
.. ; UNCLASF!E Copy 12 of 29 copies

N1 IDA MEMORANDUM REPORT M-461
Lfl

CD AN Ada/SQL IMPLEMENTATION KIT

Bill R. Brykczynski
D CKerry HilliardD T I C I

ELECTE -
00T 0 4 19886

April 1988

Prepared for
WIS Joint Program Management Office

___ _ 88 10 3 047
INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria, Virginia 22311

UNCLASSIFIED IDA Lao No. HO 88-033318

DEFINMONS
IDA publishes te tollowing documents to report the results ol Its work.

Reports
Reperhs are Owe meet autberttatve and most carefully considered products IDA publisbes.
They ,ermaly Iuedy results ef majer prejects whis) hue a direct bearing on decisions
aflecting major pregrams, er (b) address sam of W sant concer to the Executv
Breach, the Coenes lam&e lon pulic, or (C) address Isues OWa have sighificaut econoemic

6 Implicatious. IDA Reporte awe reviewed by eut- d panels of experts to ensere their high
quality and relevace to te preblems studied, ad OhM Wre released by the President of IDA.

Papers
Pepsi ers mall fde! mi#stuhvl vntlc pcnt a"I ~ttt fs=e. Thai coinuw"
the reus at special anayses, Interims repelts or phases at a task, ad hoc or quIck reacton
work. Pper are reviwd to eur thaot they meet standards similar to those expected of
refereed papers In professional joureale.

Memorandum Reports
IDA Memorandum Reports wre and let tire convenienceoa thes sposors or the anlst to
record wsustv work don In qu"c reaction studies and major lint.ctve technilcal support
aclvifow to mke available preliminary and tentativ results of analses or of working
gra" and pael actiites to loawerd 1nt0matoo tha is oanfially uanalyzed and uneval-
vated; or to make a record of conference,. meetings, or briefings, oraof dat developed In
thew c ofrs a Invesiation. Review of Memorandum Reports Is salted to their conen
and Intended as.

The results of IDA work are alas conveyed by briefingis and Informal memoranda to sponsore
and ote~ deslinated by the sponsors, wher ppptae[The work repine In Nsi document was conducted under contract MDA 003 84 C 0031 tar1
the Department al Defense. The publication of this IDA document does not Indicate endors-
medt by thre Depotmnt of Deteons, nor should the contants he costud as reflectng the
official posiion of that agenc.J

IS MeOrendun Rueat Is Published In order to wake ailable the materiel It contains
for the am and convenience d Interested parties. The materiel has not necessarily bean
compiletly evaluated and analze, or subjected to IDIA rev.

Approved for Public release/unlimitled distrbtliion; onclastifled.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is REPORT SECURITY CLASSIFICAION lb RESTRICTIVE MARKINGS

Unclassified
2 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Public release/distribution unlimited.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Memorandum Report M-461

6a NAME OF PERFORMING ORGANIZATION 61 OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses IDA OUSDA, DIMO

6e ADDRESS (City, State, and Zip Code) Th ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, %A 22311

&a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

WIS JPMO WJPMO/DXP MDA 90384 C 0031
Sc ADDRESS (City, State. and Zip Code) 10 SOURCE OF FUNDING NUMBERS

Room 5B19, The Pentagon PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.Washington, D.C. 20330-66T-W-206

11 TITLE (Include Security Classilfcation)

An Ada/SQL Implementation Kit (U)
12 PERSONAL AUTHOR(S)

Bill R. Brykczynski, Kerry Hilliard
13& TYPE OF REPORT 13b TIME COVERED I4 DATE OF REPORT (Year, Month, Day) IS PAGE COUNT

Final FROM 10 1988 April 88

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 1S SUBJECT TERMS (Continue on reverse if necessary and Identify by block number)
FIELD GROUP SUB-GROUP Ada programming language; Structured Query Language (SQL); Ada/SQL; WIS; interfaces;

software; implementation; application scanner; application generator; Oracle database

management system; software tools.
19 ABSTRACT (Continue on reverse if necessary and Identify by block number)

The purpose of this IDA Memorandum Report is to describe additional documentation for the application scanner tool described in

IDA Memorandum Report M-460, An Ada/SQL Application Scanner In M-461, two types of information are presented: (1) the

identification and description of the particular software of the application scanner which may be modified if rehosted to a different

environment and (2) additional documentation describing lower-level modules used to implement a major tool of the Ada/SQL system.

Section 1 contains introductory and background material. Section 2 is a description of the application scanner system dependencies,

with discussions of the standards directory and files, file extensions, naming conventions of files, tables, and columns and the debug

options. Section 3 contains the two types of documentation for the application scanner, with an overview of each tile and then the

actual file documentation.

2.0 DISTIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED " SAME AS RPT. [] DTIC USERS Unclassified
22a NAME OF RESPONSIBLE'INDIVIDUAL 22.b TELEPHONE (Include area code) 22c OFFICE SYMBOL

L Bill R. Brykczynski (703) 824-5515 1 IDA/CSED

DD FORM 1473, 847:%71 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

Al other editions are obsolete UNCLASSIFIED

UNCLASSIFIED

IDA MEMORANDUM REPORT M-461

AN Ada/SQL IMPLEMENTATION KIT

Bill R. Brykczynski
Kerry Hilliard

April 1988

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-W5-206 C A

UNCLASSIFIED

CONTENTS

1. INTRODUCTION . 1
1.1 SCOPE 1
1.2 BACKGROUND 1
1.3 REFERENCES 2

2. APPLICATION SCANNER SYSTEM DEPENDENCIES 3
2.1 Standards Directory and Files 3
2.2 File Extensions 3
2.3 Case of File Names 4
2.4 Case of Table and Column Names 4
2.5 Debug Option 4

3. Application Scanner Documentation 5
3.1 Overall Description 5
3.2 File Documentation 9

3.2.1 File DDLDRIVS.ADA 9
3.2.2 File DDLDRIVB.ADA 10
3.2.3 File DATABASE.ADA 11
3.2.4 File DDLDEFS.ADA 11
3.2.5 File DDLEXTRS.ADA 13
3.2.6 File DDLIODEFS.ADA 14
3.2.7 File DDLIODEFB.ADA 15
3.2.8 File DDLWIrHS.ADA 15
3.2.9 File DDLWITIIB.ADA 15
3.2.10 File DDLUSES.ADA 16
3.2.11 File DDLUSEB.ADA 17
3.2.12 File DDLVRBLS.ADA 18
3.2.13 File DDLFUNCS.ADA 18
3.2.14 File DDLFUNCB.ADA 19
3.2.15 File DDLAUTHB.ADA 19
3.2.16 File DDLAUTHS.ADA 20
3.2.17 File DDLPACKS.ADA 20
3.2.18 File DDLPACKB.ADA 20
3.2.19 File DDLENDS.ADA 20
3.2.20 File DDLENDB.ADA 21
3.2.21 File DDLTYPES.ADA 21
3.2.22 File DDLTYPEB.ADA 21
3.2.23 File DDLSUBS.ADA 22
3.2.24 File DDLSUBB.ADA 22
3.2.25 File DDLRECS.ADA 23
3.2.26 File DDLRECB.ADA 23
3.2.27 File DDLVARS.ADA 24
3.2.28 File DDLVARB.ADA 24
3.2.29 File DDLINTS.ADA 25
3.2.30 File DDLINTB.ADA 26
3.2.31 File DDLFLTS.ADA 26
3.2.32 File DDLFLTB.ADA 27
3.2.33 File DDLENUMS.ADA 28

-i-

3.2.34 File DDLENUMB.ADA 28
3.2.35 File DDLARAYS.ADA 29
3.2.36 File DDLARAYB.ADA 29
3.2.37 File DDLDERS.ADA 32
3.2.38 File DDLDERB.ADA 32
3.2.39 File DDLCALLS.ADA 33
3.2.40 File DDLCALLB.ADA 33
3.2.41 File DDLMAIN.ADA 34
3.2.42 File DDLMAINC.ADA 34
3.2.43 File DDLSIOS.ADA 34
3.2.44 File DDLSIOB.ADA 35
3.2.45 File DDLIOINS.ADA 39
3.2.46 File DDLIOINB.ADA 40
3.2.47 File DDLI)ERS.ADA 41
3.2.48 Fiie DDLIOERB.ADA 42
3.2.49 File DDLADESS.ADA 43
3.2.50 File DDLADESB.ADA 44
3.2.51 File DDLKEYS.ADA 47
3.2.52 File DDLKEYB.ADA 47
3.2.53 File DDLLISTS.ADA 48
3.2.54 File DDLLISTB.ADA 49
3.2.55 File DDLNAMES.ADA 50
3.2.56 File DDLNAMEB.ADA 51
3.2.57 File DDLNDESS.ADA 55
3.2.58 File DDLNDESB.ADA 56
3.2.59 File DDLSDESS.ADA 58
3.2.60 File DDLSDESB.ADA 59
3.2.61 File DDLSHOWS.ADA 60
3.2.62 File DDLSHOWB.ADA 61
3.2.63 File DDLERRS.ADA 62
3.2.64 File DDLERRB.ADA 62
3.2.65 File DDLSUB1S.ADA 62
3.2.66 File DDLSUB1B.ADA 63
3.2.67 File DDLSUJB2S.ADA 64
3.2.68 File DDLSUB2B.ADA 65
3.2.69 File DDLSUB3S.ADA 67
3.2.70 File DDLSUB3B.ADA 68
3.2.71 File DDLSUB4S.ADA 71
3.2.72 File DDLSUB4B.ADA 72
3.2.73 File CHARTOS.ADA 73
3.2.74 File CHARTOB.ADA 75
3.2.75 File COLUMNS.ADA 76
3.2.76 File COLUMNB.ADA 76
3.2.77 File COMPTOS.ADA 76
3.2.78 File COMPTOB.ADA 77

i- I

PREFACE

The purpose of IDA Memorandum Report M-461, An Ada/SQL Implementation Kit, is to
forward data developed in the course of investigation of the problems and requirements for
rehosting an Ada/Structured Query Language (SQL) system.

The importance of this document is based on fulfilling the objective of Task Order T-W5-206,
WIS Application Soitlwarc, Study, which is to support the idea that "programs using the
Ada/SQL interface will be readily portable to other environments consisting of different
hardware, operating systems, database management systems, etc." M-461 will be used to
demonstrate this capability. As a Memorandum Report, M-461 is directed toward users who are
concerned with how an Ada/SQL system is implemented and operates.

L. , m u m m u d m no mm'a~

UNCLASSIFIED

1. I TRODUCTION
The purpose of this IDA Memorandum Report M-461, An Ada/SQL Implementation Kit, is to
describe additional documentation for the application scanner tool as described in [IDA 88c]. Two
types of information are presented:

" The identification and description of the particular software of the application scanner which may
be modified if rehosted to a different environment.

" Additional documentation describing lower-level modules used to implement a major tool of the
Ada/SQL system.

1.1 SCOPE

Section 2 is a description of the application scanner system dependencies, with discussions of the
standards directory and files, file extensions, naming conventions of files, tables, and columns, and
the debug option.

Section 3 contains the two types of documentation for the application scanner, with an overview of
each file and then actual file documentation. Section 6.1, "Overall Description," acts as table of con-
tents for the documentation by listing the file names and a brief description of each one.

1.2 BACKGROUND

The documentation contained in this report should be used in conjunction with several other
reports. A technical description of Ada/SQL, an interface between the Ada programming language
and the database programming language SQL, is contained in [IDA 86] and [IDA 88a]. These
memorandum reports describe the various components of an Ada/SQL application, and provide a
formal specification for the Ada/SQL language. Second, [IDA 88b] describes an Ada/SQL imple-
mentation connected to the database management system (DBMS) Oracle®. Finally, [IDA 88c] pro-
vides guidelines for the use of a major tool contained in the Ada/SQL - Oracle implementation. The
documentation of this tool, named the application scanner, is the subject of this report.

The application scanner is a tool which aids in the generation of subprograms necessary for an
Ada/SQL application. It reads the various segments of an Ada/SQL application, determines which
operators and routines are necessary for compilation, and creates a package which the user then
'with's into his application. The tool should be thought of as an application generator, not a pre-
processor. An application generator typically creates a separate piece of software from some form
of specification (e.g. requirements specifications, design specification, code, etc.), while a pre-
processor transforms one piece of software into another.

The Oracle - Ada/SQL implementation consists of a fairly large amount of Ada software. As with
most software produced under the direction of the WIS Joint Program Management Office, it was
planned to be released into the public domain. With such a large piece of public domain software, it
is anticipated that this implementation will be rehosted from the current Ada environment (DEC
VAX'M/VMS, DEC Ada compiler, Oracle DBMS), to different environments. As such, it was
planned to create an implementation kit, which provides two types of information:

ORACLE is a registered trademark of Oracle Corporation.

lalaamaIllmm l mnm ~ i lm 1

UNCLASSIFIED

" A rehost guide would provide all known implementation dependencies.

These dependencies consist of code which may have to be changed in ene of a rehost to a
different environment. For example, the application scanner must be able to open and read vari-
oue files associated with an Ada/SQL application. One compiler may require filenames to end
with a '.a' file extension, while another may require filenames to end with '.ADA'.

" A more refined level of documentation for the application scanner.

While the scanner is documented well enough for the designers of the tool, the fact that the scanner
would be placed in the public domain demanded a greater amount of source level commenting. As
such, a review was made of all packages for the Oracle - Ada/SQL implementation. Those packages
deemed lacking proper source level documentation for public domain software were then com-
mented.

1.3 REFERENCES

The following references are cited in this document and used to supplement information required to
understand the process of rehosting a major Ada software tool and a more detailed understanding of
how the tool functions.

[IDA 861 Brykczvnski, Bill and Fred Friedman. 1986. Preliminary version: Ada/SQL: A standard,
portable Ada-DBMS interface. Alexandria, VA: Institute for Defense Analyses. IDA Paper P-1944.

[IDA 88al Brykczynski, Bill, and I-red F.-r'edman. 1988. Ada/SQL binding specifications. Alexan-
dria, VA: Institute for Defense Analyses. IDA Memorandum Report M-362.

[IDA 88b] Brykczynski, Bill, Fred Friedman, and Kerry Hilliard. 1988. An Oracle-Ada/SQL imple-
mentation. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum Report M-459.

[IDA 88c] Brykczynski, Bill, and Fred Friedman, Kevin Heatwole, and Kerry Hilliard. 1988. An
Ada/SQL application scanner. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum
Report M-460.

VAX is a trademark of Digital Equipment Corporation.

2

UNCLASSIFIED

2. APPLICATION SCANNER SYSTEM DEPENDENCIES

2.1 Standards Directory and Fides

A directory must be created which will be used by the application scanner at execution time. The
directory should contain the three standard Ada modules. The directory and files are defined in the
compilation unit DDLIODEFSSPEC.ADA as constants and by compilation unit
DDLIOJDEFS.ADA as functions. The three files needed by the application scanner are
STANDARD.ADA, CURSORJDEFN1TION.ADA, and DATABASE.ADA. The names minus
the extension (which may vary from system to system) are defined by the constants STANDARD_.-
NAME, STANDARDNAMEADASQL, CURSOR-NAME, CURSORNAME.ADASQL,
DATABASENAME and DATABASENAMEADASQL. Should the names of the files change
these constants would also have to change.

The complete path name of the file which defines the directory in which they reside are defined by
the functions STANDARDNAMEJILE, CURSORNAMEFILE, and DATABASE-
NAME-FILE. These functions return a string which is the fully qualified file name, minus an exten-
sion. The string can be fully qualified file name, such as "USU:[BBRYKCZYN.ORACLE.-
STANDARDS]STANDARD" or it can be an environment reference (if the system supports such a
thing) such as "ADASQL$ENV:STANDARD", on the VAX. When the environment reference is
made, the environment must be set before execution of the application scanner. Environment is set
on the VAX as follows:

ASSIGN USU:[BBRYKCZYN.ORACLE.STANDARDS] ADASQL$ENV

2.2 File Extensions

All systems must have file extensions as a part of the file name. This extension will be used to read
files which the application scanner finds references to in the 'with' clauses and also to reference the
standard files discussed above. In the compilation unit DDLIODEFSSPEC.ADA, the following
four constants and variables define that extension to the system:

DOTADALEN constant POSITIVE := 4;
DOTADAUPPER constant STRING ".ADA";
DOTADALOWER constant STRING ".ada";
DOTADADEFAULT STRING (1..DOTADALEN) := ".ADA";

The following here shows the current values used which are for the VAX system:

" DOT..ADA.LEN is the total length of the extension including a delimiter such as the period
used here.

" DOTADAUPPER is the extension in upper case, a constant so it cannot be changed during
execution of the application scanner.

" DOTADALOWER is the extension in lower case, a constant so it cannot be changed during
execution of the application scanner.

" DOTADADEFAULT is the case that is being used for the current file that the application
scanner is reading. This will be set and may change during execution, detending on the rules used
to process upper case only files, lower case only files, or a mixture of upper and lower case.

3

UNCLASSIFIED

2.3 Case of File Names

File names can be in upper case, lower case, or mixed case. If all files are to be in upper case (as it is
on the VAX since they are treated the same), the HOWTODO..FILES is set to UPPER-CASE.
If all files are to be treated as lower case, the flag is set to LOWER-CASE. In the case of the files
where some files may be lower and some upper, the flag is set to ASIS.

In the case of UPPER-CASE or LOWER-CASE file names taken from 'with' clauses, the filenames
are converted to the corrected case before being accessed. The extension will also be upper or lower
case. For mixed case, the file will be referenced using the case as it appears in the 'with' clause, and
the extension will be the case of the first character of the file name. These flags are located in the
compilation unit DDLIODEFSSPEC.ADA and can be set in the compilation unit MAIN.ADA,
so that to change it only MAIN.ADA need be recompiled.

2.4 Case of Table and Column Names

Table names and column names must
reference the components of the underlying database. Some databases require all table and/or
column names to be upper case, some require lower case, some recognize a difference if only the
case is changed, and some treat only a case change as the same name. In the application scanner all
table names will have to be defined as being upper case or lower case. All column names must be
upper case or lower case, but this need not be the same as the table case. Oracle does not recognize
case so the setting of the flags is not important. The flags CASE-OF-TABLES and
CASEOFCOLUMNS are located in the compilation unit DDL.JO._DEFS-SPEC.ADA and can
be set in the compilation unit MAIN.ADA, so that to change it only MA1N.ADA need be recom-
piled.

2.5 Debug Option

There is also a debug option in the application scanner. If this is set in the compilation unit
MAIN.ADA, debug comments will print out during execution. There is currently commented out
code to ask if debug comments are desired. The flag can either be set on or off or the user asked if
debugging is desired. It is set off in the operating version.

4

UNCLASSIFIED

3. Application Scanner Documentation
This section of the report provides two types of documentation for the application scanner. First, a
brief purpose is stated for each of the compilation units associated with the tool. Second, documen-
tation developed for each module is listcd. Within the actual application scanner code, the com-
ments are spatially divided to provide documentation relating to specific portions of the code. How-
ever, for the purposes of this report, all comments are collected together regardless of location
within the application scanner.

3.1 Overall Description

chartob.ada -- post process data strucs for CONVERTCHARACTER TO COMPONENT
chartos.ada -- post process data strucs for CONVERT CHARACTERTOCOMPONENT
columnb.ada -- COLUMNLIST data structures and for making a chain of

database columns
columns.ada -- COLUMNLIST data structures and for making a chain of

database columns
comptob.ada -- post process data strucs for CONVERTCOMPONENT TO CHARACTER
comptos.ada -- post process data strucs for CONVERTCOMPONENT TO CHARACTER
convb.ada -- post process data structure for CONVERTTO functions
convs.ada -- post process data structure for CONVERT_TO functions
corrb.ada -- post process/info for correlation names
corrs.ada -- internal & post process data structures for correlation

names
database.ada -- DATABASE definitions for the Application Scanner
dbtypeb.ada -- post process data strucs for strongly typed database types
dbtypes.ada -- post process data strucs for strongly typed database types
ddladesb.ada -- ADDDESCRIPTORROUTINES add various descriptors to various

chains
ddladess.ada -- ADDDESCRIPTORROUTINES add various descriptors to various

chains
ddlarayb.ada -- ARRAYROUTINES process the arriy section of a type

decla-ation
ddlarays.ada -- ARRAYROUTINES process the array section of a type

declaration
ddlauthb.ada -- SCHEMAAUTHORIZATIONROUTINES process the authorization

clause
ddlauth3.ada -- SCHEMAAUTHORIZATIONROUTINES process the authorization

clause
ddlcallb.ada -- CALLTODDLROUTINES routines to initiate the ddl reader

to process the DDL for an application scanner DML module
ddlcalls.ada -- CALLTODDLROUTINES routines to initiate the ddl reader

to process the DDL for an application scanner DML module
ddldefs.ada -- DDLDEFINITIONS defines the data structures used by the

ddl reader to keep track of the schema units and the
information which they contain

ddlderb.ada -- DERIVEDROUTINES process the derived section of a type
declaration

ddlders.ada -- DERIVEDROUTINES process the derived section of a type
declaration

UNCLASSIFIED

ddldrivb.ada -- DRIVER is the driver for the ddl reader section of the
application scanner - body

ddldrivs.ada -- DRIVER is the driver for the ddl reader section of the
application scanner - specification

ddlendb.ada -- ENDROUTINES process an end of package statement
ddlends.ada -- ENDROUTINES process an end of package statement
ddlenumb.ada -- ENUMERATIONROUTINES process the enumeration section of a

type declaration
ddlenums.ada -- ENUMERATIONROUTINES process the enumeration section of a

type declaration
ddlerrb.ada -- ERRORROUTINES handel an unknown error
ddlerrs.ada -- ERRORROUTINES handel an unknown error
ddlextrs.ada -- EXTRADEFINITIONS defines some data structures and

variables used by the ddl reader to keep track of things
during the processing of the schema units

ddlfltb.ada -- FLOATROUTINES process the floating point section of a
type declaration

ddlflts.ada -- FLOATROUTINES process the floating point section of a
type declaration

ddlfuncb.ada -- FUNCTIONROUTINES process the "function x is new
authorization identifier;" statement

ddlfuncs.ada -- FUNCTION ROUTINES process the "function x is new
authorization identifier;" statement

ddlintb.ada -- INTEGER ROUTINES process the integer section of a type
declaration

ddlints.ada -- INTEGER ROUTINES process the integer section of a type
declaration

ddliodefb.ada -- 10_DEFINITIONS contains the functions which return the
names of the standard files.

ddliodefs.ada -- I0_DEFINITIONS contains 10 related data structures, type
declarations and variables and the functions which return
the names of the standard files.

ddlioerb.ada -- I0_ERRORS these are the error routines used by SCHEMAIO
for the io routines

ddlioers.ada -- 10_ERRORS these are the error routines used by SCHEMA_IO
for the io routines

ddlioinb.ada -- I0_INTERNALSTUFF these are the routines used by SCHEMA_I0
to do the nitty grittys for the io routines

ddlioins.ada -- 10_INTERNALSTUFF these are the routines used by SCHEMA_I0
to do the nitty grittys for the io routines

ddlkeyb.ada -- KEYWORD ROUTINES identifies the SQL and ADA key words
which cannot be used as identifiers

ddlkeys.ada -- KEYWORD ROUTINES identifies the SQL and AT)A key words
which cannot be used as identifiers

ddllistb.ada -- LISTROUTINES form the chains which hold the identifiers
for type variable and record component (database columns)
declarations, for which type descriptors will be created
the remainder of the declatation statement is valid

ddllists.ada -- LIST ROUTINES form the chains which hold the identifiers

6

UNCLASSIFIED

for type variable and record component (database columns)
decla-ations, for which type descriptors will be created
the remainder of the declatation statement is valid

ddlmain.ada -- MAIN for testing purposes this will drive the ddl reader
(without adding all the other application scanner code in)
with input from the terminal and will display all data
structures created

ddlmainc.ada -- MAINCALL for testing purposes this will drive the ddl
reader (without adding all the other application scanner
code in) in the same manner that it will be called when
the application scanner is executing

ddlnameb.ada -- NAMEROUTINES validate identifiers
ddlnames.ada -- NAMEROUTINES validate identifiers
ddlndesb.ada -- GETNEWDESCRIPTORROUTINES create and initialize various

elements of the data structures in which the ddl reader
will store data

ddlndess.ada -- GETNEWDESCRIPTORROUTINES create and initialize various
elements of the data structures in which the ddl reader
will store data

ddipackb.ada -- PACKAGEROUTINES process a package declaration
ddlpacks.ada -- PACKAGEROUTINES process a package declaration
ddlrecb.ada -- RECORDROUTINES process a record declaration
ddlrecs.ada -- RECORDROUTINES process a record declaration
ddlsdesb.ada -- SEARCHDESCRIPTORROUTINES page thru the data structures

and return pointers to or information about various
descriptors

ddlsdess.ada -- SEARCHDESCRIPTORROUTINES page thru the data structures
and return pointers to or information about various
descriptors

ddlshowb.ada -- SHOWROUTINES print the information collected in the data
structures by the ddl reader

ddlshows.ada -- SHOWROUTINES print the information collected in the data
structures by the ddl reader

ddlsiob.ada -- SCHEMA 10 the io routines related to the schema units to
open and close files, to read data from files and the
terminal, to output data to files and the terminal, and to
perform data conversions

ddlsios.ada -- SCHEMA_10 the io routines related to the schema units to
open and close files, to read data from files and the
terminal, to output data to files and the terminal, and to
perform data conversions

ddlsublb.ada -- SUBROUTINES_1_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsubls.ada -- SUBROUTINES_1_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsub2b.ada -- SUBROUTINES_2_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsub2s.ada -- SUBROUTINES_2_ROUTINES contain some of the subroutines
used by the ddl reader

7

UNCLASSIFIED

ddlsub3b.ada -- SUBROUTINES_3_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsub3s.ada -- SUBROUTINES_3_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsub4b.ada -- SUBROUTINES_4_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsub4s.ada -- SUBROUTINES_4_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsubb.ada -- SUBTYPEROUTINES process a subtype declaration
ddlsubs.ada -- SUBTYPEROUTINES process a subtype declaration
ddltypeb.ada -- TYPEROUTINES process a type declaration
ddltypes.ada -- TYPEROUTINES process a type declaration
ddluseb.ada -- USEROUTINES process a use statement
ddluses.ada -- USEROUTINES process a use statement
ddlvarb.ada -- VARIABLEROUTINES process a variable declaration
ddlvars.ada -- VARIABLEROUTINES process a variable declaration
ddlvrbls.ada -- DDLVARIABLES variables used during the processing of

schema units
ddlwithb.ada -- WITHROUTINES process a token in a with context clauses
ddlwiths.ada -- WITHROUTINES process a token in a with context clauses
dummys.ada -- dummy data structure entries with null strings for lists
enumb.ada -- manage internal data structures for enum type overloading
enums.ada -- manage internal data strucs for enumeration type overloading
exprb.ada -- routines to process expression-type constructs
exprs.ada -- routines to process expression-type constructs
fromb.ada -- internal data structures for from clauses
froms.ada -- internal data structures for from clauses
funcdefs.ada -- definitions of SQL operations
genfuncb.ada -- post process/info for expression-type unary & binary ops
genfuncs.ada -- post process/info for expression-type unary & binary ops
indexb.ada -- post process data strucs for generated index subtypes needed
indexs.ada -- post process data strucs for generated index subtypes needed
indicb.ada -- post process data structures for INDICATOR functions
indics.ada -- post process data structures for INDICATOR functions
intob.ada -- post process data structures for INTO procedures
intos.ada -- post process data structures for INTO procedures
iexb.ada -- lexical analyzer handles token input and diagnostic

reporting
lexs.ada -- lexical analyzer handles token input and diagnostic

reporting
main.ada -- the driver routine for the application scanner
nameb.ada -- parsing of various types of names
names.ada -- parsing of various types of names
pdtypeb.ada -- functions to identify predefined (STANDARD or DATABASE)

types
pdtypes.ada -- functions to identify predefined (STANDARD or DATABASE)

types
pgmconvb.ada -- post process data strucs for LCONVERT & RCONVERT functions
pgmconvs.ada -- post process data strucs for LCONVERT & RCONVERT functions

UNCLASSIFIED

postb.ada -- produce generated package (specification and body).
posts.ada -- produce generated package (specification and body).
predefb.ada -- post process data structure for optional predefined text
predefs.ada -- post process data structure for optional predefined text
qualb.ada -- post process data structures for qualified column specs
quals.ada -- post process data structures for qualified column specs
resultb.ada -- internal data struc for keeping track of function result

type
results.ada -- internal data struc for keeping track of function result

type
scanb.ada -- driver for DML processing of Ada/SQL Application Scanner
scans.ada -- driver for DML processing of Ada/SQL Application Scanner
searchb.ada -- routine to process a search condition
searchs.ada -- routine to process a search condition
selecb.ada -- post process data structures for various flavors of SELEC
selecs.ada -- post process data structures for various flavors of SELEC
selectb.ada -- miscellaneous routines for processing select, declare,

insert into and fetch statements
selects.ada -- miscellaneous routines for processing select, declare,

insert into and fetch statements
semanb.ada -- miscellaneous routines for semantic processing
semans.ada -- miscellaneous routines for semantic processing
stmtb.ada -- process the open, delete, update, close and package

statements
stmts.ada -- process the open, delete, update, close and package

statements
syntacb.ada -- miscellaneous syntactic processing routines
syntacs.ada -- miscellaneous syntactic processing routines
tableb.ada -- miscellaneous routines for handling table names
tables.ada -- miscellaneous routines for handling table names
tblexprb.ada -- process clauses related to table expressions
tblexprs.ada -- process clauses related to table expressions
tentb.ada -- internal data structure for the tentative function list
tents.ada -- internal data structure for the tentative function list
txtprt.ada -- print utilities
unqualb.ada -- post process/info for unqualified names (tables & columns)
unquals.ada -- post process/info for unqualified names (tables & columns)
withb.ada -- post process data structures for library units to be with'ed
withs.ada -- post process data structures for library units to be with'ed

3.2 Fe Documentation

3.2.1 File DDLDRIVS.ADA

-- this is the driver for the ddl reader section of the application scanner

-- PROCESSSCHEMAUNIT - the ddl reader will process the schema unit who's
-- name is input to this routine.

9 File DDLDRIVS.ADA

UNCLASSIFIED

-- PROCESSFULLSCHEMAUNIT - processes or continues to process the schema who's
-- name is supplied as input to this routine.

-- SETUPCURRENTSCHEMA_UNIT - set or create as the current schema unit the
-- schema unit who's name is provided as input to this routine

-- WHICHPROCESS - given a token and the schema we're processing, return an
-- enumeration type for which process to do

3.2.2 File DDLDRIVB.ADA

-- this is the driver for the ddl reader section of the application scanner

-- PROCESSSCHEMAUNIT - the ddl reader will process the schema unit who's
-- name is input to this routine. The input to this routine is the name of a
-- schema unit, which must correspond to a file name. We process the three
-- standard files, STANDARD.ADA DATABASE.ADA and CURSORDEFINITION.ADA first
-- if they haven't already been done. We then process this schema unit thru
-- the ddl reader.

-- PROCESSFULL SCHEMA UNIT - processes or continues to process the schema who's
-- name is supplied as input to this routine.

-- set up the current schema unit, which might be a new one or one that has
-- already been done or one currently in process.
-- we loop doing the following until reaching the end of a file
-- then till exhausting the schema units yet to do list

-- read the next token, which must be something we recgonise.
-- when the end of the file is reached the DONE flag is set
-- if we are already in the middle of withing, flag set, then we call
-- PROCESSWITH to do the next with in line or look for ; as a clue to the
-- end of withing
-- if the token is use, package, end, type, subtype, function, or
-- schemaauthorization we have special routines to process the whole
-- statement
-- if the token is anything else tell the user it's an error

-- SET UP CURRENTSCHEMAUNIT - set or create as the current schema unit the
-- schema unit who's name is provided as input to this routine

File DDLDRIVB.ADA 10

UNCLASSIFIED

-- set up the current schema, either an old one that wasn't finished or a
-- new one in which case we have to open the file.
-- search the list of already done schema-units, if this one hasn't
-- been done set up new pointers for it, add it to the chain and
-- set the name and open an input stream.
-- and if it's not STANDARD.ADA then show withing and using of it

-- WHICHPROCESS - given a token and the schema we're processing, return an
-- enumeration type for which process to do

3.2.3 Fide DATABASE.ADA

-- DATABASE definitions for the Application Scanner

3.2.4 Fle DDLDEFS.ADA

-- DDL DEFINITIONS defines the data structures used by the ddl reader to keep
-- track of the schema units and the information which they contain

-- STATUSSCHEMA describes the current status of the schema unit
-- PROCESSING this is the current schema being processed
-- WITHING this schema unit is temporarily on hold while the schemas
-- in it's with clause are processed
-- DONE the processing of this schema is complete
-- NOTOPEN this schema unit has not yet been opened
-- NOTFOUND this schema unit was not found and could not be opened

-- KINDTYPE describes the type of component in the descriptor

-- A_TYPE a type declaration
-- A_SUBTYPE a subtype declaration
-- ADERIVED a derived declaration
-- A_COMPONENT a component (column) of a record (database table)
-- declaration
-- A_VARIABLE a variable declaration

-- TYPETYPE describes the data type of the descriptor
-- RECORD a record (database table) type descriptor
-- ENUMERATION an enumeration type descriptor
-- INTEGER an integer type descriptor
-- FLOAT a floating point type descriptor
-- STRING a string (character array) type descriptor

11 File DDLDEFS.ADA

UNCLASSIFIED

-- YETTODODESCRIPTOR describes a schema unit who's processing has not yet
-- been compleated

- CHEMAUNITDESCRIPTOR describes one schema unit

-- WITHEDUNITDESCRIPTOR describes a schema unit that appeared in the with
-- clause of another schema unit

-- USEDUNITDESCRIPTOR describes a schema unit that appeared in the use
-- clause of another schema unit

-- DECLAREDPACKAGEDESCRIPTOR describes a package that appeared in a schema
-- unit

-- IDENTIFIER-DESCRIPTOR describes an identifier such as a variable name of
-- type name etc. which appeared in a schema unit

-- FULLNAMEDESCRIPTOR describes the fully qualified name of an identifier,
-- including its package name

-- TYPEDESCRIPTOR describes a declaration of a record, enumeration, integer
-- floating point or string entity encountered in a schema unit

LITERALDESCRIPTOR describes an enumeration literal found in a schema unit

ENUMLITDESCRIPTOR describes an enumeration literal

FULLENUMLITDESCRIPTOR describes a fully qualified enumeration literal

ENUMLITNAMESTRING is the data type used to store enumeration literals

-- AUTHIDENTNAMESTRING is the data type used to store authorization
-- identifiers

-- LIBRARYUNITNAMESTRING is the data type used to store schema names, withed
-- and used schema etc.

-- PACKAGENAMESTRING is the data type used to store the names of packages
-- described in schema units

-- RECORDNAMESTRING is the data type used to store the name of records which
when defined in a schema unit must ba a database table

-- TYPENAMESTRING is the data type used to store the identifiers for type,
subtype, variable etc declarations

-- ENUMERATIONNAMESTRING is the data type used to store the identifiers
-- for enumeration declarations

File DDLDEFS.ADA 12

UNCLASSIFIED

subtypes for each of the different type descriptors

-- YETTODODESCRIPTORs will form a chain of SCHEMAUNITDESCRIPTORs on
-- which processing is incomplete

-- the SCHEMAUNIT DESCRIPTORs will form a chain of schema units that have
-- been processed

-- WITHEDUNITDESCRIPTORS form a chain within the SCHEMAUNITDESCRIPTORs
-- of all schema units withed by that schema unit

-- USEDUNITDESCRIPTORS form a chain within the SCHEMAUNITDESCRIPTORs
-- of all schema units used by that schema unit

-- DECLAREDPACKAGEDESCRIPTORS form a chain within the SCHEMAUNITDESCRIPTORs
-- of all packages declared within that schema unit

-- IDENTIFIERDESCRIPTORS form a chain of all identifiers declared in all
-- schema units

-- FULLNAMEDESCRIPTORS form a chain of all fully qualified identifier names
-- declared in all schema units

-- TYPEDESCRIPTORS form a chain of all declarations of types, subtypes,
-- derived types, record components (columns of tables) and variables

-- LITERALDESCRIPTORs for a chain of enumeration literals within a
-- TYPEDESCRIPTOR

-- ENUMLITDESCRIPTORs form a chain of all enumeration literals found in
-- all schemas

-- FULLENUMLITDESCRIPTORs form a chain of the fully qualified neame of all
-- enumeration literals found in all schemas

3.2.5 File DDLEXTRS.ADA

-- EXTRADEFINITIONS defines some data structures and variables used by the
-- ddl reader to keep track of things during the processing of the schema units

-- PROCESSTYPE is the type of ddl statement being processed
-- ITSWITH - found a with statement
-- ITSALREADYWITHING - reading the schema units to be processed

as withed units
-- ITSUSE - found a use statement
-- ITSPACKAGE - found a package declaration
-- ITSEND - found an end package declaration

13 File DDLEXTRS.ADA

UNCLASSIFIED

-- ITSTYPE - found a type declaration
-- ITSSUBTYPE - found a subtype declaration
-- ITSFUNCTION - found a "function x is new authorizarion

identifier" statement, the only function
declaration permitted in the ddl reader

-- ITSSCHEMAAUTHORIZATION - found a schema authorization statement
-- ITSEOL - reached the end of the file that we're

processing
-- ITSUNKNOWN - hit an unknown keyword
-- ITS-FINISHED - the schema unit has been compleately

processed

-- NAMETOPROCESSLIST forms a chain of identifiers of type LISTNAMESTRING
-- to be processed.

-- COMPONENTTOPROCESSLIST forms a chain of record components (database
-- table columns) identifiers of type LISTCOMPONENTSTRING to be processed.

-- HOLDINGCOMPONENTDESCRIPTOR forms a chain of component (database columns)
-- descriptors processed.

variables used during processing

3.2.6 File DDLIODEFS.ADA

-- IODEFINITIONS contains 10 related data structures, type declarations and
-- variables and the functions which return the names of the standard files.

-- INPUTRECORD and INPUTSTREAM is the structure to keep track of the input
-- being read from schema unit files

HOWTODOFILESTYPE defines possibilities for the case of file names etc

-- SCHEMAFROM defines possibilities for the initiation of a schema unit. It is
-- either initiated from a call (CALLS) from the application scanner or from
-- the schema unit file (FILES) such as a withed schema unit, or it is UNKNOWN

-- standardnamefile is as the file name should be accessed, without extention
-- standardname is the package name
-- standardname_adasql is the nexted package name

-- cursornamefile is as the file name should be accessed, without extention
-- cursorname is the package name
-- cursornameada sql is the nexted package name

-- databasenamefile is as the file name should be accessed, without extention
-- databasename is the package name

File DDLIODEFS.ADA 14

UNCLASSIFIED

-- databasenameadasql is the nexted package name

-- dot ada is the extention to be used with the files

-- how-to do files - if upper-case all file names are converted to upper case
-- if lower-case all file names are converted to lower case
-- if as-is they are to be used as entered by the user

3.2.7 Fide DDLIOflEFB.ADA

-- I0_DEFINITIONS contains the functions which return the names of the
-- standard files.

-standard name-file is as the file name should be accessed, without extention

-- cursornamefile is as the file name should be accessed, without extention

-- databasename file is as the file name should be accessed, without extention

3.2.8 File DDLWITHS.ADA

-- WITH-ROUTINES process a token in a with context clauses

-- PROCESS-WITH process the next with token, the string "with", a comma,
-- a semicolon or a library unit name (schema unit)

3.2.9 File DDLWITHB.ADA

-- WITH-ROUTINES process a token in a with context clauses

-- PROCESS-WITH process the next with token, the string "with", a comma,
-- a semicolon or a library unit name (schema unit)

-- if the temp string is WITH and the WITHING flag is set, tell the user
-- that with is an invalid library unit name and don't process it
-- if the temp string is WITH and the WITHING flag is not set, then set it
-- if a package name had already been declared in the current schema or if
-- types or tables or variables have been declared tell them that
-- context clauses must be first, but go ahead and process the with
-- statement

15 File DDLWITHB.ADA

UNCLASSIFIED

-- return
-- if the temp string is a comma, just return
-- if the temp string is a semi colon change the WITHING flag to PROCESSING
-- and return
-- otherwise we have a libraryunitname to process

-- process here if temp string = comma or semi colon or WITH

-- do a withed library unit here:
-- get the withed library unit's schema if it's been declared before
-- find out if this schema unit has withed this library unit before
-- if we're trying to with ourselves tell the user and ignore this with

-- if there is no schema for this with get a new schema, add it to the schema
-- chain, and set it's name
-- if it hasn't been withed before by the current schema unit then add it
-- to the chain of withed stuff
-- do not process the withed library unit name if it is schemadefinition,
-- instead mark this one as done and continue with next
-- however if it is anything except schema-definition and this schema is an
-- authorization package tell the user that's not valid
-- if the status of the withing unit is already done then we don't have to do
-- anything else wth it

-- put the current schema unit on hold (yet to do list)
-- set the withed unit schema as the current schema unit
-- then open the new current schema unit and return and process it

3.2.10 File DDLUSES.ADA

-- USEROUTINES process a use statement

-- PROCESSUSE read thru the use statement processing package names an either
-- context clause uses or non context clause uses

-- PROCESSUSECONTEXT process a package from a use context clause, which
-- means it must have been withed by a prior with statement

-- PROCESSUSENONCONTEXT process a package from a use non context clause,
-- which means it may be a qualified package name or it may be a subpackage
-- name from a package that has already been withed and used

-- VALIDUSE - make sure the package being used is valid and has been withed

File DDLUSEB.ADA 16

UNCLASSIFIED

3.2.11 F'He DDLUSEB.ADA

-- USEROUTINES process a use statement

-- PROCESS-USE read thru the use statement processing package names an either
-- context clause uses or non context clause uses

-- when we enter this routine the temp string will be use
-- if no withs have been done it's an error to do a use, print error and
-- skip to end of use clause
-- if no packages have been declared we're processing a context clause use
-- if a package has been declared we're processing a non context clause use

-- we loop and read the next token, either a comma, a semicolon or package
-- to use

-- if comma - ignore it

-- if semi colon - the use statement is done and we return
-- otherwise we have a package_name to process
-- if this schema is an authorization package the only "use" permitted

-- is for schemadefinition. Anything else print an error.
-- call the appropriate routine to check it's validity and set up the
-- visibility pointers describing it, this depends on if it's a context
-- use or a non context use

-- PROCESS USE CONTEXT process a package from a use context clause, which
-- means it must have been withed by a prior with statement

-- when we enter this routine we have a package name from a context
-- clause use. The package name must be one that was mentioned in the
-- with clause or else we print an error. If it hasn't been used by this

schema before add it to the chain

-- PROCESSUSENON_CONTEXT process a package from a use non context clause,
-- which means it may be a qualified package name or it may be a subpackage

-- name from a package that has already been withed and used

-- when we enter this routine we have a package name from a non context
-- clause use. The package name may be qualified with a preceding package
-- name. But two levels is the max. The first may be anything, the second
-- if there must be ADA_SQL. Split the use package name into outter name
-- and inner name. This package must then be found in a with descriptor for
-- the current schema. If it's valid and it hasn't been used by this

17 File DDLUSEB.ADA

UNCLASSIFIED

-- schema before add it to the chain. If it's invalid tell the user we can't
-- find it in a withed schema or it ambiguous.

-- VALIDUSE - make sure the package being used is valid and has been withed

-- given an outter package name and/or an inner package name and a schema unit
-- descriptor find out if these package names are valid for a use clause.

-- We read the withed schemas for the current schema
-- if we have an outter package and it does match but we don't have an inner,
-- or we do have an inner and it matches too, count it as a match
-- if we don't have an outter but the inner matches and this withed
-- outter package was used in our schema, count it as a match, and save

the outter name for later

-- first determine if we have an inner package or outter package or both or
-- neither - if neither it's an error

-- loop thru all the packages withed by this schema unit and check for matches
-- if the first declared package of a schema unit matches the outter package
-- we match on outter
-- if the next declared package of the schema unit matches the inner package
-- we match on inner

-- if we have an outter and an inner and both match, that counts as a match
-- if we have an outter and it matches and we have no inner, that counts as
-- a match

-- if we don't have an outter but the inner matches we check to see if the
-- outter was previously used by this schema. If so that counts as a
-- match and we hang on to the outter name for later use

-- if we matched one and only one package from a withed unit it's valid
-- if we're missing the outter package we stuff it into the holder

3.2.12 File DDLVRBLS.ADA

-- DDLVARIABLES variables used during the processing of schema units

3.2.13 File DDLFUNCS.ADA

-- FUNCTIONROUTINES process the "function x is new authorization identifier;"

File DDLFUNCS.ADA 18

UNCLASSIFIED

-- statement

-- PROCESSFUNCTION process the "function x is new authorization identifier;"
-- statement

3.2.14 File DDLFUNCB.ADA

-- FUNCTIONROUTINES process the "function x is new authorization identifier;"
-- statement

-- PROCESSFUNCTION process the "function x is new authorization identifier;"
-- statement

-- on input temp string is function, it must be followed by an identifier
-- and then "is new authorization identifier;" If it isn't it's invalid and
-- we don't accept an authorization identifier. If it is valid and an
-- authorization identifier has not already been declared in this schema unit
-- then this is it and set the flag that this is the auth package. If one has
-- already been declared in this schema unit then it's an error. If anything
-- in the with or use other than SCHEMA DEFINITION that's an error.
-- One package must be open and none closed or it's an error. If we've
-- declared types or tables or variables it's an error. If it contains the
-- suffix _NOTNULL or _NOTNULLUNIQUE it's an error and if it's more than
-- 18 characters long its an error

3.2.15 File DDLAUTHB.ADA

-- SCHEMAAUTHORIZATIONfOUTINES process the authorization clause

-. PROCESSSCHEMAAUTHORIZATION process the schema authorization clause which
-- should read "SCHEMAAUTHORIZATION : IDENTIFIER := identifier;"

-- on entry temp string is schemaauthorization, it should be followed by
-- ": identifier :=" and the identifier. It must be declared in an ADA_SQL
-- sub package and match the authorization identifier from an already
-- defined authorization package that was withed. If types or tables have
-- already been declared warn the user that the schema authorizathion should
-- come first. If variables have been declared tell them it's an error.

19 File DDLAUTHB.ADA

UNCLASSIFIED

3.2.16 File DDLAUTHS.ADA

-- SCHEMA_AITTHORIZATIONROUTINES process the authorization clause

-- PROCESSSCHEMAAUTHORIZATION process the schema authorization clause which
-- should read "SCHEMAAUTHORIZATION : IDENTIFIER := identifier;"

3.2.17 File DDLPACKS.ADA

-- PACKAGEROUTINES process a package declaration

-- PROCESSPACKAGE process a package statement which is "PACKAGE x IS"

3.2.18 File DDLPACKB.ADA

-- PACKAGEROUTINES process a package declaration

-- PROCESSPACKAGE process a package statement which is "PACKAGE x IS"

-- the token we get in temp string is "package" toss it, then read the
identifier and set the pointers. If this is the first package declared

-- by the schema it may be anything but ADASQL. If it is the second it
-- must be ADA_SQL. If it is third or more we'll stuff it in the chain

no matter what it is but it's invalid. Tell them it's invalid if it has
-- the suffix _NOTNULL or _NOTNULLUNIQUE. Gobble up the "is" after the

identifier too

3.2.19 File DDLENDS.ADA

-- ENDROUTINES process an end of package statement
-- PROCESSEND process an end of package statement for either the last declared
-- package or for a named package
-- ENDLAST_PACKAGE process an end package statement for the last declared
-- package
-- ENDNAMEDPACKAGE process an end package statement for the named package

File DDLENDB.ADA 20

UNCLASSIFIED

3.2.20 File DDLENDB.ADA

-- END ROUTINES process an end of package statement

-- PROCESS END process an end of package statement for either the last declared
-- package or for a named package

-- the only end we'll get here is the end of a package, it may be followed
-- by the package name or it may be followed by just a semicolon. If a
-- package name then it better be the last defined not yet ended since

-if there is more than one it would have to be nested. If it's not the
-- last one but is a match tell em out of order end but go ahead and flag
-- it as done anyway. If it's a semi colon then it matches up to the
-- lastest one not ended. After it's processed, call set up our package name
-- to alter current package name.

-- END LASTPACKAGE process an end package statement for the last declared
-- package

-- we have the end for the last unended package, the only error is if there
-- is no package to end

-- ENDNAMEDPACKAGE process an end package statement for the named package

-- we have the end for a named package, the only error is if there
-- is no package to end, or if the end is out of order since packages should
-- be nested

3.2.21 File DDLTYPES.ADA

-- TYPEROUTINES process a type declaration

-- PROCESSA_TYPE process a type declaration for an array (character string),
-- integer, floating point or derived type

3.2.22 File DDLTYPEB.ADA

21 File DDLTYPEB.ADA

UNCLASSIFIED

-- TYPEROUTINES process a type declaration

-- PROCESSA TYPE process a type declaration for an array (character string),
-- integer, floating point or derived type

-- first thing to do is store away the identifier or identifiers
-- then find out what type we're processing, array, integer, real or derived
-- then process accrodingly by calling the appropriate routine

-- first check to determine that a type declaration is permitted here

-- then make a chain of all identifiers - return with "is" in temp string

-- then determine if it's a type we deal with and if so call the routine

3.2.23 File DDLSUBS.ADA

-- SUBTYPEROUTINES process a subtype declaration

-- PROCESSSUBTYPE process a subtype declaration of a previously declared
-- type

-- DOASUBTYPE process a subtype indicator

-- BUILDSUBTYPETYPEDESCRIPTORS create a type descriptor for this subtype

..2.24 File DDLSUBB.ADA

SUBTYPEROUTINES process a subtype declaration

-- PROCESSSUBTYPE process a subtype declaration of a previously declared
-- type

-- first check to make sure a subtype declaration is valid here

-- then make a chain of all identifiers - return with "is" in tempstring

-- then process the subtype indicator and build it all into a type descriptor

File DDLSUBB.ADA 22

UNCLASSIFIED

-- DO_A_SUBTYPE process a subtype indicator

-- on entry "is" is in temp string
-- we have to process the subtype indicator, see if it's valid and add
-- a subtype type descriptor

-- BUILDSUBTYPETYPEDESCRIPTORS create a type descriptor for this subtype

3.2.25 File DDLRECS.ADA

-- RECORDROUTINES process a record declaration

-- PROCESSRECORD process a record declaration which must be the description
-- of a database table when appearing in the ddl

-- BUILDCOMPONENTTYPEDESCRIPTORS build the type descriptor fcr a component
-- of a record which is a column in a database table

-- BUILDRECORDTYPEDESCRIPTORS build the type descriptor for a record which
-- is a database table

-- INSERTCOMPONENTDESCRIPTORS stuff into a chain in the record type descriptor
-- pointers to all of it's component type descriptors

3.2.26 File DDLRECB.ADA

-- RECORDROUTINES process a record declaration

-- PROCESSRECORD process a record declaration which must be the description
-- of a database table when appearing in the ddl

-- on entry "record" is in tempstring
-- we have to process each component statement and determine if it's valid
-- read token to get first component name or "end", if end we're done with
-- the whole record, if component name call makelist of components to
-- stack up the component names since there may be more than one for each
-- component statement.

23 File DDLRECB.ADA

UNCLASSIFIED

-- determine that the declaration a' a record (database table) is valid here

-- for each component declaration (database column)

-- stack up the identifier names since several components could be declared
-- in the same statement

-- break down and validate the subtype indicator for the component

-- BUILDCOMPONENTTYPEDESCRIPTORS build the type descriptor for a component
-- of a record which is a column in a database table

-- BUILDRECORDTYPEDESCRIPTORS build the type descriptor for a record which
-- is a database table

-- INSERTCOMPONENTDESCRIPTORS stuff into a chain in the record type descriptor
-- pointers to all of it's component type descriptors

3.2.27 File DDLVARS.ADA

-- VARIABLEROUTINES process a variable declaration

-- TRYTOPROCESSVARIABLE all statements which begin with an identifier
-- are processed thru this routine, try to process the identifier as
-- a variable to see if it's valid

-- PROCESSVARIABLE process a variable subtype indicator, the identifier
-- of the variable has already been stored, and create the type descriptors

-- BUILDVARIABLETYPEDESCRIPTORS build a type descriptor for a variable

3.2.28 File DDLVARB.ADA

-- VARIABLEROUTINES process a variable declaration

File DDLVARB.ADA 24

UNCLASSIFIED

-- TRYTOPROCESSVARIABLE all statements which begin with an identifier

-- are processed thru this routine, try to process the identifier as
a variable to see if it's valid

-- first thing to do is store away the identifier or identifiers
if there are identifiers and then a : we assume variabies, otherwise

-- we assume it's a statement we know nothing about
-- then process the subtype indicator
-- then build it all into a variable descriptor

-- first make a chain of all identifiers - returns with ":" in temp string

-- and make sure a variable declaration would be valid at this time

-- if all is valid up to this point then call the routine to process a variable

-- PROCESSVARIABLE process a variable subtype indicator, the identifier
-- of the variable has already been stored, and create the type descriptors

-- on entry ":" is in temp string
-- we have to process the subtype indicator, see if it's valid and add

-- a variable type descriptor

-- BUILDVARIABLETYPEDESCRIPTORS build a type descriptor for a variable

3.2.29 File DDLINTS.ADA

-- INTEGERROUTINES process the integer section of a type declaration

-- PROCESS_INTEGER process the section of a type declaration that indicates
-- an integer declaration, "range x .. z;"

-- GETINTEGERRANGE read the range declaration of the statement and
-- determine if it's valid and return the high and low range

-- BUILDINTEGERTYPEDESCRIPTORS build the type descriptor for the integer
-- declaration here

25 File DDLINTB.ADA

UNCLASSIFIED

3.2.30 File DDLINTB.ADA

-- INTEGERROUTINES process the integer section of a type declaration

-- PROCESSINTEGER process th3 section of a type declaration that indicates
-- an integer declaration, "range x .. z;"

-- on entry "range" is in tempstring
-- we have to process the statement and determine if it's valid
-- the next token should be an integer for index range lo
-- followed by .. and then an integer for index range hi and then a semi colon

-- validate it and store necessary info to build the descriptor

-- build type descriptors here

-- GETINTEGERRANGE read the range declaration of the statement and
-- determine if it's valid and return the high and low range

-- if valid is false on entry then don't do anything
-- we have to find a range or valid becomes false
-- lo and hi range become the range specified,

-- BUILDINTEGERTYPEDESCRIPTORS build the type descriptor for the integer
-- declaration here

3.2.31 File DDLFLTS.ADA

-- FLOATROUTINES process the floating point section of a type declaration

-- PROCESSFLOAT process the section of a type declaration that indicates
-- a floating point declaration, "digits x range z .. y"

-- GETFLOATDIGITS read the digits number and make sure it's valid

-- GETFLOATRANGE read the range declaration of the statement and
-- determine if it's valid and return the high and low range

File DDLFLTS.ADA 26

UNCLASSIFIED

-- BUILDFLOATTYPEDESCRIPTORS build the type descriptor for the floating point
-- declaration here

3.2.32 Fe DDLFLTB.ADA

-- FLOATROUTINES process the floating point section of a type declaration

-- PROCESSFLOAT process the section of a type declaration that indicates

-- a floating point declaration, "digits x range z .. y"

-- on entry "digits" is in tempstring
-- we have to process the statement and determine if it's valid
-- the next token must be a positive integer for digits
-- followed by either RANGE or ; -- if RANGE then
-- the next token must be a floating point number for index range lo
-- followed by .. and then a floating point for index range hi and then
-- a semi colon

-- validate it and store necessary info to build the type descriptor later

-- build type descriptors here

-- GETFLOATDIGITS read the digits number and make sure it's valid

-- if valid is false on entry then don't do anything
-- we have to find the float digits which must be a positive integer

-- GET FLOATRANGE read the range declaration of the statement and
-- determine if it's valid and return the high and low range

-- if valid is false on entry then don't do anything
-- we have to find a range or valid becomes false
-- lo and hi range become the range specified,

-- BUILDFLOATTYPEDESCRIPTORS build the type descriptor for the floating point
-- declaration here

27 File DDLFLTB.ADA

UNCLASSIFIED

3.2.33 Fie DDLENUMS.ADA

-- ENUMERATIONROUTINES process the enumeration section of a type declaration

-- PROCESSENUMERATION process the section of a type declaration that indicates
-- an enumeration declaration, "(1, 1, 1);"

-- GETENUMERATIONLITERAL read one enumeration literal and make sure it's valid

-- VALIDENUMERATIONLITERAL validate a string to be an enumeration literal

-- DUPLICATEENUMERATIONLITERAL check to see if this enumeration literal has
-- been used before in this enumeration declaration

-- BUILDENUMERATIONTYPEDESCRIPTORS build the type descriptor for the
-- enumeration declaration here

-- BUILDENUMERATIONLITERAL DESCRIPTORS add the enumeration literal on to the
-- chain of literals

3.2.34 File DDLENUMB.ADA

-- ENUMERATIONROUTINES process the enumeration section of a type declaration

-- PROCESSENUMERATION process the section of a type declaration that indicates
-- an enumeration declaration, "(1, 1, 1);"

-- on entry "(" is in tempstring

-- we have to process the statement and determine if it's valid
-- we read enumeration literals up to the next) or ;

-- read an enumeration literal and validate it and store the necessary info
-- to build a descriptor of it later

-- build type descriptors here

-- GETENUMERATIONLITERAL read one enumeration, literal and make sure it's valid

-- enumeration literals my be an identifier or a single character in a quote
-- if the first character read is a quote read until another quote
-- if the second is a quote then read for another quote

File DDLENUMB.ADA 28

UNCLASSIFIED

-- VALIDENUMERATIONLITERAL validate a string to be an enumeration literal

-- valid enumeration literals are either valid identifiers or a single
-- character between single quotes

-- DUPLICATEENUMERATIONLITERAL check to see if this enumeration literal has
-- been used before in this enumeration declaration

-- BUILDENUMERATIONTYPEDESCRIPTORS build the type descriptor for the
-- enumeration declaration here

-- BUILDENUMERATIONLITERALDESCRIPTORS add the enumeration literal on to the
-- chain of literals

3.2.35 File DDLARAYS.ADA

-- ARRAY-ROUTINES process the array section of a type declaration

-- PROCESSARRAY process the section of a type declaration that indicates
-- an array declaration, either unconstrained or constrained

-- GETARRAYINDEXTYPE read the temp string and return the index type and
-- default index range information

-- GETARRAYINDEXRANGE read the temp string to determine the range of
-- the array index

-- GETARRAYTYPE OF read the temp string to determine the type of the array
-- components

-- BUILDSTRINGTYPEDESCRIPTORS build the type descriptor for the arrays here

3.2.36 File DDLARAYB.ADA

29 File DDLARAYB.ADA

UNCLASSIFIED

-- ARRAYROUTINES process the array section of a type declaration

-- PROCESSARRAY process the section of a type declaration that indicates
-- an array declaration, either unconstrained or constrained

-- on entry "array" is in tempstring
-- we have to process the statement and determine if it's valid
-- an unconstrained array is valid as follows:
-- (index-type RANGE <>) OF identifier
-- a constrained array is valid as follows:
-- (index-type) OF identifier
-- (index type RANGE l..h) OF identifier
-- (l..h) OF identifier
-- if valid we collect the following information about the array to be stored
-- in the type descriptor:

-- identifier name - to create a new identifier descriptor or be included
-- in an existing one (captured by processtype, stored
-- in makelistof names)
-- full name pointer - a pointer to a full name descriptor pointed to from
-- the identifier descriptor
-- string length - hi range - lo range + 1, unless it's constrained then
-- use zero for now
-- index type - a pointer to the type descriptor of the index type,
-- which must be base type of integer, if one is
-- specified, if not we use standard.integer as the type
-- array type - a pointer to the type descriptor of the array type,
-- which must be a base type of character
-- constrained - true if it is, false if it isn't
-- index range min - if index type is supplied we have the minimum possible
-- for the range, must be >= 0
-- index range max - if index type is supplied we have the maximum possible
-- for the range, must be >= 0
-- index range lo - if an actual range is supplied this is the 1o value,
-- must be >= 0, unless the array is unconstrained then
-- it will be -1
-- index range hi - if an actual range is supplied this is the hi value,
-- must be >= 0, unless the array is unconstrained then
-- it will be -1

-- we validate the various components here and store necessary info to build
-- a type descriptor later

-- our first character must be

-- if an index type is gi-,en it must be a base type of integer, if it's not
-- given we use standard.integer as the index type

File DDLARAYB.ADA 30

- m a mm~mmmm l n m i (H d H mm ug

UNCLASSIFIED

-- next check to see if a RANGE is supplied

-- and if so get it's low and hi limits

-- now we need a

-- and now OF

-- read the array type, it must be a base type of character

-- and at the end of the line we should have a

-- if there was an error we print a message and skip this declaration

-- build type descriptors here

-- GETARRAYINDEXTYPE read the temp string and return the index type and
-- default index range information

-- valid - if false on entry then don't do anything, don't alter

-- return false if we identify an attempt to define an array index
-- type and it's invalid.

-- do not alter if it's valid
-- We treat it as if we've found an identifier if it's alpha.
-- it must be a base type of integer and visible from our current
-- schema
-- if no identifier is found we use standard.integer as a default
-- got index type - true if we get one even if its the default
-- index type - identifier of the index type
-- index type last - it's length.
-- range min - lo range from ind x, type -1 if any integer is valid
-- range max - hi range from indei type -1 if any integer is valid
-- index type des - pointer to type descriptor of index type, null if not here

-- GETARRAYINDEXRANGE read the temp string to determine the range of
the array index

-- if valid is false on entry then don't do anything
-- if need range then we have to find one or valid becomes false
-- set got range if we do find one
-- lo and hi range become the range specified, if got index type
-- is true then array lo and hi range better fall within the ranges on input,
-- if not valid = false. If the range is <> then it's unconstrained and
-- we set the flag unconstrained as well as lo and hi to -1

31 File DDLARAYB.ADA

UNCLASSIFIED

-- GETARRAYTYPEOF read the temp string to determine the type of the array
-- components

-- if valid is false return
-- gotarray type = true if we indeed have one
-- arraytype will be the qualified identifier name of length array type_last
-- arraytype des if the type descriptor
-- to be valid the array type identifier must be visible

-- BUILDSTRINGTYPEDESCRIPTORS build the type descriptor for the arrays here

3.2.37 File DDLDERS.ADA

-- DERIVEDROUTINES process the derived section of a type declaration

-- PROCESSDERIVED process the section of a type declaration that indicates
-- a derived declaration, which would be NEW subtype indicator

-- BUILDDERIVEDTYPEDESCRIPTORS build the type descriptor for the derived
-- type here

3.2.38 File DDLDERB.ADA

-- DERIVEDROUTINES process the derived section of a type declaration

-- PROCESSDERIVED process the section of a type declaration that indicates
-- a derived declaration, which would be NEW subtype indicator

-- on entry "new" is in tempstring
-- we have to process the subtype indicator, see if it's valid and add
-- a derived type descriptor

-- BUILDDERIVEDTYPEDESCRIPTORS build the type descriptor for the derived
-- type here

File DDLDERB.ADA 32

UNCLASSIFIED

3.2.39 tile DDLCALLS.ADA

-- CALLTODDL_ROUTINES routines to initiate the ddl reader to process the
-- DDL for an application scanner DML module

-- CALLTODDL_OPENSCHEMAUNIT - request the ddl reader to set up an
environment to process selected sections of the with and use clauses

-- of a schema unit which is being processed as a dml module

CALLTODDL_WITH request the ddl reader to process the given name of a
-- schema unit as though it were a with clause for the schema unit that was
-- identified in CALLTODDLOPENSCHEMAUNIT

CALLTODDL_USE request the ddl reader to process the given name of a
-- package as though it were a use clause for the schema un-t that was
-- identified in CALLTODDLOPEN_SCHEMAUNIT

-- CALLTODDL_CLOSE terminate processing of the schema unit that was
-- identified in CALLTODDLOPEN_SCHEMAUNIT

3.2.40 File DDLCALLB.ADA

-- CALLTODDL_ROUTINES routines to initiate the ddl reader to process the
-- DDL for an application scanner DML module

-- CALLTODDL_OPEN_SCHEMA_UNIT - request the ddl reader to set up an
-- environment to process selected sections of the with and use clauses
-- of a schema unit which is being processed as a dml module

-- CALLTODDL WITH request the ddl reader to process the given name of a
-- schema unit az though it were a with clause for the schema unit that was
-- identified in CALLTODDLOPENSCHEMAUNIT

-- CALLTODDL_USE request the ddl reader to process the given name of a
-- package as though it were a use clause for the schema unit that was

-- identified in CALLTODDLOPENSCHEMAUNIT

-- CALLTODDL_CLOSE terminate processing of the schema unit that was
-- identified in CALLTODDLOPENSCHEMAUNIT

33 File DDLCALLB.ADA

UNCLASSIFIED

3.2.41 File DDLMAIN.ADA

-- MAIN for testing purposes this will drive the ddl reader (without adding
-- all the other application scanner code in) with input from the terminal
-- and will display all data structures created

3.2.42 File DDLMAINC.ADA

-- MAINCALL for testing purposes this will drive the ddl reader (without adding
-- all the other application scanner code in) in the same manner that it will
-- be called when the application scanner is executing

3.2.43 File DDLSIOS.ADA

-- SCHEMA-IO the io routines related to the schema units to open and close
-- files, to read data from files and the terminal, to output data to files
-- and the terminal, and to perform data conversions

-- OPENSCHEMAUNIT open a schema unit file for processing

GET-STRING return the next token from the schema unit currently being
-- processed

-- CLOSESCHEMAUNIT close the schema unit file currently being processed

-- PRINT ERROR print an error describing the schema unit from which the error
-- resulted and the line number

-- PRINT TO FILE print a message to the output file

-- PRINT MESSAGE print a message to the current output device, most likely
the terminal

-- GETTERMINALINPUT obtain input from the current input device, most likely
the terminal

OPENOUTPUT_FILE set flags showing that the output/error file is open

-- CLOSEOUTPUTFILE set the flage indigating that the output file is closed

-- UPPERCASE convert a string to upper case

-- LOWERCASE convert a string to lower case

File DDLSIOS.ADA 34

UNCLASSIFIED

-- DOUBLEPRECISIONTOSTRING return a string representation of a double
-- precision number

-- STRINGTODOUBLEPRECISION return the double precision equivalent of a
-- string representing a number

-- EXCHANGEFORORIGINAL given the schema and the buffer we're working with,
-- exchange the current token which was converted to upper case on input for
-- the originally cased token

-- GETSINGLE_QUOTESTRING return a quoted single character from the input
-- buffer

3.2.44 File DDLSIOB.ADA

-- SCHEMAIO the io routines related to the schema units to open and close
-- files, to read data from files and the terminal, to output data to files
-- and the terminal, and to perform data conversions

-- OPENSCHEMAUNIT open a schema unit file for processing

-- if the file is not and has not been processed then set the file name up to
-- be the library unit plus the extention of ADA or .A or what ever is
-- defined in ddliodefs as being the extention of the system. The case of the

-- file is determined by the flags governing case in ddliodefs. The case of the
-- extention is determined by the case of the first letter of the file name
-- and the flags governing case in ddliodefs. If the schema to be processed
-- is one of the special standard ones, use the correct name and directory
-- location from ddliodefs to locate the version that we should be reading.
-- Open the file if this schema was not initiated from the CALLS TO DDL.
-- If it was then we don't open it but just pretend to do so. Set the status
-- to processing. If we get an exception on opening the file print the
-- appropriate message and set status to not found.

-- reading unopen file, opening open file
-- read output or write input
-- can't find file

-- can't perform requested operation

-- device malfunction

-- eof

-- bad data

-- page format error

-- GETSTRING return the next token from the schema unit currently being

35 File DDLSIOB.ADA

UNCLASSIFIED

-- processed

-- if we are not actually reading the schema unit but obtaining data thru the
-- CALLTODDL routines then the underlying routines will set -,- our buffers
-- as if they were input from a file.

-- CLOSESCHEMAUNIT close the schema unit file currently being processed

-- remember that if this schema unit was initiated via an open call in
-- the CALLTODDL routines we did not really open it but relied on input
-- from other calls from CALLTODDL and we must not really close it but
-- we must set up the flags as though we did

-- reading unopen file, opening open file
-- read output or write input
-- can't find file
-- can't perform requested operation
-- device malfunction
-- eof
-- bad data
-- page format error

-- PRINT ERROR print an error describing the schema unit from which the error
-- resulted and the line number

-- PRINT TO FILE print a message to the output file

take note here that the outputfiletype will create a ddl reader output
-- only (with no additional application scanner information in it) with
-- the file name of first schema unit processed and an extention of .ddlout
-- as defined in ddliodefs. This has been changed to output all messages to
-- the same file that the remainder of the application scanner is using with
-- the call to lexical_analyzer.reportddl_error

-- reading unopen file, opening open file
-- read output or write input
-- can't find file
-- can't perform requested operation
-- device malfunction
-- eof
-- bad data
-- page format error

File DDLSIOB.ADA 36

UNCLASSIFIED

-- PRINT MESSAGE print a messa-- to th e-urrent output device, most likely
-- the terminal

-- reading unopen file, opening open file
-- read output or write input
-- can't find file
-- can't perform requested operation
-- device malfunction
-- eof
-- bad data
-- page format error

-- GETTERMINALINPUT obtain input from the current input device, most likely
-- the terminal

-- reading unopen file, opening open file
-- read output or write input
-- can't find file
-- can't perform requested operation

device malfunction
eof

-- bad data
-- page format error

-- OPENOUTPUTFILE set flags showing that the output/error file is open

-- this routine used to open the output file to which the ddl reader would
-- output errors and information, however this file has now been merged with
-- the one used by the rest of the application scanner so the actual opening
-- of a file is not done here but the flags are set up to show that it was done.

-- If the file isn't really open this routine will not detect it.

-- take note here that the output_filetype will create a ddl reader output
-- only (with no additional application scanner information in it) with
-- the file name of first schema unit processed and an extention of .ddlout
-- as defined in ddliodefs. This has been changed to output all messages to
-- the same file that the remainder of the applicetion scanner is using with
-- the call to lexicalanalyzer.report ddl error

-- reading unopen file, opening open file
-- can't find file
-- can't perform requested operation
-- device malfunction

37 File DDLSIOB.ADA

UNCLASSIFIED

-- eof
-- bad data
-- page format error

-- CLOSEOUTPUTFILE set the flage indigating that the output file is closed

-- take note here that the output_file_type will create a ddl reader output
-- only (with no additional appLication scanner information in it) with
-- the file name of first schema unit processed and an extention of .ddlout
-- as defined in ddliodefs. This has been changed to output all messages to
-- the same file that the remainder of the application scanner is using with
-- the call to lexical_analyzer.reportddlerror. Therefore we don't really
-- close a file here but just pretend to.

-- reading unopen file, opening open file
-- read output or write input
-- can't find file
-- can't perform requested operation
-- device malfunction
-- eof

bad data
page format error

-- UPPER_CASE convert a string to upper case

-- LOWERCASE convert a string to lower case

-- DOUBLEPRECISIONTOSTRING return a string representation of a double
-- precision number

-- STRINGTODOUBLEPRECISION return the double precision equivalent of a
-- string representing a number

-- EXCHANGEFORORIGINAL given the schema and the buffer we're working with,
-- exchange the current token which was converted to upper case on input for
-- the originally cased token

File DDLSIOB.ADA 38

UNCLASSIFIED

-- this routine is used when we what to know the actual case a user entered a

-- file name in - for most purposes we use all upper case thru the ddl reader

-- to avoid confusion

-- GET SINGLE_QUOTESTRING return a quoted single character from the input
-- buffer

-- on entry buf len = 1 and buf - single quote. Keep reading till ending quote
-- however if second character is quote and third character is quote return
-- the three. Valid is true if on return buflen = 3 and buf(1) and buf(3) =

-- the quoted string must be all on one line or it's an error

3.2.45 File DDLIOINS.ADA

-- IOINTERNALSTUFF these are the routines used by SCHEMAIO to do the

-- nitty grittys for the io routines

-- TOKENEND bump the schema buffer pointers to the beginning of the next

-- token and return a pointer to the end of that token

-- WHITESPACE return true if character is a white space

-- ALPHABETIC return true if e41A:acter is alphabetic

-- SIMPLENUMERIC return true if character is numeric 0 - 9 or underscore

-- QUALIFIER return true if we're pointing to the second or subsquent portion
-- of a qualified expression

-- NUMERIC return true if the character is numeric 0 - 9 or underscore or
-- + or - or . or E and could be part of a numeric string based on previous
-- characters encountered in the string

-- VALIDAFTERDECIMAL return true is character is a valid character following

-- a decimal character in a numeric string

-- NEXTTOKEN set the pointers in the schema buffer to point to the

-- beginning of the next token

-- NEXTLINE read the next line from the schema unit file into the buffer

39 File DDLIOINB.ADA

UNCLASSIFIED

3.2.46 File DDLOINB.ADA

-- 10_INTERNALSTUFF these are the routines used by SCHEMAI0 to do the
-- nitty grittys for the io routines

-- TOKENEND bump the schema buffer pointers to the beginning of the next
-- token and return a pointer to the end of that token

-- point to beginning of token to read, there are two possible cases for us
-- to read. One is an alpha type - this must start with A .. Z and then may
-- be followed with A..Z 0..9 1 or . No further rules apply except to the
-- which is assumed to be qualifying something. If the . if the first
-- character it gets returned separately. it must be followed by A..Z
-- not any thing else. if two dots are found in a row we return up to
-- but not including the first one
-- the other type is numeric - it starts with a + or - or 0..9 then is
-- followed by 0..9 or _ and maybe an E. After hitting an E we have to
-- have + or - or 0..9 and then only 0.. or _ the rest of the token

-- WHITESPACE return true if character is a white space

-- ALPHABETIC return true if character is alphabetic

-- SIMPLENUMERIC return true if character is numeric 0 - 9 or underscore

-- QUALIFIER return true if we're pointing to the second or subsquent portion
-- of a qualified expression

-- C is the character in question and if it's not a dot it certainly isn't
-- a qualifier here. Then if the next character is A..Z it's ok

-- NUMERIC return true if the character is numeric 0 - 9 or underscore or
-- + or - or . or E and could be part of a numeric string based on previous
-- characters encountered in the string

File DDLIOINB.ADA 40

UNCLASSIFIED

-- VALIDAFTERDECIMAL return true is character is a valid character following
-- a decimal character in a numeric string

-- NEXTTOKEN set the pointers in the schema buffer to point to the
-- beginning of the next token

-- we want to end up pointing at the beginning of the next token, it could
-- already be there
-- if we've reached the end of the line or a comment, read the next line
-- skip leading spaces and horizontal tabs

-- NEXTLINE read the next line from the schema unit file into the buffer

-- we read a line from the file if it's really ready to be processed
-- don't keep comment lines
-- if we get an exception - we're expecting eof sooner or later - we print
-- a message if anything other than eof and set SCHEMA.SCHEMASTATUS to
-- DONE and close the file
-- and set schema.stream.buffer(l..2) to spaces and schema.stream.next
-- to 1 and schema.stream.last to 1.

-- reading unopen file, opening open file
-- read output or write input
-- can't find file
-- can't perform requested operation
-- device malfunction
-- eof
-- bad data
-- page format error

3.2.47 Fe DDLIOERS.ADA

-- 10_ERRORS these are the error routines used by SCHEMAIO for the io routines

-- OPEN-ERROR got an exception while trying to open a schema unit

-- READ ERROR got an exception while reading from a schema unit file

-- CLOSE-ERROR got an exception when trying to close a schema unit file-

-- PRINTERRORERROR got an exception while trying to write to the output file

-- PRINTMESSAGE ERROR got an exception while trying to write to the terminal

41 File DDLIOERS.ADA

UNCLASSIFIED

-- INPUT-ERROR got an exception while trying to read from terminal

-- OPENOUTPUTFILEERROR got an exception when trying to open the output file

-- CLOSEOUTPUT_FILE ERROR got an exception when trying to close the output file

3.2.48 File DDLIOERB.ADA

-- IOERRORS these are the error routines used by SCHEMAIO for the io routines

-- OPENERROR got an exception while trying to open a schema unit

-- READERROR got an exception while reading from a schema unit file

-- we got an exception while reading - we're expecting eof sooner or later -

-- we print the message if anything other than eof
-- set SCHEMA.SCHEMASTATUS to DONE

-- set schema.stream.buffer(l..2) to spaces
-- schema.stream.next to 1

-- schema.stream.last to 1.
-- close the file

-- CLOSEERROR got an exception when trying to close a schema unit file

-- PRINTERRORERROR got an exception while trying to write to the output file

-- PRINTMESSAGEERROR got an exception while trying to write to the terminal

-- INPUT-ERROR got an exception while trying to read from terninal

-- OPENOUTPUTFILE ERROR got an exception when trying to open the output file

File DDLIOERB.ADA 42

UNCLASSIFIED

-- CLOSEOUTPUTFILEERROR got an exception when trying to close the output file

3.2.49 File DDLADESS.ADA

-- ADDDESCRIPTORROUTINES add various descriptors to various chains

-- ADD-YETTODODESCRIPTOR add a descriptor to the chain of schema units
-- that have not yet been completely processed

-- ADDSCHEMAUNITDESCRIPTOR add a new descriptor for a schema unit to
-- the chain of schema units processed

-- ADD WITHEDUNITDESCRIPTOR add a withed unit descriptor for a library
-- unit which was withed by the schema unit to the chain of withed unit
-- descriptors for within the schema unit descriptor

-- ADDUSEDPACKAGEDESCRIPTOR add a used package descriptor for a package
-- which was used by the schema unit to the chain of used package descriptors
-- within the schema unit descriptor

-- ADDDECLAREDPACKAGEDESCRIPTOR add a declared package descriptor for a
-- package which was declared by the schema unit to the chain of declared
-- package descriptors within the schema unit

-- ADDIDENTIFIERDESCRIPTOR add a descriptor for an identifier, which has been
-- defined by a schema unit, to the identifier chain

-- ADD.FULLNAMEDESCRIPTOR add a full name descriptor for an identifier which
-- has been declared by a schema unit, to the full name chain, the fully
-- qualified name of that identifier will be retained and the identifier
-- descriptor will be pointed to

-- ADDTYPEDESCRIPTOR add a type descriptor of any one of the various types
-- to the chain of type descriptors

-- ADDVARIABLETYPEDESCRIPTOR add a type descriptor for a variable to the
-- chain of variables

-- ADDRECORDTYPEDESCRIPTOR add a descriptor of a record (database table)
-- to the chain of database tables

-- ADDLITERALDESCRIPTOR add the descriptor for an enumeration literal to the
-- chain of literals within the enumeration descriptor

-- ADDENUMIDENTDESCRIPTOR add an enumeration literal descriptor to the

43 File DDLADESS.ADA

UNCLASSIFIED

-- chain of all literals

-- ADDFULLENUMLITDESCRIPTOR add an enumeration literal descriptor to the
-- chain of all fully qualified literals which retain the fully qualified names
-- and point to the literal descriptor

3.2.50 F'le DDLADESB.ADA

-- ADDDESCRIPTORROUTINES add various descriptors to various chains

-- ADD-YETTODODESCRIPTOR add a descriptor to the chain of schema units
-- that have not yet been completely processed

-- if this is the first yet-to-do defined set the first pointer
-- otherwise set the "next" pointer in the previously last yet-to-do to
-- point to this new yet-to-do
-- set the previous pointer in this new yet-to-do to point to the
-- old last yet-to-do
-- and now the new yet-to-do is the last one

-- ADDSCHEMAUNITDESCRIPTOR add a new descriptor for a schema unit to
-- the chain of schema units processed

-- if this is the first schema unit defined set the first pointer
-- otherwise set the "next" pointer in the previously last schema unit to
-- point to this new schema unit
-- set the previous pointer in this new schema unit to point to the
-- old last schema unit
-- and now the new schema unit is the last one

-- ADDWITHEDUNITDESCRIPTOR add a withed unit descriptor for a library
unit which was withed by the schema unit to the chain of withed unit

-- descriptors for within the schema unit descriptor

-- if this is the first withed unit defined for this schema unit set the
-- first pointer
-- otherwise set the "next" pointer in the previously last withed unit to
-- point to this new withed unit
-- set the previous pointer in this new withed unit to point to the
-- old last withed unit
-- and now the new withed unit is the last one pointed to by the schema

File DDLADESB.ADA 44

UNCLASSIFIED

-- ADDUSEDPACKAGEDESCRIPTOR add a used package descriptor for a package
-- which was used by the schema unit to the chain of used package descriptors
-- within the schema unit descriptor

-- if this is the first used unit defined for this schema unit set the
-- first pointer
-- otherwise set the "next" pointer in the previously last used unit to
-- point to this new used unit
-- set the previous pointer in this new used unit to point to the
-- old last used unit
-- and now the new used unit is the last one pointed to by the schema

-- ADDDECLAREDPACKAGEDESCRIPTOR add a declared package descriptor for a
-- package which was declared by the schema unit to the chain of declared
-- package descriptors within the schema unit

-- if this is the first declared package for this schema unit set the

-- first pointer
-- otherwise set the "next" pointer in the previously last declared package
-- to point to this new declared package
-- set the previous pointer in this new declared package to point to the
-- old last declared package
-- and now the new declared package is the last one pointed to by the scheia

-- ADDIDENTIFIERDESCRIPTOR add a descriptor for an identifier, which has been
-- defined by a schema unit, to the identifier chain

-- if this is the first declared identifier set the first pointer
-- otherwise set the "next" pointer in the previously last identifier
-- to point to this new identifier
-- set the previous pointer in this new identifier to point to the
-- old last identifier
-- and now the new identifier is the last one

-- ADDFULLNAMEDESCRIPTOR add a full name descriptor for an identifier which
-- has been declared by a schema unit, to the full name chain, the fully
-- qualified name of that identifier will be retained and the identifier
-- descriptor will be pointed to

-- if this is the first declared full name for this identifier set the first
-- pointer

45 File DDLADESB.ADA

UNCLASSIFIED

-- otherwise set the "next" pointer in the previously last full name
-- to point to this new full name
-- set the previous pointer in this new full name to point to the old last full
-- name in the identifier descriptor
-- and now the new full name is the last one for this identifier

-- ADDTYPEDESCRIPTOR add a type descriptor of any one of the various types
-- to the chain of type descriptors

-- if this is the first type set the first pointer
-- otherwise set the "next" pointer in the previously last type to point
-- to this new type
-- set the previous pointer in this new type to point to the old last type
-- and now the new type is the last one

-- ADDVARIABLETYPEDESCRIPTOR add a type descriptor for a variable to the
-- chain of variables

-- if this is the first variableset the first pointer
-- otherwise set the "next" pointer in the previously last variable to point
-- to this new variable
-- set the previous pointer in this new variable to point to the
-- old last variable
-- and now the new variable is the last one

-- ADDRECORDTYPEDESCRIPTOR add a descriptor of a record (database table)
-- to the chain of database tables

-- if this is the first table set the first pointer
-- otherwise set the "next" pointer in the previously last table to point
-- to this new table
-- set the previous pointer in this new table to point to the old last table
-- and now the new table is the last one

-- ADDLITERAL DESCRIPTOR add the descriptor for an enumeration literal to the
-- chain of literals within the enumeration descriptor

-- if this is the first literal defined for this enumeration type set the
-- first pointer
-- otherwise set the "next" pointer in the previously last literal to
-- point to this new literal

File DDLADESB.ADA 46

UNCLASSIFIED

-- set the previous pointer in this new literal to point to the
-- old last literal
-- and now the new literal is the last one pointed to by the enumeration type

-- ADDENUMIDENTDESCRIPTOR add an enumeration literal descriptor to the
-- chain of all literals

-- if this is the first enumeration literal set the first pcinter
-- otherwise set the "next" pointer in the previously last enumeration literal
-- to point to this new enumeration literal
-- set the previous pointer in this new enumeration literal to point to the
-- old last enumeration literal

-- and now the new enumeration literal is the last one

-- ADDFULLENUMLITDESCRIPTOR add an enumeration literal descriptor to the
-- chain of all fully qualified literals which retain the fully qualified names
-- and point to the literal descriptor

-- if this is the first full type descriptor for this enumeration literal
-- set the first pointer
-- otherwise set the "next" pointer in the previously last full enumeration
-- literal to point to this new full enumeration literal
-- set the previous pointer in this new full enumeration literal to point to
-- the old last full enumeration literal in the chain
-- and now the new full enumeration literal is the last one for this
-- enumeration literal

3.2.51 File DDLKEYS.ADA

-- KEYWORDROUTINES identifies the SQL and ADA key words which cannot be used
-- as identifiers

-- SQLKEYWORD return true if the string is a sal key word, false if not

-- ADAKEYWORD return true if the string is an ada key word, false if not

3.2.52 File DDLKEYB.ADA

-- KEYWORDROUTINES identifies the SQL and ADA key words which cannot be used
-- as identifiers

47 File DDLKEYB.ADA

UNCLASSIFIED

-- table of the SQL key words which- cannot be used as identifiers

-- table of the ADA key words which cannot be used as identifiers

-- SQL_KEY_WORD return true if the string is a sql key word, false if not

-- ADAKEYWORD return true if the string is an ada key word, false if not

3.2.53 File DDLLISTS.ADA

-- LIST_ROUTINES form the chains which hold the identifiers for type
-- variable and record component (database columns) declarations, for which
-- type descriptors will be created the remainder of the declatation statement
-- is valid

MAKELISTOFNAMES form a chain of identifiers from a type or subtype
-- declaration

-- ADDNAMETOPROCESSLIST add an identifier name to the list of identifiers
-- from a type or subtype declaration that need to be processed

GET_NEW_LISTNAME given a string return a listname

-- GET_NEWNAMETOPROCESS_LIST return an empty nametoprocess_list

MAKELISTOFCOMPONENTS form a chain of component identifiers (database
-- table column names) from record component declaration

-- ADDCOMPONENT TOPROCESSLIST add a component name to the list of components
-- from a record declaration that need to be processed

-- GET_NEWLIST_COMPONENT given a string return a list_component

-- GET_NEWCOMPONENTTO_ -ROCESSLIST return an empty componenttoprocess list

-- MAKELISTOFVARIABLES form a chain of variable names from a variable
-- declaration

File DDLLISTS.ADA 48

UNCLASSIFIED

3.2.54 File DDLLISTB.ADA

-- LISTROUTINES form the chains which hold the identifiers for type
-- variable and record component (database columns) declarations, for which
-- type descriptors will be created the remainder of the declatation statement
-- is valid

-- MAKE_LISTOFNAMES form a chain of identifiers from a type or subtype
-- declaration

-- the next read should point us to a name of a type, derived type or subtype
-- we want to chain up a list of them to process later
-- stop when we find IS or ;
-- temp string will contain TYPE or SUBTYPE on entry
-- identifier is invalid if TYPE declaration and suffix of _NOT_NULL or
-- _NOT_NULL_UNIQUE

-- ADD_NAMETOPROCESS_LIST add an identifier name to the list of identifiers
-- from a type or subtype declaration that need to be processed

-- if this is the first name-to-process set the first pointer
-- otherwise set the "next" pointer in the previously last name-to-process to
-- point to this new name-to-process
-- set the previous pointer in this new name-to-process to point to the

old last name-to-process
-- and now the new name-to-process is the last one

-- GETNEWLIST_NAME given a string return a list_name

-- GET_NEW_NAMETOPROCESS_LIST return an empty nametojprocesslist

-- MAKE_LISTOFCOMPONENTS form a chain of compGnent identifiers (database
-- table column names) from record component declaration

-- on entry we should point to a component of a record type
-- we want to chain up a list of them to process later
-- stop when we find : or

49 File DDLLISTB.ADA

UNCLASSIFIED

-- temp string will contain a component name on entry
-- they must not contain _NOTNULL or _NOTNULLUNIQUE suffixes and must be no
-- more than 18 characters long

-- ADD COMPONENT TO PROCESSLIST add a component name to the list of components
-- from a record declaration that need to be processed

-- if this is the first component-to-process set the first pointer
-- otherwise set the "next" pointer in the previously last
-- component-to-process to point to this new component-to-process
-- set the previous pointer in this new component-to-process to point to the
-- old last component-to-process
-- and now the new component-to-process is the last one

-- GETNEWLISTCOMPONENT given a string return a list component

-- GETNEWCOMPONENTTOPROCESSLIST return an empty component toyprocesslist

-- MAKELIST OF VARIABLES form a chain of variable names from a variable
-- declaration

on entry we should point to a variable name
-- we want to chain up a list of them to process later
-- stop when we find : or ;
-- temp string will contain a variable name on entry
-- they must not contain _NOTNULL or _NOTNULLUNIQUE suffixes
-- they must be unique

3.2.55 File DDLNAMES.ADA

-- NAMEROUTINES validate identifiers

-- eof = end of file reached
-- eol = end of line ; reached
-- eoi = end of identifiers reached
-- comma = got a comma
-- valid ident = got a valid identifier

File DDLNAMES.ADA 50

UNCLASSIFIED

-- invalidident = got an invalid identifier

-- VALIDQUALIFIEDIDENT_CHARS validate a qualified identifier

-- VALIDNEWTABLENAME validates a new table name

-- VALIDNEWIDENTNAMEDUPSOK validate a new identifier name, duplicating
-- the name of an existing identifier is not an error

-- VALIDNEWIDENTNAME validate the name of a new identifier

-- VALIDIDENTCHARS validate the characters within an identifier name

-- DUPLICATEIDENTNAME check to see if the identifier name is a duplicate

-- GOTINVALIDCONSTRAINTS validate for the _NOTNULL and _NOTNULLUNIQUE
-- suffixes

-- CHECK_ECF_EOLISCOMMA return a flag indicating if the string represents
-- end of file, end of a line, "is", comma or a valid identifier

-- CHECKEOFEOLCOLONCOMMA return a flag indicating if the string represents
-- end of file, end of a line, colon, comma or a valid identifier

-- VALIDNEW_TYPEIDENT validate a new type identifier

-- VALIDNEWCOMPONENTIDENT validate a new component identifier

-- VALIDNEWPACKAGENAME validate a new package name

-- VALIDNEWSUBTYPEIDENT validate a new subtype identifier

-- VALIDNEWFULLCOMPONENTNAME validate a new component (database column) name

-- DUPLICATECOMPONENTNAME check to see if this component (database column)
-- name is a duplicate within the record (database table)

-- VALIDNEWVARIABLEIDENT validate a new variable identifier

3.2.56 File DDLNAMEB.ADA

-- NAMEROUTINES validate identifiers

-- VALID_QUALIFIEDIDENTCHARS validate a qualified identifier

51 File DDLNAMEB.ADA

UNCLASSIFIED

a valid qualified identifier may consist of only an identifier, or one or
-- two packages qualifying the identifier. Errors are:
-- more than two package qualifiers
-- any character other than a-z 0-9
-- if a package or identifier begins with a character other than a-z

-- VALIDNEWTABLE NAME validates a new table name

-- given a new table identifier validate it, for characters and to see if it's
-- already been used or if it's a keyword. It may have been used previously
-- as an identifier with different package names, in which case if the package
-- names are visible we should print a warning message. If there is an
-- identifier descriptor for it return it. If there is a matching table name
-- used by another schema with the same authorization id it's invalid. It may
-- not contain the _notnull or _not nullunique suffix, and may be no more than
-- 18 characters long.

-- VALID NEWIDENTNAMEDUPSOK validate a new identifier name, duplicating
-- the name of an existing identifier is not an error

-- given a string determine if it's valid characters A..Z 0..9 or _ and first
-- character A..Z
-- if the current package name isn't the standard then we cannot have names

-- the same as sql or ada keywords

-- VALITNEWIDENTNAME validate the name of a new identifier

-- given a string determine if it's valid characters A..Z 0..3 or _ and first
-- character A..Z

if the current package name isn't the standard then we cannot have names
-- the same as sql or ada keywords
-- then check for a duplicate name

-- VALIDIDENTCHARS validate the characters within an identifier name

-- return false if first character is not A..Z and remaining characters aren't
-- A..Z 0..9 or

DUPLICATEIDENTNAME check to see if the identifier name is a duplicate

File DDLNAMEB.ADA 52

UNCLASSIFUD

-- if it's not in the identifierdescriptors it's looking good
-- if it is then we have to make sure that the package name in the full
-- name descriptor isn't duplicated, if it was used previously
-- as an identifier with a different package name, then if the package
-- names are both visible print a warning message.

-- GOTINVALIDCONSTRAINTS validate for the _NOT_NULL and _NOTNULL_UNIQUE
-- suffixes

-- CHECKEOF_EOL IS COMMA return a flag indicating if the string represents
end of file, end of a line, "is", comma or a valid identifier

---- ,--comma--- -- or---a-- -valid---- - identifier- --- --

-- CHECK_EOFEOLCOLONCOMMA return a flag indicating if the string represents
-- end of file, end of a line, colon, comma or a valid identifier

-- VALID_NEW_TYPE_IDENT validate a new type identifier

-- if we've reached end of file return eof
-- if we've reached semicolon end of line return eol
-- if we've reached the IS return eoi
-- if it's a comma return comma
-- then check identifier for validity

-- VALID_NEW_COMPONENT_IDENT validate a new component identifier

-- if we've reached end of file return eof
-- if we've reached semicolon end of line return eol

if we've reached the : return eoi
-- if it's a comma return comma
-- then check identifier for validity

-- VALIDNEWPACKAGENAME validate a new package name

-- If this is the first package declared
by the schema it may be anything but ADA_SQL. If it is the second it

-- must be ADA_SQL. If it is third or more we'll stuff it in the chain

53 File DDLNAMEB.ADA

UNCLASSIFIED

-- no matter what it is but it's invalid. Tell them it's invalid if it has
-- the suffix _NOTNULL or _NOTNULLUNIQUE.

-- VALIDNEWSUBTYPEIDENT validate a new subtype identifier

-- if we've reached end of file return eof
-- if we've reached semicolon end of line return eol
-- if we've reached the IS return eoi

-- if it's a comma return comma

-- then check identifier for validity

-- VALID NEWFULLCOMPONENTNAME validate a new component (database column) name

-- given a string determine if it's valid characters A..Z 0..9 or _ and first
-- character A..Z
-- if the current package name isn't the standard then we cannot have names
-- the same as sql or ada keywords
-- then check for a duplicate component name

-- DUPLICATECOMPONENTNAME check to see if this component (database column)
-- name is a duplicate within the record (database table)

-- if it's not in the identifierdescriptors it's looking good
-- if it is and the table names aren't the same than we're ok
-- if it is and the table names are the same, then we have to make sure
-- that the package name in the full name descriptor isn't duplicated.
-- if it was used previously as an identifier with a different package name,
-- but the same record name, then if the package names are both visible print
-- a warning message.

-- VALIDNEWVARIABLEIDENT validate a new variable identifier

-- if we've reached end of file return eof
-- if we've reached semicolon end of line return eol
-- if we've reached the : return eoi

-- if it's a comma return comma

-- then check identifier for validity
-- if it looks like an identifier but has constraints return invalid identifier
-- if it really doesn't look like an identifier return unknown

File DDLNAMEB.ADA 54

UNCLASSIFIED

3.2.57 File DDLNDESS.ADA

-- GETNEWDESCRIPTORROUTINES create and initialize various elements of the
-- data structures in which the ddl reader will store data

-- GETNEWYETTODODESCRIPTOR for the chain of schema units not yet complete

-- GETNEWSCHEMAUNITDESCRIPTOR for descriptions of a schema unit

-- GETNEWWITHEDUNITDESCRIPTOR for descriptions of the library units withed
-- by a schema unit

-- GET NEW USEDPACKAGEDESCRIPTOR for description of a package withed by
-- a schema unit

-- GETNEWDECLAREDPACKAGEDESCRIPTOR describes a package declaration within
-- a schema unit

-- GETNEWIDENTIFIERDESCRIPTOR describes an identifier

-- GETNEWFULLNAME_DESCRIPTOR describes the fully qualified name of an
-- identifier

-- GETNEWRECORDDESCRIPTOR describes a type declaration for a record
-- (database table)

-- GETNEWENUMERATIONDESCRIPTOR description for enumeration type declaration

-- GETNEW INTEGERDESCRIPTOR description for an integer type declaration

-- GETNEWFLOATDESCRIPTOR description for a float type declaration

-- GETNEWSTRINGDESCRIPTOR describtion for a string type declaration

-- GETNEWTYPEDESCRIPTOR description for a record, enumeration, integer,
-- float or string type declaration

-- GETNEWLITERALDESCRIPTOR description of an enumeration literal within
-- the enumeration declaration description

-- GETNEWENUMLITDESCRIPTOR description of an enumeration literal within
-- the chain of literals

-- GETNEW FULL ENUMLITDESCRIPTOR description of an enumeration literal within
-- the chain of literals

-- GETNEWENUMLITNAME convert a string to an enumlit_name type

-- GETNEWAUTHIDENTNAME convert a string to an authidentnamc type

55 File DDLNDESS.ADA

UNCLASSIFIED

-- GETNEWLIBRARYUNITNAME convert a string to a library unit name type

- GET_NEW_PACKAGENAME convert a string to a package-name type

-- GETNEWRECORDNAME convert a string to a recordname type

-- GETNEWTYPENAME convert a string to a type_name type

-- GETNEWENUMERATIONNAME convert a string to an enumeration-name type

3.2.58 F'He DDLNDESB.ADA

-- GETNEWDESCRIPTORROUTINES create and initialize various elements of the

-- data structures in which the ddl reader will store data

-- GETNEWYETTODODESCRIPTOR for the chain of schema units not yet complete

-- GETNEWSCHEMAUNITDESCRIPTOR for descriptions of a schema unit

-- GETNEWWITHEDUNITDESCRIPTOR for descriptions of the library units withed
-- by a schema unit

-- GETNEWUSEDPACKAGEDESCRIPTOR for description of a package withed by
-- a schema unit

-- GETNEWDECLAREDPACKAGEDESCRIPTOR describes a package declaration within
-- a schema unit

-- GETNEWIDENTIFIERDESCRIPTOR describes an identifier

File DDLNDESB.ADA 56

UNCLASSIFIED

-- GETNEWFULLNAMEDESCRIPTOR describes the fully qualified name of an
-- identifier

-- GETNEWRECORDDESCRIPTOR describes a type declaration for a record
-- (database table)

-- GETNEWENUMERATIONDESCRIPTOR description for enumeration type declaration

-- GETNEWINTEGERDESCRIPTOR description for an integer type declaration

-- GET_NEWFLOAT_DESCRIPTOR description for a float type declaration

-- GETNEWSTRINGDESCRIPTOR describtion for a string type declaration

-- GETNEWTYPEDESCRIPTOR description for a record, enumeration, integer,

-- float or string type declaration

-- GETNEWLITERALDESCRIPTOR description of an enumeration literal within
-- the enumeration declaration description

-- GETNEWENUMLITDESCRIPTOR description of an enumeration literal within
-- the chain of literals

57 File DDLNDESB.ADA

UNCLASSIFIED

-- GETNEWFULLENUMLITDESCRIPTOR description of an enumeration literal within
-- the chain of literals

-- GETNEWENUMLITNAME convert a string to an enumlitname type

-- GETNEWAUTHIDENTNAME convert a string to an auth ident name type

-- GETNEWLIBRARYUNITNAME convert a string to a libraryunit_name type

-- GETNEWPACKAGENAME convert a string to a packagename type

-- GETNEWRECORDNAME convert a string to a record-name type

-- GETNEWTYPENAME convert a string to a type name type

-- GETNEWENUMERATIONNAME convert a string to an enumeration-name type

3.2.59 File DDLSDESS.ADA

-- SEARCHDESCRIPTORROUTINES page thru the data structures and return
-- pointers to or information about various descriptors

-- FINDNEXTYETTODODESCRIPTOR return a pointer to the next schema unit
-- which we should continue to process

-- FINDSCHEMAUNITDESCRIPTOR given the name of a schema unit, return a pointer

File DDLSDESS.ADA 58

UNCLASSIFIED

to its descriptor if processing has begun on it

-- DUPLICATEWITH given the current schema we're processing and the schema of
-- the library unit we're thinking about withing, tell us if we've withed
-- this one from this schema before

-- SEARCHWITHSTOFIND_AUSE given a schema-unitdescriptor and a used
-- package name, return true if that package name is that of a withed schema,
-- false if it's not

-- DUPLICATEUSE given the current schema we're processing and the full name
-- of a used package tell us if we've used this one from this schema before

-- GETPACKAGECOUNT count the number of packages already declared by this
-- schema unit and the number not ended yet

-- SCHEMAAUTHORIZATIONMATCHESAUTHORIZATIONPACKAGE see if this
-- authorization identifier has been declared in an authorization package
-- withed by the current schema

-- SETUPOURPACKAGENAME set up in ourpackagename the package name we're
-- in right now

3.2.60 File DDLSDESB.ADA

-- SEARCHDESCRIPTORROUTINES page thru the data structures and return
-- pointers to or information about various descriptors

-- FINDNEXTYETTODODESCRIPTOR return a pointer to the next schema unit
-- which we should continue to process

-- return a schema unit descriptor of the next one to do
-- if LASTYET TO DO is null we return null and that means every thing's
-- been done
-- otherwise LASTYET TO DO becomes the one we're going to do and
-- LAST YET TO DO is reset with PREVIOUS YET TO DO

and PREVIOUSYETTODO's NEXT pointer is nullified

-- FINDSCHEMAUNITDESCRIPTOR given the name of a schema unit, return a pointer
-- *o its descriptor if processing has begun on it

-- return pointer to schema unit with given library unit name, if none then

59 File DDLSDESB.ADA

UNCLASSIFIED

-- return null

-- it will only been found if it has been processed or partially processed

-- DUPLICATE WITH given the current schema we're processing and the schema of
-- the library unit we're thinking about withing, tell us if we've withed
-- this one from this schema before

-- SEARCHWITHSTOFINDAUSE given a schema-unitdescriptor and a used
-- package name, return true if that package name is that of a withed schema,
-- false if it's not

-- this is for the case of use clause in the context where it's name must
-- match exactly that of a withed unit

-- DUPLICATE USE given the current schema we're processing and the full name
-- of a used package tell us if we've used this one from this schema before

-- GETPACKAGECOUNT count the number of packages already declared by this
-- schema unit and the number not ended yet '

-- SCHEMA_AUTHORIZATION MATCHESAUTHORIZATIONPACKAGE see if this
-- authorization identifier has been declared in an authorization package
-- withed by the current schema

-- SETUPOUR_PACKAGENAME set up in ourpackage name the package name we're
-- in right now

3.2.61 File DDLSHOWS.ADA

-- SHOW_ROUTINES print the information collected in the data structures by
-- the ddl reader

-- SHOW_DATA display the schema units

File DDLSHOWS.ADA 60

UNCLASSIFIED

-- SHOWSCHEMAUNITS display the schema units which have been processed

-- SHOWIDENTIFIERS display the identifiers which have been processed

-- SHOWRECORD display the information that has been collected about record
-- declaration (database table)

-- SHOWENUMERATION display the information collected about an enumeration
-- declaration

-- SHOWINTEGER display the information collected about an integer declaration

-- SHOWFLOAT display the information collected about a float declaration

-- SHOWSTRING display the information collected about a string declaration

-- SHOWPOINTERS display the values of the pointers used by the ddl reader

-- SHOWENUMS display the enumeration literal chain

3.2.62 File DDLSHOWB.ADA

-- SHOWROUTINES print che information collected in the data structures by
-- the ddl reader

-- SHOWDATA display the schema units

-- SHOWSCHEMAUNITS display the schema units which have been processed

-- SHOWIDENTIFIERS display the identifiers which have been processed

-- SHOWRECORD display the information that has been collected about record
-- declaration (database table)

-- SHOWENUMERATION display the information collected about an enumeration
-- declaration

61 File DDLSaOWB.ADA

UNCLASSIFIED

-- SHOW_INTEGER display the information collected about an integer declaration

-- SHOW_FLOAT display the information collected about a float declaration

SHOWSTRING display the information collected about a string declaration

SHOWPOINTERS display the values of the pointers used by the ddl reader

-- SHOWENUMS display the enumeration literal chain

3.2.63 File DDLERRS.ADA

-- ERRORROUTINES handel an unknown error

-- PROCESSERROR print a message about an error unknown to the ddl reader

3.2.6- File DDLERRB.ADA

-- ERRORROUTINES handel an unknown error

-- PROCESSERROR print a message about an error unknown to the ddl reader

3.2.65 File DDLSUBIS.ADA

SUBROUTINES_1 ROUTINES contain some of the subroutines used by the ddl reader

-SPLITPACKAGENAME split a possibly qualified package name into an inner

File DI)LSUBIS.ADA 62

UNCLASSIFIED

-- package name and an outter package

-- FINDENDOFSTATEMENT advance pointers to the end of the current statement

-- GOTENDOFSTATEMENT determine if we're at the end of the current statement

-- GETCONSTANT does the current token match this constant

-- GETCONSTANTMAYBE if the current token matches this constant advance
-- pointers past this tokan

-- ADJUSTUSERSCHEMA manipulate the schema name to the format we want

-- CHARACTERSTRINGSMATCH if the two strings match regardless of case
-- return true

3.2.66 File DDLSUB1B.ADA

-- SUBROUTINES_1_ROUTINES contain some of the subroutines used by the ddl reader

-- SPLITPACKAGENAME split a possibly qualified package name into an inner

-- package name and an outter package

-- given inner package which may be two packages (inner.outter)
-- split them into two packages, if only one return as outter,
-- unless it's ADASQL, then it's inner

-- FINDENDOFSTATEMENT advance pointers to the end of the current statement

-- advance pointers to the semicolon at the end of the current statement
-- if we're already at the end just return, if we have to read further into
-- the line read into the current string so on output it will contain
-- a semicolon

-- GOTENDOFSTATEMENT determine if we're at the end of the current statement

-- check to see if we're currently pointing at the ; which is
-- the end of the line

63 File DDLSUBIB.ADA

UNCLASSIFIED

-- GETCONSTANT does the current token match this constant

-- if the string in temp string matches the asked for constant and update is
-- true then read the next token and return valid as it was on input,
-- if string doesn't match constant return valid = false

-- GETCONSTANTMAYBE if the current token matches this constant advance
-- pointers past this tokan

-- if the string in temp string matches the asked for constant and update is
-- true then read the next token and return valid as it was on input
-- and return got as true,
-- if not return valid as entered and got as false

-- ADJUSTUSER SCHEMA manipulate the schema name to the format we want

-- adjust the inputed user name to upper case, lower case or leave it as it
-- if the name input by the user has an ADA or .A, or whatever is the
-- extention for this system as defined in ddliodefs, extention, remove it

-- CHARACTERSTRINGSMATCH if the two strings match regardless of case
-- return true

3.2.67 File DDLSUB2S.ADA

-- SUBROUTINES_2_ROUTINES contain some of the subroutines used by the ddl reader

-- SPLITIDENT_2_PACKS split up a string containing an identifier and
-- possibly up to two qualifying packages

-- FINDIDENTYFIERDESCRIPTOR given an identifier return it's
-- identifierdescriptor

-- FINDFULLNAMECOMPONENTDESCRIPTOR given an identifier's
-- identifierdescriptor and a full package name and a table name return the
-- fullnamedescriptor of a component or null if it's not found

-- FINDFULLNAMEDESCRIPTOR given an identifier's identifierdescriptor
-- and a full package name return the fullnamedescriptor or null if

File DDLSUB2S.ADA 64

i mammm m I m numn | lnlt

UNCLASSIFIED

-- it's not found

-- GETREADYTOFINDFULLNAMEDESCRIPTOR given the identifier descriptor
-- and potential package names look for a full name descriptor

-- FINDFULLNAMEDESCRIPTOR VISIBLE given the schema unit and identifier's
-- descriptor find the full name descriptor

-- BASETYPEINTEGER find out if the base type of the identifier is an integer

-- LOCATEPREVIOUSIDENTIFIER given an identifier, possibly qualified return
-- it's identifier descriptor and it's full name descriptor

-- STRINGTOINT convert a character representation of a number to an integer

-- BASETYPECHAR given a fullname descriptor find out if it's base type
-- is character

-- ISIDENTIFIERNULLORUNIQUE is the identifier of a _not-null or
-- _notnull unique type

-- INADASQLPACKAGE are we currently within a sub package named ADASQL

-- ADDNEWIDENTANDORFULLNAMEDESCRIPTORS add identifier and full name
-- descriptors to the chains for this identifier name

-- ADDNEWIDENTANDORFULLNAMECOMPONENTDESCRIPTORS add an identifier and
-- full name descriptor for the component (database column) name

3.2.68 File DDLSUB2B.ADA

-- SUBROUTINES_2_ROUTINES contain some of the subroutines used by the ddl reader

-- SPLITIDENT_2_PACKS split up a string containing an identifier and
-- possibly up to two qualifying packages

-- FINDIDENTIFIERDESCRIPTOR given an identifier return it's
-- identifier-descriptor

-- FINDFULLNAMECOMPONENTDESCRIPTOR given an identifier's

65 File DDLSUB2B.ADA

UNCLASSIFIED

-- identifierdescriptor and a full package name and a table name return the
-- fullnamedescriptor of a component or null if it's not found

-- FINDFULLNAMEDESCRIPTOR given an identifier's identifier-descriptor
-- and a full package name return the fullnamedescriptor or null if
-- it's not found

-- GETREADYTOFINDFULLNAMEDESCRIPTOR given the identifier descriptor
-- and potential package names look for a full name descriptor

-- given the identifier descriptor and possible known outter and inner
-- packages and possible trying outter and inner packages set up to create
-- the full package name to look for in the full name descriptors.
-- there must be at least one outter and one inner package. the known ones
-- must be used if available and if there are corresponding try ones they
-- better match.

-- FINDFULLNAMEDESCRIPTORVISIBLE given the schema unit and identifier's
-- descriptor find the full name descriptor

-- given current schema, identifier's descriptor and either no package names,
-- both the inner and outter package name or only the inner package name
-- of only the outter if its one of the special (database, standard,
-- cursor-definition) find the full name descriptor that would be
-- visible from current schema. First choice is current package. If no match
-- then next choice is from packages currently used (it's already been
-- established at this point that we're two levels deep into packages unless
-- we're doing one of the special ones). If it isn't found yet then we have
-- to search the withed list, but in that case the full package name better
-- be described.

-- BASE_TiPEINTEGER find out if the base type of the identifier is an integer

-- LOCATEPREVIOUSIDENTIFIER given an identifier, possibly qualified return
-- it's identifier descriptor and it's full name descriptor

-- error 0 = ok
-- error 1 = it is not a valid qualified identifier
-- error 2 = does not split correctly into 2 packages and 1 identifier

File DDLSUB2B.ADA 66

UNCLASSIFIED

-- maybe invalid nesting of packages
-- error 3 = cannot find identifier by this name
-- error 4 = canot identify unique full name identifier of this name

-- STRINGTOINT convert a character representation of a number to an integer

-- BASETYPECHAR given a fullname descriptor find out if it's base type
-- is character

-- ISIDENTIFIERNULLOR UNIQUE is the identifier of a _not-null or

-- not null unique type

-- INADASQL_PACKAGE are we currently within a sub package named ADASQL

-- we also return true if the current package is one of the standard ones

-- ADDNEWIDENTANDORFULLNAMEDESCRIPTORS add identifier and full name
-- descriptors to the chains for this identifier name

-- identifier descriptor may already exist, but if not create one
-- full name descriptor will not already exist, create it

-- ADDNEWIDENTAND OR FULLNAMECOMPONENTDESCRIPTORS add an identifier and
-- full name descriptor for the component (database column) name

-- identifier descriptor may already exist, but if not create one
-- full name descriptor will not already exist, create it

3.2.69 File DDLSUB3S.ADA

-- SUBROUTINES_3_ROUTINES contain some of the subroutines used by the ddl reader

-- BREAKDOWNSUBTYPEINDICATOR break a subtype indicator down into small
-- usable parts

67 File DDLSUB3S.ADA

UNCLASSIFIED

-- SUBTYPEINDICATORISENUMERATION validate the subtype indicator from
-- an enumeration declaration

-- LOCATEENUMERATIONLITERAL return the position and descriptor of the
-- given literal if it appears in the given type descriptor

-- SUBTYPEINDICATORISINTEGER validate the subLype indicator from
-- an integer declaration

-- SUBTYPEINDICATORISFLOAT validate the subtype indicator from
-- a floating point declaration

-- SUBTYPEINDICATORISSTRING validate the subtype indicator from
- a string declaration

-- INSERTSUBTYPEINDICATORINFORMATION into the descriptor

3.2.70 File DDLSUB3B.ADA

-- SUBROUTINES_3_ROUTINES contain some of the subroutines used by the ddl reader

-- BREAKDOWNSUBTYPEINDICATOR break a subtype indicator down into small
-- usable parts

- on entry temp_string should contain the previous identifier of the
-- subtype indicator. If that type is:
-- unconstrained array - may or may not specify a range and we will return
-- gotarrayindex, arrayindex_lo and arrayindexhi

-- constrained array - must specify nothing else
-- integer - may specify a range, return gotintegerrange, integerragnelo
-- and integerrange hi
-- real - may specify a digits and or a range, return gotfloatdigits,
-- float_digits, got_float range, floatrangelo and floatrange hi
-- enumeration - may specify a range, return got enum range, enumrange lo,
-- and enum rangehi
-- record - invalid

-- errors returned:
-- 1 the previous identifier was invalid
-- 2 the previous identifier was a component
-- 3 the previous identifier was a record
-- 4 for enumeration range not found but something bogus there
-- 5 for enumeration range literals are incorrect
-- 6 for integer range not found but something bogus there

File DDLSUB3B.ADA 68

UNCLASSIFIED

-- 7 for integer range integersare incorrect
-- 8 for float expecting digits or range or ; found none
-- 9 for float digits integers are incorrect
-- 10 for float range integers are incorrect
-- 11 for string range not found but something bogus there
-- 12 for string range is incorrect
-- 13 for string range was given for a constrained array
-- 14 no longer used - for string range wp.s not given for an
-- unconstrained array

-- SUBTYPEINDICATORISENUMERATION validate the subtype indicator from
-- an enumeration declaration

-- on entry tempstring should contain either ; or RANGE
-- if ; then just return valid=true
-- if range then it must be followed by two enumeration literal range
-- specifiers. They must be located in the parez. (typedes) and ordered
-- correctly, if so return them, if not error

-- errors returned:
-- 4 range not found but something bogus there
-- 5 range literals are incorrect

-- first we either have ; or RANGE

-- now find first range literal

-- now find .. between literals

-- now find range literal 2

-- now we should be at the end of the statement

-- now find out if the literals belong to the parents

-- LOCATEENUMERATIONLITERAL return the position and descriptor of the
-- given literal if it appears in the given type descriptor

-- SUBTYPEINDIC\ATOR IS INTEGER validate the subtype indicator from
-- an integef declaration

69 File DDLSUB3B.ADA

UNCLASSIFIED

-- on entry temp string should contain either ; or RANGE
-- if ; then just return valid-true
-- if range then it must be followed by two integer range
-- specifiers. They must fuall within the range of the parent (type des)
-- and be ordered correctly, if so return them, if not error

-- errors returned:
- 6 range not found but something bogus there

-- 7 range integers are incorrect

-- first we either have ; or RANGE

now find lo range

-- now find .. between integers

-- now find hi range

-- now we should be at the end of the statement

-- now find out if the range is valid with the parents

-- SUBTYPEINDICATORISFLOAT validate the subtype indicator from
-- a floating point declaration

-- on entry temp string should contain either ; or DIGITS or RANGE
if ; then just return valid=true
if digits then it must be followed by an integer

-- if range then it must be followed by two floats
-- They must fall within the digits and range of the parent (type-des)

and be ordered correctly, if so return them, if not error

-- errors returned:
-- 8 expecting digits or range or ; found none
-- 9 digits is incorrect
-- 10 range is incorrect

-- first we either have ; or DIGITS or RANGE

-- process DIGITS here

-- process range here

-- now find lo range

now find between floats

File DDLSUB3B.ADA 70

UNCLASSIFIED

-- now find hi range

-- now find out if the range is valid with the parents

-- now we should be at the end of the statement

-- SUBTYPEINDICATORISSTRING validate the subtype indicator from
-- a string declaration

-- on entry tempstring should contain either ; or
-- if ; then just return valid=true
-- if (then it must be followed by a range and
-- Range must fall within the range of the parent (type-des)
-- and be ordered correctly, if so return them, if not error

-- errors returned:
-- 11 range not found but something bogus there
-- 12 range is incorrect
-- 13 range was given for a constrained array
-- 14 no longer used - range was not given for an unconstrained array

-- first we either have ; or (
-- if constrained parent and range supplied = error
-- if unconstrained parent may or may not have range

-- now find lo range

-- now find .. between integers

-- now find hi range

-- now we should be at the end of the statement find);

-- now find out if the range is valid with the parents

-- INSERTSUBTYPEINDICATORINFORMATION into the descriptor

3.2.71 File DDLSUB4S.ADA

-- SUBROUTINES_4_ROUTINES contain some of the subroutines used by the ddl reader

71 File DDLSUB4S.ADA

UNCLASSIFIED

-- WITHUSESCHEMADEFINITION tell me if we've withed and used the package
-- "schema definitions" and if any other package were withed and/or used,
-- not counting "standard"

-- ISAUTHIDUNIQUE return true if the authorization identifier is uniqye
-- and false if it's not.

-- VALIDATE NULLUNIQUECONSTRAINTS make sure that a -not-null or
-- notnull unique identifier is a subtype of another identifier

-- NULLUNIQUENAMESTHESAME if we lop off the suffixes are the identifiers
-- the same

-- SETUPWITHUSESTANDARDFORSCHEMA all schema units are set up to with and
-- use "standard" as a default

-- ADDNEWENUMLIT add a new enumeration literal to the literal chain and to
-- the full name literal chain

-- FINDEXISTINGENUMLIT given an enumeration literal return it's
-- enumeration literal descriptor

-- ADDNEWENUMLITFORDERIVED add to the literal chains for a type derived
-- from an enumeration type

3.2.72 Rie DDLSUB4B.ADA

-- SUBROUTINES_4_ROUTINES contain some of the subroutines used by the ddl reader

-- WITHUSESCHEMADEFINITION tell me if we've withed and used the package
"schema definitions" and if any other package were withed and/or used,

-- not counting "standard"

-- ISAUTHIDUNIQUE return true if the authorization identifier is uniqye
-- and false if it's not.

-- Also print error message if necessary

-- VALIDATENULL__UNIQUECONSTRAINTS make sure that a _notnull or
-- not null unique identifier is a subtype of another identifier

File DDLSUB4B.ADA 72

UNCLASSIFIED

-- given a subtype descriptor, whose NOTNULL and NOT_UNIQUE variables reflect
-- the parents, determine if the subtype is more constrained than the parent.
-- also if constraints are involved then the basic name, without suffixes,
-- must be the same.

-- NULLUNIQUENAMESTHESAME if we lop off the suffixes are the identifiers
-- the same

-- SET UP WITHUSESTANDARDFORSCHEMA all schema units are set up to with and
-- use "standard" as a default

-- if this schema is "STANDARD" then don't do anything
-- if we haven't already withed "STANDARD" then with it
-- if we haven't already used "STANDARD"

-- ADDNEWENUMLIT add a new enumeration literal to the literal chain and to
-- the full name literal chain

-- the enumeration literal descriptor may already exist, if not create one
-- the full enumeration literal descriptor will not already exist, create it

-- FINDEXISTINGENUMLIT given an enumeration literal return it's
-- enumeration literal descriptor

-- ADDNEWENUMLITFORDERIVED add to the literal chains for a type derived
-- from an enumeration type

3.2.73 File CHARTOS.ADA

-- chartos.ada - CONVERTCHARACTERTOCOMPONENT's post process data structures
-- and routines for generating the necessary routines

-- Ada/SQL permits strings to be arrays with components of any type derived
-- from CHARACTER. When processing data returned from the database, Ada/SQL
-- stores strings as STRINGs. For passing it back to an application program,
-- this returned data is converted to its program array type by an INTO

73 File CHARTOS.ADA

UNCLASSIFIED

-- procedure instantiated from a generic string INTO procedure. There is one
-- string INTO procedure instantiated for each program string type that may be
-- returned to the application program.

-- The generic INTO procedure converts the returned database STRING into the
-- program array type character by character, explicitly converting each
-- program component to type CHARACTEh. (This conversion is unnecessary for
-- program array types of CHARACTER, but I figured that the INTO procedure
-- would probably have to be looking at each character of the result anyway,
-- in order to decode where a particular column result stops and the next one
-- starts, so why not let it call the conversion routine in all instances? If
-- the conversion routine is INLINEd, then it doesn't generate any code
-- anywa. I did not bother with pragma INLINE in the example, but it could
-- be easily added since the entire generated package is now [will soon be]
-- magically produced by computer.)

-- This explicit conversion is performed by a function called CONVERT_-
-- CHARACTER TO COMPONENT, which is a generic formal subprogram to the generic
-- INTO procedure. The application scanner generates the required functions
-- named CONVERTCHARACTER TO COMPONENT, so that each INTO procedure
-- instantiation uses the correct component conversion function by default (no
-- actual parameter need by supplied to the instantiation for the CONVERT_-
-- CHARACTERTOCOMPONENT generic formal subprogram.)

-- There is one CONVERTCHARACTERTOCOMPONENT function generated for each
-- type, including CHARACTER, used as the component type of a string program

- type that is retrieved from the database. Since the functions rely on the
fact that the component type is derived from CHARACTER, they cannot be

-- merely instantiated from generics, but must be completely written. In
what follows, typename represents the fully qualified name of a component

-- type. If the type is defined in a DDL package, type_name will be of the
-- form library unit.ADA_SQL.typesimplename. If the type is defined in a
-- predefined package, type name will be of the form libraryunit.type_-
-- simplename. This includes STANDARD.CHARACTER -- the hand-generated
-- package for the runtime example used a type_name of CHARACTER, but
-- STANDARD.CHARACTER is easier to program (no need to check for special
-- case), and may be used.

-- The specification of each CONVERTCHARACTERTOCOMPONENT function is:

-- function CONVERTCHARACTERTOCOMPONENT (C : CHARACTER)
return typename;

-- The corresponding body is:

-- function CONVERTCHARACTERTOCOMPONENT (C : CHARACTER)
-- return typename is
-- bcgin

return typename (C);

File CHARTOS.ADA 74

UNCLASSIFIED

-- end CONVERTCHARACTERTOCOMPONENT;

-- Where typename was CHARACTER, the hand-generated package for the runtime
-- example did not apply the conversion function in the body, saying 2ust
-- "return C;", There is certainly no harm in applying a type conversion
-- function to STANDARD.CHARACTER, and this may be done, rather than program
-- for the special case.

-- The only information required to produce each CONVERTCHARACTERTO -

-- COMPONENT function is the fully qualified name of the type involved. This
-- information is found in the ACCESSFULLNAMEDESCRIPTOR for the type, and
-- it is a pointer to that data structure that is passed to CONVERT_-
--*CHARACTER TO COMPONENT.REQUIREDFOR to indicate that a component conversion
-- function is to be generated for the indicated type. CONVERTCHARACTER TO -
-- COMPONENT.REQUIREDFOR is called whenever it is determined that a component
-- conversion function is required; it automatically avoids generating
-- duplicate functions.

-- There are two post processing steps for the CONVERTCHARACTER TO COMPONENT
-- functions: producing the pecifications and producing the bodies. These
-- two steps are performed by CONVERT_CHARACTERTOCOMPONENT.SPECPOST_-
-- PROCESSING and CONVERTCHARACTERTOLOMPONENT.BODYPOSTPROCESSING.

3.2.74 File CHARTOB.ADA

-- chartob.ada - CONVERT_CHARACTERTOCOMPONENT's post process data structures
-- and routines for generating the necessary routines

-- data structures to form a chain of array component types that need routines
-- generated to convert characters to the component types

-- comparison of DDLDEFINITIONS.ASSESSFULLNAMEDESCRIPTOR on left and right

-- avoid generating duplicate functions

-- Order list by fully-qualified component type name.

-- produce the specification for the convert character to component routincs

-- produce the body for the convert character to component routines

75 File COLUMNS.ADA

UNCLASSIFIED

3.2.75 File COLUMNS.ADA

-- COLUMN_LIST data structures and for making a chain of database columns

-- data structure for making a chain of the database columns

-- add a new column to the chain of database columns

3.2.76 File COLUMNB.ADAr
-- COLUMNLIST data structures and for making a chain of database columns

-- add a new column to the chain of database columns

3.2.77 File COMPTOS.ADA

-- comptos.ada - CONVERTCOMPONENTTOCHARACTER's post process data structures
-- and routines for generating the necessary routines

Ada/SQL permits strings to be arrays with components of any type derived
-- from CHARACTER. In its internal data structures, Ada/SQL stores strings s
-- STRINGs. An array program value is converted to its internal
-- representation by a function instantiated from a generic string conversion

function. There is one string conversion function instantiated for each
-- program string type that must be converted to internal representation.

-- If the component type of the program string type is not CHARACTER, then the
string conversion function for that type must convert the program value

-- character by character, explicitly converting each program component to
type CHARACTER. This explicit conversion is performed by a function called

-- CONVERTCOMPONENTTOCHARACTER, which is a generic formal subprogram to
-- the generic string conversion function, The application scanner generates

the required subprograms named CONVERTCOMPONENT TO CHARACTER, so thot each
string conversion function instantiation uses the correct component

-- conversion function-by default (no actual parameter-need be-supplied to
the in:tantiation for the CONVERTCOMPONENTTOCHARACTER generic formal

- subprogram.)

- There is one CONVERTCOMPONENTTOCHARACTER function generated for each
type, other than CHARACTER, used as the component type of a string program
'zype that must be converted to internal representation. Since thie

functions rely on the fact that the component type is derived from

Vile ('OM1YI'()S.AI)A 76

UNCLASSIFIED

-- CHARACTER, they cannot be merely instantiated from generics, but must be
-- completely written. In what follows, typename represents the fully
-- qualified name of a component type. If the type is defined in a DDL
-- package, typename will be of the form libraryunit.ADA_SQL.typesimple-
-- name. If the type is defined in a predefined package, typename will be
-- of the form libraryunit.typesimplename.

-- The specification of each CONVERTCOMPONENTTOCHARACTER function is:

-- function CONVERTCOMPONENTTOCHARACTER (C: typename)
-- return CHARACTER;

-- The corresponding body is:

-- function CONVERTCOMPONENTTOCHARACTER (C: typename)
-- return CHARACTER is
-- begin
-- return CHARACTER (C);

-- end CONVERTCOMPONENTTOCHARACTER;

-- The only information required to produce each CONVERU._COMPONENTTO_-

-- CHARACTER function is the fully qualified name of the type involved. This
information is found in the ACCESSFULLNAMEDESCRIPTOR for the type, and

-- it is a pointer to that data structure that is passed to CONVERT -

-- COMPONENTTOCHARACTER.REQUIREDFOR to indicate that a component conversion
-- function is to be generated for the indicated type. CONVERTCOMPONENTTO -

-- CHARACTER.REQUIREDFOR is called whenever it is determined that a component
-- conversion function is required; it automatically avoids generating
-- duplicate functions.

-- There are two post processing steps for the CONVERTCOMPONENTTOCHARACTER
-- functions: producing the specifications and producing the bodies. These

S-- two steps are performed by CONVERTCOMPONENTTOCHARACTER.SPECPOST_-
-- PROCESSING and CONVERTCOMPONENTTOCHARACTER.BODYPOSTPROCESSING.

3.2.78 File COMPTOB.ADA

-- comptob.ada - CONVERTCOMPONENTTOCHARACTER's post process data structures
-- and routines for generating the necessary routines

-- data structures to form a chain of array component types that need routines

S-- generated to convert component types to characters

-- comparison of DDLDEFINITIONS.ASSESSFULLNAMEDESCRIPTOR on left and right

-- avoid generating duplicate functions

77 File COMPTOB.ADA

UNCLASSIFIED

-- Order list by fully-qualified component type name.

-- produce the specification for the convert componen- to character routines

File COMPTOB.ADA 78

Distribution List for IDA Memorandum Report M-461

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Mr. James Robinette 2 copies
WIS JPMO/DXP
Room 51119
Washington, D.C. 20330-6600

Other

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

Mr. Fred Friedman 1 copy
P.O. Box 576
Annandale, VA 22003

Mr. Kevin Heatwole 1 copy
5124 Harford Lane
Burke, VA 22015

Ms. Kerry Hilliard 1 copy
7321 Franklin Road
Annandale, VA 22003

CSED Review Panel

Dr. Dan Alpert, Director 1 copy
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm 1 copy
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

NAME AND ADDRESS NUMBER OF COPIES

Dr. Larry E. Druffel 1 copy
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15231-3890

Dr. C.E. Hutchinson, Dean 1 copy
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano 1 copy
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1 copy
Mainstay
302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge 1 copy
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ 1 copy
Mr. Philip Major, HQ 1 copy
Dr. Robert E. Roberts, HQ 1 copy
Dr. Jack Kramer, CSED 1 copy
Dr. Robert I. Winner, CSED I copy
Dr. John Salasin, CSED 1 copy
Mr. Bill R. Brykczynski, CSED 1 copy
Ms. Katydean Price, CSED 2 copies
IDA Control & Distribution Vault 3 copies

