P

A i b UNCLAS&'F'EU Copy 12 of 29 copies
I

€

IDA MEMORANDUM REPORT M-461

AN Ada/SQL IMPLEMENTATION KIT

AD-A2G0 452

Bill R. Brykczynski
. Kerry Hilliard

April 1988

Prepared for
WIS Joint Program Management Office

——— el
DISTRIpgv o 57 50
Rpprovag o YilL o S
\ Digwidy eing Gl

P 88 10 3 047

I A INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311

UNCLASSIFIED IDA Log No. HQ 88-033318

ey

DEFINITIONS
IDA publishes the following documents to report the resuits of its work.

Reports

Reports are the mest autheritative snd most carefully considared products iDA publishes.
They normally smbody resuits of major projects which (a) have a direct bearing on detisions
affecting major programs, or (b) address Issues of significant concern to the Executive
Branch, the Congress and/or Ihs public, or (c) address lssues that have signiticant economic
implications. IDA Reports are reviewsd by owtside panels of experis to ensure their high
quallty and relsvancs to the problems siudied, and they are rsieased by the President of IDA.

Papers

Papers normaily sddrase reistively restrictsd tachmica! or potley tssues. They conmnunicais
the resuits of special analyses, lnterim reports or phases of a task, ad hoc or quick reaction
work. Papers are reviewed (o onsurs that they mest standards simiiar to those expscied of
refersnd papers in professional journals.

Memorandum Reports

IDA Memorandum Reports are used for the convenience of the sponsors or the analysts to
record substantive work dons in quick reaction studies and major interactive technical support
sctivities; to make avalisble prsliminary and tentative resuits of analysss or of working
prowp and pane} activities; to forward information that is essentially unanatyzed and uneval-
uated; or to make a record of confersnces, meetings, or briefings, or of data deveioped in
the course of an investigation. Review of Memorandum Reports is suited to their content
and intended use.

The resuits of IDA work are aiso conveysd by brisfings and informal memoranda to spansors
and others designated by the sponsors, wher appropriate.

The work reporied In this documsnt was conducted under contract MDA 903 84 C 0031 for
the Department of Defenss. The publication of this (DA document does not indicate endorse-
ment by the Department of Defense, nor should the contents be construed as reflecting the
official position of that agency.

This Memorandum Report Is published in order to make available the material it contains
for the wse and convenisnce of Interested parties. The matsrisf has not necessarily been
completely evaluated and anatyzed, nor subjected to IDA review.

Approved lor public release/unlimited distribution; unclassified.

——

T e — — —_—— -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
, Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Public release/distribution unlimited.

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) § MONITORING ORGANIZATION REPORT NUMBER(S)
IDA Memorandum Report M-461
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION
Institute for Defense Analyses IDA OUSDA, DIMO
6¢ ADDRESS (City, State, and ZIp Code) Tb ADDRESS (Clty, State, and Zip Code)
1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311
8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER|
ORGANIZATION (if applicable)
WIS JPMO I WIPMO/DXP MDA 903 84 C 0031
i 8c ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS
g Room 5B19, The Pentagon PROGRAM | PROJECT| TASK WORK UNIT
Washingt C. 20 : ELEMENT NOJ NO. NO. ACCESSION NO.
y hington, D.C. 20330-6600 T-W5-206

11 TITLE (Include Security Classification)
An Ada/SQL Implementation Kit (U)
12 PERSONAL AUTHOR(S)
Bill R. Brykczynski, Kerry Hilliard
] 13a TYPE OF REPORT |13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) | 15 PAGE COUNT
] Final ROM 10 1988 April 88

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
4 FIELD GROUP | SUB-GROUP

Ada programming language; Structured Query Language (SQL); Ada/SQL; WIS; interfaces;
software; implementation; application scanner; application generator; Oracle database

| management system; software tools.
19 ABSTRACT (Continue on reverse if necessary and ldentify by block number)

& The purpose of this IDA Memorandum Report is to describe additional documentation for the application scanner tool described in
4 IDA Memorandum Report M-460, An Ada/SQL Application Scanner. In M-461, two types of information are presented: (1) the
4 identification and description of the particular software of the application scanner which may be modified if rehosted to a different
environment and (2) additional documentation describing lower-level modules used to implement a major tool of the Ada/SQL system.
Section 1 contains introductory and background material. Section 2 is a description of the application scanner system dependencies,
with discussions of the standards directory and files, file extensions, naming conventions of files, tables, and columns and the debug
options. Section 3 contains the two types of documentation for the application scanner, with an overview of each tile and then the

b actual file documentation.
]
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
! 8] UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [J DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area code) | 22¢ OFFICE SYMBOL
Bill R. Brykczynski (703) 824-5515 IDA/CSED
1 DD FORM 1473, 84 22AT 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

UNCLASSIFIED

IDA MEMORANDUM REPORT M-461

AN Ada/SQL IMPLEMENTATION KIT

Bill R. Brykczynski
Kerry Hilliard

April 1988

PoN
IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031

Task T-W5-206 o ;
Copy }l
ém”scuu ’

4

UNCLASSIFIED

A, P r

A A g - hat rt

-

1.INTRODUCTION + « ¢« « « o « &
11SCOPE ¢ o v v ¢« v o o o o &
12BACKGROUND « ¢« « « + - « .
13REFERENCES « . + « .« .

2. APPLICATION SCANNER SYSTEM DEPENDENCIES

2.1 Standards DirectoryandFiles
22 FileExtensions . . . +« .+ + + + « o « o o o
23 CaseofFileNames . . . « « ¢« « + « « &

2.4 Caseof Table and ColumtnNames
25DebugOption + + + « « . 4 .

3. Application Scanner Documentation

3.1 Overall Description « . . .

3.2 FileDocumentation « « + « « « . .
3.2.1 FileDDLDRIVS.ADA
3.2.2 FileDDLDRIVB.ADA
3.2.3 FileDATABASE.ADA
3.2.4 FileDDLDEFS.ADA
3.2.5 FileDDLEXTRS.ADA
3.2.6 File DDLIODEFS.ADA
3.2.7 FileDDLIODEFB.ADA
3.2.8 FileDDLWITHS.ADA
329 FileDDLWITHB.ADA
3.2.10 FileDDLUSES.ADA+ . .
3.2.11 File DDLUSEB.ADA
3.2.12 File DDLVRBLS.ADA
3.2.13 File DDLFUNCS.ADA
3.2.14 File DDLFUNCB.ADA
3.2.15 File DDLAUTHB.ADA
3.2.16 File DDLAUTHS.ADA
3.2.17 File DDLPACKS.ADA
3.2.18 File DDLPACKB.ADA
3.2.19 File DDLENDS.ADA e e e e e e
3.2.20 File DDLENDB.ADA
3.2.21 File DDLTYPES.ADA
3.2.22 FileDDLTYPEB.ADA
3.2.23 File DDLSUBS.ADA
3.2.24 File DDLSUBB.ADA
3.2.25 FileDDLRECS.ADA
32.26 File DDLRECB.ADA
3227 FileDDLVARS.ADA
3228 FileDDLVARB.ADA
3.2.29 File DDLINTS.ADA
3.2.30 FiieDDLINTB.ADA
3.2.31 File DDLFLTS.ADA
3222 File DDLFLTB.ADA
2.2.33 File DDLENUMS.ADA . . .

VWOV & &8800W NP

NN NN RO RO B 1D PO B B DD B 12 o et = bt b e e o b b b e b
RURBRORREBUNERRERNEESE8E8c0860a0oaarbRras

" —

3.2.34 File DDLENUMB.ADA
3.2.35 File DDLARAYS.ADA
3.2.36 File DDLARAYB.ADA
3.2.37 File DDLDERS.ADA .
3.2.38 File DDLDERB.ADA .
3.2.39 File DDLCALLS.ADA
3.2.40 File DDLCALLB.ADA
3.2.41 File DDLMAIN.ADA .
3.2.42 File DDLMAINC.ADA
3.2.43 File DDLSIOS.ADA
3.2.44 File DDLSIOB.ADA
3.2.45 File DDLIOINS.ADA .
3.2.46 File DDLIOINB.ADA
3.2.47 File DDLIOERS.ADA
3.2.48 Fie DDLIOERB.ADA
3.2.49 File DDLADESS.ADA
3.2.50 File DDLADESB.ADA
3.2.51 File DDLKEYS.ADA
3.2.52 File DDLKEYB.ADA .
3.2.53 File DDLLISTS.ADA .
3.2.54 File DDLLISTB.ADA .
3.2.55 File DDLNAMES.ADA
3.2.56 File DDLNAMEB.ADA
3.2.57 File DDLNDESS.ADA
3.2.58 File DDLNDESB.ADA
3.2.59 File DDLSDESS.ADA
3.2.60 File DDLSDESB.ADA
3.2.61 File DDLSHOWS.ADA
3.2.62 File DDLSHOWB.ADA
3.2.63 File DDLERRS.ADA .
3.2.64 File DDLERRB.ADA .
3.2.65 File DDLSUBI1S.ADA
3.2.66 File DDLSUB1B.ADA
3.2.67 File DDLSUB2S.ADA
3.2.68 File DDLSUB2B.ADA
3.2.69 File DDLSUB3S.ADA
3.2.70 File DDLSUB3B.ADA
3.2.71 File DDLSUB4S.ADA
3.2.72 File DDLSUB4B.ADA
3.2.73 File CHARTOS.ADA .
3.2.74 File CHARTOB.ADA
3.2.75 File COLUMNS.ADA
3.2.76 File COLUMNB.ADA
3.2.77 File COMPTOS.ADA .
3.2.78 File COMPTOB.ADA .

.

.

-1 -

28
29
29
32
32
33
33
34
34
34
35
39
40
41
42
43
44
47
47
48
49
50
51
55
56
58
59

61
62
62
62
63
65
67
68
71
72
73
75
76
76
76
77

PREFACE

The purpose of IDA Memorandum Report M-461, An Ada/SQL Implementation Kit, is to
forward data developed in the course of investigation of the problems and requirements for
rehosting an Ada/Structured Query Language (SQL) system.

The importance of this document is based on fulfilling the objective of Task Order T-W5-206,
WIS Applicativn Soilwarc Study, which is to support the idea that “programs using the
Ada/SQL interface will be readily portable to other environments consisting of different
hardware, operating systems, database management systems, etc.”” M-<461 will be used to
demonstrate this capability. As a Memorandum Report, M-461 is directed toward users who are
concerned with how an Ada/SQL system is implemented and operates.

UNCLASSIFIED

1. INTRODUCTION

The purpose of this IDA Memorandum Report M461, An Ada/SQL Implementation Kit, is to
describe additional documentation for the application scanner tool as described in [IDA 88c]. Two
types of information are presented:

o The identification and description of the particular software of the application scanner which may
be modified if rehosted to a different environment.

¢ Additional documentation describing lower-level modules used to implement a major tool of the
Ada/SQL system.

1.1 SCOPE

Section 2 is a description of the application scanner system dependencies, with discussions of the
standards directory and files, file extensions, naming conventions of files, tables, and columns, and
the debug option.

Section 3 contains the two types of documentation for the application scanaer, with an overview of
each file and then actual file documentation. Section 6.1, *“Overall Description,” acts as table of con-
tents for the documentation by listing the file names and a brief description of each one.

1.2 BACKGROUND

The documentation contained in this report should be used in conjunction with several other
reports. A technical description of Ada/SQL, an interface between the Ada programming language
and the database programming language SQL, is contained in [IDA 86] and [IDA 88a). These
memorandum reports describe the various components of an Ada/SQL application, and provide a
formal specification for the Ada/SQL language. Second, [IDA 88b] describes an Ada/SQL imple-
mentation connected to the database management system (DBMS) Oracle®. Finally, [IDA 88c] pro-
vides guidelines for the use of a major tool contained in the Ada/SQL - Oracle implementation. The
documentation of this tool, named the application scanner, is the subject of this report.

The application scanner is a tool which aids in the generation of subprograms necessary for an
Ada/SQL application. It reads the various segments of an Ada/SQL application, determines which
operators and routines are necessary for compilation, and creates a package which the user then
'with’s into his application. The tool should be thought of as an application generator, not a pre-
processor. An application generator typically creates a separate piece of software from some form
of specification (e.g. requirements specifications, design specification, code, etc.), while a pre-
processor transforms one piece of software into another.

The Oracle - Ada/SQL implementation consists of a fairly large amount of Ada software. As with
most software produced under the direction of the WIS Joint Program Management Office, it was
planned to be released into the public domain. With such a large piece of public domain software, it
is anticipated that this implementation will be rehosted from the current Ada environment (DEC
VAX™/VMS, DEC Ada compiler, Oracle DBMS), to different environments. As such, it was
planned to create an implementation kit, which provides two types of information:

ORACLE is a registered trademark of Oracle Corporation.

UNCLASSIFIED

¢ A rehost guide would grovide all known implementation dependencies.

These dependencies consist of code which may have to be changed in cace of a rehost to a
different environment. For example, the application scanner must be able to open and read vari-
ous files associated with an Ada/SQL application. One compiler may require filenames to end
with a *.a’ file extension, while another may require filenames to end with . ADA’.

¢ A more refined level of documentation for the application scanner.

While the scanner is documented well enough for the designers of the tool, the fact that the scanner
would be placed in the public domain demanded a greater amount of source level commenting. As
such, a review was made of all packages for the Oracle - Ada/SQL implementation. Those packages
deemed lacking proper source level documentation for public domain software were then com-
mented.

1.3 REFERENCES

The following references are cited in this document and used to supplement information required to
understand the process of rehosting a major Ada software tool and a more detailed understanding of
how the tool functions.

[IDA 86] Brykczynski, Bill and Fred Friedman. 1986. Preliminary version: Ada/SQL: A standard,
portable Ada-DBMS interface. Alexandria, VA: Institute for Defense Analyses. IDA Paper P-1944.

[IDA 88a] Brykczynski, Bill, and Fred F-iedman. 1988. Ada/SQL binding specifications. Alexan-
dria, VA: Institute for Defense Analyses. IDA Memorandum Report M-362.

(IDA 88b}] Brykczynski, Bill, Fred Friedman, and Kerry Hilliard. 1988. An Oracle-Ada/SQL imple-
meniation. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum Report M-459.

(IDA. 88c] Brykczynski, Bill, and Fred Friedman, Kevin Heatwole, and Kerry Hilliard. 1988, An
Ada/SQL application scanner. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum
Report M460.

VAX is a trademark of Digital Equipment Corporation.

UNCLASSIFIED

2. APPLICATION SCANNER SYSTEM DEPENDENCIES

2.1 Standards Directory and Files

A directory must be created which will be used by the application scanner at execution time. The
directory should contain the three standard Ada modules. The directory and files are defined in the
compilation unit DDL_IO_DEFS_SPEC.ADA as constants and by compilation unit
DDL_IO_DEFS.ADA as functions. The three files needed by the application scanner are
STANDARD.ADA, CURSOR_DEFINITION.ADA, and DATABASE.ADA. The names minus
the extension (which may vary from system to system) are defined by the constants STANDARD_-
NAME, STANDARD_NAME_ADA_SQL, CURSOR_NAME, CURSOR_NAME_ADA_SQL,
DATABASE_NAME and DATABASE_NAME_ADA_SQL. Should the names of the files change
these constants would also have to change.

The complete path name of the file which defines the directory in which they reside are defined by
the functions STANDARD_NAME _FILE, CURSOR_NAME_FILE, and DATABASE_-
NAME_FILE. These functions return a string which is the fully qualified file name, minus an exten-
sion. The string can be fully qualified file name, such as “USU:BBRYKCZYN.ORACLE.-
STANDARDS]STANDARD?” or it can be an environment reference (if the system supports such a
thing) such as “ADASQLSENV:STANDARD?”, on the VAX. When the environment reference is
made, the environment must be set before execution of the application scanner. Environment is set
on the VAX as follows:

ASSIGN USU:[BBRYKCZYN.ORACLE.STANDARDS] ADASQLSENV

2.2 File Extensions

All systems must have file extensions as a part of the file name. This extension will be used to read
files which the application scanner finds references to in the *with’ clauses and also to reference the
standard files discussed above. In the compilation unit DDL_IO_DEFS_SPEC.ADA, the {ollowing
four constants and variables define that extension to the system:

DOT_ADA_LEN : constant POSITIVE := 4;
DOT_ADA_UPPER : constant STRING := ".ADA";
DOT_ADA_LOWER : constant STRING := ".ada";
DOT_ADA_DEFAULT : STRING (1..DOT_ADA_LEN) := " _ADA";

The following here shows the current values used which are for the VAX system:

e DOT_ADA_LEN is the total length of the extension including a delimiter such as the period
used here.

e DOT_ADA_UPPER is the extension in upper case, a constant so it cannot be changed during
execution of the application scanner.

e DOT_ADA_LOWER is the extension in lower case, a constant so it cannot be changed during
execution of the application scanner.

e DOT_ADA_DEFAULT is the case that is being used for the current file that the application
scanner is reading. This will be set and may change during execution, depending on the rules used
to process upper case only files, lower case only files, or a mixture of upper and lower case.

C

o

UNCLASSIFIED

2.3 Case of File Names

File names can be in upper case, lower case, or mixed case. If all files are to be in upper case (as it is
on the VAX since they are treated the same), the HOW_TO_DO_FILES is set to UPPER_CASE.
If all files are to be treated as lower case, the flag is set to LOWER._ .CASE. In the case of the files
where some files may be lower and some upper, the flag is set to AS_IS.

In the case of UPPER_CASE or LOWER_CASE file names taken from ‘with’ clauses, the filenames
are converted to the corrected case before being accessed. The extension will also be upper or lower
case. For mixed case, the file will be referenced using the case as it appears in the ‘with’ clause, and
the extension will be the case of the first character of the file name. These flags are located in the
compilation unit DDL_IO_DEFS_SPEC.ADA and can be set in the compilation unit MAIN.ADA,
so that to change it only MAIN.ADA need be recompiled.

2.4 Case of Table and Column Names

Table names and column names must

reference the components of the underlying database. Some databases require all table and/or
column names to be upper case, some require lower case, some recognize a difference if oniy the
case is changed, and some treat only a case change as the same name. In the application scanner all
table names will have to be defined as being upper case or lower case. All column names must be
upper case or lower case, but this need not be the same as the table case. Oracle does not recognize
case so the setting of the flags is not important. The flags CASE_OF_TABLES and
CASE_OF_COLUMNS are located in the compilation unit DDL_IO_DEFS_SPEC.ADA and can
be set in the compilation unit MAIN.ADA, so that to change it ouly MAIN.ADA need be recom-
piled.

2.5 Debug Option

There is also a debug option in the application scanner. If this is set in the compilation unit
MAIN.ADA, debug comments will print out during execution. There is currently commented out
code to ask if debug comments are desired. The flag can either be set on or off or the user asked if
debugging is desired. Itis set off in the operating version.

UNCLASSIFIED

3. Application Scanner Documentation

This section of the report provides two types of documentation for the application scanner. First, a
brief purpose is stated for each of the compilation units associated with the tool. Second, documen-
tation developed for each module is listzd. Withir the actual application scanner code, the com-
ments are spatially divided to provide documentation relating to specific portions of the code. How-
ever, for the purposes of this report, all comments are collected together regardless of location

within the application scanner.

3.1 Overal! Description

chartob.ada -— post process data strucs for CONVERT_CHARACTER_TO_COMPONENT
chartos.ada —-- post process data strucs for CONVERT_CHARACTER_TO_COMPONENT
columnb.ada —-— COLUMN_LIST data structures and for making a chain of
database columns
columns.ada —— COLUMN_LIST data structures and for making a chain of
database columns
comptob.ada ~-— post process data strucs for CONVERT_COMPONENT_TO CHARACTER
comptos.ada -~ post process data strucs for CONVERT_COMPONENT_TO_CHARACTER
convb.ada -— post process data structure for CONVERT_TO functions
convs.ada -— post process data structure for CONVERT_TO functions
corrb.ada —— post process/info for correlation names F
corrs.ada -— internal & post process data structures for correlation
names
database.ada -— DATABASE definitions for the Application Scanner
dbtypeb.ada -- post process data strucs for strongly typed database types
dbtypes.ada -— post process data strucs for strongly typed database types
ddladesb. ada —— ADD_DESCRIPTOR_ROUTINES add various descriptors to various L
chains
ddladess.ada —— ADD_DESCRIPTOR_ROUTINES add various de-criptors to various
chains
ddlarayb.ada —— ARRAY_ROUTINES process the arriy section of a type
decla-ation 1
ddlarays.ada —=— ARRAY_ROUTINES process the array section of a type
declaration
ddlauthb. ada -— SCHEMA_ AUTHORIZATION_ROUTINES process the authorization
clause
ddlauths. ada —— SCHEMA_AUTHORIZATION_ROUTINES process the authorization
clause b
ddlcallb.ada —— CALL_TO_DDL_ROUTINES routines to initiate the ddl reader
to process the DDL for an application scanner DML module
ddlcalls.ada —— CALL_TO_DDL_ROUTINES routines to initiate the ddl reader
to process the DDL for an application scanner DML module]
ddldefs.ada -~ DDL_DEFINITIONS defines the data structures used by the
ddl reader to keep track of the schema units and the
information which they contain
ddlderb.ada —— DERIVED_ROUTINES process the derived section of a type
declaration
ddlders.ada —— DERIVED_ROUTINES process the derived section of a type !
declaration
5 b
4

ddldrivb. ada
ddldrivs.ada
ddlendb.ada
ddlends. ada
ddlenumb. ada
ddlenums.ada
ddlerrb.ada
ddlerrs.ada
ddlextrs.ada
ddlfltb.ada
ddliflts.ada
ddlfuncb. ada
ddlfuncs.ada
ddlintb.ada
ddlints.ada

ddliodefb.ada

ddliodefs.ada

ddliocerb.ada
ddliocers.ada
ddlioinb.ada
ddlioins.ada
ddlkeyb.ada
ddlkeys.ada

ddllistb.ada

ddllists.ada

UNCLASSIFIED

DRIVER is the driver for the ddl reader section of the
application scanner - body

DRIVER is the driver for the ddl reader section of the
application scanner - specification

END_ROUTINES process an end of package statement
END_ROUTINES process an end of package statement
ENUMERATION_ROUTINES process the enumeration section of a
type declaration

ENUMERATION_ROUTINES process the enumeration section of a
type declaration

ERROR_ROUTINES handel an unknown error

ERROR_ROUTINES handel an unknown error

EXTRA_DEFINITIONS defines some data structures and
variables used by the ddl reader to keep track of things
during the processing of the schema units

FLOAT_ROUTINES process the floating point section of a
type declaration

FLOAT_ROUTINES process the floating point section of a
type declaration

FUNCTION_ROUTINES process the "function x is new
authorization identifier;" statement

FUNCTION_ROUTINES process the "function x is new
authorization identifier;" statement

INTEGER_ROUTINES process the integer section of a type
declaration

INTEGER_ROUTINES process the integer section of a type
declaration

IO_DEFINITIONS contains the functions which return the
names of the standard files.

IO_DEFINITIONS contains IO related data structures, type
declarations and variables and the functions which return
the names of the standard files.

IO_ERRORS these are the error routines used by SCHEMA_IO
for the io routines

IO_ERRORS these are the error routines used by SCHEMA_IO
for the io routines

IO_INTERNAL_STUFF these are the routines used by SCHEMA_IO
to do the nitty grittys for the io routines
IO_INTERNAL_STUFF these are the routines used by SCHEMA_IO
to do the nitty grittys for the io routines
KEYWORD_ROUTINES identifies the SQL and ADA key words
which cannot be used as identifiers

KEYWORD_ROUTINES identifies the SQL and ADA key words
which cannot be used as identifiers

LIST_ROUTINES form the chains which hold the identifiers
for type variable and record component (database columns)
declarations, for which type descriptors will be created
the remainder of the declatation statement is valid
LIST_ROUTINES form the chains which hold the identifiers

-

ol

ddlmain.ada

ddlmainc.

ddlnameb.
ddlnames.
ddlndesb.

ddlndess.

ddipackb.
ddlpacks.

ada

ada
ada
ada

ada

ada
ada

ddlrecb.ada
ddlrecs. ada
ddlsdesb.ada

ddlsdess.

ada

ddlshowb. ada

ddlshows.

ada

ddlsiob.ada

ddlsios.ada

ddlsublb.

ddlsubls.

ddlisub2b.

ddlsub2s.

ada

ada

ada

ada

UNCLASSIFIED

for type variable and record component (database columns)
declarations, for which type descriptors will be created
the remainder of the declatation statement is valid

MAIN for testing purposes this will drive the ddl reader
(without adding all the other application scanner code in)
with input from the terminal and will display all data
structures created

MAIN_CALL for testing purposes this will drive the ddl
reader (without adding all the other application scanner
code in) in the same manner that it will be called when
the application scanner is executing

NAME_ROUTINES validate identifiers

NAME_ROUTINES validate identifiers
GET_NEW_DESCRIPTOR_ROUTINES create and initialize various
elements of the data structures in which the ddl reader
will store data

GET_NEW_DESCRIPTOR_ROUTINES create and initialize various
elements of the data structures in which the ddl reader
will store data

PACKAGE_ROUTINES process a package declaration
PACKAGE_ROUTINES process a package declaration
RECORD_ROUTINES process a record declaration
RECORD_ROUTINES process a record declaration
SEARCH_DESCRIPTOR_ROUTINES page thru the data structures
and return pointers to or information about various
descriptors

SEARCH_DESCRIPTOR_ROUTINES page thru the data structures
and return pointers to or information about various
descriptors

SHOW_ROUTINES print the information collected in the data
structures by the ddl reader

SHOW_ROUTINES print the information collected in the data
structures by the ddl reader

SCHEMA_IO the io routines related to the schema units to
open and close files, to read data from files and the
terminal, to output data to files and the terminal, and to
perform data conversions

SCHEMA_IO the io routines related to the schema units to
open and close files, to read data from files and the
terminal, to output data to files and the terminal, and to
perform data conversions

SUBROUTINES_1_ROUTINES contain some of the subroutines
used by the ddl reader

SUBROUTINES_1_ROUTINES contain some of the subroutines
used by the ddl reader

SUBROUTINES_2_ROUTINES contain some of the subroutines
used by the ddl reader

SUBROUTINES_2_ROUTINES contain some of the subroutines
used by the ddl reader

ddlsub3b. ada
ddlsub3s. ada
ddlsub4b.ada
ddlsub4s.ada

ddlsubb.ada
ddlsubs.ada
ddltypeb. ada
ddltypes.ada
ddluseb.ada
ddluses.ada
ddlvarb.ada
ddlvars.ada
ddlvrbls. ada

ddlwithb. ada
ddlwiths. ada
dummys . ada
enumb. ada
enums . ada
exprb.ada
exprs.ada
fromb.ada
froms.ada
funcdefs. ada
genfuncb. ada
genfuncs. ada
indexb.ada
indexs.ada
indicb.ada
indics.ada
intob.ada
intos.ada
lexb.ada

lexs.ada
main.ada
nameb. ada
names . ada
pdtypeb.ada
pdtypes.ada

pgmconvb. ada
pdmconvs. ada

UNCLASSIFIED

SUBROUTINES_3_ROUTINES contain some of the subroutines

used by the ddl reader

SUBROUTINES_3_ROUTINES contain some of the subroutines

used by the ddl reader

SUBROUTINES_4_ROUTINES contain some of the subroutines

used by the ddl reader

SUBROUTINES_4_ROUTINES contain some of the subroutines

used by the ddl reader

SUBTYPE_ROUTINES process a subtype declaration
SUBTYPE_ROUTINES process a subtype declaration

TYPE_ROUTINES process a type declaration

TYPE_ROUTINES process a type declaration

USE_ROUTINES process a use statement

USE_ROUTINES process a use statement

VARIABLE_ROUTINES process a variable declaration
VARIABLE_ROUTINES process a variable declaration
DDL_VARIABLES variables used during the processing of

schema units

WITH_ROUTINES process a token in a with context clauses
WITH_ROUTINES process a token in a with context clauses
dummy data structure entries with null strings for lists
manage internal data structures for enum type overloading
manage internal data strucs for enumeratiorn type overloading
routines to process expression-type constructs

routines to process expression-type constructs

internal data structures for from clauses

internal data structures for from clauses

definitions of SQL operations

post process/info for expression-type unary & binary ops
post process/info for expression-type unary & binary ops
post process data strucs for generated index subtypes needed
post process data strucs for generated index subtypes needed
post process data structures for INDICATOR functions

post process data structures for INDICATOR functions

post process data structures for INTO procedures

post process data structures for INTO procedures

lexical analyzer handles token input and diagnostic
reporting

lexical analyzer handles token input and diagnostic
reporting

the driver routine for the application scanner

parsing of various types of names

parsing of various types of names

functions to identify predefined (STANDARD or DATABASE)
types

functions to identify predefined (STANDARD or DATABASE)
types

post process data strucs for L_CONVERT & R_CONVERT functions
post process data strucs for L_CONVERT & R_CONVERT functions

postb.ada
posts.ada
predefb.ada
predefs.ada
qualb.ada
quals.ada
resultb.ada

results.ada

scanb. ada

scans.ada

searchb.ada
searchs.ada
selecb.ada
selecs.ada
selectb.ada

selects.ada

semanb.ada
semans. ada
stmtb.ada

stmts.ada

syntacb.ada
syntacs.ada
tableb. ada
tables.ada
tblexprb.ada
tblexprs.ada
tentb.ada
tents.ada
txtprt.ada
ungqualb.ada
unquals.ada
withb.ada
withs.ada

3.2 File Documentation
3.2.1 File DDLDRIVS.ADA

UNCLASSIFIED

produce generated package (specification and body).
produce generated package (specification and body).

post process data structure for optional predefined text
post process data structure for optional predefined text
post process data structures for qualified column specs
post process data structures for qualified column specs
internal data struc for keeping track of function result
type

internal data struc for keeping track of function result
type

driver for DML processing of Ada/SQL Application Scanner
driver for DML processing of Ada/SQL Application Scanner
routine to process a search condition

routine to process a search condition

post process data structures for various flavors of SELEC
post process data structures for various flavors of SELEC
miscellaneous routines for processing select, declare,
insert_into and fetch statements

miscellaneous routines for processing select, declare,
insert_into and fetch statements

miscellaneous routines for semantic processing
miscellaneous routines for semantic processing

process the open, delete, update, close and package
statements

process the open, delete, update, close and package
statements

miscellaneous syntactic processing routines

miscellaneous syntactic processing routines

miscellaneous routines for handling table names
miscellaneous routines for handling table names

process clauses related to table expressions

process clauses related to table expressions

internal data structure for the tentative function list
internal data structure for the tentative function list
print utilities

post process/info for unqualified names (tables & columns)
post process/info for unqualified names (tables & columns)
post process data structures for library units to be with’ed
post process data structures for library units to be with’ed

-— this is the driver for the ddl reader section of the application scanner

—— PROCESS_SCHEMA UNIT - the ddl reader will process the schema unit who's
—-- name is input to this routine.

9 File DDLDRIVS.ADA

UNCLASSIFIED

PROCESS_FULL_SCHEMA_UNIT - processes or continues to process the schema who'’s
name is supplied as input to this routine.

SET_UP_CURRENT_SCHEMA_UNIT - set or create as the current schema unit the
schema unit who’s name is provided as input to this routine

WHICH_PROCESS - given a token and the schema we’re processing, return an
enumeration type for which process to do

3.2.2 File DDLDRIVB.ADA

== this is the driver for the ddl reader section of the application scanner

~— PROCESS_SCHEMA_UNIT - the ddl reader will process the schema unit who’s

-— name is input to this routine., The input to this routine is the name of a
b -=- schema unit, which must correspond to a file name. We process the three
—-— standard files, STANDARD.ADA DATABASE.ADA and CURSOR_DEFINITION.ADA first

-— if they haven’t already been done. We then process this schema unit thru
-~ the ddl reader.

{ —— PROCESS_FULL_SCHEMA_UNIT - processes or continues to process the schema who's
J -— name is supplied as input to this routine.

b —-— set up the current schema unit, which might be a new one or one that has
-~ already been done or one currently in process.
1 -— we loop doing the following until reaching the end of a file

- then till exhausting the schema units yet to do list

—-- read the next token, which must be something we recgonise.

-~ when the end of the file is reached the DONE flag is set

! —-— if we are already in the middle of withing, flag set, then we call

-= PROCESS_WITH to do the next with in line or look for ; as a clue to the
8 - end of withing

) -— if the token is use, package, end, type, subtype, function, or
- schema_authorization we have special routines to process the whole
-= statement

-— if the token is anything else tell the user it’s an error

—— SET_UP_CURRENT_SCHEMA_ UNIT - set or create as the current schema unit the
! -—- schema unit who’s name is provided as input to this routine

4 File DDLDRIVB.ADA 10

-

— ———

UNCLASSIFIED

set up the current schema, either an old one that wasn’t finished or a
new one in which case we have to open the file.

search the list of already done schema_units, if this one hasn’t

been done set up new pointers for it, add it to the chain and

set the name and open an input stream.

and if it’s not STANDARD.ADA then show withing and using of it

WHICH_PROCESS -

given a token and the schema we’re processing, return an

enumeration type for which process to do

3.2.3 File DATABASE.ADA

—— DATABASE definitions for the Application Scanner

3.2.4 File DDLDEFS.ADA

DDL_DEFINITIONS

defines the data structures used by the ddl reader to keep

track of the schema units and the information which they contain

STATUS_SCHEMA describes the current status of the schema unit
PROCESSING this is the current schema being processed

WITHING

DONE
NOTOPEN
NOTFOUND

this schema unit is temporarily on hold while the schemas
in it’s with clause are processed

the processing of this schema is complete

this schema unit has not yet been opened

this schema unit was not found and could not be opened

KIND_TYPE describes the type of component in the descriptor

A_TYPE
A_SUBTYPE
A_DERIVED
A_COMPONENT

A_VARIABLE

a type declaration

a subtype declaration

a derived declaration

a component (column) of a record (database table)
declaration

a variable declaration

TYPE_TYPE describes the data type of the descriptor

REC_ORD

a record (database table) type descriptor

ENUMERATION an enumeration type descriptor

INT_EGER
FL_OAT
STR_ING

an integer type descriptor
a floating point type descriptor
a string (character array) type descriptor

11 File DDLDEFS.ADA

B A an o

UNCLASSIFIED

YET_TO_DO_DESCRIPTOR describes a schema unit who’s processing has not yet
been compleated 3

SCHEMA_UNIT_DESCRIPTOR describes one schema unit

WITHED_UNIT_DESCRIPTOR describes a schema unit that appeared in the with
clause of another schema unit

USED_UNIT_DESCRIPTOR describes a schema unit that appeared in the use
clause of another schema unit

DECLARED_PACKAGE_DESCRIPTOR describes a package that appeared in a schema
unit

IDENTIFIER_DESCRIPTOR describes an identifier such as a variable name of
type name etc. which appeared in a schema unit

FULL_NAME DESCRIPTCR describes the fully qualified name of an identifier,
including its package name

TYPE_DESCRIPTOR describes a declaration of a record, enumeration, integer
floating point or string entity encountered in a schema unit

LITERAL_DESCRIPTOR describes an enumeration literal found in a schema unit
ENUM_LIT_DESCRIPTOR describes an enumeration literal
FULL_ENUM_LIT_DESCRIPTOR describes a fully qualified enumeration literal
ENUM_LIT_NAME_STRING is the data type used to store enumeration literals

AUTH_IDENT_NAME_STRING is the data type used to store authorization
identifiers

LIBRARY UNIT_NAME_STRING is the data type used to store schema names, withed
and used schema etc.

PACKAGE_NAME _STRING is the data type used to store the names of packages
described in schema units

RECORD_NAME_STRING is the data type used to store the name of records which
when defined in a schema unit must ba a database table

TYPE_NAME_STRING is the data type used to store the identifiers for type,
subtype, variable etc declarations

ENUMERATION_NAME_STRING is the data type used to store the identifiers
for enumeration declarations

File DDLDEFS.ADA 12

-

A R

d

v

-

UNCLASSIFIED

subtypes for each of the different type descriptors

YET_TO_DO_DESCRIPTORs will form a chain of SCHEMA_UNIT_DESCRIPTORS on
which processing is incomplete

the SCHEMA_UNIT_DESCRIPTORs will form a chain of schema units that have
been processed

WITHED_UNIT_DESCRIPTORS form a chain within the SCHEMA_ UNIT DESCRIPTORSs
of all schema units withed by that schema unit

USED_UNIT_DESCRIPTORS form a chain within the SCHEMA_UNIT DESCRIPTORs
of all schema units used by that schema unit

DECLARED_PACKAGE_DESCRIPTORS form a chain within the SCHEMA_UNIT_DESCRIPTORs
of all packages declared within that schema unit

IDENTIFIER_DESCRIPTORS form a chain of all identifiers declared in all
schema units

FULL_NAME DESCRIPTORS form a chain of all fully qualified identifier names
declared in all schema units

TYPE_DESCRIPTORS form a chain of all declarations of types, subtypes,
derived types, record components (columns of tables) and variables

LITERAL_DESCRIPTORSs for a chain of enumeration literals within a
TYPE_DESCRIPTOR

ENUM_LIT_DESCRIPTORs form a chain of all enumeration literals found in
all schemas

FULL_ENUM_LIT_DESCRIPTORs form a chain of the fully qualified neame of all
enumeration literals found in all schemas

3.2.5 File DDLEXTRS.ADA

EXTRA_DEFINITIONS defines some data structures and variables used by the
ddl reader to keep track of things during the processing of the schema units

PROCESS_TYPE is the type of ddl statement being processed

ITS_WITH - found a with statement

ITS_ALREADY_WITHING - reading the schema units to be processed
as withed units

ITS_USE ~ found a use statement

ITS_PACKAGE - found a package declaration

ITS_END - found an end package declaration

13 File DDLEXTRS.ADA

UNCLASSIFIED
- ITS_TYPE - found a type declaration
- ITS_SUBTYPE ~ found a subtype declaration
- ITS_FUNCTION - found a "function x is new authorizarion

- identifier" statement, the only function
- declaration permitted in the ddl reader

- ITS_SCHEMA_ AUTHORIZATION - found a schema authorization statement
- ITS_EOL - reached the end of the file that we're
- processing

- ITS_UNKNOWN — hit an unknown keyword

- ITS_FINISHED - the schema unit has been compleately
- processed

—-— NAME_TO_PROCESS_LIST forms a chain of identifiers of type LIST_ NAME STRING
-- to be processed.

—— COMPONENT_TO_PROCESS_LIST forms a chain of record components (database
—-- table columns) identifiers of type LIST_COMPONENT_STRING to be processed.

—— HOLDING_COMPONENT_DESCRIPTOR forms a chain of component (database columns)
-~ descriptors processed.

—— variables used during processing

3.2.6 File DDLIODEFS.ADA

—— IO_DEFINITIONS contains IO related data structures, type declarations and
-— variables and the functions which return the names of the standard files.

—— INPUT_RECORD and INPUT_STREAM is the structure to keep track of the input
-— being read from schema unit files

~— HOW_TO_DO_FILES_TYPE defines possibilities for the case of file names etc

~— SCHEMA_FROM defines possibilities for the initiation of a schema unit. It is
-— either initiated from a call (CALLS) from the application scanner or from
—— the schema unit file (FILES) such as a withed schema unit, or it is UNRKNOWN

-— standard_name_file is as the file name should be accessed, without extention
-~ standard name is the package name
~-— standard_name_ada_sql is the nexted package name

—-— cursor_name_file is as the file name should be accessed, without extention
—— cursor_name is the package name

' —— cursor_name_ada_sql is the nexted package name

-- database_name_file is as the file name should be accessed, without extention
-— database_name is the package name

File DDLIODEFS.ADA 14

UNCLASSIFIED

-- database_name_ada_sqgl is the nexted package name
-- dot_ada is the extention to be used with the files
—— how_to_do_files - if upper_case all file names are converted to upper case

- if lower_case all file names are converted to lower case
- if as_is they are to be used as entered by the user

3.2.7 File DDLIOMEFB.ADA

—— IO_DEFINITIONS contains the functions which return the names of the
--— standard files.
-— standard name_file is as the file name should be accessed, without extention

-— cursor_name_file is as the file name should be accessed, without extention

-— database_name_file is as the file name should be accessed, without extention

3.2.8 File DDLWITHS.ADA

—— WITH_ROUTINES process a token in a with context clauses

~— PROCESS_WITH process the next with token, the string "with", a comma,
-~ a semicolon or a library unit name (schema unit)

3.2.9 File DDLWITHB.ADA

—— WITH_ROUTINES process a token in a with context clauses

—— PROCESS_WITH process the next with token, the string "with", a comma,

-- a semicolon or a library unit name (schema unit)

-— if the temp string is WITH and the WITHING flag is set, tell the user

- that with is an invalid library unit name and don’t process it

-— if the temp string is WITH and the WITHING flag is not set, then set it

-— if a package name had already been declared in the current schema or if
-- types or tables or variables have been declared tell them that

- context clauses must be first, but go ahead and process the with

- statement

15 File DDLWITHB.ADA

UNCLASSIFIED

- return

-~ if the temp string is a comma, just return

—— if the temp string is a semi colon change the WITHING flag to PROCESSING
- and return

-— otherwise we have a library_unit_name to process

—— process here if temp string = comma or semi colon or WITH

—— do a withed library unit here:

—— get the withed library unit’s schema if it’s been declared before

~- find out if this schema unit has withed this library unit before

-- if we’re trying to with ourselves tell the user and ignore this with

—— if there is no schema for this with get a new schema, add it to the schema
- chain, and set it’s name

—— if it hasn’t been withed before by the current schema unit then add it

- to the chain of withed stuff

-— do not process the withed library unit name if it is schema_definition,

- instead mark this one as done and continue with next

—— however if it is anything except schema-definition and this schema is an
- authorization package tell the user that’s not valid

-— if the status of the withing unit is already done then we don’t have to do
- anything else wth it

—— put the current schema unit on hold (yet to do list)

—-- set the withed unit schema as the current schema unit
-— then open the new current schema unit and return and process it

3.2.10 File DDLUSES.ADA

—-— USE_ROUTINES process a use statement

—-- PROCESS_USE read thru the use statement processing package names an either
—-— context clause uses or non context clause uses

—-— PROCESS_USE_CONTEXT process a package from a use context clause, which
—— means it must have been withed by a prior with statement

-— PROCESS_USE_NON_CONTEXT process a package from a use non context clause,
~~ which means it may be a qualified package name or it may be a subpackage

~-- name from a package that has already been withed and used

-— VALID_USE - make sure the package being used is valid and has been withed

File DDLUSEB.ADA 16

UNCLASSIFIED

3.2.11 File DDLUSEB.ADA

USE_ROUTINES process a use statement

PROCESS_USE read thru the use statement processing package names an either
context clause uses or non context clause uses

when we enter this routine the temp string will be use

if no withs have been done it’s an error to do a use, print error and
skip to end of use clause

if no packages have been declared we’re processing a context clause use

if a package has been declared we’re processing a non context clause use

we loop and read the next token, either a comma, a semicolon or package
to use
if comma - ignore it
if semi colon - the use statement is done and we return
otherwise we have a package_name to process
if this schema is an authorization package the only "use" permitted
is for schema_definition. Anything else print an error.
call the appropriate routine to check it’s validity and set up the
visibility pointers describing it, this depends on if it’s a context
use or a non context use

PROCESS_USE_CONTEXT process a package from a use concext clause, which
means it must have been withed by a prior with statement

when we enter this routine we have a package name from a context
clause use. The package name must be one that was mentioned in the
with clause or else we print an error. If it hasn’t been used by this
schema before add it to the chain

PROCESS_USE_NON_CONTEXT process a package from a use non context clause,
which means it may be a qualified package name or it may be a subpackage
name from a package that has already been withed and used

when we enter this routine we have a package name from a non context
clause use. The package name may be qualified with a preceding package
name. But two levels is the max. The first may be anything, the second
if there must be ADA_SQL. Split the use package name into outter name
and inner name. This package must then be found in a with descriptor for
the current schema. If it’s valid and it hasn’t been used by this

17 File DDLUSEB.ADA

UNCLASSIFIED

schema before add it to the chain. If it’s invalid tell the user we can’t
find it in a withed schema or it ambiguous.

VALID_USE - make sure the package being used is valid and has been withed

given an outter package name and/or an inner package name and a schema unit
descriptor find out if these package names are valid for a use clause.

We
if
or
if

read the withed schemas for the current schema

we have an outter package and it does match but we don‘t have an inner,
we do have an inner and it matches too, count it as a match

we don’t have an outter but the inner matches and this withed

outter package was used in our schema, count it as a match, and save
the outter name for later

first determine if we have an inner package or outter package or both or
neither - if neither it’s an error

loop thru all the packages withed by this schema unit and check for matches

if

if

if
if

if

if
if

the first declared package of a schema unit matches the outter package
we match on outter

the next declared package of the schema unit matches the inner package
we match on inner

we have an outter and an inner and both match, that counts as a match
we have an outter and it matches and we have no inner, that counts as
a match

we don’t have an outter but the inner matches we check to see if the
outter was previously used by this schema. If so that counts as a
match and we hang on to the outter name for later use

we matched one and only one package from a withed unit it’s valid
we're missing the outter package we stuff it into the holder

3.2.12 File DDLVRBLS.ADA

-— DDL_VARIABLES variables used during the processing of schema units

3.2.13 File DDLFUNCS.ADA

-— FUNCTION_ROUTINES process the "function x is new authorization identifier;"

File DDLFUNCS.ADA 18

- e ma

e a e

€ aaa

UNCLASSIFIED

statement

PROCESS_FUNCTION process the "function x is new authorization identifier;"
statement

3.2.14 File DDLFUNCB.ADA

FUNCTION_ROUTINES process the "function x is new authorization identifier;"

statement

PROCESS_FUNCTION process the "function x is new authorization identifier;"
statement

on input temp string is function, it must be followed by an identifier

and then "is new authorization_identifier;" If it isn’t it’s invalid and
we don’t accept an authorization identifier. If it is valid and an
authorization identifier has not already been declared in this schema unit

then this is it and set the flag that this is the auth package. 1If one has

already been declared in this schema unit then it’s an error. If anything
in the with or use other than SCHEMA_DEFINITION that’s an error.

One package must be open and none closed or it’s an error. If we’ve
declared types or tables or variables it’s an error. 1If it contains the
suffix _NOT_NULL or _NOT_NULL_UNIQUE it’s an error and if it’s more than
18 characters long its an error

3.2.15 File DDLAUTHB.ADA

SCHEMA_AUTHORIZATION_ROUTINES process the authorization clause

- PROCESS_SCHEMA_AUTHORIZATION process the schema authorization clause which

should read "SCHEMA_AUTHORIZATION : IDENTIFIER := identifier;"

on entry temp string is schema_authorization, it should be followed by

": identifier :=" and the identifier. It must be declared in an ADA_SQL
sub package and match the authorization identifier from an already
defined authorization package that was withed. If types or tables have
already been declared warn the user that the schema authorizathion should
come first. If variables have been declared tell them it’s an error.

19 File DDLAUTHB.ADA

MR A

TN iy ol

UNCLASSIFIED

3.2.16 File DDLAUTHS.ADA
-~ SCHEMA_AUTHORIZATION_ROUTINES process the authorization clause

-~ PROCESS_SCHEMA_AUTHORIZATION process the schema authorization clause which
~— should read "SCHEMA_AUTHORIZATION : IDENTIFIER := identifier;"

3.2.17 File DDLPACKS.ADA

-— PACKAGE_ROUTINES process a package declaration

-~ PROCESS_PACRAGE process a package statement which is "PACKAGE x IS"

3.2.18 File DDLPACKB.ADA

-— PACKAGE_ROUTINES process a package declaration

-— PRQCESS_PACKAGE process a package statement which is "PACKAGE x IS"

-— the token we get in temp string is "package" toss it, then read the

-~ identifier and set the pointers. If this is the first package declared
-— by the schema it may be anything but ADA_SQL. If it is the second it

-~ must be ADA_SQL. If it is third or more we’ll stuff it in the chain

-- no matter what it is but it’s invalid. Tell them it’s invalid if it has
-- the suffix _NOT_NULL or _NOT_NULL_UNIQUE. Gobble up the "is" after the
-- identifier too

3.2.19 File DDLENDS.ADA

—-- END_ROUTINES process an end of package statement

-— PROCESS_END process an end of package statement for either the last declared
-- package or for a named package

-— END_LAST_PACRAGE process an end package statement for the last declared

-- package

-- END_NAMED PACKAGE process an end package statement for the named package

File DDLENDB.ADA 20

UNCLASSIFIED

3.2.20 File DDLENDB.ADA

—— END_ROUTINES process an end of package statement

—— PROCESS_END process an end of package statement for either the last declared
-- package or for a named package

~— the only end we’ll get here is the end of a package, it may be followed

-— by the package name or it may be followed by just a semicolon. 1If a

—-- package name then it better be the last defined not yet ended since

-— if there is more than one it would have to be nested. If it’s not the

-— last one but is a match tell em out of order end but go ahead and flag

-=- it as done anyway. If it’s a semi colon then it matches up to the

—— lastest one not ended. After it’s processed, call set up our package name
—-— to alter current package name.

—— END_LAST PACKAGE process an end package statement for the last declared
-- package

-- we have the end for the last unended package, the only error is if there
—-— is no package to end

—— END_NAMED_PACKAGE process an end package statement for the named package

~— we have the end for a named package, the only error is if there
-—- is no package to end, or if the end is out of order since packages should
—- be nested

3.2.21 File DDLTYPES.ADA

—-— TYPE_ROUTINES process a type declaration

—-- PROCESS_A_TYPE process a type declaration for an array (character string),
~—- integer, floating point or derived type

3.2.22 File DDLTYPEB.ADA

21 File DDLTYPEB.ADA

UNCLASSIFIED

TYPE_ROUTINES process a type declaration

PROCESS_A_TYPE process a type declaration for an array (character string),
integer, floating pouint or derived type

first thing to do is store away the identifier or identifiers

then find out what type we’re processing, array, integer, real or derived
then process accrodingly by calling the appropriate routine

first check to determine that a type declaration is permitted here

then make a chain of all identifiers - return with "is" in temp_string

then determine if it’s a type we deal with and if so call the routine

3.2.23 File DDLSUBS.ADA

SUBTYPE_ROUTINES process a subtype declaration

PROCESS_SUBTYPE process a subtype declaration of a previously declared
type

DO_A_SUBTYPE process a subtype indicator

BUILD_SUBTYPE_TYPE_DESCRIPTORS create a type descriptor for this subtype

7.2.24 File DDLSUBB.ADA

SUBTYPE_ROUTINES process a subtype declaration

PROCESS_SUBTYPE process a subtype declaration of a previously declared
type

first check to make sure a subtype declaration is valid here
then make a chain of all identifiers -~ return with "is" in temp_string

then process the subtype indicator and build it all into a type descriptor

File DDLSUBB.ADA 22

UNCLASSIFIED

-~ DO_A_SUBTYPE process a subtype indicator

-~ on entry "is" is in temp_string
-- we have to process the subtype indicator, see if it’s valid and add
—~ a subtype type descriptor

—— BUILD_SUBTYPE_TYPE_DESCRIPTORS create a type descriptor for this subtype

3.2.25 File DDLRECS.ADA

-~ RECORD_ROUTINES process a record declaration

-~ PROCESS_RECORD process a record declaration which must be the description
-~ of a database table when appearing in the ddl

-~ BUILD_COMPONENT_TYPE_DESCRIPTORS build the type descriptor fcr a component
-- of a record which is a column in a database table

-~ BUILD_RECORD_TYPE_DESCRIPTORS build the type descriptor for a record which
-~ is a database table -

-~ INSERT_COMPONENT_DESCRIPTORS stuff into a chain in the record type descriptor
-~ pointers to all of it’s component type descriptors

3.2.26 File DDLRECB.ADA

-~ RECORD_ROUTINES process a record declaration

-~ PROCESS_RECORD process a record declaration which must be the description
-~ of a database table when appearing in the ddl

-~ on entry "record" is in temp_string

-~ we have to process each component statement and determine if it’s valid
-~ read token to get first component name or "end", if end we’re done with
-~ the whole record, if component name call make list_of_components toc

-- stack up the component names since there may be more than one for each
-~ component statement.

23 File DDLRECB.ADA

4

UNCLASSIFIED

-— determine that the declaration c° a record (database table) is valid here
—— for each component declaration (database column)

—— stack up the identifier names since several components could be declared
-- in the same statement

—-— break down and validate the subtype indicator for the component

—— BUILD_COMPONENT_TYPE_DESCRIPTORS build the type descriptor for a component
-- of a record which is a column in a database table

—~ BUILD_RECORD_TYPE_DESCRIPTORS build the type descriptor for a record which
—-— 1is a database table

—— INSERT_COMPONENT_DESCRIPTORS stuff into a chain in the record type descrlptor
-- pointers to all of it’s component type descriptors

3.2.27 File DDLVARS.ADA

—— VARIABLE_ROUTINES process a variable declaration
-— TRY_TO_PROCESS_VARIABLE all statements which begin with an identifier
-— are processed thru this routine, try to process the identifier as

-— a variable to see if it’s valid

—— PROCESS_VARIABLE process a variable subtype indicator, the identifier
-—- of the variable has already been stored, and create the type descriptors

-- BUILD_VARIABLE_TYPE_DESCRIPTORS build a type descriptor for a variable

3.2.28 File DDLVARB.ADA

-= VARIABLE_ROUTINES process a variable declaration

File DDLVARB.ADA 24

-

by

UNCLASSIFIED

—- TRY_TO_PROCESS_VARIABLE all statements which begin with an identifier
—— are processed thru this routine, try to process the identifier as
—— a variable to see if it’s valid

—- first thing to do is store away the identifier or identifiers

—- if there are identifiers and then a : we assume variables, otherwise
—-- we assume it’s a statement we know nothing about

-- then process the subtype indicator

-— then build it all into a variable descriptor

—— first make a chain of all identifiers - returns with ":" in temp_string
-- and make sure a variable declaration would be valid at this time

-— if all is valid up to this point then call the routine to process a variable

—-— PROCESS_VARIABLE process a variable subtype indicator, the identifier

~-— of the variable has already been stored, and create the type descriptors
—— on entry ":" is in temp_string

-- we have to process the subtype indicator, see if it’s valid and add
-— a variable type descriptor

—— BUILD_VARIABLE_TYPE_DESCRIPTORS build a type descriptor for a variable

3.2.29 File DDLINTS.ADA

—— INTEGER_ROUTINES process the integer section of a type declaration

—— PROCESS_INTEGER process the section of a type declaration that indicates
-- an integer declaration, "range x .. z;"

—- GET_INTEGER_RANGE read the range declaration of the statement and
—— determine if it’s valid and return the high and low range

—— BUILD_INTEGER_TYPE _CESCRIPTORS build the type descriptor for the integer
—— declaration here

25 File DDLINTB.ADA

UNCLASSIFIED

3.2.30 File DDLINTB.ADA

—-— INTEGER_ROUTINES process the integer section of a type declaration

—— PROCESS_INTEGER process the section of a type declaration that indicates
-— an integer declaration, "range x .. z;"

—-— on entry "range" is in temp_string

—— we have to process the statement and determine if it’s valid

-— the next token should be an integer for index range lo

—— followed by .. and then an integer for index range hi and then a semi colon

-- validate it and store necessary info to build the descriptor

—- build type descriptors here

-— GET_INTEGER_RANGE read the range declaration of the statement and
—- determine if it’s valid and return the high and low range

-- if valid is false on entry then don’t do anything
-— we have to find a range or valid becomes false
—- lo and hi range become the range specified,

~-= BUILD_INTEGER_TYPE_DESCRIPTORS build the type descriptor for the integer
-- declaration here

3.2.31 File DDLFLTS.ADA

-~ FLOAT_ROUTINES process the floating point section of a type declaration

~~ PROCESS_FLOAT process the section of a type declaration that indicates
-- a floating point declaration, "digits x range z .. y"

—=— GET_FLOAT_DIGITS read the digits number and make sure it’s wvalid

-— GET_FLOAT_RANGE read the range declaration of the statement and
-~ determine if it’s valid and return the high and low range

tile DDLFLTS.ADA 26

UNCLASSIFIED

—— BUILD_FLOAT_TYPE_DESCRIPTORS build the type descriptor for the floating point
—— declaration here

3.2.32 File DDLFLTB.ADA

—— FLOAT_ROUTINES process the floating point section of a type declaration

—-— PROCESS_FLOAT process the section of a type declaration that indicates
-- a floating point declaration, "digits x range z .. y"

-~ on entry "digits" is in temp_string
—-—- we have to process the statement and determine if it’s valid
-- the next token must be a positive integer for digits

-- followed by either RANGE or ; -- if RANGE then
-- the next token must be a floating point number for index range lo
—— followed by .. and then a floating point for index range hi and then

-— a semi colon
-— validate it and store necessary info to build the type descriptor later

-- build type descriptors here

—— GET_FLOAT_DIGITS read the digits number and make sure it’s valid

-= if valid is false on entry then don’t do anything
—— we have to find the float digits which must be a positive integer

—— GET_FLOAT_RANGE read the range declaration of the statement and
—— determine if it’s valid and return the high and low range

-— if valid is false on entry then don’t do anything
-— we have to find a range or valid becomes false
-- lo and hi range become the range specified,

-- BUILD_FLOAT_TYPE DESCRIPTORS build the type descriptor for the floating point
—— declaration here

27 File DDLFLTB.ADA

UNCLASSIFIED

3.2.33 File DDLENUMS.ADA

ENUMERATION_ROUTINES process the enumeration section of a type declaration

PROCESS_ENUMERATION process the section of a type declaration that indicates
an enumeration declaration, "(1, 1, 1);"

GET_ENUMERATION_LITERAL read one enumeration literal and make sure it’s valid
VALID_ENUMERATION_LITERAL validate a string to be an enumeration literal

DUPLICATE_ENUMERATION_LITERAL check to see if this enumeration literal has
been used before in this enumeration declaration

BUILD_ENUMERATION_TYPE DESCRIPTORS build the type descriptor for the
enumeration declaration here

BUILD_ENUMERATION_LITERAL_ DESCRIPTORS add the enumeration literal on to the
chain of literals

3.2.34 File DDLENUMB.ADA

ENUMERATION_ROUTINES process the enumeration section of a type declaration

PROCESS_ENUMERATION process the section of a type declaration that indicates
an enumeration declaration, "(1, 1, 1).,"

on entry "(" is in temp_string
we have to process the statement and determine if it’s valid

we read enumeration literals up to the next) or ;

read an enumeration literal and validate it and store the necessary info
to build a descriptor of it later

build type descriptors here

GET_ENUMERATION_LITERAL read one enumeration literal and make sure it’s valid

enumeration literals my be an identifier or a single character in a quote
if the first character read is a quote read until another quote
if the second is a quote then read for another quote

File DDLENUMB.ADA 28

UNCLASSIFIED

VALID_ ENUMERATION_LITERAL validate a string to be an enumeration literal

valid enumeration literals are either valid identifiers or a single
character between single gquotes

DUPLICATE_ENUMERATION_LITERAL check to see if this enumeration literal has
been used before in this enumeration declaration

BUILD_ENUMERATION_TYPE_DESCRIPTORS build the type descriptor for the
enumeration declaration here

BUILD_ENUMERATION_LITERAL_DESCRIPTORS add the enumeration literal on to the
chain of literals

3.2.35 File DDLARAYS.ADA

ARRAY_ROUTINES process the array section of a type declaration

PROCESS_ARRAY process the section of a type declaration that indicates
an array declaration, either unconstrained or constrained

GET_ARRAY_INDEX TYPE read the temp string and return the index type and
default index range information

GET_ARRAY_INDEX RANGE read the temp string to determine the range of
the array index

GET_ARRAY_TYPE_OF read the temp string to determine the type of the array
components

BUILD_STRING_TYPE_DESCRIPTORS build the type descriptor for the arrays here

3.2.36 File DDLARAYB.ADA

29 File DDLARAYB.ADA

T

UNCLASSIFIED

ARRAY_ROUTINES process the array section of a type declaration

PROCESS_ARRAY process the section of a type declaration that indicates
an array declaration, either unconstrained or constrained

on entry "array" is in temp_string
we have to process the statement and determine if it’s valid
an unconstrained array is valid as follows:
(index-type RANGE <>) OF identifier
a constrained array is valid as follows:
(index_type) OF identifier
(index_type RANGE 1..h) OF identifier
(1..h) OF identifier
if valid we collect the following information about the array to be stored
in the type descriptor:

identifier name — to create a new identifier descriptor or be included
in an existing one (captured by process_type, stored
in make_list_of_names)

full name pointer -~ a pointer to a full name descriptor pointed to from
the identifier descriptor

string length — hi range - lo range + 1, unless it’s constrained then
use zero for now

index type - a pointer to the type descriptor of the index type,

which must be base type of integer, if one is
specified, if not we use standard.integer as the type

array type — a pointer to the type descriptor of the array type,
which must be a base type of character

constrained - true if it is, false if it isn’t

index range min - if index type is supplied we have the minimum possible
for the range, must be >= 0

index range max — if index type is supplied we have the maximum possible
for the range, must be >= 0

index range lo — if an actual range is supplied this is the lo value,

must be »= 0, unless the array is unconstrained then
it will be -1

index range hi — if an actual range is supplied this is the hi value,
must be >= 0, unless the array is unconstrained then
it will be -1

we validate the various components here and store necessary info to build
a type descriptor later

our first character must be ¢(

if an index type is giren it must be a base type of integer, if it’s not
given we use standard.integer as the index type

File DDLARAYB.ADA 30

UNCLASSIFIED

next check to see if a RANGE is supplied

and if so get it’s low and hi limits

now we need a)

and now OF

read the array type, it must be a base type of character

and at the end of the line we should have a ;

if there was an error we print a message and skip this declaration

build type descriptors here

GET_ARRAY_INDEX_TYPE read the temp string and return the index type and
default index range information

valid - if false on entry then don’t do anything, don’t alter
return false if we identify an attempt to define an array index
type and it’s invalid.
do not alter if it’s valid
We treat it as if we’ve found an identifiexr if it’s alpha.
it must be a base type of integer and visible from our current
schema
if no identifier is found we use standard.integer as a default
got index type - true if we get one even if its the default
index type - identifier of the index type
index type last - it’s length.
range min - lo range from ind:x type -1 if any integer is valid
range max — hi range from indes type -1 if any integer is valid

index type des - pointer to type descriptor of index type, null if not here

GET_ARRAY_INDEX RANGE read the temp string to determine the range of
the array index

if valid is false on entry then don’t do anything

if need range then we have to find one or valid becomes false
set got range if we do find one

lc and hi range become the range specified, if got index type

is true then array lo and hi range better fall within the ranges on input,

if not valid = false. If the range is <> then it’s unconstrained and
we set the flag unconstrained as well as lo and hi to -1

31 File DDLARAYB.ADA

o

PRSI .

UNCLASSIFIED

~- GET_ARRAY TYPE OF read the temp string to determine the type of the array
—— components

-- if valid is false return

-— got_array_type = true if we indeed have one

—— array_type will be the qualified identifier name of length array_ type_last
—- array_type_des if the type descriptor

-- to be valid the array type identifier must be visible

—-— BUILD_STRING_TYPE_DESCRIPTORS build the type descriptor for the arrays here

3.2.37 File DDLDERS.ADA
-— DERIVED_ROUTINES process the derived section of a type declaration

—-— PROCESS_DERIVED process the section of a type declaration that indicates
-— a derived declaration, which would be NEW subtype_indicator

-— BUILD_DERIVED_TYPE_DESCRIPTORS build the type descriptor for the derived
-~ type here

3.2.38 File DDLDERB.ADA

—~ DERIVED_ROUTINES process the derived section of a type declaration

—— PROCESS_DERIVED process the section of a type declaration that indicates
-—- a derived declaration, which would be NEW subtype_indicator

-— on entry "new" is in temp_string
-— we have to process the subtype indicator, see if it’s valid and add

-- a derived type descriptor

-— BUILD_DERIVED_TYPE_DESCRIPTORS build the type descriptor for the derived
-- type here

File DDLDERB.ADA 32

UNCLASSIFIED

3.2.39 File DDLCALLS.ADA

—= CALL_TO_DDL_ROUTINES routines to initiate the ddl reader to process the
-— DDL for an application scanner DML module

—-— CALL_TO_DDL_OPEN_SCHEMA_UNIT - request the ddl reader to set up an
-— environment to process selected sections of the with and use clauses
-- of a schema unit which is being processed as a dml module

~— CALL_TO_DDL_WITH request the ddl reader to process the given name of a
-— schema unit as though it were a with clause for the schema unit that was
-— identified in CALL_TO_DDL_OPEN_SCHEMA UNIT

—- CALL_TO_DDL_USE request the ddl reader to process the given name of a
—~— package as though it were a use clause for the schema un.t that was

~- identified in CALL_TO_DDL_OPEN_SCHEMA_UNIT

—— CALL_TO_DDI._CLOSE terminate processing of the schema unit that was
~— identified in CALL_TO_DDL_OPEN_SCHEMA_ UNIT

3.2.40 File DDLCALLB.ADA

~- CALL_TO_DDL_ROUTINES routines to initiate the ddl reader to process the
-- DDL for an application scanner DML module

—— CALL_TO_DDL_OPEN_SCHEMA_UNIT - request the ddl reader to set up an
-- environment to process selected sections of the with and use clauses
—— of a schema unit which is being processed as a dml module

~= CALL_TO_DDi_ WITH request the ddl reader to process the given name of a
~— schema unit az though it were a with clause for the schema unit that was
~- identified in CALL_TO_DDL_OPEN_SCHEMA_ UNIT

~=- CALL_TO_DDL_USE request the ddl reader to process the given name of a
~— package as though it were a use clause for the schema unit that was
~-- identified in CALL_TO_DDL_OPEN_SCHEMA UNIT

~— CALL_TO_DDL_CLOSE terminate processing of the schema unit that was
-- identified in CALL_TO_DDI_OPEN_ SCHEMA UNIT

33 File DDLCALLB.ADA

UNCLASSIFIED

3.2.41 File DDLMAIN.ADA

-— MAIN for testing purposes this will drive the ddl reader (without adding
-— all the other application scanner code in) with input from the terminal
~— and will display all data structures created

3.2.42 File DDLMAINC.ADA

-— MAIN_CALL for testing purposes this will drive the ddl reader (without adding
’ -- all the other application scanner code in) in the same manner that it will
. -- be called when the application scanner is executing

3.2.43 File DDLSIOS.ADA

SCHEMA-IO the io routines related to the schema units to open and close
files, to read data from files and the terminal, to output data to files
and the terminal, and to perform data conversions

OPEN_SCHEMA_UNIT open a schema unit file for processing

GET_STRING return the next token from the schema unit currently being
processed

CLOSE_SCHEMA_UNIT close the schema unit file currently being processed

PRINT ERROR print an error describing the schema unit from which the error
resulted and the line number

PRINT TO FILE print a message to the output file

PRINT MESSAGE print a message to the current output device, most likely
the terminal

GET_TERMINAL_INPUT obtain input from the current input device, most likely
the terminal

OPEN_OUTPUT_FILE set flags showing that the output/error file is open
CLOSE_OUTPUT_FILE set the flage indigating that the output file is closed
UPPER_CASE convert a string to upper case

LOWER_CASE convert a string to lower case

File DDLSIOS.ADA 34

e

UNCLASSIFIED

DOUBLE_PRECISION_TO_STRING return a string representation of a double
precision number

STRING_TO_DOUBLE_PRECISION return the double precision equivalent of a
string representing a number

EXCHANGE_FOR_ORIGINAL given the schema and the buffer we’re working with,
exchange the current token which was converted to upper case on input for
the originally cased token

GET_SINGLE_QUOTE_STRING return a quoted single character from the input
buffer

3.2.44 File DDLSIOB.ADA

SCHEMA_IO the io routines related to the schema units to open and close
files, to read data from files and the terminal, to output data to files
and the terminal, and to perform data conversions

OPEN_SCHEMA_UNIT open a schema unit file for processing

if the file is not and has not been processed then set the file name up to
be the library unit plus the extention of .ADA or .A or what ever is
defined in ddliodefs as being the extention of the system. The case of the
file is determined by the flags governing case in ddliodefs. The case of the
extention is determined by the case of the first letter of the file name
and the flags governing case in ddliodefs. If the schema to be processed
is one of the special standard ones, use the correct name and directory
location from ddliodefs to locate the version that we should be reading.
Open the file if this schema was not initiated from the CALLS_TO_DDL.

If it was then we don’t open it but just pretend to do so. Set the status
to processing. If we get an exception on opening the file print the
appropriate message and set status to not found.

reading unopen file, opening open file
read output or write input

can’t find file

can’t perform requested operation
device malfunction

eof

bad data

page format error

GET_STRING return the next token from the schema unit currently being

35 File DDLSIOB.ADA

S aingthuasl

-

— g

N -

PO

Aadh

UNCLASSIFIED

processed

if we are not actually reading the schema unit but obtaining data thru the
CALL_TO_DDL routines then the underlying routines will set wn our buffers
as if they were input from a file.

CLOSE_SCHEMA_UNIT close the schema unit file currently being processed

remember that if this schema unit was initiated via an open call in
the CALL_TO_DDL routines we did not really open it but relied on input
from other calls from CALL TO_DDL and we must not really close it but
we must set up the flags as though we did

reading unopen file, opening open file
read output or write input

can’t find file

can’'t perform requested operation
device malfunction

eof

bad data

page format error

PRINT ERROR print an error describing the schema unit from which the error
resulted and the line number

PRINT TO FILE print a message to the output file

take note here that the output_file_type will create a Adl reader output
only (with no additional application scanner information in it) with

the file name of first schema unit processed and an extention of .ddlout
as defined in ddliodefs. Tiils has been changed to output all messages to
the same file that the remainder of the application scanner is using with
the call to lexical_analyzer.report_ddl_error

reading unopen file, opening open file
read output or write input

can’t find file

can’t perform requested operation
device malfunction

eof

bad data

page format error

File DDLSIOB.ADA 36

UNCLASSIFIED

PRINT MESSAGE print a messa~e to the ~urrent output device, most likely
the terminal

reading unopen file, opening open file
read output or write input

can’t find file

can’t perform requested operation
device malfunction

eof

bad data

page format error

GET_TERMINAL_INPUT obtain input from the current input device, most likely
the terminal

reading unopen file, opening open file
read output or write input

can’t find file

can’t perform requested operation
device malfunction

eof

bad data

page format error

OPEN_OUTPUT_FILE set flags showing that the output/error file is open

this routine used to open the output file to which the ddl reader would
output errors and information, however this file has now been merged with
the one used by the rest of the application scanner so the actual opening

of a file is not done here but the flags are set up to show that it was done.
If the file isn’t really open this routine will not detect it.

take note here that the output_file_type will create a ddl reader output
only (with no additional application scanner information in it) with

the file name of first schema unit processed and an extention of .ddlout
as defined in ddliodefs. This has been changed to output all messages to
the same file that the remainder of the applicetion scanner is using with
the call to lexical_analyzer.report_ddl_error

reading unopen file, opening open file
can’t find file

can’t perform requested operation
device malfunction

37 File DDLSIOB.ADA

UNCLASSIFIED

eof
bad data
page format error

CLOSE_OUTPUT_FILE set the flage indigating that the output file is closed

take note here that the output_file type will create a ddl reader output
only (with no additional application scanner information in it) with

the file name of first schema unit processed and an extention of .ddlout
as defined in ddliodefs. This has been changed to output all messages to
the same file that the remainder of the application scanner is using with
the call to lexical_analyzer.report_ddl_error. Therefore we don’t really
close a file here but just pretend to.

reading unopen file, opening open file
read output or write input

can’t find file

can’t perform requested operation
device malfunction

eof

bad data

page format error

UPPER_CASE convert a string to upper case

LOWER_CASE convert a string to lower case

DOUBLE_PRECISION_TO_STRING return a string representation of a double
precision number

STRING_TO_DOUBLE_PRECISION return the double precision equivalent of a
string representing a number

EXCHANGE_FOR_ORIGINAL given the schema and the buffer we’re working with,
exchange the current token which was converted to upper case on input for
the originally cased token

File DDLSIOB.ADA 38

g

UNCLASSIFIED

this routine is used when we what to know the actual case a user entered a
file name in - for most purposes we use all upper case thru the ddl reader
to avoid confusion

GET_SINGLE_QUOTE_STRING return a quoted single character from the input
buffer

on entry buf_len = 1 and buf = single quote. Keep reading till ending quote
however if second character is quote and third character is quote return

the three. Valid is true if on return buf_len = 3 and buf(l) and buf(3) = /
the quoted string must be all onh one line or it’s an error

3.2.45 File DDLIOINS.ADA

IO_INTERNAL_STUFF these are the routines used by SCHEMA_IO to do the
nitty grittys for the io routines

TOKEN_END bump the schema buffer pointers to the beginning of the next
token and return a pointer to the end of that token

WHITESPACE return true if character is a white space
ALPHABETIC return true if ~ha:acter is alphabetic
SIMPLE_NUMERIC return true if character is numeric 0 - 9 or underscore

QUALIFIER return true if we’re pointing to the second or subsquent portion
of a qualified expression

NUMERIC return true if the character is numeric 0 - 9 or underscore or
+ or -~ or . or E and could be part of a numeric string based on previous

characters encountered in the string

VALID_AFTER_DECIMAL return true is character is a valid character following
a decimal character in a numeric string

NEXT_TOKEN set the pointers in the schema buffer to point to the
beginning of the next token

NEXT_LINE read the next line from the schema unit file into the buffer

39 File DDLIOINB.ADA

N

et dasiv

UNCLASSIFIED

3.2.46 File DDLIOINB.ADA

-— IO_INTERNAL_STUFF these are the routines used by SCHEMA_IO to do the
-— nitty grittys for the io routines

—- TOKEN_END bump the schema buffer pointers to the beginning of the next

-—— token and return a pointer to the end of that token

-— point to beginning of token to read, there are two possible cases for us
-- to read. One is an alpha type - this must start with A .. Z and then may
-~ be followed with A..2 0..9 _ or . No Iurther rules apply except to the

—— which is assumed to be qualifying something. If the . if the first

-— character it gets returned separately. it must be followed by A..Z

-— not any thing else. if two dots are found in a row we return up to

-= but not including the first one

-— the other type is numeric - it starts with a + or - or 0..9 then is

-— followed by 0..9 or _ and maybe an E. After hitting ar E we have to

~— have + or - or 0..9 and then only 0..9 or _ the rest of the token

-— WHITESPACE return true if character is a white space

—— ALPHABETIC return true if character is alphabetic

—-— SIMPLE_NUMERIC return true if character is numeric 0 - 9 or underscore

-= QUALIFIER return true if we’re pointing to the second or subsquent portion
-~ of a qualified expression

-— C is the character in question and if it’s not a dot it certainly isn’t

-— a qualifier here. Then if the next character is A..Z it’s ok

-— NUMERIC return true if the character is numeric 0 - 9 or underscore or
-— + or - or . or E and could be part of a numeric string based on previous
—— characters encountered in the string

File DDLIOINB.ADA 40

——y

UNCLASSIFIED

VALID_AFTER_DECIMAL return true is character is a valid character following
a decimal character in a numeric string

NEXT_TOKEN set the pointers in the schema buffer to point to the
beginning of the next token

we want to end up pointing at the beginning of the next token, it could
already be there

if we’ve reached the end of the line or a comment, read the next line
skip leading spaces and horizontal tabs

NEXT_LINE read the next line from the schema unit file into the buffer

we read a line from the file if it’s really ready to be processed

don’t keep comment lines

if we get an exception - we’re expecting eof sooner or later - we print
a message if anything other than eof and set SCHEMA.SCHEMA_STATUS to
DONE and close the file

and set schema.stream.buffer(l,.2) to spaces and schema.stream.next

to 1 and schema.stream.last to 1.

reading unopen file, opening open file
read output or write input

can’t find file

can’t perform requested operation
device malfunction

eof

bad data

page format error

3.2.47 File DDLIOERS.ADA

IO_ERRORS these are the error routines used by SCHEMA IO for the io routines
OPEN_ERROR got an exception while trying to open a schema unit

READ_ERROR got an exception while reading from a schema unit file
CLOSE_ERROR got an exception when trying to close a schema unit file
PRINT_ERROR_ERROR got an exception while trying to write to the output file

PRINT_MESSAGE_ERRCR got an exception while trying to write to the terminal

41 File DDLIOERS.ADA

UNCLASSIFIED

~— INPUT_ERROR got an exception while trying to read from terminal
-— OPEN_OUTPUT_FILE_ERROR got an exception when trying to open the output file

-- CLOSE_OUTPUT_FILE_ERROR got an exception when trying to close the output file

3.2.48 File DDLIOERB.ADA

-— IO_ERRORS these are the error routines used by SCHEMA_IO for the io routines

-— OPEN_ERROR got an exception while trying to open a schema unit

-— READ_ERROR got an exception while reading from a schema unit file

-— we got an exception while reading - we’re expecting eof sooner or later -
-— we print the message if anything other than eof

-— set SCHEMA.SCHEMA_ STATUS to DONE

-~ set schema.stream.buffer(l..2) to spaces

~- schema.stream.next to 1

-— schema.stream.last to 1.

-- close the file

-- CLOSE_ERROR got an exception when trying to close a schema unit file

-~ PRINT_ERROR_ERROR got an exception while trying to write to the output file

-~ PRINT_MESSAGE_ERROR got an exception while trying to write to the terminal

—— INPUT_ERROR got an exception while trying to read from terninal

-~ OPEN_OUTPUT_FILE_ERROR got an exception when trying to open the output file

File DDLIOERB.ADA 42

UNCLASSIFIED

CLOSE_OUTPUT_FILE_ERROR got an exception when trying to close the output file

3.2.49 File DDLADESS.ADA

ADD_DESCRIPTOR_ROUTINES add various descriptors to various chains

ADD-YET_TO_DO_DESCRIPTOR add a descriptor to the chain of schema units
that have not yet been completely processed

ADD_SCHEMA_UNIT_DESCRIPTOR add a new descriptor for a schema unit to
the chain of schema units processed

ADD_WITHED_UNIT_DESCRIPTOR add a withed unit descriptor for a library
unit which was withed by the schema unit to the chain of withed unit
descriptors for within the schema unit descriptor

ADD_USED_PACKAGE_DESCRIPTOR add a used package descriptor for a package
which was used by the schema unit to the chain of used package descriptors
within the schema unit descriptor

ADD_DECLARED_PACKAGE_DESCRIPTOR add a declared package descriptor for a
package which was declared by the schema unit to the chain of declared
package descriptors within the schema unit

ADD_IDENTIFIER_DESCRIPTOR add a descriptor for an identifier, which has been
defined by a schema unit, to the identifier chain

ADD_FULL_NAME_DESCRIPTOR add a full name descriptor for an identifier which
has been declared by a schema unit, to the full name chain, the fully
qualified name of that identifier will be retained and the identifier
descriptor will be pointed to

ADD_TYPE_DESCRIPTOR add a type descriptor of any one of the various types
to the chain of type descriptors

ADD_VARIABLE_TYPE_DESCRIPTOR add a type descriptor for a variable to the
chain of variables

ADD_RECORD_TYPE_DESCRIPTOR add a descriptor of a record (database table)
to the chain of database tables

ADD_LITERAL_DESCRIPTOR add the descriptor for an enumeration literal to the
chain of literals within the enumeration descriptor

ADD_ENUM_IDENT_DESCRIPTOR add an enumeration literal descriptor to the

43 File DDLADESS.ADA

UNCLASSIFIED

—== chain of all literals
—— ADD_FULL_ENUM_LIT_DESCRIPTOR add an enumeration literal descriptor to the

—— chain of all fully qualified literals which retain the fully qualified names
~- and point to the literal descriptor

3.2.50 File DDLADESB.ADA

—— ADD_DESCRIPTOR_ROUTINES add various descriptors to various chains

—— ADD-YET_TO_DO_DESCRIPTOR add a descriptor to the chain of schema units
~- that have not yet been completely processed

-— if this is the first yet-to—do defined set the first pointer

—— otherwise set the "next" pointer in the previously last yet-to—do to
-= point to this new yet-to-do

-- set the previous pointer in this new yet-to-do to point to the

- old last yet-to-do

-- and now the new yet-to-do is the last one

—— ADD_SCHEMA_UNIT_DESCRIPTOR add a new descriptor for a schema unit to
-- the chain of schema units processed

-- if this is the first schema unit defined set the first pointer

——- otherwise set the "next" pointer in the previously last schema unit to
- point to this new schema unit

-— set the previous pointer in this new schema unit to point to the

- old last schema unit

-- and now the new schema unit is the last one

—— ADD_WITHED_UNIT_DESCRIPTOR add a withed unit descriptor for a library
—- unit which was withed by the schema unit to the chain of withed unit
-- descriptors for within the schema unit descriptor

-- if this is the first withed unit defined for this schema unit set the
- first pointer

—-- otherwise set the "next" pointer in the previously last withed unit to
- point to this new withed unit

-- set the previous pointer in this new withed unit to point to the

- old last withed unit

-- and now the new withed unit is the last one pointed to by the schema

File DDLADESB.ADA 44

- - - I

UNCLASSIFIED

—— ADD_USED_PACKAGE_DESCRIPTOR add a used package descriptor for a package
-— which was used by the schema unit to the chain of used package descriptors
-- within the schema unit descriptor

—— if this is the first used unit defined for this schema unit set the
- first pointer

—— otherwise set the "next" pointer in the previously last used unit to
- peint to this new used unit

—- set the previous pointer in this new used unit to point to the

—-= old last used unit

-—- and now the new used unit is the last one pointed to by the schema

~— ADD_DECLARED_PACKAGE_DESCRIPTOR add a declared package descriptor for a
-— package which was declared by the schema unit to the chain of declared
-- package descriptors within the schema unit

—— if this is the first declared package for this schema unit set the

- first pointer

—-— otherwise set the "next" pointer in the previously last declared package
- to point to this new declared package

-- set the previous pointer in this new declared package to point to the

- old last declared package

-— and now the new declared package is the last one pointed to by the schema

—— ADD_IDENTIFIER_DESCRIPTOR add a descriptor for an identifier, which has been
-— defined by a schema unit, to the identifier chain

~- if this is the first declared identifier set the first pointer

-- otherwise set the "next" pointer in the previously last identifier
- to point to this new identifier

~-- set the previous pointer in this new identifier to point to the

- old last identifier

—— and now the new identifier is the last one

—=— ADD_FULL_NAME_DESCRIPTOR add a full name descriptor for an identifier which
-- has been declared by a schema unit, to the full name chain, the fully

—-- qualified name of that identifier will be retained and the identifier

—- descriptor will be pointed to

~— if this is the first declared full name for this identifier set the first
- pointer

45 File DDLADESB.ADA

UNCLASSIFIED

otherwise set the "next" pointer in the previously last full name
to point to this new full name

set the previous pointer in this new full name to point to the old last full
name in the identifier descriptor

and now the new full name is the last one for this identifier

ADD_TYPE_DESCRIPTOR add a type descriptor of any one of the various types
to the chain of type descriptors

if this is the first type set the first pointer

otherwise set the "next" pointer in the previously last type to point
to this new type

set the previous pointer in this new type to point to the old last type

and now the new type is the last one

ADD_VARIABLE_TYPE_DESCRIPTOR add a type descriptor for a variable to the
chain of variables

if this is the first variable set the first pointer

otherwise set the "next" pointer in the previously last variable to point
to this new variable

set the previous pointer in this new variable to point to the
old last variable

and now the new variable is the last one

ADD_RECORD_TYPE_DESCRIPTOR add a descriptor of a record (database table)
to the chain of database tables

if this is the first table set the first pointer
otherwise set the "next" pointer in the previously last table to point
to this new table
set the previous pointer in this new table to point to the old last table
and now the new table is the last one

ADD_LITERAL_DESCRIPTOR add the descriptor for an enumeration literal to the
chain of literals within the enumeration descriptor

if this is the first literal defined for this enumeration type set the
first pointer

otherwise set the "next" pointer in the previously last literal to
point to this new literal

File DDLADESB.ADA 46

UNCLASSIFIED

-- set the previous pointer in this new literal to point to the
- old last literal
—— and now the new literal is the last one pointed to by the enumeration type

-— ADD_ENUM_IDENT_DESCRIPTOR add an enumeration literal descriptor to the
-— chain of all literals

—— if this is the first enumeration literal set the first pecinter

~— otherwise set the "next" pointer in the previocusly last enumeration literal
- to point to this new enumeration literal

-— set the previous pointer in this new enumeration literal to point to the

-= old last enumeration literal

—-— and now the new enumeration literal is the last one

—— ADD_FULL_ENUM_LIT_DESCRIPTOR add an enumeration literal descriptor to the
~- chain of all fully qualified literals which retain the fully qualified names
—— and point to the literal descriptor

-— if this is the first full type descriptor for this enumeration literal

-— set the first pointer

-— otherwise set the "next" pointer in the previously last full enumeration
- literal to point to this new full enumeration literal

—— set the previous pointer in this new full enumeration literal to point to
-- the old last full enumeration literal in the chain

-—- and now the new full enumeration literal is the last one for this

-= enumeration literal

3.2.51 File DDLKEYS.ADA

-~ KEYWORD_ROUTINES identifies the SQL and ADA key words which cannot be used
-— as identifiers

-— SQL_KEY_WORD return true if the string is a sal key word, false if not

—— ADA_KEY_WORD return true if the string is an ada key word, false if not

3.2.52 File DDLKEYB.ADA

-— KEYWORD_ROUTINES identifies the SQL and ADA key words which cannot be used
-—- as lidentifiers

47 File DDLKEYB.ADA

-

UNCLASSIFIED

table of the SQL key words which cannot be used as identifiers

table of the ADA key words which cannot be used as identifiers

SQL_KEY_ WORD return true if the string is a sql key word, false if not

ADA_KEY_WORD return true if the string is an ada key word, false if not

3.2.53 File DDLLISTS.ADA

Fil

LIST_ROUTINES form the chains which hold the identifiers for type

variable and record component (database columns) declarations, for which
type descriptors will be created the remainder of the declatation statement
is valid

MARE_LIST_CF_NAMES form a chain of identifiers from a type or subtype
declaration

ADD_NAME TO_PROCESS_LIST add an identifier name to the list of identifiers
from a type or subtype declaration that need to be processed

GET_NEW_LIST_NAME given a string return a list_name
GET_NEW_NAME TO_PROCESS_LIST return an empty name_to_process_list

MAKE_LIST OF_COMPONENTS form a chain of component identifiers (database
table column names) from record component declaration

ADD_COMPONENT_TO_PROCESS_LIST add a component name to the list of components
from a record declaration that need to be processed

GET_NEW_LIST_COMPONENT given a string return a list_component
GET_NEW_COMPONENT_TO_rROCESS_LIST return ap empty component_to_process_list

MAKE_LIST_OF _VARIABLES form a chain of variable names from a variable
declaration

e DDLLISTS.ADA 48

r .

samm

UNCLASSIFIED

3.2.54 File DDLLISTB.ADA

LIST_ROUTINES form the chains which hold the identifiers for type

variable and record component (database columns) declarations, for which
type descriptors will be created the remainder of the declatation statement
is valid

MAKE_LIST_OF_NAMES form a chain of identifiers from a type or subtype
declaration

the next read should point us to a name of a type, derived type or subtype
we want to chain up a list of them to process later

stop when we find IS or ;

temp string will contain TYPE or SUBTYPE on entry

identifier is invalid if TYPE declaration and suffix of _NOT_NULL or
_NOT_NULL_UNIQUE

ADD_NAME TO_PROCESS_LIST add an identifier name to the list of identifiers
from a type or subtype declaration that need to be processed

if this is the first name—-to—process set the first pointer

otherwise set the "next" pointer in the previously last name-to-process to
peoint to this new name-to-process

set the previous pointer in this new name-to-process to point to the
old last name-to—process

and now the new name-to-process is the last one

GET_NEW_LIST_NAME given a string return a list_name

GET_NEW_NAME_TO_PROCESS_LIST return an empty name_to_process_list

MAKE_LIST_OF_COMPONENTS form a chain of compcnent identifiers (database
table column names) from record component declaration

on entry we should point to a component of a record type

we want to chain up a list of them to process later
stop when we find : or ;

49 File DDLLISTB.ADA

——— ey ———y

—r

: - -

UNCLASSIFIED

temp string will contain a component name on entry
they must not contain _NOT_NULL or _NOT NULL_UNIQUE suffixes and must be no
more than 18 characters long

ADD_COMPONENT_TO_PROCESS_LIST add a component name to the list of components
from a record declaration that need to be processed

if this is the first component-to—-process set the first pointer

otherwise set the "next" pointer in the previously last

component—-to—-process to point to this new component-to-process

set the previous pointer in this new component-to-process to point to the
old last component-to-process

and now the new component-to—-process is the last one

GET_NEW_LIST_COMPONENT given a string return a list_component

GET_NEW_COMPONENT_TO_PROCESS _LIST return an empty component to_process_list

MARKE_LIST OF_ VARIABLES form a chain of variable names from a variable
declaration

on entry we should point to a variable name

we want to chain up a list of them to process later

stop when we find : or ;

temp string will contain a variable name on entry

they must not contain _NOT_NULL or _NOT_NULL_UNIQUE suffixes
they must be unique

3.2.55 File DDLNAMES.ADA

NAME_ROUTINES validate identifiers

ecf = end of file reached

eol = end of line ; reached

eoli = end of identifiers reached
comma = got a comma

valid_ident = got a valid identifier

File DDLNAMES.ADA 50

UNCLASSIFIED

invalid_ident = got an invalid identifier
VALID_QUALIFIED_IDENT_CHARS validate a qualified identifier
VALID_NEW_TABLE_NAME validates a new table name

VALID_ NEW_IDENT_NAME_DUPS_OK validate a new identifier name, duplicating
the name of an existing identifier is not an error

VALID_NEW_IDENT NAME validate the name of a new identifier
VALID_IDENT_CHARS validate the characters within an identifier name
DUPLICATE_IDENT NAME check to see if the identifier name is a duplicate

GOT_INVALID_CONSTRAINTS validate for the _NOT NULL and _NOT_NULL_UNIQUE
suffixes

CHECK_ECF_EOL_IS COMMA return a flag indicating if the string represents
end of file, end of a line, "is", comma or a valid identifier

CHECK_EOF_EOL_COLON_COMMA return a flag indicating if the string represents

end of file, end of a line, colcn, comma or a valid identifier
VALID NEW_TYPE_IDENT validate a new type identifier
VALID_NEW_COMPONENT_IDENT validate a new component identifier
VALID_NEW_PACKAGE_NAME validate a new package name

VALID_NEW_SUBTYPE_IDENT validate a new subtype identifier

VALID_NEW_FULL_COMPONENT NAME validate a new component (database column) name

DUPLICATE_COMPONENT_NAME check to see if this component (database column)
name is a duplicate within the record (database table)

VALID_NEW_VARIABLE_IDENT validate a new variable identifier

3.2.56 File DDLNAMEB.ADA

NAME_ROUTINES validate identifiers

VALID_QUALIFIED_IDENT_CHARS validate a qualified identifier

51 File DDLNAMEB.ADA

T

UNCLASSIFIED

a valid qualified identifier may consist of only an identifier, or ome or
two packages qualifying the identifier. Errors are:

more than two package qualifiers

any character other than a-z 0-9 _

if a package or identifier begins with a character other than a-z

VALID_NEW_TABLE_NAME validates a new table name

given a new table identifier validate it, for characters and to see if it’s
already been used or if it’s a keyword. It may have been used previously

as an identifier with different package names, in which case if the package
names are visible we should print a warning message. If there is an
identifier descriptor for it return it. If there is a matching table name
used by another schema with the same authorization id it’s invalid. It may
not contain the _not_null or _not_null_unique suffix, and may be no more than
18 characters long.

VALID NEW_IDENT_NAME DUPS_OK validate a new identifier name, duplicating
the name of an existing identifier is not an error

given a string determine if it’s wvalid characters A..Z 0..9 or _ and first
character A..2

if the current package name isn’t the standard then we cannot have names
the same as sql or ada keywords

VALID_NEW_IDENT NAME validate the name of a new identifier

given a string determine if it’s valid characters A..Z 0..5 or _ and first
character A..2

if the current package name isn’t the standard then we cannot have names
the same as sql or ada keywords

then check for a duplicate name

VALID_1DENT_CHARS validate the characters within an identifier name

return false if first character is not A..Z and remaining characters aren’t
A..2 0..9 or

DUPLICATE_IDENT_NAME check to see if the identifier name is a duplicate

File DDLNAMEB.ADA 52

aaa

UNCLASSIFIED

if it’s not in the identifier descriptors it’s looking good

if it is then we have to make sure that the package name in the full
name descriptor isn’t duplicated. if it was used previously

as an identifier with a different package name, then if the package
names are both visible print a warning message.

GOT_INVALID_CONSTRAINTS validate for the _NOT NULL and _NOT_NULL_UNIQUE
suffixes

CHECK_EOF_EOL_IS_COMMA return a flag indicating if the string represents
end of file, end of a line, "is", comma or a valid identifier

CHECK_EOF_EOL_COLON_COMMA return a flag indicating if the string represents
end of file, end of a line, colon, comma or a valid identifier

VALID_NEW_TYPE_IDENT validate a new type identifier

if we’ve reached end of file return eof

if we’ve reached semicolon end of line return eol
if we’ve reached the IS return eoi

if it’s a comma return comma

then check identifier for validity

VALID_NEW_COMPONENT_IDENT validate a new component identifier

if we’ve reached end of file return eof

if we’ve reached semicolon end of line return eol
if we’ve reached the : return eoi

if it’s a comma return comma

then check identifier for validity

VALID_NEW_PACKAGE_NAME validate a new package name
If this is the first package declared

by the schema it may be anything but ADA_SQL. If it is the second it
must be ADA_SQL. If it is third or more we’ll stuff it in the chain

53 File DDLNAMEB.ADA

-

—

UNCLASSIFIED

no matter what it is but it’s invalid. Tell them it’s invalid if it has
the suifix _NOT_NULL or _NOT_NULL_UNIQUE.

VALID_NEW_SUBTYPE IDENT validate a new subtype identifier

if we’ve reached end of file return eof

if we’ve reached semicolon end of line return eol
if we’ve reached the IS return eoi

if it’s a comma return comma

then check identifier for validity

VALID_NEW FULL_COMPONENT_NAME validate a new component (database column) name

given a string determine if it’s valid characters A..Z 0..9 or _ and first
character A..2

if the current package name isn’t the standard then we cannot have names
the same as sql or ada keywords

then check for a duplicate component name

DUPLICATE_COMPONENT_NAME check to see if this component (database column)
name is a duplicate within the record (database table)

if it’s not in the identifier_descriptors it’s looking good

if it is and the table names aren’t the same than we’re ok

if it is and the table names are the same, then we have to make sure

that the package name in the full name descriptor isn’t duplicated.

if it was used previously as an identifier with a different package name,
but the same record name, then if the package names are both visible print
a warning message.

VALID_NEW_VARIABLE_IDENT validate a new variable identifier

if we’ve reached end of file return eof

if we’ve reached semicolon end of line return eol

if we’ve reached the : return eoi

if it’s a comma return comma

then check identifier for wvalidity

if it looks like an identifier but has constraints return invalid identifier
if it really doesn’t look like an identifier return unknown

File DDLNAMEB.ADA 54

UNCLASSIFIED

3.2.57 File DDLNDESS.ADA

GET_NEW_DESCRIPTOR_ROUTINES create and initialize various elements of the
data structures in which the ddl reader will store data

GET_NEW_YET_TO_DO_DESCRIPTOR for the chain of schema units not yet complete
GET_NEW_SCHEMA_UNIT_DESCRIPTOR for descriptions of a schema unit

GET_NEW_WITHED_UNIT_DESCRIPTOR for descriptions of the library units withed
by a schema unit

GET_NEW_USED_PACKAGE_DESCRIPTOR for description of a package withed by
a schema unit

GET_NEW_DECLARED_PACKAGE_DESCRIPTOR describes a package declaration within
a schema unit

GET_NEW_IDENTIFIER_DESCRIPTOR describes an identifier

GET_NEW_FULL_NAME_DESCRIPTOR describes the fully qualified name of an
identifier

GET_NEW_RECORD_DESCRIPTOR describes a type declaration for a record
(database table)

GET_NEW_ENUMERATION_DESCRIPTOR description for enumeration type declaration
GET_NEW_INTEGER_DESCRIPTOR description for an integer type declaration
GET_NEW_FLOAT_DESCRIPTOR description for a float type declaration
GET_NEW_STRING_DESCRIPTOR describtion for a string type declaration

GET_NEW_TYPE_DESCRIPTOR description for a record, enumeration, integer,
float or string type declaration

GET_NEW_LITERAL_DESCRIPTOR description of an enumeration literal within
the enumeration declaration description

GET_NEW_ENUM_LIT_DESCRIPTOR description of an enumeration literal within
the chain of literals

GET_NEW_FULL_ENUM_LIT DESCRIPTOR description of an enumeration literal within
the chain of literals .

GET_NEW_ENUM_LIT_NAME convert a string to an enum_lit_name type

GET_NEW_AUTH_IDENT NAME convert a string to an auth_ident_name type

55 File DDLNDESS.ADA

— e ——

UNCLASSIFIED

~- GET_NEW_LIBRARY_ UNIT_NAME convert a string to a library_unit_name type
~-- GET_NEW_PACKAGE_NAME convert a string to a package_name type

-— GET_NEW_RECORD_NAME convert a string to a record_name type

-- GET_NEW_TYPE NAME convert a string to a type_name type

-— GET_NEW_ENUMERATION_NAME convert a string to an enumeration_name type

3.2.58 File DDLNDESB.ADA

-— GET_NEW_DESCRIPTOR_ROUTINES create and initialize various elements of the
-— data structures in which the ddl reader will store data

-— GET_NEW_YET_TO_DO_DESCRIPTOR for the chain of schema units not yet complete

-- GET_NEW_SCHEMA_UNIT_DESCRIPTOR for descriptions of a schema unit

-~ GET_NEW_WITHED_UNIT_DESCRIPTOR for descriptions of the library units withed
-— by a schema unit

-— GET_NEW_USED_PACKAGE_DESCRIPTOR for description of a package withed by
-- a schema unit

-- GET_NEW_DECLARED_PACKAGE_DESCRIPTOR describes a package declaration within
~— a schema unit

—-=- GET_NEW_IDENTIFIER_DESCRIPTOR describes an identifier

File DDLNDESB.ADA 56

UNCLASSIFIED

GET_NEW_FULL_NAME_DESCRIPTOR describes the fully qualified name of an
identifier

GET_NEW_RECORD_DESCRIPTOR describes a type declaration for a record
(database table)

GET_NEW_ENUMERATION_DESCRIPTOR description for enumeration type declaration

GET_NEW_INTEGER_DESCRIPTOR description for an integer type declaration

GET_NEW_FLOAT_DESCRIPTOR description for a float type declaration

GET_NEW_STRING_DESCRIPTOR describtion for a string type declaration

GET_NEW_TYPE_DESCRIPTOR description for a record, enumeration, integer,
float or string type declaration

GET_NEW_LITERAL_DESCRIPTOR description of an enumeration literal within
the enumeration declaration description

GET_NEW_ENUM_LIT_DESCRIPTOR description of an enumeration literal within
the chain of literals

57 File DDLNDESB.ADA

UNCLASSIFIED

-= GET_NEW_FULL_ENUM_LIT DESCRIPTOR description of an enumeration literal within
—— the chain of literals

—— GET_NEW_ENUM LIT NAME convert a string to an enum lit_ name type

—— GET_NEW_AUTH_IDENT_NAME convert a string to an auth_ident_name type

—— GET_NEW_LIBRARY UNIT_NAME convert a string to a library unit_name type

-— GET_NEW_PACKAGE_NAME convert a string to a package_name type

—— GET_NEW_RECORD_NAME convert a string to a record_name type

—— GET_NEW_ENUMERATION_NAME convert a string to an enumeration_name type

3.2.59 File DDLSDESS.ADA

—— SEARCH_DESCRIPTOR_ROUTINES page thru the data structures and return
-- pointers to or information about various descriptors

—— FIND_NEXT_YET_TO_DO_DESCRIPTOR return a pointer to the next schema unit
~~ which we should continue to process

-~ FIND_SCHEMA_UNIT_DESCRIPTOR given the name of a schema unit, return a pointer

File DDL.SDESS.ADA 58

UNCLASSIFIED

to its descriptor if processing has begun on it

DUPLICATE_WITH given the current schema we’re processing and the schema of
the library unit we’re thinking about withing, tell us if we’ve withed
this one from this schema before

SEARCH_WITHS_TO_FIND_A USE given a schema_ unit_descriptor and a used
package name, return true if that package name is that of a withed schema,
false if it’s not

DUPLICATE_USE given the current schema we’re processing and the full name
of a used package tell us if we’ve used this one from this schema before

GET_PACKAGE_COUNT count the number of packages already declared by this
schema unit and the number not ended yet

SCHEMA_AUTHORIZATION_MATCHES_AUTHORIZATION_ PACKAGE see if this
authorization identifier has been declared in an authorization package
withed by the current schema

SET_UP_OUR_PACKAGE_NAME set up in our_package_name the package name we’re
in right now

3.2.60 File DDLSDESB.ADA

SEARCH_DESCRIPTOR_ROUTINES page thru the data structures and return
pointers to or information about various descriptors

FIND_NEXT_ YET_TO_DO_DESCRIPTOR return a pointer to the next schema unit
which we should continue to process

return a schema unit descriptor of the next one to do

if LAST_YET_TO_DO is null we return null and that means every thing’s
been done

otherwise LAST_YET_TO_DO becomes the one we’re going to do and
LAST_YET_TO_DO is reset with PREVIOUS_YET TO_DO

and PREVIOUS_YET TO_DO’s NEXT pointer is nullified

FIND_SCHEMA UNIT_DESCRIPTOR given the name of a schema unit, return a pointer
+o its descriptor if processing has bequn on it

return pointer to schema unit with given library unit name, if none then

59 File DDLSDESB.ADA

Lot oot i,

e ——— —— —— - - - -

UNCLASSIFIED

return null
it will only been found if it has been processed or partially processed

DUPLICATE_WITH given the current schema we’re processing and the schema of
the library unit we’re thinking about withing, tell us if we’ve withed
this one from this schema before

SEARCH_WITHS_TO_FIND _A_USE given a schema_unit_descriptor and a used
package name, return true if that package name is that of a withed schemna,
false if it’s not

this is for the case of use clause in the context where it’s name must
match exactly that of a withed unit

DUPLICATE_USE given the current schema we’re processing and the full name
of a used package tell us if we’ve used this one from this schema before

GET_PACKAGE_COUNT count the number of packages already declared by this
schema unit and the number not ended yet

SCHEMA _AUTHORIZATION_ MATCHES_AUTHORIZATION_PACKAGE see if this
authorization identifier has been declared in an authorization package
withed by the current schema

SET_UP_OUR_PACKAGE_NAME set up in our_package_name the package name we’re
in right now

3.2.61 File DDLSHOWS.ADA

SHOW_ROUTINES print the information collected in the data structures by
the ddl reader

SHOW_DATA display the schema units

File DDLSHOWS.ADA 60

e

rifeninyisreesmanisrurishaur sl aststol

UNCLASSIFIED

SHOW_SCHEMA_UNITS display the schema units which have been processed
SHOW_IDENTIFIERS display the identifiers which have been processed

SHOW_RECORD display the information that has been collected about record
declaration (database table)

SHOW_ENUMERATION display the information collected about an enumeration
declaration

SHOW_INTEGER display the information collected about an integer declaration
SHOW_FLOAT display the information collected about a float declaration
SHOW_STRING display the information collected about a string declaration
SHOW_POINTERS display the values of the pointers used by the ddl reader

SHOW_ENUMS display the enumeration literal chain

3.2.62 File DDLSHOWB.ADA

SHOVW_ROUTINES print the information collected in the data structures by
the ddl reader
SHOW_DATA display the schema units *

SHOW_RECORD display the information that has been collected about record
declaration (database table)

SHOW_ENUMERATION display the information collected about an enumeration
declaration

61 File DDLSHOWB.ADA

UNCLASSIFIED

—— SHOW_INTEGER display the information collected about an integer declaration

b —— SHOW_FLOAT display the information collected about a float declaration

~- SHOW_ENUMS dispiay the enumeration literal chain

3.2.63 File DDLERRS.ADA
-- ERROR_ROUTINES handel an unknown error

-~ PROCESS_ERROR print a message about an error unknown to the ddl reader

3.2.6¢ File DDLERRB.ADA

-— ERROR_ROUTINES handel an unknown error

-~ PROCESS_ERROR print a message about an error unknown to the ddl reader

3.2.65 File DDLSUB1S.ADA
-~ SUBROUTINES 1 ROUTINES contain some of the subroutines used by the ddl reader

SPLIT_PACKAGE_NAME split a possibly qualified package name into an inner

File DDL.SUB1S.ADA 62

ey

Daih

UNCLASSIFIED

-- package name and an outter package

-- PIND_END_OF_STATEMENT advance pointers to the end of the current statement
—-- GOT_END_OF_STATEMENT determine if we’re at the end of the current statement
~— GET_CONSTANT does the current token match this constant

—— GET_CONSTANT_MAYBE if the current token matches this constant advance
-— pointers past this tokan

-- ADJUST_USER_SCHEMA manipulate the schema name to the format we want

—— CHARACTER_STRINGS_MATCH if the two strings match regardless of case
—— return true

3.2.66 File DDLSUB1B.ADA

—-— SUBRQUTINES_1_ROUTINES contain some of the subroutines used by the ddl reader

—— SPLIT_PACKAGE_NAME split a possibly qualified package name into an inner
-- package name and an outter package

—— given inner package which may be two packages (inner.outter)
-- split them into two packages, if only one return as outter,
-— unless it’s ADA_SQL, then it’s inner

-— FIND_END_OF_STATEMENT advance pointers to the end of the current statemernt
-- advance pointers to the semicolon at the end of the current statement
—-— if we’re already at the end just return, if we have to read further into

-- the line read into the current string so on output it will contain
-— a semicolon

-— GOT_END_OF_STATEMENT determine if we’re at the end of the current statement

—— check to see if we’re currently pointing at the ; which is
-— the end of the line

63 File DDLSUB1B.ADA

e~ . e, .

- cwws V‘%"’W"‘

.

[Rpeupy

P

i~ g

UNCLASSIFIED

—— GET_CONSTANT does the current token match this constant

-- if the string in temp string matches the asked for constant and update is
-- true then read the next token and return valid as it was on input,

—— if string doesn’t match constant return valid = false

—-— GET_CONSTANT_MAYBE if the current token matches this constant advance

-- pointers past this tokan

—-— if the string in temp string matches the asked for constant and update is
-- true then read the next token and return valid as it was on input

-- and return got as true,

—— if not return valid as entered and got as false

-— ADJUST_USER_SCHEMA manipulate the schema name to the format we want

-- adjust the inputed user name to upper case, lower case or leave it as it
-— if the name input by the user has an .ADA or .A, or whatever is the

-— extention for this system as defined in ddliodefs, extention, Tremove it

——

~— CHARACTER_STRINGS_MATCH if the two strings match regardless of case
-=- return true

3.2.67 File DDLSUB2S.ADA
—— SUBROUTINES_2 ROUTINES contain some of the subroutines used by the ddl reader

-= SPLIT_IDENT_2 PACKS split up a string containing an identifier and
-— possibly up to two qualifying packages

-~ FIND_IDENTTFIER_DESCRIPTOR given an identifier return it’s
-— identifier_descriptor

-— FIND_FULL_NAME_ COMPONENT_DESCRIPTOR given an identifier’s
-- identifier_descriptor and a full package name and a table name return the

-- full name_descriptor of a component or null if it’s not found

— - FIND_FULL_NAME_DESCRIPTOR given an identifier’s identifier_descriptor
-- and a full package name return the full_name_descriptor or null if

File DDLSUB2S.ADA 64

-r

.

UNCLASSIFIED

it’s not found

GET_READY_TO_FIND_FULL_NAME DESCRIPTOR given the identifier descriptor
and potential package names look for a full name descriptor

FIND_ FULL_NAME_ DESCRIPTOR_VISIBLE given the schema unit and identifier’s
descriptor find the full name descriptor

BASE TYPE_INTEGER find out if the base type of the identifier is an integer

LOCATE_PREVIQUS_IDENTIFIER given an identifier, possibly qualified return
it’s identifier descriptor and it’s full name descriptor

STRING_TO_INT convert a character representation of a number to an integer

BASE_TYPE_CHAR given a full name descriptor find out if it’s base type
is character

IS_IDENTIFIER_NULL_OR_UNIQUE is the identifier of a _not_null or
_not_null_unique type

IN_ADA_SQL_PACKAGE are we currently within a sub package named ADA_SQL

ADD_NEW_IDENT_AND OR_FULL_NAME_DESCRIPTORS add identifier and full name
descriptors to the chains for this identifier name

ADD_NEW_IDENT_AND_OR_FULL_NAME_COMPONENT DESCRIPTORS add an identifier and
full name descriptor for the component (database column) name

3.2.68 File DDLSUB2B.ADA

SUBROUTINES_2_ ROUTINES contain some of the subroutines used by the ddl reader

SPLIT_IDENT_2_ PACKS split up a string containing an identifier and
possibly up to two qualifying packages

FIND_IDENTIFIER_DESCRIPTOR given an identifier return it’s
identifier_descriptor

FIND_FULL_NAME_COMPONENT_DESCRIPTOR given an identifier’s

65 File DDLSUB2B.ADA

UNCLASSIFIED

identifier descriptor and a full package name and a table name return the
full name_descriptor of a component or null if it’s not found

FIND_FULL_NAME_DESCRIPTOR given an identifier’s identifier_descriptor
and a full package name return the full name descriptor or null if
it’s not found

GET_READY_TO_FIND FULL_NAME DESCRIPTOR given the identifier descriptor
and potential package names look for a full name descriptor

given the identifier descriptor and possible known outter and inner
packages and possible trying outter and inner packages set up to create
the full package name to look for in the full name descriptors.

there must be at least one outter and one inner package. the known ones
must be used if available and if there are corresponding try ones they
better match.

FIND_FULL_NAME DESCRIPTOR_VISIBLE given the schema unit and identifier’s
descriptor find the full name descriptor

given current schema, identifier’s descriptor and either no package names,
both the inner and outter package name or only the inner package name

of only the outter if its one of the special (database, standard,
cursor_definition) find the full name descriptor that would be

visible from current schema. First choice is current package. If no match
then next choice is from packages currently used (it’s already been
established at this point that we’re two levels deep into packages unless
we’re doing one of the special ones). If it isn’t found yet then we have
to search the withed list, but in that case the full package name better

be described.

LOCATE_PREVIOUS_IDENTIFIER given an identifier, possibly qualified return
it’s identifier descriptor and it’s full name descriptor

error 0 = ok
error 1 it is not a valid qualified identifier
error 2 = does not split correctly into 2 packages and 1 identifier

[}

1 File DDLSUB2B.ADA 66

— ———n M—P—W‘“""' -

. Ay g e A

UNCLASSIFIED

- maybe invalid nesting of packages
~— error 3 = cannot find identifier by this name
-- error 4 = can.ot identify unique full name identifier of this name

-— STRING_TO_INT convert a character representation of a number to an integer

-— BASE_TYPE_CHAR given a full name descriptor find out if it’s base type
-- is character

~— IS_IDENTIFIER_NULL_OR_UNIQUE is the identifier of a _not_null or
-— _not_null_unique type

-— IN_ADA_SQL_PACKAGE are we currently within a sub package named ADA_SQL

-— we also return true if the current package is one of the standard ones

-— ADD_NEW_IDENT_ AND_OR_FULL NAME DESCRIPTORS add identifier and full name
-- descriptors to the chains for this identifier name

-— identifier descriptor may already exist, but if not create one
-~ full name descriptor will not already exist, create it

-~ ADD_NEW_IDENT_AND_OR_FULL_NAME_COMPONENT DESCRIPTORS add an identifier and
-- full name descriptor for the component (database column) name

-— identifier descriptor may already exist, but if not create one
-— full name descriptor will not already exist, create it

3.2.69 File DDLSUB3S.ADA
-— SUBROUTINES_3_ROUTINES contain some of the subroutines used by the ddl reader

-- BREAK_DOWN_SUBTYPE_INDICATOR break a subtype indicator down into small
-- usable parts

67 File DDLSUB3S.ADA

UNCLASSIFIED

SUBTYPE _INDICATOR_IS_ENUMERATION validate the subtype indicator from
an enumeration declaration

LOCATE_ENUMERATION LITERAL return the position and descriptor of the
given literal if it appears in the given type descriptor

SUBTYPE_INDICATOR_IS_INTEGER validate the subiype indicator from
an integer declaration

SUBTYPE_INDICATOR_IS_FLOAT validate the subtype indicator from
a floating point declaration

SUBTYPE_INDICATOR_IS_STRING validate the subtype indicator from
a string declaration

INSERT_SUBTYPE INDICATOR_INFORMATION into the descriptor

3.2.70 File DDLSUB3B.ADA

SUBROUTINES_3_ROUTINES contain some of the subroutines used by the ddl reader

BREAK_DOWN_SUBTYPE_INDICATOR break a subtype indicator down into small
usable parts

on entry temp string should contain the previous identifier of the
subtype indicator. If that type is:
unconstrained array - may or may not specify a range and we will return
got_array_index, array_ index_lo and array_index_hi
constrained array - must specify nothing else
integer - may specify a range, return got_integer_range, integer_ragne_lo
and integer_range_hi
real - may specify a digits and or a range, return got_float_digits,
float_digits, got_float_range, float_range_lo and float_range_hi
enumeration - may specify a range, return got_enum_range, enum_range_lo,
and enum_range_hi
record - invalid

errors returned:
1 the previous identifier was invalid

-~ 2 the previous identifier was a component

-= 3 the previous identifier was a record

- 4 for enumeration range not found but something bogus there
- 5 for enumeration range literals are incorrect

- 6 for integer range not found but something bogus there

File DDLSUB3B.ADA 68

L e e e Bugl - ~)

UNCLASSIFIED

7 for integer range integersare incorrect
8 for float expecting digits or range or ; found none
9 for float digits integers are incorrect
10 for float range integers are incorrect
11 for string range not found but something bogus there
12 for string range is incorrect
13 for string range was given for a constrained array
14 no longer used - for string range was not given for an
unconstrained array

SUBTYPE_INDICATOR_IS_ENUMERATION validate the subtype indicator from
an enumeration declaration

on entry temp_ string should contain either ; or RANGE
if ; then just return valid=true
if range then it must be followed by two enumeration literal range
specifiers. They must be located in the parer . (type_des) and ordered
correctly, if so return them, if not error
errors returned:
4 range not found but something bogus there
5 range literals are incorrect
first we either have ; or RANGE
now find first range literal
now find .. between literals
now find range literal 2

now we should be at the end of the statement

now find out if the literals belong to the parents

LOCATE_ENUMERATION_LITERAL return the position and descriptor of the
given literal if it appears in the given type descriptor

SUBTYPE_INDIUA\TOR_IS_INTEGER validate the subtype indicator from
an integer declaration

69 File DDLSUB3B.ADA

UNCLASSIFIED

on entry temp_string should contain either ; or RANGE
if ; then just return valid=true
if range then it must be followed by two integer range
specifiers. They must fuall within the range of the parent (type_des)
and be ordered correctly, if so return them, if not error
errors returned:
6 range not found but something bogus there
7 range integers are incorrect
first we either have ; or RANGE
now find lo range
now find .. between integers
now find hi range

now we should be at the end of the statement

now find out if the range is valid with the parents

SUBTYPE_INDICATOR IS_FLOAT validate the subtype indicator from
a floating point declaration

on entry temp_string should contain either ; or DIGITS or RANGE

if ,; then just return valid=true

if digits then it must be followed by an integer

if range then it must be followed by two floats

They must fall within the digits and range of the parent (type_des)
and be ordered correctly, if so return them, if not error

errors returned:

8 expecting digits or range or ; found none
9 digits is incorrect
10 range is incorrect

first we either have ; or DIGITS or RANGE
process DIGITS here

process range here

now find lo range

now find .. between floats

File DDLSUBJB.ADA 70

UNCLASSIFIED

—-- now find hi range
—- now find out if the range is valid with the parents

-- now we should be at the end of the statement

—= SUBTYPE_INDICATOR_IS_STRING validate the subtype indicator from
—— a string declaration

-— on entry temp_string should contain either ; or (

—— if ; then just return valid=true)

—— if (then it must be followed by a range and)

—- Range must fall within the range of the parent (type_des)
—— and be ordered correctly, if so return them, if not error

~— errors returned:

- 11 range not found but something bogus there

- 12 range is incorrect

- 13 range was given for a constrained array

-= 14 no longer used - range was not given for an unconstrained array

-—- first we either have ; or (

-— if constrained parent and range supplied = error
-- if unconstrained parent may or may not have range
-- now find lo range

-— now find .. between integers

-— now find hi range

-~ now we should be at the end of the statement find);

-- now find out if the range is valid with the parents

== INSERT_SUBTYPE_INDICATOR_INFORMATION into the descriptor

3.2.71 File DDLSUB4S.ADA

-— SUBROUTINES_4_ROUTINES contain some of the subroutines used by the ddl reader

71 File DDL.SUB4S.ADA

UNCLASSIFIED

—- WITH_USE_SCHEMA_DEFINITION tell me if we’ve withed and used the package
-- "schema definitions" and if any other package were withed and/or used,
-- not counting "standard"

-- IS_AUTH_ID_UNIQUE return true if the authorization identifier is uniqgye
—-— and false if it’s not.

—— VALIDATE_NULL_UNIQUE_CONSTRAINTS make sure that a _not_null or
—- _not_null_unique identifier is a subtype of another identifier

~— NULL_UNIQUE_NAMES THE_SAME if we lop off the suffixes are the identifiers
-- the same

—— SET_UP_WITH_USE_STANDARD_FOR_SCHEMA all schema units are set up to with and
-- use "standard" as a default

-— ADD_NEW_ENUM_LIT add a new enumeration literal to the literal chain and tc
-= the full name literal chain

-= FIND_EXISTING_ENUM_LIT given an enumeration literal return it’s
-- enumeration literal descriptor

—— ADD_NEW_ENUM_LIT_ FOR_DERIVED add to the literal chains for a type derived
-- from an enumeration type

3.2.72 File DDLSUB4B.ADA

—— SUBROUTINES_4_ROUTINES contain some of the subroutines used by the ddl reader

-— WITH_USE_SCHEMA_DEFINITION tell me if we’ve withed and used the package
-~ "schema definitions” and if any other package were withed and/or used,
-— not counting "standard"

-— IS_AUTH_ID_UNIQUE return true if the authorization identifier is uniqye
-— and false if it’s not.

-— Also print error message if necessary

-— VALIDATE_NULL_UNIQUE_CONSTRAINTS make sure that a _not_null or
—-- _not_null_unique identifier is a subtype of another identifier

File DDLSUB4B.ADA 72

-

L i e adeae .

UNCLASSIFIED

given a subtype descriptor, whose NOT_NULL and NOT_UNIQUE variables reflect
the parents, determine if the subtype is more constrained than the parent.
also if constraints are involved then the basic name, without suffixes,
must be the same.

NULL_UNIQUE_NAMES THE_ SAME if we lop off the suffixes are the identifiers
the same

SET_UP_WITH_USE_ STANDARD_FOR_SCHEMA all schema units are set up to with and
use "standard" as a default

if this schema is "STANDARD" then don’t do anything
if we haven’t already withed "STANDARD" then with it
if we haven’t already used "STANDARD"

ADD_NEW_ENUM_LIT add a new enumeration literal to the literal chain and to
the full name literal chain

the enumeration literal descriptor may already exist, if not create one
the full enumeration literal descriptor will not already exist, create it

FIND_EXISTING_ENUM_LIT given an enumeration literal return it’s
enumeration literal descriptor

ADD_NEW_ENUM_LIT FOR_DERIVED add to the literal chains for a type derived
from an enumeration type

3.2.73 File CHARTOS.ADA

chartos.ada - CONVERT_CHARACTER_TO_COMPONENT’s post process data structures
and routines for generating the necessary routines

Ada/SQL permits strings to be arrays with components of any type derived
from CHARACTER. When processing data returned from the database, ada/SQL
stores strings as STRINGs. For passing it back to an application program,
this returned data is converted to its program array type by an INTO

73 File CHARTOS.ADA

s

UNCLASSIFIED

—— procedure instantiated from a generic string INTO procedure. There is one
-- string INTO procedure instantiated for each program string type that may be
—- returned to the application program.

—-- The generic INTO procedure converts the returned database STRING into the
—- program array type character by character, explicitly converting each

—-— program component to type CHARACTEk. (This conversion is unnecessary for
-— program array types of CHARACTER, but I figured that the INTO procedure

—-- would probably have to be looking at each character of the result anyway,
--— in order to decode where a particular column result stops and the next one
-- starts, so why not let it call the conversion routine in all instances? If
—-— the conversion routine is INLINEd, then it doesn’t generate any code

—— anyway. I did not bother with pragma INLINE in the example, but it could
-- be easily added since the entire generated package is now [will soon be]
—- magically produced by computer.)

-— This explicit conversion is performed by a function called CONVERT_-

-~ CHARACTER_TO_COMPONENT, which is a generic formal subprogram to the generic
—— INTO procedure. The application scanner generates the required functions
—- named CONVERT_CHARACTER_TO_COMPONENT, so that each INTO procedure

—- instantiation uses the correct component conversion function by default (no
-— actual parameter need by supplied to the instantiation for the CONVERT_-

—— CHARACTER_TO_COMPONENT generic formal subprogram.)

—-- There is one CONVERT_CHARACTER_TO_COMPONENT function generated for each

—-- type, including CHARACTER, used as the component type of a string program
—— type that is retrieved from the database. Since the functions rely on the
—— fact that the component type is derived from CHARACTER, they cannot be

—-— merely instantiated from generics, but must be completely written. 1In

-~ what follows, type_name represents the fully qualified name of a component
-— type. If the type is defined in a DDL package, type_name will be of the
-- form library unit.ADA_SQL.type_simple_ name. If the type is defined in a
—-— predefined package, type_name will be of the form library unit.type_-—

-— simple_name. This includes STANDARD.CHARACTER —- the hand-generated

-—- package for the runtime example used a type_name of CHARACTER, but

—— STANDARD.CHARACTER is easier to program (no need to check for special

—- case), and may be used.

-- The specification cof each CONVERT_CHARACTER_TO_COMPONENT function is:

-= function CONVERT_CHARACTER_TO_COMPONENT (C : CHARACTER)
- return type_name;

-- The corresponding body is:
- function CONVERT_CHARACTER_TO_COMPONENT (C : CHARACTER)
-- return type_name is

- begin
- return type _name (C);

File CHARTOS.ADA 74

—

—

e

Dl

UNCLASSIFIED

end CONVERT_CHARACTER_TO_COMPONENT;

Where type_ _name was CHARACTER, the hand-generated package for the runtime
example did not apply the conversion function in the body, saying ‘ust
"return C;". There is certainly no harm in applying a type conversicn
function to STANDARD.CHARACTER, and this may be done, rather than program
for the special case.

The only information required to produce each CONVERT_CHARACTER_TO_-
COMPONENT function is the fully qualified name of the type involved. This
information is found in the ACCESS_FULL_NAME_DESCRIPTOR for the type, and
it is a pointer to that data structure that is passed to CONVERT_-

" CHARACTER_TO_COMPONENT .REQUIRED_FOR to indicate that a component conversion

function is to be generated for the indicated type. CONVERT_CHARACTER_TO -
COMPONENT . REQUIRED_FOR is called whenever it is determined that a component
conversion function is required; it automatically avoids generating
duplicate functions,

There are two post processing steps for the CONVERT_CHARACTER_TO_COMPONENT
functions: producing the specifications and producing the bodies. These
two steps are performed by CONVERT_CHARACTER_TO_COMPONENT,SPEC_POST_-
PROCESSING and CONVERT_CHARACTER_TO_COMPONENT.BODY_POST_PROCESSING.

3.2.74 File CHARTOB.ADA

chartob.ada -~ CONVERT_CHARACTER_TO_COMPONENT’s post process data structures
and routines for generating the necessary routines

data structures to form a chain of array component types that need routines
generated to convert characters to the component types

comparison of DDL_DEFINITIONS.ASSESS_FULL_NAME DESCRIPTOR on left and right
avoid generating duplicate functions

—— Order list by fully-qualified component type name.

produce the specification for the convert character to component routines

produce the body for the convert character to component routines

75 File COLUMNS.ADA

Ranie &

v

UNCLASSIFIED

3.2.75 File COLUMNS.ADA
-— COLUMN_LIST data structures and for making a chain of database columns
-- data structure for making a chain of the database columns

-- add a new column to the chain of database columns

3.2.76 File COLUMNB.ADA
—— COLUMN_LIST data structures and for making a chain of database columns

~— add a new column to the chain of database columns

3.2.77 File COMPTOS.ADA

-- comptos.ada — CONVERT_CCMPONENT_TO_CHARACTER’s post process data structures
-— and routines for generating the necessary routines

—-—- Ada/SQL permits strings to be arrays with components of any type derived

-— from CHARACTER. 1In its internal data structures, Ada/SQL stores strings o3
-— STRINGs. An array program value is converted to its internal

-- representation by a function instantiated from a generic string conversion
~- function. There is one string conversion function instantiated for each

-~ program string type that must be converted to internal representation.

-— If the component type of the program string type is not CHARACTER, then the
-~ string conversion function for that type must convert the program value

-- character by character, explicitly converting each program component to

~ type CHARACTER. This explicit conversion is performed by a function called
—-— CONVERT_COMPONENT_TO_CHARACTER, which 1s a generic formal subprogram to

-~ the generic string conversion function. The application scanner generates
-— the required subprograms named CONVERT_COMPONENT_TO_CHARACTER, so that each
-- string conversion function instantiation uses the correct component

-- conversion function.by default (no actual parameter-need be-supplied to

-~ the instantiation for the CONVERT_COMPONENT_TO_CHARACTER generic formal

-~ subprogram.)

-~ There is one CONVERT_COMPONENT_TO_CHARACTER tunction generated for each
type, other than CHARACTER, used as the component type of a string program
type that must be converted to internal representation. Since the
functions rely on the fact that the component type is derived frem

File COMPTOS.ADA 76

e A o

—

UNCLASSIFIED

CHARACTER, they cannot be merely instantiated from gemerics, but must be
completely written. In what follows, type_name represents the fully
qualified name of a component type. If the type is defined in a DDL
package, type_name will be of the form library unit.ADA_SQL.type_simple -
name. If the type is defined in a predefined package, type_name will be
of the form library unit.type_simple_name.

The specification of each CONVERT_COMPONENT_TO_CHARACTER function is:

function CONVERT_COMPONENT_TO_CHARACTER (C: type_name)
return CHARACTER;

The corresponding body is:

function CONVERT_COMPONENT_TO_CHARACTER (C: type_name)
return CHARACTER is
begin
return CHARACTER (C);
end CONVERT_COMPONENT_TO_CHARACTER;

The only information required to produce each CONVER1_COMPONENT_TO_ -
CHARACTER function is the fully qualified name of the type involved. This

- information is found in the ACCESS_FULL_NAME DESCRIPTOR for the type, and

it is a pointer to that data structure that is passed to CONVERT_-
COMPONENT_TO_CHARACTER.REQUIRED_FOR to indicate that a component conversion
function is to be generated for the indicated type. CONVERT_COMPONENT_TO_-
CHARACTER.REQUIRED_FOR is called whenever it is determined that a component
conversion function is required; it automatically avoids generating
duplicate functions.

There are two post processing steps for the CONVERT_COMPONENT_TO_CHARACTER
functions: producing the specifications and producing the bodies. These
two steps are performed by CONVERT_COMPONENT_TO_CHARACTER.SPEC_POST_-
PROCESSING and CONVERT_COMPONENT TO_CHARACTER.BODY_ POST PROCESSING.

3.2.78 File COMPTOB.ADA

comptob.ada - CONVERT_COMPONENT_TO_CHARACTER'’s post process data structures
and routines for generating the necessary routines

data structures to form a chain of array component types that need routines
generated to convert component types to characters

comparison of DDL_DEFINITIONS.ASSESS_FULL_NAME_DESCRIPTOR on left and right

avoid generating duplicate functions

77 File COMPTOB.ADA

o

UNCLASSIFIED

-- Order list by fully-qualified component type name.

-- produce the specification for the convert component to character routines

File COMPTOB.ADA 78

T e T e v———— T

Distribution List for IDA Memorandum Report M-461

NAME AND ADDRESS
Sponsor

Mr. James Robinette

WIS JIPMO/DXP

Room 5B19

Washington, D.C. 20330-6600

Other

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Mr. Fred Friedman
P.O.Box 576
Annandale, VA 22003

Mr. Kevin Heatwole
5124 Harford Lane
Burke, VA 22015

Ms. Kerry Hilliard
7321 Franklin Road
Annandale, VA 22003

CSED Review Panel

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois

912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm

TRW Defense Systems Group
MS 2-2304

One Space Park

Redondo Beach, CA 90278

Dr. Ruth Davis

The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

NUMBER OF COPIES

2 copies

2 copies

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

P

NAME AND ADDRESS

Dr. Larry E. Druffel

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15231-3890

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College

Hanover, NH 03755

Mr. A.J. Jordano

Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.

Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay

302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ

Mr. Philip Major, HQ

Dr. Robert E. Roberts, HQ

Dr. Jack Kramer, CSED

Dr. Robert I. Winner, CSED
Dr. John Salasin, CSED

Mr. Bill R. Brykczynski, CSED
Ms. Katydean Price, CSED

IDA Control & Distribution Vault

NUMBER OF COPIES

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
2 copies
3 copies

