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PREFACE

This work reported on was done under DA Project, 4A161 102B52C, Task B, Work Unit
015, "Automated Radar Feature Extraction Research."

The work was performed during the period June 1984 to December 1984 under the
supervision of Dr. Frederick W. Rohde, Team Leader, Center for Automated Image
Analysis, and Mr. Lawrence A. Gambino, Director, Research Institute.

COL David F. Maune, EN, was Commander and Director, and Mr. Walter E. Boge was
Technical Director of the U.S. Army Engineer Topographic Laboratories during the report
preparations.
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IMPROVING CLASSIFICATION ACCURACY OF RADAR

IMAGES USING A MULTIPLE-STAGE CLASSIFIER

INTRODUCTION

In a previous report1, a Bayes classifier2 was applied to classify samples of SAR (Synthetic
Aperture Radar) imagery obtained from the Huntsville, AL, cmd th, 7lizabeth City, NC, areas
at the U.S. Army Engineer Topographic Laboratories. The feature vet..or used for classification
was developed based on texture and histogram measurements of each image sample. Each image
sample was classified as one of the following four terrain categories: field, water, forest, or
city. A highest overall classification accuracy of 95.5 percent was obtained for the 40v samples
selected from the Huntsville, AL, imagery set. However, the same method failed to produce
a satisfactory accuracy for the other set of imagery. This failure was mainly due to the
insufficient measurable differences of image texture appearing between the categories of fields
and forests from the Elizabeth City, NC, imagery set. The problem was solved by repeatedly
classifying image samples by using a multiple-stage classifier. This report illustrates how a
two-stage classifier, together with a Sobel edge operator between the stages, can be used to
improve classification accuracy to achieve a highly successful value of 97.75 percent.

METHODOLOGY

The images used for this experiment consisted of 400 samples, each of high resolution SAR
imagery taken over the Huntsville, AL, and Elizabeth City, NC, areas with the APD-10 and
UPD-4 radar systems, respectively. The digitized image samples were stored on the disk of a
Hewlett-Packard 1000 minicomputer system, which includes, besides the disk, a magnetic
tape unit, a line printer, a system console, and three other satellite CRT (Cathode-Ray Tube)
terminals. A Lexidata System 3400 display processor is also tailored as a peripheral of this
system for displaying images of various sizes at different processed stages. Each image sample
consisted of 32- by 32-pixels. This window size was used throughout the entire experiment.
Each window contained an image sample of one particular terrain category. The four terrain
categories considered were (1) cities (combination of commercial and residential structures,
DLMS Category #504 FIC 301 and #505 FIC 401), (2) fields (agriculture used primarily for
crops and pasture land, DLMS Category #510 FIC 950), (3) water (rivers with smooth fresh
water, DLMS Category #510 FIC 940 and fresh water subject to ice, such as lakes and
reservoirs, DLMS Category #510 FIC 943), and (4) forests (mixed trees, such as deciduous and
evergreens, DLMS Category #510 FIC 954). A feature vector consisting of 15 components was
computed for each image sample. The components of the feature vector were established based
on the first- and second-order histogram statistics calculated from the 32- by 32-pixel window.
The equations for these histogram and texture measurements are provided in appendix A.
Taking the feature vector as the input, a Bayes classifier was used to classify each image sample
into one of the four terrain categories as described above. The block diagram of the scheme
is shown in figure 1.

IRichard A. Hevenor and Pi-Fuay Chen. Pattern Classification TechniiUes Aoptied to Samptes

of HIgh Resolution Synthetic Aperture Radar Imaery, U.S. Army Engineer Topographic Laboratories, Fort

Setvoir, Virginia, ETL-0443, AD A-183537, 1986.

2 J.T. Tou and R.C. Gonzales, Pattern Recognition Princites, Addison-Wesley Fubtishing

Copeny, Inc., Reading, Massachusetts, 1974.



With this scheme, the 400 image samples selected from the Huntsville, AL, imagery set
were classified correctly with an overall accuracy of 95.5 percent. However, the same scheme
failed to yield a successful classification rate for the other set of image samples from Elizabeth
City, NC. It was found that the statistics computed from the categories of fields and forests
were very similar. In order to overcome this problem, the original scheme was modified as
shown in figure 2. An edge operator and a second stage classifier were added. An image sample
classified as either a "field" or a "forest" is now channeled through an edge operator, which in
this case is a Sobel operator, to yield a pattern of more pronounced texture. Appendix B
describes the Sobel operator. The edge-enhanced image sample is then classified a second time
with a classifier of any type. For the case illustrated in this report, a simple average routine and
a threshold were applied to divide the category of fields from the category of forests since
image samples after edge-enhancement were completely separated into two categories.

RESULTS

Two sets of image samples described in the previous section were used as input for the
system (scheme) shown in figure 1. Each set consisted of 400 samples that came from four
terrain categories. The terrain categories were fields, water, forests, and cities. One hundred
image samples were selected randomly from each category. The classification accuracy was
evaluated for each category of the terrain feature for various integer-scanning directions
(IDIR) and inter-pixel spacings (IPS). The IDIR and IPS were two parameters used to compute
the joint-probability matrices during the feature measurement stage, which precedes the
classification. See appendix C for more details on IDIR, IPS, and joint-probability matrix. The
overall classification accuracy was then calculated for each combination of these two
parameters. It was found that for the sample set, from Huntsville, AL, the best overall
classification accuracy of 95.50 percent was obtained for the case when the IDIR and IPS were
set equal to 0 degree and 2 pixels, respectively, and for another case when the IDIR was 135
degrees and the IPS was 3 pixels. The least accurate case for this set was 92.95 percent, which
occurred when the IDIR was 90 degrees and the IPS was I pixel. In figures 3 and 4, the
classification results are shown for each terrain category for these two extreme cases.

The same scheme, however, failed to produce satisfactory recognition rates for the samples
from the Elizabeth City, NC, area. The classification results for the best and worst cases are
shown in figures 5 and 6. It was discovered that, for all cases considered, many forest image
samples were misclassified as fields because of the smooth appearance of the forest texture
from this imagery set (see figures 5 and 6). The highest and lowest overall classification
accuracy illustrated in figures 5 and 6 are 87.50 percent and 78.50 percent, respectively.

In order to overcome this problem, the system was modified as shown in figure 2, and the
same set of image samples from Elizabeth City, NC, was evaluated again by this modified
system. Figure 7 illustrates the classification results obtained for the image samples from
Elizabeth City, NC, using the modified new scheme. It is seen that the overall classification
accuracy has been improved from 87.50 percent to a highly successful value of 97.75 percent.
The same scheme shown in figure 2 was used to rerun the image samples from the Huntsville,
AL, area. A nearly perfect overall classification accuracy of 99.25 percent was obtained. Only
three samples among a total of 400 samples were misclassified in this case. The results of this
classification are shown in figure 8.
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DISCUSSION

Further research and experimentation is required to verify whether the technique
described can be extended to more than two stages of classification to obtain an even higher
classification accuracy. It would also be useful to see if the application of a filter, other than
an edge operator, may be used advantageously between successive stages.

The possible limitation of the scheme described in this report is the requirement of
training whenever a new set of image samples is to be classified with reasonably high accuracy.

CONCLUSIONS

A technique of repeated classification can be used to improve the classification accuracy
for selected sets of terrain features on SAR imagery. This classification method is very
effective because it produces a significantly higher classification accuracy than the Bayes
classifier with only 5 to 10 percent additional computer time.
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APPENDIX A. FEATURE VECTOR COMPONENTS

Many publications are available on the image-statistics-processing techniques. The most concise
form of dhe feature vector based on the first- and second- order image pixel amplitude
distribution was given by Pratt.3 He defined a discrete image array. F(j~k), and the first-order
probability distribution of image amplitude of a measurement window centered about (j,K) as

P(b)

where M represents the total number of pixels in the measurement window, N(b) is the number
of pixels of amplitude b in the window, and 0O< b < L - 1, and L is the number of gray levels
of F(j,k). The following measures have been formulated by Pratt as a concise means of
describing the shape of first-order image histograms:

Nlean bs b P(b)
but)

Variance a' - (-)P(b)
boO

Skewness b1 = - (b b- ;) P(b)
3 bzO

Kurtosis b, - E. (b-b;)4 P(b)- 3

b.O

L-1

Entropy bt = - 1: P(b) 1og2 IP(b)I
beO

3W.. Pratt, DfitaL Ime Procemsing. 1dM Witty and l1ai, Inc., Now York, 19TS.
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The second-order histogram features are based on the definition of the joint probability
distribution of pairs of pixels. Pratt stated that the two-dimensional histogram can be
considered as an estimate of joint probability distribution. Consider a pair of pixels F(j,k)
and F(m,n) that are separated by -y radial units, at an angle 0 with respect to the x-axis of the
measurement window. The histogram estimate of the second order distribution is given by Pratt
as

P(a,b) N(ab)
M

where M is the total number of all occurrences in the measurement window, and where N(a,b)
is the number of occurrences for which F(j,k)=a, F(m,n)=b. The following are the texture
measures that were used in this study:

L-1 L-i

Mean; = E a P(a, b)
a-O b-0

L-I L-I

b = Z b ea. b)

a=O b-0

L-I L-tVariance: \ F -aa: Pab

a20 b0O

L -1 L -I
Covariance: C. = E E (a-a) (b-b) P(a, b)

a-0 a-0

14



L-I L-I

Autocorrelation: A. = a b P(a, b)
a"0 b-O

L-b L-I
Absolute Value: Ab = Z , I a - b I P(a, b)

a-0 b-O

L-1 L-1

Energy: ES = [ [P(a, b)]
a20 b-O

L-1 L-I P(a,b)
Inverse Difference: Id = E E

a-O b-o I +(a-b) 2

L-1 L-I
Inertia: I E = (a - b)2 P(a, b)

80O b-0

L-1 L-1
Entropy: = - p(a, b) 102 [P(a, b)]

a0O a"0

For our application the joint-probability matrix was made to be symmetrical so that a = b,
and V. = Vb.
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APPENDIX B. SOBEL EDGE OPERATOR

The Sobel operator is a 3- by 3-pixel nonlinear edge enhancement mask which is multipld
sequentially with all pixel values in a given image to produce a pattern of pronounced edges.

The weights for the Sobel mask are shown below:

-1 0 i 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1

x-direction y-direction

Assume a block of 3- by 3-pixels to be multiplied with the Sobel mask centered at the point
(i.j) and having a gray-value distribution as given below:

A0  A1  A2

A7  F(i.j) A3

A6  A5  A4

Then, the magnitude of the resultant > :el, G(ij), which is to replace F(ij) will be

IG (ij) -VX-'+y"

where X - (A 2 + 2A 3 + A4 ) - (A 0 + 2A 7 + A6 ),

and Y - (A 0 + 2A 1 + A2) - (A6 + 2A 5 + A).

17



APPENDIX C. JOINT-PROBABILITY MATRIX AND ITS PARAMETERS, IDIR AND IPS

A joint-probability matrix, which represents the joint probability of gray-level occurrence
for a pair of pixels in a given image, is a way to facilitate texture measurement of an image.
To compute a joint-probability matrix for a given image, or a window of pixels, it is
required to consider at least two basic parameters. These are the integer-scanning directions
(IDIR), and the integer-pixel spacings (IPS).

The IDIR are the directions along which a pair of pixels are sequentially selected for
computing the joint-probability of gray-level-occurrence, and the IPS are the integer
spacings between pair of pixels. Thus, an IDIR can be represented by an angle between a
scan line and the bottom edge of the pixel window. Since a pixel-window size of 32 by 32
was used, theoretically the IPS can assume numbers I through 31. However, for practicality
we have only computed the joint-probability matrices for the cases where the IP values
were I through 6, and IDIR were set equal to 0, 45, 90, and 135 degrees.

The following figures illustrate the cases with various IDIR and IPS values. For simplicity,
the pixel windows are shown to be 8 by 8. The arrows show scan lines, while pixels are
identified by p's. Steps for computing a joint-probability matrix are listed below:

. Select pixels p, and P2, and record their joint-occurrence of gray levels (e.g. if the gray
level of p, and P2 are assumed to be 7 and 10 respectively, then the joint-occurrence of
gray levels 7 to 10 is recorded once).

2. Follow the arrow to record the joint-occurrence of gray levels for the pairs of pixels, P2
and p3., P3 and P4 , and so on until the edge pixel of the pixel window is examined.

3. Repeat steps I and 2 for the rest of the scan lines until all available pixels in the
pixel-window have been taken into consideration.

4. Add up numbers of joint-occurrences for each permuted gray level obtained in the
steps I to 3, and then compute the joint-probability matrix for the entire pixel window.
Each element of this matrix will be a decimal number obtained by dividing the total number
of joint-occurrences for a particular permuted gray level by the total number of all
joint-occurrences.

19
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IDIR - 0 degree, IPS = I pixel. IDIR = 45 degrees, IPS = 2 pixels.
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IDIR = 90 degrees, IPS = 3 pixels. IDIR - 135 degrees, IPS - 4 pixels.
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