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1.0 The Effects of Vegetation on Terrain Scattering
1.1 Introduction

An important element in any effort to model the electromagnetic scattering from natural
terrain is the inclusion of the effects of the various types of vegetative or foliage cover. That
such coverage is important is obvious from just looking at terrain and being able to readily sce
which surface areas are covered by the different types of vegetation, e.g. crops, forests, scrub
brush, and grass. In the language of scattering physics the phrase “just looking at terrain and

. is equivalent to saying that the bistatic scattering cross section of the vegetation covered
surface in the visible frequency band is sufficiently sensitive to the types of cover to provide a
quantitative means for discriminating between the various kinds of vegetation. With this more
technical definition, it is important to take note of the distinguishing characteristics of the
“measurement”. That is, the transmitter/receiver geometry is bistatic and the transmitter and
receiver are both operating over a very wide band of frequencies. This latter point is particularly
important because such wideband measurements have no analog in the lower frequency ranges
common to radar or communication, and so care should be exercised in comparing what is
“seen” with what much lower frequency measurements or theory yield. Certainly, one would
expect that as the frequency is continually decreased, there would come a point where the
scattering is due predominately to the underlaying surface and there is very little scattering from
the vegetation [1].

Unfortunately, most radars and communications systems operate in a frequency range
that is somewhere berween these two extremes. Conscquently, there is a need for models
involving scattering from (1) the vegetation layer alone, (2) the underlying surface alone., and
(3) various degrees of interaction between the layer and the underlaying surface. Since uitra
high spatial resolution scattering is not a goal of this study, the use of statistical mcans to
describe the scattering should be appropriate. Ideally, this means that what is nceded is the
probability density function (pdf) for the scattered ficld because this will then permit a
calculation of any statistical moment of the scattered field. However, the pdf of the scattered
ficld is a very difficult quantity to obtain, in general, and so attention will be directed toward a
less ambitious goal, namely, the modeling of the first and second moments of the scattered ficld.

Having established the goal of this study, the next step is to develop a rationale for
achieving it. The rationale for this problem comes rather naturally from the importance of the
two major contributors to the scattering.  That is, the first thing that nceds to be done is to
tnsure that adequate models exist for both the [oliage laver and the underlaving surface alone.
Where deficiencies are noted, they need to be corrected. The final phasc is to model the foliage
layer on the surface by giving particular attention to the interaction of the two media. This is
the real crux of the problem because it is this phase that permits a smooth transition between
the complete high frequency shadowing of the surface by the vegetation o the low frequency
transparency of the foliage to the incident radiation.
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1.2 Vegetation Only

Beforc becoming too involved in the clectromagnetics associated with wave propagation
through and scattering by vegetation, it is advantageous to organize vegetation into four very
broad categories. In particular, these categories are trces, brush, crops, and grasses. This is
done primarily for discussion purposes because there is, in general, little that is unique about
cach category. Trees are usually characterized by their bulk size, rclatively large leaves, and a
central trunk. Brush is usually smaller in overall size, has a smaller leaf, lacks a well-defined
central trunk, and has much less woody structure. However, these differences become less
distinct when the trees are relatively young. Similarly, there is not much difference between
new, emerging grain crops and grass except that the former is usually planted in periodic rows
while the grass tends to be more uniform in its coverage. Despite the biological nonuniqueness
of these categories, they provide a physically intuitive means of identifying tvpes of vegetation.

In estimating the electromagnctic scattering behavior of a collection of vegetation, it
would be most helpful if the behavior of a single composite structure of an entire entity were
known. However, even single trees, bushes, and plants are difficult to describe {rom an
electromagnetic scattering point of view. Thus, it is necessary to go one step further in
simplicity and consider the scattering properties of the component parts of the tree, bush, plant,
etc. In the case of trees and bushes, these component parts comprise leaves, branches, and
trunks. With crops and grasses, the parts comprise leaves and stems or stalks. Although these
component parts are interconnected by branches, stems, and twigs, most subsecquent scattering
analysis will ignore these interconnects and treat the component parts as devoid of physical
contact with any other parts of the foliage.

This latter approximation is clearly a drastic one and therefore deserves some
justification. The important assumption that will be made to rationalize this approximation is
that each component part of the foliage is a much better absorber of clectromagnetic energy
than it 1s a scatterer. More formally, the approximation is that the absorption cross scction is
significantly greater than the scattering cross section. For the [requency range of interest to this
study, 1t turns out that this is indced a reasonably good assumption [1]. Ilence, given that each
component part of the vegetation absorbs much more incident energy than it scatters, consider
what happens when a wave strikes two leaves connected by a stem or branch. [n addition to
the cencrgy scattered [rom one leaf to another, there is also the possibility of energy being
propagated in a transmission line mode along the connecting branch or stem. llowever, energy
being transported between leaves via this mechanism sullers a threcfold attenuation.  1irst, it
suffers absorpuon in the first leal and then in the connecting branch and finallv in the second
leal. Thus, 1t would secem reasonable to ignore the interconnection ol the various parts of the
vegetation based on the highly lossv nature of the branches and stems, i.e. the interconnecting

medium.
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1.2.1 The Coherent Ficld
The total ficld inside a vegetative medium can be mathematically split into the sum of
a mean, average, or coherent part and a zero mean fluctuating part {2}, e.g.

—

E, = <E> + S (L)

where <.> denotes the averaging operation, and éE, is a zero mean ficld quantity. There are
specific physical situations when analytical models for the average field have been derived. The
first of these is the classic Foldy-Twersky result [3,4,5] in which the concentration of scatterers
is sufficiently small that multiple scattering between them may essentially be ignored. The
Lax-Twersky [6,7,8,9] result holds for higher concentrations of scatterers but with the restriction
that they cannot differ very much in their diclectric properties {rom free space. [Finally, rather
high concentrations of scatterers have been analyzed recently [10] using a numerically based
T-matrix approach.

The Lax-Twersky theory is difficult to apply to the vegetation problem because the
component scatterers have such a large relative dielectric constant. The numerical T-matrix
approach would be difficult to apply to the foliage problem because of the diverse shapes of the
component scatterers. Furthermore, ncither of the above methods is really necessary because
the density of vegetation is relatively low. That is, the highest volume fraction occupied by
vegetation will be less than 5%, and even this percentage is relatively unusual [1]. More typical
volume fractions are 1% or less. With this low concentration of scatterers combined with their
relatively high loss, the Foldy-Twersky theorv for the coherent or mean field inside the foliated
medium should be adequate [11].

The Foldy-Twersky theory predicts that in an unbounded volume of scatterers, the

average field will be a plane wave having the wavenumber kp given by [12]

2,2 > AN
ky = ky + anf < Solki k)l n(a)da (1.2)

0
where &, is the free space wavenumber, n(«)da is the number of scatterers per unit volume having

the size parameter a between a and a + da, and the total number of scatterers per unit volume
is p where

(o)
p = f n(x)da (1Y)
0
- . AT } . . . .
The quantity Jptki k) 1s the p!’t vector component of the scattering amplitude ol a single
. . . . . . . . \ B .
scatterer having size a. [t is computed for a plane wave traveling in the direction &; incident on
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the body and the body scattering in the direction &;. The polarization of the incident ficld in this
calculation is taken to be QP while the symbol <] denotes that the scattering amplitude may
need to be averaged over all possible orientations of the scattering body. An explicit expression

AN
for fy(ks k) 1s

A A kg = A oA
Skiki) = o= 1) S (E(r)+pIE exp(ikyk;e 1 )dv (1.4)
Va

where ¢, is the relative dielectric constant of the scattering body, E[F ) is the ficld inside the body
due to an incident plane wave having amplitude E!, polarization p , and traveling in the llc\,-
direction. The integration in (1.4) is over the velume of the scatter, V,, and, alth -ugh not
explicitly shown, the calculation is for one specific orientation of the body. The av:rages in
(1.2) over orientation and size are necessary when there is a polydisperse mixture of scatterers
having random orientation. As indicated in (1.2), it is possible for the average medium to be
anisotropic, i.e. the propagation constant is different in different directions.

Equally important to the result in (1.2) are the limitations on its validity. These
limitations were not particularly well understood until recently {12] when it was shown that they
could all be essentially lumped together in the following condition;

(kp — ky)max(a) << 1 (1.5)

where max(a) is the maximum meaningful dimension of the scattering bodv. For a sphere,
max(a) is the diameter while for a randomly oriented thin disk it should be set equal to the
diameter of the disk. The condition in (1.5) is essentially equivalent to requiring that the
scattering properties of a body in free space and in the random medium are not appreciably
different. It should be noted that if the concentration of scatterers increascs then cither the
relative diclectric constant must approach unity, sece (1.4), or the scatterers must become
smaller, see (1.5), in order for (1.2) to remain valid. It is the interplay of the scatterer
concentration, dielectric constrast, and size that dctermine the validity of the Foldy-Twersky
result for the average or coherent field.

If there are a number of different distinct types of scatterers comprising the medium then
(1.2) should be augmented to reflect this fact. For example, if there are M diflferent tvpes of

scatterers then (1.2) should be written as follows;

5 wo I/

[ i AA
kyo= ks + dnf N <j,,,(1<1-k-)

i bt D da (1.6)

2
0 —
P o m=l1
L NA . . . Y, . ..
where <v’p(ki,ki”m is the forward scattering amplitude for the m'* class of scatterers comprising

npt0dx number per unit volume having a size parameter between x and « + Jda. This result is

4
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particularly relevant to the vegetation problem because there arc indeed a number of distinctly
different types of scatterers (even when the actual foliage components are replaced by canonical
shapes). Table I shows the major vegetation categories that have been postulated along with
the actual component parts comprising these and the canonical approximations to these parts.
The canonical shapes are the ones that would be used in calculating scattering amplitudes such
as required by (1.6).

Clearly, there is a great deal of approximation involved in replacing exact shapes by
canonical forms. However, it must be remembered that vegetation is a very complicated
physical environment and it is essential that it be simplified as much as possible without
distorting the important details. This was the approach used in an earlier attempt to go beyond
pure empirical modeling [1] and it appeared to work quite well for wave propagation through

trees. Since this work first appeared, there has been a great deal of literature on computing the

scattering properties of various canonical shapes and it seems that there are a number of

approximations that can be used [13,14,15]. These results are most welcome because calculating
the scattering amplitudes of even the limited number of essential canonical shapes is not a trivial

matter.

1.2.2 The Fluctuating Field

Equation (1.1) indicates that the total field inside the random medium comprises a
coherent or average field and a zero mean fluctuating part. The coherent field attenuates
exponentially due to absorption and scattering by the objects in the medium; the attenuation
rate is determined by the imaginary part of (1.4). The fluctuating field gives rise to the
incoherent scattered power and is therefore of prime importance to this studv. The fluctuating
field is, in general, more difficult to determine than the coherent field; however, rcasonable
success has been obtained using the so-called distorted wave Born approximation (DWBA) [10]
at lcast for the frequency range of interest to this study. However, as the DWBA is now used
{17], there appears to be a form of double accounting for the effects of the average medium.
To show this, the DWBA will first be reviewed, an exact integral equation for the (luctuating
field will be derived, and this result will be compared to the DWBA that is presently in use. The
differences will be noted and discussed.

1.2.2.1 The Distorted Wave Born Approximation (DWBA)

Taylor [16] gives an excellent discussion of the DWBA as it applies to particle scattering
by potenuals. llowever, the same reasoning can be applied to the vegetation scattering problem
and the rationale for the approximation centers around the form of (1.1). What (1.1) does is to
sphit the unknown ficld into the sum of a largelv dominant term. < T( >, and a small

perturbation 4F, . The dominant term < £, > is known to a rcasonably ¢ood approximation:

5
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BASIC VEGETATION ACTUAL COMPONENT CANONICAL COMPONENT

CATEGORY PARTS SHAPES
Tree leaves/needles disks/cylinders
branches cylinders with large range of radii
trunks cylinders with small range of radii
Brush leaves disks
branches cylinders
Crops leaves disks on thin elongated sheets
stalks, stems cvlinders with relatively small range
of radit
product variable
Grasses leaves short dipoles
stems cylinders
TABLE 1

A categorization of basic vegetation tvpes by actual and canonical

component parts.

AN 4
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hence, éz:, can be determined fairly accurately by a rather crude approximation. The key to the
success of the DWBA is that most of Z, is already known (<E,>) and it is only a slight
improvement (JE,) that is sought. Of course, this also shows one of the limitations of the
DWBA as applied to the vegetation problem. If < E,> is to be the dominant term in E,, the
DWBA cannot be expected to give an accurate estimate for é_E': very deep into the medium.
This is because < 7;:, > will be very small for deep penetration into the medium and it is then that
6E, will become the dominant field quantity. This situation clearly violates the assumptions in
the DWBA.

In the next section, an exact integral equation of the second kind for the fluctuating field
will be developed and attention will be directed toward the Born term in this equation. Using
this term only comprises a DWBA because it assumes that < E, > is known and dominant. In
the subsequent section, this result will be compared to a heuristic based DWBA. [t will be
shown that the heuristic approach leads to what appears to be a form of double accounting for
the average properties of the medium. [n this regard, the heuristic approach is not in agreement

with the Born term from the exact expression for the fluctuating field.

1.2.2.2 An Exact Integral Equation for the Fluctuating Field
The toral field at the point 7, E,(_; ), due to an incident field, L-‘,-(?), and the fields scattered
from objects located about the point 7, £(r), is given by

ey

E(r) + E;(r‘) (1.7)

—_

EQ)

The scattered field due to the presence of the N objects can be written as follows [18];

Er) = LKsEr, + 7)) (1.8)

where L is the three dimensional integral over all space, Le., L = fffd—r; , and the dyadic
operator K y is given by
i

= 2 — = — —_
Ky = —ky T (er, = DSp(ryi QU (r = ry — 7,

(1.9
n=1 o

In (1.9) er,, is the relative dielectric constant of the at#t scatterer, Sn(—r:); 2,) is the support of the

nth scatterer whose centroid is located by the position vector r, SO that

—_

1 r inside 1 n

Sy Q) = Y (1.10)
nooy n . . ,
0 r, not inside [/z

and I, is the volume of the nt scatterer. The dvadic T is given by

-
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T = —pv[l+47

Vo s — T =T + 80 = Ty - Tk (L11)
where P.V. denotes the principle value*, I is the unit dvad, é(+) 1s the three-dimensional delta
distribution, and

gr =1y =7y = exp(—jk, |7 =7, = halF =7 - 7] (1.12)
The variable Q, in the argument of the support function symbolizes the dependence on the
orientation of the n scatterer. Equation (1.9) is general in that it allows scatterer-to-scatterer
variation in the dielectric constant (er,) » the size and shape (V,), the orientation or alignment
(€2,), and the location (r,) . It should be noted that calculation of the scattered field requires
knowledge of the total field inside each scatterer. Thus, substituting (1.8) in (1.7) and then
taking the point 7 inside each scatterer yields NN coupled integral equations for the total ficld
inside each of the N objects. Once these equations are solved, the scattered field at any point
in space can be determined by straightforward integrations. For the random problem, a
somewhat different methodology will be developed.

Substituting (1.8) into (1.7) yields

—

E, = E + LKgE, (1.13)

The total field at any point in space can be written as the sum of a conditional average, < ],

and a zero-mean fluctuating part, éE,, so that (1.13) becomes
<E] + 6E, = E + LK<E, (114

This decomposition on the left side is a bit diflcrent {rom the one usually used and results from
the need to accommodate the following situation unique to discrete object scattering. The
conditional average < E] is an average of the total field with the point of observation of the
field held constant, i.e. the poini of observation is the conditioned variable. Under most

circumstances, the point of obsecrvation is a constant and so the conditional average cquals the

total average. This would be the case on the left hand side of (1.14), e.g. < E] < Ez >,

Furthermore, the conditionally averaged total ficld is the one that is wsually called just the
“mean” or “average” or “coherent” field. Tlowever, it is the right side of (1.14) that gives rise to
a nced for the conditionally averaged total field.  That is, the random quantities in the

expression for /T_-\: . (1Y), are usually the scatterers’ positions (r ) sizes, (17,), and orientations

FAs it appears an (1.11), the P.V. excludes a small spherical volume centered at
r r, — r, = 1}
4] ) :

0L
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(Q,) . The ficld quantity on the right hand side of (1.14) has an explicit dependence on the
coordinates'F;, + _r:,; 7,, locates the centroid of the a* scatterer whilc?_; ranges over its support
V,. Thus, the scatterer dependent terms on the right side of (1.14) may be written as follows:

LEsE, = LKg(r =7y — T) E (7 + 7,) (1.15)

When E(r, + r,) is decomposed into a sum of a conditional average and a zero mean
fluctuating term, there results

Efrg + 1) = <Efryg+71)] + 6E(ry + 1) (1.16)

If both sides of (1.16) are averaged, it is done by first performing a conditional average over all
random variables except —r;, . Such a conditional average of éz;, yields zero because this is the
way 6E, was formed, i.e. <6E,] = 0. The total average of E, thus amounts {0 averaging
< Z:,(_r‘;, + 7,)] over the random variable 7, .

The point of the above discussion is to illustrate the need for using a conditional average
rather than a total average in decomposing E, . If a total average had been used, there would
have been no way of determining what to do about thea dependence on the right side of (1.14).
When using a conditional average it becomes clear what to do both when the point of field
observation is random and nonrandom. In the latter case, the conditional average is equal to
the full average.

Substituting (1.16) in the rhs of (1.14) yields

<E) + 6E = E + LKg<E) + LKy, (L17)
Averaging this equation gives
<E] = E,-+L<1?E<E,]> +L<R—726E,> (1.18)

and subtracting (1.18) from (1.17) leads to the following integral equation for éE;

—_

0B, = L(1-PKs<E] + L(l - PRsoL, (1.19)

where P is the averaging operator, i.c.




At this stage, (1.19) is an exact integral equation for the {luctuating component of the total field.
However, the fluctuating part of the total field is equal to the fluctuating part of the scattered
field. This can be proved by writing (1.7) as

<) + 6E, = E; + <E] + SE; (1.22)

averaging this equation and subtracting the result from (1.22) to give

SE, = OE, (1.23)

Thus, (1.19) becomes

—_

SE, = L - P)Kg<E] + L(1 - P)K<dE, (1.24)

which is now an integral equation for the fluctuating part of the scattered field. The Born term
in (1.24) depends on the average of E,.

The average or mean part of the Born term in (1.24) is thus given by

—_
r

LPRy<E]) = [Ry(r =7, = Tpiry < Efry + 7o) ldr, (1.25)
n=12 .. ,N

which is a well defined quantity.

If all of the scatterers are confined* to the volume V, cquation (1.24) rclates the
fluctuating scattered field in this volume to the fluctuating scattered field at any point in space.
If the point of observation of 6-5; on the left-hand side of (1.24) is taken inside V then (1.29)
becomes an integral equation for 62; (inside V). Solving this integral cquation inside V
subsequently allows the determination of (5—[5‘J outside V through the use of (1.24). The Born
term in (1.24) depends on the fluctuating part of the product of the propagator and the averaged
total field. It is interesting to note that there are no average or effective medium quantities
appearing in (1.24) other than < I;_:,] . The Born term should be dominant whenever < E,] does
not depart too much from free space propagation. When < E,] violates this condition. it then
becomes nccessary to account for the second term in (1.24). For foliage and vegetation in the

frequency range of interest to this study, the Born term in (1.24) should be adequate for most

all cases, 1.c.

*This is equivalent to saving that the position vector 7, n=1, 2. ... .\ locating the centroid
of the a scatterer must lie within the volume I — A, \wacrc A, depends on where the centroid
of the n'ft scatterer is located (within the scatterer).

10




R
/
t
i
J
N
i
|
E
i

®

-— _—

6E; = L(1-P)Ky <E,] (1.26)

Even though this result comes from the Born term of an exact integral equation, it can be
thought of as a distorted wave Born approximation (DWBA) because of the assumption of the
dominant nature of the coherent or mean field [16]. Clearly, the approximation of (1.26) merits
further study primarily because it comes from an exact integral equation.

1.2.2.3 Comparison With Other DWBA

There are other forms of the DWBA that have been applied to foliage. Lang [17,13] has
developed a heuristic form of the DWBA in which the scatterers are immersed in a medium
having the same effective dielectric constant as the mean or average field, e.g.

<ep>, = kIKZ, (1.2

where kg is given by (1.2). The scatterers arc then assumed to be illuminated by < E,] and to
scatter independently of each other. Thus, any multiple scattering eflects included in this model
are contained entirely in the use of (1.27) as the background medium and < E,] as the incident
field. If the analysis technique derived in the previous section is applied to this scattering
situation, the resulting Born term corresponding to (1.26) is

— N =, =
6E, = L(1-P) X K <E,] (1.28)
n=1
where
= ] — = — a— —
Ki = —kpr = DSylrg: Qg = = 7 (1.29)

is the propagator for a scatterer of relative dielectric constant e, buried in a medium having a
wavenumber cqual to Kpy Thus, ?jj is the average propagator for the n# scatterer.

In comparing the heuristic result of (1.29) with the exact Born term in (1.26), there is
only one essential difference and that is the use of an effective background medium rather than
frce space. It may be possible that the heuristic approach comprises a partial summation of
somc of the contributions from the sccond term on the rhs of (1.24); however, this could be
diflicult to prove. On the other hand, the carly and pioncering work of Twersky [4.5.7] appears
to argue against the use of an cffective medium propagator and in f(avor ol the free space
propagator. In fact, the use of an effective medium propagator seems closely akin to double
accounting for the mean ficld cffects. There was not enough time to resolve this discrepancy

between the cxact and heuristic approaches. 1lowever, it is recommended that this point be
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investigated further since the two results lead to different answers and the difference may be
appreciable for relatively thick fcliage layers. A potentially fruitful approach to reconciling the
two results is to try some form of selective partial summation of the second term on the rhs of
(1.24). That is, solving (1.24) via iteration yields

‘5E; = X {L(l—P)?z}m[L(l—P)l?2< El]] (1.30)
m=0
or
SE, = L(1-P)Ky T (- PRg)™<E] (L3
m=

and it may be possible to manipulate this latter series in such a fashion as to derive an
approximate Born term which uses X} from (1.29) rather than K ¢ .

1.3 Rough Surface Only - A Perspective

For the problem of wave propagation through and scattering by discrete random media,
there are a rather limited number of analytical techniques for dealing with this problem [19].
Conversely, when analyzing scattering by randomly rough surfaces, there scem to be a great deal
of diverse methods capable of producing results [20). The key word here is “seem” because, in
fact, many of the methods lead to essentially the same results; the major differences arc with the
starting point and the degree of approximation necessary to achieve the result. In view of this
observation, it would be highly desirable if a fundamental approach could be found which, when
subjected to a hierarchy of approximations, could be shown to lead to a similar hierarchy of
approximate results. The primary advantage resulting from finding such a technique is that, as
the level of the approximation is reduced, there is a guaranteed increase in the accuracy ol the
resulting solution. Consequently, there is a clear reason for pursuing improvements in this
technique because they will result in an improved solution.

The technique that appears to hold the greatest potential for leading to a rigorous solution
to the rough surface scattering problem is the Magnetic Field Internal Equation (MFIE) for the
current induced on a perfectly conducting surface. The infinite conductivity limitation, for the
frequencies of interest to this study, is significant only necar grazing incidence. Appendix A
considers the case when the surface or interface is a dielectric. Essentiallv what happens is that
there is both an electric and a magnetic current induced on the surface. These currents satsfv
coupled integral equations of the sccond kind; the kerncls of the equations are more complicated
than with the MFILE, but the basic equations are the same as the MFIE. These complications
are not unexpected as it is known that the dielectric surface may give rise to effects which are
not observed with the conducting surface. [For example, a Brewster angle phenomenon with the
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coherent scattered field should be possible along with a reentry effect in which the incident field
enters one side of a bump on the surface and exits on the other side. As noted above, the effects
are only significant near grazing incidence and they are very dependent on the imaginary part
of the dielectric constant of the surface. The main point of this discussion is that if techniques
can be developed for the MFIE which are not strongly dependent on the particular form of the
kernel then it should be possible to translate the bulk of the methodology to the dielectric
surface integral equations. As noted above, this topic is discussed more fully in Appendix A.

Our analysis of the MFIE as it applies to rough surface scattering is a continuing effort.
For example, Section 2.1 presents a technique which extends the geometrical optics solution of
the MFIE into the nonzero wavelength regime. However, it seems appropriate at this point to
provide some perspective to previous analytical solutions of the MFIE; that is, to show where
they come from and how they fit in a well-ordered hierarchy of approximations. As noted above,
this is essential if we are to establish the fact that the MFIE leads to successively more accurate
solutions as the input approximations are similarly improved.

The form of the MFIE that is most familiar is the following:

17) = WPV < H@) + @) x [ 1) x V,G(7 = T, l)ds, (1.32)

So

where J; is the surface current density, 7 is the unit normal to the surface, H! is the incident

magnetic field, and G is the free space Green's function
GUr =T,y = exp (= jk,\7 = T )anl7 -7, (1.33)
Equation (1.32) can be rewritten in the following form
TF) = N xHE) + [ [ —N({) X V,G x 7(7;)] an, (1.34)
where

Jo= g+ 2w '

= 2 212
ds, = dl‘l()(l + (5 + Cl)
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and d7;o = dx,dy, The {, = &(/ox and(), = d/dy are the x and y components of the surface

slope. The right hand side can be further manipulated by standard vector identities to vicld

—

7) = 2N xii' + [{(-29,G INT). + 2ING). VOG]}TG;)JF,O (1.35)

]

where
V,GING)« W = V,GINE)-T ()] (1.36)

In operator notation (1.35) can be written as follows:

J =7 +LK.T (137)
where
j; = 2;/.xl_{.i (1.38a)
L=[¢ )d?}o (1.386)
K = (-29,6 [NF). + 2ANGF)- 7,61 (1.38¢)

Integral equations of the second kind such as (1.37) can be formally solved via itcration to vicld

J = KT, (1.39)

n=0

This series can be thought of as a serics of iterates, i.c.

J =3 /" (1.40)
n=0
where
‘7(”1) = (LI\=’o)m./I (141
and the zeroth order iterate SV = J; s called the Born term. The scattered clectrie ficld

resulting from the current / is given, in the tur {icld approximation, as follows:

- = A A — — .
EAR = jkon, GIR kg x ko x [ JAr)exp (jkesrds (1.42)
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where the vector R, points from the origin of the coordinate system on the mean surface in the

A - - ,\ . .
direction k to a distance R, away. Also, the vector k, is defined by k; = kyk. The integral in
(1.42) can be written as

E(R,) = jkgnoG(Rke x kg x [J (r) exp (ks ) exp (ks,« rp)dr, (1.43)
. where », is the impedance of free space and
ks = kg, + k,ZQ
The integral in (1.43) is recognized to be the 2-dimensional Fourier transform of the current 7
r weighted by the exponential factor exp Uks £, i.e.

— A Tl —
E(Rp) = jkgnoG(Roks x ks xFylJ exp (ks 0)]

+ where

Expanding the double curl operation leads to

Fle1= [+ exp (kg «1)dr;.

E(Rg) = jkgnoG(RIFLI | expiiks 0)]

where

p——

_L =J et J(ks",)

b A
is the component of / which is perpendicular to k. Assuming that the iterative series in (1.40)

converges so that the series can be integrated term by term vields |
EARy) = jkpoG(R,) S EU™ (1.49)
m=0
where ‘
Z-'(m) = 1-'2[.7‘1”) exp (/k_,_C)] (145
The above development shows that there are two important clements to the determination {
of the scattered field. [First, the current iterates must be computed from (1.41) and, second, the

corresponding scattered field iterates must be calculated from (1.45). Of course, what raust be
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done and what is acrually done are two entirely different situations and this difference leads to
various degrees of approximation. In the following material, an ordering of most of the classical
approximations will be developed based upon their eflect on the current and scattered f{ield
iterates. The purpose of this ordering is to put these classical approximations into a perspective
which clearly indicates where we have been and were we need to proceed.

The first level of approximation is low frequency in niiture. [t starts with 70) exp(iks &)
as an approximate form of the current and further simplifies this to

70 explks §) = 2H 2 x i’x\,{l + ks, = ki z)c] exp (- jZ;[-F;) (1.46)

where the slopes in 70 have been ignored and the surface roughness is assumed to be so small
that

explitks, = ki X1 = 1+ jlks, = k)t (147)

The other factors in (1.46) come from the form of the incident magnetic field, i.e.

— o

A -
H = Hph; exp (—jkiz(; - jk,-l-r,)

Integrating (1.46) exactly to form E}.O) leads to a scalar Bragg result in the backscatter direction
for the incoherent scattered power {21]. This result follows [rom the fact that -ﬁf) in the
backscatter direction is polarized in the same direction as the incident electric field, and that it
depends on ¢ in a linear fashion.

The next level of approximation is to use an exact form for 70) but evaluate E}O) by
stationary phase techniques so that the result is a high frequency limiting form. This solution
is frequently called specular point scattering [22]. It should be noted that whereas the scalar
Bragg solution results from an exact integration of an approximate form for 7\0), the specular
point result comes from an approximate integration of the exact 79). The specular point result
assumes that (ksz — ki )¢ >> 1, the surface slopes are relatively small, and the surface curvatures
are also small (large rr‘;dii of curvature). The first approximation permits the use of stationary
phase; the second climinates multiple scattering on the surface; the last avoids sharp cdge
diffraction effects.

A final approximation involving only 70 applies to composite surfaces. Such surfaces
have a range of scales which satisfv both the large scale approximation common to specular
point scattering and the small scale approximation to the scalar Bragg result [23]. [ the surlace
can be approximated by a composite surface, then the integration to give I—:Q” can be
accomplished essentially exactly. This leads to the composite surlace scattering result in which

the specular point term dominates around the specular dircction and the scalar Bragg term is
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important at other angles. In addition, the scalar Bragg result is tilted by the large scale surface
slopes. It is important to remember however that the scalar Bragg result shows no polarization
sensitivity.

A summary of what the zeroth order iteration of the MFIE leads to under certain

approximations is given in Figure 1.1. It should be noted that there is no discussion of when

J0) is a valid approximation for the total current. This question can be answered only by using

improved estimates of the current to compute the scattered field. What is done above and
summarized in Figure 1.1 is to show the consequences of (a) approximating 40) and doing the
integration to get 230) exactly, (b) reversing this situation, and (c) using a combination of these
manipulations.

The exact same procedure may be repeated when the next iteration of the current is

included. That is, the current J is next approximated by

7 =79 70 (1.48)
where
0 e
j'( ) = Jl
and

=Lk,

It has recently been shown (24] that a low frequency approximation of A9 + /1) along with
the assumption of small surface slopes leads to a result which when integrated exactly to yield
Eﬂo) + a” gives rise to the vector Bragg result. The vector Bragg result differs from the scalar
solution obtained with /(0) only in that for backscatter, the vector solution shows a polarization
sensitivity whereas the scalar does not. This illustrates the inadequacy of the 79 jterate (or
Born term) in so far as the scattered ficld in the ofl-specular direction is concerned.

The next level of approxxmzmon involves evalualmg all integrations in the high [requency
limit. Thus, when LK . J is so evaluated it leads to — J in the shadowed parts of the surface,
0 on the illuminated parts of the surface, and the possibility of first order multiple scattering
[25]. That is, first order multiple scattering means the retlection of an incidence rav {rom onc
point of the surface to another point. Generally, this first order rav optic multiple scattering is
ignored because it makes the scattered ficld integration very hard to do. That current which
remains is the shadowed current, i.c. A9 + AD. I the integrations needed to compute
E}”’ + Z‘,” are evaluated asymptotically (as ,~oco), what results is the shadowed specular point
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solution. Comparing this solution with the corresponding limiting behavior of E}O) alone shows
that the inclusion of._;(” in this limit gives rise to shadowing.

Finally, if the surfaces under study can be split into both large scale structure ({) and small
scale undulations ({,) so that high [requency techniques can be used to predict the scattering
from the large structure and low frequency methods can be used on the small scale structure

then the surface can be treated as a composite structure, i.e. { = ¢ + & . One can

subsequently show, though not easily [26], that if those parts of A0 4+ AD which depend upon
{¢ are treated by high frequency asymptotics and those parts which depend on ¢, are treated
by low frequency approximations then the resuit is shadowed specular point scattering plus
tilted vector Bragg diffraction. The tilting of the Bragg scattering is by the large scale surface
slopes. It is interesting to note that the sum of only 70 and K1) lead to one of the best
scattering models around, namely, the composite scattering model.

The results of including both 79 and A are summarized in Figure 1.2. In all categories
there is a marked improvement over using 70) only. However, this is particularly so for the low
frequency results where there is a polarization sensitivity not accounted for with 70 only.

The purpose of this section has been to put the various levels of rough surface scattering
approximations into perspective. This has been done by relating the approximations to either
the first two iterate solutions of the MFIE or the subsequent scattering integral calculations.
It has been shown how this methodology can lead very naturally to a hierarchy of
approximations. Most important of all, however, is the fact that the MFIE can generate
improved solutions by simply increasing the order of the iteration. This establishes the MFIE
as a useful means for studying rough surface scattering.

Finally, all of the above approximate solutions are available for the surface scattering part
of the vegetation layer problem. Which one should be used is dictated by the frequency of

interest and the surface roughness statistics.

1.4 Vegetation on a Rough Surface

Section 1.2 and 1.3 detail the techniques that can be used to estimate the scattering from
an isolated patch of vegetation and bare ground, respectively. This section will develop and
discuss a model for scattering from the combination of a layer of vegetation on a rough surface.

Some of the earliest work on this problem proposed using the simple addition of the
scattering cross scctions of the vegetation laver and the rough surface. However, it was quickly
realized that some accounting for the influence of the vegetation laver on the rough surface
scattering cross section was essential. Subsequent attempts to account for the vegetation simply
attenuated the surface cross section by the loss suffered by the cohierent power propagating
down through the foliage and then back up to the foliage air interface. Use of this

approximation led to some qualitative agreement with scattering measurements, but the model
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Scalar Bragg
(No Tilting)

Specular Point

Specular Point
+ Tilted Scalar
Bragg

Figure 1.1 The description of the scattered field resulting from the zeroth order iteration of the

MFIE current, 7(0), coupled with various approximations.
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g

COMPOSITE SURFACE -

Figure 1.2. The description of the scattered field resulting from the zeroth and first order

Vector Bragg
(No Tilting)

Incident Shadowed
Specular Point
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+ Tilted Vector Bragg

iteration of the MFIE current, /0) + /1), coupled with various approximations.
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also raised questions as to why it worked as well as it appeared to and when it could be expected
to fail. Very little of this early work was ever published and most of this information was

presented during informal meetings and discussions.

T

More recently, attempts were made to rigorously model certain subsets of this general
problem (see [13] for a comprchensive list of relevant references). Unfortunately, most of these
attempts chose to model the foliage as a continuous variation in dielectric constant and to thus
F use continuous random media theories as the analytical tools. While this approach did lead to

some insight into the scattering problem, it also raised questions because of the need for
“effective” or “equivalent” parameters in the continuous representation of the discrete random
medium. Lang and Sidhu [13] overcame the limitations of these earlier models by using the
' Foldy-Twersky theory along with a version of the DWBA to model the scattering {rom a foliage
: layer on a flat earth. This was a significant advance because it clearly showed the interaction
between the foliage components and the reflection [rom the flat surface. Unfortunately, it is
not obvious how Lang and Sidhu’s method of analysis could be extended to an arbitrarily
L roughened surface.

The model that will be developed here is very simple in concept but, as one might expect,
complicated in detail. First, the field incident on the foliage is converted, inside the foliage, to
a mean or average field and a zero mean fluctuating field. The mean field is determined by the
Foldy-Twersky theory of Section 1.2.1 while the fluctuating field is based on the distorted wave
Born approximation of Section 1.2.2.1. These two fields then act as incident ficlds on the rough

surface which is approximated as perfectly conducting. The electric currents excited by thesc
fields are computed using the Magnetic Field Integral Equation (MFIE) as discussed in Section
1.3. The next step is to let these currents radiate back up through the foliage. The ficlds
radiated by the surface currents are then acted on by the foliage to give rise to another set of
mean and fluctuating fields in the foliage [27]. These ficlds can be continued into {ree space via
standard techniques such as volume and surface distributions of current or plane wave spectral
methods. If the process is truncated at this point then what has been accounted for is one single

downward and upward passage of the fields. If the process were to be continued, the interaction

of the upward going fields with the foliage should be allowed to interact with the rough surface
which, in turn, would scatter back up through the foliage. If the problem werc to be analvzed
exactly, this process should be continued an infinite number of times. However, there are very
practical reasons for not continuing this process beyond the {irst downward and then upward
pass. The most obvious of these is the computational complexity associated with cach
down-and-up (icld iteration. [‘urthermore, cach itcration will also gencrate the need for higher
order (multipoint) vegetation and surface statistics and these are simply not known. inally, if *
there is an indication that more down-and-up field iterations are necded then perhaps there arc |

simpler techniques available to deal with the entire problem. The single down-and-up ficld
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technique assumes that either the foliage or the surface is the dominant scatterer and that
interactions between the two natural scatterers is small relative to these two dominant efTects.
To a certain extent, this approximation can be checked and this will be discussed later in the
section.

The foliage and the rough ground represent statistically different random processes. [f
there were some degree of correlation between the two, it would be necessary to use conditional
averaging in forming the first two moments of the scattered field. That is, the foliage would be
averaged holding the surface fixed and then the surface would be averaged. This process
requires the use of conditional probability density functions. However, there is no rcason to
expect to a first order at least that there should be any correlation between the foliage and the
surface. In fact we will go further and assume that the two processes are statistically
independent; this simplifies the actual mathematical operations because the joint density
function is just a product of marginal densities. Thus, the averaging over either the foliage or
the surface can be done independent of the remaining random process. However, it should be
remembered that if there is some correlation between the foliage and the surface then it can be
accommodated in the model through the use of conditional probability density functions. This
generality may be uscful in dealing with very high resolution scattering because such a situation
may empbhasize the slight correlations between certain classes of foliage and terrain.

The terrain is assumed to be a perfectly conducting, randomly rough interface, having a
zero mean about the z=0 plane and homogeneous but arbitrary statistics. The foliage or
vegetation occupies the space immediately above the surface and up to an average height of
z=h. It should be remembered, however, that this average height of the foliage is a description
which must be somewhat carefully interpreted. For example, any cohcrent scattering which
results from this average planar height is clearly open to question since the foliage interface, for
coherent calculations, should be modeled as a rough interface. This roughness will certainly give
rise to a very highly attenuated coherent field which can thus be ignored. This is not to say that
there will never be a coherent field scattered from a discrete collection of scatterers; there clcarly
will be such a ficld when the volume fraction of objects approaches unity. However, for a
sparsely populated medium, the existence of a coherent scattered ficld would appear to bc a
modcl anomaly rather than a physical reality.

The ficld incident on the foliage layer is assumed to have the following plane wave form:
/[ = [/’,‘(I}v + /[l(/‘\/l] CXp (._/AI .T) H"‘”
where

i 'i,c'Q + kg kS (1.50)
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Figure 1.3. Geometry for the foliage laver on the rough surface
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and
k,-x = —k, sin §; cos ¢; (1.51a)
k,-y = —ko sin 0; sin ¢; (1.516)
kiz = —k, cos 0; (L.51¢)

The unit vectors ¢, and ¢, denote vertical and horizontal polarization directions;
e = ~sin ¢iX + cos ¢ (1.52a)
and
é\v = —cos 0; cos ¢>i.Q — cos 0; sin ¢>,-f)\ + sin 0,-9 (1.528)

The angles are standard polar (6;) and azimuthal (¢;) angles and they are explicitly defined in
Figure 1.3. As discussed above, we ignore the possibility of any coherent reflection from the
foliage layer. Thus according to Section 1.2, the in-ident ficld is converted to the sum of a
coherent field, < Efd> and a fluctuating ficld, 6Efd, inside the foliage. The average field in the

foliage is given by

< Efd > = Evé\v exp (—jkl-v-7) + E,,S,, exp (—-jk,-h-7) (1.53)
where the directions of ki and k,-h are the same as ;, i.e.
A - /\
kiv = kilk, ‘h /‘ ko

but the complex amplitudes are solutions of (1.2) with p=v or h, e.g.

2 _ 2
ky = k; + 47:{ <ﬁ(/<,, l)]mnmu)da (1.54)
h 0 a

and <fv(/i'\,n /?I-)]m 1s the scattering amplitude of the mih component of the [olinge averaged over
all possﬁblc oricntation angles. s discussed in Section (1.2), the integration in (1.534) accounts
for a sizc distribution ol the m* foliage components. The tact that the average field may have
different wavenumbers or propagation constants for horizontal (h) and vartical (v) polarizations
has been observed in some measurements [1]; however, the effect seems to disappear above
about 800 M.
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The fluctuating field 61—5}d is a solution of the integral equation in (1.19); however, based
on the discussion presented in Scction 1.2.2 it should be possible to use only the Born term in
(1.19) and this is equivalent to the distorted wave Born approximation (DWBA), i.c.

5Egg L(1~ P)K g < Egy) (1.55)

where L is the integral over all space, P is the averaging operator, K T is given by (1.9), and
< Z‘}d] is essentially the average field evaluated at 70. The reader is reminded that a complete
discussion of the terms in (1.55) and the approximations under which it is valid are given in
Section 1.2.2. It should be emphasized that all of the quantities are known and so (1.55) is
computable. There are two additional calculations that need to be done with the fluctuating
field in (1.55). First, it is a primary source of incoherent power scattered back up into free
space, i.e. < Ié-E}d|2>. In fact, in the absence of the terrain surface or for a very thick
vegetation layer this is the only source of scattered power. The second calculation recognizes
that 6_E}d and < I_E}d] are both incident on the terrain surface and they induce currents on the
surface which reradiate back into the vegetative medium.

Within the limitation discussed in Section 1.3, the terrain will be approximated as a
perfectly conducting interface. Consequently, the Magnetic Field Integral Equation (MFIE)
describes how the induced current, 7, behaves on the surface, i.e.

J = 2N xHyy + 2N x [T x V,Gdr, (1.56)

The incident magnetic field Hymay be written as

Hyg = <l + sliy (157
and
<Hy) = ———vx <E 158
izl Joory (] (1.58a)
— ] —— .
Sty = ———3 x 5 1.58
fd Jwotty fd (1.58b)

~ . . . - . . . A . .
follow from Maxwell's cquations. Since < Efd] is a plane wave traveling in the k-direction

through a medium having an average relative diclectric constant < ¢, >p = kfz,,‘k;:- (p = v orh,
{1.58a) becomes
5
— (< £ >/])1/‘- A - -
<yl = e kix < Epgl (1.59)




where 7, is the impedance of free space (yu,le,). The choice of vertical or horizontal
polarization in (1.59) determines both the polarization of < Efd) and <, >p If ncar zone and
Fresnel zone fields are ignored in the calculation of SEfy and, subsequently, é/iry then (1.58b)

can be written as follows;
6Hfd = —r’;k X 6Efd (1.60)

where k specifies the direction of propogation of 5Efd. It is not necessary that % point in only
one direction as, for example it would in the case of a plane wave. The average medium relative
dielectric constant does not appear in (1.60) because according to the DWBA used in (1.55), the
fluctuating field propagates in free space, this point was discussed in detail in Section 1.2.2.3.
It should be noted that all the quantities in the Born term in (1.56) are known.

Substituting (1.57) into (1.56) yields

J = 2Nx<Hpg) + 2N xsHpy + 2Nxf7xvocd?;0 (161)

The total current J is split as follows;

7 = Jf+ Jéf (1.62)
where
af= 2N x < I{fd] + 2 [ 7, of XV Gdr, (1.63)
and
Jsp = 2N x8Hpy + 2x [ Tsp xV,Gdry (1.64)

From (1.63), .I of is the current mduced on the surface by the downward propagating average
foliage field < Heg) while, from (1.64), jéfls the current induced on the surface by the downward
traveling fluctuating foliage field 6Hfd These cquations can be solved by iteration, such as
discussed in Section 1.3, to yield

‘Iaf = LM) (’\ X < Il/d]) (1.6%5
: m= ()
JSf_ s (L\I) ("\" x«il//‘d) (1.66)

m—()

where L is two-dimensional integral over the z=0 plane and
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M= —29,GF ~T)NGE) e+ 2ANE) V,GF = 7)) (1.67)

The quantitics in (1.67) are defined in Section 1.3.
The currents in (1.65) and (1.66) are now taken to reradiate upwards into frce space. The

calculation of the resulting fields can be accomplished via either the exact formula,

- i y' - —_—
Ey = - jTZ—VxVx JJr)GR =1y, , (1.68)

or the far field approximation,
Esu ~jk0noG(R)k xk xf./( rp) €Xp (/k o)d;;o, (1.69)

or a plane wave spectral representation developed in Appendix B. The easiest of these to deal
with is the far-field approximation of (1.69) but, of course, this does not make it correct.
However, there do not appear to be any near-field effects which would be augmented or
magnified by the foliage layer so the far-field approximation wiil be used. The total field

scattered by the surface and up into {ree space may be written as

Etu = Easu + Eé:u (1.70),
where
E = jkoryOG(R)k xk xf ]( ) exp (]k O)d;;o (1.71)
and
Eggy = kg gG(RYksckox f 7:5,(7;) exp (ik,,lgs-ﬂ,)dﬁo (1.72)

The quantity E asu 18 the electric field scattered up into frce space by the rough surface when
illuminated by the average foliage field < ”fd] Eé:u is the clectric field scattcrcd up into free
space by the rough surface when illuminated by the fluctuating foliage field oll,d.

The next step in the process is to let the fields in (1.71) and (1.72) be i-ncidcnt upon the
foliage laver from below. The rcason for doing this is that this probiem can be treated just like
the first part, i.e. the downward passage of the [rce ﬂpacc incident ficld through the folage.

That is, the total ficld in the foliage due to £, and E incident from below can be written as

dsu
follows:
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sf Easu + Eésu) + L? Es (1.73)

This equation is the same as (1.13) but with the incident ficld replaced by ( wsu + Eo;u) We
now develop the standard method of smoothing approach as a means to find the average and
fluctuating upward going fields in the foliage. All averages are over the random quantities in
the foliage and not the surface' averaging over an ensemble of surfaces will be delayed until later

in the analysis. First, E fm (1.73) is rewritten in terms of its average and fluctuating parts, i.e.
<E;f] + 6E;p= Eggy + Eggy + LI?Z<E,f] + Ll?zé_l;‘:f (1.74)
Averaging this equation yields
<Ey] = Eyg + LPKy < Eyfl + LPK3oE; (175)
and subtracting (1.75) from (1.74) gives
SEy = Egg + L(1— PRy < Eyll + L(1 - PKgoEy (1.76)

Assuming for the moment that < Esf] is known allows the integral equation in (1.76) to be
solved by iteration to yield

62; = E:ﬁsu + ZI{L(I - P)k=z}n[ < E;f] + oJu] (1.77)
n=

Comparing the integral equation in (1.76) with the corresponding equation for the first
downward pass through the foliage, i.e. eqn. (1.24), it is noted that (1.76) has the additional
term Eém This, of course, is the field scattered upward by the surface when illuminated by the
downward propagating fluctuating field. Thus to the first pass scattered ﬂuctuatmg field given
by (1.55) must be added the scattering of 6Lfd from the rough surface, i.e. Eo [t should be
noted that both 6Efd and Ewu propagate in free space and not in the average medium.

In order to find the toral fluctuating (ield due to the surface scattered ficlds, < f] must
be determined. To do this, (1.77) is substituted in (1.75) for éLsf and, after regrouping terms,

gives

<Eg) = Fyy + LPKg (L1 = PR g g, + LPRg S 100 = PRy < Byl (79
n=() n=() )

which is the desired integral equation for < Esf]' In order to understand the mecaning and
implications of this equation, it is beneficial to write the corresponding cquation for the mean
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field propagating downward through the foliage. This topic was covered in Section 1.2.1, but
the integral equation for the mecan field was not given. [t is as follows:

<El=FE+ LpfanO(L(l PRy <E] .

where E, is the field incident in free space. Comparing (1.78) and (1.79) shows that the only
difference is the Born term and this is as it should be because the eigenvalues (kp) for the mean
field should be independent of downward or upward wave travel. What this comparison means
is that the average ficld propagating upward from the surface and through the foliage is given,
within the framework of the Foldy-Twersky approximation, by the Born term in (1.78) with &,
in (1.71) and (1.72) replaced by kp (the wavenumber for the average field). That is,

<Eg = EX, + LPRg, RAGIE P)Ks k}”E}m (1.80)
where

—-k . A A - . A s

Egsu = jkonpG(R)koxkyx f Jafiro) €xp (/kpksoro)drlo (1.81)

--k . A A - _a X A

Egey = /kpank(R)ijksx J J(Sj("o) exp (/kpks-ro)drlo {1.82)

As a reminder, < ;I;f] is the upward propagating ficld in the foliage after having been scattered
by the surface and averaged over all possible foliage configurations. A further simplification
of (1.80) comprises taking only the n=0 term in the scries, i.c.

< Esf] =~ Exlz(:u + LPEE;(E}JH (1.83)

This result has a number of interesting features which deserve comment. [irst, the field Z-‘Z;su is
the obvious contribution. It is the field produced by the surface scattering of the downward
propagating field back up into the average medium characterized by the wavenumbers &, p =
v or h. This is why all of the quantitics, except ja-, n Ll.Sl) depend on kp rather than k4, i.c.
[;'gw 1s scattered into the average medium. The current Jafs @S it appears in (1.81), should also
be computed using kp rather than k,, however, such a replucement is necessary onlv when there
is significant multiple scattering on the surface because it attenuates the multiple scattering. In
view of the fact that we have no surfuce scattering theories to deal with strong multiple
scattering, there 1s no point to replacing &, by k[, in computing the surlace current.

The last terms on the rhs of (1.83) 1s deceiving because it appears that we are obtaining a

coherent result from an incoherent field. The fietd £4_ is indeed a scro mean licld as can be

AL/
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seen from (1.82) and (1.66); however, the average of the product of 1?2 ’ and E:/,‘w is not zero.
The cause of this is a highly cooperative effect in which the fluctuating field scattered by a given
object is rescattered by the surface back up to the same object which, in turn, scatters the field
a third time and back into free space. The very unique aspect of this scattering arrangement is
that the total length of the scattering path is a constant regardless of where, in the random
foliage layer, the scatterer is located. This is not true if there is only a single scattering from an
object, such as causes 6E‘fd, or if there is scattering between different objecti This particular

source of coherent scattering is not expected to be large compared to or when the

Ed.fll
randomness of the surface is averaged over; however, there are instances where it might be
important. To the author’s knowledge, this effect has not been previously noted.

Before leaving the upward propagating average field in the foliage, as given by (1.83), we
must get this field into the free space above the foliage layer. If the frequency is below about
400 MHz then there is a potential for a lateral wave existing at the interface because < Z‘;f] is
propagating into a less dense medium and, in this case, the techniques developed by Tamir |28)
should be used to complete the analysis. However, since the frequency of interest to this study
is considerably above 400 MHz, the lateral wave can probably be ignored and the fields can be
continued up into free space through the use of a simple Huygen's source on the z=h plane or
the application of the plane wave spectral approach developed in Appendix B.

Finally, we turn our attention to the upward traveling (luctuating field as given by (1.77).
Truncating the series in (1.77) with the n=1 term yields

—

SEgm Eggy + L1 = PRs(< Eyld + Esg) (1.84)

It is interesting to compare (1.84) with (1.55) which is the downward propagating fluctuating
field resulting form the first pass through the foliage. The field Ej, is the resuit of the surface

scattering 6Egy into the upward direction. The reaction of the foliage components to this ficld
1s given by the term

L1 - PYKs Esy,

and the remaining term in (1.84) is due to the usual interaction of the average ficld with the
scatterers such as in (1.55). The important point to note is that the effect of an incident
fluctuating ficld is twofold: it contributes by itself and by interacting with the scatterers.
Substtuting (1.83) into (1.84) viclds

= = = -
Sy Egy + L0 = PRg Ly + LPRE, IS + Esg) (1.85)
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The interesting point about this result is that Sy includes ficlds which propagate in freec space
and fields which propagate in the average medium up to a particle and then they are scattered
into free space.

1.4.1 Summary

This section has been concerned with the development of a model for the ficld scattered
by a foliage or vegetation layer on a rough surface. Emphasis has been placed on the foliage
aspects of the problem because they are the most difficult to properly account for and the
assumed statistical independence of the foliage and the surface permits dealing with the surface
averaging at any point in the problem. The analysis is based on the way in which a foliage layer
converts an incident field into a coherent or average field and a zero mean fluctuating field.
We use this particular decomposition to track the field down through the foliage and onto the
rough surface. In the processes of doing this, we determine the field scattercd by the foliage
components back up into free space. This is the field that would exist if the foliage depth were
infinite.

The integral equation for the current induced on the rough sur‘ace is solved by iteration
and the fields rescattered back up into the foliage layer is expressed in terms of a standard
diffraction integral. The source fields for the up-going problem included both coherent and
incoherent terms in contrast to the down-going problem which had only a deterministic ficld
as the source. These fields led to some additional interactions not present in the down-going
problem. The net results were double pass average and fluctuating fields. The {luctuating {iclds
could be continued directly into the space above the foliage layer because in the DWBA they
propagate in free space even in the foliage layer. The average or coherent up-going ficlds
require a Huygen's source or a plane wave spectral decomposition at the foliage-air interface
because they propagate in an average medium while inside the foliage layer.

In view of the volume of equations developed in this section, it is useful to summarize the
important ones. The results have been left in terms of field quantities and no surface averaging

has been undertaken.

The fluctuating field scattered by the foliage components on the downward passage of the
incident field is given by

OL/(] = [L({] - /’)/?: < I/d] (1.56)

where L is the integral over all space, P is the averaging operator, f: is given by (1.9), and
< I:’fd] is given by (1.53) with 7 replaced by 7:) This field, 5Ly is valid in all space above the

rough surface.
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The fluctuating field scattered by the through-the-foliage passage of the surface scattered
field is given by

SEyf = Esgy + L(1 = PRy(Eggy, + LPRy Eigy + Esg (1.87)

where an is given by (112). E{{m 1s given by (1.81), I?Ek is gi.ven by (1.9) with k, replaced by
kp as given in (1.54), and Egsu is given by (1.82). This ficld, SEsf is also valid in all space above
the rough surface.

Finally, the average or coherent ficld propagating up through the foliage from the rough
surface is given by

< Esf] = —:I;Ju + LP?ZkE.gsu (1.88)

This field is valid only in the foliage layer and a Huygen's source or a spectral decomposition
is needed to continue these fields into the space above the foliage (see Appendix B).

The above relationships are the primary results of this study. It is recommended that they
be used to develop numerical scattering results which can be checked against measured radar
data.
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Appendix A

Integral Equations For Scattering From Diclectric Surfaces

When trying to determine the electric current induced on a perfectly conducting body or
surface, there are three integral equation formulations that are familiar. The first is an integral
equation of the second kind called the Magnetic Field Integral Equation (MFIE). The second
is an integral equation of the first kind called the Electric Ficld Integral Equation (EFIE).
These equations are based on the discontinuity or continuity of the tangential components of
the stated fields on the conducting boundary. A third equation is of the first Kind and it results
from the requirement of zero total field inside the conducting medium. Of these equations or
formulations, we have chosen the MFIE because a formal solution by iteration can always be
developed. In fact this was done in Scction 1.3 and the significance of the first two itcrates was
discussed. Convergence of the iterative series is always a potential problem but there is also the
possible solution by partial summation methods. This is why we favor equations of the second
kind over integral equations of the first kind.

When the surface becomes an imperfect dielectric or a lossy conductor, there are many
possible ways to describe the field scattering problem. A good discussion of the possible
formulations is given by Jones.* In addition to volume and surface integration formulations,
he discusses the use of integral equations developed from the Leontovich impedance boundary
condition. This latter formulation is approximate but very attractive because one can deal with
either an electric or a magnetic current in a single integral equation. There are two diflicultics
with the technique. First, the technique is approximate®* and its ability to describe scattering
from arbitrarily roughened surfaces is as yet unknown. Second, the actual resulting equation
is an integro-differential equation in that it involves the unknown current and its derivative.
For these reasons, integral equations based upon the impedance boundary condition do not
seem to be suitable to the random rough surface problem.

In searching for integral equations suitable for describing the induction of currents on the
dielectric interface, we were guided by one primary condition. This condition was that the
equations be sufficiently close to the MFIE that we could use MFIE-based mcthods to dcal
with the diclectric interface. That is, we did nor want to deal with the dielectric interface as a

fundamentally new and aifTerent problem. A number of formulations were investigated and the

* Jones, D.S.. Methods I Electromagnetic Wave Propagation, Oxford Press, pp. 887, 1979,
**  Wang, D.S., “Limits and Validitv of the Impedance Boundary Condition on Penctrable
Surtuces”, [EEE Trans. Antennas & Propag., AP-35(4), pp. 453-457, 1987.
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one developcd by Muller*** was selected as the most suitable. In this approach Muller derives
coupled integral equations of the second kind for the electric current J; and the magnetic current

K. The resulting equations are as follows;

74r) = ( +l) ) + (#r2+1) AE STV )Gy — ¥ ,Gds,
r
k — —_ —
jﬁn(r <[ (K TGy = e, G + k3 LK, (7 « 9,V G, — ¥ ,Glyds, (Al
0 Hy,
k() = ey ) ) + ™ il)n(r)fo rox[¥,G, — ¢, ,G1ds,

k — _._h
+ r———(l e n(r )xf{ )[Go ~u5, Gl + k, Z[Jj(ro) V,v,G,~v,Glyds, (42)

where ¢, and u, are the reclative permittivity and permeability of the lower medium,

Mg = JHolt, 18 the characteristic impedance of free space, k, = 2/, k = k, /1%, , and

Tt = Axil’ T E'xa (A43)
G, = exp (—jk |7 =7 lyjarl7 =7, (Ad)
G = exp (—jkl?—al)/%l?—;;l (45)

The operator ¥V, is the conventional three dimensional gradient operator evaluated on the
surface.

Of particular note with these equations is that they are sccond kind integral equations and
they involve only the unknown currents and not their derivatives. It is only necessary to solve
(Al) for JS and JS and (A2) for l_k}x and Ksy because the currents must be tangential to the

surface. That is, n 7= and 7 +K, = 0 so that

N

4

and

Ki, = Sxke = SRy (A7)

-

= Muller. D.. Foundations of Mathematical Theory of Llectromagnetic W... _,, Springer-Verlag,

pPp. 1969,
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where (. and Cy are the X and y components of the surface slope. Thus, (Al) and (A2) can be
rewritten as a matrix integral equation of the second kind for s sz, st and Ksy. While the
increase in dimensionality relative to the conducting interface case is not insignificant, it docs
not cause any fundamentally new problems. The major increase in difficulty comes from the
need to deal with the second derivative of the Green'’s functions at the source point. Ilowever,
this is also is not a fundamentally new problem.

The point of the above discussion is to show that the penetrable rough interface problem
can be dealt with using a set of equations that are very similar to the MFIE describing the
conducting interface. This means that if techniques can be developed to deal with the MFIE
which are not tailored to the very special form of the kernel of the integral equation then they
can also be applied to the penetrable interface also. Of course, special kernel dependent
techniques can also be translated from one problem to the other as long as both kernels have
the same property. In summary, it is the similarity of the MFIE with (A1) and (A2) which
justify our emphasis on developing analytical techniques for solving the MFIE.
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Appendix B
Continuation of the Coherent Field Into Free Space

Section 1.4.1 summarizes the various contributions to the scattered field in the region of
space above the foliage layer. These contributions comprise coherent and fluctuating fields and
the latter present no difficulty because they are easily continued into free space (see the
discussion in Section 1.4.1). However, the coherent or average fields propagate, when in the
foliage, as in an average or effective medium. This medium is characterized by the relative

dielectric constant ery where

e’p = /cpzlko2 p=vorh (81)

When these coherent {ields strike the foliage-air interface, there will be reflected and transmitted
fields. The reflected field is ignored because the dielectric contrast between free space and the
average foliated medium is not very significant. However, a proper accounting for the change
in medium must be undertaken for the transmitted field.
The average incident field at z=h, coming up through the foliage, is given by (1.88), i.e.,
3 ok = Tk

< Esﬂ = Egy + LPKEkEésu (B2)
The k superscript on the fields and the k subscript on the operator 1?2 indicate that the medium
1s characterized by the wavenumber associated with the average field in the foliage medium.

We now have to continue this field into free space above the foliage. It is well known* that the

fields above the z=h plane can be determined from the spectral representation

<E(r 2] = @0 2fF k) exp (=jxlz—h] - jk, )k, (B3)
where
2 - = 2 = =
k2 =k kg2 K2k k,
K = (B4

P 2172 o 2
—jlky o Ky = k) / keoky >k

and dk, = dkxdky’ ky = k“.’r\ + kf Lquation (B3) represents the average ficld above the

— —

foliage as a superposition of plane waves whose complex vector amplitudes are given by #(k).

* Collin, R.E., Antennas and Radiowave Propagation. McGraw-11ill, New York, 1988,
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Since < E (7,'2)] satisfies Maxwell’s source free equations, we must have V.< £ (_r;, 2] = 0.
This implies that all the vector components of F arc not independent and, in fact,

(k, + x8) F =0

or
(kyFy + K F,)
Fz = - _K—.yy_ (BS)
The x and y-components of -1::, denoted as
F, = & + Fp, (B6)

may be determined from (B3) by setting z=h and taking the inverse two-dimensional Fouricr
transform of both sides to yield

Flk) = [ < Efr;,z= )] exp (k, r))dr, (87)
In (B7)
<Efrnz=h] = <Egfz=h1k + <Efnz=h) (BS)

is taken to be the x and y components of the field in (B2); that is, the upward traveling field in
the foliage laver. Thus, (B7) can be written as follows;

Fik) = [ < Esj(_r;,z=h)] exp (k, --r;)d_r; (B9)

When the point of observation is sufficiently far from the illuminated area on the interface
at z=h, the integral in (B3) can be asymptotically evaluated to yield

< E(rpz>>HR)] ~j2k, cos 0,G(R)F (— ks) (B10)
where
G(R) = exp (= jk R)4nR (BN
and
ks, = =k sin0; cos ¢ % —k, sin 0 sin ¢ (B12)
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The angles 6, and ¢ are the polar and azimuthal scattering angles while R is the distance from
the top of the foliage layer to the point of observation. In this limit, all we nced is the
two-dimensional Fouricr transform of the total average ficld at z=h. In terms of the parts of
< E;f], as given by (B2), the overall process of getting from the current on the rough surfacc up

through the foliage and into free space is a bit more involved.
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Appendix C
The Conversion of Fields Into Scattering Cross Sections

While the fields obtained in the main body of this section are fundamental quantities they
are not the most uscful to a radar engineer. For incoherent radars and even most coherent
radars, the characteristic of primary interest is the scattering cross section of the terrain. This
. quantity is related to the second moment of the scattered field so it is determined by the
fluctuating component of the scattered field in all directions except the specular direction. In
the specular direction, the scattered power comprises both coherent and incoherent parts
although the coherent part is frequently negligable. If the coherent power is not negligable, it

gives rise to a range-dependent scattering cross section.
F With scattering from bare ground, the cross section of interest is the scattering cross
section of the surface per unit scattering area or ¢° . This normalized monostatic cross section
is determined from the fluctuating part of the scattered field as follows;
#*pq lim @R < |6E,+ §1%> || E1%4) (1)

A— oo

where R is the distance from the radar to the midpoint of the illuminated arca, A is the
illuminated area on the surface, and E; is the incident field. The subscripts p and q denote that
the polarization p is transmitted while the q-component of the backscattered field is sampled.
This normalized cross section depends on only two radar parameters, namely, the frequency and
the polarization.

The normalized cross section ¢° is adequate for bare surfaces and surfaccs having
vegetation layers which are small in depth compared to the range resolution of the radar.
However, when the foliage depth exceeds the radar range resolution, the surface scattcring cross
section should be replaced by a volume scattering cross section. That is, instead of (Cl), the
following volume cross section should be used;

a;qﬂ’moo{%kﬂ|a§.$|2>/|a|2xq ()

V—co

where V is the illuminated volume and R is the distance from the radar to the midpoint of the
volume. [t should be noted that just as (Cl) assumes completely incoherent surface scatter so
docs (C2) assume completely incoherent volume scatter.  That is, under the complete
incoherence condition. cither a°pq.-1 or o};ql/ (whichever is appropriate) can be used in the
conventional radar cquation for the target scattering cross scction to give the power
backscattered by the terrain.
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As summarized in Section 1.4.1 there are essentially three fields to consider when dealing
with the scattering from vegetation covered terrain. The first field is due to scattering by the
foliage of a field incident from free space. This field is a fluctuating field in that the foliage layer
is assumed to be so large in terms of a wavelength that there is essentially no coherent
backscattering. The other two fields are the coherent and incoherent fields which have
propagated down through the foliage and have been scattered by the surface back up through
. the foliage. Of these three fields, the two of most interest are the fluctuating field scattered by
2 the foliage on its way to the surface and the fluctuating field scattered by the surface back up
through the foliage.

Scattering of the free-space incidence field (propagating down to the surface) by the foliage
is described within the distorted Born approximation by (1.86). The mean square value of this
' quantity may be written as follows;

bt 2 = - = - = - = -
<l6Eyl®> = <LRg<Eg)-LRs<E)’ > — <LRg<Eg><LRg<Egl>  (CY)

@

If the point of observation is sufficiently far removed from the scattering region, the far field
approximation for the Green's function in (1.11) may be used to vield

= N
3 2 . A —_— -— A A
Kem koa(R) T (ery =Dy explikoks - (o + TI(1 = ks ) (C4)
n=
where ;‘\s denotes the direction of the scattering observation. Rewriting (C4) as
KE = kog(R) El Qn(ro + rn)
n=

permits the following expression for the first term on the right side of (C3);

2
= oy = - _* k
LKZ < Efd] . LK£ < Efd] = ( 4"0R n_ ILQH(I' +r ) < Efd(’ + rn)]l
kg 2 IV N
+ ( 4sz = LQn(r + rn)< Erq (r + )] E LQm(r + rm) < Efd(r + 7] (CS)

m#£n

What (CS) does is to separate out the N product terms which contain like clements. Assuming
that the scatterers arc independent of cach other, an assumption which is consistent with the

distorted Born approximation, an average of (CS5) vields

k, T U, SO
< LKg < Egg «LRg < £y A > x= L N[ < LQry+ Ty < Egg(rg + 1]l “n(ry)dr,,
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2
+ o 2N = UM L < Oy + 7] < Bl + T Ty (Ce)

where p( ,» is the probability density function for the location of the scatterers, symbolized by
the vectors 7, n=1.2,..,N. As N— oo, the second term on the right side of (C6) goes to the
negative of the second term on the right side of (C3) so they cancel and this leaves

2
<l6Eyl%> =(—) 2N [ < 1Ly + 7)< Erg 7y + 71| Lol o)

The <.] brackets inside the integrand denote a conditional average over scatterer size, shape,
orientation, and dielectic constant.
Substituting from (C4) and simplifying, yiclds the following result;

K2
<|65/d|2> ) N <(er, -0 ff [1—(k5-$fd)2]<5fd(7;,+7;,)]<Efd(r{, +7,]
< V >
e pr) explikoks 7y~ 7 Vidrpdry dry (C3)
where

< E}d] = <Egley

and < ¥, > is the average volume of a scatterer and shape of a scatterer. [or plane wave
illumination of the foliage layer, the average field in the layer is given by

< Efd(’ +7 )] = E;exp[ —/k . (”o + ’n) = jkplzp + 2] (&)
where
- A
kij=k; % + k,‘y}\ (C10)

with kix and k; given by (1.51a) and (1.51b), and kp is the propagation constant of the average
medium given by (1.54). The average ficld has its transverse (to z) wavenumber cqual to k,-l in
order to be in phase svnchronism with the free space incidence ficld across the upper average
boundary (£ = h). Substituting (C9) in (C8) viclds

-

A
<|‘scfd| o R) N <(er, N A e .,fd)]lfl up[/(k, —k{) (Fo, =T )

V\
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“Pr«_l

* § [ e —
+ jks (20 = 3 ) = tkoZo = kn2 ) = 2kpzylolrp)drodr g dry, (C1

where the conjugate on kp=kg— jklg is necessary because the propogation constant for the
average field may be complex. (C11) may be rewritten as follows,

2.
2 ko' 2 2 2 A A2
<8l > = (20" N < (r, =0 > G171 [ (1= (hse 2]
<V;>
._. - — . — 2 { -_— s
«expLitks, = ki) + To, + ks, = kp)2oldr, ) “ exp ( -Zk‘;zn)p(rn)drn (C12)

The integral over < ¥;> has the same form as the scattering pattern of a scatterer of volume
< ¥, > and supporting an internal ficld of the form in (C9). Thus, with

— — A — — — —
Plki + k2 kg) = 1{ (1= (kg Qfd)Z] expitks, = ki) + To, + Jks, = )251dr, (C13)
<¥Ve>

(C12) becomes

2
2 ko 2 20 g A2
<|(5£de >= (77 N<(e,-n—l)2)>|E,-| IP(k,-'+kpz;kj)| (C14)

« [ exp (=2kiz,)p(r)dr,

If the scatterers are assumed to be uniformly distributed about the volume ¥ = 4.4 where h is

the depth of the foliage layer and A is the area in the z=0 plane (sec Figure 1.3) then

o Udh 7, in ¥V s
r,) = —
7 0 r, notin V

n

and (C14) becomes

2
2 ko 2 2 2ip s LA T2
< IoEde >= (=) N<ler, =D )> | El IP(k,-l+kp‘_, k)l

| ,
P {1 —exp( —2/<;,lz)]

20

Substituting this into (C2) vields the following result for the scattering cross section per unit

scattering volume;:
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4
v k 2 - =12 ' i
o’ = 1V ;r <(er, = 1)"> IP(k,-l+kp9;kJ)| (1 —exp(-Zk;,h)]/kah (C16)

If the scattering amplitude is normalized to its maximum value, i.c. < V>, (C16) becomes

4
k —_ —
v %o 2 2 2
p =71;r—< Vs><(°r,,_ > IP(kit+kpz;kJ)/< V,> I

o v L1 = exp( ~2Ugh)]/(2ksf) L)

where v, is the average fractional volume occupied by the scatterers or

ve=N< V>V (C18)

This result differs from what would be obtained with previous results in the appearance of the
factor Zk;,ln That is, previous results would erroneously replace this by 4kl",h.

A consequence of the sparse scatterer assumption is that (C17) very nearly splits into the
product of two distinctly different factors. The first factor, with the exception of its dependence
on the propagation constant of the average medium, is a function of the properties of a single
average scatterer only. The other factor depends on average medium parameters only. Since P
or the scattering pattern is the only function in (C17) which depends on the scattering direction,
this shows that the “scattering pattern” of the ensemble is determined largely by the scattering
pattern of an average scatterer.

The computation of the normalized scattering cross section due to the fields which
propagate down through the foliage strike the underlying surface, and then are rescaticred back
up through the foliage is considerably more difficult. This is due primarily to the fact that there
are essentially three random scattering processes occuring in this situation. Equation (1.87)
gives the weak volume scattering approximation for the fluctuating field described above, e.g.

O = % =% =
SEyf = Eggy+ L(1 — PYKg(E gy + LPKgEsgy + Es0) (C19)

Esy is the field scattered into free space by the rough surface when illuminated by «SE}-d. The

— —

term L(l — I’)I?EEésu represents the fluctuating field scattered by the particles when supporting
the ficld £

O

lluminated by < Ejd >. The term L(I - I’)I?Ef/(j_m

when supporting the ficld E{;m . Finally, the term

E{jm is the ficld scattered into the average medium by the surfuce when

—

is the fluctuating ficld scattered by the particles

L - MRSLPRs Fy,
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represents a double scattering of the fluctuating ficld Esy, and it is not significant compared to
the other terms in (C19) when there is a sparse population of scatterers. Thus, (C19) can be
reduced to the following;

(5Ef ~ Eé.\‘u + L(1 — P)[\z{ asu T Essu (C20)

Assuming that there is no correlation between these various ficlds and recognizing that
each are zero mean quantities results in the following expression for the mean square value of
OEir

< 16EA% > = < | Esg|? >+ < |L(1 - PRgEpg ) * >

+ < |L(1 - PRsEsg, )% > (21

The first term on the right of (C21) is due to surface scattering. After considerable algebra, it
may be reduced to the following form;

12 """ YIS <[ = (kg isp™Vsfr 78 )

< | E&su

.+ exp [/k r . r ‘)]> dr, dr, (C22)

where 5, is the impedance of free space, -_’:Sf is the current induced on the rough surface by the
downward propagating foliage field SEry (and satisfies equation (1.64),

dry = dxdy,  dri = dydy

A —_
and jsr denotes the direction of Jgr This result can be reduced to a surface scattering cross
section through the use of (Cl1), e.g.

22
kon AN D —_
0° = (—2 "2 y =) < U= ks e jsp Wsfrddsfrs )
41:‘5'
. e‘(p[/ko T ( G ry )]>dr(jdr ;s (23

This 1s about as far as this formulation can be taken without a specific form for the current.
However, it must be remembered that the average in (C23) involves an average over the random
propertics of the surface and the random properties of the discrete scatterers including their

positions. The .4~ factor in (C23) will be cancelled by onc of the integrations over x, and r.
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For the second and third terms in (C20), the following relationship developed in an earlier
part of this appendix is useful;

2
= — k A
<ILQ-PKE 12> =(40R)2<("n")2>Nf [ <= (k&4
" <Vi>
— Ja—y * _, — A — — -
cE(ry+rp)E (p, +1,)> explikpks e (ry— 74 )1dr,dr (C23)

The averaging in (C23) inside the integral is over the random positioning of the scatterers (for
the upward traveling field), the random surface, and the random locations of the scatterers for
the downward traveling field. The form of (C23) suggests that to a good first approximation
the second and third terms in (C20) give use to a scattering cross section per unit scattering
volume similar to the one in (C16) but modified by the random surface effects. [or example,
the second term on the right of (C20) gives

4

k 2 - - 2

o“;’“z—ﬁ< Vi><(er,~ 1)" > IP(ks,+kp'z\; k)l < V> |
« v c[1 = exp( =2k/)1/(2kcp)} S gy (C24)
while the third term yields
K2 - - 5

"rSsu x —ﬁ< Vi>< (srn—l)2> |P(k5t+kp9; k)l < Vs> |

. {vc[l ~ exp( —ZkM/(Zk;;}z)}Séw (C25)

where

2
Ky

-
" A A — —
Sa.su = —-A—Off < [l - (kS 'jaj)zl'laj(rj)‘,*a](r.f, )

A _— s —_
. exp['jkokjl . (r-‘t -r ‘;t ) +jkp(C -] > dr,Sdr ;s (C26)
/\2 2
. )}’ A /\ 2 —_— —,
Sosu= __(:1_4 ff < [ = (ks *Jsp ]'ldj("s)'/“i_/("s )

—_
r

A — —s
cexpjk kg o (rg—~rg)]> drsldr A;( (€27
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Of course, the averaging in (C26) and (C27) must include not only the random surface but the
discrete scattercrs as the ficld is scattered down to the surface.

To the level that has been developed above, the effects of a random foliage laver on a
random surface may be described by a scattering cross section and two volume cross sections.
It should be remembered that no coherent fields reflected from the surface have been included.
Clearly, there is much work to be done on this problem. For example, one of the things that
should be done next is to use some classical approximations for the surface current (such as
physical optics and perturbation) and carry the above calculations through to completion. This
would certainly give a better feel for the relative importance of the various effects above.
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2.0 Asymptotic Surface Scattering

In Section 1.3 we reviewed a number of approximate methods for dealing with surface
scattering and their relationship to iterations of the MFIE. Using these itcrates along with
asymptotic techniques to determine the scattered field provided further insight into the
limitations and capabilities of the iterative approach. However, the iterative approach is not
necessarily the one to use to improve on known asymptotic results because such improvements
may possibly comprise the partial summation of an infinite number of iterates. There are other
methods for extending asymptotic results and the purpose of this section is to apply and develop
one such technique. These asymptotic extention methods generally augment iterative solutions.

2.1 Luneburg - Kline Expansion for the Surface Current

2.1.1 Introduction

One of the few scattering properties that are known about certain classes of rough surfaces
is how they scatter electromagnetic energy in the high and low frequency limits. The caveat
“certain classes” is necessary because even in these asymptotic frequency ranges, there arc some
surfaces which are not amenable to classical analytical techniques. For these surfaces or more
general ones, there are problems with existing theories or models when the frequency of interest
1s between the low or high asymptotic limits [{]. The problems are not with a lack of models
but with a good understanding of the limitations of the models. For example, there has recently
been some very good work appear on a phase perturbation approach to rough surface scattering
(2, 3]. This Rytov-like method has shown promise of extending the range of conventional power
series-like field perturbation theory to the point where the rms surface roughness is the order
of an electromagnetic wavelength [4]. Of equal importance, however, is the fact that some of
the advocates of this approach have very carefully studied the validity of this method by
applying it to deterministic surfaces. This type of validation analysis must be done if the
method is to be useful as an engineering tool.

Phase perturbation is essentially a low frequency method whose upper frequency range has
been extended by partial summation {3]. This approach of extending a low frequency method
into higher frequency ranges is fairly common. It is based on the fact that most low frequency
techniques do have higher order “terms” which can formally be derived; some of these terms can
also be computed. The problem with such extensions is that it is never quite clear when the
higher “terms” converge and when they give mcaningless results. Little, if anv, work has been
done in the rough surface literature on extending high [requency solutions into lower trequency
regions. llowever, a basic technique for doing so has existed for a number of vears; that is, the
Luneburg-Kline (LK) representation for the field scattered by a large object (5], The classical

Luneburg-Kline (LK) representation is a series in powers of the electromagnetic wavelength (or
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inverse powers of the electromagnetic wavenumber) for the field scattered from a body. The
zeroth order or wavelength independent term corresponds to the geometrical or ray optics
prediction for the reflected field. This term depends on the curvaturc and the reflection
coeflicient of the surface at the point of reflection (the so-called specular point). The term that
varies as k;‘ also depends on these same quantities but, in addition, appears to ve sensitive to
the distance from the specular point to the shadow boundary [6]. This distance dependence
indicates the nonlocal nature of the first wavelength dependent term.

Lee [7] has recently obtained the k;l coefficient for the scattered field and the current on
a perfectly conducting convex body. This was a significant result but it was a bit too restrictive
for application to the rough surface problem. For example, Lee’s solution must be augmented
by possible muitiple reflections on the surface, the presence of a creeping wave where the
incident field just grazes the surface, and any possible edge diffraction where the surface has a
relatively sharp edge-like behavior. In addition, the solution obtained by Lee was very
complicated from an algebraic point of vicw and involved surface characteristics whose statistics
are not necessarily well know.

Thus, with an eye toward possibly generalizing Lee’s results and also obtaining more
insight into the L-K approach, an alternate methodology was developed [8]. First, rather than
expanding the scattered and incident fields in L-K series and then applying the boundary
conditions to obtain the expansion coeflicients, the surface current induced on the surface by
the incident field was expanded in an L-K series. This expansion was used in the Magnetic Ficld
Integral Equation (MFIE) to gencrate a hierarchy of integral equations for the expansion
coefficients. This sequence of integral equations exhibited some rather interesting propertics.
First, it was recurrsive in that knowledge of the nth integral equation solution determined the
n+ | integral equation solution. Second, the “source” or Born term in these integral equations
depended entirely on the asymptotic evaluation of a known integral in inverse powers of k.
Finally, and most interesting of all was the fact that each integral equation could be solved as
they were all just like the equation obtained by iteratively solving the MFIE in the high
{requency limit.

There were two immediate consequences of this work. First, it was found that the L-K
representation for the current, even though forced to satisfv an exacr integral equation,
produced a zero current on the part of the surface shadowed from the incident field. That is,
even the higher order terms in 14, were identically zero in the shadow zonces of the surface.
Although it is not directly obvious why this is the case, it 1s apparent that since the L-K
representation ts asvmptotic, it fails to converge to the value of current which is correct yor il
Jrequencies. Thus. in the shadow zones of the surface, the L-K representation is valid in the
optical limit only. This result, in itsclf, is significant because it is the (irst time that a limitation

of the L-K representation has been obtained via an exact analvsis. A sccond major result of this
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work was to show that all the L-K expansion coefficients could be determined from the behavior
(as a function of &, ) of a two-dimensional integral of known functions. Although time did not
permit the evaluation of this integral, there are techniques [or doing so [9] and it is suggested

that this is a useful avenue for future work.

2.1.2. Analysis

The problem to be addressed here is the determination of the electric current density js
induced on the surface z= C(—r;) by an incident magnetic field Hi. The surface z= C(_r;) separates
free space (z>¢) from a perfectly conducting medium (z<¢). The unit vector I?,- specifies the
direction of travel of the incident field. The electric surface current density 75 must satisfy the

Magnetic Field Integral Equation (MFIE) as follows;

—

J

() = 0 HT) + 20T Gl = Ty)ds, 2.1

In (2.1), A(r) is the unit normal to the surface at the point? =7; + 5(7;)9 and is given by
— )
A =[-¢ R -¢f + 20+ &+ ' 2.2

where {, = {/ox end ¢y = 3/dy are the X and y surface slopes at the point 7 on the surface.

Gir ~ _r;) is the free space Green's function, i.e.
Gir =7, = exp(—jko|7 =T, l)4=l7 = 7,1, (2.3)

and V, is the conventional three-dimensional gradient evaluated on the surface (z = ¢ and
zy = {,)- Noting that the area integration over the surface can be converted to one over the

z=0 plane through
dsy = (1 + 2 + HlI2 dr;,

where d7;0 = dx,dy, (2.1) can be rewritten as follows;

Ty = 2Vl + AN [T ¥ 617 =Ty (2.4)
where
o= - = 2 v 112
‘/(r) = J((" )(1 + ':x + S}y) (25)
and

o
—

-,

W\ ]

i J

19

I\ J




. s

N= -t f—gf 42 (2.6)

lf7(7) can be determined from (2.4), the scattered field can be found from the following integral

expression;

H'R) = Vx[1 F)GUR =7 |)dr, 2.7

As a preparatory step to introducing the Luneburg-Kline expansion, the k, dependence

introduced by the incident field is removed. That is, with

J@r) = L(r) exp (—jk;+7), (2.8)
HIF) = & exp (=jk;+T), 2.9)

and /; a constant, (2.4) may be rewritten as follows;
LF) = 2N xhy + 2NV x [ Liry) xV,G(I7 =7,1) exp (i » 67 )y (2.10)
where A7 =7 —_r;. The purpose of (2.8) is to remove the known high frequency behavior or

dependence on k, from the current. That is, as k,—~oo it is known that L (r) is independent of

k, The modified current L (r) is expanded in a Luncburg-Kline series, i.c.

- G
[f)= s 22 ), 2.11)
n=o kg

where the vector expansion coeflicients jn(7 ), n=0,1,..., are independent of the clectromagnetic
wavenumber k, (2.11) is next substituted into (2.10) and it is assumed that term by term
integration is permissible* so that the following results;

T Jnlr g " = 2N xhy + 2N x T k" [ 1) xV oG exp (k; « &7 )y (2.12)

n=0 n=

In order for (2.12) to be satisfied, the integral term must also have a Luneburg-Kline expansion.

That s, 1f

* This assumption is tantamount to requiring that the L-K scries be uniformly convergent over

7;) e ( —oo. on); a requirement that is probably not satisfied.
(
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Tolr ko) = [ Jnite) X V,G exp (jk; « AF )dr,
then it may be written as follows;

Tn(?v ko) = 2 Tnm(r)/kgn
m=0

(2.13)

(2.14)

where the an expansion coefficients are independent of k,. Combining (2.13) and (2.14) yields

Tho + k"l + "22 + = [jigry) x V,GU Ar ) exp (jk; « AF ydry,
(4] k
(4]

so that the vector expansion coefficients can be determined as follows;

Tro =, lim L inlre) x V.Gl AT 1) exp (k; » A?)d?}o.
0~

T . =
nl ko—’oo

k, [ S in % V,G exp (jk; + A?)d?;o - Thwo ]

- . m| = TS m=1 T”P
Tam 1 hﬂloo ko' | [ inx VoG exp (jk; « Ar )dr’o - pEO 4
0 = 0

Substituting (2.15) into (2.12) yields

,E,O j,,(?)k;” = 2N x [ h + ’EO mEOT"m(?)k;n—m]

so that equating like powers of k, yields

—_
—

Jolr) = 2N x {hy + Ty}
jl(?) =2V x {[l()(T) + r(”(r)}

—

{T(r) + 7'30(7) + 7'()2(7)}

=N
It
to
<\
X

(2.15)

(2.16a)

(2.16b)

(2.16¢)

2.17)

(2.18a)

(2.18H)

(2.18¢)




~a

Substituting from (2.16) into (2.18) yields the following sequence of intcgral equations for the

vector expansion cocfficients;

7)) = 2N xh; + 2N x lim Jol) x ¥ ,G(1 87 1) exp (k; 87 )7, (2.19a)
0

W) = 2N % :-’oo{ko[ S Jore) x VoGl AT 1) exp &; .A?)d?;o - Too]}

0
+ 2N x lim [ 717 x ¥ G187 1) exp (ik; - &7V, (2.196)
0
[ ] ®
[ ] [ ]
[ [

This sequence of integral equations has a number of interesting properties. [irst, except
for the source or Born term, all the integral equations are identical in form in that they appear

as
Jor) = 2N xsy(r) + 2N x 011an f Jplro) v,GUAr |y exp (k; « AF )dry (2.20)
p=20,12,..

Also, since the source term, 2NV x sp(r ), in (2.20) depends on j,, ji,..., and Jp—1» the integral
equations are recurrsive. Thus, if j, can be determined then it should be possible to determine
all higher order vector coefficients. Because the vector expansion coeflicients, jn(7), are
independent of k, it is further noted that the source term ?[,(7) is determined almost completely

by a Luneburg-Kline series representation for the following integral
L V,G(lar |y exp (,Z; . A?)d?,o.
For example, from (2.19a) it follows that

(2.21a)




while from (2.19b)
5(r) =, lim ko[f};@,) x V,G(|Aar |) exp (jk; « AF )dr,
kg—>oo 0
(2.216)

- lim ffo(F;)XVOG('ATI)eprki-A7)d7;}
ky—co 0

It should be noted that the presence of Z,('r:,) under the integral signs in (2.21b) has a very
minimal effect because the dominant terms are the ones which depend upon .

One final but very important point about the sequence of integral equations in (2.19) is
that their solutions are known. In fact, (2.19a) is a slightly altered form of the Magnetic Field
Integral Equation in the high frequency (k,—co) limit, so its solution is given by [10}

2N x A (r not shadowed)
Jor) =

0 (7 in shadow)

There is also the possibility of a multiple scattering contribution to jo(7) from other points on
the surface [10]. Thus, for the nth vector expansion coeflicient, the solution is (except for the
contributions of multiple ray bounces on the surface)

2N x};,G‘) (7 not shadowed)
Jr) = (2.22)

0 (7 in shadow)

The complete surface current density is thus obtained by combining (2.5), (2.8), (2.11), and
(2.22), 1e.

- - ~ . Jn7)
Jr)y= (1 + C)Zc + C}z,) /2 exp (—jk;jer) S iT- (2.23)
n=0 ko

One of the immediate consequences of (2.23) is that the current on any shadowed portion
of the surface is identically zero. This is obviously a high frequency approximation, but the
analvsis presented above makes no explicit approximations and, in fact, appears to be exact.
Clcarly, an cxact analysis cannot lead to an approximate result. What is happening in this case
is that the L-K series i1s doing the best job that an asympiotic series can do in representing the
current in the shadowed parts of the surface. The failure of the L-K asyvmptotic scrics is linked

to the fact that the current in the shadow-zones of the surface cannot be rcpresented by an
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asymptotic series of the L-K form. To prove this, recall that the definition ol an asymptotic

series such as (2.11) is that if S, represents the partial sum of the first m+ 1 terms * then

lim k)" [Z(kO,F')—Em] =0 (2.24)
)

Sor all values of m. In the hmxt ask ™0 the current in the shadow-zones of the surface is zero.
Thus, from (2.24) with m=0, S =0 Ol'jo(r) =0. For m=1, (2.24) yields

lim (k, L)-—khm (kyS))

k—roo

but §; =7i/ko because;; =0, so this leads to

i = lim (kL) (2.25)
ade ol

0

It is well known that the current in the shadow zone has the form of a creeping wave {11}

2/3

- é
L ~ = Cpempl~ilop + exol~jui9okd'" [, *Ps]y (2.26)

where C, are the launching amplitudes, & is the distance measured along the surface, fi4 is a root
of the Airy integral [11], and « is the curvature of the surface at the distance § measured along
the surface. Thus, in the limit as k,—oo, each term in the serics of (2.26) exhibits an exponential
dependence on k, Furthermore, since the rcal part of this dependence leads to an exponential
decay with distance, it is clear that
7 =, im_ik, L)=0

and, in fact, all of the higher_/:; ‘s will vanish. Thus, the only acccptable asymptotic series for
the current in the shadow region is the null series. The reason for this is contained in the
definition of the asymptotic scries, e.g. (2.24). That is, the only scrics of the form

which can satisfy (2.24) for all m in the shadowed regions of the surface is the null series. Note
that it is the constraint imposed by the form of the asymptotic series which dictates the end

resuit.  Thus, other than the null series result, the current in the shadow region does not have an

. — m—.-_. n
T Sm= :)/n(’ MWK
n=t
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asymptotic series representation. This is an important result because it is the first time (to the
author’s knowledge) that the failure of an L-K series in the shadow region has been both
demonstrated and explained.

While the L-K scries does not lead to an exact result for the surface current density, it still
holds the potential for providing a tractable improvement to a pure geometrical optics solution.
This fact is demonstrated by Ansorge’s [12] calculations for scattering by a dielectric sphere
using the ray optics field approach. The attractiveness of the current approach as developed
here is due in large part to the fact that the complete L-K representation can be developed

entirely from an integral of known functions, i.e.
J 9,6 ar |) exp (jk; A )dry -

While a complete L-K series development for this integral is prohibitive, it should be possible
to obtain the terms up to and including k0_2 [9]. One of the primary advantages of obtaining
the k{,‘l and k;z corrections to the kg asymptotic expansion of this integral is the recovery of
some of the cross polarizing properties of a rough surface in the high frequency (but not optical)
limit.

Having developed the Luneburg-Kline expansion for the current, it is a relatively
straightforward matter to find the scattercd field. The far-ficld approximation for the scattered
magnetic field is

exp( —jk,R) A

H(R) = = ——=o— kx [ (ky) ) exp Gk To)dry (2.27)

A
where R is the distance from the origin on the surface to the point of observation and &
- . - . - A - . e . - .
specificies the direction, e.g. R = Rk, Substituting the Luneburg-Kline expansion for / in the

above and assuming an interchange of the summation and integration yields

— -

CXp( _/koR) /’(\ Lf jn(ro)

H, = —j p

R sx T % . expljks = k) rp) dry (2.28)

The integral is expanded in a Luncburg-Kline scries as follows;

—_ pa—y

jrx(F(.)) T = -
[ = explitk, = kper Jdr, = < (2.29)
ko s Fom e m=0 k7

(]

where

Jai

.
N )




- . Jn(;:)) e - = —
h,, = lim _— ke — k;)e dr 2.30a
no =y D f k, expli(kg i) 7o) t ( )
- JnTo) .
hyy = lim  k,| [ explitk; = &)+ 7,) dry — hy, (2.300)
ko—’OO 0 0
and
- I -~ - =1 %
P inlro) Il de nm
Mg khrno<> k| f _"‘-o explitk; — k;)+7,] dr;, mEO o (2.30¢)
so that 175 is given by
- —jk,R n
H o= - 5—— ik x ¥ — (2.31)

The geometrical optics field is proportional to hoo Wthh is determined by Jjp only. The part of
H which vanes as k—1 depends on both j, and jl, the part that varies like k"2 requires
};, ;;, and J5 Jj2, and so forth for higher order terms. It should be noted that with the physical
optics approximation, one obtains only those contributions from—j:, However, it is also known
that only the frequency independent term is always accurate and the above series shows why this
is true, i.e. the jj contribution to the k‘1 term is ignored, thejl andjz contributions to k—2 term
are ignored, etc. Inclusion of these jl, j2, etc., terms will definitely improve the frequency
dependence of the result relative to the physical optics approximation. There is another
advantage to including these terms. Because of the asymptotic nature of the serics being dcalt
with here, each term by itself will be accurate only over a limited range of observation
directions. For example, the part of 1—1; contributed by Z, is truly only accurate about the
specular direction, i.e., Z;t = ;:": arld ks, = —k,-z. Thus, if more;, terms are included it should
make the resulting expression for /4, more accurate in directions away from specular. Clearly,
the calculation of these;;’s can lead to definite improvements in existing models and is thercfore

strongly recommended.
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