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ABSTPACr

In this woek, we discus the solutiou o the diuatkal equatima in the cylindrical coordinate synt
for the can of a coupled CE resuoi ma usehafh at a fints disk electrode. We use the properun of
discontinuous iateplis of asi fuctiomi to trie the muiied boundary onoditions at the electode
surfae aldx h sufonin oss. Do results ar cospe to pfevios anlye an we a l -
coprsoso vanous csiaua of the choosswosti tespossa for consuant surface concetruon

monditions..

INTRODUCMION

The application of microdisk electrodes to the investigation of the kinetics f
chemical reactions in solution coupled to the electrode reactions (CE, ECE_ i-u

DISP reactions) has been investigated recently l,21. It was shown that the dimcn
sions of the electrode become a parameter of the investigation, these dimensicn, 2

effect probing the reaction layer at the electrode surface. An interesting asPCt
these measurements is that it becomes possible to differentiate between alter"
reaction paths such as the ECE and DISPI mechanism by combining measurm.-rn
using microelectrodes with those using conventional planar electrodes; rate par.- .f
ters can be derived from "working curves", e.g. of the effective number of eleL:-
transferred as a function of the inverse of the radius of the electrode.
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An approximate method of data analysis was used in these investigations. For

example. for the CE mechanism

tiA;=B (0)
k:

B n e C (U)
the flux of B to the surface was obtained from the solution of the differential
equation in the spherical coordinate system in the steady state

dc2D dc

D c + - +k - k 2c-O ()
dr 2  r dr

rather than that for the cylindrical coordinate system appr-4rate to the microdisk
electrode

8 D 82c+ D8 ac a .
-- D- + L + D-I + kc- o (2)'T1 r 2 r ar azl

in the steady state. The solutions obtained for a microsphere were then corrected to
those for a microdisk by assuming that the same scale factor holds in these
experiments as for the measurements of the voltammeuic curve for a reversible
electrode reaction, viz.

4
ad" - -ah. (3)

where adk and a - are the relevant electrode radii.
We have shown reently that it is possible to develop systematic algebraic

analyses of a variety of the usual types of electrochemical experiments (chronopo-
tentiometry (31, chronaY [4b ac impedance [SD by appropriate solutions
of the differential equations in the cylindrical coordinate system. In the derivation
of these solutions we have made use of the properties of discontinuous integrals of
Bessel functions to take account of the mixed boundary conditions at the electrode
surface, viz, prescribed concentration or flux over the electrode surface, zero flux
over the surrounding insulator surface. In this paper we explore the application of
the same approach to the analysis of the kinetics of chemical reactions coupled to
electrode reactions using the CE process (i) and (ii) to illustrate the method of
calculation.

THEORETICAL CONSIDERATIONS

In the simplest method of investigating the kinetics of the coupled chemical
reactions (i) and (ii). a sufficiently high overpotential is applied to the electrode
surface to reduce the surface concentration of B to zero. The rate of the reaction
then becomes controlled by the kinetics of reaction (i); species A is assumed to be
present at sufficiently high concentrations that we need only consider the concentra-
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tion distribution of species B. eqn. (2). It should be noted that it is relativelv

straightforward to achieve such conditions with nucroelectrodes (and of pseudo-
first-order reaction conditions in second-order reactions) in view of the high rates of
steady state mass transfer to the electrode surface (1,2].

We therefore requre the soluuon of eqn. (2) subject to the condition

c- c' -" kl/k. r - 0 1 z - .all t (4)

2nd with

c- O<r<a. Z-0. r>O (5)

ac/az- o r>a, z-O, :>O (6)

We have pointed out that the application of condition (5) to the solution of the mass

transfer problem for the chronoamperometric response is difficult and these difficul-
ties also apply to the present case. Instead we consider that the electrode is
subjected to a constant uniform flux - Q, Le.,

D 5c/2- -Q O<r<a, z-O, t>O (7)

and we evaluate the average concentration of B over the electrode surface and then
determine the strength of Q required to make this av=crp concentration zero. It
should be noted that the constant surface flux condition is in fact likely to be a very
good approximation for the investigation of coupled chemical reactions since the
rate will be controlled by step (i). Provided the concentration of A is uniform over
the surface, Q will be uniform over the surface.

Laplace transformation of eqn. (2) subject to condition (4) gives

T, 7 + q 2 + E+0 (8)
r2+ r~ Z2  ~, D k~ j (8

where q - (s/D) 1/ 2 .

The solution of eqn. (8) consists of the Particular Integral kl/k 2s and the Comple-
mentary Function which must be found from

82 CF 1 8Ccp (
a2 q; (+ L2 - (9)-;.-2 ar D er

By analogy to the discussion of the previous examples of electrochemical experi-
ments at microdisk electrodes [3-51, we note that the substitution

ecF - [-5 q,--2 )z] (0

converts eqn. (9) into

a + - - (I1

. ".. ..,,, , -- i l mmmm m I I r rl ar m m' l I|I
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with

, (12)

The solution is then

- ~(,q.) expf ,(N. q.,:JJoar d.x(3
where the functzion g(A,. q. kI/D) must be chosen to satisfy the Laplace transformsof eqns. (6) and (7).

-0, r>a, z-O (14)

d2 -Q(s) 0<r<a, zw0
dZ "rD (15)
We again make use of the diacontiuou intepal

fo, (ar)j,(aa)da- 1/2a P-a (16)1/a r <a
and with the particula form

[f(A. q, l)J 2-. Z+q i i 17k2

We obtain

k2s DJ 0 DJ J a 1

da 
(18)

(a2+q2+ D)1

and, at z - 0,

- Q(s)a Joa, j~a - d"k~s D ~J(,r).,'(o,,) d,,
k+ 2+ /2 (19)("a q2+ k")E!

We derive the average surface concentration over the surface of the diskk, Q(-s)af j( rdr da

k, 2Q(s) f__ r _,____ da
fJoaj D 

(J20)a)k

DnsuDoji n+ ,
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and, on setting the average concentration at the surface equal to zero, we obtain

khD/2k,s
Q(S) = ,( da (21)

a(a + q-+ kjD)1/2

If we define
D 1  "2a ( 2 -S- k)(22)

(sq-: j

eqn. (21) can be written

a(o (+ k 2 )1/

2k 2 ~(23)Q() a2, J, jf(#a+k 2I21 do
y'D 0I a(B2+1)1 4

We therefore obtain a family of curves in the s-domain of Q(s) as a function of
(a2s/D) each determined by the given value of the parameter (ak 2/D). Numerical
inversion gives the responses in the t-domamin. Here we restrict attention to the
steady state limit

kla D 1/2

-- /2 k 2  (24)

irk (( )k/2J ff D /2 ( 0"2+ 1) "/

It is readily confrmed that this result also follows directly from eqn. (2) in the
steady state provided we use the substitutions[/2
c-v exp - a2+ LY z (25)

and

" D 1'a/k,2/2 (26)

Equation (24) is identical to the chronoamperometric response [4) provided we
replace (c' - CAI) by k, and s11 2, by k1/2, i.e. we obtain -

Q112 _ k,a (o ak,
2 '2-D12

The result of the approximate method of analysis (see above) can be written in the

form

Q k- L,(. 8 1+ f28-
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TABLE I

Compansons of the various results for the CE flux and diffusion Itnuted current flux

ak, Exact eqn. Equauon Equauon (eqn. 29) - (eqn. 27) ($SS) (eqn.2
7

)
D 7) 428) (29) (eqn. 27) (eqn. 27)

0.01 23701 Z5664 23747 0.001943 0.000834
0.015 10564 11451 10595 0.002901 0.001248
0.02 .960.1 6466.2 5983.0 0.003849 0.001660
0.03 2664.1 Z896.1 .679.1 0.005717 0.002476
0.04. 1507.5 1641.5 1518.9 0.007547 0.003284
0.05 970.42 1058.6 979.49 0.009341 0.004082
0.06 677.82 740.69 685.34 0.011091 0.004872
0.07 500.87 548.26 507.29 0.012821 0.005653
0.08 385.69 419 391.29 0.01450 0.006425
0.09 306.50 336.60 311.45 0.016162 0.007189
0.1 249.69 274.65 254.12 0.017781 0.007945
0.2 66.028 73.662 68.159 0.032251 0.0150
0.3 30.937 34.961 32.348 0.043929 0.021421
0.4 18.374 20.915 19.353 0.053256 0.027117
0.5 12.376 14.136 13.126 0.060606 0.032211
0.6 9.0306 10.407 9.6292 0.066292 0.036765
0.7 6.9609 8.0540 7.4522 0.070585 0.040633
0.8 5.5832 6.4789 5.994 0.073-09 0.044462
0.9 4.6150 5.3660 4.9650 0.0713M4 0.047696
1.0 3.9053 4.5465 4.2067 0.07715 0.050573
2.0 1.4136 1.6.3 1.5143 0.0674.M 0.065799
3.0 0.83920 0.94961 0.87862 0.046%43 0.067957
4.0 0.59278 0.65915 0.60990 0.0287 0.065204
5.0 0.45767 0.50136 0.46436 0.014619 0.060779
6.0 0.37253 0.40407 0.37387 0.003464 0.05015
7.0 0.31414 0.3376 0.31245 -0.005360 0.051451
3.0 0.27152 0.23979 0.26813 -0.012472 0.047217
9.0 0.23908 0.25366 0.2-%10 -0.018303 0.043569

10.0 0.213.6 0.22546 0.20862 - 0.023153 0.040282
12.0 0.17599 0.18435 0.17058 -0,030741 0.034831

Simulauon result from Shoup and Szabo. refermoa (7).

The result, however, applies tor constant suifa .c.3laa . .1-s, c" n. (27)

assumes a constant surface flux. The correction to the latter condition Wl be of the

order of the ratio of the mass transfer coefficients for constant flux and constant

concentration. 3v2 /32, i.e. we predict the relation

2 4 a + (2

Table I compares values of 2Q/kla for the various predictions (27)-(29) wh-Ie

Fig. I plots the percentage deviation between the predictions (29) and (27). It can he
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Fig 1. P ot of the Mlauve eon with espect to the ec CE result (27) or the aa€ chroompaometc
result (7) for (a) the CE approxzmauton u eqn. (29) and (b) for the chtoooanpuoowtric approxumauon
in eq& (33).

seen that the approximate method gives results which are in fact very close to the
result (27).

CONCLUSION

The present series of papers (see also refs. 3-5) has shown that it is possible to
analyze a wide range of electrochemical experiments at microdisk electrodes by
making use of the properties of discontinuous integrals of Bessel functions. In this
analysis we have made extensive use of the average concentration over the surface of
the microdisk rather than solving the problems for controlled uniorm concentra-
tions over the surface. The latter approach (although possible) leads to considerable
mathematical complications and results which frequently have to be approximated
It is of intercst ih,,,fore, that the approximate procedure used previously for the
discussion of coupled reactions in solution (in which the exact result for me problem
for a microspherical electrode is scaled to that for the disk using eqn. (3) [31) gies
results which are close to those using the procedure developed in this senes of
papers. As a further illustration of this procedure. we note that the diffusion lruted
current density to a sphere (i special case of constant surface concentration)

I - nFDc/aphee + nFD'l/2Ci/2t
1 /  h

can be rescaled to that at the disk using eqn. (3).

I - 4nFDc '/rad,,k + nFD Ic l /2r
1/ "



We therefore obtain the actual current at a disk of radius a,,,, as

iai, I - 4nFD("'ad k - nFir' -D" ic. a,,1t" '- ( cwaI

The current transient normalized by the steady sate current is

": - 1 , 33)
4-FDc - )

We note that eqn. (33) is close to the values predicted algebraically [6] or by
simulation [71 the maximum deviation being +6.8% at adID""t '"a3 this
devation decreasing at both high and low values of a/D/t: 1 ', Table I and Fig. 1.
We note that a wide range of problems has already been analyzed in the spherical
coordinate system and that. when solutions are not available, these are easy to
obtain in view of the uniform accessibility of the surface of spherical electrodes. The
approximate procedure may therefore prove to be generally usefuL
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I Current density, Acm - 2

k,,k 2 Homogeneous rate constants. s- I
$ Parameter D'/7*/(s + k2 )'/

2 
d2 1)/2
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