SPH-4 Helmet Retention Assembly Reinforcement

By
Ronald W. Palmer
J. L. Haley, Jr.

Biodynamics Research Division

July 1988

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-5292
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

[Signature]
DANIEL W. GOWER, JR.
MAJ, MS
Director, Biodynamics Research Division

Released for publication:

[Signature]
DAVID H. KARNEY
Colonel, MC
Commanding
Title
SPH-4 helmet retention assembly reinforcement (U)

Authors
Ronald W. Palmer and J. L. Haley, Jr.

Type of Report
Final

Date
1988, July

Page Count
20

Abstract
The purpose of a helmet's retention assembly is to keep the helmet firmly and securely in place on the wearer's head, thus preventing the exposure of the cranium to direct impact. The standard SPH-4 retention assembly is prone to excessive elongation under stress, and allows excessive helmet displacement and cranium exposure. A modified SPH-4 retention assembly, reinforced with 0.75-inch tubular nylon webbing, was manufactured in this laboratory and tested quasi-statically on a testing machine which exerted a force at a constant speed. A standard SPH-4 retention assembly was also tested as a control. The reinforced retention assembly withstood a 450-lb load without failure. Elongation of the reinforced retention assembly, measured at 300-lb load, was almost 50 percent less than that of the standard retention assembly measured at the same load.

Subject Terms
Helmet, retention system, life support equipment, chinstrap, protective clothing (SDU).
Table of contents

List of figures .. 2
Introduction ... 3
Methods ... 3
Materials .. 8
Results .. 8
Discussion ... 10
Conclusions ... 11
Recommendation 11
References ... 12
List of equipment manufacturers 13
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Reinforced retention assembly</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Reinforced retention assembly as installed in an SPH-4 helmet with ANSI Z-90.1 simulated "chin" loading device</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Standard retention assembly as installed in an SPH-4 helmet sustaining the load from a simulated "chin"</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Comparison of the SPH-4 helmet displacement from the head when restrained by a standard and a reinforced retention system</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Failure of the left, forward retention tab stitching in the standard retention assembly</td>
<td>10</td>
</tr>
</tbody>
</table>
Introduction

The importance of a helmet's retention system is equal to the importance of its protective covering in providing protection to its wearer. A helmet that is exposed to the impact forces that occur in an accident can be displaced by these forces or, possibly, come off the head entirely, thereby exposing the cranium to direct impact. A helmet with adequate impact protection structure that displaces or does not remain on the head will not provide the protection against the initial or secondary impacts that occur in many rotary-wing accidents.

The SPH-4 flight helmet, with the stronger double-snap chinstrap, does not come off the head easily as is revealed by our Aviation Life Support Equipment Retrieval Program (ALSERP), but the excessive elongation of the retention harness (chinstrap and nape-ear cloth assembly) permits excessive cranium exposure. A new experimental helmet retention test, using a humanoid head and neck attached to a pendulum, also has revealed excessive rotation of the SPH-4 helmet so that the forward blow of the helmet rests on the chin in some simulated "crashes" (Gruver and Haley, 1987). Also, it previously has been reported that retention assembly failure is a significant factor in those cases in which helmet loss occurs (Reading, et al., 1984).

This report will show how the existing SPH-4 retention harness can be reinforced to reduce by 50 percent the stretch of the harness. It is obvious that stiffening the chinstrap and adjacent harness will reduce upward displacement of the helmet when the head is pitched violently forward in an accident. By reducing upward displacement, the degree to which the helmet will displace on the head (forward and backward) also will be reduced, thereby maintaining the protective covering of the head.

Methods

A reinforced retention assembly (Figure 1) was made by removing the retention tabs from a standard SPH-4 retention assembly and stitching 0.75-in. tubular nylon webbing along both sides of each earcup. The thread used was Nymo UVR, size EE, nylon monocord,* which has a strength of 15.5 lbs. Fourteen

* See Appendix
stitches per inch were sewn. The upper ends of the webbing extended beyond the upper edge of the retention assembly by 1.75 inches. These extensions were grommeted and they provided the points of attachment to the helmet shell, taking the place of the original retention tabs. The webbing on the left rearward side extended 1.5 inches beyond the lower edge of the retention assembly and had two D-rings sewn into its end. The webbing on the right rearward side extended 13 inches beyond the lower edge and formed the chinstrap. No snaps were used. The chinstrap anchor points were located 1 inch to the rear of the original anchor points, as seen in Figures 1a and 1b. However, an impromptu fit test indicated the standard SPH-4 geometry should have been used in regard to the location of the chinstrap anchor points. The reinforced retention assembly weighed 0.22 lb as opposed to the standard retention assembly (including chinstrap) which weighed 0.24 lb.

Two standard, extra-large size SPH-4 helmets were used in the test. One helmet (Figure 2) contained the webbing-reinforced retention assembly and the other (Figure 3) contained the standard SPH-4 retention assembly. The retention assemblies were tested quasistatically on a testing machine which exerted a downward force at a constant speed.
Figure 1. Reinforced retention assembly.
Figure 2. Reinforced retention assembly as installed in an SPH-4 helmet with ANSI Z-90.1 simulated "chin" loading device.
Figure 3. Standard retention assembly as installed in an SPH-4 helmet sustaining the load from a simulated "chin."
Materials

The testing machine used in this experiment was the Tinius-Olsen Locap® testing machine. A 600-pound Revere load cell was used. The rate of loading was 1.5 inches per minute.

Results

The results are depicted in Figure 4. The reinforced retention assembly did not fail under a load of 450 lb. Deflection was 2.1 in. The reinforced retention assembly was not stressed to failure; however, slight fraying around the grommet of the left, forward retention tab (extension) was seen. Initially, the standard retention assembly failed at 250 lb. However, after the test it was noted that the left, forward retention tab had not been stitched in accordance with MIL-H-43925 because the stitching extended approximately half way across the width of the retention tab. Another retention assembly was tested and loaded to 400 lb with a deflection of 3.2 inches when failure occurred in the left, forward retention tab, as shown in Figure 5.

Deflections of the reinforced and standard retention assemblies, measured at 300 lb loads, were compared and the reinforced retention assembly was shown to have stretched 45 percent less than the standard retention assembly.
Figure 4. Comparison of the SPH-4 helmet displacement from the head when restrained by a standard and a reinforced retention system.
Figure 5. Failure of the left, forward retention tab stitching in the standard retention assembly.

Discussion

All retention assemblies tested either failed or showed slight fraying at the left, forward retention tab, an indication that the test method produced an uneven load distribution among the four retention tabs. Current military specifications for the SPH-4 require that the retention assembly be able to withstand a load of 300 lb which is equivalent to 75 lb per retention tab. The results of this study indicate retention tab failure will occur if the standard SPH-4 retention assembly is subjected to an unequally distributed load, not an unusual event in accidents. Both of the failures observed in this test were due to failure of the retention tab stitching.

The reinforced retention assembly stretched much less than the standard retention assembly. This performance was due to three factors. First, by stitching the tubular nylon webbing longitudinally along the entire length of the retention assembly, the load is distributed directly to the retention material surrounding the earcups and to the chin of the user. This is in contrast to the standard retention assembly in which load is concentrated at four points. Second, each webbing strap was secured to the retention assembly by two parallel
rows of stitching which made the assembly resistant to stitching failure. Third, because the nylon tubular webbing is less elastic than the cloth which surrounds the earcups, the reinforced retention assembly stretches far less than the standard retention assembly which results in reduced deflection under stress.

The effect of excessive chinstrap deflection cannot be overemphasized. Prior helmet retention testing on the U.S Army Aeromedical Research Laboratory pendulum (dynamic) tester revealed the excessive movement of the standard SPH-3 and SPH-4 helmets by comparison to the HGU-33 and HGU-54 helmets (Gruver and Haley, 1987).

Conclusions

1. The standard SPH-4 retention assembly easily can be modified so that it can withstand loads up to 450 lb.

2. Such a modification eliminates retention tab stitching failure and distributes the load over a greater, continuous area.

3. Modification of the standard retention assembly in this way causes the assembly to stretch less when under load and, thus, facilitates helmet retention.

4. Modification of the standard retention assembly in this way will prevent premature retention assembly failure during uneven loading.

Recommendation

Recommend further development and field evaluation of the reinforced retention system to determine its suitability for use in the SPH-4 helmet.
References

Appendix

List of equipment manufacturers

Belding Corticelli Thread Company
1430 - T Broadway
New York, NY 10018

Tinius Olsen Testing Machine Company, Inc.
Easton Road, Box 429
Willow Grove, PA 19090
Initial distribution

Commander
U.S. Army Natick Research and Development Center
ATTN: Documents Librarian
Natick, MA 01760

Naval Submarine Medical Research Laboratory
Medical Library, Naval Sub Base
Box 900
Groton, CT 05340

Commander/Director
U.S. Army Combat Surveillance & Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO NEW YORK 09180

Commander
Naval Air Development Center
Biophysics Lab
ATTN: G. Kydd
Code 60B1
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Dr. E. Hendler
Human Factors Applications, Inc.
295 West Street Road
Warminster, PA 18974

Under Secretary of Defense for Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301

Commander
U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

U.S. Army Research and Development Support Activity
Fort Monmouth, NJ 07703

Chief, Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB-TL
Waterlief Arsenal, NY 12189

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 6021 (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20014

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001
Director of Professional Services
AFMSC/GSP
Brooks Air Force Base, TX 78235

U.S. Air Force School of Aerospace Medicine
Struwegold Aeromedical Library
Documents Section, USAFSAM/TSK-4
Brooks Air Force Base, TX 78235

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army Dugway Proving Ground
Technical Library
Bldg 5330
Dugway, UT 84022

U.S. Army White Sands Missile Range
Technical Library Division
White Sands Missile Range, NM 88002

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

U.S. Army Aviation Engineering Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

U.S. Army Combat Developments Experimental Center
Technical Information Center
Bldg 2925
Fort Ord, CA 93941-5000

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

U.S. Army Missiles of Research
LETTERMAN ARMY INSTITUTE
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Director
Naval Biosciences Laboratory
Naval Supply Center, Bldg 844
Oakland, CA 94625

Commander
U.S. Army Aviation Center and Fort Rucker
ATTN: ATZQ-CDR
Fort Rucker, AL 36362

Directorate of Training Development
Bldg 502
Fort Rucker, AL 36362
Chief
Army Research Institute
Field Unit
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-QA
Cairns AAF
Fort Rucker, AL 36362

Chief
Defence and Civil Institute
of Environmental Medicine
P.O. Box 2000
ATTN: Director MLSD
Downsview, Ontario Canada M3M 3B9

Staff Officer, Aerospace Medicine
RAF Staff, British Embassy
3100 Massachusetts Avenue, NW
Washington, DC 20008

Canadian Society
of Aviation Medicine
c/o Academy of Medicine, Toronto
ATTN: Ms. Carment King
288 Bloor Street West
Toronto, Canada M5S 1V8

Canadian Forces
Medical Liaison Officer
Canadian Defence Liaison Staff
2450 Massachusetts Avenue, NW
Washington, DC 20008

Officer Commanding
School of Operational
and Aerospace Medicine
DCIEM P.O. Box 2000
1133 Sheppard Avenue West
Downsview, Ontario, Canada M3M 3B9

Chief
Human Engineering Laboratory
Field Unit
Fort Rucker, AL 36362

Commander
U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-T-ATL
Fort Rucker, AL 36362

President
U.S. Army Aviation Board
Cairns AAF
Fort Rucker, AL 36362

USA Medical Liaison Officer
U.S. Embassy Box 54
ATTN: USADO-AMLO
FPO New York 09509

HQ, Department of the Army
Office of The Surgeon General
British Medical Liaison Officer
DASG-ZX/COL M. Daly
5109 Leesburg Pike
Falls Church, VA 22041-3258

Canadian Airline Pilot's
Association
MAJ (Retired) J. Soutendam
1300 Steeles Avenue East
Brampton, Ontario, Canada L6T 1A2

Commanding Officer
404 Squadron CFB Greenwood
Greenwood, NS, Canada B0P 1N0

National Defence Headquarters
101 Colonel By Drive
ATTN: DPM
Ottawa, Ontario, Canada K1A 0K2
Commanding Officer
Headquarters, RAAF Base
Point Cook Victoria,
Australia 3029

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
Building 602
Fort Rucker, AL 36362