Effect of Finite Size on Magnetoresistance

by

H. R. Lee, H. G. Oh and Thomas F. George

Prepared for Publication

in

Physical Review B

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

October 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Effect of Finite Size on Magnetoresistance

H.R. Lee, H.G. Oh and Thomas F. George

Finite size effects are studied for magnetoresistance in a disordered metallic system. Quantum corrections to the conductivity are strongly affected by the presence of an in-plane magnetic field in a thin film. They are also affected significantly by the boundaries of the finite quantum size. Expressions are obtained for the quantum correction to the conductivity due to both effects. The dephasing characteristic time scale due to the magnetic field is found by the exact eigenvalues of the system. One-, two- and three-dimensional results can be obtained with the proper limits. Some numerical results are presented for the given inelastic scattering length.
Effect of Finite Size on Magnetoresistance

H. R. Lee, H. G. Oh and Thomas F. George
Department of Physics and Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

C. I. Um
Department of Physics
College of Science
Korea University
Seoul 136, KOREA

Abstract

Finite size effects are studied for magnetoresistance in a disordered metallic system. Quantum corrections to the conductivity are strongly affected by the presence of an in-plane magnetic field in a thin film. They are also affected significantly by the boundaries of the finite quantum size. Expressions are obtained for the quantum correction to the conductivity due to both effects. The dephasing characteristic time scale due to the magnetic field is found by the exact eigenvalues of the system. One-, two- and three-dimensional results can be obtained with the proper limits. Some numerical results are presented for the given inelastic scattering length.

PACS numbers: 72.15.Gd, 73.50.Dn, 73.60.Aq
I. Introduction

The effect of a magnetic field on electronic states has been studied extensively for disordered systems.1-3 The predictions of the anomalous magnetoresistance have been tested by several experiments on metal films4 and semiconductor structures.5 The resistance of thin films and wires has been studied in the presence of a longitudinal magnetic field,3 which is more effective than a field directed perpendicular to the film. In Ref. 3, the dimensions of the system are very small compared to the magnetic length because the magnetic field is treated as a small perturbation. Here perturbation theory yields the dephasing characteristic time $\tau_H = \frac{12a_H^2}{DW^2}$ for a square film or a wire of rectangular cross section, where a_H is the magnetic length of a particle with charge $2e$, D is the electron diffusion coefficient, and W is the dimension of the system. Generally perturbation theory can be used when the condition $W \ll a_H$ holds. But, it is not appropriate to apply perturbation theory to the ground state, which is most important for corrections to the conductivity. The reason is explained later in this paper. Here we study the effect of the boundaries on the eigenvalues of the maximally crossed diagram in a thin film or wire with the longitudinal magnetic field by a numerical method. From the eigenvalues of the maximally crossed diagram, we obtain analytical expressions for quantum corrections to the conductivity of thin films and wires, which are given in Eqs. (13) and (14), respectively. Quantum corrections to the conductivity are calculated as a function of the normalized dimension (W/a_H) of the thin film or wire. Since a wide range of the normalized dimension W/a_H is used in our calculations, the actual dimension W of the system can range from
very small values to values which are larger than the magnetic length. We obtain the dephasing characteristic time $\tau_H = 24 a_H^2/DW^2$ as different from the result of the perturbation method in restricted geometries.

II. Theory

The quantum correction to the conductivity of non-interacting electrons weakly scattered by rigid random impurities is

$$\Delta \sigma(\omega \to 0) = - \frac{ss^2}{\pi \hbar} D\Gamma(\vec{r}, \vec{r}', \omega),$$ \hspace{1cm} (1)

where s is spin degeneracy, and $\Gamma(\vec{r}, \vec{r}', \omega)$ is the vertex correction due to the sum of all the maximally crossed diagrams. In the absence of the magnetic field, the vertex part $\Gamma(\vec{r}, \vec{r}', \omega)$ is

$$\Gamma(\vec{r}, \vec{r}', \omega) = \frac{1}{\hbar} \sum_{\vec{q}} \frac{1}{D\vec{q}^2 + i\omega}. \hspace{1cm} (2)$$

This vertex part is strongly affected by the presence of an external magnetic field, because the symmetries inherent to the system are broken by the field. This has been studied in Ref. 1 in the coordinate representation through the equation

$$\hat{W}[D(-i\frac{\partial}{\partial \vec{r}} - \frac{2\pi}{\hbar} \vec{A}(\vec{r}))^2 + \frac{1}{\tau_{in}}] \Gamma(\vec{r}, \vec{r}') = \delta(\vec{r} - \vec{r}'),$$ \hspace{1cm} (3)
where \(\mathbf{A}(\mathbf{r}) \) is the magnetic vector potential, and \(-i\omega \) is replaced by the inelastic scattering time \(r_{in}^{-1} \) at finite temperature.\(^6\)

Now let us consider a thin film which has a thickness \(W \) under an in-plane magnetic field \(\mathbf{H} = (0,0,H_0) = \mathbf{\hat{v}} \times \mathbf{A} \). If we choose the Landau gauge \(\mathbf{A} = (0, xH_0, 0) \), the solution of Eq. (3) can be written as

\[
\Gamma(x,x') = \int \frac{dq_x dq_y}{(2\pi)^2} \sum_n \frac{\psi_{n,q_x}(x)\psi_{n,q_y}(x')}{D(q_x^2+E_n(q_y)) + \frac{1}{r_{in}}} .
\]

(4)

where \(\psi_{n,q_x}(x) \) and \(E_n(q_y) \) are the eigenfunctions and eigenvalues, respectively, of the equation

\[
- \frac{\partial^2}{\partial x^2} - (q_y - \frac{2eH_0}{\hbar c} x)^2 \psi_{n,q_y}(x) = E_n(q_y)\psi_{n,q_y}(x)
\]

within the film. The above equation can be written as

\[
- \frac{\partial^2}{\partial x^2} - \frac{(x-x_0)^2}{a_H^2} \psi_{n,q_y}(x) = E_n(q_y)\psi_{n,q_y}(x)
\]

(6)

where \(a_H = \sqrt{\frac{eH_0}{2\hbar c}} \) is the magnetic length of a doubly-charged particle and \(x_0 \) is related to the wavevector \(q_y \) by the expression \(x_0 = a_H^2 q_y \). Now if we introduce the normalized coordinate \(\xi = \sqrt{2x/a_H} \), Eq. (6) can be transformed into the well-known Weber equation.
\[
\frac{\partial^2}{\partial \xi^2} - \frac{1}{4}(\xi - \xi_0)^2 + (\nu_n + \frac{1}{2}) \psi_{n', q_y}(\xi) = 0 ,
\]

where \(\xi_0\) is related to the wavevector \(q_y\) by \(\xi_0 = \sqrt{2a_Hq_y}\). We construct the general solutions of Eq. (7) as

\[
\psi_{n', q_y}(\xi) = A D_{\nu_n}(\xi) + B D_{\nu_n}(-\xi) ,
\]

where \(A\) and \(B\) are the normalization constants and \(D_m(z)\) is the Weber function given by

\[
D_m(z) = z^{m/2} \exp\left(\frac{z^2}{4}\right) \left[\frac{\sqrt{\pi}}{\Gamma\left(-\frac{m+1}{2}\right)} \mathbf{1}_F(\frac{-m}{2}; \frac{1}{2}; \frac{1}{2}z^2) - \frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{m}{2}\right)} \mathbf{1}_F\left(-\frac{m+1}{2}; \frac{1}{2}; \frac{1}{2}z^2\right)\right] .
\]

Here \(\mathbf{1}_F(a;b;x)\) is the confluent hypergeometric function and \(\Gamma(z)\) is the gamma function. The eigenvalues are given by

\[
E_n(q_y) = \frac{2}{a_H} \left(\nu_n + \frac{1}{2}\right) .
\]

III. Results and Discussion

Equation (7) yields the discrete spectrum of eigenvalues for each value of the continuously varying wavevector \(q_y\). If there are no boundaries, both
the eigenvalues and eigenvectors become identical to the solutions describing the unrestricted motion of free particles in the magnetic field. The eigenvalues of Eq. (7) can be determined if the precise form of the confining potential is given. The results are shown in Fig. 1 for normalized dimensions of the sample $\sqrt{2W/a_H} = 1.0$ with the boundaries of an infinite confining potential barrier, given by

$$\frac{\partial \psi_{n,q_y}(x)}{\partial x} \bigg|_{x=\pm W/2} = 0$$.

(11)

Since each mode in Fig. 1 shows parabolic-like behavior as a function of the wavevector q_y, we may write the eigenvalues in a parabolic approximation as

$$E_n(q_y) = \frac{\Delta_n}{a_H^2} + C_n q_y^2$$.

(12)

where Δ_n is the y-intercept ($q_y=0$) and C_n represents the coefficient of the quadratic term in each mode.

For a thin film, when we substitute Eq. (12) into (4) and integrate over q_y and q_z, we obtain

$$\Delta \sigma = \frac{e^2}{2\pi^2 a_H^2} \sum_n \frac{1}{C_n} \ln \left(\frac{1/k_{1y}^2 + 1/k_{1n}^2}{\Delta_n/a_H^2 + 1/k_{1n}^2} \right)$$.

(13)
where the elastic diffusion length $l_{el} = \sqrt{D_0}$ is used for the upper limit of the integration. The quantum corrections to the conductivity of rectangular wires with transverse dimensions small in comparison with l_{in} can be obtained in the same way and are given by

$$\Delta\sigma = -\frac{2e^2}{\pi^2nH} \sum \frac{1}{c_n \left(\frac{l_{el}^2}{l_{in}^2} + \frac{\Delta_n}{a^2_H} \right)} \tan^{-1} \left(\frac{c_n \left(\frac{l_{el}^2}{l_{in}^2} + \frac{\Delta_n}{a^2_H} \right)}{1/l_{in}^2 + \Delta_n/a^2_H} \right). \quad (14)$$

Numerical results for magnetoconductivity in thin films and the magnetoconductivity per unit length in rectangular wires are presented in Figs. 2 and 3, respectively, for various values of the ratio W/l_{in}. In each graph we have used the unitless quantity $\xi = \sqrt{W/a_H}$ in the x-direction, and the dimensions of the sample are normalized to the inelastic scattering length l_{in}. Thus x-coordinates of the graphs are proportional to $\sqrt{n_0}$ for the given sample size. The effect of a magnetic field becomes more prominent on the quantum interference (weak localization) at small values of W/l_{in}, that is, at small dimensions of the sample or at large values of l_{in} (low temperature) for the given system.

The values Δ_0 and C_0 of the lowest-lying state (n=0), which is the most important for quantum corrections to the conductivity, are given in Table I for comparison with those in the absence of a magnetic field.

Without the magnetic field, $E_n^0(q_y)$ may be written in a similar form as
\[E_n^0(q_y) = \left(\frac{n\pi}{W} \right)^2 + q_y^2 \quad \text{(15)} \]

where \(n = 0, \pm 1, \pm 2, \ldots \). When the condition \(W \ll a_H \) holds, Table I shows \(\Delta_0/a_H^2 = W^2/24a_H^4 \) for the ground state, whereas perturbation theory yields \(W^2/12a_H^4 \). As we can see clearly from Eq. (5) that perturbation theory can not be applied for small values of \(q_y = 0 \), which has the most significant contributions to the corrections to the conductivity. Thus the characteristic time scale must be \(r_H = 24a_H^2/DW^2 \) in magnetoconductivity, which is given by

\[\sigma(H) - \sigma(0) = -\frac{e^2}{2\pi^2\hbar} \ln\left(\frac{r_H}{r_0} + 1 \right) \quad \text{(16)} \]

for a thin film, and the quantum corrections to the conductivity per unit length are given by

\[\Delta\sigma(H) = -\frac{e^2}{\pi\hbar} \left(\frac{1}{D_{\text{in}}} + \frac{1}{D_{\text{H}}} \right) \quad \text{(17)} \]

for a wire of rectangular cross section.

If the other condition \(W \gg a_H \) holds, the eigenvalues are divided into two parts: (1) the surface part, that is, those states whose orbit is affected by one wall of the sample, and (2) the bulk orbits which are not affected by the boundaries of the sample. The surface part always has an almost constant contribution to the conductivity, whereas the bulk part is proportional to the sample width \(W \) due to many degenerate states in each
level. Thus, we can recover the results of the bulk limit given in Ref. 1 (cf. the values in Table I).

This research was supported by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract No. F49620-86-C-0009. The United States Government is authorized to reproduce and distribute eprints for governmental purposes notwithstanding any copyright notation hereon.
References

TABLE I. Eigenvalue shift \((\Delta_0) \) and parabolic coefficient \((C_0) \) due to the boundaries and the longitudinal magnetic field.

<table>
<thead>
<tr>
<th>(\xi(W))</th>
<th>1.0x10(^{-4})</th>
<th>1.0x10(^{-3})</th>
<th>1.0x10(^{-2})</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_0)</td>
<td>4.167x10(^{-9})</td>
<td>4.167x10(^{-7})</td>
<td>4.167x10(^{-5})</td>
<td>4.167x10(^{-3})</td>
<td>4.165x10(^{-2})</td>
<td>1.656x10(^{-1})</td>
<td>3.631x10(^{-1})</td>
</tr>
<tr>
<td>(C_0)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.992</td>
<td>0.912</td>
<td>0.797</td>
</tr>
</tbody>
</table>
TABLE I. Eigenvalue shift (Δ_0) and parabolic coefficient (C_0) due to the boundaries and the longitudinal magnetic field.

| $\xi(W)$ | 1.0×10^{-4} | 1.0×10^{-3} | 1.0×10^{-2} | 0.1 | 1
| Δ_0 | 4.167×10^{-9} | 4.167×10^{-7} | 4.167×10^{-5} | 4.167×10^{-3} | 4.165
| C_0 | 1.000 | 1.000 | 1.000 | 1.000 | 0. |
Figure Captions

1. The energy dispersion in a longitudinal magnetic field with dimensions of the system $\frac{\sqrt{x}}{a_H} = 1.0$ and infinite-barrier confining potential. The x-coordinate ξ_0 is related to the wavevector q_y by $\xi_0(q_y) = \sqrt{2a_H q_y}$.

2. The magnetoconductivity (divided by the coefficient $\frac{e^2}{2\pi^2 v}$) of a thin film plotted against the unitless parameter $\xi(a_H) = \frac{\sqrt{x}}{a_H}$. (1) $W/l_{in} = 0.05$, (2) $W/l_{in} = 0.2$ and (3) $W/l_{in} = 1.0$.

3. The magnetoconductivity (divided by the coefficient $\frac{2e^2 l_{in}}{\pi^2 v}$) per unit length of a rectangular wire plotted against the unitless parameter $\xi(a_H) = \frac{\sqrt{x}}{a_H}$. (1) $W/l_{in} = 0.05$, (2) $W/l_{in} = 0.2$ and (3) $W/l_{in} = 1.0$.
Fig. 1

\[\nu_n + \frac{1}{2} \]

\[\xi_0(q_y) \]

[Graph showing curves for \(\nu_n + \frac{1}{2} \) against \(\xi_0(q_y) \)]
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>22217-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Bernard Douda</th>
<th>1</th>
<th>Naval Weapons Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Civil Engineering Laboratory</th>
<th>1</th>
<th>Scientific Advisor</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
<th>12</th>
<th>U.S. Army Research Office</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Naval Ocean Systems Center	1	Dr. David L. Nelson	1
Attn: Dr. S. Yamamoto		Chemistry Division	
Marine Sciences Division		Office of Naval Research	
San Diego, California 91232		800 North Quincy Street	
		Arlington, Virginia 22217	
Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Keesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G.H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125