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1. OV3lVIUW AM SUNNARY

Fundamental to this work has been the development of a

continuum formulation that can accurately account for the effects

of interlaminar shear and interlaminar normal stress variation

through-the-thickness of a laminate. Furthermore, emphasis has

been particularly on tapered-twisted airfoil geometries which can

be analytically represented as an assemblage of thin to moderately

thick finite elements. To achieve solution efficiencies, various

plate/shell type elements have been developed in this work as

opposed to the more computationally intensive solid type elements.

On the basis of these requirements, alternative continuum

formulations have been considered and are herein denoted as the

(i) Higher Order Displacement, (ii) Modified-Kirchhoff and (iii)

Hybrid Stress formulations, respectively. "Shear deformable"

elements, based on the former two formulations, have been

incorporated in a computer code and tested on the basis of

correlations with known analytical, numerical, and experimental

solutions. Numerous tests have been performed for static, dynamic

and buckling behavior of laminated structures. Both plate and

"doubly-curved" shell elements have been formulated and

successfully tested. Note that use of a shell element is an

especially efficient approach in modelling airfoil geometries.

Significant efforts have also been devoted to developing a

suitable large displacement formulation. Due to the requirement
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that interlaainar stresses be accurately represented, a total

Lagranglan formulation has been utilized and based upon the

complete Green's strain tensor. A geometric and

large-displacement stiffness formulation, based upon a form of the

nonlinear strain-nodal displacement relationship, has been

developed and numerically implemented for one of the developed

"shear deformable" plate elements.

Since emphasis in this work focused on the development of

incremental response solutions, 'ncluding damage effects, the

computational approach needed t.o have the capability to (i)

predict and differentiate between relevant failure modes, (ii)

modify constitutive equations appropriately and (iii) perform

equilibrium iterations to assure stress redistribution based upon

the extent of damage. Use of "piecewise smooth" failure criteria

based on various types of damage has provided a good basis for

incrementally tracking damage. This approach has been

incorporated in the computer code using various stress criteria.

Alternative strain-based and energy-based approaches have been

considered including the representation of damage via the use of

internal state variables.

Note that integration for an element is performed on a A
layer-by-layer basis which allows for damage effects to be

characterized at the layer level. Herein a layer refers to either

a lamina or to a subset of adjacent laminae having equal ply

orientations. It is noteworthy that variation in strain energy
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can be calculated as damage accumulates and that such information

can provide the basis for evaluating sub-lamin&te buckling and

even delamination growth.

Experimental data has been uti.lized to substantiate both

stiffness reduction and damage predictions. The data is in the

form of failure strengths for laminates and material moduli

variations.

Computational efficiencies have been achieved in the

numerical procedures primarily by using an equilibrium formulation

to obtain the transverse stresses. This approach minimizes the

need for 3-D solid elements. Furthermore, a "reduced basis"

approach for computing nonlinear dynamic response has been --
dvveloped and partially implemented in the computer code.

In summary, the utility of the developed "shear deformable"

elements, and in particular the use of an equilibrium formulation

to obtain the transverse stresses, has been demonstrated for

laminated composite geometries. Realistic structures can be

v' modelled with the use of a mesh generator, which has been

developed in order to generate airfoil geometries. Since

solutions for airfoil response were not available with which to .A

validate the computer formulation, laminated composite cylinders,

with various boundary conditions, were modelled to demonstrate the

capability of the formulation to determine transverse stresses in -

"curved" geometries. These stresses are essential in tL3.

3
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determination of damage accumulation because of tht typically low

Interlaminar strength exhibited by laminated composite materials.

Excellent damage predictions have been obtained by coupling

the formulation with piecewise continuous stress criteria which

provide the basis for differentiating between damage modes. These

modes include fiber fracture, and tensile-compressive matrix

cracking, including arrays of both intralaminar and interlaminar

cracks. Strain energy calculations have been performed to

determine the variation in strain energy release rate along the

boundary of an interior debonded region. These calculations are

based on the assumption of a relatively thin sublaminat. bounded

by a rigid "parent".

The numerical formulation developed in this work is 71
especially suited to analyzing the nonlinear effects and damage

progression in actual structures., e.g., the response of an
al

airfoil to foreign object damage or the response of a helically

wound cylinder to a tool drop. It is noted that "scaled down"

analyses have been performed for primarily two reasons: (1) the

lack of data with which to correlat.., the results and (2) the

solutions to date have been obtained on a mini-computer, while

timely solutions for the examples cited would have to be obtained

on a mainframe. With regard to the second point, it would be

worthwhile to either "vectorize" the computer formulation or to

convert the code to a parallel processing format.

4



The sublaminate analysis could be made more realistic by

considering boundary conditions that reflect the actual

displacement/slope conditions at the delamination front. This

approach Is achievable through more computational effort, focused

an accounting for the generalized forces/displacement that occur

along the boundary of the debonded region. These boundaryp: conditions could be supplied by the complete (global) finite

element modal to a local model of the delaminated region.

Finally, there are strain-based and energy-based damage

criteria that have the potential for providing more accurate

damage predictions than those obtained herein using stress

criteria. Implementing such criteria in the numerical model,

however, would require significant experimental effort to

determine certain phenomonological constants needed to relate

constitutive behavior to damage progression. J

._A
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11. SUMMUSRi BY TASK

This section presents technical highlights of the research .
efforts to date for each of the three tasks. Details of the

analytical formulation are presented in the Appendices.

11010 VASK 1: nonlinear Displacement formulation for Composite

Media

11.1.1 Continuum Formulation

Two variational principles, the principle of minimum .
potential energy and the principle of modified complementary

energy, are generally used to develop two distinctly different

finite element models, the assumed displacement model and the I
hybrid stress model respectively. These models incorporate the

effects of transverse shear and normal deformations whose

contributions are recognized as essential for accurate laminate

analysis [1-10). In the present work, emphasis has been placed on

developing displacement based models.

Within the displacement formulation, element stiffness

matrices are determined for each element, these matrices are then

assembled to represent the final system of equations and a

solution procedure for the unknown nodal displacements is

provided. Coordinate transformations to describe ply orientations

of a composite media are taken into account. The in-plane

stresses are calculated from constitutive rel.ations of orthotropic

6



continuum whereas transverse, shear and normal stresses are

calculated from equilibrium considerations. Finite element models

have been tested for static, dynamic and buckling behavior. The

test problems and the results are presented In Section 11.1.4.

The finite element models are herein briefly discussed.

A. Higher order Displacement Formulation

The through-the-thickness effects can be incorporated into

the analysis by choosing a displacement field that eliminates two

major shortcomings of the classical plate theory; namely normals

remain normal and in-plane displacements are linear through theH
thickness. These shortcomings are eliminated by prescribing

independently the reference surface displacements and rotations of

the normal and including higher order terms for in-plane

displacements. This is accomplished in the plate element

formulation by the following variation

u(x,y,z) - u (X,y) + Z* (x,y) + z 0 (x,Y)

v(x,y,z) - v0 (xy) + Z*(x,y) + Z24AXY

w(x,yz) -w 0 (x~y)

The neutral surface displacements are represented by u0,v'0 and wo,

the rotation about the y-axis is denoted by *,x and the rotation

about the x-axis is *.The coefficients of z , i.e., *, and
are contributions from transverse deformations [5,61 and have been

found to be significant for unsymmetric laminate geometries.

7



these terms can be omitted in the analysis of symmetric laminates

by imposing the appropriate constraints.

in the shell formulation, the displacement field is more

complex in that it includes components of the surface unit-normal

vector and three rotational components. The displacement

components become

u(x,yz) - uV(x,y) + z[Nz* (X,y) +N * (x,y)l

-w(xy,z) - Wo(Xy) - z(Nx* (x,y) + N 4 (X,y)I

where Nx, Ny and Nz are components of the surface normal at a

particular (x,y,z) coordinate location for the element. The shell

displacements degenerate to those of a plate for N,,- 1 and Nx

NY - 0 as expected. Note that Z terms are not included in the

displacement field for the shell element. 4
The elements developed are designated as the quadrilateral

higher order displacement (QHD) models. QHD40 is an eight-noded

plate element with seven degrees of freedom (three midsurface

displacements, two rotations and two higher order terms for

in-plane displacements) per corner node and three degrees of

freedom (transverse midsurface displacement and two rotations) per

mid-state node. QHD48 and QHD48S are eight-noded plate and shell

elements respectively, with six degrees of freedom (three

midsurface displacements and three rotations) per node. Element

8



QVD2S is a simplified version of QHD40, for which the aid-side

nodes are eliminated. It should be noted that when the two higher

order terms for in-plane displacements at each corner node are

omitted, QHD28 reduces to the widely used four-noded bilinear

plate element (QED20). These elements produce either a quadratic

or cubic variation in the transverse shear stress.

3. modified-Kirchhoff Formulation

The Kirchhof f-Love assumption for normals to the reference

surface is relaxed by incorporating shear rotations as additional

degrees of freedom in the formulation [10). Thus the assumedH
displacement field allows the transverse shear deformations but

neglects the transverse normal deformations. The rotations Yx and

Yy are incorporattl in the displacenent variation for the plate as

follows

w(xy) - wo(x,y) ---.
u(xy,z) - uo(x,y) - z + vx )x
v(xyz) - Vo(X,y) - z + •Y

The transverse dieplacement w(x,y) is chosen such that it will

produce stress fields that characterize the transverse effects

accurately.

This approach has been implemented in the formulation of an

9



eight-node quadrilateral plate element with 32 degrees of freedom-

QD32, and various triangular elements. The stress fields obtained

for these elements represent a quadratic transverse shear stress

varietion. The quadrilateral element produced the best results

using this formulation.

11.1.2 Large Displacement Formulation

Inclusion of geometrically nonlinear effects in the

formulation must be based upon the geometry to be analyzed and

upon the type of stress prediction capabilities desired. The

classical approach to thin plate analysis has been to use the

Kirchhoff-Love assumptions in conjunction with the nonlinear von

Karman relations [11,121. As previously indicated, the

Kirchhoff-Love assumptions are relaxed in this work to allow for a

more accurate definition of interlaminar stress variation. These

stresses can vary substantially through-the-thickness for the

geometries of interest, i.e., thin to moderately thick plate type

structures. The complete Green's strain tensor is utilized in

this work, therefore, to account for all significant contributions AI

to the interlaminar stress field. with respect to fixed Cartesian

coordinates, x, y, and z, the strain tensor has the form

2 22

ax 2 a~x)Cx u-+-~ + ( ̀Z + (,W)]

au av [•a u +v av aw aw
I -+ - - + - +~xy lx--ay ax ay ax By axay
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where u, v and w represent displacements in the x~y,z coordinate

directions, respectively. Note that the other strain components

are obtained by a suitable permutation. in small-displacement

analysis, the quadratic terms are neglected to give simply the

linear strain approximation.

Based on the Green's strain tensor, the strain to nodal point

displacement relationship can be specified for elements under

development. It takes the form

* where (c) is the vector of strain components, (A) the vector of

nodal point displacements and (B) a function of derivatives of the

element shape functions. The quadratic terms in the strain tensor

result in (B) being a function of displacement state and,

therefore, an incremental equilibrium formulation is required.

The incremental strain-nodal displacement relationship takes the

form

(6180 -[B1 + [B L) 1 r)

where f86c) and (6A) represent incremental strains and nodal

displacements, respectively, [B ) and [BLI are the small and large

displacement contributions to the incremental strains. Based on

the incremental equilibrium equations, the displacement__

formulation gives the forcc-displacement relationships



[Ko] - [BJ T IDI[B I dV
V 0.-.;

[KLI ( [B IT [DI[BLI + [B0 I [DI[BL1 +[BI T[ I B[B I dV

where (DI is an elasticity matrix obtained simply from the

constitutive equations and integration is over the volume V of the

element. K I is denoted the small-displacement stiffness matrix

and [K] Is denoted the large-displacement stiffness matrix.

Since response is also a function of stress state, the geometrical

stiffness matrix [KGI is required and is obtained from

[KGI{ 6 6) &(BL)T (")dV

where (a) is the vector of stress components.

inertial effects are analytically treated as a mass matrix

[(M which is a function of density and the element shape

functions. These matrix forms are required in formulating

static/dynamic response solutions and the incremental equilibrium

equations have the general form J

[Ml(6u) + ([Ko] + [KLI + [KG]) {6u) - {&F)

whete the mass and stiffness matrices represent an assembly of the

elemental matrices previously discussed, {6u) and (6u) represent

12



m.ý

the incremental displacements and accelerations for the

mathematical model and (&F) represents the vector of incrementally -

applied forces.

A complete geometrically nonlinear formulation, for static

and dynamic response calculations, has been implemented in the

computer code only for the QHD48 element. Linear elastic buckling

analysis has been performed, however, with each of the elements,

i.e., with ([L omitted from the equation above.

11.1.3 Computer Implementation

Computer coding has been developed for the purpose of

implementing the various continuum formulations. The code has

served to generate static, dynamic and buckling solutions using

different element formulations. All of the element integration is

performed on d layer-by-layer basis through-the-thickness of the

laminate. This approach is fundamental to the inclusion of damage

mechanisms in the formulation.

Since solution of the equilibrium equations is a vital

component in the overall solution strategy, it is appropriate to

discuss the numerical methodology used in solving these equations. _

The intent is to obtain a higher ordered variation of the

transverse shear and normal stresses ( ayz' and a than can

be obtained via the constitutive equations. The solution

procedure can be thought of as descr-"bed below. Assume that the

13



In-plane stresses (ax, ry, wx) within each layer of a

xxy- xy

particular element have been determined at selected locations,

i.e., through solution of the constitutive equations. In the code

as presently written, these locations are specified as the element

centroid and element nodal points. The equilibrium equations (in

the absence of body forces) have the indicial form

j, - o 0

from which if follows that the through-the-thickness shear stress

variation can be written in numerical form for the ith layer as

S-(Oxxlx + i "" --:

and

t r 6 Y Z i " - ( Crxy ,x + a yy ,y )i Az i " -. *

Here, the left-hand-side represents the change in stress from the

lower to the upper surface of the ith layer and AZi is the

thickness of the ith layer at a particular location. The

derivatives with respect to x and y in the expressions above are

readily computed; this is because in-plane stresses within a layer -4

are related to element displacements through derivatives of

element shape functions, in conjunction with a material

definition.

14



For an n layered laminate, n equations can be written in

terms of both the unknown shear stresses at layer interfaces and

the shear stresses at the laminate surfaces. Assuming the

laminate has shear-free surfaces, the equations above give n

equations An n-i unknowns, so that, the equation set is

over-determined. The equations have the matrix form below

1 xz 2  x•z-1 1 N' 1,'':
-l I

XZn xZn

n x (n-i) (n-1) x 1 (n x 1)

where Ixzi -- (xx,x + a xyy)iAZi and axzj represents the shear
stress acting at the interface of the J-1 and j layer. A

similar equation set is obtained by replacing axzj with ayzj and '

Ixzi with 1yzi. These equations are solved by utilizing a

least-squares orthonormalization procedure [13]. Due to the 'H
simplicity of the terms in the coefficient matrix, a concise

closed-form solution is obtained. Having determined the

transverse shear stresses, the transverse normal stress variation

is determined through the numerical form of the third equilibrium

equation of the ith layer

•zzi -(xzx + a ).AZi

II
As before, the left-hand-side represents the change in stress

15
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through the Ith layer. Appropriate polynomial functions are Sutilized to describe the a and a in-plane variation . These

functions are differentiated to obtain the right-hand-side of the

equations above. Again the equation set is overdeterminid because

the normal tractions are known at the laminate surfaces. Solving
for a proceeds, therefore, in identically the same manner as

'discussed in calculating a and ayz" Parenthetically, inclusion

of body forces can be accomplished with little difficulty.

As a final note with regard to solving the equilibrium

equations, note that the stresses coming from the constitutive

equations are computed in an "element" coordinate system. In the

special case of a shell element, these coordinates are generally

not directed in either tangent-to or normal-to the shell

directions. An additional computational requirement in this case

is, therefore, to transform the "constitutive" stresses from

element to shell coordinates. This allows numerical integration

to proceed on a layer-by-layer basis in a direction normal to the

shell surface, and assures that the stresses are determined with
accuracy. _

Successful application of the Higher Order Displacement type

elements for particularly thin geometries requires the use of

reduced numerical integration. This approximation technique

brings along the choice of implementing it overall or selectively

to the strain energy components. For the QHD plate formulations,

only the transverse shear components are integrated with reduced

16



order (14-16). Good results are obtained with the shell

formulatione by under-integrating all strain energy terms.

A reduced basis numerical algorithm has been developed andI studied with respect to predicting the response of geometrically

nonlinear systems. Good results have been obtained for some

classical problems. The computational efficiency of this

approach, however, is only realized when applied to a very large

ordered system of equations.

A preprocessor has been developed to generate the finite

element mesh for an airfoil shape of multiple-circular-arc

geometry. Nodal coordinates, element connectivity and unit

surface normals are all generated on the basis of limited

geometrical input for a number of spanwise locations on a blade.

The normal vector definitions are needed in implementing the

QHD48S shell element. Typical mesh geometries are shown in

Figures 1 and 2. The preprocessor can also generate finite

element meshes for the special case of a cylindrical shape, which

has proven very useful in some of the verification testing _

presented in the next section.

11.1.4. Analytical Verification

Significant verification results relating to the developed

plate and shell element performance have been presented in

previous technical reports submitted tnder Contract No.

17
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SF49620-82-K-0032. Much of these efforts are also reported in the

papers and presentations listed in Section V (Related Activities) -A

of this report. Static, dynamic (fundamental frequency and

transient) and buckling response predictions for various laminate

geometries are included in these results and will not be repeated ..

herein. It is noteworthy that the QHD formulation gives the best

results overall and that the elements are suitable for the study

of damage accumulation in laminated composite structures. .1

Results comparing the performance of the QHD48 plate and

QRD485 shell elements have not previously been presented. Each of

these elements has six degrees of freedom per node and is similar,

in this regaLd, to other elements found in the literature. The

formulation is unique, however, due to the layer-by-layer approach

to obtaining the transverse stresses through use of the

equilibrium equations. This is the common thread linking all of

the elements developed in this work. For the QHD48 plate element,

3 x 3 Gaussian quadrature along with 2x2 quadrature for the

transverse shear components is employed. The element exhibits six

rigid body modes and does not yield any undesirable spurious

modes. In the shell formulation, 2x2 Gaussian quadrature is used

to integrate all strain energy terms. This numerical approach -

produces six rigid body modes plus an additional zero-energy mode.

This additional mode has not been shown to have a deleterious

effect upon element performance.

QHD48 and QHD40 element formulations produce essentially

18
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identical results for cylindrically bent and rectangular flat

• plates. in addition, the QHD48 element has been used to model

both helically wound and cress-plied composite cylinders. First

considered is a long cylinder under an internal pressure of 50

Pal, with inner diamettr 36 in., thickness of 0.36 in. and

cylindee length of i3 in. The laminate geometry is given as

135.30,-35.3" 35.3"-35.3",35.301. The orthotropic lamina

properties are defined as

EL - 5.136x10 PSI
ET - 1.522x106 PSI

10T

GLT - 0.439x106 PSI

VLT 0.281

and typical results are given in Figures 3 and 4. It is

intezesting to note that the deformation is not axisymietric as

might be assuLied. Results compare quite favorably with those

obtained ising a 3-D solid finite element formulation 1171.

The OHD48 plate and QHD48S shell element formulations have

been utilized to calculate the transverse shear rZress variation

that occurs in the 'boundary layer' regior. of a laminated

cylindrical shell. Some of the results are compared to those

given in (181, which presented an analytical solution specifically

for determining the interlaminar str,-sses in laminated cylindrical

shells. Plate/shell solutions are compared to those given in [18]

for a three-layer, cross-ply wound cylinder. Fiber orientation is

19



defined as (06, 90°, 0°] and results are obtained for two

different sets of boundary conditions including both

simply-supported and clamped ends. The cylinder geometry and

loading is the same for all results presented herein. The

cylinder has a length L - 50 inches, radius R 25 inches and wall

thickness t - 0.25 inches. Also, the cylinder Is subjected to a

uniform internal pressure of 100 psi. Two material systems are

considered as defined below

Boron-Epoxy:

EL - 32.5 NPSI

ET - "84 RPSI

GLT - 0.642 MPS.

'LT -0.256

Glass-Epoxy:

EL - 6.00 MPSI

ET - 1.50 MPSI

GLT - 0.80 MPSI

•LT - 0.25 MPSI

The assumed material properties and geometry definitions are all

consistent with those given in [18].

Since the laminated geometry under consideration is

symmetric, only one quadrant of the cylinder with suitably

specified boundary conditions need be modelled. Two levels of

mesh refinement have been used to assure that convergent solutions

20
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have been obtained. These include both lOxlO and 16xl6

coetangular meshes. These meshes along with the geometry are

shown in Figure 5. Note that all of the solutions presented

"herein are for the more refined mesh. Calculated values for the

longitudinal transverse shear stress, vyl. occurring at the

I interface of the 00 and 90" layers are given in Figures 6-9. The

first two of these Figures relate to the Boron-Epoxy material

systsa, while the latter two Figures provide results for the

Glass-Epoxy system. Regardless of which boundary condition is

considered, the results indicate essentially zero transverse

stresses away from the end constraint. Whereas in the vicinity of

the cylinder end, a 'boundary layer' develops in which the

transverse stresses become quite significant. As demonstrated in

these Figures, the calculated transverse stresses are in excellent

agreement with the analytical solutions given by Waits [181. Note

that the shell element model gives better agreement with the

analytical solution than does the plate element model, as would be

expected. While the J0xl0 mesh results are not presented herein

for these cases, the solutions compare well with the 16x16 results

and do demonstrate convergence.

Finally, calculated transverse stresses are presented for a

cylindrical shell with a quasi-isotropic layup having ply sequence

100, +45, -45e, 900)s. The material system is assumed to be the

Glass-Epoxy previously defined, while the geometry and loading are

unchanged. Figures 10 and 11 present the transverse stress 'IT' 6

variation calculated using the plate and shell element

21



formulations, again for both clamped and simply-supported boundary

Conditions. The 'boundary layer' stresses are similar to those

shown in the previous cases. Based on the previous exampl~es, it

is believed that the shell element provides the more accurate

results. All stress results represent average values at sel~cted L

node points on the model. It is interesting to note that the

variation in these stresses, i.e., at a particular node shared by

more than one element, is much loes pronounced in the shell than

In the plate formulation. It seems this is simply a further
indication that the shell formulation is more suitable in

modelling structures having curvature.

Some verification testing of a developed "reduced basis"

algorithm has also been performed for some classical problems.

These include the large displacement transient response of both

cantilevered and clamped-clamped beams subjected to step loading.

ResUlts are given in Figures 1.2 and 13 demonstrating the accuracy

obtained in these problems compared to directly integrating all of

the dynamical equations. Note that the basis vectors are

comprised of both Ritz vectors and derivatives of Ritz vectors.

The efficiencies obtained in using these vectors to obtain

solutions for linear dynamical systems has been shown in (19, 20).

j Reducing the order of the equations can be effective when the

equations do not need to be updated very often during the course

of a transient response analysis. Furthermore, the utility in

such an. approach is only realized in studying the response of -A

large-ordered systems of equations.
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112.. TASK It: Incorporate Damage Nechanisma into Dynamic

Response Formulation A
Relevant failure modes of interest include those listed below j

Mi) fiber fracture L-

(ii) fiber-matrix debonding

k) (iii) matrix cracking (parallel and transverse to fibers)

(iv) delamination

(v) buckling (possibly at layer or sub-laminate level) .'

Several smooth failure criteria, e.g., [21-241 have been developed

in recent years to represent the failure of composites. These

criteria, to varying degrees, can predict "failure" but do not

identify a particular mode of failure. In performing incremental

"damage" analysis, it is essential to both predict failure and to

characterize it, e.g., do fibers rupture, does delamination occur,

etc. The computational approach must, therefore, differentiate

between viable failure modes and appropriately alter the

' ~constitutive equations on an incremental basis..:

Stress Based Approach

One approach is to implement a piecewise smooth failure

criteria, e.g., (25] in the finite element formulation. The

general failure criteria is then comprised of m separate

inequalities of the form

4j ((o))< 1 ; j -,
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at the layer level within each element. These criteria should

differentiate between (i) tensile and compressive fiber failure,

(ii) tensile and compressive matrix failure and (iii) delamination

at layer interfaces due to either maximum stress or buckling

considerations.

As progressive damage occurs throughout incremental loading

(whether it be static or dynamic), it is essential that violation

of failure criteria inequalities be reflected in modification of

the material properties. This can be achieved by modifying the

appropriate terms in the constitutive equations to reflect

"stiffness reduction". When the strain varies between tension and

compression, as in the case of transient dynamic response, the

numerical model must reflect the differences in moduli related to

whether or not an array of cracks is predicted to be opened or

closed.

In conjunction with the above it is essential to perform

equilibrium iterations within each analysis increment. This is

required to Essure that stress redistribution is properly

accounted for as damage progresses.

The piecewise smooth failure criteria currently implemented

in the incremental analysis are primarily due to Hashin [25), Lee

(261, Greszczuk [271 and Hahn [281. Layer stresses are defined as

shown in Figure 14 and the criteria are summarized as follows:
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Fiber Failure

1. Tension

The simplest criterion for tensile failure of a composite is

the maximum stress criteria. The failure occurs if the fiber

tensile stress exceeds the allowable normal strength aF

~ ~FN

However, this is a drastic approximation, since the fibers vary

significantly in their strength. Lee proposes that in addition to

checking this criterion, the fibers fail if

2 +
LT LZ )l2ŽFS

where a is the fiber shear strength. On the other hand, the

criterion proposed by Hashin for the tensile fiber failure is

tE7] + LT. q + L2)-1

2. Compression

For compressive loads applied along the fiber direction, a

proposed failure mechanism is analogous to the buckling of a

Lcolumn. The critical fiber buckling stress in the shear mode is

given by Greszczuk and Hahn as

Gr
CFs

(1-k)
where Gr is the resin modulus, and k is the volume fraction ratio.
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Ratrix Failure

1. Tension

The composite tensile strength transverse to the fibers is LO

not expected to deviate significantly from the matrix tensile

strength. The tensile criteria used are as follows

2 2 1/
Lee aTŽUNN or (aTL + a )1/2 >

TT TZ MS

Hashn + 2 2 +T2 + 21=1
2ahi T Z 2f (Z T Z(2LT + LZ)-

Itt MN MS FS

where (aT + a > 0

The matrix normal strength and the matrix shear strength are 14

denoted as aMN and cM.' respectively.

2. Compression

Under compression, failure may occur by shearing along a

surface through the matrix parallel to the fiber axis. The

criterion that describes this is proposed by Hashin.

1 2 2
-L 2 (- 2 (+oT+LZ) + 2 TZ1TZ __

INC LMS M

1 U2 + U2  )-
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where a is the compressive matrix strength.

Delamination

Lee proposes that delamination occurs if either
2 1/2 ..

a or (oLZ + 2T 2 > aZkODN (OZ TZ - DS

where aDN and aDS are the through-the-thickness tensile and shear

strengths respectively. Yet another form used by the authors to

identify delamination is as follows

W 2
DN' DS

Subl)aninate Buckling

High interlaminar stresses that cause delaminations in

composite components often c~use localized buckling subsequent to A
delamination. These high stresses may promote the growth of the

buckled delaminated region and lead to structural failure [291.

This instability related crack growth can be studied by the

virtual crack closure technique as proposed by Whitcomb [30].

Simply, one identifies the delamination zone and addresses the

layers above the delamination line as a "sublaminate" region and

the layers below as a "parent" region. In this initial model,

parent is assumed to be rigid. Therefore, one models only the

sublaminate region as a plate with clamped boundaries. Figure 15

describes the geometry of the model. The reactions that are
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calculated at the boundaries serve as forces that are used to

close the debonded region (crack). The total strain energy

release rate is calculated from the following expression,

G =0.5 (N xx + Nyey + Nxysxy + MxKx +MyKy + MxyKxy).

Then, the distribution in the strain energy release rate is

calculated as a function of the debond g-.?vmetry.

Damage Prediction Calculations (Stress Based Approach)

The damage histories for selected composite laminates

subjected to both in-plane and bending loads have been determined.

S Note that both static and transient dynamic loading conditions

have been considered.

Uniaxial Tension: Response to Static Load

The one element plate model of Figure 16 is employed for the

uniaxial tension analysis of angle-ply laminates. The laminate

consists of three layers of T300/5208 graphite epoxy. Two

stacking sequences are studied, namely, [e0/0o/-eels and

[eo/90o/-e°]s. The material and the strength properties of

T300/5208 are given in Table 1. The first and last ply failure

curves of the two laminates as a function of Theta are shown in

Figures 17 and 18 for a statically applied load. As expected, the

first and the last ply failures for uniaxial laminates of

28
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(O'/0'/ae0s of Figure 17 occur simultaneously, except for angles

greater than 300, they are quite separated. The [10/900/e9lsr layup of figure 18 shows that for e-600, 750, and 900 laminates,

the initial and final failures coincide, whereas for angles less

than 600, they are easily distinguished. Table 2 displays an

alternate view of the damage progression in a [150, 90. -150]s

laminate, where initial failure occurred at the 60th load

increment and the final failure at the 117th increment. The

column headings of Table 2; TF, CF, TM, CM and DL denote Tensile

Fiber Failure, Compressive Fiber Failure, Tensile Matrix Failure,

Compressive Matrix Failure, and Delamination, respectively. Note

that the first ply failure was matrix failure in the 900 plys

followed by the fiber failure in the angle plys. Thus one can

easily identify the failure mode within a ply for a given load

increment.

Uniaxial Tension: Critically Damped Response to Step Load

The same uniaxial tension model described above is used by

the incremental dynamic analysis. To verify the dynamic response

routines, all modes in the transient response are critically

damped to approximate an incremental static solution. The first

and last ply failures are predicted for the same stacking 2
sequences as described in the incremental static analysis. The

results for the [10/o0/e0]s stacking sequence are shown in Figure

19. The first and last ply failures occur simultaneously for

9-00, 150 and 300. These results compare quite well with the
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Iaai-Nu failure criteria and those obtained in the incremental

static analysis. Likewise, the predicted firet and last ply

failures for the stacking sequence 100/900/-90) compared

exceptionally well with the Tsai-Wu failur, criteria and with dataIobtained from the incremental static analysis (Figure 20). Table

3 displays the progression of damage within the [150/900/-l50)

laminate. The first ply failure occurred in the matrix of the 9Q0

plies at the 50th load-time increment. The final failure occurred

in the fibers of the 150 plies at the 97th load-time increment.

The damage progression predicted by the incremental dynamic

analysis is, therefore, quite similar to that obtained using

the incremental static analysis.

Uniaxial Bar: Transient Response to Rectangular Pulse

A [600/00/-600I T300/5208 graphite/epoxy bar is analyzed for

the effects of damage on the transient response. The bar has a

length to height ratio of 16. Damping is not included in this

particular analysis. The composite bar is loaded with a

rrectangular pulse load equivalent to 45 percent of the last ply4

static failure load for the laminate. The duration of the pulse

is 1.5 times the fundamental period of the bar. The

(600/00/-600]s composite bar is analyzed both with no residual

compressive stiffness and with ninety percent residual stiffness

after a tensile failure mode has occurred, the transient response

of the damaged laminate compared to the linear dynamic response is

presented in Figure 21. in the figure, the tip displacement is
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normalized by the maximum amplitude obtained by the linear dynamic

solution and time is normalized by the fundamental period of the

bar. At point At matrix cracks develop in the 600 plies in

elements 1-7. at point B, the maximum tip displacement is greater

in the damaged laminate with no residual compressive stiffness

than in the damaged laminate with ninety percent residual

compressive stiffness.

Due to the development of tensile matrix damage, the

amplitude is increased in the first cycle. The time period for

*"Ie damaged transient response also tends to increase as damage

lovers the stiffness properties of the laminate. The damaged

laminate with no residual compressive stiffness exhibits a higher

compressive tip displacement than either the linear dynamic

solution or the damaged laminate with ninety percent residual

coir essive stiffness. This is caused by the lower compressive

st!i .ess of the damaged laminate.

Tt so results demonstrate that even for very simple

geometries, it is essential that the effective material moduli,

due to the opening/closing of crack arrays, be realistically

characterized in the numerical modelling process.

Four-Point Bending: Response to Static Load

The bending problem of Figure 22 is modelled with four

elements. The material and strength properties are as listed in
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Table 1. The laminate is unidirectional and consists of

twenty-four layers. For the bending problem, an discussed by

Whitney 1313, the critical aspect ratio is defined as Sinvma/Tmx

and for the present geometry, it is 22. Delamination is observed

for aspect ratios loes than the critical in the middle of the

laminate as the load is increased. Additional matrix and fiber

failure accompany delamination as shown in Table 4. The

interaction curve of Figure 23 reveals that the final failure

occurs after twenty percent load increase over the initial failure

Fload. It should be noted that for aspect ratios less than the .-

critical, the percent increase of the initial failure load to that

of final failure load is constant; thus if one reduces the shear

strength by the same percentage, the final failure load of the

corresponding aspect ratio ends up on the interaction curve. This

phenomenon is illustrated by the dash-lines of Figure 11. When

the aspect ratios are higher than the critical, i.e., thin plate,

the fiber failure at the outermost laminae proceeds rapidly toward

the center and within four percent increase of the initial load,

ultimate laminate failure occurs. A typical damage progression is

- displayed in Table 4 for an aspect ratio of 100. It is also of
_14

interest to. observe the growth of failure as a function of the

total strain energy. Figure 24 presents the variation of total

0 strain energy in each lamina of a [00124 laminate with an aspect

ratio of sixteen. As can be observed, as the load is increased,

the strain. energy increases in a layer until that layer undergoes

failure, in which case the strain energy is lower than its

previous value. This is depicted in layers 12 -20, where failure
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is observedl however, the undamaged layers 1 - 11 and 21 - 24

still maintain higher strain energy values as load Is increased.

Figure 25 focuses on the same information as Figure 24, yet

provides a close-up of the energy variation in layers i through

20. As discussed abovei as failure is detected, the strain energy

in a layer decreases and causes the discontinuity in the quadratic

curve. Note that the failure is observed as starting from the

middle layers. On the other hand, for an aspect ratio of 100, as

shown in Figure 26, the failure starts from the outermost laminae.

In this case, the damaged layers are 1 - 4 and 20 - 24.

Strain Energy Release Rate Calculations

1. ,

A quarter of a square, debonded sublaminate region is

modelled as shown in Figure 27. A transverse point load is

applied at the center. The strain energy release rate is

calculated from

L: ~~~G - OSD(/)*
111

where D is the bending stiffness, N and P are the reaction

moment and applied transverse load, respectively.

Simple examples are chosen to evaluate the strain energy

release rate along the edge of the debond, for isotropic and

orthotropic layups, namely; [0141 (900141 [450 -45ojs. Figure 28

illustrates the distribution of G along the y-axis for the layups

considered. The magnitude of the total strain energy is the area

under the respective curves for each case. For all cases, it is
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observed that the delamination will grow at the midaides where G

is highest.

Mtrain Based Approach

An alternative to modifying the constitutive equations based

on violation of stress failure criteria, is to use a strain based

approach that represents the accumulation of damage through

definition of internal state variables in conjunction with

experimentally determined phenomenological constants. The

internal state variables can be represented as vectors having

direction (orientation of damage)and magnitude (extent of damage).
This approach should give good accuracy in characterizing the type

uf damage that develops first, i.e., intraply matrix cracking.

This approach, combined with the stress criteria for fiber failure

and delamination, should provide more accurate predictions than

provided by use of the stress criteria alone. To be consistent

with the finite element formulations developed in this work, it is

important that damage be characterized at the layer level. A

laminate damage model, in combination with experimental results

for certain balanced laminates, can serve to define the needed

layer damage model. These models, along with results for moduli

variation as a function of damage accumulation, have been 4

presented and discussed in the previous report under this project.

While these models have been formulated, they have not been

implemented in the computer formulation. It is emphasized that a

significant amount of experimentation, probably using non-standard
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teot specimens, would be needed to fully implement such an

approach to modelling damage accumulation.

11.3.3 TABK III: Correlation of Formulated Response Model with

.pezimental Data

Failure results presented in the previous section do compare

well with the experimental data given in (321. Additional

4 :experimental results, while not plentiful, do exist for cases in

k which data has been generated to quantify the effects of damage

for various loading conditions. For example, the extent of damage

is quantified in [33,341 for the impact response of composite

additional data would be a worthwhile endeavor.
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•i•• '1'~able 1. Nater:La1 Pz'apertLe8 "

Uniaxial Tension Four-Point Bending

El (GPa) 13 9

R2 (GPa) 10.6 11

Z3 (GPa) 10.6 11

G1 2 (GPa) 6.4 7.2

G13 (Gla) 6.4 7.2

G2 3 (GPa) 6.4 7.2

'l13  0.3 .38

"1:"
'23 0.3 .38

(a 1500 (1500)* 1502 (1502)

rs pal 68 67.5

(I1Pa) 40 (246) 41 (250)

(MS (lla) 68 67.5

%Nt (Ca) 40 41

%S (14Pa) 68 67.5

* Terms in parenthesis are the compressive strength.
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Table 2. Damage accumulation of laminate
under uniaxial load (static analysis)[ 15/90/-15 ]s

TF CF TM CM DL ii
1 117 0000

2 0 0 60 0 0

3 117 0 0 0 0

4 117 0 0 0 0

5 0 0 60 0 0

6 117 0 0 0 0

r"" -;

Table 3. Damage accumulation of laminate

under uniaxial load (dynamic analysis)
[ 15/90/-1518' .,

TF CF TM CM DL -

1 97 0 0 0 0 ; "

2 0 0 50 0 0 .

3 97 0 0 0 0 ::

4 9" 0 0 0 0 :•

5 0 0 50 0 0 •

6 9 7 0 0 0 0 -,

- - - - - - - - - - - --~~~~ - - - - - - - - - - - - - -
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Table 4. Damage Progression of a 24-ply Laminate 24
with Aspect Ratio Su8 Under the Four-Poi ,]
Sending Load. Pll/P6 -i.20

PLY TV cF T11 01 DL

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 11 _
8 0 0 a 10 10

10 0 0 0 7 6:,,-
11 0 0 0 6
12 0 0 0 6 6
13 6 0 6 6 6
14 6 0 6 6 6
15 6 0 6 6 6 t74

16 7 0 6 7 7
17 7 0 7 8 8

80 8 9 9

19 10 0 9 10 10
20 0 0 11 0 0 -
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0

_4J

L~



-44

38 377

4 3!3
I'' 

4. ~ 32

S~31

-46-



- � � - *�--'-**-'- - -' -- --- '..--". -- U

I
I

I
I

'1
-I
1.�

'4

4

A

A

Figure 2. Airfoil He8h with ?fultiple Views

-47.- g

�'..



0

LIJ
2z

CLIO

5 LIJ

zz

0 0 00

C;

-48



I -W

I III

OnW

00

4n C4
0 zgvcn ....

Iu I .

II IL 'I

z z

0 00 0 0 0 0 0
o o 0 0 0 0 0 0

N 0 c0 D N4 0
N~ C1 N '

(*Isd) SsMaS
-49-



a"

L.2

10 x 10

Number of 2 4
elements

16 x 16

0-J
19" 4"

Number of
elements

Fig. 5. The reference coordinate system and the two meshes including
the dimensions of the ele-nents for the anisotropic,
pressurized cylinder.
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Figure 15. Geometry of aublaminate model
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Figure 16. Uniaxial tension model. -
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Figure 17. Calculation of first and last ply failure
for a [0/ 0/- ]J.laminate-nonlinear static analysis
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Figure 18. Calculation of first and last ply failure
for a [#/g0/- 0].laminate-nonlinear static analysis
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Figure 19. Calculation- of first and last ply faiure for a critically
damped [0/0/ - 9l.laminate-noalnear dynamic analysis
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p ~damped [0/90/ - 0llamiinate-nonlinea~r dynarnic analysis
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