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PREFACE

The study herein was authorized by the US Army Corps of Engineers
(USACE), Coastal Engineering Area of Civil Works Research and Development.
Work was performed under Field Research Facility (FRF) Measurements and
Analysis Work Unit 31537, Waves and Coastal Flooding Program, at the Coastal
Engineering Research Center (CERC) of the US Army Engineer Waterways Experi-
ment Station (WES). Technical monitors were Messrs. John H. Lockhart, Jr.,
and John G. Housley, USACE. CERC Program Manager is Dr. C. Linwood Vincent.

My. Ronald A. Crowson, SUPERDUCK Experiment Coordinator, compiled the
report from information provided by the individual principal investigators
under direct supervision of Messrs. Curt Mason, former Chief, FRF; and Thomas
W. Richardson, Chief, Engineering Development Division; and under general
supervision of Dr. James R. Houston and Mr. Charles C. Calhoun, Jr., Chief and
Assistant Chief, CERC, respectively. Final preparation of the manuscript was
done by Mr. William A. Birkemeier, Acting Chief, FRF, and Ms. Harriet M. Klein
and Mr. Herman C. Miller, FRF. This report was edited by Ms. Shirley A. J.
Hanshaw, Information Products Division, Information Technology Laboratory,
WES.

Commander and Director of WES during publication of this report was COL
Dwayne G. Lee, EN. Dr. Robert W. Whalin was Technical Director.
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SUPERDUCK NEARSHORE PROCESSES EXPERIMENT
SUMMARY OF STUDIES
CERC FIELD RESEARCH FACILITY

PART I: INTRODUCTION

Background

1. With the increasing sophistication of nearshore numerical and
physical models, there is a growing need for high quality field data, both to
improve our understanding of the physics of the nearshore zone and to use in
the testing of these models. Because the collection of field data is both
expensive and logistically demanding, it is best obtained through cooperative
efforts where the knowledge and resources of a number of investiy ...~ are
pooled toward a common goal. This report summarizes the activities of SUPER-
DUCK, a large multi-agency, multi-investigator, nearshore processes experiment
hosted by the US Army Engineer Waterways Experiment Station’s (WES's) Coastal
Engineering Research Center (CERC) at its Field Research Facility (FRF) in
Duck, North Carolina (Figure 1) during September and October 1986.

2. The SUPERDUCK experiment was organized into three phases: (a) a
nonstorm wave phase during September when mild wave conditions generally

dominate, (b) a storm wave phase during October when higher wave conditions

are usually experienced, and (c) an all-weather phase conducted throughout
September and October. Most of the individual SUPERDUCK studies were located
along a 600-m-long section of shoreline centered 500 m north of the FRF’s pier
(Figure 2). The nonstorm studies of waves, currents, and sediment transport

in the surf zone used a wide variety of electronic, visual, and remote sensing

techniques. During the storm wave phase, more than 70 electronic sensors
(current meters, sonar bed-level sensors, wave gages, and optical backscatter
sediment sensors (OBS)) were deployed in three major arrays.
4
. -
Objective 1
3. The objectives of the SUPERDUCK experiment were to develop an
improved understanding of coastal processes (currents, waves, sediment trans- ol
port, and nearshore geomorphology) under a wide variety of conditions and to -
4
.




collect data essential to the

I - Y CHESAPEAKE
development of improved numerical Ty 1 BAY ;

models of coastal phenomena.

SUPERDUCK was the third in a

RESEARCH
FACILITY

series of nearshore experiments,

benefiting greatly from experience
and data obtained during DUCK82,

performed in October 1982 (Mason
et al., 1984) and DUCK85, performed
from September to October 1985
(Mason et al. 1987).

4, In addition to investi-
gators from CERC, engineers and
scientists from 6 other government
agencies, 10 universities, 3 for-

eign countries, and 15 Corps of

Engineers district and division Figure 1. FRF location map
offices participated. The role

that each played in the overall effort is discussed herein.

Scope

5. This report describes the 30 experiments that comprised SUPERDUCK.
It is the first in a series of reports which will be published summarizing the
data and findings of this unique effort. Principal investigators were respon-
sible for the success of their individual experiments and each day reported a
record of their activities to the SUPERDUCK coordinator who maintained a daily
log. A brief project description and data collection summary are given for
each experiment.

6. The organization of this report is as follows: Part II describes
the data collection effort and the FRF'’s support. Part III presents the
conditions which occurred in September and describes the nonstorm wave stud-
ies. Part IV describes the October conditions and storm wave studies. Part V
discusses the all-weather studies, and Part VI is a summary. Appendix A is a

tabular summary of the data collected on the FRF computers.

I\
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Figure 2. Locations of SUPERDUCK experiments

dinator, at the following address:

7. Further information on SUPERDUCK or the data collected can be

obtained by contacting Herman C. Miller, SUPERDUCK Data Management Coor-

CERC Field Research Facility

SR Box 271

Kitty Hawk, North Carolina 27949

!




PART II: BASIC DATA COLLECTION AND FRF SUPPORT

8. A primary factor contributing to the success of SUPERDUCK was the
capability of the FRF to deploy and support the large number of oceanographic
instruments required during the experiment (Figure 3). The FRF routinely col-

Figure 3. FRF equipment being used to deploy a buoy

lects long-term measurements of both processes (winds, waves, tides, etc.) and
responses (high precision bathymetric surveys), and this basic monitoring pro-

gram provided the framework for all three phases of the SUPERDUCK experiment.

Process Data

9. Most of the data from the instruments deployed during SUPERDUCK were
collected by the FRF minicomputers (either a Data Genernl NOVA-4 or a Digital
Equipment VAX-11/750) on Eastern Standard Time (EST) unless stated otherwise.
Each instrument channel was assigned a unique number, as listed in Table 1.
Coordinates given in Table 1 refer to the local horizontal coordinate system
of the FRF which is shown in Figure 2. Elevations are relative to the Nation-
al Geodetic Vertical Datum (NGVD) of 1929. A log giving the operational
status of each gage is included in Appendix A.

A

_e.




Table 1
Summary of SUPERDUCK Instrumentation*

Gage Location Water
Gage Gage Number Alongshore Crocs-Shore Elevation Depth
Experiment Name _Gage Type Other _U__V  __ @& m _n m
Linear wave LAO1  Pressure 11 826 914 -7.9 -8.3
array LAO2 Pressure 121 816 914 -7.8 -8.2
LAO3  Pressure 131 801 915 -7.7 -8.2
LAO4 Pressure 141 796 914 -7.9 -8.3 -
LAO5 Pressure 151 761 914 -7.8 -8.1
LAO6  Pressure 161 736 914 -7.7 -8.2
LAO7 Pressure iral 930 914 -7.8 -8.2
LAOB Pressure 181 956 914 -7.8 -8.3
LAO9 Pressure 191 990 914 -7.8 -8.3
LA10  Pressure 101 816 919 -7.7 -8.0
Longshore LSOt  EMCM 219 319 992 155 -0.8 -1.4
current array 1L.S02 EMCM 229 329 972 156 -0.8 -1.8
LSO3  EMCM 239 339 945 155 -1.2 -1.9
LS04 EMCM 249 349 935 155 -0.8 -1.8
LS05 EMCM 259 359 865 155 -0.8 -1.1
1LS06 EMCM 269 369 816 155 -0.8 -1.0
LSO7  EMCM 279 379 1106 155 -0.9 -1.0
LS08 EMCM 289 389 1205 155 -0.7 -0.8
LS09 EMCM 299 399 1256 155 -0.8 -1.0
LS10 EMCM 209 309 1325 155 -0.7 -0.8
Cross-Shore CSO1A EMCM 219 319 992 155 -0.8 -1.4
current array CS10 EMCM 409 509 991 145 -0.9 -1.2
CS11  EMCM 449 549 991 136 -0.9 -1.2
Cross-Shore €S0t  Pressure 411 989 155 -0.8 -1.3
wave array CS02 Pressure 421 91 169 -0.7 -1.1
CS03  Pressure 431 9N 178 -0.7 -1.3
CS04 Pressure 441 991 187 -0.7 -1.6
CS05 Pressure 451 990 200 -1.0 -1.2
CS06 Pressure 461 991 217 -1 -2.3
CSO7 Pressure (¥4 991 247 -1.5 -3.2
Sallenger's €S01 Sonar Altimeter 418 989 155 -1.0 -1.3
cross-shore €S02 Sonar Altimeter 428 991 169 -1.0 -1.1
sonar array €SO3  Sonar Altimeter 438 991 178 -1.0 -1.3
€S04  Sonar Altimeter 448 991 187 -1.0 -1.6
€CS05 Sonar Altimeter 458 990 200 -1.2 -1.8
CS06 Sonar Altimeter 468 991 217 -1.4 -2.3
€S07 Sonar Altimeter 478 9N 247 -1.5 -3.2
FRF basic FRF EMCM 679 689 18 619 -4.9 -6.6 -
instrumentation Pressure 621 18 619 -5.1 -6.6
PUV 21 18 619 -6.6
Waverider 630 6 km 0.0 -18.9
Waverider 640
Baylor Wave gage 625 516 579 -6.7 -7.7
(Continued) |
*Definitions: (sheet 1 of 2)

0BS - Optical Backscatter Sediment Sensor

EMCM - Electromagnetic Current Meter

U - Cross-shore component of velocity, positive offshore

V - Longshore component of velocity, positive to the right (southward)

PUV - Combination Pressure/Current Meter gage for determining directional wave spectra

)




Table 1 (Concluded)
Gage Location Water
h Gage Gage Number Alongshore Cross-Shore Elevation Depth
Experiment Name Gage Type Other U v L] m m m
Baylor Wave gage 625 516 579 -6.7 -7.7
Baylor Wave gage 675 516 451 -4.7 -6.9
Baylor Wave gage 645 516 238 -1.9 -2.7
Atm. Pressure 616 569 12 3.0
Air Temperature 624 569 12 3.0
Wind Speed 632 516 21 19.0
Wind Direction 633 516 21 19.0
Tide 1 514 596 0.0 -7.7
Weishar's wo1 EMCM 993 665 -6.55 -6.7
inner tripod Pressure 993 665 -6.10 -6.7
-6.7 m (-22 ft) o8S 1 993 665 -6.65 -6.7
08S 2 993 665 -6.64 -6.7
08S 3 993 665 -6.45 -6.7
08S 4 993 665 -6.20 -6.7
0BS 5 993 665 -5.65 -6.7
Weishar's w02 EMCM 1047 1361 -11.45 -11.6
offshore triped, Pressure 1047 1361 -10.85 -11.6
-11.6 m (-38 ft) 08S 1 1047 1361 -11.55 -11.6
0BS 2 1047 1361 -11.54 -11.6
08S 3 1047 1361 -11.35 -11.6
08s 4 1047 1361 -11.10 -11.6
08S 5 1047 1361 -10.55 -11.6
Weishar's Wo4 Pressure 6 km north -6.7
635/12 (North)
Weishar's W05 Pressure 10 km south -6.7
635/12 (South)
Andrew's ANO1  Pressure 693 915 -8.3
short-base
wave array
Thornton's sled T01% EMCM (4 ea.) Mobile platform within the minigrid
Pressure (5 ea.)
Wind Speed
Wind Direction
Clausner's co1 Ducted Impeller 1 1047 1361 -4.6 -11.6
current co2 Ducted Impeller 2 1047 1361 -7.6 -11.6
sensors co3 Ducted Impeller 3 1047 1361 -9.8 -11.6
Long/Hubertz impellor Vane Anemometer 514 598 22.0
Sensors Vertical Impellor Anemometer 514 598 22.0
Hot Film Anemometer 514 598 18.7
Vertical Wind Speed 514 598 18.7
3-Axis Impellor Anemometer 514 598 18.7
Air Temperature (Platinum wire) 514 598 18.7
Air Temperature (Chromel Constantan) 514 598 18.7
Air Temperature (Thermistor) 514 598 18.7
Yumidity (Thin Film Capacitor) 514 598 18.7
Humidity (Optical Absorption) 514 598 18.7
Humidity (Relative Humidity) 514 598 18.7
Wind Speed (Cup Anemometer) 514 598 13.7
Sea Temperature 514 598 0.0 -7.7
Appell's APO1  Doppler 1047 1361 -11.6
current meter
9




10. Data collection on the VAX computer began in October and consisted

of 4-hr-long records centered on every high and low tide (Table 2). Each

Table 2
VAX Data Collection Schedule* - October 1986

Date  Time, EST Date  Time, EST Date  Time, EST
6 Oct 1400 7 Oct ouy 8 Oct 0200
1907 0735 M 0830 H
1400 1500
2000 H 2100 H
9 Oct 0300 10 oct 0400 11 oct 0540
0930 H 1030 H 1200 H
1600 1700 1820
2200 H 2320 4
12 oct 0040 H 13 Oct 0130 H 1% oct 0230 H
0645 0745 0845
1300 H 1400 H 1500 H
1915 2015 2115
15 oct 0330 H 16 oct 0400 H 17 Oct 0450 H
0945 1020 1100
1600 H 1630 H 1710 H
2200 2240 2320
18 Oct 0530 H 19 Oct 0000 20 Oct 0040
1140 0610 H 0650 H
1750 H 1220 1300
1830 H 1900 H
21 oct 0100 22 oct 0200 23 oct 0230
0730 H 0810 H 0900 H
1340 1430 1515
1950 H 2030 H 2115 W
24 oct 0315 25 Oct 26 Oct 2300 H
0930 H 0400 0500
1600 1030 H 130 H
2200 K 1700 1800
27 oct 0000 H 28 oct 0100 H 29 Oct 0130 H
0600 0700 0800
1230 H 1330 ¥ 1400 H
1900 1930 2030
30 Oct 0230 H 31 oct 0330
0900 0930
1500 H 1550 H

2100

* VAX collection periods began at above times and continued for 4 hr.
H High tide.

collection was comprised of seven contiguous time series (representing the
voltage output of the sensor), each with 4,096 data values sampled at 2 Hz.
After the voltages were converted to engineering units using the sensor cali-
bration factors, the time series were edited to eliminate erroneous jumps and

spikes. The mean of the time series was computed and removed, and estimates

of the spectral density were obtained. Spectral estimates were computed with

10

.9




high statistical stability (60 deg of freedom) and a spectral resolution of
0.0117 Hz.

11. Data collection on the NOVA-4 differed from that on the VAX in that
35-min data records, sampled at 2 Hz, were collected every 6 hr in September
and hourly in October. Time series data were transferred to the VAX computer
and processed as described above.

12. 1In addition to SUPERDUCK instrumentation, the basic measurements
program of the FRF continued to provide background data on the weather, waves,
tides, and currents occurring during the experiment. This program consists of
a combination of instrument measurements and observations. Details of the
observations and instrumentation used in this program can be found in Miller
et. al (1986) and in the FRF Preliminary Data Summary reports for September
and October 1986 (FRF 1986).

Survey Data

13. During the experiment, numerous bathymetric data were collected
using the FRF'’s Coastal Research Amphibious Buggy (CRAB)-Zeiss surveying sys-
tem which consists of a Zeiss Elta-2 first-order, self-recording electronic
theodolite distance meter in combination with the CRAB, a 10.7-m-high self-
propelled mobile tripod on wheels. Besides being used for surveying, the CRAB
was also used for precise positioning, deployment, and retrieval of many of
the SUPERDUCK instruments (Figure 4).

14. All surveying was done in a 600-m by 600-m region designated as the
"minigrid" area which was centered on the primary instrument line. During
each complete survey of the minigrid, a total of 20 profile lines was sur-
veyed. The location and length of these lines are illustrated in Figure 2 and
in greater detail in Figure 5. Line spacing and length were designed to mini-
mize survey time while maximizing the coverage closest to shore. Maximum line
length was also affected by wave and weather conditions along with availabil-
ity of the CRAB.

15. A total of 13 minigrid surveys was obtained during the experiment
(Table 3). All 20 minigrid profile lines were surveyed except when high waves
restricted the operation of the CRAB. Additional surveys of single lines near

the primary instrument line were also obtained.

11




Figure 4. Deploying pipe-mounted current meter

12
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Table 3
SUPERDUCK Bathymetric Surveys

Survey No. Type _Date Profile 1ines Surveyed

1 Minigrid 4 Sep 188, 190

2 Minigrid 12 Sep 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

3 18 Sep 210, 230, 188, 190

4 20 Sep 225, 230, 235, 240, 245, 250, 255, 260

5 Minigrid 26 Sep 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

6 30 Sep 230, 235

7 2 Oct 233

8 Minigrid 6 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275, 188, 190

9 7 Oct 235

10 8 Oct 235

" Minigrid 9 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

12 10 Oct 165, 170, 180, 195, 197, 200, 210, 220, 230

13 Minigrid 11 Oct 165, 170, 180, 195, 200, 210, 220, 230, 235, 240,
250, 260, 270, 275

16 Minigrid 12 Oct 165, 170, 180, 195, 200, 210, 220, 230, 235, 240,
250, 260, 270, 275

15 Minigrid 13 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

16 Minigrid 14 Oct 165, 170, 180, 195, 200, 205, 210, 220, 230, 235,
240, 245, 250, 255, 260, 270, 275

17 Minigrid 15 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

18 Minigrid 16 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

19 17 Oct 195, 210, 230, 188, 190

20 NMinigrid 18 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

21 Minigrid 20 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

22 21 Oct 170, 230

23 Minigrid 22 Oct 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
235, 240, 245, 250, 255, 260, 270, 275

* See Figure 2 and Figure 3 for location and length of lines.

14




PART III: NONSTORM WAVE STUDIES

16. These studies were conducted during September and included the
sediment trap, surf zone currents, photopole, surf zone waves, and Littoral
Environment Observation (LEO) ekperiments.

17. Figure 6 illustrates the complex nearshore morphology within the
minigrid on 4 September at the beginning of the experiment. Conditions during

RS ANy L Nt ey
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-‘—' -
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e
wigpt?

Figure 6. Minigrid bathymetry, 4 September 1986

September were generally ideal with wave heights remaining below 1.5 m for the
entire month. Figure 7 shows the general climatic and sea state conditions
during September, and Table 4 lists the daily observations which supplemented

the automated data collection.

S Surf Zone Sediment Trap

18. Principal investigators were Dr. Nicholas C. Kraus and Ms. Julie
Dean Rosati of CERC, and Dr. Lindsay D. Nakashima of the Louisiana Geological

Survey.
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rvati t r 1
Wave Approach Nater Characteristics
Angle st Pier End  Radar Wave at Pier End
deg from True N Angle deg width of Temp. Density Secchi

Day Time Primery Secondary from True N Surf 2one.m b # g/cc  Vis.,m
80 85 84

1 0740 2.3 1.0204 1.2

2 0604 80 60 80 76 22.5 1.0204 1.5

3 0704 L] 45 84 23.0 1.0204 2.4
& 0616 80 80 87 3.1 1.0201 1.5

5 0605 90 80 67 23.2 1.0208 1.2

6 0608 90 80 » 23.8 1.0210 2.1

7 0610 80 80 78 3.8 1.0208 2.1

8 0718 90 a5 7 24.0 1.0211 2.4
9 0605 60 80 80 91 2.7 1.0212 2.1
10 0705 90 80 &4 2.7 1.0206 2.4
11 0700 80 s 55 2.7 1.0208 3.0
12 0620 135 61 2.1 1.0220 3.4
13 0700 20 40 119 2.1 1.0222 1.5
1% 0805 20 105 70 21.8 1.0224 2.7
15 0627 100 90 ™ 22.2 1.0212 2.1
16 0654 100 80 58 22.3 1.0222 1.5
17 0630 50 60 S0 137 21.3 1.0225 1.2
18 0734 50 e 88 20.7 1.0224 0.9
19 0600 105 52 21.2 1.0224 1.2
20 0600 90 18 21.5 1.0224 1.8
21 0610 e inoperative 61 21.5 1.0218 2.1
22 0748 40 50 60 e ] 22.1 1.0222 0.9
23 0647 55 b7 22.0 1.0218 3.0
26 0557 80 55 22.3 1.0222 1.5
25 0619 100 41 22.0 1.0221 1.2
26 0735 120 21 23.4 1.0220 1.8
27 0541 90 52 25.5 1.0216 1.2
28 0700 40 60 123 26.2 1.0208 0.9
29 0648 80 90 91 26.3 1.0203 1.2
30 0715 125 55 3.7 1.0214 3.4

Objective

19. The objective was to measure the longshore sediment transport rate
and local waves and currents in the surf zone.
Experiment plan

20. Specially designed portable traps were deployed in the surf zone
together with one or two electromagnetic current meters mounted on tripods
(Figures 8 and 9). The traps measured the vertical distribution of the
transport rate from the bed to the water surface. Because the traps must be
attended by operators, these experiments were limited to surf zone environ-
ments with significant breaking wave heights less than about 1 m. The current
meters were connected by cable to a newly-developed field data logger based
around a superminicomputer. The data logger allowed almost real-time data

verification at the site as well as basic analysis. The photopole group
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collected wave data in support of the
sediment trapping for all major data

runs.

e TTT T T U T

21. Three types of trap experi-
ments were performed. The major effort
‘ was directed toward temporal sampling,

. in which traps were deployed one after

' another at a fixed location. Typically,

four to eight trap interchanges were

made. Temporal sampling allows ready

h comparison of transport rates, currents,
and waves, all of which vary in time.

The second type of experiment was termed

longshore sampling, whereby several

traps were placed across the surf zone

-

at the same time to measure the cross-

shore distribution of the longshore sed-

iment transport rate. The third type

was a consistency check, made by placing Figure 8. Sediment trap

two traps near each other to allow com-

Figure 9. Sediment traps being deployed -9
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parison of trapped quantities of sediment under presumably nearly equal long-
shore transport conditions. Typical sampling intervals for a single trap were
S to 8 min. Sediment samples from selected runs on each day were retained for
grain size analysis.
Locatjon

22. The surf zone sediment trap experiment was conducted approximately
100 m south of the north FRF property line. During the study the principal
investigators established a convenient local baseline (tied into the FRF coor-
dinate system) and conducted their own profile surveys using a Zeiss survey
system mounted on the pier or the main system housed in the FRF main building.
The line of photopoles was used as a reference point in most of the surveys
and trap experiments.

ta collection schedule and summar
23. Summaries of experiment times, types, and supplemental data are

given in Tables 5-8.

Table 5
Summery of Sur i T riment f ember
Run No, Date Time, EDT Type of Experiment end Sampling Interval
" 1" 1745-1755 Longshore, 6 traps
12 12 1037-1047 Rip current, 6 traps
20 15 1345-1408 Temporal, 3 trap pairs, 7/8/8 min
21 15 1630-1654 Temporal, 1 trap, 3 repetitions, 8/8/8 min
23 16 0922-0932 Consistency, 1 trap pair
24 16 0945-0955 Consistency, 1 trap pair
2 16 1116-1126  Longshore, 10 traps
27 18 1225-1249 Temporsl, 4 trap peirs, 6-min interval
28 18 1453-1524 Temporal, S trap pairs, 6-min interval
30 19 1016-1026 Longshore, &6 traps
32 19 1230-1254 Temporal, & trap pairs, 6-min interval
33 20 1045-1133 Temporal, 8 traps, 6-min interval
34 20 1500-1548 Temporal, 8 traps, 6-min interval
including 2 consistency (2 pairs)
35 21 1046-1056 Congistency, 1 trap pair
37 21 1345-1509  Temporal, 14 trar -epetitions, 6-min
interval, including 2 consistency runs
38 22 0730-0810 Temporal, 8 traps, 5-min intervals
39 22 1600- 1625 Temporal, 5 trap pairs, S-min intervals
40 22 1750-1756 Longshore, 10 traps, 6-min intervals
42 23 1035-1100 Temporal, 5 traps
19
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] Table 6
& . f Surf iment Tr rt Dats for t r_1986*
Run Current  Bathymetry and Location Rel. Samples
No. Date |Meters _Gage Surveys o Photopoles lide Retained
1 1" None Line 1-12, PP Between 4.5 & 13.5 Falling All traps
12 12 None Rip region, PP Between 4.6 m &k 46 Low ALl traps
m (15 & 150 ft)
offshore
20 15 2 Lines 1-9, PP, 2 (M Between 6 & 7 Rising Traps 3, 4
. 21 15 2 Zon Pole & Rising None
] 3 16 1 Lines 1-6, PP, Pole 7 Falling None
est. 1 CM
24 16 1 10 Pole 8 Falling None
26 16 2 2 Between 6.5 & 17.5 Falling ALl treps
27 18 2 Lines 1-4, PP, 2CM Poles 54 8 falling None
h 28 18 2 2 Poles 78 9 Falling Trap 5
30 19 2 Lines 1-6, PP, Between 1.5 ¢ 7 High None
est. 1CM, 1 CM
32 19 2 2 M, Pertial Poles 6 & 7 Falling Trap 7
mel function
33 20 2 Lines 1-3, PP, Pole 5.5 High ALl traps
est. 2 CM
_ 34 20 2 2o Between 8 & 9 Low Traps 9 & 10
P 35 21 2 Lines 1-3, PP, Poles 5.5 High None
est. 2 CM & 6.5
37 21 2 2 CM Pole 8.5 Falling Traps 15 & 16
38 22 2 Lines 1-9, One Pole 5.5 Rising None
line S of Line
1, PP, est. 2 CM
39 22 2 2 CH Poles 78 9 Rising Traps 1 & 2
40 22 2 2CM Between 5 & 9.5 Low None
42 23 2 Lines 1-8, PP, 2 CM Between 4 & 5 Rising Trap 2

*Notes: Survey lines 1-12 on a local grid system from a baseline set parallel to trend of
shoreline in experiment area; spacing of 15 m (50 ft) between lines.

PP - survey on photopole line.
CM - current meter.
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Table 7

|
|
|
!

Suwmary of Photopole Dats in Support of Surf Zone
Sediment Trep Experiments
Run Wo. Date Photopole Dat
11 1 Start 1744; 3901 frames, Poles 5-22
12 12 Start 1037; 3892 frames, Poles 5-22
20 15 Start 1345; 2 x 3800 frames, Poles 6-17
21 15 Start 1631; 2 x 3800 frames, Poles 3-11
23 16 None
24 16 Start 0950; 3899 frames, Poles 6-22, missing 1st 5 min; camera controller
problem at end
26 16 Start 1114; 3901 frames, Poles 6-22
27 18 Start 1225; 2 x 3800 frames, Poles 6-13, Camers 5 problem at start
28 18 Start 1453; 2 x 3800 frames, Poles 6-13
30 19 Start 1015; 3900 frames, Poles 2-22, Camera 4 failure
32 19 Start 1230; 2 x 3800 frames, Poles 6-13
33 20 Start 1046; 4 x 3800 frames, Poles 3-8, 1-min gap between sets 2 & 3
34 20 Start 1500; 4 x 3800 frames, Poles 7-16, short gap between sets 2 & 3
35 1 None
37 21 Start 1345; 8 x 3800 frames, Poles 8-9, some problems with Camera 5
38 22 Start 0730; 4 x 3800 frames, Poles 5-6, many problems
39 22 Start 1600; 2 x 3800 frames, Poles 7-9
40 22 Start 1748} 3900 frames, Poles 5-22
42 23 Start 1035; 2 x 3800 frames, Poles 4-5, many problems with cameras
]
21




Table 8
Comments on Quality of Surf 2one Sediment Trap Data for September

Run No., Date Comments
1" 1 Malfunction in current meter system; wave conditions rough; trap data of acceptable
quality
12 12 Malfunction in current meter system; trap data of good quality
20 15 North traT in deeper water, south trap in shallower water at same distance from shoreline;
moderate longshore current; overall high quality
21 15 Wave conditions rough; strong current; south location as in Run 20; overall good quality

23 16 Traps separated by 3 m; moderate current; overall high quatity
24 16 Traps separated by 1 m; moderate current; overali high quality
26 16 Moderate current; high quality

27 18 Moderate/strong longshore current; high quality
28 18 Strong longshore current; high q.xah y

30 19 High swell; several traps became dislodged; 2 traps unsuccessful; moderate current;
swmflcant transport of gravel in swash zone; limited quality
32 19 Strong current; first 146 min of current meter record (2-1/4 trap intervals of 4 intervals

total) lost; trap data of high quality
33 20 Deeper water, high tide, weak/moderate longshore current; good quality

34 20 Low tide; performed in very strong feeder current of a rip; overall high quality

35 21 Moderste current; good quality

37 21 Performed in moderately strong feeder of a rip; current weaker at offshore cm; overall
high quality

38 22 Strong current; waves arriving at large angle; water unusually turbulent due to mixed

swell and chop trap 6 fell over several times; reduced number of streamers in Traps 7 &
8; experiment discontinued due to high breakers on beach face and strong current; overall

good quality
39 22 Moderate/strong current; traps located 5-10 m downdrift of current meters; good quality
40 22 Outermost three traps in deeper water not completely set in bottom for first 2 min; good

placement of swash zone traps; moderate current; fair quality

42 23 Very weak longshore current to north, with some reversals in direction; high (1- to 1.5-m)
waves breaking at trap positions; near the shoreface; poor overall quality

Photopole

24. Principal investigators were Mr. Bruce A. Ebersole and Dr. Steven
A. Hughes of CERC and Dr. Shintaro Hotta of Tokyo Metropolitan University,

Japan. ) .ﬂ

Objectives
25. The objectives were to (a) collect high quality water level and

wave height data in and just outside the surf zone during typical and severe
wave events, and (b) collect wave data in support of the sediment trap - W
experiment.
Experiment plan

26. A shore-perpendicular transect of photopoles (2-in. steel pipes

with horizontal calibration rods) was jetted into the seabed using a portable - !W

22
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land-based air compressor and handheld lance (Figure 10). The CRAB was used
to install photopoles in water depths greater than 1.5 m. Seabed elevations
in the vicinity of the photopole transect and elevations of the lower calibra-

tion rods were surveyed daily to establish vertical control for the measure-

ments.

Figure 10. Photopoles

27. A battery-powered system of 6 synchronized Bolex 16 mm movie
cameras was used to film water surface fluctuations at each photopole (Figure
11). The camera system was mounted on a 6.1-m-high scaffold erected on the
beach berm approximately 122 m south of the photopole line. Cameras were
fitted with appropriate lenses such that each camera typically filmed 2 or 3
poles. A filming or sampling rate of 5 Hz was used for all filming runs.
Location

28. The photopocle experiment was conducted 425 m north of the FRF pier
in the immediate vicinity of the sediment trap experiment. A second line of
photopoles was erected 140 m north of the pier in anticipation of high wave
conditions. Six photopoles, mounted on sleds, were also planned for deploy-

ment along this second photopole transect to measure waves in deeper water.

23
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Figure 11. Photopole camera system

Unfortunately, the weather did not produce storm wave conditions during the
study period.
Data analysis

29. Data collected during the first phase of the experiment in con-
junction with the sediment trap experiment are summarized in Table 9.

Information is provided as follows:

a. Run identification number.

b. Day and time run initiated.

c. Number of poles photographed (22 is the seawardmost pole).

d. Tide elevation at the FRF pier.

e. Significant wave height and peak spectral period, as measured
by the FRF's Gage 621.

f Wave direction associated with the peak spectral period (from

FRF's Gage 21). L

g. Poles whose calibration rods were surveyed.

=

Poles where seabed elevations were surveyed.

24




T T T

Table 9
Sumary of Photopole Experiment Runs

Tide* Rod Sea
Run No. Date Time, EDT Pole No. m, NGW Hmo m* Tp, sec* pir*t Elev. Elev.
1 11 Sep  174h 5-22 0.05 0.57 10.0 74 1-22  1-22
2 12 Sep 1037 5-22 -0.25 0.52 10.0 88 1-22  1-22
3 12 Sep 1300 9,12 0.35 0.55 9.0 85 1.2 1-22
4 13 Sep 1425 4-22 0.66 0.86 5.0 38 1-22
5 13 Sep 1535 4-22 6.79 0.86 5.0 38 1-22
6 1% Sep 1558 3-14 0.68 0.92 9.0 89 1-22
7 % sep 1713 3.22 0.80 0.95 10.0 88 1-22
8 15 § 1345 6-17 -0.23 0.88 10.0 83 1-8 1-13
9 15 Sep 1445 5-22 0.03 0.90 10.0 85 1-8 1-12, %
10 15 Sep 1552 5-22 0.37 0.85 11.0 78 1-8 1-12,14
1 15 Sep 1631 3-11 0.49 0.86 11.0 82 1-8 1-12,14
12 16 Sep 0950 6-22 -0.14 0.60 11.0 81 1-22  1-22
13 16 Sep 1114 6-22 -0.46 0.58 11.0 82 1-22  1-22
1% 18 Sep 1225 6-13 -0.15 1.02 8.0 80 1-13  1-13
15 18 Sep 1453 6-13 -0.45 1.02 8.0 7% 1-13 1-13
16 19 Sep 1015 3-22 0.50 0.80 9.0 (4 1-22
17 19 Sep 1100 3.22 0.35 0.80 9.0 7 1-22
18 19 Sep 1230 6-13 -0.07 0.80 9.0 7 1-22
19 20 Sep 1046 3-8 0.70 0.81 10.0 Ve 1-22
20 20 Sep 1500 7-10 -0.40 0.81 11.0 69 1-22
21 21 Sep 1345 1-4,8-9, 0.1 0.78 12.0 75 1-5,7-8,
20-52 10-11,13%
22 22 Sep 0730 5.6 0.28 0.73 4.0 29 1-7
23 22 Sep 1600 7-9 -0.04 0.78 6.0 38 1-7
2% 22 Sep 1748 5-22 -0.07 0.77 6.0 55 1-7
25 B3 Sep 1035 4-5 0.62 0.63 9.0 65 1-5

¥ Estimated from tide data from NOS tide gage at end of pier; wave data from PUV meter
(Gage 21); wave directions relative to True North (shore normal = 70 deg).

Surf Zone Currents

30. Principal investigators were Dr. Rao S. Vemulakonda and Dr.
Nicholas C. Kraus of CERC.
Objective

31. The objective was to obtain synoptic current measurements in the
surf zone for comparison to numerical model predictions. Some of these mea-
surements were to be used to support the sediment trap experiments.
Experiment plan

32. Equipment malfunctions plagued this project, and it was later
discovered that problems with the Marsh-McBirney electromagnetic current

meters prohibited the experiment’s completion.

Surf Zone Rip Currents

33. Principal investigator was Dr. Robert A. Dalrymple of the Univer-

sity of Delaware.
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QObjective

34. The objective was to make detailed measurements of currents within

the surf zone, particularly rip currents generated during nonstorm conditions.
Experiment plan

35. A portable array of two electromagnetic current meters and pressure
wave gages was placed at selected points within the surf zone. This experi-

ment was carried out in conjunction with the sediment trap experiment.
Surf Zone Waves

36. Principal investigator was Dr. James T. Kirby of the University of
Florida.
Objective

37. The objective was to compare the photopole wave data to data col-
lected simultaneously from two resistance wave staff gages and two pressure
sensors that were attached to the photopoles.
Experiment plan

38. Two resistance wave staff gages and two pressure sensors were
mounted on photopoles, and data were collected on the MICROVAX computer
located in the north trailer in conjunction with the data collection periods

of the photopoles and other sediment transport experiments.

LEQ Measurements

39. Principal investigators were Ms. Joan Pope, and Messrs. Clifford L.
Truitt, Stephen E. Wagner, and W. Jeff Lillycrop of CERC.
Objective

40. The objective was to improve Littoral Environment Observation (LEO)
measurements by testing existing and proposed technology relative to accurate
field observations of currents, waves, and sediment movement.
Experiment plan

41. Numerous methods of testing the LEO techniques were tried. Coinci-
dental data collected by the FRF were used to verify measurements made by the
LEO observers such as longshore drift, wave height and period, and wind speed
and direction. Passersby and volunteers provided a test group to study the

bias of the observer. New methods of measuring currents were compared with

26
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the standard dye packet method. A copy of the standard LEO observer sheet is

included as a reference for the type of information collected (Figure 12).

LITTORAL ENVIRONMENT OBSERVATIONS

[ ) RECORD ALL DATA CAREFULLY AND LEGIBLY
$ITL WUNBERS YEAR BONTH pay {113
! s L L Rocord time L "
11D | (D M M | ==%F 00D
hour system
WAVE PERIOD w 0 BREAKER MHEIGHT "w .
Record the tume 10 soconds for Record the Dest pstimate of the m D
slever (11) wove Lragts o pons @ Sverage wave Moight 1o the neores! »
stetionery pont. If coim record O tonth of ¢ foot
WAVE ANGLE AT BREAKER 42 23 26 WAVE TYPE
Record to e neorast degres the 0~ Coim 3~ Surqing ﬁ
Girachion the woves ore coming from 1~ $priling Q- Spill / Plunge
wiing the protrector on the reverse side O if colm 2 - Plunging

WIND SPEED 2 2

Record wing speed fo the noores!

MIND DIRECTION- Fe ™

-

Record fereshore slope to the
neorest degroe

mph_ 1f coim record O ;::t ::gt :::' :::. 0-Ceim
FORESHORE SLOPE ns | WIDTHOF SURF ZONE 3 m » »

Estimate i feet the @istonce from
shore to breshers, if colm record O.

£

LONGSHORE CURRENT

CURRENT SPEED

Wecsure in feo! the distonce the dye
potch is sbserved o move guring o one (1)
minyte period, M ne longshore movemen! record O

43 6¢ &8

OYE

Estimote distonce in feet from
shoraling to point of dye injection

CURRENT DIRECTION

O Mo longshore movement
+ | Dye moves toword right
~ | Dye moves toword leht

% 3 0

=3=

RIP CURRENTS

1 rip currants ore presen?, indicate spocing {1ee? ). ! spocing is irreguler
estimote overege spocing If mo rips record O.

BEACH CUSPS

11 cusps ore present, indicote spocing (feet) If spocing is irregulor
estimote everege spocing. If no cusps recoré 0

PLEASE PRINT :

E1E

SITE NAME OBSERVER

Pisose Chack The Form For Completensss

REMARKS :

CERC 13- 72

M 72 Moke ony 0dd111on0! remerks, Computotions or Sketches on the reverse s18e of this ferm

Figure 12. Littoral Environment
Observations (LEO) form
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PART IV: STORM WAVE STUDIES

. 42. These 13 studies were conducted during October when the wave energy
was, as expected, significantly higher than in September. The nearshore mor-

phology on 6 October is shown in Figure 13. The nearshore bar, though still

Figure 13. Minigrid bathymetry, 6 October 1986

complex, was milder than it was on 4 September (Figure 6). During October two
large northeasters were monitored. The first and largest storm began on 10
October soon after the instrument installation was completed. Figure 14 shows
the general climatic and sea state conditions for October. Table 10 lists
daily observations that supplement the automated data collection.

43. The storm wave phase of SUPERDUCK was the most demanding in terms
of instruments deployed, surveys conducted, and time series data collected.

Locations of the experiments are shown in Figure 2.

Infragravity Wave Climatology

44. Principal investigators were Messrs. Peter A. Howd and William A.

Birkemeier of CERC’s FRF and Dr. Joan Oltman-Shay of Oregon State University.
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Table 10
ERF Lemental rvations October 1

Wave Approach Water Characteristics

Angle at Pier End Radar Wave at Pier End

deg from True N Angle deg Width of Temp. Density Secchi
Doy Yime Primery Secondary from True N Surf ] °c g/cc  Vis..m
1 0700 120 43 22.0 1.0224 1.2
2 0800 100 24 21.5 1.0226 1.5
3 0845 none vigible 20 23.2 1.0220 1.8
4 0835 none visible 6 21.3 1.0222 2.7
5 0730 none visible [ 21.0 1.0230 4.3
6 0805 15 23 20.9 1.0229 2.4
7 0610 20 61 206.6 1.0230 0.9
8 0700 90 76 21.4 1.0233 1.8
9 0635 95 64 21.7 1.0220 7.0
10 0656 45 50 m 21.8 1.0222 0.9
11 0740 60 498 20.1 1.0213 0.0
12 0841 90 I ] 317 20.2 1.0204 0.6
13 0703 90 80 223 20.5 1.0204 0.3
14 0650 90 ) 91 21.0 1.0220 0.3
15 0637 30 40 119 20.5 1.0225 0.3
16 0622 50 104 19.2 1.0227 0.6
17 0815 20 Yol 18.1 1.0222 0.6
18 0905 40 65 65 82 17.8 1.0212 0.6
19 0845 60 30 250 16.8 1.0212 0.6
20 0720 40 70 107 17.3 1.0220 0.3
21 0637 80 55 99 17.0 1.0218 0.3
22 0633 80 80 81 17.3 1.0224 0.6
23 0840 105 n 18.2 1.0228 0.9
24 0730 90 61 18.0 1.0232 0.9
25 0805 45 60 60 177 18.2 1.0230 0.6
26 0906 90 80 88 18.2 1.0230 0.6
27 0740 100 90 ™ 18.3 1.0230 0.9
28 0731 80 80 69 18.0 1.0232 0.6
29 0708 90 41 17.8 1.0230 2.4
30 0712 100 43 17.6 1.0227 1.2
31 0800 50 291 17.3 1.0227 0.6

Objective
45. The objective was to study the infragravity wave climatology,

addressing (a) the relative importance of trapped (edge wave) and leaky modes,
(b) their generation via the nonlinear interactions of the incident wind wave
field and (c¢) infragravity wave relationship to nearshore bathymetry.
Experiment plan

46. A longshore array of 10 Marsh McBirney electromagnetic current
meters located in the surf zone was operational from 6-23 October. The array
was designed to measure the longshore wave number spectrum of the infragravity
wave energy.

Data analysis
47. Thorough analysis of the infragravity wave content was crucial if

the objectives were to be met. Both the surf zone current meter array and the
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‘video runup array (discussed under Infragravity Wave Dynamics) were deployed
at the SUPERDUCK field site to aid in this effort. Analysis methods applied
%i to these array data will depend on their infragravity wave content. The wave
5 field may be purely progressive, longshore-standing, or mixed. All waves may
. be equally present, or the field may be dominated by a few modes. Because the
t surf zone and video runup arrays view the infragravity wave field from differ-
“l ent perspectives, the success of an analysis method may differ between arrays
for the same infragravity field.
48. The investigators suspect that the content of the infragravity
energy will differ from simple, plane beaches because of the many hypotheses
Ll (linking infragravity waves to complex beach morphology) that suggest prefer-
ential amplification of discrete infragravity frequencies and modes on a
barred beach or the generation of bars in response to a narrow infragravity

energy peak. Any observed structure (a peak) in the infragravity band could

be the result of actual preferential forcing offshore by the incident wind
waves through resonant tuning by the bar under broad-banded wind wave forcing.

49. The offshore wind wave directional array (discussed under Linear
Array Wave Gage in Part V) will aid in discerning the broad or narrow band
nature of the infragravity wave forcing. In addition, the sequence of high
and low tide data runs presented an opportunity to look specifically at the
response of the infragravity waves to the various cross-shore locations of the
bar.

50. Preliminary analysis of the current meter data in the longshore
array indicates tidal dependence on the magnitude of both the cross-shore and
longshore mean currents in the surf zone. In addition, large oscillations in
both of the current components with periods of 5 to 10 min were frequently

observed. The longshore array will permit examination of both the temporal

and spatial characteristics of these currents.
51. The longshore current meter data set was greatly enhanced by the
data obtained by other surf zone experimenters. The status of the longshore

gages throughout their collection life is given in Appendix A.

Nearshore Profile Response

52. Principal investigators were Dr. Asbury H. Sallenger and Mr. Bruce
E. Jaffe of the US Geological Survey (USGS).

1
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Objectives

53. The objectives were to (a) develop an all-weather capability to

nearshore profile response and (b) relate observed profile changes during
storms to waves and currents.
Experiment plan

54. Seven pressure and seven sonar gages (Table 1) were installed along
the cross-shore array shown in Figure 2. The USGS supplied a battery of
microcomputers to collect data and provide near real-time analysis of the
changes in the cross-shore profile. The FRF VAX-750 and NOVA-4 were used as
back.ap to collect the data on varying time schedules.

at hedu

55. The USGS data acquisition system began data collection on 2 October

86 (1900 EST) and continued until 17 October 86 (1500 EST). The only inter-

ruptions were as follows:

Time, EST Date Reason
0600 - 1800 Oct 86 Instrument calibration
0600 - 0700 Oct 86 Program error
1400 - 1900 Oct 86 Adjustments
0800 - 1800 OCT 86 Testing

2200 - 0600 Oct 86  Computer crash
0800 - 0900 Oct 86  Program error
0000 - 0700 13 Oct 86 Computer crash

3
4
4
5
1300 - 1400 6 Oct 86 Program error
10
11

56. The data were collected at a sampling rate of 2 Hz for a period of
2,048 sec. Sonar and pressure gages (CS05, CS06, CSO7) were disconnected
intermittently between 8 October 86 (1100 EST) and 9 October 86 (1700 EST).
Pressure gage CSO7 had a diaphragm problem and provided questionable data.

Infragravity Wave Dynamics

57. Principal investigator was Dr. Robert A. Holman of Oregon State
University.

Objectives
58. The objectives were to study (a) infragravity wave climatology, (b)

relative importance of trapped waves (edge waves) versus leaky modes, and (c)
interaction of infragravity waves with nearshore morphology. In addition,

data were taken which will allow testing of a particular model for the forcing ”'?
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of infragravity waves. Remote sensing techniques were used to collect all the

appropriate data.

Experiment plan

59. An extensive set of video data under a variety of wave conditions

was collected. Four-hour runup records centered at high and low tides were

recorded during daylight hours from 1 October to 16 October, looking both to

the north and south of the pier. Short time exposure records were recorded
(approximately hourly) over the period of 28 September to 16 October. These
were predominantly northward oriented with some southward facing data col-
lected sporadically. Southward-facing time exposures will also be available
from the longer runup runs. A listing of all data runs is included in Tables
11 and 12 (some data were lost, particularly on 10 October).

Data analysis

60. Analysis will follow three lines. First, time exposures will be
made and rectified views computed. These will be compared to the CRAB data
for verification. The morphology evolution will be charted with one emphasis
being bar response and another being transverse bars in the trough.

61l. Second, the runup data from which statistics will be taken will be
digitized as a function of longshore location, but the primary emphasis will
be calculating frequency-wave number spectra for studying infragravity band.
.This analysis is parallel to the longshore current meter array.

62. Third, the data will be analyzed to monitor surf zone width fluc-
tuations as a rough parameterization of infragravity band forcing. Again,

frequency-wave number analysis will be used.

Wind and Wind Wave Forcing of Mean Nearshore Currents

63. Principal investigators were Dr. Edward B. Thornton and CDR Dennis

J. Whitford, United States Navy, Naval Postgraduate School.
Objectives

64. Objectives were to (a) examine the spatial variability of the bed

shear stress coefficient at a barred beach and (b) calculate the relative
importance of wind and wave forcing of nearshore currents.
Experiment plan

65. Instrumentation mounted on a sled was designed to measure the local

momentum balance and the vertical distribution of mean currents in the near-
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Table 12
R Vi Runs
—Date  Time Durction Tide _lape __Date ~ Time ODuration Tide _Tape
1 0ct 8 1008 1:50 tce  GDOO3 11 Oct 86 1004 1:55 mia GTO79
1008 1:50 low GMOOL 1005 1:56 md  GDO77
1008 1:50 low GT005 1005 1:56 mid GMO78
20ct 86 1113 1:50 low GD0O6 1204 1:56 high GT082
1113 1:10 low GMOO7 1205 3:56 high GDOBO
1529 1:10 mid GDOO9 1205 1:56 high GMO81
1529 1:10 mid GNO10 1404 1:56 high GY085
1 3 oct 86 0755 1:10 high GDO11 1405 1:56 high GM084
0755 3:00 high GHO13 1410 1:50 high GDO86
0755 4:00 High G1012 1604 1:55 high GT088
5 oct 86 0925 3:00 high GMO14 1605 1:56 high GMO87
6 Oct 86 0805 1:55 high GDO16 12 Oct 8 0736 1:45 low GDOPO
0805 1:55 high GMG17 0736 1:44 low GMO91
0805 1:55 high GT018 0736 1:44 low  GTO092
1005 1:55 mid GDO19 0929 1:55 mid  GMO9%
1005 1:55 mid 0 0929 35:0 mid  GT095
1005 1:55 mid Gro21 0930 1:56 mid  GDO8Y
1303 1:55 Low  GD022 0930 1:56 mid GDO93
1303 1:55 low 1134 1:56 mid
1303 1:55 low GT024 1135 1:56 mid GDO9S
1505 1:55 low GDO25 1135 1:57 mid GDO97
1505 1:55 low GMO26 1335 1:55 high GM100
1505 1:55 low GT027 1335 1:55 high GT099
7 Oct 86 0730 1:55 high GD028 1535 1:56 mid GM102
0730 1:55 high GM029 1535 1:56 mid GT103
0730 1:55 high GT030 536 1:55 mid GD101
0930 1:55 high GDO32 13 oct 86 1:55 mid GD104
0930 1:55 high GM0O33 745 1:55 low GD10S
0930 1:55 high GT034 0745 1:55 low GM106
1300 1:55 mid  GDO35 0745 1:55 low GT107
1300 1:55 mid  GMO36 1:50 tow GD108
1300 1:55 mid GT037 0948 1:50 low GM109
1500 1:55 low GDO38 1:50 low GT110
1500 1:55 low GMO39 1145 1:56 low GD112
1500 1:55 low GT040 1145 1:56 low GM113
8 Oct 86 0904 1:55 high GD042 1145 1:56 low GT114
0904 1:5 high GM043 1350 1:55 mid GD115
0904 1:55 high GT044 1350 1:55 mid GM116
1104 1:55 high GDO45 1350 1:55 mid GT117
1104 1:55 high 1553 1:55 high GD118
1104 1:55 high GT047 1553 1:55 high GM119
9 Oct 86 0929 1:55 high GT050 1553 1:55 high G6T120
0930 1:55 high GD048 14 Oct 86 0800 0:25 mid GWi22
0930 1:55 high GM0O49 0922 1:55 low GD123
1129 1:56 high GT053 0922 1:55 low GM124
1130 1:56 high GDOS1 0922 1:55 low GT125
1130 1:56 high GMO52 1124 0:51 low GD126
10 Oct 86 0734 1:55 low GDOSS 1124 0:51 low GM127
0734 1:55 low GMO56 1124 0:52 low 67128
0734 1:55 low GTO057 1528 1:55 high GM130
0934 1:56 mid GDO58 15 oct 86 1000 0:10 low GD131
0934 1:56 mid  GMO59 1025 1:55 low GD132
0934 1:57 mid  GT060 1025 1:55 low GM133
1147 1:55 high GD063 1025 1:55 {ow GT134
1147 1:55 high GM064 1225 1:55 low GD135
1147 1:55 high GT065 1225 1:55 low GM136
1347 1:56 high GD0&6 1225 1:55 low GT137
1347 1:56 high GM0O67 1626 1:55 mid GD139
1347 1:55 high GT068 1426 1:55 mid GM140
1546 1:56 mid GTO7 1426 1:55 mid GT141%
1547 1:55 mid  GDO69 16 Oct 86 1020 1:55 low GD142
1547 1:55 mid 70 1020 1:55 low GM143
11 Oct 86 0805 1:56 low GDO74 1020 1:55 low GT144
0805 1:56 low GMOTS 1221 1:55 low GD146
0805 1:5% low GT076 1221 1:55 tow GM147 _q
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shore (rigures 15 and 16). The sled’s orientation was accurate to within less

[,
{
’L.
|
t than 0.5 deg, as determined by Zeiss shots on two spatially separated prisms

on a mast spreader. Also, the sled’'s mobility was used to study rip currents.

v : s - '—.Vli <. 2 1‘) 4, v o 3 - v:‘ . - I e .
N . . oy - ‘ i : y‘: A
Figure 15. Base of instrumented sled
. '.'. i . ) . ‘; e ’ V - ‘w
Figure 16. CRAB towing sled to experiment site
36
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66. By numerically orienting the sled normal to the local bathymetric

contours, the complete longshore momentum equation is

M, 3S,, 38"y
+ = 'fb + 7 -
at ax Y mw ax
Term: 1 2 3 4 )

where a right-handed Cartesian system is adopted with x increasing offshore,

and

term 1 = temporal change of the time-averaged depth-integrated mean
momentum per unit area in the longshore direction due to both

steady (M,) and unsteady flow (M;')

term 2 = on-offshore gradient of the wave-induced longshore momentum
flux (also called the radiation stress gradient)

term 3 = bottom shear stress modeled as

-Thy = pCe(uP+v?) 2y
term 4 = wind-driven surface shear stress

Toy = PaCalW[W

term 5 = on-offshore gradient of the longshore momentum flux due to
turbulence.

As used in terms 3 and 4, where p and p, are water and atmospheric den-
sities, u and v are current velocities in the x and y directions, C;
is a bed shear stress coefficient, C; is a stability-dependent atmospheric
drag coefficient, W 1is wind speed, and the overbar denotes time-averaging.
67. Two differential pressure slope arrays and an absolute pressure
reference were used to measure the wave-induced radiation stress gradient.
Marsh McBirney electromagnetic current meters located at the centroid of the
slope arrays were used to measure the total radiation stress gradient. A
mast-mounted anemometer was used to measure wind stress. A stability-depen-
dent atmospheric drag coefficient was determined from simultaneous wind stress
measurements taken at the end of the FRF pier by Dr. Sethu Raman (NC State
University). The vertical structure of the mean currents was measured using

three currents at various elevations mounted on the sled. Assuming temporal
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stationarity, the distribution of mean currents and wave energy across the
surf zone was determined by moving the sled. Longshore array current meters
were used as a reference for stationarity considerations.

Data collectjon schedule

68. Data collection using the current meters and an absolute pressure
sensor commenced 11 October 86; and data collection, including the slope
arrays, commenced 15 October 86. Sled transects were made near profile lines
197, 240, and 250. The data runs were at least 35 min in duration and were
acquired at three to five different locations along a transect, commencing
just seaward of the breaker zone of the inner bar. Data were acquired during
daylight hours coinciding with the VAX collection times.

69, Prior to selecting an area of the surf zone to transect, the
previous day’s bathymetry was studied and changes in morphology noted. The
area with the highest degree of straight-and-parallel isobaths was selected
for each day’s operations. Observations of waves breaking on the sled mast
were marked by an electrical trigger which registered a pulse on the data
tapes.

Data analysis

70. Data analysis will examine the following:

a. Momentum balance. Determine spatial variability of ¢, and

relative importance of wind and wave forcing.

Vertical distribution of radiation stress. The vertical
distribution of radiation stress is important to recent
theories on vertical current distribution and "undertow".

I

Vertical mean current structure across a nearshore bar. Data
were acquired offshore, on top of, and inshore of the bar on
all nearshore transects. It may be hypothesized that primary
morphological changes are caused by mean current "events".

e}

[=N

Anatomy of a rip current. The vertical structure of the mean
cross-shore and longshore currents within a rip current were
measured by transecting the rip current longitudinally on 12
October.

Unsteadiness of nearshore currents, such as pulsating rip
currents. Unsteadiness of the currents may be correlated with
wave groups or supercritical head of water within the near-
shore bar or other mechanisms.

(14

I

Wave height distribution over a nearshore bar.
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g.- Breaking wave height probability distributions. The probabil-
ity density functions (pdf) could be utilized to verify the
"whiteness" of the remotely sensed breaking wave data.

h. Comparison of radiation stress calculated by refracting the
offshore directional spectra with the measured nearshore
values on the sled.

1. Integration of the sled’s anemometer data (generally within
3 m above NGVD) with the wind profile data acquired by NC
State University’s vertical wind profile (which lacked a wind
sensor near the sea surface).

(o) ance and S c ope

71. Principal investigators were Dr. Guy A. Meadows and Ms. Lorelle A.
Meadows of the University of Michigan and Dr. Lee L. Weishar of CERC.
Objective

72. The objective was to determine the longshore and cross-shore
momentum balance throughout the nearshore region. This determination of the
longshore momentum balance was based upon preliminary work conducted as part
of the DUCK85 experiment and utilizes hydrodynamic observations throughout the
coastal boundary layer to formulate the distribution of momentum outside and
inside the surf zone. Results from the DUCK85 experiment showed that the
dominant terms in the longshore momentum balance outside the surf zone were
longshore pressure gradient and wind stress terms. Although important, bottom
stress is secondary compared to wind stress and longshore pressure gradient
force. Inside the surf zone and through the refraction zone these forces are
still important, but bottom stress and wave radiation force are comparable to
them. In both regions, momentum advection, Coriolis, and acceleration terms
were small compared to the other terms in the momentum balance. These obser-
vations are consistent with results of the Coastal Boundary Layer Experiment
(LEX81) conducted in Lake Erie in 1981.

Experiment plan

73. From knowledge gained during the DUCK85 experiment, several
improvements were made to the field deployment scheme to enhance the SUPERDUCK
data collection and analysis efforts. DUCK85 results showed that in examining
the nearshore momentum balance, large quantities of momentum could reside in

very subtle longshore pressure gradients. Therefore, great care was taken to
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accurately measure the longshore gradient in sea surface elevation and to
assess its contribution to the longshore momentum balance in this region.
Figure 17 shows this gradient (as measured in 1985) using three pressure
sensors; one located near the FRF pier, one located at Kitty Hawk pier, and
one located at Avalon pier, approximately 10.2 and 17.3 km south of the FRF
pler, respectively. To improve upon this configuration in SUPERDUCK, four
pressure gages were deployed in 6.7 m (22 ft) of water in a region extending

from 6 km north to 10 km south of the FRF pier. These pressure sensors were
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4 4
g 2t }
>
a
)
(7e]
2 2| :
£z
(7]
o
& -4F -
)
—6- -
-8-

A A ' '} A A 1

L 'l 2 2
180 174 188 202 2186 230 244 258 272 288 300
Hours

Figure 17. Time-averaged and digitally filtered longshore water
elevation slopes between experiment site and Kitty Hawk pier and
experiment site and Avalon pier (data from DUCK85)

dynamically leveled and routinely releveled during the experiment to assure a
high level of accuracy in this measurement. To measure the other factors con-
tributing to the nearshore momentum balance, two instrumented tripods were

deployed in 6.7 and 11.6 m (22 and 38 ft) of water. Each tripod contained an
electromagnetic current meter and pressure sensor (PUV) to determine incident

directional wave spectra and near-bottom current velocities.
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74. Data from these sensors were recorded by a newly developed portable
automated data acquisition system consisting of a data concentrator located at
each tripod and a portable Compaq 286 computer and Alloy 59 megabyte tape
drive for mass data storage. Over 500 37-min time series of data sampled at
5 Hz were collected for each sensor.

75. To complete the momentum balance computation across the coastal
boundary layer, a suite of other surf zone and nearshore instruments was also
deployed as part of the SUPERDUCK experiment.

Data analysis

76. The data analysis will focus on the computation of the nearshore
momentum balance inside and outside of the surf zone. Contributions from the
longshore pressure gradient, first- and second-order wave radiation stress,
wind stress, bottom stress, and longshore current acceleration will be con-

sidered as well as residual terms which may arise.

Inner-Shelf Dynamics: Process Measurements

77. Principal investigators were Dr. Lee L. Weishar of CERC, Dr. Guy A.
Meadows and Ms. Lorelle A. Meadows of the University of Michigan.
Objectiv

78. This study was undertaken to quantify sediment transport seaward of
the breaker zone by obtaining a combination of direct and indirect process
measurements. These measurements consisted of waves, currents, and suspended
sediment concentrations outside the surf zone on the inner shelf. This exper-
iment was part of a larger overall effort to quantify the dominant processes
responsible for transporting sediment outside the surf zone. The overall
objective was to identify and then quantify the processes responsible for sed-
iment resuspension events through a comprehensive series of measurements in
the inner-shelf region. In addition, the effects of water depth and sediment
size were examined by obtaining process and suspended sediment concentration
measurements at the two locations (depths of 6.7 and 11.6 m).
Experiment plan

79. Two field efforts were embarked upon to determine relationships
between the incident processes and resulting resuspension of sediment in the

inner-shelf region. The first experiment involved the deployment of two
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bottom-mounted tripods containing a PUV wave and current meter and a stacked
array of OBS gages (Figure 18). Each OBS gage measured concentrations of sus-
pended sediment as a function of elevation above the bed. Vertical spacing of

the individual sensors is presented below.

Sensor Height Above the Bottom
1 5.0 cm
2 5.5 cm
3 25.1 cm
4 50.1 cm
5 105.0 cm

80. The second experiment involved an unsuccessful attempt to measure
vertical current structure. Five electromagnetic current meters were rigged
to a sled mast and towed out to the 11.6-m site just prior to the onset of a
northeaster. The current meter data were telemetered back to shore via a VHF
transmitter. Unfortunately, the northeaster was one of the most severe that
has occurred on the Outer Banks in the past several years. The sea state pro-
gressed from flat calm to a fully arisen state in approximately 4 hrs. The
subsurface forces on the sled were so great that the rigging on the mast
failed, preventing data from being telemetered to shore.

Data collection schedule

81. Data from each instrument were fed into a data concentrator located
on the tripod. Next, the analog signals were digitized in the concentrator,
multiplexed, amplified, and transmitted to shore through a single conductor.
Then these data were routed to a PC-based data acquisition system where the
signals were demultiplexed and stored in individual files of raw pressure, U-
and V-current velocity, and suspended sediment concentration values. A synop-
sis of the data collected using this newly-developed portable data acquisition
system is contained in Table 13.

Data analysis

82. The analysis of these data will provide a better understanding of
the effects of various combinations of incident surface wave energy and sub-
surface currents on resuspension events. It also will provide a better data
set to examine the effects of sea surface slopes and infragravity waves on
sediment transport which were shown in DUCK85 to be an important factor in the

inner-shelf region.
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Figure 18. Instrumented tripod being deployed

Inner-Shelf Dynamics: DARTS 11

83. Principal investigators were Dr. Guy A. Meadows and Ms. Lorelle A.
Meadows from the University of Michigan, and Dr. Lee L. Weishar and Ms. M.
Leslie Fields of CERC.

84. The Digital Automated Radar Tracking System (DARTS-II) is a
prototype portable radar tracking system designed to obtain directional wave
number spectra measurements from the breaker zone up to 4 km offshore. This
system is an extension of the DARTS-I system used for automated tracking of

current drogues released in restricted inlets.
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85. The major components of the DARTS system are a digital raster scan
radar with a built-in video interface, a video monitor, and a portable AT com-
puter with frame grabber digitizing peripheral board. A small generator may
be used to power the system; however, during the SUPERDUCK experiment, shore
power was provided.

Objectives

86. The objectives were to determine the operational limits of the sys-
tem, i.e. under which atmospheric and wave conditions it will obtain useful
data, and to evaluate the DARTS-1II remote sensing system using the comparative
data obtained from a number of other wave-measuring devices.

87. 1In processing the DARTS-II data, the digitized radar signal is
accessed in a region of interest (offshore, nearshore, or inshore) along the
direction of wave approach. A spatial series of 1,024 sea surface radar
return intensities is preprocessed with a 10 percent cosine taper on 50 per-
cent overlapping segments and 3 lines averaged per band. A quasi-two-dimen-
sional (2-D) (wave number spectra versus direction) Fast Fourier Transform
(FFT) is then performed on the data in the direction of wave approach yielding
a wave number spectrum. Representative DARTS-II wave number spectrum is pro-
vided in Figure 19.

Data collection schedule

88. Table 14 shows the dates and times of DARTS-II data acquisition.
The prevailing conditions were videotaped along with the video radar output
during all data sessions.

Data analysis

89. A full 2-D FFT is under development and will be applied to the
twice daily DARTS-II data collected during SUPERDUCK. Comparisons of DARTS-II
wave number spectra with conventional wave energy spectra from in situ point
gages will be made. The DARTS-II system will be fully evaluated in terms of
providing a rapid, reliable, and inexpensive means for measuring incident wave

characteristics for coastal engineering applications.

Foreshore Sedimentation Processes

90. Principal investigators were Dr. Suzette M. Kimball (formerly with
CERC) of the Virginia Institute of Marine Science (VIMS), Mr. Bruce E. Jaffe
of the USGS, and Mr. Mark R. Byrnes of CERC.
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Figure 19. Sample DARTS-II wave number spectrum

Table 14
DARTS-11 Operation Summary

Date Time, EST Date Time, EST

3 Oct 1407 16 Oct 1000

4 QOct 0909 17 Oct 0945

6 Oct 1503 1155

10 Oct 0747 1530
1046 19 Oct 0832

1329 20 Oct 0715

12 Oct 0755 21 Oct 1322
1312 22 Oct 1117

13 Oct 0710 23 Oct 1348
14 Oct 0717 24 Oct 1246
15 Oct 0717 25 Oct 1745
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Objective
91. As originally conceived, the cbjective was to develop a 3-D model
of nearshore morphological and sedimentological variations in response to

high-energy conditions. Specific elements to be evaluated during the period

included:

a. Sediment sorting processes alongshore and cross-shore.

b. Relationships between textural variations and incipient
morphological changes.

¢. Delineation of longshore and offshore sources of sediment in
the nearshore.

d. Evaluation of fine structures with larger scale morphological
features (i.e. bars).

e. Evaluation of mesoscale bedforms in the inner trough.

f. Evaluation of coarse-grained deposits and their control over
morphological development.

92. Based on an evaluation of events that occurred during the DUCKS85
storm event, the experimental objectives were redefined to focus on the evolu-
tion of foreshore morphology and foreshore sedimentation patterns during and
following a series of high-energy episodes.

Experiment plan

93. 1Initial experimental design included the collection of 18 short
cores along profile lines 275, 250, and 230 (Figure 2) at high and low tides.
An integral factor in the collection of the nearshore samples was the consis-
tent functioning of the Remotely Operated Sediment Coring system (ROSCO), a
portable coring device developed by CERC. During preexperiment test runs, the
reliability of ROSCO offshore under high-energy conditions did not meet the
minimum requirements for proper execution of the experiment. The experiment
was rescaled to use hand-emplaced cores as the principal and supplementary
means of data collection supplemented with the ROSCO system.

Data collection schedule

94. Data were collected using the following sampling layout:
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_Locatjon

Storm berm
Upper swash
Mid-swash
Step

Note: R= ROSCO system.
H= Hand driven.
* North property line (see Figure 2).

95. The study used bathymetric profiles surveyed by the CRAB, shallow
cores obtained by ROSCO, and numerous hand cores. Table 15 lists the sample
collection times. During each sample run, foreshore profiles were collected
using a prism rod and Zeiss total
electronic surveying station, and Table 15

Foreshore Profile and Sediment Sampling Schedule
the upper swash limit was mapped.

No. ot Samples Recovered
Samples were collected at both Date  Survey Time, EST  _foreshore —— ROSCO
high and low tides during the 10 7 Oct 1400 22

October storm and subsequent re- 10 Oct
covery period and at low tides for ' 0ct
the remainder of the experiment. 12 oct
Data_analysis 13 Oct

96. All cores were split, 14 Oct

photographed, described, and sub- 15 Oct

sampled according to visible dep- }? &:
18 Oct

ositional units. The 530 sub- 19 Oct
20 Oct

samples that were extracted will g; gct

be mechanically sieved. Next,
sand fractions will be analyzed
with a Rapid Sediment Analyzer (RSA) to determine their hydraulic character-
istics. The mineralogies will be established. Then, these data will be
combined with the foreshore profiles to determine the sequences of morphologic
and sedimentologic development. Finally, wave and current data from other
experiments will be used to evaluate foreshore evolution under given energy

conditions.




Sedimentary Micro Structures

97. Principal investigator was Dr. Curt D. Peterson of Oregon State
University.
Q ve

98. The objective was to test the hypothesis that the microstratigraphic

criteria can be used to establish mechanisms and environments of deposition
from nearshore sediment cores. Depending on the grain density relations, it
should be possible to discriminate between planar stratigraphic deposition by
(a) settling from a suspension event (normal grading), (b) selective entrain-
ment from fluid shear (critical shear stress equivalence), and (c) grain shear

sorting from grain flow (dispersive pressure equivalence).

Experiment plan
99. The experiment was coordinated with the geomorphological study con-

ducted by Dr. Suzette Kimball. Some cores were taken by hand across the surf
zone and inner bar (along the cross-shore array) prior to and during the
October storm.
Data analysis

100. Cores taken by hand and the ROSCO system were examined using a
Hewlett-Packard sediment X-ray unit and a binocular microscope. Figure 20 is
an X-radiograph of a core taken at the seaward end of the cross-shore array
following the first day of the October storm. The core was taken in approx-
imately 4 m of water, just offshore of the inner bar and was oriented along-
shore. This was the full extent of the core because a gravel bed prevented
further penetration. There was some slight disturbance in the upper part of
the core as shown in the downturned sand laminae.

101. The radiograph shows:

a. Alternating layers of gravel and very coarse sand (core bottom)
deposited by energetic nearshore currents following an initial
scouring event.

b. Thin overlying laminae of heavy minerals, including magnetite
(dark layers in core middle) concentrated by selective entrain-
ment.

c. Finely striated laminations of light minerals deposited under

high-flow regime, plane-bed conditions.
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Figure 20. X-radiography of a core

102. This well-preserved core thus represents a partial storm sequence --
scour followed by gravel lag deposition, followed by heavy mineral lsg deposi-
tion, followed by light mineral deposition -- during the course of transition
from storm to waning storm conditions. Of particular interest is the regular
alternation of gravel and coarse sand layers at the bottom of the core. At
least six couplets can be counted, and these might indicate some periodic

variation in nearshore current velocity during an early phase of the storm.
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Similarly, there are several apparent couplets of light minerals and traces of
heavy minerals in the plane-bed striated sands of the upper part of the core.
103. Interesting samples were impregnated with wax and taken back to the
College of Oceanography to determine the mean intermediate grain diameter of
quartz (density of 2.6) and magnetite (density of 5.2) using a petrographic

microscope.

Effects of Coastal Processes on Sand-Dwelling Organisms

104. Principal investigators were Mr. Mark W. Denny and Ms. Lani A. West
from the Hopkins Marine Station of Stanford University.
Objective

105. The objective was to gain improved understanding of the influences
of physical coastal processes on sand-dwelling organisms.
Experiment plan

106. Surface sediment cores (11 x 3 cm) were collected cross-shore along
the photopoles at the morning low tide from 8-16 October.
Data analysis

107. The surface sediment core samples will be analyzed by sorting inter-
stitial organisms into taxonomic groups to quantify abundance and distribution
of taxa before, during, and after storm conditions. The distributional pat-
terns of organisms will be compared to the corresponding wave and current con-
ditions. Organismal patterns will be correlated with grain size distribution
of sand and sediment along the photopoles.

108. To test for patchiness or clumping in the distribution of organisms
alongshore, 50 random points were sampled along a 50-m transect on each of two
days (13 and 14 October). These transects were conducted in the swash zone
directly inshore from the cross-shore array of current meters.

109. To document the vertical distribution of organisms at depths deeper
than 11 cm, sand samples from Dr. Kimball's cores taken with ROSCO alongshore
at low tide are being examined. Vertical distribution will be compared to Dr.

Kimball’s documentation of grain size and distribution.

51

——

@




L A

Application of a Photographic System for Evaluation of Sediment
Iransport Using Fluorescent Tracers

L

110. Principal investigators were Ms. M. Leslie Fields and Dr. Lee L.
Weishar of CERC.

Experiment plan

111. A study of sediment transport seaward of the surf zone was conducted

W

using fluorescent tracer sands monitored with a benthic sediment profiling
camera. The imaging system was originally developed in 1971 for in situ
imaging of organism-sediment relationships on the ocean floor. The camera
differs from conventional underwater cameras by its ability to make a vertical
- slice into the seafloor and to image the sediment-water interface in profile.
The optical path of the system consists of air and distilled water so image

quality is not affected by high water turbidity. A hydraulic piston controls

the rate at which the optical prism vertically cuts through the bottom, thus
minimizing disturbance of the sediment.

112. Application of the imaging system was expanded to include detection
of sediment dispersion as a function of grain size and depth of sediment
burial through ultraviolet imaging of fluorescent tracer sands. The original
camera design was modified by the addition of two ultraviolet light sources
placed inside the optical prism. A benthic profiling camera owned and oper-
ated by the Virginia Institute of Marine Science was used to collect the
images during SUPERDUCK (Figure 21). Ektachrome ASA 400 slide film was used

with the ultraviolet light source for maximum detection of the fluorescent

particles. To provide information on bed roughness and sediment character-
istics, images were also taken with Kodachrome ASA 25 film illuminated with a

white light strobe.

Data collection schedule “
113. Sediment profile images were taken on 9 October and 29 October

within a 200- x 200-ft (61- x 61-m) grid which consisted of 16 sample stations

spaced 50 ft (15 m) apart. The sample grids were located 4,400 to 5,070 ft

(1,341 to 1,545 m) offshore in water depths of 38 to 40 ft (11 to 12 m). Wave !!

and current conditions were provided by data collected on a nearby instru-
mented tripod described in the Inner Shelf Dynamics: Process Measurements

experiment (paragraph 77).
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Figure 21. Benthic profiling camera

114. Fluorescent tracer material was deployed as a point source at the
center of each grid and sampled using the benthic profiling system at time
intervals that ranged from 22 to 28 hr after injection. The tracer consisted
of three sizes of sediment with mean diameters of 0.44, 0.34, and 0.12 mm that
were tagged with different fluorescent colors. A summary of the sediment pro-

file imagery is presented in the following tabulation:
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ate ime, EST Data Collection
8 Oct 86 1340 Fluorescent tracer deployment
9 Oct 86 1600-1730 Benthic profiling imagery -
16 Ektachrome ASA 400 images
28 Oct 86 1320 Fluorescent tracer deployment
29 Oct 86 1149-1320 Benthic profiling imagery -
22 Ektachrome ASA 400 images
1607-1700 Benthic profiling imagery -

32 Kodachrome ASA 25 images

Data analysis

115. A computer image analysis will be conducted on each of the samples
using an International Imaging System Model 75 image processor. The param-
eters to be evaluated from the sediment profile images include tracer concen-
tration, depth of sediment burial, surface roughness, and sediment grain size
and compaction. The data will be used to construct a series of tracer concen-
tration contour plots necessary to determine sediment distribution patterns
and dispersion rates as a function of grain size and wave and current pro-
cesses. The experimental tracer distributions will be compared with theoreti-

cal distributions predicted by models of 2-D spreading from a point source.

Short-Term Disturbance ects of Storms on the Subtidal
enthic Communitie ck orth Carolina

116. Principal investigator was Mr. David A. Nelson of WES’s Environ-
mental Lab.

117. This study was conducted in cooperation with the "Application of a
Photographic System for Evaluation of Sediment Transport using Fluorescent

Tracers" study.

Objectives

118. The objectives were to assess the short-term effect of storms on the
composition of the benthic community, demonstrate the effectiveness of combin-
ing physical and biological studies, and test the efficacy of using sediment
profiling cameras in sandy substrates.

Experiment plan

119. Examination of the benthic community and sediment characteristic was
conducted prestorm and poststorm. A Smith-McIntyre grab sampler was used to
quantitatively sample the benthos, and a benthic profiling camera was used to

qualitatively examine the benthos and effects of sediment disturbance.
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Data collection schedule

120. Sediment profiling photos and corresponding benthic samples were
taken along a transect perpendicular to the shoreline, beginning at a depth of
14 ft (4 m) (the shallowest depth at which sampling from a vessel could be
conducted) and continued at 8-ft- (2.4-m-) depth intervals to a depth of 46 ft
(14 m). This offshore depth was selected to represent a stable reference site
because this was the shallowest depth at which sediment transport was unlikely
during a storm of moderate strength. This station array was taken to repre-
sent a continuum of decreasing sediment disturbance effects on the benthic
communities of the nearshore zone off Duck, North Carolina.

Preliminary Comments

121. Benthic samples were obtained only during the poststorm period. On
29 October three replicate Smith-McIntyre grab samples were taken at the five
stations. Samples were sieved through a 0.5-mm sieve and then preserved with
a 10 percent formalin solution and stained with rose bengal. In the labora-
tory, fauna were identified to family and counted.

122. Sediment profiling camera pictures were obtained during the prestorm
and poststorm periods. On 9 October, one photo was taken at the five sta-
tions. On 29 October, the poststorm sampling date, five color photos were
again taken at all five stations.

Data_analysis

123. From computer analysis of the photos, the following data were

obtained:
a. Total image area.
b. Anaerobic/aerobic layer area.
¢. Prism penetration (measure of compactness of sand).
d. Surface roughness (relief).
e. Depth of redox partial discontinuity (RFD).
£. Depth of burial.
g. Void area and number (indication of feeding activity).
h. Burrow area and number of animal tubes.
i. Shell area.

j. Grain size (Udden-Wentworth scale).
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k. Surface features.
l. Fauna.

B. Position of voids relative to other features.

Dune o

124, Principal investigators were Drs. John S. Fisher and Margery F.
Overton of North Carolina State University.
Objective

125. The objective was to define the processes and rates of dune erosion
and the rates of sediment supply and transport in the swash zone.
Experjment

126. Two days of dune construction and erosion experiments were conducted
during October (Figure 22). The site of the study was located in the swash
zone, shoreward of the cross-shore array (see Figure 2).
Data apalysis

127. From this information the investigators plan to derive important

data related to shear stress and sediment load.

Figure 22. Construction of experimental dune
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PART V: ALL-WEATHER STUDIES

128. All-weather studies were conducted during both September and
October.

Offshore Material Placement

129. Principal investigators were Messrs. James E. Clausner and Edward B.
Hands of CERC.

Objective

130. The objective of this experiment was to improve the ability to
monitor and predict the response of dredged material placed seaward of the
surf zone.

Experiment plan

131. The surf zone traps described in Part III were modified for use in
deep water. First, the 1.8-m- (6-ft-) long streamers were shortened to 1.1 m
(3.5 ft) to reduce the probability of the streamers becoming snarled around
the traps and rigging. Second, one-way doors were placed at the trap openings
to prevent sand which entered the trap from escaping when the current direc-
tions reversed. Finally, the traps were stabilized with 0.64-cm (1/4-in.)
wire rope lines connected to 2.22-cm (7/8-in.) rebar anchors. Each trap had
two anchors.

132. The traps were connected in a diamond pattern designed to have
adjacent trap corners 4.3 m (14 ft) apart with 6.7 m (22 ft) separating
opposite traps. These distances were thought to be a reasonable compromise
between isolating the traps from each other and making installation practi-zal
by divers in moderate visibility.

133. Prior to installation, the sediment trap streamers were arranged
vertically to give a roughly logarithmic spacing. During initial spacing, the
distances on a single trap were measured; then the other streamers were
installed on the remaining traps to give as close to the same spacing as
possible to the original trap. After recovery, the spacing on all the traps
was measured. Streamer spacing for the measured trap (Tl) is shown in
Table 16.

134, To simplify the underwater portion of the installation, all anchor

lines, interconnecting lines, and streamers were rigged onshore and cable tied

57




to the trap frames prior to deployment. To verify that the design worked
prior to the storm wave portion of SUPERDUCK and to take advantage of good
weather, the traps were installed during the end of the nonstorm wave experi-
ment from 24 to 30 September. Trap installation was sufficiently complicated

that visibility of 3 m (10 ft) or more and low currents were 'a necessity.

Table 16
* bove e ttom During 24-30 Sep Deployment
Streamer No, vatjon, cm
s7 90.6
S6 68.4
S5 48.4
S4 32.3
s3 18.1
S2 8.2
sl 1.3

* Water depth 11.6 m.

135. The traps were aligned with Trap 1 facing north. After the legs
were pressed into the bottom, the anchor lines stretched out, and the 1.5-m-
(5-ft-) long rebar anchors were driven 76 cm (30 in.) into the bottom. After
Traps 2 and 4 were walked back to remove slack, Trap 3 was positioned to face
south using two alignment cables. The anchor lines to Trap 3 were then
installed. Following similar procedures, Traps 2 and 4 were also installed.
Turnbuckles in the anchor lines and interconnecting lines were then adjusted
to remove all slack. Finally, the streamers were unfurled.

136. To provide current data prior to the installation of the tripod at
the 11.6-m (38-ft) site, three ENDECO 174 self-recording current meters were
installed on a submerged mooring approximately 30 m (100 ft) east of the
traps. The meters were located 1.8 m (6 ft), 4 m (13 ft), and 7 m (23 ft)
above the bottom. Unfortunately, only meter A076 located 1.8 m (6 ft) above
the bottom functioned correctly.

Da o on_schedule

137. When the traps were checked on 26 September, no noticeable sand had

accumulated in the traps. This is not surprising because no significant wave

activity had taken place.
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138. On 27 September the wind switched from the southwest to east north-
east and increased to approximately 15 knots (10 m/sec) (Figure 7). Wave
heights were estimated to be 1 to 1.4 m (3 to 4.5 ft). These conditions per-
sisted through the 28th when the winds died down and shifted back to the
southvest.

139. On 30 September the streamers were recovered. Streamers T3S6, T3S7,
T4S6, and T2S5 had become untied. Some of these streamers had become tangled,
probably because they had extended to their full 1.8-m (6-ft) length. The
weight of the sand trapped by each streamer is presented in Table 17. Because
four of the streamers had become untied, plastic cable ties were used to

secure the ends of the streamers on the next deployment.

Table 17
Weight* of Sand Accumulated in Streamers 24-30 Sep 86

Trap 1 Trap 2 Trap 3 Trap 4
Streamer No, (Noxrth) (East) (South) {(West)
s7 27 11 0 13
S6 10 11 Ik 12%%
S5 26 10¢ 3 16
S4 26 44 7 26
s3 58 250 9 160
S2 110 450 50 290
Sl 210 900 40 140%%

* Dry weight measured in grams.
** Streamer door was jammed shut upon delivery to laboratory.
t Streamer ends were open upon delivery to laboratory.

140. On 8 October the streamers were redeployed at the elevations given
in Table 18. Comparison of these elevations with those in Table 16 shows that
the streamers in Trap 1 were not reinstalled at the same elevation as on the
earlier deployment because of the difficulty of installing the traps under-
water with limited visibility. The depth of the scour holes under the traps
was also measured. The scour holes under Traps 1, 2, 3, and 4 were 9, 6, 1,
and 1 cm (0.3, 0.2, 0.04, and 0.04 ft), respectively. On 2 October a Sea Data
635-12 PUV gage that provided wave and current data was installed on the
tripod at the 11.6-m (38-ft) site, approximately 30 m (100 ft) east (seaward)
of the sediment traps (Figure 2). The current sensor on the gage was located

approximately 15 cm (0.5 ft) above the sea bottom.
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Table 18

* o tre s Above the Bottom rin -24 Oct Deployment
Trap 1 Trap 2 Trap 3 Trap &4
Streamexr No. {North) (East) (South) (West)
s7 93.9 87.7 94.6 84.9
S6 71.1 69.2 70.5 66.7
S5 55.5 48.9 54.9 50.6
s3 40.0 28.9 35.6 35.3
s3 23.8 16.8 23.2 17.2
s2 14.3 5.1 11.7 6.4
S1 1.3 1.3 1.3 1.3

* Elevations (in centimeters) are to the center of the 2.54-cm
streamer opening. Water depth was 11.6 m.

141. Problems with weather and equipment prevented recovery of the sedi-
ment traps until 25 October. In spite of large waves, the traps and anchoring
system performed well.

Data analysis

142. While the length of deployment made calculation of the absolute
sediment transport impossible, relative weights contained by the streamers
listed in Table 19 give an indication of transport concentration at various
elevations. Notably, the lower streamers had become so full that they were
buried in the bottom. Some of the streamers did not function correctly,
probably as a result of the one-way doors becoming jammed in the open or

closed position for various lengths of time. Still two conclusions can

Table 19
Weight* of Sand Accumulated in Streamers 8-24 Oct 86

Trap 1 Trap 2 Trap 3 Trap 4

Streamer No. {North) (East) (South) (West)
S7 18 5 5 220 1

S6 30 17 4 1,000
S5 9 250 6 1,800 - !{

S4 110 140 25 5,600

s3 1,800 1,100 63 7,300

S2 5,400 2,000 340 2,000

S1 5,700 1,800 3,700 8,700

@

* Dry weight measured in grams. -
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immediately be drawn from the data. First, the major direction of sediment
movement was offshore, as evidenced by the weight of sand trapped in the
streamers of Trap 3. Second, the amount of sediment moving dropped off
rapidly with elevation above the bottom for the traps facing north, south, and
east. However, the traps facing west (onshore) had significant amounts (66.7
cm above the bottom) of sediment up to and including Streamer 5.

143. To provide data on bed elevation changes and the depth of distur-
bance (DOD) on the bed, reference rods were driven into the bottom at the 6.7-
and 11.6-m (22- and 38-ft) sites. Four 2.2-cm- (7/8-in.-) diam stainless
steel rods were installed at each site. Each 1.8-m- (6-ft-) long rod was
driven approximately 0.9 m (3 ft) into the bottom and spaced approximately
1.5m (5 ft) apart. A PVC "T", with a 0.6-m- (2-ft-) long cross piece was
used to eliminate the effect of local scour craters around the rods when the
elevation of the bed was measured. Tables 20 and 21 give bed elevation data

from both the 6.7-m (22-ft) and 11.6-m (38-ft) site.

Table 20
Changes in Bed Elevations at the 22-ft (6.7 m) Site from DOD Rod Measurements*

Rod Total

Number 4 Sep 86 1 Oct 86 Change 9 Oct 86 Change Change
1 96.0 97.5 1.5 95.7 -1.8 -0.3
2 93.9 93.0 -0.9 93.0 0.0 -0.9
3 93.6 93.6 0.0 91.4 -2.2 -2.2
4 91.7 89.9 -1.8 89.6 -0.3 -2.1

Average Change -0.3 -1.1 -1.4

* Elevations in cm.

144. On 9 October stainless steel washers were slipped over the rods and
placed on the bottom. Eventually, measurements of the depth of the washer
below the bottom will be measured to give an indication of the depth of the

active layer.

Sea Scour

145. Principal investigator was Mr. John H. Lockhart, Jr. of the US Army

Corps of Engineers.
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1 Table 21
i Chan evati at the 38-ft (11.6 m) Site from DOD Rod Measurements*
' Rod Total
Numberx 24 Sep 86 1 Oct 86 Change 9 Oct 86 Change Change
1 89.6 86.0 -3.6 88.1 2.1 -1.5
ﬁ 2 93.0 90.5 -2.5 86.6 -3.9 -6.4
3 89.0 88.7 -0.3 89.0 0.3 0.0
4 89.9 89.0 -0.9 89.3 0.3 -0.6
Average Change -1.8 -0.3 -2.1
‘ * Elevations in cm.
Objective
146. The objective was to test applicability of a maximum scour depth

determination method used in fluvial systems to the nearshore environment at
the FRF. The study was intended to provide the Corps of Engineers with an
economical method to determine the maximum erosion or scour experienced during
a storm season or after a single storm.
Experiment plan

147. The study involved the installation of colored sand pipes at various
depths and locations along the beach south of the FRF pier (see Figure 2).
The sea scour concept is based upon the premise that if dyed sand cores are
placed along a profile normal to the beach at precise locations, then it would
be possible to determine the profile of maximum scour during any period of
time by determining the elevation of the top of the dyed sand cores. The
FRF's Zeiss survey system was vital in precisely locating the position of the
dyed sand cores.

148. Several types of dyed sand and dye implantation methods were tried.

The simplest and most successful method involved the washing of a 4- to 6-in.- |
(10- to 15-cm-) diam hole with a 4-in.- (10-cm-) PVC casing and a 1.5-in.
(4-cm) lance. A 4-in. (10-cm) casing was advanced around the lance as water
(approximately 100 gpm) was used to jet a hole (Figure 23). The casing pre- _ q,
vented the hole from collapsing after the hole was complete and the lance
removed.

149. Dyed sand was then poured down the casing as the casing was pulled

out. The result was a 4- to 6-in. (10- to 15-cm) dyed sand pipe that extended ) .’1
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Figure 23. Instalilation of dyed sand pipe

from the surface to a depth of approximately 10 ft (3 m). Some of the sand
pipes were dug out to determine the success of the installation. It was then
discovered that liquid dye emplacement was not successful and that the larger
the casing the more successful was the installation of predyed sand.
150. Figure 24 illustrates the method used to place the dyed sand in the -
washed hole. Table 22 lists the locations of dyed sand cores that have been

successfully dug out to determine depth of maximum scour.

Seabed Drifters N

151. Principal investigators were Messrs. Edward B. Hands and Darryl D.

Bishop of CERC.
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JET LANCE

4°PVC
JET HOLE POUR DYED SAND PULL CASING AS FINISH  FILLING
FROM BAG SAND IS TAPPED HOLE WITHDYED
SAND

Figure 24. Method for the placement of dyed sand in a bore hole

Table 22

Locations of Dyed Sand Pipes*

X, longshore, m Y, Cross-Shore, m Z, Elevation, m

1.26 115.30 .23
.51 105.75 1.19
2.04 90.32 2.07
2.43 75.51 2.90
90.70 120.87 .22
90.35 111.76 1.14
90.85 105.10 1.45
90.81 101.93 1.59
90.61 94 .45 2.22
69.42 104.14 1.42 ol
46 .46 101.85 1.45 1

* Installed during week of 10 Aug 86.

Objective q

152. The objective was to test the effectiveness of seabed drifters
(SBD’'s) as indicators of nearshore current patterns.

Experiment plan
153. Two types of weighted drifters were deployed in varying water depths

C

and varying sea conditions during September and October (Table 23).

Data collection schedule
154. The SBD's were collected along the beach as they washed ashore. The

exact time and location were noted and compared with the known release times °
and locations to determine the rate and direction of drift. Special sound !
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Table 23
Preliminary SUPERDUCK Seabed Drifter Data

Releage

Dr:fter Number

Drifter SN Date Time Site* Code** Recoveredf
4001 to SEP 1 3 VINS YN 17
4026 to 4050 11 SEP 86 1037 4 WoT YN 8
4051 to 4075 11 SEP 86 1040 1 PIER YN 19
4076 TO 4100 11 SEP 86 1033 5 885 YN 13
4101 TO 4125 20 SEP 86 853 1 PIER ON 7
4126 10 4150 20 SEP 86 855 1 PIER ON 24
4151 T0 4175 20 SEP 86 800 2 INNR ON 18
4176 10 4200 20 SEP 86 800 2 INNR ON 18
4201 TO 4225 11 SEP 86 1049 3 VIMS ON 24
4226 TO 4250 11 SEP 86 1040 1 PIER ON 21
4251 1O 4275 20 SEP 86 826 3 VIMS ON 23
4276 TO 4300 20 SEP 86 826 3 VvImMs ON 21
4301 TO 4325 19 SEP 86 1136 4 WOT ON 19
4326 TO 4350 19 SEP 86 1136 4 wor ON 22
4351 TO 4375 24 SEP 86 1048 1 PIER ON 22
4376 TO 4400 24 SEP 86 1053 2 INNR ON 25
4401 TO 4425 24 SEP 86 1053 3 VINMS ON 23
4426 TO 4450 24 SEP 86 1057 4 wWOT ON 19
4451 TO 4475 24 SEP 86 1057 4 woT ON 19
4476 TO 4500 26 SEP 86 1039 4 wOT ON 21
4501 TO 4525 11 SEP 8 1033 5 BBS ON 21
4526 TO 4550 11 SEP 86 1100 5 BBS ON 21
4551 TO 4575 19 SEP 86 1100 5 BBS ON 18
4576 TO 4600 19 SEP 86 1100 S BBS ON 18
4601 TO 4625 24 SEP 86 1100 5 8BS ON 16
4626 TO 4650 24 SEP B6 1100 5 BBS ON 23
4651 TO 4675 24 SEP 86 1108 6 RAD ON 17
4676 TO 4700 24 SEP 86 1108 6 RAD ON 16
4701 TO 4725 8 OCT 86 1310 1 PIER ON 25
4726 TO 4750 B8 OCT 86 1310 2 INNR ON 24
4751 TO 4775 8 OCT 86 1303 3 VIMS ON 18
4776 TO 4800 8 OCT 86 1340 4 wOT ON 4
4801 TO 4825 8 OCT 86 1340 4 wWOT ON 5
4826 TO 4850 8 OCT 8 1121 5 BBS ON )
4851 TO 4875 8 OCT 86 1121 5 BBS ON 4
4876 TO 4900 8 OCT 86 1130 6 RAD ON 3
4901 TO 4925 B OCT 8 1130 6 RAD ON 6
4926 10 4950 11 OCT 86 730 1 PIER ON 22
4951 TO 4975 11 OCT 8 1517 1 PIER ON 23
4976 10 5000 12 OCT 86 723 1 PIER ON 21
5001 TO0 5025 12 OCT 86 1721 1 PIER ou 12
5026 10 5050 13 OCT 86 1415 4 LTD ou 25
5051 To 5075 12 OCT 86 1821 1 PIER ou 26
5076 T0 5100 14 OCT 86 936 8 Jso ON 10
5101 10 5125 14 OCT 86 924 7 JS1 o 24
5126 T0 5150 14 OCT 86 9246 7 JsI ov 20

* Site Local Coordinate, m

Code Description

1 PIER - East end of FRF pier 597 515 -7.9
2 INNR - Inner drop/Photopole Line 606 947 -6.4
3 VIMS - VIMS 8509 current meter 867 969 -7.9
4 WOT - Weishar's outer tripod 1360 1050 -11.6
5 BBS - Boundary buoy 5 15406 1140 -12.8
6 RAD - Outermost drop 1980 1040 -14.6
7 JSI - From RV John Smith 16460 1750 -11.6
8 JSO - From RV John Smith 2450 1550 -14.6

** Sea Bed Drifter Codes relate to Drifter type:
Y = Yellow, O = Orange, N =
t Number recovered out of 25 deployed

New, U =

Used

transmitters were attached to some of the SBD's. A hydrophone from the pier

and a trawler were used in an attempt to develop a method of tracking the path

between drifter release and recovery points.
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Data_analysis
155. The pattern of drift from the deployment sites will be compared with

predicted and measured flow patterns made from a number of instruments

deployed during SUPERDUCK.

Nearshore Wind Stress

156. Principal investigators were Drs. Jon M. Hubertz and Charles E. Long
of CERC and Dr. Sethu Raman of North Carolina State University.
Objective

157. Time series of atmospheric temperature, humidity, and three com-
ponents of wind speed would enable direct computation of turbulent fluxes of
heat, water vapor, and momentum near the sea surface. Mean values of air
temperature, water temperature, humidity, wind speed, and wind direction would
serve as general climatological descriptors. All these measurements, in con-
junction with sea state and current data provided by other investigators,
would allow testing and, if necessary, modification of existing drag coeffi-
cient models for wind stress on the ocean surface. It is hypothesized that
modification is necessary because existing models assume deep ocean conditions
and do not account for differences in ocean dynamics which occur nearshore.
Experiment plan

158. Two sets of meteorological sensors were provided and installed at
the seaward end of the FRF pier by personnel from North Carolina State Uni-
versity (Figure 25). One set of sensors consisted of robust, low-frequency
response devices intended to provide stable estimates of mean air temperature,
humidity, sea surface temperature, wind speed, and wind direction. These
sensors were sampled at 5 Hz by a Campbell Scientific Model 21X data logger.
Hourly mean values and variances were computed in real time and stored on
audio cassette tapes. The data logger digital display and handheld instru-
ments were used three times per day to ensure that these sensors were func-
tioning properly.

159. The second set of sensors consisted of high-frequency response
devices for measuring air velocity, temperature, and humidity. Velocity was
measured with a three-axis impellor anemometer. Redundant horizontal speed
measurement was made with a hot film anemometer, and redundant vertical

velocity measurement was made with a single-axis sonic anemometer. A chromel
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constantan thermocouple and a platinum
wire resistance thermometer provided
redundant measures of air temperature.

160. Humidity was dually measured
by a thin film capacitor humidiometer
and an optical absorption hygrometer.
These devices were sampled at 10 Hz by
a second Campbell data logger. Hourly
means, variances, and all possible tur-
bulent covariances were computed in real
time and stored on audio cassette tape.
Data collection schedule

161. To ensure that these devices
were functioning properly, a 30-min time
series of all channels was collected
daily through a second program on the

data logger. Data were collected from 7

September through 31 October. Figure 25. Meteorological
Data analysis instrumentation

162. The first step in analysis is
editing and correcting the data. The redundancy in data collection allows
intercomparisons to be made so that data of poor quality can be eliminated.
Spectra of time series collected from the high-frequency devices will allow
corrections to be made to flux estimates for the roughly 10 percent of vari-
ariance not resolved by the instruments at the higher frequencies. Antici-

pated results of this experiment will take the following forms:

a. A background report justifying the execution of this
experiment.

b. A summary of the data from the low frequency instruments
for those interested in mean climatology.

¢. A summary of the flux estimates for those interested in the
actual wind stress during SUPERDUCK.

d. An analysis of drag coefficient formulae using all the data in

the context of equations given in the background report.
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Marine Radar

163. Principal investigator was Dr. Dennis B. Trizna of the Naval
Research Lab.

Ob v

164. The objective was to study the capability of marine radar to deter-
mine various parameters of the wave field.
Experiment plan

165. The marine radar at the FRF was modified to allow collection of
digitized samples of the video signal for offline analysis. This was the
first time the collection hardware was used in a field experiment, and the
results appear to be promising.

Data collection schedule

166. The data were collected with a density to allow for imaging of the
incoming ocean waves from the shoreline to a range of the order of 2.5 km.
Data analysis

167. Because the image does not map linearly to a surface profile for low
angles of radar illumination, wave height cannot be retrieved directly from
the image. As a result of the lack of a theory to provide such a mapping at
this time, analysis of 2-D image spectra reveals no root mean square (RMS)
wave height information. At this point the primary analysis will be the gen-
eration of 2-D image power spectra with the peak wave numbers and directions
determined for three different areas in the field coverage.

168. Three areas within a semicircle of 2.5-km radius are proposed for
analysis: (a) a deepwater region at the farthest extent of radar coverage; (b)
a region over the linear array, for comparison; and (c) a region south of the
pier in shallow water where shoaling effects are apparent in radar imagery.
The output will be values of wave length and direction for the dominant spec-
tral peak and any swell apparent in the image. Planned data processing will

be from the following dates and times:

Date Time, EDT

10 Oct 86 0800, 1000, 1200, 1330, 1600, 1730

11 Oct 86 0800, 1000, 1100

12 Oct 86 0900, 1000

17 Oct 86 0800, 0930, 1130, 1330

18 Oct 86 0730, 1230, 1630 o
i
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Coastal Ocean D cs Application Radar

169. Principal investigator was Mr. David B. Driver of CERC.
Objective

170. The objective was to measure waves and currents at distances of up
to 40 km from the shoreline.
Experiment plan

171. The Coastal Ocean Dynamics Application Radar (CODAR) unit was
installed in the radar trailer at the north end of the FRF property during
early September. CODAR was operated on a 4-hr sampling schedule, collecting
approximately one-half hour of data per sample period. An initial inspection
of the data indicated that the unit did not properly record the data. The
problem was fixed and 8 days of continuous data were recorded and analyzed
beginning on 23 October. Comparisons with the 6-km Waverider showed good
agreement for significant wave height and peak period.

Linear Array Wave Gage High-Resolution Directional Wave Array

172. Principal investigator was Dr. Joan M. Oltman-Shay of Oregon State
University.
Objective

173. A linear wave array was designed and deployed to investigate the
nature of the wave climate found along the Atlantic seaboard in the vicinity
of Duck, North C-rolina, and to provide complimentary data for other nearshore
studies. Wind-generated surface gravity waves are a principal source of
energy to oceanic coastlines. A complete description of the incident wave
field requires well-resolved estimates of both frequency and directional
spectra. Significant progress has been made in the design of spatial wave
arrays and in the refinement of the associated analysis techniques (Davis and
Regier 1977; Long and Hasselman 1979; Pawka 1982, 1983; Pawka et al. 1983,
1944). Spatial arrays provide the best resolved ocean wave directional spec-
tra available. These arrays have demonstrated in the field the ability to
resolve wave trains separated by 15 deg (Pawka 1983). Compact measurement
systems such as pitch-and-roll buoy, the slope array, and PUV are logistically

easier to deploy and maintain; however, using the most sophisticated analysis

69

I )




methods available, they have not been able to resolve wave trains separated by
less than 70 deg (Oltman-Shay and Guza 1984).
Experiment plan

174. A long-term offshore linear array of pressure sensors was con-
structed at the FRF for the purpose of acquiring high-resolution directional
information of the locally incident wind wave field. It was installed in late
August north of the pier (in 8-m water depth) parallel to the survey baseline
and was in full operation by mid-September. This water depth was selected
because of the need to measure relatively high-frequency waves known to be
present at Duck. The linear array consisted of 10 pressure sensors with a
maximum and minimum separation of 255 and 5 m, respectively (Table 1). The
array sensors were configured to optimally measure the 0.06 to 0.3 Hz wind
wave field. Because the incident wind wave field at Duck has the potential of
being spatially inhomogeneous under certain conditions (esp. at lower wind
frequencies), the array was designed to monitor the homogeneity of the wave
field. 1If conditions presented an inhomogeneous wave field at lower frequen-
cies, the linear array was to be inoperable at those frequencies. Therefore,
a slope array which did not require spatial homogeneity was built into the
array as a "fail safe". High wind wave frequencies were not anticipated to be
spatially inhomogeneous.
Data collection schedule

175. This wave directional array is a long-term instrument/data acqui-
sition system. The goal was to acquire high-resolution directional informa-
tion from 2-hr records taken every 6 hr, except during storm conditions, at
which time records were taken every 3 hr. Only data taken at 6-hr intervals
were kept for the archives unless interesting wind wave conditions warranted
more. The directional array provided for the first time high-resolution
incident wind wave direction information coincident with a major nearshore
field study.
Data analysis

176. Raw data from the directional array was available almost immediately
after SUPERDUCK. Processed data will be available later.

177. The benefits of such a high resolution description of the offshore
wind wave directional field are many. Immediate benefits will be to provide
an important measurement useful to most of the SUPERDUCK experiments, includ-

ing the shoaling wave transformation study, the surf zone width fluctuations
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study, the long-wave generation study, and the evolving bathymetry studies.

In addition, it provides the motivation for future nearshore investigations
such as intensive mean flow current and sediment transport studies. Long-term
benefits are a data base of high quality wind wave frequency and directional

spectra for the central east coast.

emote Acoustic Do e ensing System

178. Principal investigator was Mr. Gerald F. Appell of the National
Oceanic and Atmospheric Administration’s Ocean Systems Division.

Objective

179. The objective was to evaluate the near-surface measurement capa-
bility of a Remote Acoustic Doppler Sensing (RADS) system under various sea
states.

Experiment plan

180. An RD Instruments model RD-SC 1200 Doppler current profiler (RD) was
set up to transmit both a standard processed data stream and the doppler-
shifted frequency data from two beams to a shore station. The frequency data
were recorded on an analog tape recorder and will be digitized for amalysis.
The data will be compared to data collected at a nearby instrument tripod.
The RADS was connected to an existing seven conductor cable located near
Dr. Weishar’s 38-ft (11.6-m) tripod (see Figure 2). Data collection began on
3 October. The instrument was oriented at approximately 45 deg west of north.
Unfortunately, this was not the best orientation, and subsequent dives in the
area did not afford the opportunity to reorient the instrument.

181. An anemometer and wind direction vane were erected at the end of the
pier, and wind speed and direction were recorded simultaneously with RADS
data.

182. When the dive team retrieved the RADS, they found the device
covered up by sediment, with only the sensor and one half of the instrument
package exposed above the sediment water interface. The dive team was unable
to free the RADS by manually lifting, so they cut the main instrument package
free from the sediment covered base.

Data analysis
183. Although some problems were experienced with the data acquisition

system, the data collected during the experiment from the RD data stream have
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been reduced and transferred onto LOTUS 1-2-3 spreadsheets. Some of these
data, collected by the National Oceanic and Atmospheric Administration (NOAA),

have been plotted-up and are presented in Figure 26.

Short Baseline Slope

184. Principal investigator was Dr. Michael E. Andrew, formerly with
CERC.
Objectiy

185. The short baseline slope experiment was intended to verify simula-
tion results indicating that small slope arrays of high resolution quartz
pressure sensors can provide accurate estimates of mean wave direction. The
results of this experiment will provide the foundation for development of
directional wave measurement technology that can survive longer deployments,
is simple to calibrate, easy to protect from hazards such as trawler nets, and
has improved data accuracy and reliability.
Experiment plan

186. The experiment consisted a 12-ft (3.7-m) right triangle slope array
with nested 8- and 6-ft (2.4- and 1.8-m) slope arrays (Figures 27 and 28).
The pressure sensors output frequencies in analog form. Each analog frequency
signal was sampled 5 times per sec and converted to digital format at a con-
centrator on the gage. The multiplexed digital output was sent via armored
cable to a microcomputer recording station inside the FRF building. The gage
was sampled at the beginning of every hour for 37 min.
Data collection schedule

187. The gage was installed, and recording was started on 15 October 1986
at 0900 hours. Several days of data were lost during October because of hard-

ware failure at the receiving station. Otherwise, the data set was complete.

Measurement of Long-Period Microseisms

188. Principal investigator was Mr. Kent K. Hathaway (formerly with the
Florida Institute of Technology) of CERC.

Objectives

189. This study examined the relationship between microseismic activity

and local ocean wave activity, with particular attention to the ocean wave
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Figure 26. RADS data for October 1986
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Figure 27. Slope array prior to deployment

height and direction determined
from the south tripod data. Other
considerations for microseismic
production was the effect of ocean
wave modifications as a result of
beach slope, offshore bars, and
tidal elevations. A previous in-
vestigation by Hathaway and Costa
(1982) found significant heights
deduced from microseismic records
were correlated with tide heights
(Figure 29). Wind fluctuations
were also considered as a possible
mechanism for microseismic genera-

tion.

GAGE SPACING (ft)

1T04=12
17T03= 8
1TO2= 6
1TO5= 6
1T06= 8
1T07=12
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Figure 28.

Short baseline slope array
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Figure 29. Plot of seismometer significant wave height
(solid line) and tide height (dashed line) for Nov 1981
and Jan-Feb 1982 (from Hathaway and Costa 1982)

Exge;iment plan

190. Microseisms (Earth noises) are perceived as the continuous back-

ground noise recorded by seismometers.

These noises are results of external

influences from the atmosphere and the ocean. Any disturbance of the struc-

ture of the Earth will result, at least locally, in some degree of seismic

activity. Although seismic noise has been recorded with periods ranging from

1072 to 10*® sec, the microseisms primarily discussed in literature have per-

iods in the range of 2 to 20 sec and are associated with gravity wind waves.
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The microseisms measured in this study, in the 2- to 20-sec range, propagate
principally as Rayleigh waves with peak periods ranging from 3 to 8 sec and
typical amplitudes of 1 to 10 microns.

191. Microseisms often have periods identical to those of the associated
ocean waves, termed primary microseisms. However, microseisms are generally
observed with periods half those of the ocean waves, termed secondary micro-
seisms, and are believed due to nonlinear ocean wave-wave interactions of
standing waves. Waves of this type can occur in a coastal region by reflect-
ing off a steep coast or in the open ocean by intersection of oppositely mov-
ing wave trains of similar period. This experiment compared primary and
secondary microseismic energy to the local ocean wave energy.

Data collection schedule

192. Long-period vertical microseisms were recorded in September and
October 1986 during the SUPERDUCK experiment. The times of data collection
are presented in Table 24. These microseisms were measured with a Teledyne
Geotech long-period vertical seismometer which produced a signal that was
digitized and recorded on an LNW-80 microcomputer. The seismometer and elec-
tronics were located in the FRF main building, and the recording computer was
in the instrument trailer. Each seismic data set consisted of 4,096 points
sampled at 2 Hz and was collected at times corresponding to the FRF data
collection.

Data analysis

193. The data were transferred to the FRF VAX computer for analysis.
Spectral analysis of the seismic data conforms to the FRF standard time series
analysis, allowing a direct comparison to ocean wave gage spectra (e.g.,
coherence calculations). If possible, the primary and secondary microseismic
energies are separated, usually when the corresponding ocean wave spectra are
narrow banded and single peaked. The primary, secondary, and total seismic

energies are analyzed separately for correlations with the ocean wave energy.

Improvement of Operational Surf Forecasts

194. Principal investigator was Dr. Marshall D. Earle of MEC Systems

Corporation.

Objective

195. The objective was to test the real-time operation of a surf fore-
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Table 24
Times of Microseismic Data Collection

Date . Time, EDT
13 Sep 86 1400, 1600, 1800, 2000, 2200
14 Sep 86 0000, 0200, 0400, 0600, 0800, 1000, 1700, 1900, 2100, 2300
15 Sep 86 0100, 0300, 0700, 0900, 1100, 1300, 1500, 1700, 1900, 2100, 2300
16 Sep 86 0100, 0300, 0500, 0700, 0900, 1400, 1600, 1800, 2000, 2200
17 Sep 86 0000, 0200, 0400, 04500, 0800, 1000, 1200, 1400, 1600
6 Oct 86 1730, 2000, 2300
7 Oct 86 0200, 0500, 0800, 1100, 1810, 2132
8 Oct 86 1702, 2312, 2346
9 Oct 86 0556, 1646
10 Oct 86 1210, 1301, 1600, 1800
11 Oct 86 1200, 1400, 1600, 1800, 2000, 2200
12 Oct 86 0000, 0200, 0400, 1020, 1220, 1600, 1800, 2060, 2200
13 Oct 86 0000, 0400, 0900, 1100, 1300, 1500, 1700
14 Oct 86 1200, 1400, 1600, 1800, 2000
15 Oct 86 1015, 1100, 1300, 1700, 1900, 2100, 2300
16 Oct 86 0100, 0300, 0500, 0700, 1004, 1204, 1404, 1604, 1815, 2015, 2215
17 Oct 86 0015, 0215, 0415, 0615, 0815, 1015, 1215, 1400, 1600, 1800, 2000, 2200
18 Oct 86 0000, 0200, 0400, 0, 0800, 1000, 1200, 1850, 2150
19 Oct 86 0050, 0350, 0650, 1250, 1550, 1930
20 Oct 86 0140, 0750, 2000, 2300
21 Oct 86 0200, 0500, 0800, 1100, 1400, 1700
22 Oct 86 1030, 1630, 2230
23 Oct 86 0430, 1030, 1815
24 Oct 86 0015, 0615, 1215

casting model being developed for the US Navy. The model had been previously
tested with limited data; however, SUPERDUCK provided an opportunity to test
and evaluate it using both actual nearshore wave data and deepwater direction-
al wave forecasts generated by the Navy'’s Global Spectral Ocean Wave Model
(GSOWM) .
Experiment plan

196. A Hewlett-Packard 9020A computer system was installed on 19 October.
Test forecasts and hindcasts were made between 21-26 October.

Data collection schedule

197. A time period late in October was originally selected for data
collection to increase the probability of relatively high waves. Because
significant wave heights after 20 October were around 1 m, model capabilities
were not tested to the extent desired. During these low-wave conditions, the
GSOWM data appeared to overpredict the observed low-wave heights at some
times, thus affecting the surf forecasts. For these reasons, data from an
earlier high-wave event (10-14 October) with significant wave heights up to
approximately 3 m will be used for hindcast tests.

198. Main model components were the surf forecasting model and a separate

wave refraction model. Because wave refraction calculations are much more
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time-consuming than surf calculations, this division permits prior calculation
of wave refraction information for regions of interest.

199. Parts of the surf forecasting model cover wave aspects outside the
surf zone. The model can use deepwater input consisting of directional spec-
tra or wave parameters (height, period, and direction). Directional spectra
forecasts will be provided by GSOWM. Wave parameter input allows use of
measured, locally observed, or locally forecast wave information. For param- -
eter input, directional spectra are fit to the parameters. Each directional
spectra component (24 directions and 15 frequencies for GSOWM) is modified for
wave refraction using previously calculated tables of refraction coefficients
and refraction direction changes. Directional spectra just outside of the
surf zone provide the total wave energy (i.e. variance from which significant
wave height is computed), the dominant frequency associated with maximum wave
energy, and a direction determined so that this three-parameter representation
has the same longshore momentum flux as that obtained from the 24 x 15 element
directional spectra.

200. Within the surf zone, a modified version of Thornton and Guza's
(1983) work combined with Longuet-Higgins’ (1970) radiation stress longshore
current model is used. The relationship between the local rate of loss of
energy as a result of wave breaking and the bottom stress associated with
longshore currents provides longshore current horizontal profiles. For these
calculations, provision is made for the user to input the most recent near-
shore bottom profile because depths within the surf zone may change rapidly.
Surf forecasts at several locations within a region for which refraction
effects are calculated can be made without repeating the refraction and deep-
water aspects of the model.

201. Refraction information is calculated from a 2-D depth grid which
typically covers a region from the coast to depths of a few hundred feet and
several miles along the coast of interest. Two refraction models operate on
the HP-9020A and provide outputs formatted for automatic input to the surf
forecasting model. The first is a modified version of Dobson’s (1967) well-
known numerical wave ray refraction program. The second is a modified version
of CERC's program, Regional Coastal Processes Numerical Wave Model (RCPWAVE)
(Ebersole et al. 1986), which provides finite-difference solutions of wave
velocity potential field equations at each grid point and considers wave dif-

fraction. For this application, some of the RCPWAVE modifications involved
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automatic decisions and intelligence to assure that various types of numerical

problems are automatically solved or avoided. The modified RCPWAVE model will

be used in place of the modified Dobson model as the operational refraction

model.
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PART VI: SUMMARY

202. The SUPERDUCK experiment provided a unique framework for a variety
of coastal field studies. Although the studies varied widely, from improving
basic observation techniques to very sophisticated arrays of fixed instru-
ments, all the experiments benefited from the cooperative nature of the
investigations and from mutual sharing of the collected data.

203. This report has described the 30 experiments conducted during the
three phases (nonstorm wave, storm wave, and all weather) of SUPERDUCK and
summarizes the survey, instrument, and other data which were collected. Much
work remains in processing, interpreting, and reporting on the data collected

by each of these studies.
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APPENDIX A: SUMMARY OF SUPERDUCK DIGITAL DATA COLLECTED BY THE FRF

This appendix includes tables of the hourly status of each instrument
deployed during SUPERDUCK which was hooked up to either the FRF’s Data General
NOVA-4 minicomputer or the Digital Equipment VAX 11/750. The tables are
organized by day and computer. Gage numbers and gage names refer to the gages
listed in Table 1 and shown in Figure 2 of the main text. Gages which are
part of the routine FRF data collection program have a gage name of "FRF".

Other information included in the tables is defined below.

Gage Types Hourly Status Legend
Iype Description Symbol Description
1 Baylor staff wave gage o Operational, data collected
2 Datawell Waverider buoy N No good, data collected
3 Pressure wave gage ? Questionable data collected
4 Electromagnetic current meter X Gage inoperative and/or not on system
6 Wind Speed blank Data not collected
7 Wind Direction
8 Air Temperature
9 Atmospheric pressure
12 Tide gage
29 Sonar altimeter

Specific comments recorded by Dr. Joan Oltman-Shay regarding the operational

status of the longshore current array are also included in the tables.
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