The Behavior of the Infrared Spectrum of Carbon Monoxide Adsorbed at Platinum Electrodes from Non-Aqueous Solvents

by

M.R. Anderson, D. Blackwood and S. Pons

Prepared for publication in J. Electroanal. Chem.

Department of Chemistry
University of Utah
Salt Lake City, UT 84112

July 15, 1988

Reproduction in whole, or in part, is permitted for any purpose of the United States Government
The Behavior of the Infrared Spectrum of Carbon Monoxide Adsorbed at Platinum Electrodes from Non-Aqueous Solvents

M.R. Anderson, D. Blackwood and S. Pons

Technical

9/77 to 7/88

July 12, 1988

17 COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

infrared spectroelectrochemistry, adsorption, carbon monoxide

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Attached.
The Behavior of the Infrared Spectra of Carbon Monoxide Adsorbed at Platinum Electrodes From Non-Aqueous Solvents

Mark R. Anderson, Daniel Blackwood, and B. Stanley Pons

Abstract

Electrochemical oxidation of vanadium hexacarbonyl anion, V(CO)₆⁺ in aprotic solvents results in formation of the V(0) complex which decomposes to form CO in high concentrations next to the electrode surface. As a result, CO is more rapidly adsorbed on the surface than by conventional methods. Surface reflection infrared spectroscopy shows that the potential dependent frequency shift for the infrared active bands due to CO adsorbed on platinum is 19 cm⁻¹/V in 1,2-dichloroethane and 22 cm⁻¹/V in acetonitrile, which are considerably less than the 30 cm⁻¹/V observed in aqueous systems.
The Behavior of the Infrared Spectrum of
Carbon Monoxide Adsorbed at Platinum Electrodes
From Non-Aqueous Solvents

Mark R. Anderson, Daniel Blackwood, and Stanley Pons

Department of Chemistry
University of Utah
Salt Lake City UT 84112

*To whom correspondence should be addressed.
Introduction

It has been shown that V(CO)$_6^-$ is readily oxidized electrochemically to the neutral species at a platinum electrode in noncoordinating, nonaqueous solvents (1). In the presence of competing complexing ligands (acetonitrile or water, for example) the neutral species will rapidly decompose to produce CO (1-3).

The behavior of the vibrational spectra of adsorbed CO at platinum electrodes has been studied extensively in aqueous systems (4-11). No studies, however, have been reported in the literature concerning the vibrational spectra of adsorbed CO in the presence of nonaqueous solvents. Studies utilizing different conditions, particularly solvent changes, would be beneficial in demonstrating the importance of the environment in the infrared spectrum of adsorbed CO. The reason for the nonexistence of studies of CO adsorption in the presence of aprotic solvents is perhaps the low solubility of CO in these aprotic solvents or the extensive surface cleaning, alternately growing and stripping of a platinum oxide adlayer, required in the aqueous systems which might not be easily accomplished in aprotic solvents.

By producing CO in situ via an uncomplicated electrochemical reaction, one can form a relatively high adsorbate concentration at the electrode surface which promotes adsorption. This paper describes a procedure using the electrochemical behavior of the V(CO)$_6^-$ species in the presence of competing ligands to produce CO in situ. With this preparation, the behavior of the infrared spectra of adsorbed CO formed in the presence of nonaqueous solvents are presented and discussed.

Experimental

Tetraethylammonium vanadiumhexacarbonyl (-I) was prepared and purified by standard procedures. The resulting yellow powder was found to be stable at room temperature for several days in the presence of atmospheric oxygen. Acetonitrile (Aldrich Gold Label) and 1.
dichloroethane (EM Scientific) were used as supplied. No attempt was made to remove
nominal water present in the 1,2-dichloroethane (0.03%) in most experiments as we find the presence of
water is required in the experiment to serve as the competing ligand in this solvent. When "dry"
1,2-dichloroethane was required in the study, 1,2-dichloroethane was stored over molecular sieves
(MCB Manufacturing Chemists, Inc., type MX1583A-1) to remove the residual water. The
"dryness" of the 1,2-dichloroethane was accessed by the reversibility of the oxidation of V(CO)₅.
The dry 1,2-dichloroethane was filtered prior to being used in electrochemical experiments in order
to remove residual particulates from the solvent. All supporting electrolytes were of analytical
reagent grade, and were dried under vacuum before use. All glassware was cleaned in a 50:50
(V:V) mixture of HNO₃ and H₂SO₄, rinsed with triply distilled water, steamed (triply distilled water)
for half an hour, and dried in an oven at 35°C.

To reduce the amount of infrared radiation loss due to solvent absorption, a thin layer cell
of the type previously described was used (12). The surface infrared spectra were obtained by
difference reflection. The FTIR spectrometer was a vacuum bench Bruker/IBM Model IR/98.

The platinum mirror working electrode was prepared by polishing the surface with
successively finer grades of alumina, down to 0.05 micron. The electrode was then placed into the
electrolyte, and the solution was deoxygenated for 20 minutes with argon. After deoxygenation, the
electrode was cycled between -0.8V and 1.0V vs. SCE (the positive potential was not great enough
to form the oxide) at 10mV/s in the positive direction and 3V/s in the negative scan direction for
give minutes. The electrode was then pushed against the infrared transparent CaF₂ window to form
the thin solution layer.

A saturated calomel reference electrode (SCE) was used as the potential reference in the
1,2-dichloroethane solution, while a Ag/Ag⁺ reference electrode (approximately +0.20V vs. SCE)
was used in the acetonitrile solutions. In the 1,2-dichloroethane solution the liquid junction
potential between the nonaqueous solvent and the aqueous reference electrode, as determined from
the oxidation potential of ferrocene/ferrocinium couple, was found to be approximately 250mV. All potentials presented in this paper have been corrected for the liquid junction potential and converted to the SCE reference scale.

Results and Discussion

The redox potential for the reaction

\[V(CO)^+ = V(CO)_6 + e^- \] \[\text{[1]}\]

in the presence of 0.10M tetrabutylammonium tetrafluoroborate/1,2-dichloroethane at a platinum electrode was determined from cyclic voltammetry to be approximately -0.1V vs. SCE (Figure 1). SNIFTIRS spectra in the presence of dry 1,2-dichloroethane showed that the infrared active vibrations in the anion occurred at 1855cm\(^{-1}\) and 1900cm\(^{-1}\) (shoulder), while the neutral species showed only one band at 1971cm\(^{-1}\) (Figure 2).

In the presence of a competing ligand, such as water or acetonitrile, neutral V(CO)_6 readily undergoes a disproportionation reaction (reaction 2) to generate CO (1-3).

\[3V(CO)_6 + 6L \rightarrow VL_6^{2+}(V(CO)_6)_2 + 6CO \] \[\text{[2]}\]

Evidence for this reaction is obtained in the difference spectrum of the V(CO)_6/V(CO)_6 couple at potentials on opposite sides of the oxidation potential. If reaction 2 were to occur as expected, V(CO)_6 will be consumed and should not appear in the difference spectrum. In the spectrum (Figure 3a), the band attributable to V(CO)_6^+ disappears (1855cm\(^{-1}\)) without the expected appearance of V(CO)_6 bands (1971cm\(^{-1}\)). Unfortunately, bands attributable to the VL_6 species were never identified to aid in the confirmation of reaction 2.
Figure 3b shows that the CO produced in reaction 2 is present in two forms: solution dissolved CO and adsorbed CO. Solution dissolved CO has an infrared band at 2135 cm$^{-1}$. The position of this band is independent of electrode potential. If the chemical decomposition of the V(CO)$_6$ occurs close to the electrode surface, the CO may also adsorb onto the platinum, producing a potential dependent infrared band at about 2075 cm$^{-1}$ (Figure 3b). The frequency of the latter band was found to shift by 19 cm$^{-1}$/V as the electrode potential was altered (Figure 4 and Table 1). The CO peak intensity remained constant (within experimental error) until the onset of oxidation to CO$_2$ at about 1.0 V vs. SCE. Other workers have reported the observation of an additional CO band under other experimental conditions at approximately 1850 cm$^{-1}$ corresponding to a bridge bonded species (4,8-11). In the current studies the bridge bonded species was not observed probably because of the overwhelming intensity of the CO stretch of V(CO)$_6$ at nearly the same frequency.

The potential shift of the infrared active band due to CO adsorbed on platinum from aqueous electrolytes has previously been reported to be about 30 cm$^{-1}$/V. Both molecular orbital arguments (6,13) and electric field effects (the electrochemical Stark effect) (14-18) have been proposed to explain this phenomenon. A possible explanation for the significantly lower potential shift observed in 1,2-dichloroethane could be that the much lower permittivity of this solvent, bulk value = 10.3, compared with the permittivity of water, bulk value = 78, results in a less compact double layer in 1,2-dichloroethane giving rise to a smaller potential drop across the adsorbed CO molecules. Indeed, when 1,2-dichloroethane was replaced by a higher permittivity nonaqueous solvent, acetonitrile (bulk permittivity = 36), the rate of shift of frequency with potential was found to increase to 22 cm$^{-1}$/V. The dependence of the potential dependent frequency shift on the solvent permittivity is a subject that is under continued study and will be reported in the near future.

In addition to its effect on the magnitude of the frequency shift with potential, changing the solvent from 1,2-dichloroethane to acetonitrile also resulted in an approximately 40% drop in the
peak intensity of the bands and a 15cm\(^{-1}\) shift in the peak position at any given potential (Table 2). This is considered to be due to a decrease in the total coverage of the CO on the electrode surface due to the competition for adsorption sites with solvent molecules in the acetonitrile solution. Similar coverage effects have previously been reported for aqueous systems (19).

A coverage effect was also observed in 1,2-dichloroethane electrolyte when the amount of water in the solvent was reduced by storing over molecular sieves. Reduction in the water concentration had the effect of extending the lifetime of the neutral V(CO)\(_6\) species, as determined by cyclic voltammetry. The longer lifetime results in the diffusing of the neutral V(CO)\(_6\) away from the electrode surface before decomposing, and hence a lower concentration of CO near the surface. The spectrum in Figure 5 shows that in this case there are two low intensity potential dependent bands, one centered around 2075cm\(^{-1}\) and the other around 2020cm\(^{-1}\). Infrared bands in similar positions have been reported previously in aqueous solutions (6) and have been assigned to two configurations of adsorbed linear bonded CO: a high and low coverage form, respectively. The peak intensity of the 2075cm\(^{-1}\) band increases with time at the expense of the intensity of the 2020cm\(^{-1}\) band, suggesting that the CO molecules migrate on the electrode surface to congregate in "islands".

Further evidence that CO competes with water or acetonitrile for adsorption sites on the platinum surface is shown in Table 3. In this Table, we report the effect on the spectra of changing the supporting electrolyte concentration. In 1,2-dichloroethane the main competition for adsorption sites will be between water and CO. There is also an equilibrium for water between free water and water involved in supporting electrolyte ion solvation. The distribution of water between surface adsorption and ion solvation is then expected to critically depend on the concentration of the supporting electrolyte. A reduction of the supporting electrolyte concentration is expected to result in an increase in the amount of adsorbed water and a corresponding decrease in the surface coverage of CO. This result is confirmed in Table 3.
The influence of the identity of the supporting electrolyte was also investigated. Table 4 shows that the supporting electrolyte identity has only a small effect upon the position and intensity of the CO infrared bands. The effect probably reflects coverage differences between the different solutions. As in the case of the different TBAF concentrations, the changes in the CO coverage is probably due to differences in the ability of the water in solution to solvate the various electrolytes.

It is interesting to note here that even with changes in the type and concentration of supporting electrolyte, the magnitude of the potential dependent frequency shifts always remains approximately 19cm⁻¹/V in 1,2-dichloroethane and 22cm⁻¹/V in acetonitrile. In addition, the CO band intensity remains relatively constant over the potential range investigated during any individual experiment. The last observation indicates that the surface coverage of CO remains constant during the course of an experiment. Consequently, the potential dependent band shifts may be ascribed to changes brought about by the electrode potential rather than by changes in the CO surface coverage.

Finally the effect of adding acetonitrile to dry 1,2-dichloroethane solutions was investigated (Table 5). In the dry 1,2-dichloroethane solvent, the added acetonitrile serves as the competing ligand in the disproportionation reaction of V(CO)₆. Small additions of acetonitrile (0.006M total concentration) were found to produce a small amount of adsorbed CO. The low acetonitrile concentration was thought to be insufficient to decompose a significant amount of the neutral V(CO)₆, as shown by the nearly reversible voltammetric behavior of this solution. Further, this low concentration of acetonitrile was thought to be was large enough to effectively compete with the small amounts of CO present for the adsorption sites. Larger amounts of acetonitrile (over 0.025M total concentration), however, were found to slightly increase the amount of CO adsorption relative to the 0.006M acetonitrile solution despite the increased amount of acetonitrile available for adsorption. Evidence for this conclusion is seen in the slightly larger peak intensity in the solutions
of higher acetonitrile concentration as well as the frequency shift of the CO bands to higher wavenumber. Higher acetonitrile concentrations are thought to decompose the V(CO)$_6$ species producing a much higher CO concentration near the electrode surface, resulting in more favorable competition for surface sites by CO.

Conclusions

An effective method of generating CO adsorbate molecules from nonaqueous solutions has been demonstrated. Attempts to obtain CO adsorption in the presence of aprotic solvents by the more conventional method of bubbling CO in the aprotic solvent were unsuccessful in this research. The inability of more conventional methods of obtaining CO adsorption in these solvents has probably prevented the study of this system previously.

It has been found that the potential dependent frequency shift of adsorbed CO in nonaqueous solutions (19cm$^{-1}$/V in 1,2-dichloroethane and 22cm$^{-1}$/V in acetonitrile) is markedly less than in aqueous systems (30cm$^{-1}$/V), and it is proposed that this may be due to the lower permittivity of the nonaqueous solvents reducing the proportion of the potential gradient that falls across the adsorbed molecule. In addition, it has been found that the vibrational frequency of adsorbed CO in the solvents investigated at any given potential depends on the surface coverage as it does in aqueous solutions. The coverage, however, does not affect the magnitude of the potential dependent frequency shift.
ACKNOWLEDGEMENT

We thank the Office of Naval Research for support of this work. We would also like to thank Dr. Tom Richmond for providing the V(CO)$_6$ compound used throughout the studies.
Literature References

Legends for the Figures

Figure 1. Cyclic voltammogram of 0.001M (C₂H₅)₄N⁺V(CO)₆⁻ in the presence of 0.10M tetrabutylammonium tetrafluoroborate/dry 1,2-dichloroethane at 100mV/sec.

Figure 2. SNIFTIRS spectrum of V(CO)₆⁻ in the presence of dry 1,2-dichloroethane/0.10M tetrabutylammonium tetrafluoroborate. E_ref = -0.40V vs. SCE, E_map = 0.10V vs. SCE.

Figure 3. SNIFTIRS spectrum of V(CO)₆⁻ in the presence of 0.10M tetrabutylammonium tetrafluoroborate/1,2-dichloroethane. E_ref = -0.40V vs. SCE, E_map = 0.00V vs. SCE.

 a. Evidence for the decomposition of V(CO)₆⁻, no band at 1971cm⁻¹, and the production of CO, small band at 2075cm⁻¹.

 b. Expanded view of CO region, solution dissolved CO at 2135cm⁻¹, linear bonded CO at 2075cm⁻¹.

Figure 4. SNIFTIRS spectrum of the linear bonded CO region as a function of applied electrode potential in the presence of 0.10M tetrabutylammonium tetrafluoroborate/1,2-dichloroethane.

Figure 5. SNIFTIRS spectrum in the presence of 0.10M tetrabutylammonium tetrafluoroborate/1,2-dichloroethane of the linear bonded CO region for low coverage conditions: solution dissolved CO at 2135cm⁻¹, high coverage linear bonded CO at 2079cm⁻¹-2066cm⁻¹, and low coverage linear bonded CO at 2027cm⁻¹-2019cm⁻¹. E_ref = -0.20V vs. SCE, E_map = 0.30V vs. SCE.
Table 1. Potential dependence of the infrared vibrational band for linearly bonded adsorbed CO as a function of electrode potential. Solution is 0.10M TBAF in 1,2-dichloroethane.

<table>
<thead>
<tr>
<th>POTENTIAL (V vs. SCE)</th>
<th>BAND POSITION (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.4</td>
<td>2069</td>
</tr>
<tr>
<td>-0.2</td>
<td>2073</td>
</tr>
<tr>
<td>0.1</td>
<td>2079</td>
</tr>
<tr>
<td>0.3</td>
<td>2083</td>
</tr>
<tr>
<td>0.5</td>
<td>2087</td>
</tr>
</tbody>
</table>
Table 2. Dependence of the infrared vibrational band for linearly bonded adsorbed CO on the solvent.

<table>
<thead>
<tr>
<th>E (V vs. SCE)</th>
<th>SOLVENT</th>
<th>BAND POSITION (cm⁻¹)</th>
<th>PEAK INTENSITY ΔR/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1,2-EtCl₂</td>
<td>2087</td>
<td>4.9 x 10⁻³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2073</td>
<td>2.8 x 10⁻³</td>
</tr>
<tr>
<td>0.30</td>
<td>1,2-EtCl₂</td>
<td>2083</td>
<td>4.9 x 10⁻³</td>
</tr>
<tr>
<td></td>
<td>ACN</td>
<td>2068</td>
<td>2.8 x 10⁻³</td>
</tr>
<tr>
<td>0.10</td>
<td>1,2-EtCl₂</td>
<td>2079</td>
<td>4.9 x 10⁻³</td>
</tr>
<tr>
<td></td>
<td>ACN</td>
<td>2064</td>
<td>2.8 x 10⁻³</td>
</tr>
<tr>
<td>-0.20</td>
<td>1,2-EtCl₂</td>
<td>2076</td>
<td>4.9 x 10⁻³</td>
</tr>
<tr>
<td></td>
<td>ACN</td>
<td>2057</td>
<td>2.8 x 10⁻³</td>
</tr>
</tbody>
</table>

1,2-EtCl₂ is 1,2-dichloroethane
ACN is acetonitrile
TBAF is tetrabutylammonium tetrafluoroborate
Table 3. Dependence of the infrared vibrational band for linearly bonded adsorbed CO on Electrolyte concentration in 1,2-EtCl₂.

<table>
<thead>
<tr>
<th>ELECTROLYTE</th>
<th>BAND POSITION (cm⁻¹) at 0.3V vs. SCE</th>
<th>PEAK INTENSITY ΔR/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.200M TBAF</td>
<td>2083</td>
<td>5.0 x 10⁻³</td>
</tr>
<tr>
<td>0.100M TBAF</td>
<td>2083</td>
<td>4.9 x 10⁻³</td>
</tr>
<tr>
<td>0.050M TBAF</td>
<td>2080</td>
<td>2.8 x 10⁻³</td>
</tr>
<tr>
<td>0.025M TBAF</td>
<td>2078</td>
<td>1.3 x 10⁻³</td>
</tr>
</tbody>
</table>

1,2-EtCl₂ is 1,2-dichloroethane
TBAF is tetrabutylammonium tetrafluoroborate
Table 4. Effect of Electrolyte identity on the vibrational band for linearly bonded CO.

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>BAND POSITION at 0.3V (cm⁻¹)</th>
<th>PEAK INTENSITY ΔR/R</th>
<th>RATE OF MOVEMENT cm⁻¹/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1M TPAP in 1,2-EtCl₂</td>
<td>2083</td>
<td>4.9 x 10⁻³</td>
<td>19</td>
</tr>
<tr>
<td>0.1M TBAF in 1,2-EtCl₂</td>
<td>2083</td>
<td>4.0 x 10⁻³</td>
<td>19</td>
</tr>
<tr>
<td>0.1M TOAP in 1,2-EtCl₂</td>
<td>2080</td>
<td>4.0 x 10⁻³</td>
<td>18</td>
</tr>
<tr>
<td>0.1M TBAA in 1,2-EtCl₂</td>
<td>2080</td>
<td>3.5 x 10⁻³</td>
<td>19</td>
</tr>
<tr>
<td>0.05M TEAF in 1,2-EtCl₂</td>
<td>2079</td>
<td>3.0 x 10⁻³</td>
<td>17</td>
</tr>
<tr>
<td>0.05M TBAF in 1,2-EtCl₂</td>
<td>2080</td>
<td>2.8 x 10⁻³</td>
<td>19</td>
</tr>
<tr>
<td>0.025M TBAF in 1,2-EtCl₂</td>
<td>2078</td>
<td>1.3 x 10⁻³</td>
<td>19</td>
</tr>
</tbody>
</table>

TPAP is tetrapropylammonium perchlorate
TBAF is tetrabutylammonium tetrafluoroborate
TOAP is tetraoctylammonium perchlorate
TBAA is tetrabutylammonium acetate
TEAF is tetraethylammonium tetrafluoroborate
1,2-EtCl₂ is 1,2-dichloroethane
Table 5. Dependence of the infrared vibrational band for linearly bonded adsorbed CO on acetonitrile (ACN) concentration in 1,2-EtCl₂.

<table>
<thead>
<tr>
<th>ACN CONCENTRATION (millimolar)</th>
<th>BAND POSITION (cm⁻¹) AT +0.3V</th>
<th>PEAK INTENSITY ΔR/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>No CO adsorption</td>
<td>2.0 × 10⁻³</td>
</tr>
<tr>
<td>6.0</td>
<td>2075</td>
<td>2.0 × 10⁻³</td>
</tr>
<tr>
<td>12.0</td>
<td>2077</td>
<td>2.3 × 10⁻³</td>
</tr>
<tr>
<td>25.0</td>
<td>2078</td>
<td>2.3 × 10⁻³</td>
</tr>
<tr>
<td>100.0</td>
<td>2080</td>
<td>2.3 × 10⁻³</td>
</tr>
<tr>
<td>500.0</td>
<td>2080</td>
<td>2.3 × 10⁻³</td>
</tr>
</tbody>
</table>
Cyclic voltammetry graph with axes labeled:
- CURRENT / µA
- POTENTIAL / V

Graph shows current values ranging from -0.300 to +0.300 V with a peak at 0.1300 V.
WAVENUMBERS / cm$^{-1}$

$\Delta R/R$

-0.01500
-0.00125

1871

1900 shoulder

1855
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td>2</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
</tr>
</tbody>
</table>

Dr. Bernard Douda	1
Naval Weapons Support Center	
Code 50C	
Crane, Indiana 47522-5050	

Naval Civil Engineering Laboratory	1
Attn: Dr. R. W. Drisko, Code L92	
Port Hueneme, California 93401	

Defense Technical Information Center	12
Building 5, Cameron Station	high
Alexandria, Virginia 22314	quality

DTNSRDC	1
Attn: Dr. H. Singerman	
Applied Chemistry Division	
Annapolis, Maryland 21401	

Dr. William Tolles	1
Superintendent	
Chemistry Division, Code 6100	
Naval Research Laboratory	
Washington, D.C. 20375-5000	

Dr. David Young	1
Code 334	
NORDA	
NSTL, Mississippi 39529	

Naval Weapons Center	1
Attn: Dr. Ron Atkins	
Chemistry Division	
China Lake, California 93555	

Scientific Advisor	1
Commandant of the Marine Corps	
Code RD-1	
Washington, D.C. 20380	

U.S. Army Research Office	1
Attn: CRDD-AA-IP	
P.O. Box 12211	
Research Triangle Park, NC 27709	

Mr. John Boyle	1
Materials Branch	
Naval Ship Engineering Center	
Philadelphia, Pennsylvania 19112	

Naval Ocean Systems Center	1
Attn: Dr. S. Yamamoto	
Marine Sciences Division	
San Diego, California 91232	
ABSTRACTS DISTRIBUTION LIST, SDIO/IST

Dr. Robert A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, NY 14214

Dr. Douglas N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, UT 84602

Dr. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. H. V. Venkatasetty
Honeywell, Inc.
10701 Lyndale Avenue South
Bloomington, MN 55420

Dr. J. Foos
EIC Labs Inc.
111 Downey St.
Norwood, MA 02062

Dr. Neil Weber
Ceramatec, Inc.
163 West 1700 South
Salt Lake City, UT 84115

Dr. Subhash C. Narang
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Dr. J. Paul Pemsler
Castle Technology Corporation
52 Dragon Ct.
Woburn, MA 01801

Dr. R. David Rauh
EIC Laboratory Inc.
111 Downey Street
Norwood, MA 02062

Dr. Joseph S. Foos
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Donald M. Schleich
Department of Chemistry
Polytechnic Institute of New York
333 Jay Street
Brooklyn, New York 01

Dr. Stan Szpak
Code 633
Naval Ocean Systems Center
San Diego, CA 92152-5000

Dr. George Blomgren
Battery Products Division
Union Carbide Corporation
25225 Detroit Rd.
Westlake, OH 44145

Dr. Ernest Yeager
Case Center for Electrochemical Science
Case Western Reserve University
Cleveland, OH 44106

Dr. Mel Miles
Code 3852
Naval Weapons Center
China Lake, CA 93555

Dr. Ashok V. Joshi
Ceramatec, Inc.
2425 South 900 West
Salt Lake City, Utah 84119

Dr. W. Anderson
Department of Electrical & Computer Engineering
SUNY - Buffalo
Amherst, Massachusetts 14260

Dr. M. L. Gopikanth
Chemtech Systems, Inc.
P.O. Box 1067
Burlington, MA 01803

Dr. H. F. Gibbard
Power Conversion, Inc.
495 Boulevard
Elmwood Park, New Jersey 07407
Dr. V. R. Koch
Covalent Associates
52 Dragon Court
Woburn, MA 01801

Dr. Randall B. Olsen
Chronos Research Laboratories, Inc.
4186 Sorrento Valley Blvd.
Suite H
San Diego, CA 92121

Dr. Alan Hooper
Applied Electrochemistry Centre
Harwell Laboratory
Oxfordshire, OX11 ORA UK

Dr. John S. Wilkes
Department of the Air Force
The Frank J. Seiler Research Lab.
United States Air Force Academy
Colorado Springs, CO 80840-6528

Dr. Gary Bullard
Pinnacle Research Institute, Inc.
10432 N. Tantan Avenue
Cupertino, CA 95014

Dr. J. O'M. Bockris
Ementech, Inc.
Route 5, Box 946
College Station, TX 77840

Dr. Michael Binder
Electrochemical Research Branch
Power Sources Division
U.S. Army Laboratory Command
Fort Monmouth, New Jersey 07703-5000

Professor Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton, Hants, S09 5NH UK