T

o FILE OO @
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

.\ ‘.‘:ll."\‘;" O 8]988 .;;

AD-A200 283

PETRI NET MODELING AND AUTOMATED
SOFTWARE SAFETY ANALYSIS: METHODOLOGY
FOR AN EMBEDDED MILITARY APPLICATION

by
Alan D. Lewis

June 1988

Thesis Advisor: Daniel L. Davis

Approved for public release; distribution is unlimited.

ag 11 08 0153

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

12 Report Security Classification Unclassified

Ib Restrictive Markings

2a Sccurity Classification Authority

3 Dastribution Availability of Report

2b Declassification Downgrading Schedule

Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s)

5 Monitoring Organization Report Number(s)

6a Name of Performing Organization

a 6b Olfice Symbol
Naval Postgraduate School

(if applicable) 33

7a Name of Moniloring Organization
Naval Postgraduate School

6¢ Address (clry, state, and ZIP code)
Monterey, CA 93943-5000

7b Address (clty, siate, and ZIP code)
Monterev, CA 93943-5000

$a Name of Funding Sponsoring Organization | 8b Office Symbol

(if applicable)

9 Procurement Instrument ldentification Number

8c Address (cloy, state, and ZIP code)

10 Source of Funding Numbers

Program Element No l Project No ITask No [\\"ork Unit Accession No

11 Title (Include securlty classification) PETRI NET MODELING AND SOFTWARLE SAFETY ANALYSIS: METHODOL-
OGY FOR AN EMBEDDED MILITARY APPLICATION

12 Personal Author(s) Alan D. Lewis

13a Type of Report 13b Time Covered
Master’'s Thesis From To

14 Date of Report (year, month, day)
June 1988

15 Page Count

928

sition of the Department of Defense or the U.S. Government.

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-

17 Cosati Codes
Fiald

Group Subgroup

18 Subject Terms (continue on reverse If necessary and ldentlfy by block number) .
Petri nets, software safety, missile fuze, safety arming device, Petri Net Utilities, P-NUT

19 Abstract (continue on reverse If necessary and tdentifv by block number)

analysis of a real-time, embedded software, military system.

This thesis investigates the feasibility of software safety analysis using Petri net modeling and an automated suite of Petri
Net UTilities (P-NUT) developed at UC Irvine. We briefly introduce software safety concepts, Petri nets, reachability, and
the use of P-NUT. e then develop a methodology to combine these ideas for efficient and effective prelumnar_\ safety

20 Distribution Avadability of Abstract

unclassified unlimited O same as report O DTIC users

21 Abstract Secunity Classification
Unclassificd

22a Name of Responsible Individual
Danicel L. Davis

22b Telephone ¢ include Arca code)
(408) 6463390

22¢ Office Symbol
S2Dv

DD FORM 1473,84 MAR

83 APR edition may be used umil exhausted
All other editions are obsolete

security classification of this page

Unclassified

Tl d

Approved for public release; distribution is unlimited.

Petri Net Modeling and Software Safety Analysis:
Methodology for an Embedded Military Application

by

Alan D. Lewis
Lieutenant, United States Navy
B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author: 6’4940//\ b iﬂlm_’\

' Alan D. Lewis

'\ - . . .
Approved by: bﬂwu/k ¢ Lo
Daniel L. Davis, Thesis Advisor

Lo Z Lot

Uno R. Kodres, Second Reader
Vincent Y,.Lum, Chairman,
Depaztmen,ta f Computer Science
Gordon E. Schacher., Dean of

Science and Engineering o)

n._J

N

@

i

\ ABSTRACT

~

This thesis investigates the feasibility of software
safety analysis using Petri net modeling and an automated
suite of Petri Net UTilities (P-NUT) developed at UC Irvine.
We briefly introduce software safety concepts, Petri nets,
reachability theory, and the use of P-NUT. We then develop a
methodology to combine these ideas for efficient and
effective preliminary safety analysis of a real-time,

embedded software, military system.

Arloan, For

NTIS c;eﬁ:—\d_—_

OTic 7Tan o

Uraenon g 0O

PSR ITANTE

e T e

By

Lot mmyg T
A U (jd-:-

iii

"v

I.

- II.

III.
L]

Iv.

V.
®

TABLE OF CONTENTS

INTRODUCTIONttuitinennanonsensnesnncennasans 1
INTRODUCTION TO SOFTWARE SAFETY................... 4
A. WHAT IS SOFTWARE SAFETY ?ttt eeennenenncnnoannnnn 4
B. INTRODUCTION TO SOFTWARE SAFETY ANALYSIS........... 5
PETRI NETS AND REACHABILITYc.teeeneeears 8
A. INTRODUCTION TO PETRI NETS ittt iiiinnietiennonnan 8
B, PETRI NET THEORY ..t vetettinnnnoneeasonsssananeness 11
C. REACHABILITY .+ttt eevoeeesseoonaenosssccssosnonosss 13
PETRI NET UTILITIES (P-NUT)ccicvivunn. 15
A. INTRODUCTION TC P=NUTttt eninireeennoroenonns 15
B. TRANSLATING THE PETRI NET ettt nennnannnnnnn 16
C. BUILDING AND PRINTING REACHABILITY GRAPHS......... 19
D. REACHABILITY GRAPH ANALYZER (RGA) ...ttt ieennnas 21
THE SYSTEM UNDER ANALYSIS.cuitervenncannce vus 27
A. A SOFTWARE-CONTROLLED REAL-TIME SYSTEM............ 27
B. SYSTEM BACKGROUND . .ttt ittt it itenncrntannoeesanas 27

C. SYSTEM OPERATION « vt ittt ittt nnnonneneenonnsoosonns 29

VI. MODELING AND ANALYSIS METHODOLOGY 32
A. PROBLEMS IN SOFTWARE SYSTEM MODELINGe0c000... 33
B. A BOTTOM-UP APPROACH . ..ttt ittt ittt neensonoaansens 34
1. ITL SensOor MOAULE .ttt it innenrennnnneenscnannsns 35
2. Analog to Digital Converter (ADC) Model 41
3. Solenodd Modelttt ittt tnnnnensans 47
4. The System Petri Net Modelt 57
5. P-NUT Aided Safety Analysis of System Model 62
VII. RESUL™S AND CONCLUSIONScitttiteteercenennnas 64
1 A, RESULTS ittt ittt tnneestenenensencssacncansnnansess 64
b
B. CONCLUSIONS & ittt tvtenosnssonecsesancsasncnsnosess 65
C. RECOMMENDATIONS ¢ i ittt tereevesoacsnsassoscssasesas 69
APPENDIX A INTENT TO LAUNCH ITL SENSOR PETRI NET MODEL.. 72
APPENDIX B ANALOG TO DIGITAL CONVERTER (ADC) PETRI
NET MODEL. ¢t vttt neneoneenesnnasosonenennasas 73
APPENDIX C SOLENOID PETRI NET MODEL .4ttt eneroensnnnn 74
APPENDIX D SOLENOID PETRI NET TEXT FILEco0teeuen. 75
APPENDIX E SOLENOID REACHABILITY GRAPH...... ..t nnn 77
APPENDIX F SAFETY AND ARMING (SA) SYSTEM.........ocvevn. 80
APPENDIX G SA SYSTEM PETRI NET TEXT FILE.....:ceveeeeenn 83
APPENDIX H SUMMARY OF MODELING AND ANALYSIS METHODOLOGY 86
LIST OF REFERENCES .. ittt iieeteeoosnssssocenenseanssnanasas 88
INITIAL DISTRIBUTION LIST ...t it veenesnoonnnsenacansenaneas 90
"
v
% .
1

I. INTRODUCTION

Computers are increasingly being used as passive
(monitoring) and active (controlling) components of real-
time systems, e.g., air traffic control, aerospace,
aircraft, industrial plants, and hespital patient
monitoring systems. The problems of safety become
important when these applications include systems where the
consequences of failure are serious and may involve grave
danger to human life and property. [Leveson and Stolzy,
1987]

Unfortunately, 1little is known about applying safety
considerations to the design and evaluation of computer-
controlled real-time systems. The military relies heavily on
safety-critical, computer-controlled, real-time systems and
has published several standards for test and verification of
software system safety (MIL-STD-SNS, MIL-STD-882B, MIL-STD-
1574A) . MIL-STD-882B(DoD) contains requirements for software
hazard analysis and scftware safety verification, while MIL-
STD-1574A(USAF) lists the requirements for software safety
analysis and integrated system (hardware, software, and
interfaces) safety. MIL-STD-SNS(USN) covers software safety
analysis for nuclear weapons systems.

Problems with ascertaining and verifying the safety of a
software-controlled system 1include the difficulty of
providing realistic test conditions and simulating hardware
errors, transient faults, and system interfaces. There is no

existing language which incorporates the myriad system

facets, such as software, hardware, and the resulting

e A™

-

[

interfaces. This overall system view is critical, as the
greatest source of problems enccuntered in computer
controlled systems may be the lack of system level methods.
[Leveson, 1986]

There are several proposed techniques for software safety
analysis, including Petri net modeling [Leveson and Stolzy,
1987], Fault Tree Analysis [Vesely et al., 1981])], and Real-
Time Logic (RTL) [Jahanian and Mock, 1986]. This thesis
follows the Leveson and Stolzy use of Petri Net modeling and

the other techniques will not be discussed further. For a

~brief synopsis on the other methods, see Hayward [1987].

The system under investigation is a proposed air-to-air
guided missile safety and arming device, developed at the
Naval Weapons Center in China Lake, California. Although
this particular safety arming device was never actually
constructed, a software prototype was written and tested.
This device 1is excellent for developing a methodology to
analyze safety-critical computer/software-controlled systems.
The device is nontrivial, contains embedded software, and if
designed incorrectly or tested ineffectively might result in

personal injury or unwanted property destruction. <o

t 3

This thesis refines and continues the work of Duston
Hayward [1987], who initially investigated the practical
feasibility of using Petri nets, and the Leveson and Stolzy

[1987]) analysis techniques to meet military standards.

v

Y

Beginning with the safety and arming device software
assembler code, and verbal descriptions of the components,
Hayward [1987] constructed system and system software
flowcharts and Petri net models of system components. He
then combined the flowcharts into a single system description
by conversion to a Petri net model. Using the safety and
arming device, Hayward demonstrated techniques for manual
constr.ction of partial reachability graphs and application
of Leveson and Stolzy [1987] safety analysis methods.

Following publication of Hayward [1987)], the U. S. Naval
Postgraduate School received a set of automated Petri net
analysis and utility tools from the Department of Information
and Computer Science, University of California, Irvine
[Morgan and Razouk, 1985; Razouk, 1987; Morgan, 1987]. These
utilities construct the reachability graph of an entered net
and support automated reachability analysis through use of a
sophisticated reachability graph analyzer. Our work is the
first known application of these automated utilities to the
area of software safety analysis.

We begin with brief introductions to software safety,
Petri nets, reachability theory, and use of the Petri Net
UTilities (P-NUT). We discuss refinements made to the
Hayward [1987] model and develop a methodology for efficient
and effective preliminary safety analysis of a complex,

safety-critical, software-controlled system.

d

@

II. INTRODUCTION TO SOFTWARE SAFETY

A. WHAT IS SOFTWARE SAFETY?

The American College Dictionary defines safety as the
quality of insuring against hurt, injury, danger, or risk.
It follows that software safety may be considered as freedom
from software causing danger or risk. Software, however, is
inherently safe, since alone it can do no physical damage.
Although it is the hardware that the software controls which
actually presents the hazard, we must treat software and
hardware as one entity for analysis purposes. “Software
engineering techniques that do not consider the system as a
whole, including the interactions between the hardware,
software, and human operators, will have limited usefulness
for real-time control software.” [Leveson, 1986] The safety
of a software-controlled system is commonly referred to as
software safety.

Safety should not be confused with reliability. Safety
is the probability that a mishap (accident) will not occur
regardless of whether or not the intended function is
performed. Reliability is normally defined, in the
engineering community, as the probability that the system
will accomplish its intended function for a specified time
under specified environmental conditions [Ericson, 1981;

Konakovsky, 1978; Leveson, 1986]. These are quite different

T

concepts, as demonstrated in the analysis of munitions. One
would expect that when the reliability of a weapon 1is
improved, the weapon becomes less safe. Improvements that
increase the probability of detonation may very well increase
the 1likelihood of accidental firing, wunless specific
precautions are made in the design to improve the safety as
reliability 1is improved. [(Roland and Moriarity, 1983;

Leveson, 1986]

B. INTRODUCTION TO SOFTWARE SAFETY ANALYSIS

To ensure system safety, it is necessary to show that the
software and hardware will perform as required and verify
that the relationships between software, hardware, and system
behavior are correct.

Many of the system safety techniques that have been
developed to aid in building electromechanical systems with
minimal risk do not seem to apply when computers are
introduced. The majocr differences appear to stem from the
lack of system-level approcaches to building software
controlled systems. [{Leveson 1986]

Current system safety techniques do not consider human
design errors in system failures. Human errors are assumed
never to have occurred or to have been removed prior to
delivery and operation. With *he growth of embedded software
systems and powerful microprocessors, the complexity of

software and hardware has grown tremendously and resulted in

a nonlinear increase in human error design flaws. Due to

system complexity, it may be impossible to prove correctness
and safety of a realistic control system. [Lauber, 1980]

Based on this situation, Leveson [1986] argued the need
for a new approach to the software safety analysis problem.
The “black box” approach to software is not valid. A total
system concept must be employed to properly account for
software effects on the system.

The initial stage of the analysis is to focus on system
failures that have the most drastic consequences. This 1is
especially useful in situations where tne system under
investigation has relatively few failures leading to mishaps.
The technique is to start with a given set of unacceptable
failures and then by means of a “backward” approach ensure
that the failures are eliminated, or at least minimized.
[Levescon, 1986]

One method for combining software, hardware, human
operators, and system interfaces is by timed and untimed
Petri net modeling [Leveson and Stolzy, 1987]. The Petri net
model successfully treats all aspects of the system as
integral parts of the whole.

This thesis will follow Hayward’s [1987]) work, which
employed Leveson’s untimed Petri net approach to system
modeling. Wc will focus on the initial stages of the safety
analysis, e.g., potential “catastrophic” failure

determination and evaluation. Methodologies will Dbe

S

I

I i

presented for untimed Petri net modeling of nontrivial system
components and for using available automated techniques in

preliminary safety analysis.

n.d

n_4

|-

4

. III. PRETRI NETS AND REACHABILITY

A. INTRODUCTION TO PETRI NETS

Petri nets were originally developed by A. W. Holt and
% others, based on the theories of Carl Adam Petri [Petri,
1962]. Petri’s efforts were directed to presenting a theory
for the asynchronous flow of communication between computer
F components. Holt demonstrated that Petri nets could be used
to effectively model concurrent systems because they have the
ability to model parallelism and synchronization. This
) thesis will assume the reader has little familiarity with
Petri nets. An excellent source for more information can be
found in Peterson [1981].

In computer science terminology, Petri nets are directed
graphs whose nodes are transitions and places. Places model
conditions, and transitions model the occurrence of events.
The firing of a transition is considered to be instantaneous,
therefore no two events can happen simultaneously. Inputs to
a transition represent the preconditions of the event, while
outputs of the transition are the postconditions. In Figure
3-1, the arcs of the graph (denoted by arrows) denote those
places (denoted by circles) which are inputs to the

transitions (denoted by bars) and those which are outputs.

Each place contains zero or more tokens, which represent the

holding of a condition. The number of tokens contained in a

N

place is called the marking of that place [Peterson, 1981].
The marking or “state” of the entire net consists of the set

of markings of all individual places within the net.

O-=20 OO

Figure 3-1.

Figure 3-1 shows two basic arrangements of Petri net
primitives. In Figure 3-1, arrows (arcs) coming out of the
circles (precondition places) and terminating into the
vertical bars (transitions) represent the number of input
tokens required to enable the transitions. The number of
arcs coming out of the transitions signifies the number of
tokens that will be created when the transitions occur.
These newly created tokens will be depocsited into the circles
(postcondition places) where the arrows terminate. Note that
there is no dependency between the number of input arcs
required to enable a given transition and that transition’s
number of output arcs. When a Petri net transition fires,
the enabling tokens are consumed and the output tokens are
created.

A transition is “enabled” when there is a minimum of one
token on each of its input arcs. Figure 3-2 shows the

structures of Figure 3-1 with tokens in the input places.

These are examples of enabled transitions because there is
one token for each transition input arc. If there are less
input tokens than there are input arcs to the transition, the

transition is not enabled and cannot fire.

=0 @O

Figure 3-2.

Figure 3-3 depicts the basic structures from Figure 3-2
after the transitions have fired. When a transition
“fires,” one token is placed in the output place(s) for each
output arc. Notice that the input tokens have been consumed

and output tokens created.

Or® OO

Figure 3-3.

T Y Firi

It is important to understand nondeterminism as it
relates to untimed Petri nets. An enabled transition may fire
instantly, at some later time, or never. 1In a situation such
as Figure 3-4, either +t1 or t2 may fire, and either

transition has equal probability of occurring or never

10

EY

s

vE

YEY

occurring. Furthermore, if more than one transition in a
given net is enabled, then any of the enabled transitions may
be the next to fire,. It is this feature that makes Petri
nets particularly suitable for concurrent system modeling

[Peterson, 1981].

OO

Figure 3-4.

Timed Petri nets remove much of the nondeterministic
nature of the net by adding minimum and maximum allowable
transition firing times. In the scope of our work in control
and information flow modeling, only untimed nets were used.
Modeling and automated safety analysis of timed nets is left
for future research.

Since Petri nets are used to model events and activities
in a given system, they are particularly suited to model flow

of information or control.

B. PETRI NET THEORY

The formal definition of Petri nets, using the notation
of Peterson [1981], follows. A Petri net is composed of a
set of places P, a set of transitions T, an input function I,

an output function O, and an initial marking, pp.

11

- .

)

nA

nJ

]
N § ——

Definition: Petri net structure, ¢, is a 5-tuple
c=(pP,T,I,0,Hp) .

P = {P1,P2r+.++Pn} is a finite set of places, n 2 0.

T = {t1,t2,..,tg} is a finite set of transitions, m 2 O.
The set of places and the set of
transitions are disjoint, P N T = null
set, ¢&.

I :T=pP™ is the input function, a mapping from
transitions to bags of places.

O : T->P™ is the output function, a mapping from
transitions to bags of places.

Mo : P 2N is the initial marking for the net
where N is the set of nonnegative
integers.

Definition: A transition ty can fire if and only if
it is enabled.An enabled transition may
fire at any time or may never fire.

Definition: The multiplicity of an input place pi
for a transition tjy is the number of
occurrences of the place in the input
bag of the transition, # (pi, I(ty)).

Definition: transition ty is an input of place pj if
pi is an output of tg.

(tg, I(p1)) = # (pi, O(ty))

I : P =T

O : P ->T

transition ty is an output of place pj if pi is an input of

tga.

(tg, O (pPi)) # (pi, I (t3))

Definition: The state of the net, 6, consists of the
marking of all places within the net.

12

C. REACHABILITY

The state of a system is defined by the set of conditions
or markings that exist within the Petri net representation of
the system at any given instant. Consequently, the state of
a system is always well defined by the the set of states of
individual places within the system.

In fundamental terms, reachability is the possibility
that a given initial condition (state) could lead to a given
final condition (state). If there 1s any possible state
sequence from the initial state to the spec.ified state, the
specified state is said to be reachable from the initial
state. A Petri net reachability graph is a directed
graphical depiction of all possible state sequences beginning
with the initial state of the net. 1In a reachability graph,
nodes represent states and the root node is the initial
state. Arcs between state nodes represent sets of transi-

tions which, if fired, would take the net sequentially from

one state to another. State reachability analysis is solely
concerned with the possibility of any sequence c¢i states

(graph nodes) and transition firings (graph arcs) taking the

system from a given initial state to a specified final state. Q
Petri net safety analysis uses reachability to determine
the possibility of mishap states. A Petri net reachability
state set is the set of all states in the net reachability °
graph. This set can be further divided into two disjoint
°
13

subsets. One subset of states has the possibility of
reaching either high- or low-risk states, while the other
subset can reach only low-risk states. A critical state is
a low-risk state which can either lead to a set of high-risk
states or to a set of other low-risk states. If the final
critical state on a path leading to a set of high-risk states
follows the high-risk path, there is no further possibility
of returning to the low-risk state set. If a reachable high-
risk state exists, there must be a critical state somewhere
on the state sequence path from the initial state to the
high~risk state. [Levecon, 1986)

One approach for the elimination of paths terminating in
high-risk states is proposed by Leveson [1986]. This method
begins with high-risk state determination and works backward
along the state sequence to identify the first critical state
encountered. Design techniques are then used to ensure that
the high-risk path 1is never taken. This approach is
appropriately named Backward Reachability Analysis.

Our safety anaiysis work was primarily concerned with
identifying mishap states of the system and determining their
reachability from the initial state. For a formal

description of reachability theory see Peterson [1981] or

Leveson [1986].

\d

|\

g

Iv. PRETRI NET UTILITIES (P-NUT)

A. INTRODUCTION TO P-NUT

The Petri Net UTilities (P-NUT) were developed by the
computer science department of the University of California,
Irvine. The tools were constructed to assist researchers in
applying Petri net analysis techniques to the design of
complex concurrent systems. Our work employed P-NUT Version
2.2 installed on a SUN 3 computer with an enhanced UNIX
4.2BSD operating system. User manuals [Razouk, 1987; Morgan,
1987] contain necessary installation information and provide
guidelines for the translation of graphical Petri nets to P-
NUT compatible input text files.

P-NUT creates and manipulates three usable object types:
Petri nets, reachability graphs, and execution traces
[Razouk, 1987]. Our work did not use execution traces and
they will not be discussed further.

Petri nets are input to P-NUT in a text format and
transformed to an internal representation wusing the
translation (transl) tool. The Reachability Graph Builder
(RGB) uses the translated file to build a reachability graph,
which can then be analyzed by the Reachability Graph Analyzer
(RGA) .

Our work consisted of creating an untimed Petri net text

file, translating the file to RGA internal representation

15

‘!

i

R _J

|

form, constructing the reachability graph, and analyzing the
reachable states. We will present only the necessary
methodology, from Razouk {1987} and Morgan 1[1987], to

accomplish these tasks.

B. TRANSLATING THE PETRI NET

The first step in creating a Petri net on P-NUT 1is to
provide a textual version of the graphical net. The
translator tool (transl) is then used to transform this
textual net to suitable internal RGA format. Any text editor
may be used for initial text file creation. The textual file
consists of a net transition 1listing. Each transition’s
inputs (precondition places) and outputs (postcondition
places) are specified, one transition per line. To promote
effective analysis, we highly recommend numbered transitions
and meaningful place names.

The text listing of each transition must begin with the
transition number (or name) enclcced by colons, i.e., :t0C:.
The transition number is followed by a comma-separated list
of input places required to enable the transition. If more
than one token is required in any input place, the number is
specified by enclosing it in parentheses following the input
place name. Following the last input place of a transition,
the symbol ™“->” signifies that the output places follow.
Output places are listed in the same manner as input places.

As with input places, if more than one token will be gained

16

&

by an output place after the transition fires, the number
must be specified in parentheses following that output place.
Following a 1listing of all transitions, the initial
conditions, or marking, of the net must be specified. The
initial conditions consist of a comma-separated list of
places that contain tokens and are enclosed by %< >.” If any
place initially contains more than one token, that number
must be specified in parentheses as described above.
Comments are allowed but must be indicated by enclosure
within “/* */7 . 1f any transition requires more than one
line, the use of a reverse diagonal ™“\” followed by a
carriage return is interpreted by P-NUT as a space character.

An example of a simple Petri net is given in Figure 4-1.

place-1

>

t0

place_2 < —b place_3

t1 t3
place_5 I
place_4 —b}-——-’@
t2

Figure 4-1. A Simple Petri Net

17

A

N 4

I

A

@

The P-NUT textual input file version of the Figure 4-1

Petri net 1s contained in Figure 4-2.

:t0: place 1(2) -> place_2,place_3
:tl: place 2,place 3 -> place 4
:t2: place_4 -> place_5

:t3: place 5 -> place_1(2)

<place 1(2)> /* initial conditions */

Figure 4-2. P-NUT Text Version of Figure 4-1 Petrxi Net

The net in Figure 4-1 contains four transitions and five
places. The initial transition is numbered zero, reflecting
the internal transition numbering sequence used within P-NUT.
Note that transition t0 is not enabled unless two tokens are
contained in place_1, and that when transition t3 fires, two
tokens will be gained by place_1l. The initial conditions are
two tokens in place 1.

Assume this file is named “example_1.” pnl (P-NUT lint)
is a tool that scans the initial text file for syntactic and
semantic errors prior to translation. The command to invoke
pnl for example 1 is pnl example_ 1. The output of this
tool will be a short error description. To translate the

text file and redirect output to another file (rather than to

the terminal) the command 1is transl example_1 >
example 1.pn. if no input text file is specified, transl
18

-

will expect termiral entry. transl does not tolerate input
errors, therefore exclusive use o0f input text files is
recommended. The choice of output file name 1is at the
discretion of the user, but we recommend the “.pn” suffix to
denote that the file is in correct internal P-NUT Petri pet
format. Any P-NUT tool output can be redirected using the

above method.

C. BUILDING AND PRINTING REACHABILITY GRAPHS
Reachability graph nodes represent states and the edges
represent possible state transitions. The Reachability Graph
Builder (RGB) takes a translated net text file as input and
creates an 1internal representation of the Petri net
reachability graph. In the untimed graph, the state of the
system 1s completely described by the token distribution on
places. Arcs in the reachability graph denote the path
between source and destinaticr. states in the system. The
basic command to build the reachability graph of translated
file is rgb example_l.pn > example_l.rg. The “.rg”
suffix is recommended. If the Petri net is known to always
have less than 127 tokens possible in any given place, it is
called “bounded” at 127, and the command, rgb -b
example_l.pn > example_l.rg should be used. This option
saves both memory and prccessor time. If the net is known to
be bounded at 1, it is called “safe” (not to be ccnfused with

low risk), and the command rgb =-s example_l.pn >

19

n.J4

'

.4

'@

example 1l.rg will save even more CPU time and memory. Use
of a file for redirected output is recommended for all
commands, otherwise output will default to the standard
output device.

After building the reachability graph, it can be printed
and viewed using the Reachability Graph Printer (RGP). The
command rgp example_1l.rg > example_l.g will print our
example graph and redirect output. The “.g” suffix is
recommended for informational purposes and to differentiate
the file from the internal format of the reachability graph.
The important consideration in choosing suffix names for any
P-NUT output file is uniformity.

RGP output is a schematic of the reachability graph.
Figure 4-3 is RGP output for the Figure 4-2 Petri net text

file.

0->1->2->3->0

0. place_1(2)

1. place_2,place 3
2. place_ 4

3. place 5

Figure 4-3. RGP _Reachability Graph for Figure 4-1
Betri Net

In Figure 4-3, notice that the states are numbered from
zero to three. The arcs signify which states are reachable
from other states and describe all possible state sequences.
The marked places comprising each numbered state are listed
below the graph.

Although reachability graph printouts and state
descriptions proved invaluable in the design and verification
of our system component modules, the value of the RGP
diminished significantly as complexity and size of the Petri
net grew, Our final model had more than 13,000 reachable
states and resulted in an RGP output file of over 80,000
lines. Such a large net was 1impractical to analyze by
inspection and required the use of the Reachability Graph

Analyzer (RGA).

D. REACHABILITY GRAPH ANALYZER (RGA)

The RGA is a very powerful, interactive interpreter which
allows dynamic identifier typing, recursion, and functions.
The RGA enables model debugging and proofs of correctness
through interactive analysis with the reachability graph.
Through the RGA, the user gains access to place names,
reachable states, and even the structure of the reachability
graph. The RGA functions and capabilities discussed in this
section are but a few of those found in Morgan [1987].

To invoke RGA, simply type rga <file.rg>. The entered

file must be in P-NUT internal reachability graph format.

21

When the user enters an expression in RGA, the interpreter
immediately evaluates it and returns the result. After
evaluation, the interpreter discards the previous input and
prompts the user for a new command. The prompt symbol 1is
“>”., The user can also define expressions and functions for
later use.

There are three possible errors that can be encountered
while using RGA: syntax errors, run-time errors, and
internal RGA errors. Syntax errors result in the message
“command ignored” and a prompt. Run-time errors normally
result in an appropriate message and a prompt. Internal RGA
errors were never encountered in our work.

RGA has a case-sensitive language. Command key words and
predefined function names are always written in lower case,
while user-defined identifiers may be written in lower,
upper, or mixed case. All identifiers must begin with an
alphabetic letter and can be followed by zero or more
letters, underscores, digits, or periods. A number is one or
more digits preceded by an optional minus sign and may be
floating point as well as integer.

The RGA interpreter normally recognizes the end of a
command by the End Of Line character (EOL). If an expression
or function definition is too long for a single line, the use
of a reverse diagonal character “\” followed by EOL is

treated as a space character. Multiple spaces and tabs are

22

interpreted as a single space. Comments are signified by
enclosure in “/* */”, i.e., /* this is a comment */.

Although the expressions and functions in RGA language
are evaluated to many different types, our work used only
integers, states, Booleans, and sets. If an identifier is
assigned a value of any of these types, it will take on the
appropriate type.

The value of a place 1is evaluated as the integer number
of tokens it contains in a specified state. To specify the
state, the place identifier must be followed by a state-
valued expression in parentheses.

State constants are written as a number sign “#” followed
by an integer. The first state in a reachability graph is
denoted in RGA as #0. Places are referenced by the name
given in the original input text file used for eventual
reachability graph construction. Unnamed transitions are
referenced by the dollar sign “$”. The RGA standard is to
reference the 1initial transition as the number “0”
transition, signified by $0. We found that naming places and
numbering transitions (beginning with number zero) enhanced
readability and ease of analysis with RGA.

A state in the reachability graph consists of the
markings of all places in that state and the sets of arcs to
and from predecessor and successor states. The showstate

function displays the marking of all places in a given state.

23

e

Only places that contain one or more tokens are considered to
be marked. If a place is marked with more than one token,
the number of tokens, enclosed in parentheses, follows the
place name.

The most powerful RGA language type we used was sets.
Elements of an RGA set must be of the same type and are
maintained and displayed by RGA in ascending numerical order.
This display feature greatly aids readability and analysis.
The predefined set variable used exclusively in our work was
S, the set of all reachables net states. Set constants are
written as a comma-separated list of states and are enclosed
within curly braces, i.e., {#0,#2..#5}. This example set
consists of the initial state and the sequence of states two
through five. If the set is empty, it will be displayed as
an empty set of curly braces “{}”.

The capability to construct and display subsets of the
reachable state space proved invaluable in our research. The
method for creating a subset is to specify the parent set
followed by Boolean selection criteria. After expression
evaluation, RGA will display all elements of the set meeting
the Beoolean criteria. Uncapitalized s is the predefined
subset variable of the set of all reachable states S. The
syntax for creating and displaying a desired subset s of S
which meets a specific Boolean requirement is {s in § |

<boolean-expression>}. RGA will evaluate this expression

24

by calculating and displaying all elements of the subset. To
view the place marking of any state, simply use the pre-
defined function showstate (#<state>).

Variable assignment can be used to store the value of a
desired subset. The assignment operator is the colon
followed by an equal sign, “:=”. Assignment allows the user
to later recall the current value of the variable by simply
typing the variable identifier following the RGA prompt. RGA
will print the current value to the the standard output
device.

Available in-fix Boolean operators are standard
arithmetic comparison tests: <, <=, =, >, >=, and <>,
While the equal and not equal tests can be applied to any of
the data types, the other operators apply only to integers,
floating point, and strings. Boolean expression operators
and and or are also included in RGA. The Boolean operator

we used most frequently was exists, the existential

qualifier. An example of the syntax of this operator is:
exists <id> in <set-expression> [<boolean-
expression>]. RGA evaluates the expression by looping

through each element of the set expression until it either
evaluates an element as true and halts or checks all
elements of the set and returns false.

RGA contains .ieveral predefined functions. Two functions

with substantial safety analysis value are succ{(state) and

25

pred(state). succ(state) and pred(state) respectively
return the sets of immediate successor and predecessor states
for a specified state. RGA also supports user defined
functions. Morgan [1987] contains an example user-defined
function which successfully uses s8succ to determine
reachability of a given state from any other specified
initial state reachable (initial-state, final-state).
We altered the code of this function slightly by substituting
pred(state) for succ(state) and produced a working
backward reachability function.

The RGA language 1s highly extensible through its support
of user-defined functions and function libraries. Libraries
can be created as text files and entered by typing the file

names following the reachability graph file name at RGA

invocation. An example of an RGA invocation that will
include two such libraries 1is: rga <file.rg>
<function_libraryl> <function_library2>. RGA will

accept the predefined user functions in these libraries and
allow their wuse in the interactive analysis process.
Although we did not wuse functions 1in our preliminary
investigation, we highly recommend that their capabilities

and usefulness be investigated in future research.

V. IHE SYSTEM UNDER ANALYSIS

A. A SOFTWARE-CONTROLLED REAL-TIME SYSTEM

The real-time system under analysis is a interrupted-
explosive train safety-arming (SA) device for an air-to-air
guided missile. The system was the first attempt by the
Naval Weapons Center in China Lake, Californ‘a, to replace a
mechanical safe separation distance calculator with a
microprocessor and software. The motivations for the
conversion are the potential for greater accuracy, tremendous
cost reduction, programmability, and the desire to apply

state-of-the-art technology to fuzing design.

B. SYSTEM BACKGROUND

Hayward [1987] contains an excellent introduction to the
system under analysis. The following discussion is a brief
review of that introduction.

A safety arming device is a precision system which
incorporates mechanical, electronic, and explosive
components. The purpose of the device is to arm the warhead
at the correct time in tactical use and to prevent
inadvertent high-explosive warhead detonation. The device
must operate with high precision and be able to function cor-
rectly for the logistic life cycle of the weapon. [McVay,

1987]

27

MIL-STD-1316C states that a safety arming device must
independently prevent unintentional arming and provide forces
to remove safety features originating from other
environments. At least one of these features must depend on
sensing the post-launch environment. The system must also
provide an arming delay to ensure safe separation distance is
achieved in all defined operational conrnditions.

In mechanical SA devices, the system is locked in the
safe position until unlocked by application of current to a
solenoid. The device contains a setback weight, connected by
the gears of an escapement mechanism to a rotor. The rotor
contains the interrupt element. When the missile’s rocket
motor fires, the acceleration boost drives the setback weight
and causes the movement of the gears. The escapement
mechanism serves as a pseudo-integrator to enable movement of
the rotor from the interrupted (safe) position to armed after
the missile has traveled a preset distance from the launch
vehicle. Figure 5-1 shows the block diagram for a standard
guided missile SA device [McVay, 1987]. The interruptors
have mechanical and direct locking as required by MIL-STD-

1316C.

28

1

Interruptor Interruptor Interruptor
P
Mover Locking Mover
. Mechanism
hower - E
Energy Energy Conditioning Firing Injrgy .
Source Interruptor System Capacitor nteIruptor
Switch]
Fuze
Logic

IDetonator
|

Figure 5-1.

C. SYSTEM OPERATION

Figure 5-2 is a system flowchart fcr the SA device under
analysis. [Hayward, 1987)

In Figure 5-3, we modified the original Hayward {1987]
software flowchart by abstracting the hardware/software
control port interface and removing the assembler code
identifiers.The firing sequence in Figures 5-2 and 5-3
originates with the missile on an aircraft rack. An intent
to launch (ITL) signal initiates a sequence which fires the
thermal battery, charges the firing capacitor, powers the
computer, and unlocks the SA device. The software then
builds a preset safe separation distance lookup table for

current distance comparisons.

29

—'f

Missile on R/C Rack

y

R/C signeisintent to
Launch (ITL) ! ¥ Iring Capacitor

Charqed

ITL unlocks SR,

Fires thermal battery,
r

Rocket Motor Fires

l

Launch

l

| 4.5 Boost]

!

Software computes
Safe Separation Distence

l

b—e—eegp! SR Device Arms

!

SA Locked in Arm

:

Target Detection

v

Detonation s

Figure 5-2. SA Device System Flowchart

After missile launch, the software uses inputs frcm an

analog to digital converter (ADC) and a timing loop to j

compute current separation distances from the launch vehicle.

tnedie
solenod

t

Sulla Lookup
Tebie

‘ lnitislize 100kyp tabie pointer
start ot iow
lookup teble

ponter

/0 Converter
Input Current
Accoisretion bies
Oisabie
A/0 Converter
Acceleration

A/D Converter

Updsts Current
Velocity

Updete separstion
Gistence

Time Delsy
Init Timer
{Stert imer)

Separation
Distance

Increment
Lookup Tadble
Pointer

Head
soienoid
stetys

Compere
et leggte Seperation
Toggle sccoraing to Distance
Solenoid Rignt solencid with Table
ratus,

right

Toggte
Solencid Left

Wt 200
for Solenoid
loqqte

To M s
no true

Figure 5-3. SA_Device Software Flowchart

31

A minimum 4G boost is required before the program will
compare the calculated separation distance with the lookup
table values. If the calculated value exceeds the current
tabular value, the lookup table entry pointer is advanced to
the next table wvalue. The software then commands the
solenoid to toggle, resulting in a ball lock mechanism
rotating the interruptor by a one-third increment. Next, the
software enters a delay loop to provide sufficient time for
the solenoid to toggle. The program then loops back, updates
the acceleration bias from the ADC output, and starts over.
If the calculated value is less than the lookup table entry,
the software delays, updates the calculated separation dis-
tance, and conducts a second comparison. If the tabular
distance is then exceeded, the solenoid is toggled as
previously described.Three solenocid toggles are required to
remove the interruptor. In additloun, cue warhead can not
detonate unless the SA device is unlocked (which occurs after

ITL is signalled) and the firing capacitor is charged.

32

VI. LIN N I HODOLOGY

A. PROBLEMS IN SOFTWARE SYSTEM MODELING

The major problem in software system modeling is that the
model must be sufficiently accurate and detailed to provide
meaningful safety analysis results. The model must
incorporate the software flowchart, important environmental
features, the nature of system components, and any initial
conditions. Modeling should be a process of cooperation and
continuous feedback between the designer and the modeler.
Since the modeling process is difficult, ncnessertial details
should be omitted. Although it 1is quite difficult to
determine detail significance, the reduction of the system
scope is important for minimizing required modeling time. If
any system facet’s significance is unknown, it is best to
incorporate it into the model. The system designer must
provide feedback to the modeler t> ensure a sufficiently
accurate model.

Hayward [1987] presented a methodology for buildiny Petri
net models of real-time, software-controlled systems. He
provides detailed instructions for transl:zion of software
flowcharts tc Petri nets and discusses a methodology for
combining hardware and software system functions into a

single Petri net model.

33

While preparing the Hayward system model for automated
analysis, we discovered several modeling flaws and corrected

them. Our work reflects those improvements.

B. A BOTTOM-UP APPROACH

Our initial research plan was to familiarize ourselves
with the the fuzing system, convert the Hayward [1987] model
to entry text file, and conduct P-NUT aided automated safety
analysis. Although the Hayward [1987] model was an excellent
first attempt, serious shortcomings were soon discovered in
the system component models., Following this discovery, we
expanded our plan to include corrections to the Hayward
model.

After familiarization with the software and components of
the safety arming device, we accepted the basic system
framework and began at the module level of the Hayward model.
We examined the functionality of the existing Petri net
modules and compared this with our knowledge of actual
component behaviors. This is not the method we recommend for
conducting first-time modeling and analysis of a system. As
stated in Hayward [1987], the initial modeling process should
be a top-down approach, beginning with system and software
flowcharts and interfaces, and abstracting out internal
component functions. The final step prior to safety analysis
should be compcnent modeling and verification. Since we were

given an essentially correct system framework, we began our

work from the bottom up. We redefined compernent interfaces,

created the internal component Petri nets, and verified
correctness with P-NUT.
1. ITL Sensor Module
We studied the Intent To Launch (ITL) sensor first.

The Hayward model is shown in Figure 6-1.

tl

Off on

t2

Figure 6-1. Hayward ITL Sensor Model

Figure 6-1 effectively models a two-state device, but
an ITL sensor must do more than simply toggle. The sensor
must have a means for outputting its current state. In the
SA device under analysis, the software program checks the ITL
sensor to determine which of two control flow paths to
follow. The model in Figure 6-1 has no mechanism to allow
NonDestructive ReadOut (NDRO) of its stored state and clearly

needed this addition.

35

T

Y

B

A component model must reflect system interface
requirements and accurately represent behaviocr of the actual
device. As an initial step, the modeler should analy:ze
component functionality and document required system
interfaces. He must then ensure that the model accurately
represents all significant aspects of function and control
flow.

After adding NDRO capability to the ITL sensor, we
realized that a proper model of a multifunction device
requires a system lock. The lock ensures that once the
component receives a command, it prevents new command
processing until completion of the original input command.
In the ITL sensor, this is critical. Without a system lock,
NDRO could occur while the device was toggling and result in
erroneous ITL indication. The diagram for the revised ITL
sensor is shown in Figure 6-2.

To increase readability and connectivity of the Petri
net diagram, we recommend a standard input/output convention
for all system modules. This convention is reflected in
Figure 6-2 and consists of distinctly shaded input and output

places.

AY

.4

L. J

. J

NN
xO= R

ITL Sensor 2 ITL Status

T o

m 13 ML is

::zz'.:aQ (= M

A

=11®

F'I I
Is faise

Figure 6-2.

In the complete system net, the contents of the
modules should be abstracted. The modules are depicted as
“black-boxes” with only interface places shown. This

convention encourages regular component and system modeling.

37

..L

diki.

A e

"N

.4

d

\d

.4

P b

A

Regularity is important due to the nontrivial nature of real-
time systems.

In large systems projects, modeling teams could be
employed. In these projects, it is both appropriate and
necessary to apply software engineering methods for module
specification, namely clearly defined and consistent module
interfaces.

Beginning with the ITL sensor module in Figure 6-2, we
adapted the electrical engineering wiring schematic
convention to our modeling of intersecting Petri net arcs.
Transitions t3, +t4, t5, and t6 create and place tokens in the
system-ready place. To conserve space and improve
readability, we use intersections with nodes to denote common
arcs between several transitions and a single place. It is
important to note that this convention is inappropriate for
representing arcs between multiple places and a single
transition, as this would wviolate standard Petri net
conventions. Additionally, the number of transition inputs
and outputs must be readily apparent to an analyst without
requiring a count of scattered intersecting lines.

Creation of the ITL sensor in Figure 6-2 was a multi-
step process. We began with the Hayward model of a two-state
device and through a trial-and-error approach developed the

model with NDRO capability.

38

The fundamental idea of a nondestructive read is to
allow the sensor to output its state without changing that
state. In Petri net terminology, the device must output state
indication and simultaneously return to the marking held
prior to the commanded read. Since no modeling of control or
information flow is possible without token consumption and
creation, the modeler must be innovative but should resist
the temptation to build a barogque structure. The addition of
places in a net can significantly add to reachability state
space size and correspondingly increase analysis difficulty.
(There are exceptions to this statement, such as in the use
of interlocks, which actually restrict the reachable state
space.)

After creating the ITL sensor model, we converted the
Petri net to a textual file, built a reachability graph of
the system using P-NUT, and analyzed the reachable states by
printing the graph. The textual Petri net for the ITL sensor
model is shown in Figure 6-3.

To reduce file size, we shortened most place
descriptions. We follow this procedure throughout our work.
In more complicated Petri nets, ten or more marked places per
state are common, often filling several output lines for each

state description. Modelers must be uniform selecting place

name abbreviations. The pnl tool 1is extremely useful for

39

'®

uncovering notational discrepancies and should be used prior

to translating all text files to internal P-NUT format.

itl: ITL toggl_rcvd,ITL snsr_rdy ->ITL toggl_enabld

:t2: ITL NDRO inpt,ITL snsr_rdy -> rd_ ITL status

:t3: ITL toggl enabld,ITL -> no ITL,ITL snsr_rdy

:t4: ITL_toggl_enabld,no_ ITL -> " ITL,ITL snsr rdy

:t5: rd ITL status,ITL -> ITL is_ true, ITL, ITL snsr _rdy

1t6: rd_ ITL status,no_ITL -> ITL is false,no ITL,ITL_snsr _rdy

/* following code is for test looping purposes only */

:t7: ITL is true -> ITL toggl_rcvd
:t8: ITL is_ —true -> ITL_NDRO inpt

:t9: ITL is_ “false -> TITL toggl rcvd
:t10: ITL is false -> ITL NDRO_inpt
<ITL NDRO_inpt,no_ ITL,ITL snsr_rdy>

Figure 6-3. QTextual ITL Sensor Petri Net

To ensure all reachable states were identified, we
added a looping structure at the end of the input text file.
These added transitions simply feed the output back into all
possible input places, ensuring all inputs and outputs are
possible. This procedure is recommended for testing any
module that has multiple inputs and outputs. The same effect
could be achieved by creating a separate text file and
reachability graph for each possible initial condition,
however our apprcach accomplishes this with one text file and
reachability graph.We translated the ITL sensor textual net
using transl, built the reachability graph with the RGB, and
used RGP to print it in readable form.This reachability graph

is shown in Figure 6-4.The ITL sensor graph and state space

40

were sufficiently small to allow verification by hand tracing

. e : - .
and inspection, thus the RGA waz not used.

+=->3->4->5

0 ITL snsr_rdy, ITL NDRO inpt,no_ITL
1. rd ITL status,no ITL

2. ITL snsr_rdy,no_ITL,ITL is_false
3. ITL toggl rcvd,ITL snsr rdy,no_ ITL
4 ITL toggl enabld,no ITL

5

. ITL snsr_rdy,ITL

Figure 6-4. ITL_Sensor Reachability Graph/State Space

2. Analog to Digital Converter (ADC) Model
The Hayward [1987] model for ADC, Solenoid, and

Solenoid Control devices is shown in Figure 6-5.

enable
tl
t2
>
disable
processed

Figure 6-5. Hayward 7Two-State Device Model With
Response

41

v@.fv

Unfortunately the model in Figure 6-5 inadequately
reoresents the actual devices. Our methodcloay for modeling
the ADC follows.

First, we analyzed the function of the ADC in our SA
device. The ADC converts an analog input signal (from
accelerometers) to a digital acceleration output. It should
provide digital acceleration information when enabled and no
output when disabled. The ADC has two interfaces with the
overall SA system. It outputs digital acceleration wvalues
and provides feedback that it has been enabled or disabled.

To represent control flow, we created a model that
could be enabled or disabled and provide necessary feedback
following command processing. Our approach was limited in
that we did not attempt to model the information flow of the
module. We assumed that if the ADC was enabled it would
provide correct acceleration information, and if disabled it
would not. This significant assumption was made to reduce
the scope of the model in view of time constraints. It
should not adversely affect the credibility of the analysis.
If the ADC malfunctioned and provided incorrect acceleration
in excess of the actual value, the separation distance would
be overestimated and could result in insufficient safe
separation distance at detonation. This is an obvious result
and there is little need to expend the extra effort and time

required to model it. To ascertain correctness and

42

-_a

&

reliability of hardware components

~ F .

[§]

should be
component’s

environment.

for

behavior

Figure 6-6 shows the refined ADC model.

N

ctem arnalycis.

“design

safety”

m

v

- A
e £3

*

within the

DISABLE
INPUT

S

ENRBLE
INPUT

or

context

effect

of the

Disoble
Commana
Received

le

Enoble
Command
Received

N

System
Qisabled

System
Enabled

b —

Command
Processed

4

System
Ready

Figure 6-6.

ouTPUT

43

of the

system

JL

w4

_jw

d

N

In Figure 6-6, the system lock, ADC-Ready, reflects
dovice inzbility to procecc simultaneous enable and diezbkle
commands.

The ADC contrel structure is more than a simple
toggle. It must aifferentiate between enable and disable
commands and allow redundant command processing. This was
modeled by adding transitions t2 and t4. If redundant enable

or disable commands are received, the model will not change

states. It will, however, process the redundant command and

[

signify that it has done so. This s anzalcocgous to a
component with on and off switches. If the on switch is
pressed a second time, it does not cause the system to shut
down. If a real-time system has multiple components which
can enable or disable a critical component, it normally
allows redundant enable/disable commands for insurance
purposes. It is our assumption that the ADC is such a
device. If redundant commands were not allowed, this could
easily be modeled by eliminating the redundant transition’s
ability to deposit a token in the command-processed place.
To accomplish this, simply remove the appropriate arcs. This
would eliminate redundant command feedback.

Following model creation, we again turned to P-NUT to
verify correctness. We followed the same steps as in

analysis of the ITL sensor and produced a printout of the

reachability graph and state space. The textual file for the

44

ADC module 1is contained in Ficgure 6-7, while Figure 6-§
depi~ts the resulting Petri net reachability graph. This weas
a small 1listing and analysis began with manual state
examination. We examined all reachable states and validated
the module. As a final check, we briefly analyzed the module

with the RGA.

:t0: disable_input, system ready -> disable cmd received

:tl: enable_input, system ready -> enable cmd received

:t2: disable _cmd received, system disabled -> system disabled,
cmd processed

:t3: enable_cmd received, system disabled -> sysiem enabled,
cmd_processed

:t4: enable_cmd received, system enabled -> system enabled,
cmd_processed

:t5: disable cma received, system enabled -> system disabled, ®
crd_processed

:t6: cmd_processed -> output, system_ ready

/* the following code is for test loop purposes only */

:t7: output -> enable_input
:t8: output -> disable input

<disable input, system enabled, system ready>
/* initial markings */

Figure 6-7. X 1l V

Could this model be simultaneously disabled and
enabled? We knew this to be impossible from our state
inspection and verified it with the RGA. The translation of

this question to RGA language 1is exists s in S

[ADC_enabld(s) = 1 and ADC_disabld(s) 1].

45

0=->1->2->3->5->7->2
|
+=>4->6->8->9->0
i
+->10->11->8

0. disable input,system_ready,system enabled
1. disable cmd received, system_ enabled

2. system disabled, cmd processed

3. system ready,system . disabled, output

4. system ready,enable input, system disabled
5. disable_ input, system_ ready,system disabled
6. enable cmd recelved system . disabled

7. disable cmd | received, system_disabled

8. cmd processed system enabled

9. system ready,system enabled, output

10. system ready,enable input,system enabled
11. enable cmd recelvea,system enabled

Figure 6-8. Reachability Graph for ADC Module

The question is interpreted by RGA as: 1Is there any
reachable state in which there 1is one token in the ADC
enabled place and one token in the ADC disabled place? RGA
response was false. We then asked the same question using a

set variable assignment and assigned the variable name

malfunctionl to this particular malfunction. The RGA input
for this question 1is: malfuntionl := {s in S |
ADC_enabld(s) = 1 and ADC_disabld(s) = 1}. RGA
ihterpreted this as: Evaluate all elements of the set of

reachable states in which both of listed places contain one
token and assign this set to the variable malfunctionl. RGA

responded with a set of empty curly braces, “{}”, signifying

46

"y

that malfunctionl was currently of type set and had the value
of null. To redisplay the variable value later in the
session, we entered the variable identifier, malfunctionl,
and RGA again responded with the empty set.

We then tested for system deadlocks: deadlocks :=
{s in S |nsucc(s) = 0}. nsucc(s) is a predefined integer
expression that returns the number of successor states to a
specified state s. The above expression 1s interpreted by
RGA as: Assign to the wvariable deadlocks all elements of the
subset o0f reachable states that have no possible successor
states. The RGA responded with the empty or null set.

3. Solenoid Model

We next turned our attention to the problem of
modeling the SA solenoid. The solenoid is a two-state device
with enable/disable and NDRO capabilities. Two states refer
to status left and status right. When the SA software
determines the launched missile has achieved a proper
increment of safe separation distance, it checks the solenoid
status (right or left) and commands the appropriate toggle.
The solenoid toggles, causing the ball lock mechanism to drop
a ball and move the fuze interruptor by a one-third
increment. Following three toggles, the interruptor 1is
removed. The solenoid system input commands consist of
enable/disable, read, and toggle left/right. As in the ITL

sensor and ADC, the system accepts only one command at a

47

T'*“‘ "W‘v"”'ﬁ '"*“—"' - e 7

time. If a second command 1s rez-cived prior to completion of
the first, it is ignored.

Hayward [1987] modeled the solenoid ky creating three

separate modules: solenocid contreol, solenoid, and solenoid
status toggler. These three independent Petri net models
were intended to model a single system component. The

solenoid control and solencid modules were replicas of the
two-state device in Figure 6-3. The solenoid control module
modeled enable/disable functions and the solenoid module
modeled the left/right toggle functions, The third module
represented software status indication of the solenoid but
toggled independently of the solenoid module.

Since the SA device was never actually constructed,
the software prototype required a method to simulate the
toggle position. It accomplished this by toggling a status
bit in a memory register. The Hayward solenocid status
toggler is the model of this register function.

We attempted to analyze safety of the completed
software controlled SA device. Accordingly, we modeled the
system with all designed software/hardware interfaces
incorporated in a single full-function module.

Creation of the solenoid model required several
revisions and two weeks of intensive effort. The basic
functions were defined and all interfaces specified. We then

attempted to abstract another level of the device. Since the

48

solenoid performed three separate functions,

prcject functionally

enable/disable capabilities.

creation in one step,

function and the ITL sensor’s NDRO capability as our

step. The resulting module is shown in Figure 6-9.

we

kbrcke

into NDRO, left/richt toggle,

we combined the ADC

“smart”

Actuate Disable Enable
NDRO Input input
System
\ A Ready
16 w Y ¥ u X
Y . Enable
Received
Enadled Received ‘
L
12— f 2
Disabled v t4
status t? L
f— 13
l <+
= — .
» System
ﬂ Disebled | System
tnabled
Enabled ,
Status < 15 [«
‘ ' L
18
Command
Processed

49

the

and

Rather than attempt module
toggle

Tirst

We then converted the the enable/disable toggle in
Figure 6-9 to a left/right function and added another two-
state module for enable/disable capability. We added a model
feature which would disallow any accumulation of input place
tckens. Token accumulation in the model could result from
multiple input commands. Since Petri net transitions fire
nondeterministically, these input commands might be handled
out of order. The actual solenoid has no memory and can not
respcnd to commands received while “in process”. In Petri
net model terminology, the additional input tokens must be
consumed. Figure 6-10 shows the final solenoid model.The
solenoid model in Figure 6-10 has three fundamental operating
states: ready (enabled), disabled, or in use. System ready
is the equivalent of the system ready places of the ITL
sensor and ADC models in Figures 6-Z and 6-6. A token in
this place indicates the solenoid is enabled (has power) and
is ready to process input commands. A token 1in the
solenoid in_use place indicates that the solenoid is
processing an input and will not accept further inputs until
processing is complete. A marking of the system-disabled

place represents power is off and no processing is possible.

50

- N

n_J

1@

e auA '

tnput

ENABLE/DISABLE

ourrt

Input

RIGHT

D

T066LE
LEFT

NDRO

Zm7

Figure 6-10. [Einal Solepnoid Model

51

The token accumulation problem described above is

hl solved by the addition of token consumption loops. If the

solenoid in Figure 6-10 is in use, transitions tl3 to t17
ensure consumption of all incoming tokens without altering
F the command in process. If the solenoid is disabled,
transitions t18 t¢ t2l1 ensure that only an enable command

will be processed. All other input tokens will be consumed

and the system will remain disabled.

After the solenoid token consumption scheme was
incorporated, we did not “backfit” this feature to the ITL
sensor and ADC Petri net models. This was solely due to time
constraints. Our goal was to demonstrate procedure validity
for preventing input token accumulation in any “no-input-
memory” device.

In Figure 6-10, no input transitions can fire unless
there is an enabling token in the system ready place. When
an input transition fires, this token is consumed and a token
is created and placed in the in use place.

The method for returning the solenoid model to ready
state after processing is shown in all the output firing
t;ansitions of Figure 6-10. Any transition that fires to a
place outside the module requires an input token from

thein use place. When an output transition fires, a token is

created and placed in the system ready place.

0 Nl

A major difference exists Dbetween the ADC
enable/disable toggle in Figure 6-6 and the solenoid
left/right toggle in Figure 6-10. The ADC must treat
redundant enable/disable commands no differently than genuine
toggles in terms of feedback to the system. (In the solenoid
system-ready/disabled toggle, redundant commands are allowed
and reflect this philosophy.) Redundant solenoid left/right
toggles are not handled in the same manner. If the actual
solenoid re~=ived a redundant toggle input and provided
feedback, no toggle or resulting movement by the interruptor
would occur, but system software would erroneously proceed as
if these required events had taken place. For this reason,
redundant solenoid toggle transition firings do not create a
token in the toggled place.

Following model creation, we converted the Petri net
to textual form and input it into P-NUT. We translated the
file, constructed the reachability graph, printed the
graph/state space, and analyzed the graph on RGA. Although
larger than the ADC and ITL sensor graphs, the solenoid
reachable state listing and graph still permitted manual
spate inspection and graph tracing. The text file and
reachability graph are contained in Appendices D and E.

The final solenoid model in Figure 6-10 reflects a
major change from our original module. The error was

discovered during solenoid RGA analysis. We asked for the

53

4.1 LA.A

L

i\ ed P A

|

'@

set of system deadlock states (see Chapter VI) and were
surprised when RGA responded with a two-state set. To
enhance analysis and prevent deadlocks, we had added
transitions to return output tokens back to any input place.
One deadlock state had markings in left_toggle_received,
toggle_is left, and in_use, while the other deadlock was the
equivalent redundant right toggle state. Redundant
left/right toggle transitions, t2 and t4, originally had not
required an enabling token from in use or an output arc back
to system ready. This resulted in the model deadlocking in
the in use condition whenever a redundant toggle was
received. This was clearly not our intention. Although we
wanted the solenoid model to withhold redundant toggle
feedback, we never intended it to result in module deadlock.
From a system view, this was equivalent to disabling the
solenoid permanently. The correction was easily made and the
final text input version is shown in Appendix D. Appendix E
contains the resulting reachability graph printout and
reachable state descriptions.

We input the corrected model net to RGA. We again
asked for the set of deadlocked states and RGA responded with
the null set. We then tested for possible accumulation of
tokens. More than one token in a given place would signify
that the model had failed to prevent command inputs while in

use. We changed the input text file (Appendix D) initial

54

conditions by adding a second token to the toggle_left input
place. A new internal net was created and a reachability
graph built. This procedure is required every time changes
are made to the input text file. The new reachability graph
was then analyzed on RGA. The input expression was
excesstokens := (s in S | tokens(s) >= marked(s)]}.
The predefined RGA expression tokens(s) is evaluated as the
integer number of total tokens present in a given state.
marked(s) is evaluated as the integer number of places
containing at least one token in a given state. If the
number ol tokens ever exceeds the number of marked places in
any state, it indicates token accumulation in at least one
place. When RGA evaluates the expression, it returns the
subset o0f reachable states which satisfy the specified
Boolean condition. As in previous examples, showstate(s)
function is then used to display individual place markings
within a given state. RGA evaluated our entered expression
and returned a set o0f states in which only the
toggle left input place contained more than one token. As
this was our initial condition, it validated our multiple
ipput token prevention scheme.

We returned to analysis of the model with single token
initial markings and asked if it were possible toc have the
solenoid simultaneously ready and disabled, in use and

disabled, or in use and ready. If these supposedly mutually

55

B LA

R _|

R |

)

exclusive markings were possible it would represent a serious
design flaw. We labeled this subset identifier as errorl.
Since we had shown that there was never more than one token
in any place, we were able to simplify our input expression.
The RGA input for this question was: errorl := { 8 in § |
(system_ready(s) + system disabled(s) > 1) or
(in_use(s) + system disabled(s) > 1) or (in_use(s) +
system ready(s) > 1)}. RGA evaluated the expression and
returned the null set. Since we had proven a maximum of one
token in each marked place, arithmetically adding the place
values in the first half of the Boolean expression was simply
a shorthand expression for those states in which any were
marked. If any of the places could have contained more than
one token, this expression could not be used. The proper
expression would then be errorl := (8 in S |
(system_ready(s) =1 and system_disabled(s) =1) or
(system ready(s) =1 and in_use(s) =1) or (in_use(s) =1
and system disabled(s) =1)}.

We performed a similar test for the erroneous state
resulting from any two of the following places simultaneously
mgrked: read_enabled, left toggle_received,
right toggle received, system ready, system_disabled. This

expression was entered as error2 := (s in S |

read_enabled(s) + left_toggle_received(s) +
right_toggle_received(s) + system_ready(s) +
56

system disabled(s) > 1}. RGA again responded with the
null set.

To prove that the module returned to a ready state
following output, we asked RGA to return the set of all
states in which any of the output status or toggled places
was marked simultaneously with the in-use place. We named
the subset identifier output error. The RGA expression of
this question was output_error ti= {8 4in S |
(status_is_left(s) + status_is_right(s) +

toggled_output(s) + en_dis output = 1) and (in_use(s)

= 1)}. RGA evaluated the expression and returned the null
set. This final check completed module correctness
validatzi~n. To confirm our assessment, we hand-traced the

reachability graph and examined all possible state sequences.
4. Ihe System Petri Net Model

Following Solenoid testing, we refined the Hayward
[1987] overall system model.

The original Hayward model specified no requirement
for missile release prior to the occurrence of a 4G boost.
The attainment of this great an acceleration is impossible
yith the missile on the rack. The interlock between
transitions tl1l1 and tl12, in Figure 6-11, reflects the
necessary sequence of rack release prior to the boost

occurring.

57

t 4+6 "2 missile ®
boost ::f:a se missile
is on
4+6 rack
boost missile
occurred released

Figure 6-11.

In a phone conversation with NWC China Lake, the
fuzing system designer, Mr. Steve Rohde, specified a minimum
4G acceleration boost as a precondition to separation
distance update calculation. This precondition prevents any
toggling of the solenoid or interruptor movement without the
required accelerative boost. This feature is modeled in our
system Petri net (Appendix F) by making the 4+4G boost
occurred a required input place to the update separation
distance transition, t59. 4+G boost occurred must be an
output place of t59 to ensure accurate reflection that this
precondition has been met in any subsequent separation
updates.

In Figure 6-12, ITL locks 1 and 2 and no-ITL locks
1l and 2 were added after conversion of the net to P-NUT
textual input form. While entering the net, we discovered
that there was no current method to describe and maintain
which of several paths was being taken on ADC entry and exit.

In the system control flow, the ADC is enabled following a

58

s

a

read of ITL status. In Figure 6-11, if ITL is true, control
flow follows the left path, and if false, the right path is
traversed.

If ITL is true, the ADC 1is enabled, current
acceleration is input to the software, and the ADC 1is
disabled. After the ADC is disabled, control and information
flow continue along the ITL path toward possible detonation.

If ITL is false, the ADC is enabled, current
acceleration bias is sent to the software, and the ADC is
disabled. The control and information flow then updates the
acceleration and loops back to recheck ITL status.

Although there are four ADC instantiations in the net,
the SA system contains only one physical device. The ADC is
enabled/ disabled via one set of input places and feedback to
the system is via a single set of output places. Since a
Petri net is nondeterministic, there must be a modeling
methodology to ensure correct path maintenance. The method
we devised is to place system locks at module entry and exit
points whenever there was a path choice. This lock
guaranteed that only the correct transition would be enabled
upon module output. Figure 6-12 shows the ADC portion of the

final system net with path locks in place.

59

il

g -

4=

\\\\\

\\\\\\

Im
is false

NN
&\\\\\\\%

m (145 - 151) -
fock 1 (145 - t51) o k'T|l
ADC
fADC
OUTPUT OUTPUT
Input current input current
acceleration acceleration
blas
acceleration blas
inputted inputted
disable
ADC 154 15 Isable
ADC
disable
input disable
\\\\\\\\ \Q put
\\\\\\\\\x no-ITL
ITL m lock 2
\ \\\\\\\\ ‘&\\\\\\\&
lock 2 _
(145 -151) (145 - 151)
ADC
ouUTPUT ts6 update Initial
ADC acceleration
Input OUTPUT
157 acceleration
bias
Figure 6-12. Portion of Fipnal Petri Net Model With
Rath lLocks

Since three solenoid toggles will result in removing

the interruptor, we have used the model proposed in Peterson

[1981] to count the three required software commanded toggles
(iteration counter). This counter models the system
software trap and halts the program following the third
software-commanded solenoid toggle. In Figure 6-13, the
presence of two tokens in the counter reflects first
iteration completion prior to transition t79. Accordingly,

this counter will enable t79 for only two firings.

distance
check

t78 swait
wait se
200 P

179 | q—J

<+

check
sep
distance

iteration
counter

Figure 6-13. pPRetri Net Model of a Counter

There 1is an aspect of the actual system that we
intentionally omitted to reduce model scope and complexity.
Actual system software enables the solenoid prior to, and
disables it following, each read/toggle. We enable the
solenoid initially and do not disable it on each iteration.
This should not affect model wvalidity, since we proved

earlier that the disabled solenoid model could neither toggle

nor output status.

0

5. P-NUT Aided Safety Analysis of OSystem Model

We converted the graphical net to P-NUT text file
format, translated it, built the reachability graph, and
printed the reachability graph to an output file. The
resulting RGP output contained over 13,000 states and
required over five megabytes of memory storage. The sheer
magnitude of the reachability graph precluded manual
examination and forced total reliance on automated RGA
analysis. The textual version of the system Petri net is
shown in Appendix G.

Due to time constraints, we limited our RGA safety

analysis to reachability of major hazardous and mishap

states.

To determine the possibility of missile detonation
while attached to aircraft wing we entered: hazardl := { s
in S8 | missl on_rack(s) = 1 and detonation(s) = 1}.

RGA responded with the null set, meaning it was not a
reachable state of our model.

To determine if detonation could occur when ITL was
false, we entered the expression: hazard2 := { 8 in S |
no_ITL(s) = 0 and detonation(s) = 1]. RGA responded
wﬁth the null set.

We next determined the possibility of detonation

occurring without a minimum 4G boost. We entered hazard3 :=

62

*"“

{ s in S8 | fourG_ bst_occrrd(s) = 0 and detonation(s) =
1}, and RGA returned the null set.

As a fi..al question, we asked 1f detonation could
occur if no power was routed to the computer. The expression
hazard4 1= { 8 in S | cmptr_off(s) = 1 and

detonation(s) = 1} alsoc resulted in the null set.

63

VII.

A. RESULTS

This thesis has proposed a methodology for Petri net
modeling and automated safety analysis of a real-time
concurrent system. The sample system is a proposed air-to-
air guided missile Safety and Arming (SA) device. The
methodologies for initial modeling and safety analysis of
this representative real-time system methodology were
originally presented in Hayward [1987]. Our goal was to
refine the modeling methodology presented by Hayward and to
demonstrate the methodology for, and the feasibility of,
automating the safety analysis.

We 1introduced software safety, Petri nets, and
reachability theory. We demonstrated steps required to use
the Petri Net Utility Tools (P-NUT) and discussed the
extensibility of the P-NUT Reachability Graph Analyzer (RGA).
We next discussed P-NUT potential for automating detailed
safety analysis.

We have presented a methodology for system safety
analysis using Petri net modeling. Using this metliodology,
we initially analyzed all aspects of system functionality and
documented internal interfaces. We then abstracted the
individual components and constructed Petri net component

models based on a thorough study of their operation, control

64

¥

flow, and system interfaces. We converted each Petri net
model to textual form, entered it into P-NUT, and validated
model design using P-NUT automated tools. After all system
component models were verified, we examined the system Petri
net, as presented in Hayward [1987]. After comparing the
control flow of the net with our understanding of actual
system operation, we discussed the basis for several
refinements and demonstrated use of P-NUT to construct the
reachability graph. Function and use of wvarious RGA
expressions and predefined functions for examination of
hazardous state reachability were then presented, We
concluded by demonstrating, from a preliminary standpoint,

how to determine system safety.

B. CONCLUSIONS

As previously stated, our initial research goal was the
automated analysis of a preexisting real-time system Petri
net model. Unfortunately, the preexisting system model
[Hayward 1987] was incomplete, requiring remodeling of
components and refinement of the system Petri net structure.
We essentially accepted the Hayward system framework and
employed a bottom-up approach. We redesigned component
interfaces and internals and verified correctness on the
module scale prior to refining the system net structure and

conducting automated safety analysis.

65

vy ——

o AEE.

A™ A A . A

A

The recommended chronology for Petri net modeling and
automated safety analysis follows. A brief summary is
contained in Appendix H.

Initially, the modeler/analyst should study system
function and the designer’s description of possible mishap or
hazardous states. He must then reduce the scope of the
system to include only significant aspects and details
pertinent to stated hazards. Although this is possibly the
most difficult step in the entire process, it is critical to
reducing scope and complexity of the resulting net. By the
very nature of mishaps, it 1is extremely difficult ¢to
ascertain the relative import of individual components or
processes. It is therefore imperative to incorporate any
features of the system that may contribute to reaching
hazardous or mishap states. If more model detail is desired

after initial net construction, it is possible to refine the

original Petri net. Continuous feedback from the system
designer is critical to accurate modeling and safety
analysis.

The modeler must study system and software flowcharts
;horoughly. He must document all software/hardware
interfaces and incorporate the flowcharts into a single Petri
net system description. Component internals should initially
be abstracted with “black-box” descriptions and incorporate

only required system interfaces. Multiple instantiations of

Y

-

a component should be presented in the system net as separate
“black-box” descriptions.

After the framework 1is complete and approved by the
designer, system component functionality should be studied
and modeled. As in the system framework approach, one must
incorporate only the desired aspects of component behavior
and attempt to further divide the individual components into
submodules, i.e., NDRO module, toggle modules, etc. An
example of this second level of abstraction is found in our
solenoid module (Appendix C). This Petri net model 1is
basically a combination of three two-state devices with
appropriate internal interfacing.

As each component model is completed, P-NUT should be
used to verify desired behavior. Proving component function
and interface correctness on the module level permits easy
and accurate incorporation into the system net.

After completing the initial system model, P-NUT should
be employed to construct the reachability graph. RGA
automated safety analysis is then possible and can verify
desired system behavior and safety.

Manual construction of a 13,000-state reachability graph
would be an arduous, lengthy, and error-prone process. P-NUT
can construct this size graph on a Sun 2 computer in under

two minutes of CPU time.

67

T

R |

P-NUT is an extremely powerful suite of tools for Petri
net analysis. One of the major drawbacks of the Petri net
safety analysis methods cited in Leveson and Stolzy [1987] is
the difficulty of constructing reachability graphs for
complex concurrent-system Petri nets. The Reachability Graph
Builder eliminates this problem, while the Reachability Graph
Analyzer permits detailed analysis of the graph and reachable
state space. The extensibility of the RGA language makes it
extremely powerful and allows safety analysts to create and
use predefined function libraries. We have shown how RGA
quickly evaluates sensible and important safety questions.
Answering these questions for complex reachability graphs
would be extremely difficult, if not impossible, based on
manual construction and analysis.

While conducting our research, we came to fully
appreciate the feasibility and suitability of Petri nets for
software system modeling and safety analysis. 1In the course
of modeling system components, Petri nets were versatile
enough to enable accurate modeling of any system aspect
desired. Petri nets captured every essential feature of
system interface and control/information flow. Petri net
modeling requirements for full specification of system inter-
actions and dependencies forced us to explicitly state all

control flow or behavior assumptions. Often, by merely

68

Vi

converting our ideas to a Petri net structure, we observed
previously unnoticed assumption irregularities.

Methodologies presented in Hayward [1987)] and this thesis
show that real-time system safety analysis is feasible using
Petri nets and the automated P-NUT suite. We have endeavored
to introduce the reader to these techniques and strongly

encourage further research in the area.

C. RECOMMENDATIONS

We have attempted to demonstrate the feasibility of
applying automated analysis tools to Petri net software
system modeling and safety analysis. The methodologies
presented are only a preliminary step in creating a complete
methodology for successful and accurate real-time system
Petri net modeling and automated safety analysis.

We strongly recommend that the next refinement of these
techniques incorporate timed Petri nets. The synchronization
facets of real-time concurrent systems can only be modeled
and analyzed completely if timing constraints are included.
Leveson and Stolzy [1987] discuss the application of timed
Petri nets to the modeling process. P-NUT contains tools
capable of construction and analysis of timed Petri net
reachability graphs. [Razouk, 1987; Morgan, 1987]

Leveson [1986] presents an algorithm for determination
and elimination of Petri net critical states. A logical next

step in automating software safety analysis is conversion of

69

o

this algorithm to RGA language. Translation should be
possible, given RGA language extensibility.

Leveson and Stolzy [1987] introduced the methodology of
simulating system faults within a Petri net model. The
technique consists of aading fault transitions to cause
unintended events or prevent occurrence of intended events.
Automated safety analysis is particularly suitable for this
technique as a new net reachability graph must be constructed
for any Petri net change. Although this is a very difficult
manual task, automation enables complex graph creation in
several minutes. The analyst could quickly model and analyze
a variety of specific component or software malfunctions.
This would allow for more complete and accurate assessment of
overall system safety.

Gaining familiarity with P-NUT is a difficult process.
We strongly recommend the creation of an automated user
interface. This interface might allow user construction and
storage of a graphical Petri net wvia P-NUT. The software
could use a graph-drawing capability with predefined place,
transition, and arc components. It could then cue the user
for suitable identifiers and interface with the Reachability
Graph Builder and Reachability graph analyzer for translation
of user reachability questions. With current user interface
technoloygy this capability seems reasonable. P-NUT is a very

powerful and effective collection of Petri net analysis

70

tools. The only drawback to large-scale employment in
further safety analysis research is the current awkwardness

and difficulty of the user interface.

71

1
TOGGLE
RECEIVED

APPENDIX A

ITL SENSOR
ARERDY

m

@2

ITL NDRO
INPUT

READ

ITL STATUS

O=L.

TOGGLE
ENABLED

NO ITL

'Jll

[+

IS TRUE

72

m
1S FRLSE

APPENDIX B

ADC
DISABLE
INPUT

A2C
ENRBLE
INPUT

e e S A

J

145 \ t46 < T \
o
ADC ADC AdC
DISABLE ENABLE 4 Ready
RECEIVED RECEIVED
(A t49
t47
148 l
ADC AOC
DISABLED ENRBLED
\\\\\\\' 150
fAoc >
COMMAND d
PROCESSED
t51 —‘L‘—
ADC
Output

73

APPENDIX C

S

JULIE BT
sniuLs

Indtno ndino
sroNa0s or9901
A aIoNIl0S 4
Ban Py .
010N110S AJ W Y
———»
%\\ 0319901
24
—>
24 -
» 62} " y e 144]
! —>]
110 -—
Q10N3108 Aduly £ uns Y.
310N3108 9901 \ —J
. &
/9 >
70 oz)
w ¢ 22
¢ (1) < _ 11}
4t |Hs _
s
.2_ 14
. <
\ < pajqous
1) — 03I
|~‘|II. nl aninm posds
1 < — | 119901 119901 p1ouaios
~ [TLIT 1431 \ 4
i 1 m 1 w [
< }]
[31] _
ndug ndug ynduy wndu) Yy
1ausia 31849N3 wbp VL] OYON
216601 91660} plouajos
L

D

1N si
snivls

74

:t0: toggle_left, system ready -> left_toggle received,

:tl:
:t2:

1t3:
:t4d:
:t5:

1t6:
:t7:

1t8:
:t9:

:tl0:

ttll:
:tl1l2:
:t13:
:tl4:
:t15:
:£16:
1tl7:
1t18:
:t19:
:t20:
:t21:

APPENDIX D

SOLENOID PETRI NET TEXT FILE

in_use

toggle right,system ready -> right toggle received, in _use

in_use,left_toggle received,toggle_is_left ->toggle_is_left,\
system_ready

right_toggle_received, toggle_is_left -> toggle_is_right,\
toggled

in_use,right_toggle_received,toggle_is_right, toggled ->\

toggle _is_right, system ready

left toggle received,toggle is_right -> toggle is_left, A

toggled

read_status,system ready -> read enabled,in_use

in use,read_enabled,tcggle_is_leoft -> status_is left,\
toggle is_left, system ready

in _use,read_enabled,toggle_is_right -> status_is_right, \
toggle_is right, system ready

in_use,toggled -> toggled output,system ready

disable _input, system ready -> system disabled,en_dis_output

enable_lnput system ready -> system_ready

enable_input, system disabled -> system ready,en_dis_output

enable _input,in_use -> in _use

disable _input,in_use -> in_use

toggle_right,in_use -> in _use

toggle left,in_use -> in_use

read_status,in_use -> in_use

disable _input, system disabled -> system disabled

read_status, system disabled -> system_ disabled

toggle left, system disabled ~> system disabled

toggle right,system disabled -> system disabled

/* the following code is for test loop purposes only*/

1t22:
:t23:
1t24:
:t25:
1t26:

1227
:t28:
:t29:
:t30:
:t31:

:t32:
:t33:
:t34:

->
->
->
->
->

status_is_left
status_is_left
status_is left
status_is_left
status_is_left

read status
toggle_ left
toggle_right
enable_input
disable_input

status_is _right -> read_status
status is_right -> toggle_ left
status_is _right -> toggle_right
status_is_right -> enable input
status_is right -> disable input

toggled output -> read status
toggled output -> toggle left
toggled output -> toggle right

75

:t35:
:t36:

1t37:
:t38:
:t39:
:t40:
:t41l:

toggled output -> enable_ input
toggled output -> disable_ input

en_dis_output
en_dis output
en_dis output
en_dis_output
en_dis output

->
->
->
->
->

read_status
toggle_ left
toggle right
enable_input
disable_input

<toggle_left(l),toggle_is_right(l),system ready(l)> /*initial
markings*/

76

APPENDIX E

0->1->2->3->8->13->20->22

[and w [V} <
N (§] N (e} N
A A A A A
| | [} | I
o N -+ -+ —+ — +
™ (12]
A A
] |
o (o)) [o]
™ o~ N
Yo 0
I
o~ o [Tp] <
~N N o~ o N
Moy o R
I
© N —+ —+ — + — + [<) «© @
m ™ o (28] ™
A A A A A
)) | | |
o~ 1w w Aol o
(44} ™ o m ™
A A A A A
1 | | | |
=t —— - — - - — — — — —— — — — - + — + — +
o
0
[jvel n -
N N N o o~
A A A A A
t [} | | |
H———— = —— —— = —— —— = = = =~ = — - — = + —+ -+ — +
N
A @® ~
] A A
’s} ~N |]
~ — o — 4+ —
A A —
I i A
o~ — (=]]
— — e~ [e)]
? 3 ;3
i !
=~ o n <
A A A A
| 1 1 1
—_—t — ———— = e e T ST e T e e e — + — +

+->19->23->8

77

|
|

16

]] +=->6 (from #14)

| | I

| | +->5

| ! |

| | +->4

! |
(from #3) | +->18->22 (from #13)

] I

] +=>17->22

| !

] +->16->22

|

+=->7

[

+->6

|

+->5

!

+->4
0. toggle_ left,system_ ready,toggre is rlght
1. left toggle received, in use, toggle is_right
2. in_use, toggle is left,toggled
3. system ready,toggle is_left toggled output
4. system_ ready,toggle is le*t, read_status
5. toggle_left,system ready,toggle 1s left
6. system_ ready,toggle rlght oggle is left
7. system ready,toggle is left,enable 1nput
8. system ready,toggle is left,disable _input
9. in_use,toggle_is left, read enabled
10. left _toggle_ received, in use toggle is left
11. in_use, right _toggle_ received, toggle 1s left
12. system ready,toggle is left
13. toggle is left, system disabled,en dis _output
14. system ready,toggle is left, status is left
15. in use, toggle is rlght ,toggled
16. toggle is left, read status, system disabled
17. toggle left, toggle_ 1s left, system disabled
18. toggle rlght toggle is left ,system disabled
19. toggle is left, system dlsabied enable input
20. toggle is left,disable _input, system disabled
21. system__ ready,toggle is_right, toggled output
22. toggle is_ left, system disabled
23. system_ ready,toggle is left,en dis output
24. system ready,togq’e is rlght read status
25. system ready,toggre rlght toggle is right
26. system ready,toggle_is right, enable _input
27. system ready,toggle is_right, disable _input
Ze. in_use, toggle is rlght read enabled
29. in use,right toggle received, toggle is right
30. system_ready,toggle_ls_rrght

78

li

"N,

N

. b4

31.
32.
33.
34.
35.

37.
38.
39.

toggle is_right, system disabled,en_dis_output
system . ready,toggle is_right, status is rlght
toggle is_right, read status, system disabled
toggle__ “left, toggle is right,system disabled
toggle . rlght toggle is right,system disabled

. toggle is_right, system . disabled, enable _input

toggle is rlght disable _input, system . disabled
toggle is_right, system disabled
system _ ready,toggle is rlght en_dis output

79

>, J

.4

APPENDIX F

SAFETY AND ARMING (SA) SYSTEM

Nrcraft

Intent to Launch

1L toggie
received

.

sweiting

fire
thermat
battery

swaiting sweiting
fieing computer a
3
‘:::;m powsr unlocked
o 10 orm
computer power up missie
att tomputer (180} it
charge
tinng AL
b comoputer
capscior o -
boost
occurreg
tiring
cupacitor
charged degin
software e
—~ program
to detonete (t83)
softwere
progrem
sterted
mitietize
(¥{:] us

regin

170 registers

nitishized
snadie
solenoid ue
solenoig
eneble
received

- 39
solenare
/o
output
builg
lookup 39
tadis
lookus
tatie
Bunt
inttigh ze
pointer t«
‘o count
detonate °:m'..'
woun
ey nitiehzed
<leer

swerting
tignet to
fire rocket
moator

tire rocket

missie
rock
reisase

to end from
upaste separstion
distance

(159}

1o shd from
updete
tep distance

1 - t6)

misstly
1t on
reck

4
registars
to sweitng
arm 11 statas
missie checx
p (130)

to check (1L status (142}

80

(59
trom updete
Nttt gccel

1571

81

trom swaeiting ITL stetus check . Iy
swaiting 10 46
from check 42 m boost
firing 1N stetue status occurred
V| copecitor imn check
cherged NORO
npyt
from | e
SA untocked VHITHINEIE 11
\ 1
.
trom
check
separation
distence
9
\\\\\Y
" NN
lock { k NN
(45 - 151 no-1TL
lock |
from
46 boost
occurred
nput current nput current
scceleration eccoleration
biss
accolerstio oras
Inputted wputted
diseble {0
ML
true
aisavie
input
m %\\\\ \ no-1TL
ock ioek 2
tock 2 N
(145 - t50) (145 - t51)
156 '-I
nput update inttiel
sccaterstion ourpuT
bies
aweiting
s
L check u updste
sep current
:Iu;;) velotity
1
awaiting trom ona |4
seperation 10 46 boosty.
aistence occurred
updete
separation
™ distence -
p | oetonete uoceted
(R1 b}
ot 1 ol8etiow
overfio
rescnea
10 toggle not reeched
arm distence tangle distanrs
missile to pointer ner
¥ (t80} count pointer w2 set tumer
incremanted count delay
awent pointer
sot count
umaer ncremented tert
detey check timer
172 101enod trom s trom
'y ttetus sep ant 4§ timer no sep diiy
’ V ' a solenoid ouerfiow running from overiiow
o ready NORO input {21} insytticiont s
for wait to to decrement time (162)
200 sotenoy umer (166)

10
in

true

{trom soienon
NORO Input)

ctme 170
toggte | toggle
nght | teft

solonoid

toggied
sutput
toggre
ben lock 174
mechanism
bell
tock
toggied

{to

reached
Noggn
Gistance)

overtiow

rom
timer (to
runming) timer

runmngl

decrement
timer

166

sweting
slaprne
time check insufficant
time
sreper
time 1.9
timer
wet
18 sver
check
m separetion
@istence

checked

17/ 3incremaents

Interruptor of interruptor
1730l wey

erm
} missie
te0

trom set
timer delay
mmn
rendy
for wait
200
\
v {
t
78 ¥ 200
aweit
sop
distance
check
179
check!
sep
distence
eretion
€0
{trep atter
3ra
iterstion}
from
¥ A uniocked
from
finng
reaneritor
v cherged

detects

2

82

({2}

sgnal
to detonate

missie
tocked
nerm

detonstion
signel
recewed

DEYONATION

(to IM
s true)

{L

overtiow

APPENDIX G
SA SYSTEM PETRI NET TEXT FILE

:t0: aircrft -> rdy to_fire therm btry,awaitng SA unlck_cmd, \
awaltng sig _to _fire rckt _mtr, ITL toggl rcvd

/* following is ITL sensor module, tl - t6 */

:tl: ITL toggl recvd,ITL snsr_rdy -> ITL_toggl enabld

:t2: ITL_NDRO_inpt,ITL_snsr_rdy -> rd_ITL_status

:£3: ITL toggl enabld, ITL -> no_ITL, ITL snsr _rdy

:t4: ITL toggl_enabld,no_ITL -> TITL, ITL snsr_rdy

:t5: rd ITL status,ITL -> ITL is_true, ITL snsr _rdy, ITL

1t6: rd ITL status,no_ITL -> ITL is_false, ITL_snsr_rdy,no_ITL,\
awaltng_cmptr_pwr

:t8: awaitng SA unlck cmd,SA_lckd -> SA_unlckd

:t9: awaitng_sig to fire rckt _mtr -> awaitng 4G bst, \

awaitng_rack_rel

:t10: awaitng_cmptr pwr,cmptr off -> cmptr on

:tll: awaitng_rack_rel,missl on_rack -> mlssl rlsd

:t12: awaitng 4G bst,missl rlsd -> fourG _bst occrrd

:t13: awaitng_ frng cap_chg -> frng_cap_. chgd

:tl4: cmptr_on -> sftwre prgrm startd

:t15: sftwre prgrm startd ~> IO _reg_initlzd

:t16: IO_reg_initlzd -> solnoid enabl inpt

/* following is Solenoid module, t17 _ t38 */

:t17: toggl_lft inpt,solnoid rdy -> lft_toggl_rcvd, solnoid in_use
:t18: toggl_rt_inpt,solnoid rdy -> rt toggl rcvd, solnoid in use
:t19: 1ft toggl rcvd,toggl_is_1ft,solnoid in use -> toggl is_1ft, \
solnoid rdy
1t20: rt_toggl_rcvd,toggl is 1ft -> toggl is rt,solnoid toggld
1t21: rt toggl rcvd,toggl_is “rt, solnoid in_use -> toggl_is rt,\
soln~id rdy
:t22: 1ft_toggl_rcvd,toggl _is rt -> toggl_is 1ft,solnoid toggld
:t23: solnoid NDRO_inpt, solnoid rdy -> solnoid rd enabld, \
solnoid_in_use

:t24: solnoid_rd enabld,toggl_is_1ft,solnoid_in use -> \

status_is 1ft,\

toggl 1s 1ft,solnoid rdy
:t25: solnoid_rd_enabld, toggl_is_rt,solnoid_in_use -> \

status_is_rc¢,\

toggl_is rt,solnoid_rdy
:t26: solnoid_toggld, solnoid_in_use -> \ o

solnoid toggld outpt,solnoid rdy
:t27: solnoid disabl inpt, solnoid_rdy -> solnoid disabld, \
solnoid en dis_outpt

:t28: solnoid_enabl inpt,solnoid_rdy -> \

83

:t29:

solnoid_rdy,solnoid_en_dis_outpt
solnoid _enabl inpt,solnoid_disabld -> solnoid rdy, \
solnoid_en dis outpt

/* following transitions, t30 - t34, consume incoming tokens while

*/

/* solenoid is in use. this prevents accumulation at the input

places */

:t30: solnoid _disabl inpt,solnoid_in_use -> solnoid_in use

:t31: soln01d enabl inpt,solnoid _in use -> solnoid _in_use

:t32: toggl_rt_inpt,solnoid_in _use -> solnoid_in_use

:t33: toggl 1ft_inpt,solnoid_in_use -> solnoid_in_use

:t34: solnoid NDRO _inpt, soln01d in_use -> solnoid in use

/* following transitions, t35 -t38, consume incoming tokens while

*/

/* solenoid is disabled */

:t35: solnoid disabl_inpt,solnoid disabld -> solnoid _disabld,\
solnoid en _dis_outpt

:t36: solnoid NDRO_inpt,solnoid _disabld -> solnoid disabld

:t37: toggl_ 1ft 1npt solnoid disabld -> solnoid disabld

:t38: toggl rt_inpt,solnoid_ disabld -> solnoid disabld

:t39: solncid_en_dis outpt -> lkup_tbl blt

:t40: lkup tbl blt -> ptr_cnt_initlzd

:t4l: ptr_cnt_ initlzd -> awaltng ITL_status_chck

1t42; awaltng ITL status_chck -> ITL NDRO inpt

:t43: ITL is_true -> ADC enabl inpt,ITL lock 1

:t44: ITL is__ “false -> ADC enabl _inpt,no__ ITL Jock 1

/* following transitions, t45 - t51, are contained in ADC module */

:t45:;:
:t46:
:t47:
:t48:
1t49:
:t50:
:t51:

:1t52:
:£53:
:t54:
:t55:
:t56:
:t57:
:t58:
:t59:

¢t 60:
:t6l:

ADC disabl_inpt,ADC_rdy -> ADC_disabl rcvd

ADC_enabl inpt,ADC _rdy -> ADC_enabl rcvd
ADC_disabl_rcvd,ADC_disabld -> ADC_disabld,ADC_cmd procssd
ADC_enabl_rcvd,ADC_disabld -> ADC enabld,ADC cmd procssd
ADC_enabl_rcvd,ADC_enabld -> ADC enabld,ADC cmd procssd
ADC_disabl rcvd,ADC enabld -> ADC disabld,ADC cmd procssd
ADC_cmd_procssd -> ADC_outpt,ADC_rdy

ADC outpt,ITL lock 1 -> accel _inpttd

ADC_outpt,no ITL lock 1 -> accel _bias_inpttd

accel 1npttd -> ADC disabl _inpt, ITL lock 2

accel blas _inpttd -> ADC_disabl inpt,no ITL lock_ 2

ADC outpt, no_ITL lock_2 -> awaitng_ITL_status_chck

ADC_outpt, ITL lock 2 > awaitng_vel updat

awaitng_vel updat -> awaitng sep_dist updat

awaitng_sep_dist_updat, fourG bst_occrrd -> sep_dist_updatd,\
fourG bst occrrd

sep_dist_updatd -> rchd toggl dist

sep_dist _updatd -> not_rchd _toggl dist

84

:t83:

<aircrft(1l),S?_lckd(1l),missl_on_rack(l),cmptr_off(l),no ITL(1),ITL_

: rchd toggl dist -> ptr_ cnt_incrmntd

: not_rchd toggl_dist -> awaltng tmr_strt

: ptr_ent_incrmntd -> solnoid NDRO_inpt,await_timr_delay
: awaitng_tmr_strt -> tmr_running

¢ tmr_running -> awaitng_elpsd _time_ chck

: awaitng_elpsd_time_chck -> tmr_running

: awaitng elpsd time_ "~ chck -> tmr_wait_ovr

status_is_1ft -> toggl rt inpt
status__ _is “rt -> toggl 1ft_ _inpt

: tmr wait ovr -> sep_dist chckd

sep_dist_chckd -> rchd toggl dist
sep_dist “chckd -> ITL , is_true

: solnoid_to5gld_outpt -> ball lck_toggld

: ball 1lck_toggld -> ball . rlsd

: ball rlsd -> one_: third_ incrs _of intrptor

: await timr delay -> rdy for) wait200

: rdy_. for _wait200 -> awaitng_sep_dist_chck

: awaltng sep_ dist_chck,iter counter -> ITL _is_true

: one_third incrs of 1ntrptor(3) SA unlckd -> missl _armd
: mlssl armd -> mlssl lckd in_arm
: mlssl lckd in_arm, snsr_ detcts _tgt -> det_sig rcvd

frng_cap_ chgd, det _sig rcvd -> detonation”

/* initial markings follow */

snsr_rdy(1),*
toggl_is rt(l),solnoid rdy(1),ADC rdy(1l),ADC disabld(1l),\
snsr_detcts_tgt(l),iter_ counter(2) >

85

i

- APPENDIX H
SUMMARX OF MODELING AND ANALXSIS METHODOLOGY

The recommended chronology and methodology for Petri net
- modeling and automated safety analysis of a software-
controlled real-time system follows.

1. Study system functions. Have the designer explicitly
identify all perceived hazardous conditions.

2. Study system and software flowcharts thoroughly.
Attempt to reduce system scope to include only
significant aspects pertinent to the stated hazards. 1If
in doubt as to significance of any detail, include it.

3. Document system interfaces. Incorporate al. flowcharts
into a single Petri net system description. Abstract
component internal functions by including only “black-
box” component descriptions with external system
interfaces. To increase readability, multiple component
instantiations should be represented as separate “black-
box” descriptions.

4. Once the initial Petri net system framework is complete,
obtain verification from the designer. Study and model
component functionality with Petri nets. As in system
framework approach, incorporate only significant
aspects. Attempt a second level of abstraction by
further division of components into submodules and
internal interfaces.

5. Following completion of individual component Petri net
models, convert the nets to textual form. Any text
editor can be used. Chapter VI gives detailed
instructions for the conversion process.

6. Translate the component text file to internal Petri Net
UTilities (P-NUT) format. Redirect output to a second
file for later use. The appropriate translation command

is transl <filel> > <filel.pn>. The .pn suffix
identifies the file as an internal Petri net
representation.

86

10.

11.

Build the reachability graph from the translated Petri
net file using the Reachability Graph Builder (RGB) and
redirect output. The proper command is rgb [-bs]
<filel.pn> > <filel.rg>. The optional suffix b
signals that the net is bounded at 127, while the s
suffix signals that the net is safe, or bounded at 1.
The .rg suffix denotes the file being in internal P-NUT
reachability graph form. Note that the input file must
be in internal P-NUT format.

The component’s reachability graph can be printed in
readable form using the Reachability Graph Printer
(RGP) . Redirect output to a new file. The proper
command 1is rgp <filel.rg> > <filel.g>. The .g
suffix is a recommendation only.

Study the reachability graphs and state spaces of each
component. Verify that functionality has been
accurately modeled.

If the component is complex and has a large reachability
graph, use the Reachability Graph Analyzer to assist in
the analysis. The command to invoke RGA is rga
<filel.rg> [function libraries]. Notice that user-
defined function libraries may be invoked and used with
RGA. The input file to RGA must be in internal P-NUT
reachability graph format. Chaoter VI gives several
detailed examples of analysis expression syntax for the
RGA language.

After validating component models, incorporate them into
a textual file version of the overall net. Repeat steps
6 through 10 for the system model. The final
reachability graph may contain several thousand states
necessitating analysis solely with the RGA. Translation
of safety analysis questions to RGA net terminology and
syntax is discussed in Chapter VI.

87

LIST OF REFERENCES

Department of Information and Computer Science, University of
California, Irvine, CA, Report 85-06, Computer-Aided
Analysis of Concurrent Systems, by E. T. Morgan and R.
Razour, 8 Feb. 1985.

Department of Information and Computer Science, University of
California, Irvine, CA, Report 87-04, RGA User’s Manual
Version 2.3, by E. T. Morgan, 13 Jan. 1987.

Department of Information and Computer Science, University of
California, Irvine, CA, Report 86-25, A Guided Tour of P-
NUT (Release 2.2), by R. R. Razour, Jan. 1987.

Ericson, C. A., “Software and System Safety”, Proceedings of
the 5th International System Safety Conference (Denver,
C0), wvol. 1, part 1, System Safety Society, Newport
Beach, CA, pp. III-B-1 to III-B-1, 1981.

Hayward, D. F., “A Practical Application of Petri Nets in the
Software Safety Analysis of a keal-Time Military System”,
M.S. Thesis, Naval Postgraduate School, Monterey, CA,
December 1987.

Jahanian, F. and Mok, A. K., “Safety Analysis of Timing
Properties in Real-Time Systems”, IEEE Transactions on
Software Engineering, SE-12, 9 Sept. 1986, pp. 890-9504.

Konakovsky, R., Safety Evaluation of Computer Hardware and
Software. Proceedings of Compsac ’'78, IEEE, New York,
pp. 559-564, 1978.

Lauber, R., “Strategies for the Design and Validation of
Safety-Related Computer-Controlled Systems”, Real-Time
Data Handling and Process Control, G. Meyer, ed., North-
Holland Publishing, Amsterdam, pp. 305-310, 1980.

Leveson, N. G., “Software Safety: why, What, and How”,
Computing Surveys, vol. 18, no. 2, June 1986.

Leveson, N. G., and Stolzy, J. L., “Safety Analysis Using

Petri Nets”, IEEE Transactions on Software Engineering,
vol. SE-13, no. 3, Mar. 1987.

88

McVay, J., Point Paper on Conducting a Design, Development,
and Safety Review of a Guided Missile Safety-Arming
Device Utilizing a Noninterrupted Explosive Train, NWC TM
(draft), NWC, China Lake, CA, 1987.

MIL-STD-1316C, Safety Criteria for Fuze Design, Dept. of
Defense, GPO, Wash., DC, 3 Jan. 1984.

MIL-STD-1574A (USAF), System Safety Program for Space and
Missile Systems, Dept. of Air Force, GPO, Wash., DC, 15
Aug. 1979.

MIL-STD-882B Notice 1, System Safety Program Requirements,
Dept. of Defense, GPO, Wash., DC, 1 July 1987.

MIL-STD-SNS (Navy), Software Nuclear Safety (draft),
available from Naval Weapons Evaluation Facility,
Kirtland Air Force Base, NM, 1986.

Peterson, J. L., Petri Net Theory and the Modeling of
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

Petri, C., Kommunikation mit Automaten, Ph.D. dissertation,
University of Bonn, Bonn, West Germany, 1962.

Roland, H. E., and Moriarity, B., System Safety Engineering
and Management, Wiley, NY, 1983.

Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D.

F., Fault Tree Handbook, US Nuclear Regulatory
Commission, Report NURTEG-049%92, Jan. 1981.

89

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Commander (Code 34)
Naval Air Test Center
Patuxent River, MD 20670

Commander (Code 31C)
Naval Weapons Center
China Lake, CA 93555

Commander (Code 3353)
Naval Weapons Center
China Lake, CA 93555

LCDR John Yurchak, USN (Code 52YY)
Naval Postgraduate School
Monterey, CA 933943-5002

Daniel Davis

MBARI

160 Central Avenue
Pacific Grove, CA 93950

Nancy Leveson

Department of Information and Computer Science

University of California
Irvine, CA 92717

Rami Razouk

Department of Information and Computer Science

University of California
Irvine, CA 92717

90

10. Duston Hayward 1
h Naval Ocean Systems Command

Code 423

271 Catalina Boulevard

San Diego, CA 92152-50C0

11. Robert Wasilausky 1
Naval Ocean Systems Command
Code 423
271 Catalina Boulevard
San Diego, CA 92152-5000

12. Uno Kodres (Code 52) 1
Naval Postgraduate School
Monterey, CA 93943-5002

13. LT Alan D. Lewis, USN 3
c/o LTG B. L. Lewis, USA (Ret.)
1928 Relda Court
® Falls Church, VA 22043

91

