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1.0 The Effects of Vegetation on Terrain Scattering

1.1 Introduction

An important element in any effort to model the electromagnetic scattering from natural

terrain is the inclusion of the effects of the various types of vegetative or foliage cover. That

such coverage is important is obvious from just looking at terrain and being able to readily see

which surface areas are covered by the different types of vegetation, e.g. crops, forests, scrub

brush, and grass. In the language of scattering physics the phrase "just looking at terrain and

..." is equivalent to saying that the bistatic scattering cross section of the vegetation covered

surface in the visible frequency band is sufficiently sensitive to the types of cover to provide a

quantitative means for discriminating between the various kinds of vegetation. With this more

technical definition, it is important to take note of the distinguishing characteristics of the
"measurement". That is, the transmitter/receiver geometry is bistatic and the transmitter and

receiver are both operating over a very wide band of frequencies. This latter point is particularly

important because such wideband measurements have no analog in the lower frequency ranges

common to radar or communication, and so care should be exercised in comparing what is

"seen" with what much lower frequency measurements or theory yield. Certainly, one would

expect that as the frequency is continually decreased, there would come a point where the

scattering is due predominately to the underlaying surface and there is very little scattering from

the vegetation [11.

Unfortunately, most radars and communications systems operate in a frequency range

that is somewhere between these two extremes. Consequently, there is a need for models

involving scattering from (1) the vegetation layer alone, (2) the underlying surface alone, and

(3) various degrees of interaction between the layer and the underlaying surface. Since ultra

high spatial resolution scattering is not a goal of this study, the use of statistical means to

describe the scattering should be appropriate. Ideally, this means that what is needed is the

probability density function (pdf) for the scattered field because this will then permit a

calculation of any statistical moment of the scattered field. However, the pdf of the scattered

field is a very difficalt quantity to obtain, in general, and so attention will be directed toward a

less ambitious goal, namely, the modeling of the first and second moments of the scattered field.

Having established the goal of this study, the next step is to develop a rationale for

achieving it. The rationale for this problem comes rather naturally from the importance ol' the

two major contributors to the scattering. That is. the first thing that needs to be done is to

insure that adequate models exist for both the fohiage laver and the underlaving surlfIce alone.

Where deficiencies are noted, thcy need to he corrected. lihe linal phase is to model the Foliace

layer on the surlace by giving particular attention to the icraction of the two media. This is

the real crux of the problem because it is this phase that permits a smooth transition between

the complete high frequency shadowing of the surface by the veCetation to the low irequency

transparency of the foliage to the incident radiation.
1 '1



1.2 Vegetation Only

Beforc becoming too involved in the electromagnetics associated with wave propagation

through and scattering by vegetation, it is advantageous to organize vegetation into four very

broad categories. In particular, these categories are trees, brush, crops, and grasses. This is
done primarily for discussion purposes because there is, in general, little that is unique about

each category. Trees are usually characterized by their bulk size, relatively large leavcs, and a
central trunk. Brush is usually smaller in overall size, has a smaller leaf, lacks a well-defined

central trunk, and has much less woody structure. However, these differences become less
distinct when the trees are relatively young. Similarly, there is not much difference between

new, emerging grain crops and grass except that the former is usually planted in periodic rows

while the grass tends to be more uniform in its coverage. Despite the biological nonuniqueness

of these categories, they provide a physically intuitive means of identifying types of vegetation.

In estimating the electromagnetic scattering behavior of a collection of vegetation, it

would be most helpful if the behavior of a single composite structure of an entire entity were

known. However, even single trees, bushes, and plants are difficult to describe from an
electromagnetic scattering point of view. Thus, it is necessary to go one step further in

simplicity and consider the scattering properties of the component parts of the tree, bush, plant,

etc. In the case of trees and bushes, these component parts comprise leaves, branches, and

trunks. With crops and grasses, the parts comprise leaves and stems or stalks. Although these

component parts are interconnected by branches, stems, and twigs, most subsequent scattering

analysis will ignore these interconnects and treat the component parts as devoid of physical

contact with any other parts of the foliage.

This latter approximation is clearly a drastic one and therefore deserves some

justification. The important assumption that will be made to rationalize this approximation is

that each component part of the foliage is a much better absorber of electromagnetic energy

than it is a scatterer. More formally, the approximation is that the absorption cross section is

significantly greater than the scattering cross section. For the frequency range of interest to this

study, it turns out that this is indeed a reasonably good assumption [I]. I lence, given that each

component part of the vegetation absorbs much more incident energy than it scatters, consider

what happens when a wave strikes two leaves connected by a stem or branch. In addition to

the energy scattered from one leaf to another, there is also the possibility of energy being

propagated in a transmission line mode along the connecting branch or stein. I lowever, energy

being transported between leaves via this mcchanisn sullcrs a t/hrecbfd ctttC W1iof. I irst. it

suffers absorption in the first leaf and then in the connecting branch and finally in the second

leaf. Thus, it would seem reasonable to ignore the interconnection of the various parts olfthc

vecetation based on the highly lossy nature of" the branchcs and stemns, i.e. the intcrconticcting

medium.
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1.2.1 The Coherent Field

The total field inside a vegetative medium can be mathematically split into the sum of

a mean, average, or coherent part and a zero mean fluctuating part [21, e.g.

= <Et> + 6Et  (1.1)

where < ° > denotes the averaging operation, and 6E, is a zero mean field quantity. There are

specific physical situations when analytical models for the average field have been derived. The

first of these is the classic Foldy-Twersky result [3,4,51 in which the concentration of scattercrs

is sufficiently small that multiple scattering between them may essentially be ignored. The

Lax-Twersky [6,7,8,91 result holds for higher concentrations of scatterers but with the restriction

that they cannot differ very much in their dielectric properties from free space. Finally, rather

high concentrations of scatterers have been analyzed recently [101 using a numerically based

T-matrix approach.

The Lax-Twersky theory is difficult to apply to the vegetation problem because the

component scatterers have such a large relative dielectric constant. The numerical T-matrix

approach would be difficult to apply to the foliage problem because of the diverse shapes of the

component scatterers. Furthermore, neither of the above methods is really necessary because

the density of vegetation is relatively low. That is, the highest volume fraction occupied by

vegetation will be less than 5%, and even this percentage is relatively unusual [1]. More typical

volume fractions are 1% or less. With this low concentration of scatterers combined with their

relatively high loss, the Foldy-Twersky theory for the coherent or mean field inside the foliated

medium should be adequate [II].

The Foldy-Twersky theory predicts that in an unbounded volume of scatterers, the

average field will be a plane wave having the wavenumber kp given by [12]

2 A ̂A

= k + 4yrf <fp(ki,ki n(,x)da (1.2)

0
where ko is the free space wavenumber, n(a)do ib the number of scatterers per unit volume having

the size parameter a between a and a + da, and the total number of scatterers per unit volumc

is p where

;= f ,n()dx 11.3)
1)

A A

The quantity IJ-(k. kd is the p'lh vcctor component of the scattering amplitude of a single

scattercr having sizc a. It is computed for a plane wave travclinre in the direction k; incident on



Athe body and thle body scattering in the direction ki. The polarization of the incident field in this
calculation is taken to be e while the symbol <.] denotes that the scattering amplitude may

need to be averaged over all possible orientations of the scattering body. An explicit expressiun
A A

for f,(ki, ki) is

k2

AA Al Afp~li~l~)  =) f, [E- A

(ki~ki) 0 I [ (E(r ). pIE ] exp(Jkoki• r )dv (1.4)

V,

where er is the relative dielectric constant of the scattering body, Ei(r ) is the field inside the body
AA

due to an incident plane wave having amplitude Ei, polarization p , and traveling in the ki
direction. The integration in (1.4) is over the volume of the scatter, V., and, alth ugh not

explicitly shown, the calculation is for one specific orientation of the body. The a% rapes in

(1.2) over orientation and size are necessary when there is a polydisperse mixture of scatterers

having random orientation. As indicated in (1.2), it is possible for the average medium to bc

anisotropic, i.e. the propagation constant is different in different directions.

Equally important to the result in (1.2) are the limitations on its validity. These

limitations were not particularly well understood until recently [121 when it was shown that they

could all be essentially lumped together in the following condition;

(k - ko) max(a) << 1 (1.5)

where max(a) is the maximum meaningful dimension of the scattering body. For a sphere,

max(a) is the diameter while for a randomly oriented thin disk it should be set equal to the

diameter of the disk. The condition in (1.5) is essentially equivalent to requiring that the

scattering properties of a body in free space and in the random medium are not appreciably

different. It should be noted that if the concentration of scatterers increases then either the

relative dielectric constant must approach unity, see (1.4), or the scatterers must become

smaller, see (1.5), in order for (1.2) to remain valid. It is the interplay of the scatterer

concentration, dielectric constrast, and size that determine the validity of the Foldv-Twerskv

result for the average or coherent field.

If there are a number of different distinct types of scatterers comprising the medium then

(.2) should be augmented to reflect this fact. For example, if there are M different types of'

scatterers then (1.2) should be written as Follows;

A- + 4irf ' <t(kki,,,d .
() Pf= l I

A A

where < /p(kijki)lm is the forward scattering amplitude for the mih class of scatterers comprising

nm(7 40d1 number per unit volume having a size parameter between a and a + da. This result is

4



i'

particularly relevant to the vegetation problem because there are indeed a number of distinctly
different types of scatterers (even when the actual foliage components are replaced by canonical

shapes). Table I shows the major vegetation categories that have been postulated along with
the actual component parts comprising these and the canonical approximations to these parts.

The canonical shapes are the ones that would be used in calculating scattering amplitudes such

as required by (1.6).
Clearly, there is a great deal of approximation involved in replacing exact shapes by

canonical forms. However, it must be remembered that vegetation is a very complicated

physical environment and it is essential that it be simplified as much as possible without

distorting the important details. This was the approach used in an earlier attempt to go beyond
pure empirical modeling [I] and it appeared to work quite well for wave propagation through

trees. Since this work first appeared, there has been a great deal of literature on computing the

scattering properties of various canonical shapes and it seems that there are a number of

approximations that can be used [13,14,15]. These results are most welcome because calculating

the scattering amplitudes of even the limited number of essential canonical shapes is not a trivial

matter.

1.2.2 The Fluctuating Field

Equation (1.1) indicates that the total field inside the random medium comprises a

coherent or average field and a zero mean fluctuating part. The coherent field attenuates
exponentially due to absorption and scattering by the objects in the medium; the attenuation

rate is determined by the imaginary part of (1.4). The fluctuating field gives rise to the

incoherent scattered power and is therefore of prime importance to this study. The fluctuating

field is, in general, more difficult to determine than the coherent field; however, reasonable

success has been obtained using the so-called distorted wave Born approximation (DWBA) [161

at least for the frequency range of interest to this study. However, as the DWBA is now used

[17], there appears to be a form of double accounting for the effects of the average medium.
To show this, the DWBA will first be reviewed, an exact integral equation for the fluctuating
field will be derived, and this result will be compared to the DWBA that is presently in use. The

differences will be noted and discussed.

1.2.2.1 The Distorted Wave Born Approximation (DWBA)

Taylor [161 gives an excellent discussion of the D"VBA as it applies to particle scattering

by potentials. I lowever, the same reasoning can be applied to the vegctation wcattcring problem
and the rationale for the approximation centers around the Joni of 1. 1). What (1. ) does is to
split the unknown field into the sum of a largely dominant term. < t >, and a small

perturbation ,iE . The dominant term < E, > is known to a reasonably good appro\imation:

5



BASIC VEGETATION ACTUAL COMPONENT CANONICAL COMPONENT

CATEGORY PARTS SHAPES

Tree leaves/needles disks/cylinders

branches cylinders with large range of radii

trunks cylinders with small range of radii

Brush leaves disks

branches cylinders

Crops leaves disks on thin elongated sheets

stalks, stems cylinders with relatively small range

of radii

product variable

Grasses leaves short dipoles

stems cylinders

TABLE I

A categorization ol basic vegctation types by actual and canonical

component parts.
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hence, 6rEt can be determined fairly accurately by a rather crude approximation. The key to the

success of the DWBA is that most of Et is already known (< Et >) and it is only a slight

improvement (6Et) that is sought. Of course, this also shows one of the limitations of the

DWBA as applied to the vegetation problem. If < Et > is to be the dominant term in Et, the

DWBA cannot be expected to give an accurate estimate for 6E, very deep into the medium.

This is because < Et > will be very small for deep penetration into the medium and it is then that

6E, will become the dominant field quantity. This situation clearly violates the assumptions in

the DWBA.

In the next section, an exact integral equation of the second kind for the fluctuating field

will be developed and attention will be directed toward the Born term in this equation. Using

this term only comprises a DWBA because it assumes that < Et > is known and dominant. In

the subsequent section, this result will be compared to a heuristic based DWBA. It will be

shown that the heuristic approach leads to what appears to be a form of double accounting for

the average properties of the medium. In this regard, the heuristic approach is not in agreement

with the Born term from the exact expression for the fluctuating field.

1.2.2.2 An Exact Integral Equation for the Fluctuating Field

The total field at the point r, Et(r ), due to an incident field, Ei(r ), and the fields scattered

from objects located about the point r, Es(r), is given by

E,(r Ei(r ) + Es(r) (1.7)

The scattered field due to the presence of the N objects can be written as follows [181;

f15r) = LKEt(r, + ro) (1.)

where L is the three dimensional integral over all space, i.e., L = fffdr- , and the dyadic

operator K 1; is given by

S(C-konSl(er - l)Sn(ro; ln)F(r - r. - ro) (1.9)
n=1I

In ( 1.9) cr is the relative dielectric constant of the nth scatterer, S,(,,,; l2 ) is the support o1 the

n1 scattcrcr whose ccntroid is ,ocatcd by the position vector r1 so that

1 1 0 inside I'll

r not inside I' 1)

and I 'is the volume o1" the nth i cattercr. The dxadic F is given bv



r . .- 2 II1-- - +

F - -P.V.7 + k o VV g(r rn - ro) + 16(r -r n - ro)13k o  (1.11)

where P.V. denotes the principle value*, I is the unit dyad, 6(.) is the three-dimensional delta

distribution, and

g(r - --o) = exp(-jkolr - n -- o1)I4rr -r7 - -o (1.12) 

The variable fin in the argument of the support function symbolizes the dependence on the

orientation of the nth scatterer. Equation (1.9) is general in that it allows scatterer-to-scatterer

variation in the dielectric constant (crn) , the size and shape (V,), the orientation or alignment

(fin), and the location (rn) . It should be noted that calculation of the scattered field requires

knowledge of the total field inside each scatterer. Thus, substituting (1.8) in (1.7) and then

taking the point r inside each scatterer yields N coupled integral equations for the total field

inside each of the N objects. Once these equations are solved, the scattered field at any point
in space can be determined by straightforward integrations. For the random problem, a

somewhat different methodology will be developed.

Substituting (1.8) into (1.7) yields

Et = E + LK (.13)

The total field at any point in space can be written as the sum of a conditional average, < Et],

and a zero-mean fluctuating part, 6Et, so that (1.13) becomes

<Ell + Et = Ei + LKrEt  (1.14)

This decomposition on the left side is a bit difficrent from tile one usually used and results From

the need to accommodate the following situation unique to discrete object scattering. The

conditional average <E ] is an average of the total field with the point of observation of the

field held constant, i.e. the point of observation is the conditioned variable. Under most

circumstances, the point of observation is a constant and so the conditional average equals the

total average. This would be the case on the left hand side of (L.14), e.g. <El] = < Et>.
Furthermore, the conditionally averaged total field is the one that is usually called just the

mea,n" or "'ra,(,c or "'coherent" field. lowever. it is the right side of (1.14) that gives rise to

a need For the conditionally averaged total field. [hat is. the random quantities in the

expression fbr A , 1.9), are usually the scatterers' positions 011) sies. (I Z. and orientations

t\s it a pcars in (1.11), the P.V. excludes a small spherical volume centered at
r - r,,! - r I' .
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(fn ) . The field quantity on the right hand side of (1.14) has an explicit dependence on the
coordinates + r; locates the centroid of the ni h scatterer while ; ranges over its support

Vn . Thus, the scatterer dependent terms on the right side of(1.14) may be written as follows,

LUvEt = LK, (r - rn -r)E (r.2 + ro) (.5

When Et(rn + ro) is decomposed into a sum of a conditional average and a zero mean

fluctuating term, there results

tr+ ro) = < Et(ro+r)] + 6Et(rn + ro) (1.16)

If both sides of(l.16) are averaged, it is done by first performing a conditional average over all

random variables except rn, . Such a conditional average of 6E, yields zero because this is the

way 6Et was formed, i.e. < 6E t] = 0. The total average of Et thus amounts to averaging

< Et(rn + 7)] over the random variable .

The point of the above discussion is to illustrate the need for using a conditional average

rather than a total average in decomposing Et . If a total average had been used, there would

have been no way of determining what to do about the r. dependence on the right side of(1.14).
When using a conditional average it becomes clear what to do both when the point of field

observation is random and nonrandom. In the latter case, the conditional average is equal to

the full average.

Substituting (1.16) in the rhs of(l.14) yields

<Et ] + 6Et = Ei + LKv<Et ] + L-Ky6Et (1.17)

Averaging this equation gives

<Ell = E + L<K<Et> + L<Kr6Et> (1.18)

and subtracting (1.18) from (1.17) leads to the following integral equation for 6,;

6Et = L(I - P)K.< Et] + L(I - P)Kr5Et (1.19)

where P is the averaging operator, i.e.

I{Z< 1: = < K , < I11 > (1.20)

IL' 5E1] = <K'fI:t> !.21>



At this stage, (1.19) is an exact integral equation for the fluctuating component of the total field.

However, the fluctuating part of the total field is equal to the fluctuating part of the scattered

field. This can be proved by writing (1.7) as

<E t] + 6Et = Ei + < + 6Es  (1.22)

averaging this equation and subtracting the result from (1.22) to give

6E 6Es  (1.23)

Thus, (1.19) becomes

bEs = L(1-P)KZ < E] + L(I- P)KrEs (1.24)

which is now an integral equation for the fluctuating part of the scatteredfield. The Born term

in (1.24) depends on the average of Et.

The average or mean part of the Born term in (1.24) is thus given by

LPK ; < f] = fKZ(r - - -0)p(r-,) < itE(r + 4r)]d5 n (1.25)

n 1, 2,..... N

which is a well defined quantity.

If all of the scatterers are confined* to the volume V, equation (1.24) relates the

fluctuating scattered field in this volume to the fluctuating scattered field at any point in space.

If the point of observation of 6Es on the left-hand side of (1.24) is taken inside V then (1.24)

becomes an integral equation for 6Es (inside V). Solving this integral equation inside V

subsequently allows the determination of 6Es outside V through the use of (1.24). The Born

term in (1.24) depends on the fluctuating part of the product of the propagator and the averaged

total field. It is interesting to note that there are no average or effective medium quantities

appearing in (1.24) other than < Et] . The Born term should be dominant whenever < E] does

not depart too much from free space propagation. When < Et] violates this condition, it then

becomes necessary to account for the second term in (1.24). For fbliage and vegetation in the

frequency range of interest to this study, the Born term in (1.24) should be adequate Cor most

all cases, i.e.

"This is equivalent to saving that the position vector r n 1 2......locatine the ccrtroid

of the nth scatterer must lie within the volume V* - A. xhere A. depends on where the centroid
of the nh scatterer is located (within the scattcrer).
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6E, I £(1 - P)K < Et  (1.26)

Even though this result comes from the Born term of an exact integral equation, it can be

thought of as a distorted wave Born approximation (DWBA) because of the assumption of the

dominant nature of the coherent or mean field 116]. Clearly, the approximation of(1.26) merits
further study primarily because it comes from an exact integral equation.

1.2.2.3 Comparison With Other DWBA

There are other forms of the DWBA that have been applied to foliage. Lang 117,13] has
developed a heuristic form of the DWBA in which the scatterers are immersed in a medium

having the same effective dielectric constant as the mean or average field, e.g.
2 2

< r >p = k p/ko, (1.27)

where k2 is given by (1.2). The scatterers are then assumed to be illuminated by < E] and to

scatter independently of each other. Thus, any multiple scattering effects included in this model

are contained entirely in the use of (1.27) as the background medium and < Et] as the incident
field. If the analysis technique derived in the previous section is applied to this scattering

situation, the resulting Born term corresponding to (1.26) is

=N

6Es = L(I - P) Y g< E] (1.28)
n= 1

where

A - -(r, l)Sn(; n) (r - r" - ro) (1.29)

is the propagator for a scatterer of relative dielectric constant rn buried in a medium having a
wavenumber equal to kp. Thus, Kj is the average propagator for the nth scatterer.

In comparing the heuristic result of (1.29) with the exact Born term in (1.26), there is
only one essential difference and that is the use of an effective background medium rather than

free space. It may be possible that the heuristic approach comprises a partial summation of
some of the contributions from the second term on the rhs of (1.24): however, this could be

dillicult to prove. On the other hand, the early and pioneering work of Twerskv [4.5.71 appears
to argue against the use of an eflctive medium propagator and in favor of the free space

propagator. In fact, the use of an effective medium propagator seems closely akin to double
accounting for the mean field effects. There was not enough time to resolve this discrepancy

between the exact and heuristic approaches. I lowever. it is recommended that this point be
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investigated further since the two results lead to different answers and the difference may be

appreciable for relatively thick foliage layers. A potentially fruitful approach to reconciling the

two results is to try some form of selective partial sununation of the second term on the rhs of

(1.24). That is, solving (1.24) via iteration yields

6E {L(l - P)K ' P)K < ]] (1.30)
,n=O

or

6Es = L(I- P)Ky " {L(l-P)Kz}m<E] (1.31)
m=0

and it may be possible to manipulate this latter series in such a fashion as to derive an

approximate Born term which uses KI from (1.29) rather than K

1.3 Rough Surface Only - A Perspective

For the problem of wave propagation through and scattering by discrete random media,

there are a rather limited number of analytical techniques for dealing with this problem [191.

Conversely, when analyzing scattering by randomly rough surfaces, there seem to be a great deal

of diverse methods capable of producing results 120J. The key word here is "seem" because, in

fact, many of the methods lead to essentially the same results; the major differences arc with the

starting point and the degree of approximation necessary to achieve the result. In view of this

observation, it would be highly desirable if a fundamental approach could be found which, when

subjected to a hierarchy of approximations, could be shown to lead to a similar hierarchy of

approximate results. The primary advantage resulting from finding such a technique is that. as

the level of the approximation is reduced, there is a guaranteed increase in the accuracy of the

resulting solution. Consequently, there is a clear reason for pursuing improvements in this

technique because they will result in an improved solution.

The technique that appears to hold the greatest potential for leading to a rigorous solution

to the rough surface scattering problem is the Magnetic Field Internal Equation (MFIE) for the

current induced on a perfectly conducting surface. The infinite conductivity limitation, for the

frequencies of interest to this study, is significant only near grazing incidence. Appendix A

considers the case when the surface or interface is a dielectric. Essentially what happens is that

there is both an electric and a magnetic current induced on the surface. These currents satisi'V

coupled integral equations of the second kind; the kernels of the equations are more complicated

than with the Md FI E, but the basic equations are the same as the MF :IE. These complications

are not unexpected as it is known that the dielectric surt'ace may give rise to effects which are

not observed with the conducting surface. I-or example, a Brewster angle phenomenon with the
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coherent scattered field should be possible along with a reentry effect in which the incident field

enters one side of a bump on the surface and exits on the other side. As noted above, the effects

are only significant near grazing incidence and they are very dependent on the imaginary part

of the dielectric constant of the surface. The main point of this discussion is that if techniques

can be developed for the MFIE which are not strongly dependent on the particular form of the

kernel then it should be possible to translate the bulk of the methodology to the dielectric

surface integral equations. As noted above, this topic is discussed more fully in Appendix A.

Our analysis of the MFIE as it applies to rough surface scattering is a continuing effort.

For example, Section 2.1 presents a technique which extends the geometrical optics solution of

the MFIE into the nonzero wavelength regime. However, it seems appropriate at this point to

provide some perspective to previous analytical solutions of the MFIE; that is, to show where

they come from and how they fit in a well-ordered hierarchy of approximations. As noted above,

this is essential if we are to establish the fact that the MFIE leads to successively more accurate

solutions as the input approximations are similarly improved.

The form of the MFIE that is most familiar is the following:

s ) (r)r ) x f s(0ro) x VoG( - )dso  (1.32)
so

where Js is the surface current density, n is the unit normal to the surface, I II is the incident

magnetic field, and G is the free space Green's function

G(I7 - -o1) = exp (-jko1r - o 1)/4,17 - o1 (1.33)

Equation (1.32) can be rewritten in the following form

J(r) 2N(r)xI(r) + fLN(r)xVoGxro)dr0 (1.34)

where

2 2 1/2= Jj(l + +

= A A A

- y+

, -) 11'
ds, = drt, (1 + + 2 11)
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and drt =dxo dyo. The x - Max andCy = OlOy are the x and y components of the surflace

slope. The right hand side can be further manipulated by standard vector identities to yield

7(r) 2N xit' + f (-27oG [N ( + 2 ). 7(

where

VoGE •(r )7 = VoG[(r) .Jr 0 )] (1.36)

In operator notation (1.35) can be written as follows:

7 = 7/ + LK.J (1.37)

where

J= 2N x W (1.38a)

L=f( ) dr (1.38b)

K = {-2VoG [,(r). + 21[N(r).oVG]} (1.38c)

Integral equations of the second kind such as (1.37) can be formally solved via iteration to yield

= (LK.)nJi (1.39)
n=0

This series can be thought of as a series of iterates, i.e.

- 7n) (1.40)

n=O

where

7n) = (L K)=mi .i (1.41)

and the zeroth order iterate 7to) = ./ is called the Born term. The scattered electric field

resulting from thc current s is given, in the far field approximation, as follows:

A A\

Ef Ro) = jk 1,, (, R,,)k, x kr x f ./Tr) exp (jks - r )ds (1.42)
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where the vector Ro points from the origin of the coordinate system on the mean surface in the
A A

direction ks to a distance Ro away. Also, the vector ks is defined by ks = koks . The integral in

(1.42) can be written as

A A --

Es(Ro) = JkooG(Ro)ks x ks x f (r) exp (ksz,) exp (jkst rt)drt (1.43)

where no is the impedance of free space and

ks = ks t + k SZA

The integral in (1.43) is recognized to be the 2-dimensional Fourier transform of the current J

weighted by the exponential factor exp (ksz), i.e.

A A

Es(Ro) = )k0 oG(Ro)ks x ks xF 2[J exp (jks _ )]

where

F2[ - I f . exp (kst .rt)dt.

Expanding the double curl operation leads to

E(Ro) = jko'oG(RO)F2[J_ expqkSC)l]

where

A A

1_ = J - ks(k s .J)

A
is the component of J which is perpendicular to ks. Assuming that the iterative series in (1.40)

converges so that the series can be integrated term by term yields

Es(R = jkoloG(Ro)m7O E m) (1.44)

where

-J) = I2-, exp ciksC)] (1.45)

The above development shows that there are iwo important elements to the dctermination

of the scattered field. First, the current iterates must be computed from (1.41) and, second. the
corresponding scattered field iterates must be calculated from (1.45). Of course, what must be

15



done and what is actually done are two entirely different situations and this difference leads to
various degrees of approximation. In the following material, an ordering of most of the classical

approximations will be developed based upon their eflfct on the current and scattered field

iterates. The purpose of this ordering is to put these classical approximations into a perspective

which clearly indicates where we have been and were we need to proceed.

The first level of approximation is low frequency in nature. It starts with ,(O) expiks_ )

as an approximate form of the current and further simplifies this to

70) exp(ikszC) , 2Ho0  x h1[l + j(ks- ki) exp (-jki. rt) (1.46)

where the slopes in .A0) have been ignored and the surface roughness is assumed to be so small

that

exp j(ks - ki X] )d 1 + j(ks_ - ki)C (1.47)

The other factors in (1.46) come from the form of the incident magnetic field, i.e.

A
H = Hohi exp ( -jkiz C - jki t. r)

Integrating (1.46) exactly to form E 0) leads to a scalar Bragg result in the backscatter direction

for the incoherent scattered power [21]. This result follows from the fact that i_) in the

backscatter direction is polarized in the same direction as the incident electric field, and that it

depends on C in a linear fashion.

The next level of approximation is to use an exact form For (O) but evaluate E 0) by

stationary phase techniques so that the result is a high frequency limiting form. This solution

is frequently called specular point scattering [1221. It should be noted that whereas the scalar

Bragg solution results from an exact integration of an approximate form for Njr), the specular

point result comes from an approximate integration of the exact jtO). The specular point result

assumes that (ksZ - ki) > 1, the surface slopes are relatively small, and the surface curvatures

are also small (large radii of curvature). The first approximation permits the use of stationary

phase; the second eliminates multiple scattering on the surface; the last avoids sharp edge

diffraction effects.

A final approximation involving only J() applies to composite surfaces. Such surfhces

have a range of' scales which satisfy both the large scale approximation common to specular

point scattering and the small scale approximation to the scalar Bragg result 1231. If the surlice

can be approximated by a composite surface, then the integration to give Iit'7 can be

accomplished essentially exactly. This leads to the composite surlace scattering result in which

the specular point term dominates around the specular direction and the scalar Bragg term is
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important at other angles. In addition, the scalar Bragg result is tilted by the large scale surface

slopes. It is important to remember however that the scalar Bragg result shows no polarization

sensitivity.

A summary of what the zeroth order iteration of the MFIE leads to under certain

approximations is given in Figure 1.1. It should be noted that there is no discussion of when
A(0) is a valid approximation for the total current. This question can be answered only by using

improved estimates of the current to compute the scattered field. What is done above and

summarized in Figure 1.1 is to show the consequences of (a) approximating .40) and doing the

integration to get E0) exactly, (b) reversing this situation, and (c) using a combination of these

manipulations.

The exact same procedure may be repeated when the next iteration of the current is

included. That is, the current J is next approximated by

j = 70) + 7') (1.48)

where

-0) 7

and

71)= LK.-J i

It has recently been shown [241 that a low frequency approximation of (0) + 70) along with

the assumption of small surface slopes leads to a result which when integrated exactly to yield
E10) + E 1) gives rise to the vector Bragg result. The vector Bragg result differs from the scalar

solution obtained with ,(O) only in that for backscatter, the vector solution shows a polarization

sensitivity whereas the scalar does not. This illustrates the inadequacy of the jO0) iterate (or

Born term) in so far as the scattered field in the off-specular direction is concerned.

The next level of approximation involves evaluating all integrations in the high frequency

limit. Thus, when LK . Ji is so evaluated it leads to - Ji in the shadowed parts of the surface,

0 on the illuminated parts of the surface, and the possibility of first order multiple scattering

[251. That is. first order multiple scattering means the reflection of an incidence ray from one

point of the surface to another point. Generally, this first order ray optic multiple scattering is

ignored because it makes the scattered field integration very hard to do. That current which

remains is the shadowed current, i.e. J0 ) + JMl). If the integrations needed to compute

+ i11 are evaluated asymptotically (as , o.), what results is the shadowed specular point
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solution. Comparing this solution with the corresponding limiting behavior of EL0) alone shows

that the inclusion of .(i) in this limit gives rise to shadowing.

Finally, if the surfaces under study can be split into both large scale structure (s) and small

scale undulations (g.) so that high frequency techniques can be used to predict the scattering

from the large structure and low frequency methods can be used on the small scale structure

then the surface can be treated as a composite structure, i.e. C = C , + Cs . One can

subsequently show, though not easily 126], that if those parts of :( 0 ) + :R1) which depend upon

C, are treated by high frequency asymptotics and those parts which depend on Cs are treated
by low frequency approximations then the result is shadowed specular point scattering plus

tilted vector Bragg diffraction. The tilting of the Bragg scattering is by the large scale surface

slopes. It is interesting to note that the sum of only j7O) and :(1) lead to one of the best

scattering models around, namely, the composite scattering model.

The results of including both jA0) and 7i1) are surmmarized in Figure 1.2. In all categories

there is a marked improvement over using .A0) only. Ilowever, this is particularly so for the low

frequency results where there is a polarization sensitivity not accounted for with JAO) only.

The purpose of this section has been to put the various levels of rough surface scattering

approximations into perspective. This has been done by relating the approximations to either
the first two iterate solutions of the MFIE or the subsequent scattering integral calculations.

It has been shown how this methodology can lead very naturally to a hierarchy of
approximations. Most important of all, however, is the fact that the MFIE can generate

improved solutions by simply increasing the order of the iteration. This establishes the NI FIE

as a useful means for studying rough surface scattering.

Finally, all of the above approximate solutions are available for the surface scattering part

of the vegetation layer problem. Which one should be used is dictated by the frequency of

interest and the surface roughness statistics.

1.4 Vegetation on a Rough Surface

Section 1.2 and 1.3 detail the techniques that can be used to estimate the scattering from
an isolated patch of vegetation and bare ground, respectively. This section will develop and

discuss a model for scattering from the combination of a layer of vegetation on a rough surface.

Some of the earliest work on this problem proposed using the simple addition of the

scattering cross sections of the vegetation layer and the rough surface. I lowever, it was quickly

realized that some accounting [or the influence of the vegcetation laver on the rou,,h surl'acc

scattering cross section was essential. Subsequent attempts to account for the vcgetation simply

attenuated the surface cross section by the loss suilkred by the colerent power propagating

down through the foliage and then back up to the fbliage air interface. Use of this
approximation led to some qualitative agreement with scattering measurements, but the model
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LOW FREQUENCY Scalar Bragg

(No Tilting)

-/ HIGH FREQUENCY Specular Point

COMPOSITE SURFACE Specular Point

+ Tilted Scalar

Bragg

Figure 1.1 The description of the scattered field resulting from the zeroth order iteration of the

M FIE current, 70), coupled with various approximations.

LOW FREQUENCY Vector Bragg

(No Tilting)

0)(0)) + )() HIGH FREQUENCY Incident Shadowed

Specular Point

COMPOSITE SURFACE Shadowed Specular Point

+ Tilted Vector Bragg

Figure 1.2. The description of the scattered field resulting from the zeroth and first order

iteration of the MFIE current, P(0) + 71), coupled with various approximations.
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also raised questions as to why it worked as well as it appeared to and when it could be expected

to fail. Very little of this early work was ever published and most of this information was

presented during informal meetings and discussions.

More recently, attempts were made to rigorously model certain subsets of this general

problem (see [131 for a comprehensive list of relevant references). Unfortunately, most of these

attempts chose to model the foliage as a continuous variation in dielectric constant and to thus

use continuous random media theories as the analytical tools. While this approach did lead to

some insight into the scattering problem, it also raised questions because of the need for
"effective" or "equivalent" parameters in the continuous representation of the discrete random

medium. Lang and Sidhu [13] overcame the limitations of these earlier models by using the

Foldy-Twersky theory along with a version of the DWBA to model the scattering from a foliage

layer on a flat earth. This was a significant advance because it clearly showed the interaction

between the foliage components and the reflection from the flat surface. Unfortunately, it is

not obvious how Lang and Sidhu's method of analysis could be extended to an arbitrarily

roughened surface.

The model that will be developed here is very simple in concept but, as one might expect,

complicated in detail. First, the field incident on the foliage is converted, inside the foliage, to

a mean or average field and a zero mean fluctuating field. The mean field is determined by the

Foldy-Twersky theory of Section 1.2.1 while the fluctuating field is based on the distorted wave

Born approximation of Section 1.2.2.1. These two fields then act as incident fields on the rough

surface which is approximated as perfectly conducting. The electric currents excited by these

fields are computed using the Magnetic Field Integral Equation (MFIE) as discussed in Section

1.3. The next step is to let these currents radiate back up through the foliage. The fields

radiated by the surface currents are then acted on by the foliage to give rise to another set of

mean and fluctuating fields in the foliage [271. These fields can be continued into free space via

standard techniques such as volume and surface distributions of current or plane wave spectral

methods. If the process is truncated at this point then what has been accounted for is one single

downward and upward passage of the fields. If the process were to be continued, the interaction

of the upward going fields with the foliage should be allowed to interact with the rough surface

which, in turn, would scatter back up through the foliage. If the problem were to be analyzed

exactly, this process should be continued an infinite number of times. lowever, there are very

practical reasons for not continuing this process beyond the first downward and then upward

pass. The most obvious of these is the computational complcxity associated with each

down-and-up field iteration. F-urthermore, each iteration will also generate the need lbr higher

order (multipoint) vegetation and surface statistics and these arc simply not known. lFinally, if

there is an indication that more down-and-up field iterations are needed then perhaps there arc

simpler techniques available to deal with the entire problem. The single down-and-up field
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technique assumes that either the foliage or the surface is the dominant scatterer and that

interactions between the two natural scatterers is small relative to these two dominant effects.

To a certain extent, this approximation can be checked and this will be discussed later in the

section.

The foliage and the rough ground represent statistically different random processes. If

there were some degree of correlation between the two, it would be necessary to use conditional

averaging in forming the first two moments of the scattered field. That is, the foliage would be
averaged holding the surface fixed and then the surface would be averaged. This process

requires the use of conditional probability density functions. However, there is no reason to

expect to a first order at least that there should be any correlation between the foliage and the

surface. In fact we will go further and assume that the two processes are statistically

independent; this simplifies the actual mathematical operations because the joint density

function is just a product of marginal densities. Thus, the averaging over either the foliage or

the surface can be done independent of the remaining random process. However, it should be

remembered that if there is some correlation between the foliage and the surface then it can be
accommodated in the model through the use of conditional probability density functions. This

generality may be useful in dealing with very high resolution scattering because such a situation

may emphasize the slight correlations between certain classes of foliage and terrain.

The terrain is assumed to be a perfectly conducting, randomly rough interface, having a

zero mean about the z=0 plane and homogeneous but arbitrary statistics. The foliage or
vegetation occupies the space immediately above the surface and up to an average height of

z= h. It should be remembered, however, that this average height of the foliage is a description

which must be somewhat carefully interpreted. For example, any coherent scattering which

results from this average planar height is clearly open to question since the foliage interfice, for

coherent calculations, should be modeled as a rough interface. This roughness will certainly give

rise to a very highly attenuated coherent field which can thus be ignored. This is not to say that

there will never be a coherent field scattered from a discrete collection of scatterers; there clearly
will be such a field when the volume fraction of objects approaches unity. However, for a

sparsely populated medium, the existence of a coherent scattered field would appear to be a

model anomaly rather than a physical reality.

The field incident on the foliage layer is assumed to have the following plane wave form:

where

= X + ki + ki_5 1.50)
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Figure 1.3. Geometry for the foliage laver on the rough surface.
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and

ki = -k o sin 0i c (l.51a)

ki = -kko sin Oi sin Pi (l.51b)
y

kiz = -ko cos Oi  (1.51c)

Az

The unit vectors ev and eh denote vertical and horizontal polarization directions;

A A A
eh  -sin (k + cos i (1.52a)

and

AA

ev = -cos 0cos -cos Oi sin 4bY; sin Oiz (1.52b)

The angles are standard polar (O) and azimuthal (4i) angles and they are explicitly defined in

Figure 1.3. As discussed above, we ignore the possibility of any coherent reflection from the

foliage layer. Thus, according to Section 1.2, the in'ident ficld is converted to the sum of a

coherent field, < Efd>, and a fluctuating field, 6Efd, inside the foliage. The average field in the

foliage is given by

< Efd > =j exp (-ji.r) + Eherh exp (-kih.r) (1.53)

where the directions of kl and kih are the same as ki, i.e.

A -A
k = kilk o  k ih  .

but the complex amplitudes are solutions of(l.2) with p= v or h. e.g.

2 =k 0< A A
k + 4rf <fv(k, ki)]dnm(t)d (1.54)
h 0 h

A A
and <fv(ki, ki)l]m is the scattering amplitude of the mtI component of the ,oliage avera'ed over

h
all possible orientation angles. .As discussed in Section (1,2), the integration in (1.54-) accounts

!or a size distribution of the ,trh foliage components. he f'act that the average field may have

different wavenumbers or propagation constants for horizontal (h) and v%"rtical (v) polarizations

has been observed in some measurements LI; however, the elkect seems to disappear above

about 800 N I I.
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The fluctuating field 6Efd is a solution of the integral equation in (1.19); however, based
on the discussion presented in Section 1.2.2 it should be possible to use only the Born term in

(1.19) and this is equivalent to the distorted wave Born approximation (DWBA), i.e.

6Efdz L(l - P)K I < Ed] (.5

where L is the integral over all space, P is the averaging operator, K T is given by (1.9), and
< Efd] is essentially the average field evaluated at ro. The reader is reminded that a complete

discussion of the terms in (1.55) and the approximations under which it is valid are given in

Section 1.2.2. It should be emphasized that all of the quantities are known and so (1.55) is

computable. There are two additional calculations that need to be done with the fluctuating

field in (1.55). First, it is a primary source of incoherent power scattered back up into free

space, i.e. < [6Efd 12>. In fact, in the absence of the terrain surface or for a very thick
vegetation layer this is the only source of scattered power. The second calculation recognizes

that 6 Efd and < Efd] are both incident on the terrain surface and they induce currents on the

surface which reradiate back into the vegetative medium.
Within the limitation discussed in Section 1.3, the terrain will be approximated as a

perfectly conducting interface. Consequently, the Magnetic Field Integral Equation (MFIE)

describes how the induced current, I, behaves on the surface, i.e.

J = 2N x Hfd + 2N x fJ x VoGdj (1.56)

The incident magnetic field It- may be written as

and

< = _ = _.7 V × < Efd I (1.58a)
Jwt

0

611fd = V X 1 -Vx 6Efd (1.58b)

Afollow from Maxwell's equations. Since < Ef 11 is a plane wave traveling in the ki-direction

through a medium having an average relative dielectric constant < =r> k /k2 (p = v or 1,
(1.58a) becomes

- (<r >p) , -

< Hd]k i x < ELd] (1.59)
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where no is the impedance of free space (/jio/o). Tile choice of vertical or horizontal

polarization in (1.59) determines both the polarization of < Efd] and < r >p. If near zone and

Fresnel zone fields are ignored in the calculation of 6Efd and, subsequently, 6 11fd then (1.58b)

can be written as follows;

6Hfd = x 6Efd (1.60)

AA

where k specifies the direction of propogation of 6 Efd. It is not necessary that k point in only

one direction as, for example it would in the case of a plane wave. The average medium relative

dielectric constant does not appear in (1.60) because according to the DWBA used in (1.55), the

fluctuating field propagates in free space, this point was discussed in detail in Section 1.2.2.3.

It should be noted that all the quantities in the Born term in (1.56) are known.

Substituting (1.57) into (1.56) yields

= 2Nx< ~1fd] + 2Ntx6 /f-d + 2NxfJxoGd-t (1.61)

The total current J is split as follows;

' = 1af+ 6f (1.62)

where

Jaf = 2N x < tfd] + 2Nx f Jaf xVoGdrot (1.63)

and

Jbf = 2N x6Hfd + 2Nx f Jar xVoGd-t (1.64)

From (1.63), a is the current induced on the surface by the downward propagating average

foliage field < Hfd] while, from (1.64), J6f is the current induced on the surface by the downward

traveling fluctuating foliage field 611fd. These equations can be solved by iteration, such as

discussed in Section 1.3, to yield

Jar= L,'m(\ x < llfd]) (1.65)
171=0

J'5f = "L,)'"(2,V x511f) (1.66)

where I. is two-dimcnsional integral over the z =0 plane and
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.11 = - 2VoG(r -ro)(N(r)-+ 2[N(r)• VoG(r - ro)]} (1.67)

The quantities in (1.67) are defined in Section 1.3.

The currents in (1.65) and (1.66) are now taken to reradiate upwards into free space. The

calculation of the resulting fields can be accomplished via either the exact formula,

Esu = - VVxf"(ro)G(R - ro)dr , (1.68)

or the far field approximation,

- ~ A A A
Esu , ,jkoloG(R)ksxksxf7(re) exp (ikoks - ro)drto, (1.69)

or a plane wave spectral representation developed in Appendix B. The easiest of these to deal

with is the far-field approximation of (1.69) but, of course, this does not make it correct.

However, there do not appear to be any near-field effects which would be augmented or

magnified by the foliage layer so the far-field approximation will be used. The total field
scattered by the surface and up into free space may be written as

Esu = Easu + E6su (1.70),

where

A A aA

Easu  jko;IoG(R)ksxksxf Jalro) exp (Ukoks. ro)drto (1.71)

and

A A - A
E6su = jkonoG(R)ksxksxfJ 61ro) exp (Ukoks • ro)drto (1.72)

The quantity Easu is the electric field scattered up into free space by the rough surface when

illuminated by the average foliage field < Ilfdl. E6su is the electric field scattered up into frec

space by the rough surface when illuminated by the fluctuating foliage field /1Ifd .

The next step in the process is to let the fields in (1.71) and (1.72) be incident upon the

foliage layerfioin below. F[he reason for doing this is that this problem can be treated just like

the first part, i.e. the downward passage of the free space incident field through the foliage.

That is. the total field in the foliage due to a and E5su incident fiom be/ow can be written as

l'ollow :
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Esf= (Eau + E6su) + LKI.Esf (1.73)

This equation is the same as (1.13) but with the incident field replaced by (Easu + E6su). We

now develop the standard method of smoothing approach as a means to find the average and

fluctuating upward going fields in the foliage. All averages are over the random quantities in

the foliage and not the surface; averaging over an ensemble of surfaces will be delayed until later

in the analysis. First, Esf in (1.73) is rewritten in terms of its average and fluctuating parts, i.e.

< Esf] + 6Esf Easu + E6  + LK < Esf] + Lk,6f (1.74)

Averaging this equation yields

< Esf] = Eas + a1K Ef LPKybEsf (1.75)

and subtracting (1.75) from (1.74) gives

6Esf = E6su + L(I - P)Ky < Esf] + L(I - P)Kj6Esf (1.76)

Assuming for the moment that < Esf] is known allows the integral equation in (1.76) to be

solved by iteration to yield

6Esf= E6 su + F (L(1 - P)KlnL < Ef] + F&u ]  (1.77)
n=1

Comparing the integral equation in (1.76) with the corresponding equation for the first

downward pass through the foliage, i.e. eqn. (1.24), it is noted that (1.76) has the additional

term E6su. This, of course, is the field scattered upward by the surface when illuminated by the

downward propagating fluctuating field. Thus, to the first pass scattered fluctuating field given

by (1.55) must be added the scattering of 6 Efd from the rough surface, i.e. E6su. It should be

noted that both 6 Efd and E6su propagate in free space and not in the average medium.

In order to find the total fluctuating field due to the surface scattered fields, < Esf] must

be determined. To do this, (1.77) is substituted in (1.75) for 6Esf and, after regrouping terms,

gives

< Es] = Easu + LPK, Z {L(I - P)K IE fjs14 + l.PKv " {.(1 - )A " < Es#1 11.7S)
11=0 n=(0

which is the desired integral equation for < E1f1. In order to understand the meaning and

implications of' this equation, it is beneicial to write the corresponding equation fOr the mean
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field propagating downward through the foliage. This topic was covered in Section 1.2.1, but

the integral equation For the mean field was not given. It is as follows-

< Ef] = Ej + LPKy Yo (L(l- P)]}n</§ (1.79)
n=0

where Ei is the field incident in free space. Comparing (1.78) and (1.79) shows that the only

difference is the Born term and this is as it should be because the eigenvalues (kp) for the mean

field should be independent of downward or upward wave travel. What this comparison means

is that the average field propagating upward from the surface and through the foliage is given,

within the framework of the Foldy-Twersky approximation, by the Born term in (1.78) with ko
in (1.71) and (1.72) replaced by kP (the wavenumber for the average field). That is,

E ,k LnL--= Easu + LP-- _ - P)Klk } hs u (1.80)

where

asu An~(Rk A (.1
E = jkppGk(R)ksxksxfJalro) exp (kpks• ro)drto

su = jkpIpGk(R)ksxksxf J61ro) exp Ukpks. ro)dro (1.82)

As a reminder, < Esj.] is the upward propagating field in the foliage after having been scattered

by the surface and averaged over all possible foliage configurations. A further simplification

of (1.80) comprises taking only the n=0 term in the series, i.e.

E + LPKkEsu (1.83)

This result has a number of interesting features which deserve comment. First, the field Ek isasu

the obvious contribution. It is the field produced by the surface scattering of the downward

propagating field back up into the average medium characterized by the wavcnumbers kp, p =

v or h. This is why all of the quantities, except Jaf; in (1.81) depend on kP rather than k,, i.e.

Ek is scattered into the average medium. The current Jaf, as it appears in (1.81), should also

be computed using kP rather than k0, however, such a replacement is nceessary only when there

is significant multiple scattering on the surface because it alleticats the multiple scattering. II

view of' the fact that we have no surface scattering theories to deal with strong nultiplc

scattering, thcre is no point to replacing ko by kp in computing the surface current.

The last terms on the rhs of'(1.83) is deceiving because it appears that we are obtaining a

coherent result from an incoherent field. The field Lk is indeed a ,cro mean field as can be
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seen from (1.82) and (1.66); however, the average of the product of K k and Es u is not zero.

The cause of this is a highly cooperative effect in which the fluctuating field scattered by a given

object is rescattered by the surface back up to the same object which, in turn, scatters the field

a third time and back into free space. The very unique aspect of this scattering arrangement is

that the total length of the scattering path is a constant regardless of where, in the random

foliage layer, the scatterer is located. This is not true if there is only a single scattering from an

object, such as causes 6Efd, or if there is scattering between different objects. This particular

source of coherent scattering is not expected to be large compared to Easu or when the

randomness of the surface is averaged over; however, there are instances where it might be

important. To the author's knowledge, this effect has not been previously noted.

Before leaving the upward propagating average field in the foliage, as given by (1.83), we

must get this field into the free space above the foliage layer. If the frequency is below about

400 MHz then there is a potential for a lateral wave existing at the interface because < E0 is

propagating into a less dense medium and, in this case, the techniques developed by Tamir 128)

should be used to complete the analysis. However, since the frequency of interest to this study

is considerably above 400 MHz, the lateral wave can probably be ignored and the fields can be

continued up into free space through the use of a simple H uygen's source on the z= h plane or

the application of the plane wave spectral approach developed in Appendix B.

Finally, we turn our attention to the upward traveling fluctuating field as given by (1.77).

Truncating the series in (1.77) with the n= I term yields

6Esfz E6su + L(l - P)kr{ < Esf] + E6su} (1.84)

It is interesting to compare (1.84) with (1.55) which is the downward propagating fluctuating

field resulting form the first pass through the foliage. The field E6su is the result of" the surface

scattering 6Efd into the upward direction. The reaction of the foliage components to this field

is given by the term

L(I - P), ," 6 u

and the remaining term in (1.84) is due to the usual interaction of the average field with the

scatterers such as in (1.55). The important point to note is that the effect of an incident

fluctuating ficld is twofold; it contributes by itself and by interacting with the scattcrcrs.

Substituting (1.$3) into (1.84) yields

,ETf~zI Efisu + LOI - P)Ki.Eas u + Lt kL--mu + E,5su} (1.85)

29

;_______________________________________________



The interesting point about this result is that 6Esf includes fields which propagate in free space

and fields which propagate in the average medium up to a particle and then they are scattered

into free space.

1.4.1 Summary

This section has been concerned with the development of a model for the field scattered

by a foliage or vegetation layer on a rough surface. Emphasis has been placed on the foliage

aspects of the problem because they are the most difficult to properly account for and the

assumed statistical independence of the foliage and the surface permits dealing with the surface

averaging at any point in the problem. The analysis is based on the way in which a foliage layer

converts an incident field into a coherent or average field and a zero mean fluctuating field.

We use this particular decomposition to track the field down through the foliage and onto the

rough surface. In the processes of doing this, we determine the field scattered by the foliage

components back up into free space. This is the field that would exist if the foliage depth were

infinite.

The integral equation for the current induced on the rough surrace is solved by iteration

and the fields rescattered back up into the foliage layer is expressed in terms of a standard

diffraction integral. The source fields for the up-going problem included both coherent and

incoherent terms in contrast to the down-going problem which had only a deterministic field

as the source. These fields led to some additional interactions not present in the down-going

problem. The net results were double pass average and fluctuating fields. The fluctuating fields

could be continued directly into the space above the foliage layer because in the DWBA they

propagate in free space even in the foliage layer. The average or coherent up-going fields

require a Huygen's source or a plane wave spectral decomposition at the foliage-air intcrface

because they propagate in an average medium while inside the foliage layer.

In view of the volume of equations developed in this section, it is useful to summarize the

important ones. The results have been left in terms of field quantities and no surface averaging

has been undertaken.

The fluctuating field scattered by the foliage components on the downward passage of the

incident field is given by

6 L ( I - P~) K < 1.86

where L is the integral over all space, P is the averaging operator. AZx is given by (1.9), and

< :fd] is given by (1.53) with r replaced by 7O. This field, ,L5dj, is valid in all space above the

rough surface.
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The fluctuating field scattered by the through-the-foliage passage of the surface scattered

field is given by

6Esf E6su + L(I-P) u+ LPKkEu + E6su} (1.87)

where E6su is given by (1.72), iasu is given by (1.81), Ky k is given by (1.9) with ko replaced by

k as given in (1.54), and -Esu is given by (1.82). This field, 6Esf, is also valid in all space above

the rough surface.

Finally, the average or coherent field propagating up through the foliage from the rough

surface is given by

< Esf = Eu + LP k u (1.88)

This field is valid only in the foliage layer and a Huygen's source or a spectral decomposition

is needed to continue these fields into the space above the foliage (see Appendix B).

The above relationships are the primary results of this study. It is recommended that they

be used to develop numerical scattering results which can be checked against measured radar

data.

31

I - I - - I I II II-i i



References

1. Brown, G. S. and W. J. Curry, "An analytical study of wave propagation through foliage,"

Technical Report RADC-TR-79-359, Rome Air Development Center, Hanscom AFB, MA,

January, 1980. (AO84 348)

2. Keller, J. B. and F. C. Karal, Jr., "Effective dielectric constant, permeability, and

conductivity of a random medium and the velocity and attenuation coefficient of coherent

waves," J. Math. Phys., 7 (4), pp. 661-670, 1966.

3. Foldy, L., "The multiple scattering of waves," Phys. Rev., 67 (3), pp. 107-119, 1945.

4. Twersky, V., "On scattering of waves by random distributions, I, Free space scatter

formalism," J. Math. Phys., 3 (4), pp. 700-715, 1962.

5. Twersky, V., "On the propagation in random media of discrete scatterers," Proc. Symp.

Appl. Math., 16, pp. 84-116, 1964.

6. Lax, M., "Multiple scattering of waves," Rev. Mod. Phys., 23 (4), pp. 287-310, 1951.

7. Twersky, V., "Multiple scattering of electromagnetic waves by arbitrary configurations," J.

Math. Phys., 8 (3), pp. 589-610, 1967.

8. Twersky, V., "Interference effects in multiple scattering by large, low-refracting, absorbing

particles," J. Opt. Soc. Am., 60 (7), pp. 908-914, 1970.

9. Twersky, V., "Coherent, electromagnetic waves in pair-correlated random distribution of

aligned scatterers," J. Math. Phys., 19 (1), pp. 215-230, 1978.

10. Varadan. V. K., Bringi, V. N., and V. V. Varadan, "Coherent electromagnetic wave

propagation through randomly distributed dielectric scatterers," Phys. Rev. D.. 19 pp.

2480-2486, 1979.

11. Isilinaru. A., l'ave Propagation and Scattering in Random Iledia, Vol. I & 2, pp. 572,

Academic Press. New York, 1978.

12. Brown. G. S., "Coherent wave propagation through a sparse concentration of particles."

Radio Science. 15 (3), pp. 705-710, 1980.

32



13. Lang, R. H. and J. S. Sidhu, "Electromagnetic backscattering from a layer of vegetation:

a discrete approach," IEEE Trans. Geoscience & Remote Sensing, GE-21 (1), pp. 62-70,

1983.

14. LeVine, D. M., R. Meneghini, R. H. Lang, and S. S. Seker, "Scattering from arbitrarily

oriented dielectric disks in the physical optics regime," J. Opt. Soc. Am., 73, pp. 1255-1262,

1983.

15. LeVine, D. M., A. Schneider, R. H. Lang, and H. G. Carter, "Scattering from thin dielectric

disks," NASA Tech. Memo 86155, Goddard Space Flight Center, Greenbelt, MD,

September 1984.

16. Taylor, J. R., Scattering Theory, 477 pp., John Wiley, New York, (see Ch. 14), 1972.

17. Lang, R. H., "Electromagnetic backscattcring from a sparse distribution of lossy dielectric

scatterers," Radio Science, 16 (1), pp. 15-30, 1981.

18. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IEEE Trans. Antennas

& Propag., AP-9 (6), pp. 53-466, 1961.

19. Frisch, U., "Wave propogation in random media," in Probalhstic Methods in Applied

Mathematics, A.'. Bharucha-Reid, Ed., New York; Academic, ch. 2, pp. 76-198, 1968.

20. DeSanto, J.A. and G.S. Brown, "Analytical techniques for multiple scattering from rough

surfaces, "in Progress in Optics, Vol. XXIII, E. Wolf, Ed., New York; Elsevier, ch. 1, pp.

1-62, 1986.

21. Valenzuela, G.R., J.W. Wright, and J.C. Leader, "Comments on the relationship between

the Kirchhoff approach and the small perturbation analysis in rough surface scattering,

"IEEE Trans. Antennas & Propag.. AP-21, pp. 536-539, 1972.

22. Barrick, D.E., "Rough surface scattering based on the specular point theory, "'IEEE Trans.

Antennas & Propag.. ,IP-16, pp. 449-454, 1968.

23. Brown. G.S., "Backscattering from a Gaussian-distributcd pertictly conducting rough

surfacc. "IEEE Trans. .lntennas & Propag.., 1P-26. pp. 41,2-482. 197S.

24. llolliday, D.. "Resolution of a controversy surrounding the Kirchholl' approach and the

small perturbation method in rough surface scattering thcory', "IEEE T'ans. .netmtas &

Propag., AP-35 (I), pp. 120-122. 1987

33



25. Brown, G.S., "The validity of shadowing corrections in rough surface scattering, "Radio

Science, 19, pp. 1461-1468, 1984.

26. Jang, P.S., "Comparison of composite two-scale radar scattering model with full wave

approach," Dynamics Technology Rept. No. DT-8607-10, Dynamics Technology, Inc.,

Torrance, CA, June, 1986.

27. Brown, G.S., "Scattering from a foliage covered rough surface," paper presented before the

1986 AP-S/URSI International Symposium, Philadelphia, PA, June, 1986.

28. Tamir, T., "On the radio-wave propagation in forest environments," IEEE Trans. Antennas

& Propag.. AP-15,(6), pp. 806-817, 1967.

34



Appendix A

Integral Equations For Scattering From Dielectric Surfaces

When trying to determine the electric current induced on a perfectly conducting body or

surface, there are three integral equation formulations that are familiar. The first is an integral

equation of the second kind called the Magnetic Field Integral Equation (MFIE). The second

is an integral equation of the first kind called the Electric Field Integral Equation (EFIE).

These equations are based on the discontinuity or continuity of the tangential components of

the stated fields on the conducting boundary. A third equation is of the first kind and it results

from the requirement of zero total field inside the conducting medium. Of these equations or

formulations, we have chosen the MFIE because a formal solution by iteration can always be

developed. In fact this was done in Section 1.3 and the significance of the first two iterates was

discussed. Convergence of the iterative series is always a potential problem but there is also the

possible solution by partial summation methods. This is why we favor equations of the second

kind over integral equations of the first kind.

When the surface becomes an imperfect dielectric or a lossy conductor, there are many

possible ways to describe the field scattering problem. A good discussion of the possible

formulations is given by Jones.* In addition to volume and surface integration formulations,

he discusses the use of integral equations developed from the Leontovich impedance boundary

condition. This latter formulation is approximate but very attractive because one can deal with

either an electric or a magnetic current in a single integral equation. There are two difficultics

with the technique. First, the technique is approximate*" and its ability to describe scattering

from arbitrarily roughened surfaces is as yet unknown. Second, the actual resulting equation

is an integro-differential equation in that it involves the unknown current and its derivative.

For these reasons, integral equations based upon the impedance boundary condition do not

seem to be suitable to the random rough surface problem.

In searching for integral equations suitable for describing the induction of currents on the

dielectric interface, we were guided by one primary condition. This condition was that the

equations be sufficiently close to the MFIE that we could use NlFIE-based methods to deal

with the dielectric interface. That is. we did not want to deal with the dielectric intcr'ace as a

fundamentally new and uiferent problem. A number of formulations were investigated and the

Jones, D.S.. Ileihods h, Electromagnetic "'ave Propagation. Oxford Press, pp. 887, 1979.
** Wang, D.S., "Limits and Validity of the Impedance Boundary Condition on Pcnetrable

Surlaces", IEEE Trans. Antennas & Propag.. .IP-35(4), pp. 453-457, 1987.
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one developed by Muller*** was selected as the most suitable. In this approach Muller derives

coupled integral equations of the second kind for the electric current is and the magnetic current

Ks. The resulting equations are as follows;

(r)= (- )Js(r) + -(r +1) (r)xfJsr)x[V0oGo - )rVoG]dso
Yko  koZ+1E+s(ro) 7]7~ o]d o  (I

o + Id n(r)xf {Ks(ro)[Go - rcrG]

r(r) 2 =i )K;(r2 .-- [- - cV
Cr+K = + - n(r )xfKs(ro)x[VoGo roG]dso

+ +r) nr )xfsro)[G o - [r1rG ] + r)V][VG 0 - V Gds (A2)

where rr and Ar are the relative permittivity and permeability of the lower medium,

no = ,Po/co is the characteristic impedance of free space, ko = 2ir/A o, k = kovi '7 r , and

Ij A~jj L

is =n xf Ks = E'xn (A 3)

Go = exp (-jkoIr -o1)/4,r r-7ol (A4)

G = exp (-jk1r-ToI)/41r7r-o0 (A5)

The operator V. is the conventional three dimensional gradient operator evaluated on the

surface.

Of particular note with these equations is that they are second kind integral equations and

they involve only the unknown currents and not their derivatives. It is only necessary to solve

(Al) for Jsx and hsand (A2) for KSx and Ks because the currents must be tangential to theAA

surface. That is, n . is = 0and .Ks = 0so hat

Jsz = cx-sx + ,yS (.16)

and

K , = xA:sx - tyKy .

ly

M * Iuller. D.. Foundations of Mathematical 'heory o'Electromagnetic W,. ... Springer- Verla g,

pp. 16).
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where Cx and Cy are the x and y components of the surface slope. Thus, (AI) and (A2) can be
rewritten as a matrix integral equation of the second kind for Jx, Jsy, Ksx and Ks . While the

increase in dimensionality relative to the conducting interface case is not insignificant, it does
not cause any fundamentally new problems. The major increase in difficulty comes from the

need to deal with the second derivative of the Green's functions at the source point. Ilowever,
this is also is not a fundamentally new problem.

The point of the above discussion is to show that the penetrable rough interface problem
can be dealt with using a set of equations that are very similar to the MFIE describing the
conducting interface. This means that if techniques can be developed to deal with the M FIE
which are not tailored to the very special form of the kernel of the integral equation then they

can also be applied to the penetrable interface also. Of course, special kernel dependent
techniques can also be translated from one problem to the other as long as both kernels have

the same property. In summary, it is the similarity of the MFIE with (AI) and (A2) which

justify our emphasis on developing analytical techniques fbr solving the MFIE.
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Appendix B
Continuation of the Coherent Field Into Free Space

Section 1.4.1 summarizes the various contributions to the scattered field in the region of
space above the foliage layer. These contributions comprise coherent and fluctuating fields and
the latter present no difficulty because they are easily continued into free space (see the
discussion in Section 1.4.1). However, the coherent or average fields propagate, when in the
foliage, as in an average or effective medium. This medium is characterized by the relative

dielectric constant Er where

k 2 k2 P vr
Whemthses rp= /ko p vorh (BI)

When these coherent fields strike the foliage-air interface, there will be reflected and transmitted
fields. The reflected field is ignored because the dielectric contrast between free space and the
average foliated medium is not very significant. However, a proper accounting for the change

in medium must be undertaken for the transmitted field.

The average incident field at z= h, coming up through the foliage, is given by (1.88), i.e.,

<Esf> = Eu + L kkESU (B2)

The k superscript on the fields and the k subscript on the operator Ky indicate that the medium

is characterized by the wavenumber associated with the average field in the foliage medium.
We now have to continue this field into free space above the foliage. It is well known* that the

fields above the z h plane can be determined from the spectral representation

< E (r, z)] = (21r- 2f F (kt) exp (-jK[z- h] -jk .,t)dkt (B3)

where

(k-kt ko kt

K - (1)4)

2o 1/2 2 "
-j(kt -kt - k ) k t . k t > k o

and dkt = dkxdky, kt  kA + k,. Equation (113) represents the average ficld above tic
foliage as a superposition of plane waves whose complex vector amplitudes are given by Fkt

* Collin. R.E., intennas and Radiowave Propagation. McGraw-l fill. New York, 1085.
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Since < Eirz)] satisfies Maxwell's source free equations, we must have V. < E(r, z)] = 0.

This implies that all the vector components of F are not independent and, in fact,

(kt + Kz).F = 0

or

(k xF x + k XF )
rz=- K (B5)

The x and y-components of F, denoted as

Ft = Vx + F, (B6)

may be determined from (B3) by setting z= h and taking the inverse two-dimensional Fourier

transform of both sides to yield

F(kt) = f < E1(r, z = h)] exp (jkt .rt)dr-  (B)

In (B7)

<E,(rt , z = h)] = < Ex(rt , z = h) X + < Ey(r, z = h)4 (B8)

is taken to be the x and y components of the field in (B2); that is, the upward traveling field in

the foliage layer. Thus, (B7) can be written as follows;

Ft(kt) = f < Ej(rt , z = h)] exp (jkt, rt)dr t  (B9)

When the point of observation is sufficiently far from the illuminated area on the interface

at z= h, the integral in (B3) can be asymptotically evaluated to yield

< E (rt , z > > h)] -j2k o cos OsG(R)F kst) (1I0)

where

G(R) = exp (-jkoR)/4rR I(/11)

and

5= -k sin 0s cos A - k sin 0 Sil A (B12)
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The angles Os and bs are the polar and azimuthal scattering angles while R is the distance from

the top of the foliage layer to the point of' observation. In this limit, all we need is the

two-dimensional Fourier transform of the total average field at z= h. In terms of the parts of"

< Esf], as given by (B2), the overall process of getting from the current on the rough surfacc up

through the foliage and into free space is a bit more involved.
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Appendix C

The Conversion of Fields Into Scattering Cross Sections

While the fields obtained in the main body of this section are fundamental quantities they

are not the most useful to a radar engineer. For incoherent radars and even most coherent

radars, the characteristic of primary interest is the scattering cross section of the terrain. This
quantity is related to the second moment of the scattered field so it is determined by the

fluctuating component of the scattered field in all directions except the specular direction. In

the specular direction, the scattered power comprises both coherent and incoherent parts
although the coherent part is frequently negligable. If the coherent power is not negligable, it

gives rise to a range-dependent scattering cross section.

With scattering from bare ground, the cross section of interest is the scattering cross

section of the surface per unit scattering area or a° . This normalized monostatic cross section

is determined from the fluctuating part of the scattered field as follows;

cp -. mA {41rR 2 < 16 q .i12> /Ei 2 A) (Cl)pq R- oo

A-' oo

where R is the distance from the radar to the midpoint of the illuminated area, A is the

illuminated area on the surface, and Ei is the incident field. The subscripts p and q denote that
the polarization p is transmitted while the q-component of the backscattered field is sampled.

This normalized cross section depends on only two radar parameters, namely, the frequency and

the polarization.

The normalized cross section .° is adequate for bare surfaces and surfaces having
vegetation layers which are small in depth compared to the range resolution of the radar.

However, when the foliage depth exceeds the radar range resolution, the surface scattering cross
section should be replaced by a volume scattering cross section. That is, instead of (Cl), the

following volume cross section should be used;

av =lr {4r2< j E All > / l I 12

Pq R--o

V-4.00

where V is the illuminated volume and R is the distance from the radar to the midpoint of the

volume. It should be noted that just as (CI) assumes completcly incoherent surface scatter so

does (C2) assume completely incoherent volume scatter. That is, under the complete

incoherence condition. eithcr a'pq.1 or a"qV (whichever is appropriate) can be uscd in the
conventional radar equation lor the target scattering cross section to give the power

backscattered by the terrain.
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As summarized in Section 1.4.1 there are essentially three fields to consider when dealing

with the scattering from vegetation covered terrain. The first field is due to scattering by the

foliage of a field incident from free space. This field is a fluctuating field in that the foliage layer

is assumed to be so large in terms of a wavelength that there is essentially no coherent

backscattering. The other two fields are the coherent and incoherent fields which have

propagated down through the foliage and have been scattered by the surface back up through

the foliage. Of these three fields, the two of most interest are the fluctuating field scattered by

the foliage on its way to the surface and the fluctuating field scattered by the 3urface back up

through the foliage.

Scattering of the free-space incidence field (propagating down to the surface) by the foliage

is described within the distorted Born approximation by (1.86). The mean square value of this

quantity may be written as follows;

<I6EfdI> = Efd]LK<Efd] > - <LK <Efd]><LK <Efd]> (C3)

If the point of observation is sufficiently far removed from the scattering region, the far field

approximation for the Green's function in (1.11) may be used to yield

2 N A A A
Ky:t k (CR),g(R) (& R) - I)Sn expUkoks (ro + rn)]( 1 - ks(ks } (C4)

A
where ks denotes the direction of the scattering observation. Rewriting (C4) as

2 N
= kog(R) Qn(ro+r.)

permits the following expression for the first term on the right side of(C3);

-- * - k N2

k< fd] LK +< Efd] 0 (r) + L n <Efd(ro + rn)]41R n--I

ko'2  NV IV,._ , ..

+ (-OE)2 LQn(r° +rn) < Efd(r°+-)]. ml-" LQ(ro +rm) <Efd(ro+rm) (C5)
41rR n=1 fom=lm

mnn

What (C5) does is to separate out the N product terms which contain like elements. Assuming

that the scattcrcrs arc independent of each other, an assumption which is consistent with the

distorted Born approximation, an average of (C5) yields

L~r < E td]. LKv < Ed] f < I LQ,2(r + rn) < E(ro )

42



+( - l/,V) f L < Q(ro + 7)] < Efd(ro  r 12  (C6)

where Prn) is the probability density function for the location of the scatterers, symbolized by

the vectors rn n = 1,2,...,N. As N -- 00, the second term on the right side of (C6) goes to the

negative of the second term on the right side of (C3) so they cancel and this leaves
k2

The <.1 brackets inside the integrand denote a conditional average over scatterer size, shape,

orientation, and dielectic constant.

Substituting from (C4) and simplifying, yields the following result;

16 d ,2 >  (-- ' N <(,-)> f f f [I- (ks .efd)] <Ey(-o Efd rr + + n)]r

A

.p(n) expUkoks. (ro-r' )]drodr drn (CS)

where

< Ed] = <E]A
<Edefd

and < Vs > is the average volume of a scatterer and shape of a scatterer. For plane wave

illumination of the foliage layer, the average field in the layer is given by

< Efd(ro +r,)] = Ej exp[ -jk,. (rot + rn) -jkp(zo + -n)] (c9)

where

= i +ki (CIO)

with k. and ky given by (l.51a) and (1.51b), andk is the propagation constant of the average

medium given by (1.54). The average field has its transverse (to z) wavenumber equal to ki in

order to be in phase synchronism with the free space incidence field across the upper average

boundary (z = h). Substituting (C9) in (CS) yields

IE5Ed>( V <(2r I-> ff f [IA(ks.f lEiI2 
< Vs >
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+jksz(z o -z )-j(koz o -k ) - 2k 1njp(rn)drodro drn  (CI 1)

where the conjugate on kp=k -jk'i is necessary because the propogation constant for the

average field may be complex. (C11) may be rewritten as follows,

2 2AA2
< 6E o2 N < ( -1)> IE.I 2 fI f [l-,.efd) ]

<Ifd 1  41r ks4nR

exp[j(kst - kid - ro, +j(ksz _ kp)z° 2dr01 exp ( -2 ,)prr.)dr, (C12)

The integral over < Vs > has the same form as the scattering pattern of a scatterer of volume

< Vs > and supporting an internal field of the form in (C9). Thus, with

P(ki t+ k; k)= f [l-(ks. exp(kst- kidrot+J(ksz- p).o]dro (C13)

< S>

(C12) becomes

<1Ek 2  > I..,2 p A
< 6f12 > i-R)N <(Irn 0 ) >[i 2 ~i kp ; ks) 2  (C14)

f exp ( -2k~z)p(r)dr

If the scatterers are assumed to be uniformly distributed about the volume V- A h where h is

the depth of the foliage layer and A is the area in the z--0 plane (see Figure 1.3) then

l/Ah r, in V
P(rn) = - (C15)o rn  not in V

and (C14) becomes

2
[6Ed12  > --(4- )N < ( r 1 > I Ell I P(kit + kp kz;

"- 1 -cxp( -2ki/1I]2kh,

Substituting this into (C2) yields the following result for the scattering cross section per unit

scattering volume:
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o=- V 41r< (er n - 1) 2 > I P(kit +ktp';k)[2['-exp(-2k 1)]/2 (C16)

If the scattering amplitude is normalized to its maximum value, i.e. < Vs > , (C 16) becomes

o -- < Vs >< (er n- 1)2> I P(k t + k ; ks)l < Vs >

vJ[ 1- exp( -2~)/2~)(C17)

where vc is the average fractional volume occupied by the scatterers or

VC=N< Vs>IV (C18)

This result differs from what would be obtained with previous results in the appearance of the

factor 2kAh. That is, previous results would erroneously replace this by 4k *h.

A consequence of the sparse scatterer assumption is that (C17) very nearly splits into the

product of two distinctly different factors. The first factor, with the exception of its dependence

on the propagation constant of the average medium, is a function of the properties of a single

average scatterer only. The other factor depends on average medium parameters only. Since P

or the scattering pattern is the only function in (C 17) which depends on the scattering direction.

this shows that the "scattering pattern" of the ensemble is determined largely by the scattering

pattern of an average scatterer.

The computation of the normalized scattering cross section due to the fields which

propagate down through the foliage strike the underlying surface, and then are rescattered back

up through the foliage is considerably more difficult. This is due primarily to the fact that there

are essentially three random scattering processes occuring in this situation. Equation (1.87)

gives the weak volume scattering approximation for the fluctuating field described above, e.g.

Esf = E6su + L(I - P)K {u + LPJu + E6 s} (C19)

E6su is the field scattered into free space by the rough surface when illuminated by 6 Ejd. The

term L(I - P)KrE6su represents the fluctuating field scattered by the particles when supporting

the ficld E s. 5k is the field scattered into the average medium by the surtface when

illuminated by < >. The term L(I - /')Ky/,., is the fluctuating field scattered by the particles

when supporting the field Lku. Finally, the term

L( I - I))KrL'KrkJ:ksu
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represents a double scattering of the fluctuating field E6su and it is not significant compared to

the other terms in (C19) when there is a sparse population of scatterers. Thus, (C19) can be

reduced to the following;

cSEsf ;z E~su +L(Vd-')K,:{Esu +E6su) (C20)

Assuming that there is no correlation between these various fields and recognizing that

each are zero mean quantities results in the following expression for the mean square value of

< 16 Esf2> = < I E&suI2> +< I L(I- P) >

+ < IL(l-P)KrEsu> (C2 1)

The first term on the right of(C21) is due to surface scattering. After considerable algebra, it

may be reduced to the following form;

< = ( )
i641rR 661

expUkOA.r 5 r]dr rjk. (rSs ' )] > drts dr ts (C22)

where no is the impedance of free space, J6f is the current induced on the rough surface by the

downward propagating foliage field 6 Efd (and satisfies equation (1.64),

drt S dxsds dr ts = d- dys ,

and j6f denotes the direction of J6f This result can be reduced to a surface scattering cross

section through the use of(C 1), e.g.

22o- k0n .)ff < [I -(ks - j6 ]J1rs)J61rs
4•JJ A

A A

expUkok s . (rs .r s )] > drtsdr t. (C23)

This is about as far as this formulation can be taken without a specific form for the current.

lowever, it must be remembered that the average in (C23) involves an average over the random

properties of the surface and the random properties of the discrete scatterers including their

positions. The A- I factor in (C23) will be cancelled by one of the integrations over x, and Ys
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For the second and third terms in (C20), the following relationship developed in an earlier
part of this appendix is useful;

k2k4oR 2 2 rn  f <1)2 (A.)
< IL(l-P)KIE 12> = ( )2< >(rN f >[N-ks e

< Vs >

°E(r, + -r)E + ,rn) > expUkoks (ro -r o )]drodr (C23)

The averaging in (C23) inside the integral is over the random positioning of the scatterers (for
the upward traveling field), the random surface, and the random locations of the scatterers for
the downward traveling field. The form of (C23) suggests that to a good first approximation
the second and third terms in (C20) give use to a scattering cross section per unit scattering
volume similar to the one in (C16) but modified by the random surface effects. For example,

the second term on the right of (C20) gives

4
4ko <V>< t 1) 2 > I P(kst + "" k~ <V 12

aasu"'- 4 s< (Srn- k sl s

f{vc[I - exp( -2kh)]I(2kph))Sasu (C24)

while the third term yields

4ko Vs><(rn1) >IP(tS+kp- ks)<gVs>12
6su  -r - t

(VC I I - exp( -2kip/l(2kz)}SSsu (C25)

where

22

ka ff < [1- (ks .A 2JaI&rs)J*a(r;r)

A -

A A ) -A
= -~~-~• ff - ( . 1'4) > r 9.r t

A
exp[jk kv. (r ) dr- dr (C27)
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Of course, the averaging in (C26) and (C27) must include not only the random surface but the

discrete scattercrs as the field is scattered down to the surface.
To the level that has been developed above, the efrects of a random foliage layer on a

random surface may be described by a scattering cross section and two volume cross sections.
It should be remembered that no coherent fields reflected from the surface have been included.

Clearly, there is much work to be done on this problem. For example, one of the things that

should be done next is to use some classical approximations for the surface current (such as

physical optics and perturbation) and carry the above calculations through to completion. This

would certainly give a better feel for the relative importance of the various effects above.
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In Scin1.3 we reviewed a number of approximate methods for dealing with surfhce2. smttcSurface Scattering n h ups fti eto st pl n eeo
scattering and their relationship to iterations of the MFIE. Using these iterates along with

asymptotic techniques to determine the scattered field provided further insight into the

limitations and capabilities of the iterative approach. However, the iterative approach is not

necessarily the one to use to improve on known asymptotic results because such improvements
may possibly comprise the partial summation of an infinite number of iterates. There are other
methods for extending asymptotic results and the purpose of this section is to apply and develop

one such technique. These asymptotic extention methods generally augment iterative solutions.

2.1 Luneburg - Kline Expansion for the Surface Current

2.1.1 Introduction

One of the few scattering properties that are known about certain classes of rough surfaces

is how they scatter electromagnetic energy in the high and low frequency limits. The caveat
"certain classes" is necessary because even in these asymptotic frequency ranges, there are some

surfaces which are not amenable to classical analytical techniques. For these surfaces or more

general ones, there are problems with existing theories or models when the frequency of interest
is between the low or high asymptotic limits [1]. The problems are not with a lack of models
but with a good understanding of the limitations of the models. For example, there has recently

been some very good work appear on a phase perturbation approach to rough surface scattering

[2, 31. This Rytov-like method has shown promise of extending the range of conventional power
series-like field perturbation theory to the point where the rms surface roughness is the order

of an electromagnetic wavelength [4]. Of equal importance, however, is the fact that some of
the advocates of this approach have very carefully studied the validity of this method by
applying it to deterministic surfaces. This type of validation analysis must be done if the

method is to be useful as an engineering tool.

Phase perturbation is essentially a low frequency method whose upper frequency range has

been extended by partial summation [3]. This approach of extending a low frequency method
into higher frequency ranges is fairly common. It is based on the fact that most low frequency

techniques do have higher order "terms" which can formally be derived; some of these terms can
also be computed. The problem with such extensions is that it is never quite clear when the

hieher 'terms'" converge and when they give meaningless results. l.ittle. if any. work has becn
done in the rough surlace literature on extending high frequency solutions into lower 'requency

regions. Il owever, a basic technique For doing so has existed for a number of years; that is, the
Luneburg-Kline (LK) representation for the field scattered by a large object [5]. The classical

Lunehurg-Kline (I.K) representation is a series in powers of the electromagnetic wavelength (or
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inverse powers of the electromagnetic wavenumber) for the field scattered from a body. The

zeroth order or wavelength independent term corresponds to the geometrical or ray optics

prediction for the reflected field. This term depends on the curvature and the reflection

coeflicient of tile surface at the point of reflection (the so-called specular point). The term that

varies as kol also depends on these same quantities but, in addition, appears to oe sensitive to

the distance from the specular point to the shadow boundary [6]. This distance dependence

indicates the nonlocal nature of the first wavelength dependent term.

Lee [7] has recently obtained the kol coefficient for the scattered field and the current on

a perfectly conducting convex body. This was a significant result but it was a bit too restrictive

for apgplication to the rough surface problem. For example, Lee's solution must be augmented

by possible multiple reflections on the surface, the presence of a creeping wave where the

incident field just grazes the surface, and any possible edge diffraction where the surface has a

relatively sharp edge-like behavior. In addition, the solution obtained by Lee was very

complicated from an algebraic point of view and involved surface characteristics whose statistics

are not necessarily well know.

Thus, with an eye toward possibly generalizing Lee's results and also obtaining more

insight into the L-K approach, an alternate methodology was developed [81. First, rather than

expanding the scattered and incident fields in L-K series and then applying the boundary

conditions to obtain the expansion coefficients, the surface current induced on the surface by

the incident field was expanded in an L-K series. This expansion was used in the Magnetic Field

Integral Equation (MFIE) to generate a hierarchy of integral equations for the expansion

coefficients. This sequence of integral equations exhibited some rather interesting properties.

First, it was recurrsive in that knowledge of the nth integral equation solution determined the

n+ 1 integral equation solution. Second, the "source" or Born term in these integral equations

depended entirely on the asymptotic evaluation of a known integral in inverse powers of ko.

Finally, and most interesting of all was the fact that each integral equation could be solved as

they were all just like the equation obtained by iteratively solving the MFIE in the high

frequency limit.

There were two immediate consequences of this work. First, it was found that the L-K

representation for the current, even though forced to satisfy an exact integral equation,

produced a zero current on the part of the surface shadowed from the incident field. That is,

even the higher order terms in , ko were identically zero in the shadow zones of the surface.

Although it is not directly obvious why this is the case. it is apparent that since the I--K

representation is asym ptotic. it fails to converge to the value of current which is correci for all

frequencies. Thus. in the shadow zones of the surface, the L-K representation is valid in the

optical limit only. This result, in itself, is significant because it is the first time that a limitation

of the L-K representation has been obtained via an exact analysis. A second major result ofthis
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work was to show that all the L-K expansion coefficients could be determined from the behavior

(as a function of ko ) of a two-dimensional integral of known functions. Although time did not

permit the evaluation of this integral, there are techniques for doing so [9] and it is suggested

that this is a useful avenue for future work.

2.1.2. Analysis

The problem to be addressed here is the determination of the electric current density s

induced on the surface z = C(r) by an incident magnetic field Hi. The surface z = (() separates
A

free space (z > i) from a perfectly conducting medium (z C ¢). The unit vector ki specifies the

direction of travel of the incident field. The electric surface current density Js must satisfy the

Magnetic Field Integral Equation (MFIE) as follows;

s(r) = 2n(r)x i(r)+ 2n(r)xfs(- )xVoG(r - 70 )dso  (2.1)

In (2.1), (r) is the unit normal to the surface at the point r = r + C(r and is given by

=) - + + X + C 1/(2.2)

where Cx = 34/Ox ?'nd Cy = a lay are the x and y surface slopes at the point r on the surface.

G(r - ro) is the free space Green's function, i.e.

G(r-r o) = exp(-jkol7- 0 1)/4,17 -rt, (2.3)

and Vo is the conventional three-dimensional gradient evaluated on the surface (z = and

zo = Co ) Noting that the area integration over the surface can be converted to one over the

z=O plane through

dso = (1 + + 2)1/2 dr

where drt = dxodyo, (2.1) can be rewritten as follows;

I (r) = 2N xli + 2V xf (r0)xVoG(1r -r0I)drto (2.4)
0!

where

-1 -. 1/2~
(r) = 0(r)(l - + 1 

-2.5) •

and
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= - 2 + z (2.6)

IfJ can be determined from (2.4), the scattered field can be found from the fbllowing integral

expression;

HP() = -xJ()r)G(IR r J)drt  (2.7)

As a preparatory step to introducing the Luneburg-Kline expansion, the ko dependence

introduced by the incident field is removed. That is, with

7(r) = L(r) exp (-jki .r), (2.8)

H'(r) = hi exp (-jki .r), (2.9)

and hi a constant, (2.4) may be rewritten as follows;

L(r) = 2N xhi + 2N x f L(r 0 )xVG( - 0 1) exp (jk .Ar)dr 1  (2.10)

where r =7 -r o. The purpose of (2.8) is to remove the known high frequency behavior or0.=

dependence on ko from the current. That is, as k0 -oo it is known that L (r) is independent of

ko. The modified current L (r) is expanded in a Luneburg-Kline series, i.e.

L(r) = r (2.11)
rtO ko

where the vector expansion coefficients jn(r , n = 0,1,..., are independent of the electromagnetic

wavenumber ko. (2.11) is next substituted into (2.10) and it is assumed that term by term

integration is permissible* so that the following results;

n I(r)k- n =2Vx i + 2 x 7 ko n fJ(ro)xVoG exp (/k .ar)drt (2.12)n=0 n=o0

In order for (2.12) to be satisfied, the integral terni must also have a Lunchurg-Klinc expansion.

That is. if

This assumption is tantamount to requiring that the L-K scrics be uniformly convcrgcnt over

rto ( -oo, o.); a requirement that is probably not satisfied.
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T(r, ko) = ](r 0 ) x VoG exp (jk -Ar)drt (2.13)

then it may be written as follows;

Tn(r , ko) -= --TnM(r )Iko (2.14)

m=0

where the Tnm expansion coefficients are independent of ko. Combining (2.13) and (2.14) yields

Tn n2f ( )x(2.15)Tno + Tn + -L-2 + f.... ) V oG( IArexpk .At )drto
ko

so that the vector expansion coefficients can be determined as follows;

lno k n r(') x V oG(J r Iexp( 1* Ar)dto. (2.16a)

Tn I =ko U ko f n x V oG exp (jki °r)d - Trio (2.16b)

rn-I n
Tnm = Iim km fixVGexpjk.Ar )drt - 1 (2.16c)

ko-*oo O 0 p=O kp

Substituting (2.15) into (2.12) yields

£ n ]n(r)kon = 2N x r i + nIO XTm(r)kO - J (2.17)
n=O

so that equating like powers of ko yields

j(r) = 2V x {hi + Too) (2.18a)

jl(r) = 2A x{TlO(r) + T"Ol(r)} (2.1Sb)

j2(r) = 2N x {TI(r) + T- 0 r) + l')2(r) 2.18)

etc.
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Substituting from (2.16) into (2.18) yields the following sequence of integral equations for the

vector expansion coefficients;

jo(r= 2N xlhi + 2N x Urn f jo(ro)x VoG(JAr1)expUki .Ar)drto (2.19a)

-- - [:ko - -- 70
/l(r) = 2N x ir(ko )x oG(IAr I)expfki . Ar)drto - TO}ko-

2N x Urn f r) x VoG(I rl) exp iki A, r -d2.9b
ko-..+O • dr 021

This sequence of integral equations has a number of interesting properties. First, except

for the source or Born term, all the integral equations are identical in form in that they appear

as

jp(r) = 2N xsp(r) + 2N x r )(r0 )xVoG(IarI)exp(ik i .Ar)drt (2.20)
k .- oo 0

p = 0,1,2....

Also, since the source term, 2N x sp(r), in (2.20) depends on jo, jl,..., and Jp-1, the integral

equations are recurrsive. Thus, if jo can be determined then it should be possible to determine

all higher order vector coefficients. Because the vector expansion coefficients, jn(r), are

independent of k., it is further noted that the source term spr) is determined almost completely

by a Luneburg-Kline series representation for the following integral

f VOG(l r1)exp(jki'Ar)d1 o

For example, from (2.19a) it follows that

,T(r) = hi  (2.21a)
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while from (2.19b)

sl(r) = Iirn ko f j(r) X VOG(ir I) exp~j .r)drt

(2.2 1b)

- lirn fL(r)xVoG(Ar)e xp(ik 7.r ; oI

It should be noted that the presence of jo(ro) under the integral signs in (2.21b) has a very

minimal effect because the dominant terms are the ones which depend upon ko .

One final but very important point about the sequence of integral equations in (2.19) is

that their solutions are known. In fact, (2.19a) is a slightly altered form of the Magnetic Field

Integral Equation in the high frequency (ko--oo) limit, so its solution is given by [101

2N x hi (r not shadowed)

o (r in shadow)

There is also the possibility of a multiple scattering contribution to jo(r ) from other points on

the surface [101. Thus, for the nth vector expansion coefficient, the solution is (except for the

contributions of multiple ray bounces on the surface)

2W x-,n(r) (r not shadowed)

In(r) - (2.22)

o (r in shadow)

The complete surface current density is thus obtained by combining (2.5), (2.8), (2.11), and

(2.22), i.e.

2 y-1/2 exp( ,(r)
Is(r) - (1 + Cx + c 1  exp(-jki .r) Z (2.23)

n=0 ko

One of the immediate consequences of (2.23) is that the current on any shadowed portion

of the surface is identically zero. This is obviously a high frequency approximation. but the

analysis presented above makes no explicit approximations and, in fhct. appears to he exact.

Clcarly, an exact analysis cannot lead to an approximate result. What is happening in this case

is that the L-K series is doing the best job that an asymptotic series can do in rcpresenting the

current in the shadowed parts of the surface. The failure of the L-K asymptotic series is linked

to the fact that the current in the shadow-zones of the surflce cannot 1,e represented by an
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asymptotic series of the L-K form. To prove this, recall that the definition of an asymptotic

series such as (2.11) is that if Sm represents the partial sum of the first m+ I terms * then

lira ko [ L(ko, r , - - m] = 0 (2.24)
ko--- OO 0

for all values of m. In the limit as ko-+o, the current in the shadow-zones of the surface is zero.

Thus, from (2.24) with m=0, SO =0 orjo(r) =0. For m= 1, (2.24) yields

lirn (koL ) tisn (koS l)ko-+40  ko

but S1 =llko because jo =0, so this leads to

Jl = Emr (ko L (2.25)
ko--*O

It is well known that the current in the shadow zone has the form of a creeping wave [Il I

L C, exp( -J[ko6 + exp( -jr/3)fl(ko/2) 1 /3 f Kd6]} (2.26)
e=1

where C, are the launching amplitudes, 6 is the distance measured along the surface, fle is a root

of the Airy integral [I ], and ?c is the curvature of the surface at the distance 6 measured along

the surface. Thus, in the limit as ko--oo, each term in the series of (2.26) exhibits an exponential

dependence on k0 . Furthermore, since the real part of this dependence leads to an exponential

decay with distance, it is clear that

Jl =kUr (ko L ) =0

and, in fact, all of the higher],.n's will vanish. Thus, the only acceptable asymptotic series for

the current in the shadow region is the null series. The reason for this is contained in the

definition of the asymptotic series, e.g. (2.24). That is, the only series of the form

= , jn(r )/k0
n=0)

which can satisfy (2.24) for all i in the shadowed regions of the surface is the null scries. Note

that it is the constraint imposed by the f)rin of the asymptotic series which dictates the end

result. Thus. other than the null series result, the current in the shadow region does not have an

*S E % i,(r)ln
Il~)
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asymptotic series representation. This is an important result because it is the first time (to the

author's knowledge) that the failure of an L-K series in the shadow region has been both

demonstrated and explained.

While the L-K series does not lead to an exact result for the surface current density, it still

holds the potential for providing a tractable improvement to a pure geometrical optics solution.

This fact is demonstrated by Ansorge's [121 calculations for scattering by a dielectric sphere

using the ray optics field approach. The attractiveness of the current approach as developed

here is due in large part to the fact that the complete L-K representation can be developed

entirely from an integral of known functions, i.e.

f VoG(lAr1) exp (ki• Ar )drto.

While a complete L-K series development for this integral is prohibitive, it should be possible

to obtain the terms up to and including ko 2 [9]. One of the primary advantages of obtaining

the ko-l and k- 2 corrections to the k0 asymptotic expansion of this integral is the recovery of

some of the cross polarizing properties of a rough surface in the high frequency (but not optical)

limit.

Having developed the Luneburg-Kline expansion for the current, it is a relatively

straightforward matter to find the scattered field. The far-field approximation for the scattered

magnetic field is

-. exp( -k 0 R) A r ~ . (.7
Hs(R) = -J 4rrR ks x f (koJ ) exp (ks ,o)drt (2.27)

A
where R is the distance from the origin on the surface to the point of observation and ks

A
specificies the direction, e.g. R = Rk s. Substituting the Luneburg-Kline expansion for J in the

above and assuming an interchange of the summation and integration yields

exp( -jkoR) A x E(-n f -
H j. XPD(K~ k1 ) - 0 r0] (2.28)Js 4rR k n=0 ko n . 0

The integral is expanded in a Luneburg-Kline series as follows;

f expU(k5 - k ."I ,, O ,-)__ko 0 0 "o M-

where

57



I

;n j~o ifUrn 9  exp[j(ks - j) .70] dr-t (2.30a)

exp[i(rks -).r] drt° - (2.30b)

hnI im k' o f~f(~J & 0 t o1  23

and

2o'- exo -k .70 r -_ o(2.0c
h'? =ko-. o' K J-k--xLAsK)ro r m=O koJ

so that Hs is given by

= -p R ks x (2.31)
0n=O m=O kn+

The geometrical optics field is proportional to hoo which is determined by Jo only. The part of

Hs which varies as koI depends on both jo and it, the part that varies like ko 2 requires

jo, i, and J2, and so forth for higher order terms. It should be noted that with the physical

optics approximation, one obtains only those contributions fromj o. Ilowever, it is also known

that only the frequency independent term is always accurate and the above series shows why this

is true, i.e. the j contribution to the kgI term is ignored, the]1 andj 2 contributions to ko 2 term

are ignored, etc. Inclusion of these it, j2, etc., terms will definitely improve the frequency

dependence of the result relative to the physical optics approximation. There is another

advantage to including these terms. Because of the asymptotic nature of the series being dealt

with here, each term by itself will be accurate only over a limited range of observation

directions. For example, the part of tts contributed by Jo is truly only accurate about the

specular direction, i.e., ks = kiI and ksz = -ki . Thus, if more in terms are included it should
make the resulting expression for IHs more accurate in directions away from specular. Clearly,

the calculation of these n'S can lead to definite improvements in existing models and is therefore

strongly recommended.
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