Recovery from Gz-Induced Loss of Consciousness: Psychophysiologic Considerations

ESTRELLA M. FORSTER, B.S., and JAMES E. WHINNERY, Ph.D., M.D.

Rothe Development, Inc., San Antonio, Texas, and Acceleration Effects Laboratory, USAF School of Aerospace Medicine, Brooks Air Force Base, Texas

ACCELERATION-INDUCED LOSS of consciousness (G-LOC) has become highly significant in the study of aerospace medicine. Unfortunately, the psychophysical consequences of a G-LOC episode have not been as fully investigated. This study concentrates on the dream-like event and other visual illusions that human subjects have experienced during G-LOC. The physiological aspects under consideration include heart-rate response to G-LOC and immediate post-G-LOC transient paralysis. The operational aspects of G-LOC have been previously reported (36).

METHODS

Eight healthy male volunteers (age = 31 ± 7, weight = 168 ± 22 lbs, height = 70 ± 3 in), members of the USAFSAM human centrifuge panel were exposed to two consecutive acceleration runs of +1 G to +7 G, at 6 G·s⁻¹ onset rates. The subjects were requested to relax during the acceleration exposure in order to induce voluntary G-LOC (straining maneuvers were not performed and a standard USAF anti-G suit was not worn). A tracking task, using a television screen and an F-16A stick, was to be performed before and after the acceleration exposures. Electrocardiographic response to the acceleration stress was obtained via sternal and biaxillary leads in order to medically monitor the subjects under study (29). Auditory (85 db) and visual warning signals were activated as soon as LOC was apparent. Before the acceleration exposure, the subjects were instructed to deactivate these signals as they recovered consciousness (CS). The subjects' reaction time and speed of recovery from unconsciousness were then determined (34). Acceleratory stress was terminated promptly after the subject lost CS, reducing centrifugal stress to an alternating 1- or 2-G level (36).

The eight subjects were aware of the possible request to relate their dreams, thoughts, or other mental illusions (if any) experienced during the G-LOC episode. These reports were collected on a tape recorder as soon as the subject terminated the assigned performance tasks; oral questions were posed to the subject to prompt and facilitate recollection of his mental state while he was unconscious. Written reports were also obtained where the subject recounted any further recollections of his experience. Some subjects were able to

This manuscript was received for review in March 1987. The revised manuscript was accepted for publication in November 1987.

Address reprint requests to Estrella M. Forster, USAFSAM VNAEL, Brooks AFB, TX 78235-5101.
estimate their dream/thought time-span (ET), whenever applicable, as shown in Table 1, compared to the observed period of unconsciousness (absolute incapacitation (AI)), which is the epoch where the investigators estimated a dream or thought might occur. "Dream" is defined in this paper as any coherent and detailed visual illusion described by the subjects as a dream comparable to that experienced during normal sleep. We do not attempt to equate G-LOC "dreams" to "normal sleep" dreams. However, their similarity is interesting and, for discussion purposes, we labeled these illusions "dreams." The technique to measure G-LOC incapacitation times has been described (34). Electroencephalogram (EEG) and electrooculogram (EOG) recordings were used to define the subject's unconscious state and rapid eye movement (REM) during such states, when applicable (24).

The electrocardiographic parameters analyzed were: resting heart rate (RHR) prior to +G, exposure, maximum heart rate reached throughout the run (MHR), the change in HR from rest to maximum (ΔHRB), and HR achieved at the onset of maximum +G (HRA), the change in HR (ΔHRA) from rest to the onset of peak +G, the HR at G-LOC onset (HRU), and HR upon reaching recovery +G level (HRR), the lowest HR achieved during recovery (HRL), and the HR established once recovery was "complete" (HRS). All measurements were accomplished manually (R-R intervals). Student's t-test was used for the analyses of these parameters (Fig. 1).

<table>
<thead>
<tr>
<th>Subject</th>
<th>Run</th>
<th>Episode</th>
<th>Experience</th>
<th>REM</th>
<th>Flail</th>
<th>ET (s)</th>
<th>AI (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>LOC</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>LOC</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>B.O.</td>
<td>N</td>
<td>N</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>B.O.</td>
<td>N</td>
<td>N</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>LOC</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>LOC</td>
<td>N</td>
<td>N</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>1</td>
<td>B.O.</td>
<td>N</td>
<td>N</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7B</td>
<td>1</td>
<td>LOC</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* LOC = G-induced loss of consciousness
 ET = estimated dream/thought time-span in seconds.
 AI = absolute incapacitation period in seconds.
 HRA = heart rate at G-LOC onset.
 HRL = lowest heart rate achieved during recovery.
 HRS = heart rate established once recovery was "complete."
Fig. 1. Description of heart rate parameters.

Fig. 2. EEG and EOG description (S1).

There was some apparent REM-like activity (N = 3) during early recovery from LOC. This activity might be associated with the sense of paralysis that some subjects (N = 4) described as they justified why they could not turn "off" the visual or auditory stimuli previously mentioned: "I was paralyzed and slumped over... I could not turn 'off' the beep." These symptoms present a striking similarity to narcolepsy symptoms (temporary limbic paralyses/sleep paralyses, abrupt onset REM activity, and hypnagogic hallucinations). REM activity during narcoleptic episodes is usually present at the onset of the attack (4, 23), but it is also known to occur near the end of such attack (4, 11, 26, 28, 32). Sleep paralysis is not always identified with narcolepsy: 5% of the normal population experience this type of attack where the individual is unable "to perform voluntary movements occurring at the onset of sleep or upon awakening during the night or in the morning" (2, 15, 20, 21, 30, 37). Broughton, et al. (2, 12) state: "In sleep paralysis, the subject either awakens paralyzed during the initial pe-
period of falling asleep or during arousal later in the night. In either case awakening is from REM sleep, i.e., either a sleep onset REM period or a later REM period. The EEG and EOG data were used to determine a definite state of unconsciousness during the acceleration exposures. EEG analysis demonstrated a shift from beta to delta activity with pronounced absence of beta activity during unconsciousness (16). Visual analysis was considered adequate for our purposes. Fig. 3 depicts an apparent G-LOC episode. Unfortunately, electromyogram recordings were not available for this study.

Sleep paralysis has been identified as early as 1876 and described as an event where the motor centers are "asleep" while 'consciousness' is awake" (15,17,31). That is, the victims of sleep paralysis are consciously aware of their surroundings but are unable to move. This paralysis may last a few seconds or minutes. It is possible then, that the stimulus (mainly auditory) used in this study to arouse the subject undergoing syncope caused the "sleeper" to wake up before the "appropriate" time. Consequently, post-LOC transient paralysis occurred, rendering the subject unable to deactivate the warning signals immediately upon recovery, as he was instructed. That is, motor and mental processes were not concurrently stimulated. Schneck, et al. (17,27) have stated that "the victim may be released from sleep paralysis by outside interference that varies from a light touch to rigorous shaking." This is not to say that an auditory stimulus is not a vital device to rouse G-LOC victims from their syncopal state, but that it is a possible explanation for the occasional post-G-LOC transient paralysis episodes reported by individuals that have experienced it. Vanderheide, et al. (35) suggested that sleep paralysis was related to "a state of confusion as to emotion and intention, with resulting indecisiveness." This statement clearly describes the symptoms observed in the subjects as they recovered consciousness: the subjects could hear the auditory stimulus and see the master caution light but, even though particularly eager to turn them "off," they were "unable" to do so.

Apparent transient paralysis has also been known to occur during flight as pilots awaken from episodic loss of consciousness (10,18,22). Post-G-LOC transient paralysis has not been properly documented since the episode is so short (2.5 s) and probably not reported due to either amnesia or embarrassment (35). At this time it is not possible to equate sleep paralysis with post-G-LOC paralysis, but their similarities should be considered in the study of G-LOC.

Currently, it is difficult to ascertain whether the "dreams" reported were either "hypnagogic" (as the subject loses CS) or "hypnopompic" (as the subject regains CS), since the period of absolute incapacitation was extremely short (12.6±5 s) and there was no capability of awakening the subjects immediately after REM-like activity (if any) was apparent during their period of unconsciousness (Fig. 4). As mentioned earlier, dream reports were not obtained until after the assigned performance tasks were accomplished (approximately 6 min) once the subject had recovered from G-LOC. Therefore, dream recall was not optimal for determination of a specific point in time where the dream might have occurred during unconsciousness (13,19,38). However, it is interesting that a coherent visual illusion can be generated in such a short time.

Two trends were apparent in the nature of the dreams reported: Trend I—subjects experienced confusion/anxiety, frustration, a sense of "paralysis" with the dream set in enclosed spaces such as a closet or small room ("I was in a dark closet, I was in a dark closet, and there was a red light at the very top . . . the closet was square, small and empty . . . I was confused but unafraid"); Trend II—subjects were generally happy (euphoric), relaxed, their dreams were generally set in open areas during daylight and were colorful ("I was outdoors looking at the sunset, it was a fall sunset; red-orange. I was happy"). All the reported dream episodes were related to the specific individual's recent activities or preoccupations as considered typical by other workers (1,6). The trends specified previously are based on the subjects' descriptions of their dream events and observation of the subjects' reactions to these events and the G-LOC episode itself. This classification may be useful to determine/predict performance upon regaining consciousness. That is, the dream content (pleasant vs.

Fig. 3. Apparent late G-LOC REM episode.

520 *Aviation, Space, and Environmental Medicine* • June, 1988
in this study, the observed flailing movements during the subject's LOC episode were attributable to acceleration-induced hypoxia resulting in central nervous system dysfunction, rather than to dream content. Determination of when G-LOC-induced dreams occur and the specific anatomic area(s) responsible for the dream may provide a strategy for incapacitation reduction and G-LOC prevention. Further research of dream-like events occurring during G-LOC and the apparent transient paralysis associated with this episode is necessary. Currently, it is difficult to obtain EEG data in the acceleration environment. However, current studies are attempting to successfully correlate EEG, EOG, and EMG parameters with G-LOC and associated dream-like events.

Heat-rate response to the acceleration stress did not show any unexpected results (Table II). Maximum heart rate occurred 2.9-3.5 s after G-LOC onset, and stabilized in a normal manner as G, was reduced to +1 G, or +2 G, The resting heart rate was elevated, probably due to the anticipated +G, stress and G-LOC, but was not significantly different from comparable +G, exposures that did not involve a G-LOC episode. The mean maximum heart rate (MHR) of the G-LOC exposures was significantly lower (p<0.05) than that for analogous non-G-LOC exposures (8). However, the mean time of exposure to peak +G, level before G-LOC was 7 (±2) s, whereas non-G-LOC exposures with comparable +G, level and onset rate (+7 G, 6 G-s-1) usually involve an exposure to maximum G level for 15 s or longer. There was no significant difference in the recovery heart rates of +1 G, and +2 G, (Fig. 1).

CONCLUSIONS

The study of dreams during normal sleep stages has been thoroughly reviewed by many investigators (1,6,9,15,25,38). Unfortunately, this research has not extended to acceleration/hypoxic types of unconsciousness where "dreams" are also evident. Although dreams have always been an intriguing subject and, to some, a psychological panacea, the dream experienced during G-LOC could better define the psychophysio logic state of mind of the aircrewmember. The mental illusion experienced may therefore allow more indepth understanding of the unconscious state and the individual's post-G-LOC performance relative to his previous state of consciousness (i.e., an individual might perform

TABLE II. MEAN HEART RATE RESPONSE (bpm) TO G-LOC*.

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Parameter</th>
<th>Mean HR (S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHR</td>
<td>Resting heart rate</td>
<td>96 (16)</td>
</tr>
<tr>
<td>HRA</td>
<td>HR upon reaching maximum + G,</td>
<td>108 (14)</td>
</tr>
<tr>
<td>ΔHRA</td>
<td>Change in HR: resting to onset of max + G,</td>
<td>12 (7)</td>
</tr>
<tr>
<td>HRU</td>
<td>HR at onset of G-LOC</td>
<td>126 (12)</td>
</tr>
<tr>
<td>MHR</td>
<td>Maximum HR during the + G, exposure</td>
<td>134 (13)</td>
</tr>
<tr>
<td>ΔHRH</td>
<td>Change in HR: rest to maximum</td>
<td>38 (11)</td>
</tr>
<tr>
<td>HRR</td>
<td>HR upon reaching recovery + G, level</td>
<td>125 (16)</td>
</tr>
<tr>
<td>HRI</td>
<td>Lowest HR reached during recovery</td>
<td>80 (21)</td>
</tr>
<tr>
<td>HRS</td>
<td>Steady HR established-complete recovery</td>
<td>92 (12)</td>
</tr>
</tbody>
</table>

* = pooled 1 and 2 + G, recovery data.
G-LOC PSYCHOPHYSIOLOGY—FORSTER & WHINNERY

more adequately if his unconsciousness-dream-event was pleasant rather than repulsive), determine the individual's state of mind as he/she recovers from unconsciousness and potentially create new and more effective modes of arousal from unconscious states (i.e., simultaneous stimulation of G-LOC victims motor and mental processes). Therefore, G-LOC dream-state analysis, post-G-LOC transient paralysis, and their possible repercussions upon performance and incapacitation periods should be investigated not only as a curious event but also as operationally important and psychophysiologically significant.

ACKNOWLEDGMENTS
We wish to express our gratitude to Dr. E. C. de Forster and Dr. J. C. Miller for their valuable contributions. Dr. E. K. Gillingham for his assistance and to Ms. Robin Hickey and Ms. Gina Ruot for their expertise in the preparation of this manuscript.

The research reported in this manuscript was performed by personnel of the Rothe Development Inc., 4414 Sinclair Rd., San Antonio, TX and Crew Technology Division, USAF School of Aerospace Medicine, Brooks AFB, TX. The voluntary informed consent of the subjects used in this research was obtained in accordance with AFR 169-3.

REFERENCES
7. Forster EM, Whinyee JM. See text.