation of 8 homom.orphic deconvolution system.
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Fig. 5. Characteristic system D, of a komomorphic deconvolation.
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Fig. 8. Bandpass complex cepstrum system D..
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Fig. 7. Example of Hand-pass mapping.
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Fig. 8a. Global complex cepstrum deconvolution.
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Fig. 8b. Deconvolution procedure by combination of homomorhic and Wiener

filtering.
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SHIFTED AND STRETCHED POWER SPECTRUM
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Fig. 9. Spectrum of the CW pulse after band-
pass mapping.
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Fig. 10. Spectrum of the medium response after
band-pass mapping.
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Fig. 11. Spectrum of the received signal after
band-pass mapping.
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PHASE BEFORE UNWRAPPING(WAVELET)
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Fig. 12. Fhase of the CW pulse before unawrapping.
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Fig. 13. Phase of the medium response before unwrapping.
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6.2 . PHASE BEFORE UNWRAPPING
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Fig. 14. Phasc of the received signal before unwrapping.
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Fig. 15. First derivative of the phage of the CW pulse.
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Fig. 18. Second derivative of the phase of the CW pulse.
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Fig. 17. First derivative of the phase of the medium response.
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Fig. 18. Second derivative of the phase of the medium response.
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Fig. 19. First derivative of the phase of the received signal.
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kig. 20. Second derivative of the phase of the received signal.
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PHASE AFTER UNWRAPPING(WAVELET)
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Fig. 21. Phase of the CW pulse after unwrapping (before linear phase
remova').
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Fig. 22. Phase of the medium response after unwrapping (before linear

phase removal).
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Fig. 23. Phase of the received signal after unwrapning (before linear
phase removal).
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Fig. 24. Phase of the CW pulse after unwrapping (after linear phase
removal).
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Fig. 25. Phase of the medium response after unwrapping (after linear
phase removal).
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Fig. 26. Phase of the teceived signal after unwrapping (after linear phase
removal).
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= —300 1 - \

~400 1 | N

~500 - \\

“600 T A — T :

0.0 0.1 02 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 27. Phase of the received signal {explosive) after unwzapping (before
lineat phase removal).

300 - PHASE AFTER UNWRAPPING(RECEIVED SIG.)
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250 + e 5%
SNR(SOURCE )= 3O 00 o8
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= 100 - ./’/’/
e
50 A
0 //
"50 B T T — .
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 28. Phase of the received signal (explosive) after unwrapping (after
linear phase removal).
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EIGENVALUE OF THE AUTOCORR. MATRIX
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0O ' ‘
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-60 ! '
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EIGENVALUE NUMBER

Fig. 29. Eigenvalues of the autocorrelation mat:ix of the received signal
(transmitted pulse: 16 time-samples CW pulse).
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Fig. 30. Eigenvalues of the autocorrelation matrix of the received signal
(transmitted pulse: 64 tinie-samples CW pulse).
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SACLANTCEN SM-303

- AKAIKE FUNCTION (q)

CW PARAMETERS
RECTANGLE W.
HALF CYCLE SIN w.

MAT. ORDER : 256
S/N= 3008

50 4 . : : . . : : : : .

O—WWWWWW

O 20 40 60 80 100 120 140 160 180 200 220 240 260
order q

Fig. 31. Akaike fonction (transmitted pulse: 16 time-samples CW pulse).

AKAIKE FUNCTION f(q)
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© HALF CYCLE SIN w
& HANNING WINDOW
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760 i ) : : ! : WORM. FREQ.. 0.2%
i ) v : : : : mv.Nofoeia 5 %'éc
o~ 600 N H ’ X . ' : 5/: ; .
o ;
e’
[ VI
0O 20 40 60 B0 i1ND 120 14D 180 180 2CO 220 230 260
order q
Fig. 32.  Akaike function (transmitted pulse: 64 times-samples CW
pulse).

- %16 -



SACLANTCEN SM-303

ESTIMATE OF THE NOISE TO SIGNAL RATIO

CW PARAMETERS
O RECTANGLE WINDOW
O HALF CYCLE SIN WINDOW
* HANNING WINDOW
*  HAMMING WINDOW
=« THEOR. of Rnn(0}/Rre(0
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i

¢}
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-
o
1
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........................................................... ................_...L.....‘...._..,..A.T
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Fig. 33. Estimate of the noise-to-signal ratio (transmitted pulse: 16 time-
samples CW pulse).

ESTIMATE OF THE NOISE TO SIGNAL RATIO
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ig. 34. Estimate of the noise-to-signal ratio (transmitted pulse: 64 time-
samples CW pulse).
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Fig. 35. Configuration of the active sona: backscattering simulation.

- 918 -



SACLANTOEN SM-203

TRANSMITTED PULSE
2 : .| cw NORMALIZED FR :0.25
HANNING WINDOW
. - [Lene™ : 64 sAwPLES
a U7 ML oo
S l N
5 0 “ ' VA"*;* . @ | .
-1 - - |
-2 !

0 32 64 96 128 180 192 224 258
TIME SAMPLES

Fig. 3v. Transmitted pulse (Hanning-windowed CW pulse).
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o

~ 10 CORRELATION WAVELET—CW PULSE
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HMANNING WINDOW

E LENGTH : 64 SAMPLES

— 0 - SNR(SOURCE)= 20.00 o8

-4 SNR(RECEMED)= 13.86 dB

&)

3 -10-

a

5 ~20

8

@ -30

Q

Q

J —40 — —_—
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Fig. 37. Cross-correlation between the transmitted pulse and the decon-
volved wavelet (Hanning-windowed CW pulse; 3 multiples; r = 80, 110,
170; SNRR = 14 'B).
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SACLANTOEN 3M-208

~
0.24 RECEIVED SIGNAL
. 7 . . cw :OR“:'L'I‘Z[D FR :0.25
0.18 + : : ' ' :xcr:o ul:runus
SNR(SOURCE)e 20.00 d8
& 0.12 1 SNR(RECEMED)= 13.86 ¢B
S 0.05] |
S 0.00 sty Aoy
% -0.086 - ; : '
-0.12 1 - | L
—-0.18 - :
"'0.24 T

0 32 64 96 128 180 192 224 258
TIME SAMPLES

Fig. 38. Received signal (Hanning-windowed CW palse; 3 multiples;
T = 80, 110, 170; SNRR = 14 dB}).

RECEIVED SIGNAL POWER SPECTRUM

CW NORMALIZED FR :0.2%
HANNING WINDOW

LENGTH : B4 SAMILES
SNR{SOURCT)= 20.00 4B
SNR(RECEMED)= 13.88 48

—60 T T 1 T
0.0 0.1 0.2 0.3 0.4 0.6
NORMALIZED FREQUENCY

Fig. 39. Received signal power spectrum (Hanning-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = 14 dB).
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SACLANTCEN sM-213

DECONVOLVED WAVELET

0.15 _
Of WORMUED '® 0%
umagss WOw
0.10 4 “mu uu::;‘
m VEWECTMEDY 1308 @
E 0.06 - —— -
s -0.00 WM
-0.10 1 |
i
_0.15 A § v T \ g *“‘!
0 32 64 96 128 100 192 224 258

TIME SAMPLES

Fg 40. Decomvolved wavekt (Huuning- wiadowed CW puise; 3 maltiples:
110, 170; SNRR = 14 dB).

AMPLITUDE

MEDIUM RESPONSE -CEPSTRUM

12

T

32 B84 98 128 180 192 224 266
TIME SAMPLES

Fig. 41. Deconvolved medium response by cepstrum (Hanning-windowed CW
pulse; 3 multipies; r = 80, 110, 170; SNRR = 14 dB).
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SACLANTCEN SM-20%

MEDIUM RESPONSE-WIENER FILTER

0.015
0.010 A
0.005 -

Féo.ooo MMWNW ‘{‘Wj\w“ f i\

CW NORMALIZED FR -0.00
HANMING WINDOW
LENGTH ;| 64 SAMPLES

—-0.005 A

-0.010 1

-0.015 Y
0 32

64 968 128 180 192 224 256
TIME SAMPLES

Fig. 42. Deconvolved medium response by Wiener filtering (Hanning-windowed
CW pulse; 3 multiples; r = 80, 110, 170; SNRR = 14 dB).
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0.24
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-0.18 1
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oooM«wWW\M
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SNR(SOURCE)= 15.00 9@
SNR(RECEMED)= 8.86 98

-0.24 ¥
0 32

84 98 128 160 192 224 258
TIME SAMPLES

Fig. 43. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,

110, 170; SNRR = 9 dB).
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SACLANTCEN SM-208

0 - RECEIVED SIGNAL POWER SPECTRUM

1 CW NORMALITED FR 0 28
HANNING WINDOW

LENGTH : 64 SAMPLES
SNR(SOURCE)= 15.00 dE
SNR(RECEVED)» 8 86 d6

e WWW Tk

—-40 -

dB

—60 L T Al Ll
0.0 0.1 0.2 0.3 0.4 0.6
NORMALIZED FREQUENCY

Fig. 44. Received signal power spectrum (Hanning-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = 9 dB).

0.10 DECONVOLVED WAVELET

CwW NORMAUZED FR :0.25
HANNING WINDCW

LENGTH : 64 SAMPLES
0 05 - SNR(SOURCE)= 13.00 9B

. . - SNR(RECEMED)=  8.86 98
a
E Q
% )
—0.05 A
-0.10

0 32 B84 96 128 180 192 2¢4 268
TIME SAMPLES

Fig. 45. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;
T = 80, 110, 170; SNRR = 9 dB).

- @23 -

bl e Bt _ouy

~ e e A



P Y POy

e

!

SACLANTCEN SM-203

MEDIUM RESPONSE-WIENER FILTER

(W NORMALIZED FR Q0D
HANNING WINDOW

0 .0 10 . LENGYL@J SAMPLEY,
r__

0.015

0.005 A

oo A ik

~0.005 1

AMPLITUDE

-0.010 4

—0-015 T L T T T L T
0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig. 46. Deconvolved medinm response by Wiener filtering (Hanning-windowed
CW pulse; 3 multiples; r == 80, 110, 170; SNRR = 9 dB).
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0.18 L e e
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§ 0.06 -
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= —0.06 - Lk ‘
-0.12 1 ,
~0.18 1
~0.24

0 32 64 96 128 160 192 224 258
TIME SAMPLES

Fig. 47. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,

110, 170; SNRR = 4 dB).
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SACLANTCEN SM-203

RECEIVED SIGNAL POWER SPECTRUM

CW NORMALIZED FR 0 2%
HANNING WINDOW

O J LENGTH : 64 SAMPLES
3NR(SOURCE)= 10 00 48

SNR(RECEMID}= 3 B6 <8

10

—-10 A

8 20 m f’U”
~30 1 - ‘
~40 -

_50 T B T —
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 48. Received signal power spectrum (Hanning-windowed CW pulse;
3 multiples; r = 80, 110, 17¢; SNRR = 4 dB).

OECONVOLVED WAVELET

0' 15 CW NORMALIZED FR :0.2%
HANNING WINDOW
. 64 SAMP
0.10 A tiﬁ?smouncé)??oﬁff 8
. SNRIRECEMED)=  3.86 dB
a 0.05 -
=
S _0.00 JN\N MA‘W[WVVWW\MMM\AMN\NW/\A[\AW/\A
o,
2 -0.05- S
-0.10 4
-0.15 T

0 32 64 96 128 160 192 224 258
TIME SAMPLES

Fig. 49. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;

r = 80, 110, 170; SNRR = 4 dB).
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SACLANTCEN SM-103

MEDIUM RESPONSE—-WIENER FILTER

0.015 ,
CW NORMAIIZED FR .0.00
HANNING WINODOW
0.010Q J1Eve™ 64 saupLes
A 0.005 - |
o]
[
S 0.000 L M M
oy 1 L
2 _0.005 - - !
-0.010 -
_0015 Y T

0 82 B84 98 128 180 192 224 256
TIME SAMPLES

Fig. 50. Deconvolved medium response by Wiener filtering (Hanning-windowed
CW pulse; 3 multiples; = 80, 110, 170; SNRR = 4 dB).
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0.32 i CW NORMALIZED « ™ -0.2%5
0.24 1 ' ' ['?:31':6 '::'os.;:m:s
SNR(SOURCE)= .00 dB
(3 0.16 - 4 | swe(ReceveD)= <114 48
8 0.08-
=
S 0.007 N
A,
5 —0.08 -
-0.16
-0.24
-0.32 T T

0 32 B84 98 128 180 192 224 256
TIME SAMPLES

Fig. 51. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,
110, 170; SNRR = —1 dB).
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SACLANTCEN SM-203

RECEIVED SIGNAL POWER SPECTRUM

10
Cw NORMALIZED FR 02%
HANNING WINDOW
0 o Srisrctrn 500 o
é»;qfnzc:mo)- -1.14 98 (\(
—10 - :
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_40 .
-50 - — . —
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 52. Received signal power spectrum (Hanning-windowed CW pulse;
3 multipies; r = 80, 110, 170; SNRR = -1 dB).
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0.10 - I gx;ungé#“:f: a0
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E -0.00 _w W\N.*.~ AR A AN A
% -0.051 o
-0.10 4

0 32 64 96 128 160 192 224 258
TIME SAMPLES
Fig. 53. econvolved wavelet (Hanning-windowed CW pulse; 3 multiples;
T = 80, 110, 170; SNRR = -1 dB).
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SACLANTCEN SM.208

RECEIVED SIGNAL

050 CW NORMALIZED FR 0 25 |
B HANNING WINDOW
LENGTH . 64 SAMPLES
SNR(SOURCE)= 000 48
0.25 - - ' | SNR(RECEMED)= -8 14 dB
m e
a
=
5 0.00 J« W
%* |
-0.25 -

0 32 64 968 128 1680 192 224 256
TIME SAMPLES

Fig. 54. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,
110, 170; SNRR = -6 dB).
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Fig. 55. Received signal power spectrum (Hanning-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = -6 dB).
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SACLANTCEN SM-203

DECONVOLVED WAVELET
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0.12 - ' ' rc‘::;:c ::‘Dgﬁmcs
. SNR(SOURCE)= 0.00 ¢8
) 0.08 - . | SNR(RECEMED)= -6 14 dB
8 0.04- X :
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5 000w |
5 -0.04 4 ‘ : : : :
—0.08 -
-0.12 1
_016 T T T L T T T
0 32 B84 968 128 180 192 224 256
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Fig. 56. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples,
T = 80, 110, 170; SNRR = -6 dB).
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Fig. 57. Received sigral (Hanning-windowed CW pulse; 3 maltiples; r = 80,
110, 170; SNRR = —11 dB).
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SACLANTCEN SM-208

RECEIVED SIGNAL POWER SPECTRUM

CW NORMALIZED FR :0.2)
HANNING WINOOW

LENGTH : 84 SAUPLES
SNR{SOURCE)= -$.00 98
O  SHR(RECEMEC)a-11.14 9B

g -10 -
-20
-30 +

0.0 0.1 0.2 0.3 0.4 0.5
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Fig. 58. Received signal power specttum (Hanning-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = -11 dB).
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0.08 - ' ' ' ';J:((;S“O‘UR?Z:I)?&;.;; 98
- SNR(RECEMED)= - 11,14 dB
a 0.04 -
= ;
=3 0.00
= ool
% —-0.04 -
-0.08 '
“'012 T T T T L T =1
0 32 64 98 128 180 192 224 258

TIME SAMPLES

Fig. 59. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;
r = 80, 110, 170; SNRR = —-11 dB).
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SACLANTCEN SM-203

CORRELATION WAVELET—~CW PULSE

CW NORMAUTED FR -0 23
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SNR(SQURCE )= 20.00 dB
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o o o o o
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TAU
Fig. 60. Cross-correlation between the transmitted pulse and the decon-
volved wavelet (Hanning-windowed CW pulse; 5 multiples; r = 80, 110, p,
v 140, 170, 200; SNRR = 16 dB).
¢
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& SNR(RECEMED)= 15.91 dB
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o
e
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5 ~-0.1 4
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-0.3

0 32 64 08 128 180 192 224 256
TIME SAMPLES

Fig. 81. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,
110, 140, 170, 200; SNRR = 16 dB).




SACLANTCEN SM-303

RECEIVED SIGNAL POWER SPECTRUM

CW NORMALIZED FR 'D.29
HANNING WINDOW
LENGTH . 64 SAMPLES
SNR(SOURCE )= 20.00 9O
SNR(RECEMED)= 1591 dB

-20 -

_40 1 m
-60 T g Y )

0.0 0.1 0.2 0.3 0.4 0.6

NORMALIZED FREQUENCY

Fig. 62. Received sigral power spectrum (Hanning-windowed CW pulse;
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 18 dB).

dB
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"0 12 T T T T T LI v 1
0 32 B84 98 128 180 192 224 2586
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Fig. 63. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;
r = 80, 110, 140, 170, 200; SNRR = 1§ dB).
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SACLANTCEN SM-203

MEDIUM RESPONSE-CEPSTRUM

- hdistehufbl i
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HANNING WINDOW
B - | enemi : 6e sawmLes
SNR{SOURCE)= 20.00 98
SNR(RECEMED)=~ 15 91 9B
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: ;WW’\WW bl
o
-12 .

0 32 64 968 128 1680 192 224 258
TIME SAMPLES

Fig. 64. Deconvolved medium response by cepsttum (Hanning-windowed CW
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB).
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Fig. 85. Deconvolved medium response by Wiener filteting (Hanning-windowed
CW pulse; 5 multiples; = 89, 110, 140, 170, 200; SNRR = 16 dB).
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Fig. 66. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,
110, 140, 170, 200; SNRR = i1 dB).
/
0 RECEIVED SIGNAL POWER SPECTRUM
CW NORNALIZED FR :0.25
HANNING WINDOW
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Fig. 67. Received signal power spectrum (Hanning-windowed CW pulse;
$ multiples; = = 80, 110, 140, 170, 200; SNRR = 11 dB).
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SACLANTCEN SM-203
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Fig. 68. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;
r = 80, 110, 140, 170, 200; SNRR = 11 dB).
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Fig. 89. Deconvolved medium response by cepstzum (Hanning-windowed CW
ptlse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 11 dB).
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SACLANTCEN SM-208

MEDIUM RESPONSE-WIENER FILTER
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Fig. 70. Deconvolved medium response by Wiener filtering (Hanning-windowed
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 11 dB).
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Fig. 71. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,
110, 140, 170, 200; SNRR = 6 dB).
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RECEIVED SIGNAL POWER SPECTRUM
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Fig. 72.  Received signal power spectrum (Hanning-windowed CW pulse;
5 multiples: r = 80, 110, 140, 170, 200; SNRR = 6 dB).
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Fig. 73. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;
r = 80, 110, 140, 170, 200; SNRR = 6 dB).
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Fig. 74. Deconvolved medium response by cepstrum (Hanning-windowed CW
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 6 dB).
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Fig. 75. Deconvolved medium response by Wiener filtering (Hanning-windowed
CW pulse; 5§ multiples; r = 80, 110, 140, 170, 200; SNRR = 6 dB).
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Fig. 76. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,
110, 140, 170, 200; SNRR = 1 dB).
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Fig. 77. Received signal power spectrum (Hanning-windowed CW pulse;
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 1 4B).
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Fig. 78. Dectuavolved wavelet (Hanning-windowed CW pulse; 5 multiples;
r = 80, 110, 140, 170, 20C; SNRR = 1 dB).
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Fig. 78. Deconvolved medium response by cepstrum (Hanning-windowed CW
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR =1 dB).
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Fig. 80. Deconvolved medium response by Wiener filtering (Hanning-windowed
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 1 dB).
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Fig. 81. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,
110, 140, 170, 200; SNRR = -4 dB).
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Fig. 82. Received signal power spectrum (Hanning-windowed CW pulse;
5 multiples; r = 80, 110, 140, 170, 200; SNRR = —4 dB).
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Fig. 83. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;
r = 80, 110, 140, 170, 200; SNRR = —4 dB).
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SACLANTCEN SM-203
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Fig. 84. Configuration of the active sonar backscattering experiment.
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SACLANTCEN SM-303

WINDOWED CW2 PULSE

I

0 32 64 96 128 180 192 224 258
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Fig. 85. Transmitted pulse: Hanning-windowed CW pulse of 2 s.
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Fig. 86. Received signal (bean 6, ping 9, range 8).
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SACLANTCEN SM-203
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Fig. 87. Deconvolved wavelet.

MEDIUM RESPONSE-WIENER FILTER
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Fig. 88. Deconvolved mediuni response by Wiener filteting with the decon-
volved wavelet as input
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Fig. 89. Deconvolved medium response by Wiener filteting with the trans-
mitted pulse as input.
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Fig. 90. Configuration of the cxplosive experiment.
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Fig. 91. Received signal on each hydrophone of the vertical array.
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Fig. 92. Received signal on hydrophore 17.
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Fig. 93. Power spectrum of the received signal on hydrophone 17.

- 048 -




SACLANTCEN $M-208
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Fig. 94. Received signal on hydrophone 4.
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Fig. 95. Deconvolved wavelet on hydrophone 17.
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SACLANTCEN SM-303
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Fig. 96. Deconvolved wavelet on hydrophone 4.
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Fig. 97. Comparison of the partial encrgies of the decon-
volved wavelet on hydrophone 17 and deconvolved wavelet
on hydrophone 4.
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Fig. 98. Power spectrum of the deconvolved wavelet on hydrophone 17.
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Fig. 99. Power spectrum of the deconvolved wavelet on hydrophone 4.
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MEDIUM RESPONSE-WIENER FILTER
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Fig. 100. Deconvolved medium response on hydtophone 17 by Wiener filter-

ing.
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Fig. 101. " Deconvolved medium response on hydtophone 4 by Wiener filtering.
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Fig. 102a. Deconvolved medium response on each hydrophone
of the vertical array by Wiener filtering.
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Fig. 102b. Propagation model.
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x <%

Fig. 103. Zero-pole diagram of the transfer function G,,(z).

Fig. 104. Zero-pole diagram of the transfer
function Xo(z).
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Fig. 105. Zero-pole diagram of the transfer function X,(z).
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Fig. 106. Zero-pole diagram of the transfer function X;(s).
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Fig. 107. Minimam phase signal £0(1).
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Fig. 100. . Mixed phase signal £, (t).
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Fig. 109. Mixed phase signal z;(t).
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Fig. 110. Comparison of the partial energies of the signals zo(t),z4(t) and
t:(t).
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Direct arrival  hy(1)

Fig. 111. Expressicn of the complex cepstrum.
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Fig. 112a. Sound speed vs porosity in underwater sediments
made on core samples (ftom Urick (18]).
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Fig. 112db. Relationship between the main
characteristics of underwater sediments.
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Fig. 113. Layer complex cepstrum with porosity = 80%: (a) layer depth =
50 m; (b) layer depth = 100 m.
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Fig. 114. Layer complex cepstrum with porosity =: 32%: (a) layer depth =
50 m; (b) layer depth = 100 m.
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Fig. 115. Surface impulse response.
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Initial Distribution for SM-203

Ministries of Defence SCNR Germany 1
JSPHQ Belgium 2 SCNR Greece 1
DND Canada 10 SCNR fitaly 1
CHOD Denmark 8 SCNR Netherlands 1
MOD France 8 SCNR Norway 1
MOD Germany 15 SCNR Portugal 1
MOD Greece 11 SCNR Turkey 1
MOD lItaly 10 SCNR UK 1
MOD Netherlands 12 SCNR US 2
CHOD Norway 10 SECGEN Rep. SCNR 1
MOD Portugal 2 NAMILCOM Rep. SCNR 1
MOD Spain 2
MOD Turkey s Nationat { laison Officers
MOD UK 20 NLO Canada 1
SECDEF US 60 NLO Denmark 1
NLO Germany 1
NATQ Authorities NLO italy 1
Defence Planning Committee 3 NLO UK 1
NAMILCOM 2 NLO US 1
SACLANT 3
SACLANTREPEUR 1 NLR to SACLANT
CINCWESTLANT/ NLR Belgium 1
COMOCEANLANT 1 NLR Canada 1
COMSTRIKFLTANT 1 NLR Denmark 1
CINCIBERLANT 1 NLR Germany 1
CINCEASTLANT 1 NLR Greece 1
COMSUBACLANT 1 NLR Italy 1
COMMAIREASTLANT 1 NLR Netherlands 1
SACEUR 2 NLR Norway 1
CINCNORTH 1 NLR Portugal 1
CINCSOUTH 1 NLR Turkey 1
COMNAVSOUTH 1 NLR UK 1
COMSTRIKFORSOUTH 1
COMEDCENT 1
COMMARAIRMED 1
CINCHAN 3 Total external distribution 233
SCNR for SACLANTCEN SACLANTCEN Library 10
SCNR Belgium 1 Stock 37
SCNR Canada 1 —_—
SCNR Denmark 1 Total number of coples 280




