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1. Introduction. Let & be a nuclear Fréchet space and ¢' the strong
topological dual space. We denote by x[¢] the canonical pairing of elements x
€ &', ¢€P. Let (Et)t@o be a complete, right-continuous filtration on a
complete probability space (Q.F,P). We will define below what is meant by an
Et—Wiener martingale taking values in &', and give conditions on coefficient
functions A : IR+ x ¢ - ¢' and B : R_’_ x ¢' - L(¢';9') and on the probability
distribution measure Ho = Po 5—1 of a ¢'-valued random variable £ under which
we will prove the existence and uniqueness of solutions to stochastic

differential equations (SDE's) of the form
X = At(Xt)dt + Bt(Xt)dVlt. 0¢t (o (1.1a)
with initial condition P(Xo = §) =1 or, in integrated form,
t t
X, =§+ J'O As(Xs)ds + .I'O Bs(Xs)dWs 0<t(ow, (1.1b)

We begin by giving the definition of ¢ and ¢' in Section 2 as well as
preparatory material on ¢'-valued stochastic processes and the definitions of
weak and strong solutions and of a solution to the martingale problem posed by
(1.1). The conditions for existence of a weak solution and for uniqueness are
given in Section 3. Section 4 is the pivotal section of the paper. It
introduces the finite dimensional approximations to (1.1), produces a solution
to the corresponding finite-dimensional martingale problem and obtains
dimension-independent bounds for certain moments that are crucial to the
Galerkin approximation. These results are used to prove the existence of a
solution to the infinite dimensional martingale problem and to derive a weak

solution (Sections 5 and 6). In Section 7, uniqueness 1is established by
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proving the pathwise uniqueness property and using the, by now familiar,
argument due to Yamada and Watanabe ([4]. Our final result, Theorem 7.4
concerns the existence of a unique, $'-valued solution Xt for all t 2 0. In
the preceding results leading up to it, however, it is advantageous to restrict
oneself to arbitrary finite intervals [0,T], because the sample paths of the
solution process will lie in Hilbert subspaces of ¢'. In general, the Hilbert
spaces will depend on the value of T chosen and no Hilbert space will contain
the sample paths for all time.

SDE’s governing stochastic processes taking values in infinite dimensional
linear spaces occur in such diverse fields as nonlinear filtering, infinite
particle systems and population genetics. For many of these problems, the dual
of a separable, Fréchet nuclear space provides a natural setting in which to
study infinite dimensional martingales and SDE’s.

Most of the applications known to us lead to linear equations, i.e.
Ornstein-Uhlenbeck (Or Langevin) equations and their variants. (See [7] and
[8] for references). An exception where Banach or Hilbert space-valued SDE's
are concerned is the paper of Krylov and Rozovskii [8] which the present paper
resembles in adapting the Galerkin approximation procedure to the stochastic
context. An important difference is that here, the thrust of our efforts is
first, to obtain a solution to the martingale problem. It calls for entirely
different techniques which, moreover, do not involve the monotonicity
condition. The latter is invoked only in proving uniqueness.

One of the main motivations for our interest in diffusion processes in
duals of nuclear spaces is the possibility that they may provide a more
realistic model to describe the behavior of the voltage potential of a

spatially extended neuron. The celebrated, Hodgkin-Huxley deterministic theory
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of such behavior takes into account many nonlinear features that are lacking in
currently studied stochastic models (See [6] and references therein). A study
just completed, of ¢'-SDE’s driven by a discontinuous martingale in place of a
¢'-valued Wiener process suggests continuous approximations to diffusion
equations similar to the ones discussed in this paper [5]. Weak convergence
results of this kind would be of considerable use in the applications mentioned
above. The investigation of these questions will be taken up in a later work.
A more direct and immediate application, made in Section 8, is to the motion of

random strings studied using different ideas, in [3].

2
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2. Processes taking values in the dual of a nuclear Fréchet space. We shall
present, in this section, preparatory material (including notation and
terminology) on Fréchet nuclear spaces and on stochastic processes taking
values in their dual spaces, leading up to the definition of stochastic
differential equations governing such processes.
2.1 Fréchet nuclear spaces.

Throughout this paper ¢ shall denote a fixed but arbitrary Fréchet nuclear
space with strong dual ¢'. The topology of such a space can be given by an

increasing family of semi-norms {|'|r} of the form |¢|r = [(¢,¢)r]% for

—o{r{®
a family of continuous symmetric scalar products (°.')r on 9 such that the
Hilbert-space completions H of ¢ in the |°|r of ¢ in the |'|r seminorms
satisfy the following conditions:

(2.1.1) H' and H' are canonically dual in the pairing whose restriction to

h" € ¢ C &' is given by <h ",h"> = h '[h']. If the canonical mapping

of H' onto its dual H ' is denoted jr' then

-r ,.T e, T -T r =T ,T
<h ",hi>=h [h] =(h .jrh )—r = (J-rh .h )r

(2.1.2) ¢ cH cH® Ceo -®{s¢r <™, with
¢ =NH  in the locally convex topology determined by {|°|r}.

$' =UH in the inductive limit topology.

(2.1.3) For each r there exists a p > r such that the injection mapping

i: HP > H' is nuclear.

In the sequel we shall have to make sparing use of the completed tensor product
of two nuclear Fréchet spaces E ® F, which is also nuclear. The properties of

the latter as well as additional details about nuclear spaces are to be found
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in [12].

Fix any linearly-independent total set {¢J} C ¢ and, for each s 2 0, let
{hj} be the result of applying the Gram-Schmidt orthogonalization scheme to
{¢j} in H®. All finite linear combinations of the basis elements hj lie in ¢,
so for each d the d-dimensional space H: t= sp{h?,...,h:} is contained in ¢.

For s > O let {h}s}J C ¢' be the associated dual basis for H ° defined by the

relation

h°le] := (h].e)

for all ¢ € ¢, and let H;s t sp{h;s.....has}. The spaces H® and H ° are

canonically isomorphic under the mapping js. Denote by H:u iz zjgd h;h}s[u]
the orthogonal projection of an element u € H® onto the d-dimensional subspace
S -s_ . _ $4, S . .

Hd' and by Ha X = zjﬁd x[hj]hj the orthogonal projection of an element x €

H® (or even x € ¢') onto the d-dimensional subspace H;s. For all —» ( s ( =

the space H: is the image of Rd under the continuous injection J: : Rd - ¢’

given by

S . S
Jd[f] o= Ejhj .

il ™M A

Jj=1

Note that Hi and H;s are dual or adjoint in the sense that, for all x € ¢' and
¢ €,

x[Mge] = 2,4 x[hIh %] = (T °x)[e].

The space of continuous linear mappings from the Hilbert space H' to the
Hilbert space H® will be denoted by L(Hr;HS). while the subspaces of nuclear
(or trace-class) and Hilbert-Schmidt mappings will be denoted respectively by
LI(HP;HS) and Lz(Hr;Hs). The trace and trace norm of a mapping A € Ll(Hr;HS)

will be denoted by tr(A) and |A|r s’ respectively, while the Hilbert-Schmidt

]
4




norm of A € L2(Hr;HS) will be denoted by IIAIl_

In the sequel, probability measures will be studied on the spaces ¢' of
continuous linear functionals on ¢ and C(lR+;¢') of ¢'-valued (resp., C(IR+;H_p)
of H—p-valued) continuous functions on [0,®), which will now be denoted by C,,
(resp.. C _p). Denote by ;Bq,, the Borel o-algebra in ¢'; since ¢' is a

H
countable inductive limit of Fréchet spaces, the Borel sets for ¢' endowed with

the weak topology are the same as those for the strong topology. The Borel

o-algebra on C,, and the induced o-algebra on C will be denoted B and
¢ H—p _C¢.

EC , Tespectively.
HP
2.2 Fréchet differentials in ¢'.

In order to study the generators of ¢®'-valued diffusions we need first to

give appropriate definitions of Fréchet differentials. For Hilbert and Banach
spaces the concepts are well-known but, since we were unable to find a
treatment of Fréchet differentials of functions on the dual of a Fréchet
nuclear space in the literature, we give the definitions explicitly in this
section.
Definition. Let f : ¢' - R be a continuous function. We call f Fréchet
differentiable at x € ¢' with (first) Fréchet differential f'(x) € L(#';:R) if
for every € > O there exists a neighborhood U of O in ¢', open in the strong
topology. such that for every index m { ® and element h € U N H™,

|f(x+h) - £(x) - £'(x)[h]] < elhl_m . (2.2.1)

If f has a Fréchet differential f'(x) at x for every x € &, then for each m,
the restriction of f to H ™ (denoted temporarily by fm) has a Fréchet
differential at each x € H " in the usual Hilbert-space sense. Furthermore,

the derivative f';‘(x) is the restriction to H " of f'(x).

4
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Again let f have a Fréchet differential f'(x) at x for every x € ¢', and
suppose that the mapping x = f'(x) is continuous from ¢' - L(¢':R) = ¢". We
say that f is second Fréchet differentiable at x € ¢' if the mapping x - f'(x)
is itself Fréchet differentiable, or equivalently if there exists a map f"(x) €
L(¢':¢') = B(¢'.9') = (' ® ¢')' such that, for every e€ > O, there exist
neighborhoods U1 and U2 of O in ¢' such that for every pair m, and m,, of

Mo

-m -
and h2 € U2 nNH -,

€U NH 1

indices, every h1

|f(x+h1+h2) - f(x+h)) - f(x+hy) + £(x) - f"(x)[hl,h2]| (2.2.2)

el |_ Ingl_ -
Then f"{x) is called the second Fréchet differential of f at x; we may regard
it either as a bilinear form on ¢' or as a linear form on the tensor product ¢'
® ¢'. Again it can be shown that if x € H™, the restriction of f"(x) to H™ x
H ™ is the second Fréchet differential of fm(x).
' 1.2, ... '

The classes ﬂ§(¢ ) and mb (¢'): (¢') denotes the vector space of all

functions f : ¢' - R of the form

f(u) = ;(UEw]) (2.2.3)

~

for some bounded, twice continuously differentiable function f on R, (f €

cﬁ(m)) and ¢ € 6.
The class E;'2(¢') consists of all functions f : R_ x ¢' > R of the form
~ ~ 1'2
ft(u) = ft(u[v]) for some f € Cb (R,.R) and ¢ € ¢.
We will use the same symbol to denote the second class of functions even
when t is restricted to a finite interval [0,T].

If f is given by (2.2.3) it is easily verified that f' and f” are given by

the formulas
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£'(u)[h] = 8 £(ule])h[e] for h € ¢ (2.2.4)

and

£"(u)h;.hy] = & ;(u[¢])hl[w]h2[w] for h).h, € . (2.2.5)

d and 62 are the usual differentiation of the function f.
2.3 ¢’'-valued processes and martingales:

Let (F be a complete, right-continuous filtration on a complete

t)t<°°
probability space (Q,F,P): all measurability conditions and martingale
properties will be taken with respect to this fixed filtration. Integration
with respect to P will usually be indicated with the expectation operator E,
which will be denoted by EP when the measure would otherwise be in doubt.
Definitions (i) A ¢'-valued random variable is an Etllj(p.—measurable mapping £
HE AL K

(ii) A ¢'-valued, adapted process M = (Mt) is called a martingale with respect
to (Et) if M[e] := (Mt[w]) is a real valued (Et)—n'artingale for each ¢ € ¢.
The martingale M is called an L>-martingale if, for each ¢ € .

E Mt[cp]z { = for t 2 0.

M is called a local (or local L2) martingale if there is a sequence ('rn) of

(E,)-stopping times T = a.s. such that, for each ¢ € ¢, (M, [¢]} is a
n

martingale (or Lz—mrtingale).

For a detailed discussion and properties of ¢'-martingales we refer the
reader to [9] and [10]. We shall mention only those facts that will be
directly useful for our purpose.

If M is a ¢' local martingale vanishing at the origin, there exists a

unique ¢' ® &' predictable process A = (At) which is increasing (in the sense

that for ¢ € &, the real valued process At[¢.¢] increases P-a.s.) and such that

o
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Y [e.v] := M [oIM [¥] - A [¢.v]
is a local martingale satisfying YO[¢.¢] =0 P-a.s.
Definition: A is called the bracket function or the quadratic variation

process of M and is often denoted by <H.Mt> or <H>t.

It is clear from the definition that

M [o.v] = M [e]. M [¥D,

An important property of a ¢'~valued L2—martingale with continuous paths is the
following [9.10].

For each T > O, there exists a positive number p (possibly depending on T)
such that the sample paths lie in the Hilbert space HP for O  t T and are

T € dT_p a.s. where M{ =M for 0 <t

continuous in the H P topology, i.e., M, ¢
H

< Tand C' _ := c([0.T]; HP).
H—p

The martingale with which we will almost exclusively, be concerned with in
this paper is the one defined by a ¢'-valued Wiener process.
Definition: A &' Wiener martingale is a ¢' L2 martingale W whose bracket

function <W> is P-a.s. a non-random, linear (in t) function

W [p.¥] = t Qle.v]

for all ¢, € &. We call Q assumed continuous, the covariance quadratic form
for W.

It follows from the remarks above that any ¢’ Wiener martingale W may be
taken to have paths which lie in the subspace H? for some q < @, and which are
continuous in the H-q—topology P-a.s.; the choice of q depends only on the
quadratic form Q, and the sample paths will lie in H® for every s 2 q. The

X s
quadratic form Q has a unique continuous extension to a nuclear form on H,

@

@
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and can be represented there in the form

QLe.¥] = (£.9),

= (. ),

s
for a unique non-negative trace-class operator Qs on H™.

For later use, we
choose and fix a specific value of s, say r. We denote the trace norm of the

quadratic form Q (or, equivalently, of the operator Q:) on H' by

lol_, _; = 3 Q[h;.h;].

For any continuous quadratic form Q[+,*] it is easy to construct a
path-continuous ¢' process Wt which is a Wiener martingale (with bracket
function <W)t = tQ) with respect to the filtration (Et)t<°° generated by W; in
Section 6 we face the more difficult task of constructing a Wiener martingale

with respect to a given filtration (Et)t<w'

2.4 1td stochastic integrals in ¢°.

Because we are concerned primarily with diffusions in this paper, we shall
briefly comment on the definition of one type of a stochastic integral with
respect to a $'-valued Wiener process and describe some of its properties.

Let W be a ¢' Wiener martingale with continuous covariance quadratic form

Q and hence bracket function

<W> [e.¥] = t QLe.v].
The space of integrands, L% consists of those predictable functions fs : R+ x 0

- L($':¢') for which

T * »
E IO Q[fs¢.fsv]ds (o (2.4.1a)
for each T > O and each ¢ € ¢. Because it occurs frequently, we introduce the

notation QA for the quadratic form given by

I
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* %

Q,[v.¥] = Q[A ¢.A o]
for any continuous linear mapping A € L($':9’'). In this notation we can
rewrite (2.4.1a) as

T
E [IO Q, [p.e]ds] < =. (2.4.1b)
s

In the above, A e L(®.9) is the usual adjoint or dual of A € L(¢',9").
The stochastic integral Ii ‘= fg fs dWs. (Ot <T), is a ¢'-valued
L2—martinga1e with the following properties in addition to the usual linearity

properties:
<It>t [e.¥] = I; Q; [¢.v]ds. (2.4.2)
s

There exists m > O (depending on f and T) such that
I ecC a.s. (2.4.3)

If (h]) C & is any CONS in K",

Ii[e] = S £, d¥s _[¢] = 1

W M8

t
. IpS (fgw.hT)m dw_[h7], (2.4.3a)

the right hand side being an L2-convergent series of ordinary Itd stochastic

integrals. Furthermore,

<af> eyl = =
t j=

i Iy (£x0, hT)m (fgw.h?)m ds Q[hT.h?]. (2.4.3b)

1

The Wiener processes bi t= Wt[hT] satisfy <bi.bj)t =t Q[hT.h?]. and they are

independent if the set hm) diagonalizes Q.
i

2.5. Stochastic integrals for cylindrical Brownian motions.

Let H be a real separable Hilbert space with inner product (°.°)H. A
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cylindrical Brownian motion (or CBM) on H is a mapping WH ‘R_xH-= L2(Q.E.P)
satisfying the following conditions:

(i) For all hl‘ h2 €H and ). € €R, all t 2 o,

2

Wile,h, + eohy] = ¢ Wilh,] + ¢, Wilh,] P-a.s.

(ii) For each h € H, W?[h] is a real-valued Wiener martingale with mean O and

bracket function
<hrh 1. Wb, 1>, = t(h .hy), -

It follows from (ii) that E[(W?[h])z] = t(h.h)H and hence that W? cannot
have sample-paths lying in H. For any complete orthonormal set {hi} C H we can
produce independent real-valued standard Wiener martingales bi i= W?[hi] and

with them represent the CBM as the L2 convergent series

Wilh] = i

™M 8
—

i
(h.h )b (2.5.1)

The relation between ¢' Wiener martingales and CBMs is given in the following
propositon:
Proposition 2.5 Let W be a ¢' Wiener martingale with continuous covariance
quadratic form Q, and let H? be the closure in ' of & in the norm |<p|Q i=
(Q[w,w])%. Then W has a unique L2(Q,E.P)—continuous extension WH to the
Hilbert space H = Hp. and WH is a CBM on HQ.

Conversely, any CBM W? on a Hilbert space H satisfying ® CH C &' (with
both inclusions continuous) determines a unique ¢' Wiener martingale, which may

be given by the ¢' convergent series

(2.5.2)
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for any complete orthonormal sequence (hi} C ¢ C H, where bi ‘= W};[hi] and

where h: € ¢' 1is the adjoint of h  defined by
»

for all ¢ € ¢.
Proof. Let H* be the closure in ¢' of & in the inner product (¢.¥) , =
H

3 hi[q»]hi[w], and let j be the canonical mapping of H onto its dual space H";
i=1

now verify that (2.5.2) converges P-a.s. in the K topology for any Hilbert

space K C ¢' such that H C K with the inclusion mapping nuclear. [ |

Fix a real separable Hilbert space K and let 2 (WH denote the linear
.K

space of L2(H;K) = H @ K - predictable processes
f: lR+ x - L2(H;K) (2.5.3)

satisfying the condition

E [Sg 1 12  ds] < =

for each T € IR+. For almost every t 2 O, ft is (almost surely) a

Hilbert-Schmidt operator from H to K with an adjoint f: Hilbert-Schmidt from K

to H. Then for each t > 0, k € K, and index i, the Itd stochastic integral
t »* i
Io (F(@)k.h, )b (0)

is well-defined and so is the L2(Q.E.P) convergent sum

I [k](v) := 121 5§ (£r(@)k.h,)y dbl(w).
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An easy computation shows that E[T [k]] = O and
E[L,[k]1%] = E 5§ EL(£5k.h,)31ds = §§ EL £ k|21ds.
so for any complete orthonormal system {k} in K,
E[E1 It[kj]z] 5g E[ z |f*k | lds = E[Jg €, u g ds1 = ELJg uf_ u2 g ds1 <=,

With probability one the real-valued series ng It[kj]z converges and hence so
does the K-valued series
o0
It 1= jzl It[kj]kj

Definition: The cylindrical stochastic integral of fs with respect to the CBM
WH is the sum
s

[ ]
t .
58 £ (o) aWi(w) := j§1 1,0k Ik, .
or zero on the P-null set on which the series fails to converge.
The cylindrical stochastic integral of a process fé fs dwg is a K-valued
process (denoted It above), whose inner product with an element k € K we write

(following [13]) as
t . .
5§ (7, dwg)H t= (1K)

thic can be calculated as the convergent series

S (Fok, o), = z §§ (£2k. h,)y dby

1@
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of real-valued Itd integrals.

2.6 Stochastic differential equations for ¢’ processes:

Solutions of martingale problems, weak and strong solutions.

Fix a Fréchet nuclear space ¢, a continuous quadratic for Q on the dual
space ¢', a probability measure Mo on the Borel sets B(¢'). and a pair of

continuous functions

A R+ x ¢ -¢
and

B: IR+ xP' 29" @,
and recall from Section 1 the stochastic integral equation
t t
Xt =f + fo As(Xs)ds + IO Bs(Xs)dws. 0 t<T. (1.1b)

Definition. In the spirit of [4] we define a (weak) solution to equation

(1.1b) on the interval [0,T] to be any ' process X := (Xt)tem on any complete
+

probability space (92,F,P) with a complete, right-continuous filtration (Et)t<w

satisfying the conditions:

(2.6.1a) The ¢' random variable Xo has probability distribution Bg = Po f—l;

(2.6.1b) There exists a ¢' Wiener martingale W for the given filtration

(E,) ¢ OO (9.F,P);

(2.6.1c) X is adapted to (E i.e. for every t € R_and ¢ € ¢ the random

t)t(”'
variable Xt[w] is Et/E(R) measurable;

(2.6.1d) For P-a.e. w, X has strongly continuous paths Xt(w) : R+ ¢,

(2.6.1e) The predictable process a_ := At(xt) satisfies at[w] € Ll([O.T])

t
P-a.s. for each ¢ € ¢, i.e.

AT
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T la_|[e]lds < =;
0 s '

(2.6.1f) For a sequence T of stopping times converging P-a.s. to infinity

the predictable process Bt = BtATn(xtATn) satisfies for each ¢ € ¢
and each t { T,

tA'rn
E[.l'o Q‘3 [p.p]lds] < =;
S

(2.6.1g) With probability one, )(t and 't satisfy (1.1b) for O ( t ¢ T.

Note that although (1.1b) is only required to hold on the interval [0.T], X is
defined on the entire positive half-line IR+ and so induces a probability
measure u = P o X-1 on the canonical space C(|R+:¢'). We may define )(t
initially only for O { t { T and then set Xt = XT for t > T if convenient.

Definition: A strong solution 1is just like a weak solution, except that we

specify the probability space (Q.F,P), filtration (F F .-measurable

t)t<°°' =0
initial random variable F with probability distribution Ho- and Wiener
martingale W with covariance functional Q at the outset. To produce a strong
solution we must construct the process )(t on the given space and for the given
filtration.

Definition: A solution for O { t { T to the martingale problem posed by (1.1b)
is a probability measure u on the Borel sets of the canonical space Cq,. ‘=
C(IR+:¢') of ¢'-valued continuous functions on [0,®) such that, for any

real-valued function f € !D%(d"). the real-valued process

ML i= f(xp) - £xg) - ST L £(x )ds (2.6.2)

is a (C .,(Et) ,u) martingale and u o x) = By 1.e. for all f € ﬁi(di').

t{o 0

— 1™
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E"[f(xo)] = Jgo £(x) ny(dx) (2.6.3a)

and, for bounded s < t < T and E_-measurable functions g.
0 = E'[g(x)[NL - 1] (2.6.3b)

= P'le(0)lf(x,) ~ f(x,) - J L, £(x,)dull.

Here Ls denotes the generator

L, £(u) = £ (WA (u)] + % f"(u)[QBs(u)] (2.6.4)

£ (ule])A_(u)e] + % £"(ul#1)Q(BL(u)e. Bl(u)e)

which is well-defined for f € §€(¢'). We describe this as the martingale
problem "suggested by (1.1b)" since (by Ité’s formula) the measure p induced on
C¢. by any weak solution X to (1.1b) does in fact satisfy (2.6.2), so that a
solution to the martingale problem is just the marginal distribution measure pu
for a weak solution Xt to (1.1b).

It is well-known (see, for example, [11]) that (2.6.2) is equivalent to
the apparently stronger time-dependent form requiring that, for any real-valued

function f € 9;'2(¢‘). the real-valued process

f . tAT '
M, o= £ p(xap) — folxg) - IO (878s + L_)f_,~(x )ds (2.6.2")

be a (C "(Er)t<w'“) martingale.

A statement equivalent to saying that pu is a solution to the martingale

problem is that, for every ¢ € &,

M [e] = x [¢] - xo[e] - Jg A (x )[v]ds

is a (C ..Et.u) local martingale.
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e

3. Conditions for existence and uniqueness. First of all we shall impose a
basic conditon on the nuclear space $. To introduce the condition we begin

with the following observation: Let (h?) C ® be a OONS in H". The h? can be

obtained by applying the Gram—Schmidt orthonormalization procedure to a

countable subset {§j} dense in ¢. For every j. we then have

n

j m

L e

where n, (depending on m and §) < j and Injl = 0.
m

Our basic assumption is the following:

(A) For each m and p, (p 2 m), in the relation (3.1)

()

In;l =o0. (3.2)
P

Note that the relation (3.1) always holds but the possibility of satisfying

(3.2) is a restriction on the type of nuclear spaces considered here.

Condition A is of a technical nature. However, it is easy to see that it is

satisfied if there exists a sequence (pj) C ¢ which is a common orthogonal

system in H® for all m 2 1. The Schwarz space V(Rd) belongs to this class as

well as the space ¢ introduced in Section 8.

Condition (A) will be in force throughout the paper and will not be
repeated in the statement of the results.
The following set of conditions will be needed to prove the existence of a

solution to the martingale problem (and of a weak solution):

We assume given (i) a probability measure Hgo on the Borel o-field §¢.. (ii) a

continuous quadratic form Q on & x ¢ and (iii) coefficients A and B which, in

> -

addition to the measurability assumptions stated in the previous section
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satisfy the following conditions:
For each T > O and sufficiently large m > r (fixed above), there exists a
number 8 > O and an index p 2 m such that for all s, t { T,

(IC) Initial Condition:

2
-m

co = Jp (1 + IuI?m) [log(3 + |ul )]2 po(du) < =

(CC) Coercivity Condition: for each u € jm¢.
. 2
2 At(u)[J_mu] + IQB (u)l < 6(1 + lu'—m);
t -m,-m
(LG) Linear growth condition: if u € H™, then At(u) € HP and
2 2
A2, <o+ [ulZ):
9y (! <00+ lul?)
QB (u) -m’ -
t -m.-m
(JC) Joint continuity condition:

A: IR+ x¢' -»¢' and B : IR+ x ¢ > L($',d")
is each jointly continuous.

Fur thermore,

(i) B (u)(v) € H™ 4if u,v€H ™ and

(i1) Q(B:(u)so, B:(u)w) is continuous in u on ¢' for each ¢ € 9.
In addition to the above, the following condition will be needed in the . .1!
proof of uniqueness:
(MC) Monotonicity Condition: For all u, v € " (c H—p).
2 aJ
(A, (u) - A (V). u-v) + | _ | <0 lu-v|® .
t t p QBt(vl) B(V) . P
o
.
R B A R s
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In the initial condition (IC) we have had to assume the finiteness of a

moment of |xo| slightly higher than the second. It is crucially used in
-m
solving the martingale problem for the infinite dimensional stochastic

differential equation as well as the martingale problem for the finite
dimensional approximation. The reason for a moment higher than the second is
because we are not dealing with bounded coefficients and Lipschitz conditions

but with linear growth and coercivity conditions.
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4. Martingale Problems in Finite Dimensions. In this section we address the
problem of the existence and uniqueness of a measure vd on the canonical space
C d= C(IR+ : Rd) of continuous paths in Rd. equipped with the Borel sets BC
R IRd
for the compact open topology and the canonical filtration (Bé ). solving the
IRd
martingale problem [11] for the generator

*
L, = 3[a,(8));9; + % 3, | [B3(EIS ()], 9, (4.1)

satisfying conditions outlined below. We apply these results in Section 5 to
the ©problem of existence and wuniqueness of a solution to an
infinite-dimensional martingale problem (using a Galerkin method similar to
that of [8]). but even in finite dimensions the bounds (4.3) of Theorem 4.1
seem to be new and may be of independent interest.

The martingale problem introduced above is closely related to the problem
of the existence and uniqueness of solutions to the stochastic integral

equation
t t
Xt = Xo + fo as(xs)ds + fo bs(xs)dwS

for an initial random variable Xo with probability distribution vg and a
standard d-dimensional Wiener process Wt with covariance E wsw: = (s A t)Id.
Ve return to this connection in the infinite-dimensional setting in Section 6,
after proving a useful lemma whose proof is modeled after that of lemma 1.4.5
of [11].

Lemma 4.1. Let M be a continuous Rd—valued L2 martingale satisfying, for some

B <oand all 0 {( s <t {T, the inequality

tr((H)t - <M>S) < B(t-s).

i
A
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Then for each e there is a & depending on B, €, and T (and not d) such that

P[ sup IMt - Msl >e] e .

0<s<r<T
t-s<&
Proof. Set 0g = 0 and, for n 2 1, o, = inf{s > o1 |Ms - ch-1‘ > e/4};

also put N := inf{n : o > T} and a := inf{an -0 0 { n { N}. Note that

{ sup |Mt - Hs| > e} C {a < §}. and so for any k,

0<¢s<7<T
t-s<6
P[ sup Iut - M| > e] < Pla < 8]
0<¢s<7<T
t-s<é

< P[N > k] + P[o‘n—an_1 < 6 for some n { k] .

We now show that k may be chosen large enough to insure P[N > k] < /2 and
then 6 small enough to force P[{an—an_1 < 8}] < e/2k for all n. By Doob’'s

inequality, for eachn 2 1, t > O, and stopping time o,

2 2
E[ sup [M_,_-M |°|F1<4E[IM, -M|°|F]

0<s<T t+o

s+0
= 4 E[tr(M - <n>s)|§S]
< 4 pt .

It follows that

Plo, - o _, <tlE, 1=P[ sup [N -u P> ()P, ]
n-1 0¢s<t n-1 n-1 n-1

< 4 Bt/(es4)>
= 64 Bt/e>

and that

e

g -
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(o o _.)
n n-1 C I
i Efe |E, 1=Jye Plo -0 _; <t|lf, Idat
n-1 n-1
$ 55 ¢ " min(1.64pt/e%)dt .
F If we denote the right hand by A, then A < 1 and
-0 =0, o O _ ) -0, _
Ele *]=fle “'Ele * UIE, 1<nE[e *TT] A6
k-1

(by induction) for each k 2> 1. By Chebyshev’s inequality,

=a.
P[N > k] = P[o, < T] = P[e ky e Ty ¢ ek,

Pick k large enough to insure eTAk < e/2, and &6 small enough that k(64 B 5/62)

< e/2; then

Plo -0 _, < & for some n < k] <k 'rlx?l: Ploy0p-1 < 2]

< k(64 B 6/62)

<e/2 ,
proving the lemma.

Definition 4.1.: A probability measure vg on IRd and continuous functions
d d d dxd

a:R xR >R and b : R_x R R satisfy the finite-dimensional initial
condition (ICd). coercivity condition ((I:d). and linear growth condition (LGd)
if for each T < @ there exist positive numbers <o and 6, not depending on d, !1
such that, for all t < T and £ 7 € R9,
2 2,2 d
Imd(l + |E]")[1og(3 + [E]F)]” vy(dE) € ¢ < (Ic,) .
d d» 2
2(€.2,(€)) + [BS(EIWT(E)] < 8 (1 + [E]%) (cc,)
®
1
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l2Se) 12 < cy(1 + €% . (LG,)(2)
Lt @1 <o + 1% . (LGy) (b)

d

Theorem 4.1. Let vg. a , and bd satisfy conditions (ICd). (LGd). and (Cth),

and fix T < ». Then there exists a measure vd on (C d EC ) satisfying the
R
R

initial condition vd o xal = vg and solving the martingale problem for Ls' i.e.

satisfying the condition that for each f € Cll)'z(lR+ x Rd) and x € C d’
R

the

real-valued process

ME(x) 1= £ nlxp) - folxg) = SN (9/8s + L)E (x )ds  (4.2)

should be a local L2 martingale on (C 4 EC .Eé . vd). Furthermore, for each
R

rd e

t { T any such measure vd satisfies the following inequalities:

2 03(9)T
2 c, €
d 0
v [ sup |xs| > R] ¢ ) R (4.3)
0<s<t (1+R™)[log(3+R™)]
for every R > 0O;
w4
E° [ sup fl(xs)] < 04(9) (o (4.4)
0¢s<t
2 2
where fl(a) = (1 + a”) log log(3+a™),
2 c,(8)T f.(a)
¢ (8) i= cy(8:T) = 2cge > fY 1 da

O (1+a2%)[10g(3+a%) 12

and

cy(8) = 175 6 .

Proof of Theorem 4.1. For each n € N define a function c. : Rd - Rd and a

|9

|»




4-5
d
stopping time T by
x if |x| ¢ n , d
c (x) := T (x) = inf{t 2 O : |xt| 2n or t2T}. (4.5)
nx/|x| if |x|> n .,

By Theorem 6.1.6 of [11] there exists a measure pd-? satisfying (4.2) with a9

and bd replaced by the bounded continuous functions a@.n and bd'n given by

d.n . d.n .
al™(E,) = a,(c (F). BIT(E,) =D (e (E,)) - (4.6)
We will show that the sequence {vd‘n}neIN is tight and produce a limiting

measure v which satisfies (4.2), (4.3) and (4.4). Then, for f(§) = (1 +

1E1%)[10g(3 + |E|2

it is greater than equal to 1 for |§|2 2 0), M d given by (4.2) [with t
tAT

)]2 (log(3 + |§|2) is chosen instead of log(l + |§|2) since

d,n

replaced by t A Tﬁ] is a continuous L2 ~ v martingale. Using (OCd) and (LGd

b). it is easy to verify that

IL_£(E) | < 156 £(§). (4.7)
< d.n d,n . d d . d
Since a, (xt) and bt (xt) coincide with at(xt) and bt(xt) upto time T . we
have
t t
M (x) = f(x ) - f(x,) - Jo L f(x )ds (4.8)
tATd tATd 0 0 s sATd
n n
From (4.8) and (ICa),
Dd.n ¢ Dd.n
E° [f(x )]1<cy+158 JoE°  [f(x ,)1ds
tATn sA-rn

and by Gronwall's inequality,

L@
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d,n
E° [f(x )] <c, et (4.9)
hll d 0
tAT
n
the bound being independent of n and d. Hence it is easily seen that x d is
tA'rn
an Itd process. Applying Itd lemma we have
tATg
f d,n d.n »*
M> L= Ib (vf(xs), b (xs)b (xs) vf(xs))ds
tAT
n
tATd

n
2 ,,d 2
< Jo |vf(xs)| Ibs(xs)l ds .
From (OCd) and the inequality

lv£(£) 1% < 20 £(E) [log(3 + |E|*)12

it follows that

tATd
£ n

2,2 2
<M >cATd = (20)8 J, f(xg) [log(3 + Ix 171" (1 + |x[%)ds
n

tA'rd
< (20)6 IO f(xs) ds .

d
CATD
< (20)8 { sup .f(xs)} IO f(xs)ds .
OSSStATg

From Burkholder's inequality ([2], B, VII.92),

pdem £ pdon g
EE [sup |0 J1<4E  [(<M> )

0¢s<t sATn tATn

%
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]
3
tATd
o = 3" % n %
i < V3200 E [{ sup f(x Yo AL f(x_)ds}™]
! d o s
0<st sAT
n
— . d.,n
< v¥3200 E¥  [{ sup f(x d}% {fs sup f(x d)ds}%]
0¢s<t sAT 0¢s'<s s'AT
n n
vd'n t vd'n
{%E [ sup f(x d)] + c2(6) IO E [ sup f(x d)]ds
0¢s<t sA'rn 0¢{s’'<s s'A‘rn
(4.10)
where the last step follows from the elementary inequality vab ¢ EEE {(a. b >

0). The constant 02(6) = 160 6.
From (4.8),

sup f(x d) < sup IHf d' + f(xo) + (156) jg sup f(x d)ds .
T

0¢s<t sATn 0¢s<t sA‘rn 0¢s<t s'A n

Writing c3(6) for c2(9) + 158, taking expectations, using (4.10) and (ICd) we

obtain the inequality

d.n d.n
E' [ suwp f(x d)] <2 co * 2 c3(6) I; E’ [ sup f(x d)]ds
0¢s<t sA*rn 0¢s'¢s s‘A'rn

Another application of Gronwall's inequality yields the uniform bound

Dd.n 2 c3(9)T
E [ sup f(x d)] 2 co © (0t <T). (4.11)
0¢st sA'rn

Fix R > 0. Then for n > R,

vd'n[ sup Ixsl > R] ¢ vd'n[ sup |[x dl > R]
0¢s<t 0¢s¢t sATn

22
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vd.n

{E [ sup f(x d)] / £(R)
0¢s<t sAT
n
2c3(9)T

2 S e

< 5 55 - (4.12)
- (1+R"){log(3+R™)}
Now, if € > O, choosing R such that the right hand side of the inequality

(4.12) is less than e, we have

vd’n[ sup |xs| >R] < e (4.13)
0¢sgt

for all n > R.
Using (4.12) and taking fl to be the function introduced in the statement

of the theorem the following inequality is obtained:

d,
E’ n[ sup £,(x)] € e (0:T) <@ . (4.14)
0¢s<t

The bound being independent of n and d. Details of the proof will be given a
little later when a similar inequality is proved for vd.

Next, let TR be the stopping time

Tp(x) i=inf{t 20 : |x | 2R or t>T}.

The continuous function Ibi(f)bi*(f)l bounded on the compact set {(t,f) : O ¢
t < T, |§| < R} by some number BR which is independent of d in view of the
uniformity of the bounds in (LGd)(b) and (OCd). The stopping time TR 1s also
bounded, so by Doob’s optional sampling theorem (applied at R < 'rn), the

Rd—valued process

tAT,
“E(x) o= xtATR - J.0 : as(xs)ds




d.n

is a martingale for each v with n 2 R, with bracket process

tAT.

R
<MR>t = IO b:(xs)bg*(xs)ds

satisfying

(S, - A ) () s BTN )| < Bplt,-t))
2 1 s<TATY

By Lemma 4.1 and (LGd)(a) there is a number & such that for all n 2 R,

vd'n[x :  sup |HE - Mgl > e/2] < e/2,

0<s<1<T
t-s<b

tAT,

R 5
Ky a_(x)ds| < &vc (14R) € e/2
sA'rR s
and hence
vd‘n[x i sup |xt—xs| >e] vd'n[x :  sup |xs| > R]
0<s<tT 0<s<t(T
t-s<b

+ vd'n[x :  sup IME - MRI > e/2] < e.
0<s<t<T S
t-s<b

By Theorem 8.2 of [1]. {vd'n} is a tight sequence and so has a cluster point
d d.n d.n

v . Using the fact that v satisfies the martingale problem for a, and
bi’n. the uniform bound (4.14) and the tightness of {vd'n) we can show (after a
routine argument) that Hi in (4.2) (f € C%) is a
t d
©q B B oD
R R

continuous vd—martingale. This proves the first assertion of the theorem. It

remains to show (4.3) and (4.4). From (4.12) taking, without loss of
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generality that vd'n ='vd. it follows that
e2c3(B)T
d
v [ sup Ixsl > R] ¢ g 55
0¢sgt (1+4R7){1og(3+R™)}

which is (4.3).
Now let us write fl(a) = (1 + a?) log log(3 + a2). Since f1 is an

increasing function for a > 0, by a standard formula we obtain

d
E° [ sup f£,(x)]=J" v sup £,(x) > yldy
o¢s¢t 1 S 0" “o¢sqt 1S

o d
CTav[sup |x | >a)] fi(a)da .
0 o¢s¢t S 1

The last integral is the sum of two integrals. The integrand in the first is

2
of the order 1 log(3ta as a = ®; in the second, the integrand is of the
2,,2
a{log(3+a™)}
1 w £1(2)
order 5—3 - Hence [g ?TET-da < ® and (4.4) is proved. I
a[log(3+a™)]

Remark. The uniformity of the bound in (4.4) w.r.t d is of crucial importance
and has been derived here with an eye on Theorem 5.2 which treats the corre-
sponding infinite dimensional problem. It may be noted that in the proof of
the above theorem, the uniformity with respect to n of the bound (4.14) is used

in showing that ud is a martingale solution of the finite dimensional problem.
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5. Martingale Problems in Nuclear Spaces. In this section we construct and
solve finite-dimensional approximations to the stochastic differential equation
(1.1) and prove that the solutions converge weakly along a subsequence to a
solution to the martingale problem in ¢'. This method of finding a solution to
the infinite-dimensional problem is patterned after the "Galerkin” method of
reducing the problem of solving parabolic partial differential equations to
that of solving finite systems of ordinary differential equations.

Fix a continuous positive quadratic form Q[+, ] on ¢ x ¢, a Borel
probability measure Hg on ¢', and continuous functions A : R+ x ¢' and B : R+ x

$' - L(¢';¢') all satisfying conditions (IC), (CC), (LG), and (JC) of (3.3).
[ ]
Note that Q[¢.¢] = (Q% ¢, Q% e). = 2 (Q%)* h—r[¢]2, wvhere Q_ is a positive
r T r i=1 r i r

selfadjoint nuclear operator on some H' and * means the adjoint operator with
respect to the dual pair u[¢] on ¢' x ¢. Fix any T > O and let p > m 2 r be
the indices such that the injection from H? to H™ is Hilbert-Schmidt and 6 > O
is the constant appearing in (3.3).

For each integer d 2 1 and § € Rd set u = J;mf ‘= ziSd fihzm and define a

vector-valued function ad : R, x Rd - Rd and a nonnegative—-definite

+
matrix-valued function bd : R+ x Rd ﬂ’mdxd by

a(:(f)J = At(u)[h?]. and
d -
bS(E) 4 = (@) n (BT (wh]]
Since A and B satisfy (CC) and (LC); we can verify
(€. aS(E)) = R A (WIBTT = A (W)[_ul.

d 2 2 m|2

@

|®
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2 2
$ 3 81+ 2 lh?lp
isd

= cq(1 + lulZ)) = g1 + [€1%)

and  [BI(ENT(E)| = er bIEBI(E)

= 3 3 (@ 0T ™2
PR ACRHEACL

L P m.2
<3 L (@)™ b} B (]

= 3 QB (uh]. By(wh]

id
< l
B QBt'u) -m,-m
It follows that ag and b: satisfy the finite dimensional bounds (for all t { T
and § € Rd)
2(¢. a%(8)) + AEWT @) <01 + [€]?) (acy)
WSERTE) ] < oc1 + 1% (LG,)

for fixed T, 6 independent of d and cq = 6 = |h?|§ . Here we remark the
id<d

following for later use.

I N W R N I [ b I U NP S (5.1)
t i = d
idd 0
=0
where c, = 3 Glhml2 is independent of d.
d i'p
0 i,

Furthermore, the measure on Mo on ¢' induces on each Rd a measure

Nl (L'l:im)-1 ° J;m satisfying the bound
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g+ [EPee(3 + 16172 vfaE)
R
= S (1 + 1Eul® ) [10g(3 + (012, ) 1% (du)
< Sy (14 [ul® 01083 + Juf? )72 uydu) = ¢ < =, (1Cy)

again uniformly in the dimension d. It follows from Theorem 4.1 that there

exists on (C d’BC )} a measure vd satisfying the initial condition vd o x(—)1 =
R

ug and solving the martingale problem for Ls' so that

d d t d,.d
M = () - Q) - I aS65) e (5.2)
t d 2
isa (C ;. B, . B~ . v ) continuous L™ martingale for each j = 1,2,....d.
d’ =C =
R IRd IRd
Define a mapping j;m from C qte C by
R H
d
m _d m _d

Then each such measure vd induces a measure ud on (Cdi"BC ) with support in

(+
(C . BC )} via the relation

d d -m,~-1
uIAl = o [(44 ) (ANC _ )] A€B, . (5.3)
H -
d
Theorem 5.1. For any continuous coefficient functions A : IR+ x¢' -¢' and B :
R, x ¢' -+ L(¢':9") satisfying conditions (CC) and (LG) of (3.3),and any measure
My on B(¢') satisfying (IC), the family (ud) defined above is tight on

(C _.B ) and also on (C,.,B~. ). Here p > m is the index appearing in (L).
H

Proof. Again we apply Theorem 8.2 of [1]. For any € > O, choose R > O large

@

1®
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enough to insure that
203(9)T
2
co (]
) 55 < e/2.
(1+R™)[log(3+R™)]
By (4.3) we have
Wixecy s x| >RI=vilec,: s KS|I>RIce2.  (5.4)
0<tlT R 0¢tlT
ot 2
Since 2 Ihpl { ®, we can choose some do such that
=1 1
. 2.%
( 3 x[hg] )" < es8 if x| <R (5.5)

j=do+1

From the way of choosing the CnSs (hm} and {hp}. we get
J J

do d

0
(Y Cag( = TP 15 xy ew™
— J = 0. J
j=1 Jj=1

where a, is a constant only depending on do. m and p.

On the other hand, in a manner similar to that in Section 4, the

L2—martingale
tAT
d R d
"% - xtATR - J‘0 as(xs)ds
satisfies
B -S| > 5] Cer2 if g8, (5.6)
0¢s{tsT 0
Is-t|¢n

where 61 is some constant independent of d (by Lemma 4.1).

From now on suppose d > d,. Since
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dg

2 (ag(xg) 2 ¢ cg (1 2%

from (5.1), if sup del { R, we have some 6 < 6,, (6 independent of d), such
05T ¢ 1

that for |t-s| { 6 and t, s € [0,T],

d
(0]
t d,.d 2.%
(351 (fs aT(xT)JdT) )" £ er4 ay - (5.7)

Since

€ e - 55 nras < 8

if sup |xf| < R, the inequalities (5.4), (5.5), (5.6) and (5.7) yield
0<t<T =

ud[x: sup Ixt-xsl_ > €] (5.8)
0¢<sSt<T P
|s-t]<s
<ulx s x|, > R]
0¢<s<t<T
d
+ p[x: sup |xt| <R, sup [x,~x_| > e]
0<t<T ™= ogsgt¢T v SP
|s-t|<6
do
< er2 + o3 oo RS} o (321 ((x‘:)J - (x:)j)z)” > 3 e/4 ag)
sst =
[s-t]<s
)
< ez + udpx: oo I3 <, o (jzl ((u‘ti)j - (ug)j)z)” > e/2 ]
s{t =
[s-t[<8

e/2 + vd[xd: sup |x
0<t<T

nA

d

[ <R, sup [Hd - Hd' > e/2 a.]

L Y T 0
|s-t|<5
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 e/2 + vd[xd: sup |x€| <R, sup IHE - H§| > e/2 ao]
B 0¢t<T - 0<s{tT
|s-t|<6
e .

Since the ball {x:lxl_m $ R} is compact in HP, by (5.8) and the Hilbert space
analogue of Theorem 8.2 in [1], (ud) is tight as a family of measures on the
space C —p Since the embedding of C -p in C¢. is continuous, compact sets in
H H
C -p 8T also compact in C,. and the theorem is proved.
H
Just before Theorem 5.2, we need another lemma guaranteeing the uniform

integrability to be used later.

Lemma 5.1. For 0 t £ T,

d

(1) B[ sup (1+ Ix1%) log log(3 + [x 1% )] ¢ c (0). (5.9a)
0¢s{t

2) BT sup (1+ Ix|%) log log(3 + Ix 1% )] € c (0). (5.9b)
0¢s<t

3) B1 + Ix, 127 ¢ e(0). (5.9¢)

@ W sw el > K] —0 il (5.94)
su X .

“logse BT S () [log (3D TP

where 04(9) is the constant appearing in (4.4) and c5(6) is also a constant
independent of d.

In proving (5.9b), (5.9c) and the following Theorem 5.2, we use frequently
the Skorohod imbedding theorem guarantéed by Theorem 5.1 such that there exist
H P-valued processes Xg with the distribution ud and Xt with the distribution
u* on a probability space (Q1,%,P) and further X? converges to Xt almost surely

in C .
H_p

@
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Proof. The inequality (5.9a) follows from (4.4). Since sup (1 + Ixs|%m)log
0¢s<t

log (3+|xs|%m) is lower semi-continuous on C by (5.9a) we get

¢ll

*
[ sup (1+ Ix_|2) log log(3 + Ix_|2 )]
0¢s<t s'-m s'-m

2 2
E[ sup (1 + [X_|Z ) log log(3 + |X_|Z )]
oSSSt S m S m

A

lim inf E[ sup (1 + |Xg|%m) log log(3 + |Xd|%m)]
d—»e 0¢s<t S

d
lim inf B [ sup (1 + Ixslgm) log log(3 + Ixsl?m)]
d-xo 0d¢s<t

[P

c4(9) .

The bound (5.9c) can be obtained similarly from

d
2
1+ x, 121 < es(8). (5.10a)
which follows easily from (5.9a).
Also by (4.3) we get
d
u [ sup |xs|_m > R] (5.10b)
0¢s(t

vd[ sup lxgl > R]

0¢s<t
2c3(9)T
2c, e
0
$— 5. 32 ¥
(1+4R™)[10g(3+R™) ]
and hence noting that sup lxtl_ is lower semi-continuous with respect to x
0¢s<t m
®
in C¢.. we have 1
»*
wswp [x | >R]
0¢s(t

LJ




"v'

lim inf ud[ sup |x_|

> R]
do o¢s¢t S ™

A

203(9)T
2c0 e

A

(1+R%)[1og(3+R%) 1%

since { sup lxsl

> R} is open in Q¢.
0¢s<t

-m

Theorem 5.2. Let A, B, Q. and Ho satisfy the hypotheses (IC), (CC). (LG). (JC)
of (3.3). Then any cluster point u* of the tight family (ud) solves the
martingale problem for 0 ¢ t < T on C‘p. with initial distribution Ho and

generator
L, £(x) = £' (x[o]A ()[#] + % £"(x[¢])Q(E}(x)e. B}(x)e).
£(x) = F(x[e]) € T(8") .

Furthermore, any such measure u* satisfies the inequalities

Eu* 2 2
[ sup (1+ |x_|2)) log log(3 + Ix |2 )] < ¢ (0) .

0<s<t
2 ¢ e2c3(6)'I‘
% 0
u{ sup Ixs'—m > R) ¢ 2 2,.2"°
0¢s<t ~ (1+R%)[log(3+R™)]
and
2%
[ sup Ixsl_m (o] =1.

O¢s<t

Proof. By Theorem 5.1, we may assume that ud converges weakly to u* without

loss of generality. Since uo(H_m) = 1, we have

lim [ £(xud(dx) = 1im £ _ £(03M) p(du) (5.11)

S f *(dx
Cp- (xg)u (dx) o Jc,. AR

Sgr £(wg(du)

RN b U




5-9

for any bounded continuous function f on ¢'. Noting that u* o xal and M, are
Radon measures on ¢', by the monotone class theorem in the form of Theorem 1.21
1

of [2] and (5.11) we get u.* ° xa =My -

Now we must verify that for each O ( t ¢ t' ¢ T and bounded gé
¢l

measurable function g.

*
B [g(x) (M) (x) - ®{(x))]1 =0 (5.12)
and the sharp bracket function
> = 5o Q(B:(xs)«p. B:(xs)¢)ds. (5.13)

where

M(x) = x,(#) - xo(#) = Jg A (x,)[elds .

We will first verify (5.11) for bounded, continuous functions g which depend on
x at only finitely many times, then extend to larger classes of g (by the
monotone class theorem). Suppose

8(x) = glx, .oox )
m

forsomeNGIN.Ogtl<t

(5.12), we will derive some estimates. By (5.9d) and (5.10b), we get pd(x;

%
I |_ < ®) =1 and u (e Ix |,

~ ,N
2(...<tNgt. andgecb(¢ } . To prove

{ ®) = 1 and hence from (LG), (5.10a) and
(5.9¢c), we have

d
B 1A (x )¥] 121 (5.14)

d
<ETIAx 12 lo12)

.
K 4
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d
) < Lelel21 + Ix 2]

h and

g < 8 cg(0) ol .

2
é 6 05(9)|¢|p

%
B 1A, (x)¥] 2] (5.15)

By assumption (JC) (i), if x € HT,

Q[B} (x)¢. B (x)e]

2 B_(x)(Q}) by "[91?

2
IQBS(X) l_m‘_ml‘le

and hence we get similarly
Ey,d % %
[Q[B_(x.)e. B (x )¢]] (5.16)
d 2
gEu l:|‘p|m| QB (x )l—m,—-m:I
s''s

d
lel2 B To(1+1x_[2 )]

[P

[[FaN

2
6 cs(e)h’lm .
and

*
B [Q[BL(x,)e. Ba(x,)e]] < 0 c5(8) lol2 . (5.17)

| @
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d
set o1 = 3 (o, bE) BS and ¢y = o-¢%. Since [-]_ < ||
j=1 p=_"

bounded, by (5.9c) and (5.15), for any ¢ > O, we have some N such that

and g is

* * N
[E* [e(x) M{(x)] - E* [g(x) M (x)]] < es2

and hence

L
[E* [e(x)(MF. (x) - M{(x))]

* N N
- B [e(x)(4F (x) - M (x))]] < e. (5.18)

On the other hand, since

N
¢ = le aj hj + 9 HGNHm =0,
we get
mxd[¢N]_za(x) if d)N
j=1 J J
and since by assumption IIGNIIp =0,
N

HtN(J;mxd) = ﬁg 1= jfl aJ{(x‘:)J - (xg)J - fs ag(xg)st} .
- b

Noting that Mg is a martingale if d > N by (5.2) and using the boundedness of

g. the uniform integrability in (5.15) and the Skorohod theorem, we have

* N N
B [g(x) (W (x) - M7 (x))]

E[g(X)(M*(X) - N7 (X))]

lim E[g(X ) (u"’ (xd) - H‘t’"(xd))]
d—

1@

R J
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d
Lim B g0 0670 - M100))
=300

d
1m E” [g(J" x) (R, - )] =0,

-0

which, together with (5.18), implies (5.12) holds for the special class of
functions g mentioned before. Since ¢' is a standard space, by the monotone

class theorem (again in the form of Theorem 1.21 of [2]) (5.12) holds for all

bounded Bé - measurable functions g.

¢l
To prove (5.13), we first choose the following sufficiently large N.

Since l.lmé I.Ip s

lim Je-¢3] =0 (5.19)
d-w m
and hence
d
lo™1, < el +1 iIf dd. (5.20)

By (5.9¢). (5.15)., (5.17), (5.19) and (5.20), for any € > O we have some N > d0
such that

]
|E* [ QBL(x )¢ Br(x,)¢' Jds ~ SO QIBY(x )e. Bl(x )elds]| < e/2  (5.21)

and

* %
B (0% - B 0% < es2 (5.22)

Since M‘:N(x) is continuous on Cd>" by the Skorohod theorem and the uniform

integrability in (5.9a), we have

*
B (0% = e 0] (5.23)
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= 1 EN (x%)?)
d-»
d
= lim E* [Mt"(x)z]
d-»

d
F = 1m B [0 12

d-m»

d . d
' cll-i-: E* Lo k§1 By(Jg" "g)(q}:)* h;r[lez ds]

d d
Lim 2 LS5 3 B (x (&) B4 as]

d
¢ d,, %% —r N2
Lim E[Jg 2 B (X))@ nTe"1? ds]

Now for w € {w; IXgI_m { ®}, we get
S B Py nrr N2
3B 0@ mTT) (5.24)

¢ 2 BOQE" BTN = arsiog. B

nA

N2
| le" I

Q I
5 0

n~

di2 || N2
8(r + X1 le" | .

Since P(lx:l_m {®) =1 from (5.10b), noticing the uniform integrability (5.9a)

and the continuity of Q[B:(-)v. B:(-)v] on ¢' by (JC)(ii) the right hand side

of (5.23) is dominated by

Lim ELS5 QI (xD)e", B(x0)e"1ds) (5.25)

d-

J\_Jr—.

N4




P.
)
r

-

- E[I;

On the other hand, if

d

so that we have

QBL(X)e". By(X,)e'] ds] .

d >n,

2 B_(<3)(@) " [4'1°

n
> 3 B Q@I

d
lim inf 3 B_(X)(Q) "0 "[¢" 1

d-x0 k=1

2

I M3

1

n
2 B T

Lim tnf B_(X)(&) T 1°

The inequalities (5.26) and (5.27) yield

d
lim inf 3
d-»o k=

2

e

1 B_(x2) (@) "[s" 12

1 B, (X )(@) " "[o" 1

= aBL(x )e". BI(x)e'] .

5-14

(5.26)

(5.27)

(5.28)

By (5.28) and Fatou's lemma, the right hand side of (5.23) is larger than

which gives

E[S§ QUBY(X )¢, BL(X )¢ lds).




s

]
B [(x)2] = ELSS QEBL(X )¢, BL(X, )¢ Jas).

Summing up (5.21), (5.22), (5.23), and (5.29), we obtain (5.12), which

completes the proof of Theorem 5.2.

5-15

(5.29)
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6. Existence of a Weak Solution. Let Q2 be the canonical space Cy. = C(R,; ¢')

[/
with filtration Et = Eé , 0 (t ( » and measure P = u*, and consider the
¢l
coordinate process xt(w) = w(t) for w € 2. In Theorem 5.2 it has been shown

that, for each ¢ € ¢, the real-valued process
t
M = x [#] - x,[0] - S5 A (x,)[#]ds (6.1)
is a continuous local martingale with sharp bracket function
P _ t t *
<M >t = Io Q[fs P, fsw]ds {(6.2)

wvhere we set fs i= Bs(xs(m)) and denote the adjoint of fs by f:. given by the

relation
u[f: ¢] = (fsu)[¢] u€EP', g€ .
and we also have

ELSy QLfs . £ ¢Jds] < 0 c (8)T|e2 (6.3)

A

for each T > 0. Repeating the argument in Section 2, we find a continuous
H P-valued L2—mart1nga1e Ht with Ht[w] = H: and operator-valued Meyer (or

sharp bracket) process

A @) = M (0) = j > M WS () hP e nP. (6.4)

where we have abbreviated Ht[h;p] by Hi . An important consequence of (6.3) is

©
p)

% *
Ea Q[f_(v) h?. £_() hg]ds ( w | (6.5)

a.s. for a.e. s, i.e. for all (s,w) ina set A C [0, T] x 2 with A® P (Ac) =0,

I\




R _B T e

- 'T“

where A denotes Lebesgue measure. Note that, from (6.4), At €H @®H D a.s.

and for g, h € H_p.
_ -z - -
A @) = A @ gon)_, = 3 M @@EnP, hnD)

In particular,

(A @h P B = o W (o) = 5§ aLes bP, £ hPlds. (6.6)

From (6.5) and (6.6) it is seen that At(m) is a nuclear operator for

almost every w.

Let (s,0) € A such that Ixs(w)Lm <o, he€H and find a sequence y_ € ¢
[ 4]
: iy h % —p. % -
for which |y, -h| -+ 0. Setting Li(s.0) = kfl (qﬁ) Py v (b P for he

HP and noting

Qe (@), £r()e]

2 (@) nPreg (o)l

A

2 % %* 2
(2 QL (@)g. £ (0)hp)) el .
we have

IL:;(w.w) - Lz(s.w) |2 -0 as m,n - ®,

Since P(w : Ixslgm { ®) =1, define

h
lim L(s. (s.w) €AN {0 : |
m n(s w) s, w {w xs|_

R_(w)h(h] = {

0, otherwise.

Then there exists a fixed P-null set outside of which we have, for all h € H_p

(Ach.h)_ = 5y IRshEp ds, (6.7)

Y
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r
- P12 _ . * . .p ¥.p ®
. 321 |Rs(w)hj l_p = jzl QLf by, £ hj] <
and
IRs(w)hl_p < Inl_, {jzl Q[f:(w)hg.f:(u)hlj’)}% ¢ s € [0,t] .

We summarize its properties below:

- Proposition 6.1.
(a) Rs(w) : H_p *»H_p is a Hilbert-Schmidt operator;

® » _~ ] -
(b) Ry(o)hle] = 3 (@ BPLEL 9] (B
(©) (A (@)e.h)_, = Jg R (w)e. R ()h)_, ds. a.s.
Denoting by R;(w) the H_p adjoint of Rs(w). we now show that for each t { T,
A (o) = fé R: (0)R_(0)ds. (6.8)

The operator integral on the right-hand-side is easily defined by noting that,

for f and g in H—p

pt[g.h] i= IS (R; ng.h)_p ds

is a continuous bilinear form on H_p. and hence

p.lg.h] = (Jg R, R ds g.h)_

t
fb (Rs g.Rsh)_p ds

(4, g.h)_

from Proposition 6.1(c), and we have the representation (6.8).

1@

e
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Theorem 6.1. There exists a ¢'-valued Wiener process Wt such that the

¢'-martingale Ht has the representation
M o=Jtf aw 0StgT (6.9)
t 0's s ’

Proof. It has already been shown that, over the interval [0,T]. Ht is a
continuous, H_p valued, locally square-integrable martingale with bracket

operator

A (0) = J§ R (0) R (0)ds .

Now Lemmas 1V.3.3, 1V.3.4, and Theorem IV.3.5 of [13] apply to yield a CBM BS

on the Hilbert space H_p adapted to the filtration gt_p and satisfying
H

t
Ht = IO Rs dﬁs
Now we can define

DS PO R
SR pl() v P .

where ﬁi i= Bt[hﬁ] for the chosen CBM Bs. It is easy to verify that Wt is a
¢'-valued Wiener process with covariance E Wt[¢] Ws[w] = (sAt) Q[¢.v]. In

fact, W € H P-a.s. since
t -P

ELIW, 2] = ¢ 2 (@) 5P @ v,

®
=t 2

P 1Pv ¢ o
2 Q[hf. hi) <=

[
t t -
Since [§ R_(w)dB_[¢] = 3 IE R hP[e)dB by the definition, it follows that,
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for t < T,

3 S5 (5 e.bf), (&) B PIn81a B,

T e p p
fo(tge W)y, dW,[RT] = 2

3 S s, e« 55 3 el vl @ 00 B

2 2 I ey vld By,

o5, 7

= Ht[w].
Hence

t
M.[e] = (J, £, dW )[¥]
for all ¢ € ¢, i.e.

t
- ’rO fs dws

t
= J‘o Bs(xs)d Ws
The existence of a weak solution in C(IR+;¢') follows immediately from (6.1) and
(6.9): i

Theorem 6.2. There exists a weak solution to the stochastic differential

equation (1.1) on the canonical space (2,F.P). ﬁ

A




7. Existence and Uniqueness of a Strong Solution.
Definition 7.1. If for any two weak solutions (XI.W) and (X2.W) of (1.1) on
the same interval [0,T] and the same probability space (Q,Et.P) with the same

Wiener martingale W
. | 2
Plw € Q : Xt(w) = Xt(w). 0<t¢T]=1,

we say that (1.1) has the pathwise uniqueness property.

The pathwise uniqueness property asserts that two weak solutions X1 and X2
on the same probability space, with respect to the same Wiener martingale, must
be identical. The natural notion of uniqueness for weak solutions is not
pathwise uniqueness but distributional uniqueness, 1i.e. uniqueness of the
probability measure induced on the canonical path space by any weak solution;
the following theorem., due to Yamada and Watanabe (See [4]), connects the two
notions:

Theorem 7.1. (Yamada and Watanabe). Pathwise uniqueness implies
distributional uniqueness for solutions to (1.1).

Proof. The idea of the proof is to induce probability measures Pi on the
canonical space Q1 := C(R+: ®' x ¢') (with the canonical filtration) giving the
joint probability distribution of Xi and Wi. and to verify that each Pi can be
factored as the product of Wiener measure P(dwz) on the second coordinate times
a regular conditional probability distribution measure (RCPD) Pi(dw1|w2) on the
first coordinate. With these RCPDs it is possible to construct a measure
;(dwl. dw, ., dw3) = Pl(dwlle) P2(8w2|w3) P(dma) on the space 6 = C(R.: &' x
¢' x @') such that the two processes Xi(wl.wz.w3) = ey (i=1,2) are both
solutions to (1.1) on the same probability space (6.;) with respect to the same

Wiener martingale W(wl.wz.w3) ‘= wg. Pathwise uniqueness now implies that P is
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concentrated on the set {wl.wz.ws : w1=w2} and hence that the marginals Pi must
be equal.

Although Yamada and Watanabe only state their result for Rd—valued
processes, their proof remains valid for the ¢'-valued processes which concern
is here; since ¢' is a standard space, the existence of regular conditional

probability distributions presents no problem. B

Theorem 7.2. [4] Pathwise uniqueness and the existence of a weak solution
together imply the existence of a unique strong solution.
Proof . See Theorem IV.1.1 of [4].

In view of the above result, it remains only to prove the pathwise
uniqueness property for Equation (1.1). We are able to do this by adding the
monotonicity condition (MC) to the conditions already assumed.

Theorem 7.3. Under the conditions (IC), (CC), (MC). (LG) and (JC) of Section
3, Equation (1.1) has the pathwise uniqueness property.

Proof. The argument here, closely follows [8] and we give it here only for the
sake of completeness and the reader’s convenience. By Theorems 5.2 and 6.1,
Equation (1.1) has a weak solution in C([0.T], H ™). Let X! € c([0.T], H™)

(i=1,2) be two solutions. For convenience, set

. vl
Y, i= X xf, £

. 1, _ 2 ot -
. t= B (X)) - B(X)., I :=Jf f dW and a :=A

t t t’

Let p 2 m be the integer mentioned in (MC). Recalling our notation that (h?) C

¢ is a CONS in HP and applying Ité’'s formula to (Yt[hgj)2 we have

©
3

P1\2 _ t
2, LT =2 0

o o0
31 Ys[hg]as[h?]ds +2 5 f

% .p *.p
& Qff, hj. f hj]ds

J

-]
t P p
+2 le Jo¥o[n51 a1, [n%]




which can be written as

2 ot
Y 12, =2 J5 {((Yga)_, + Iole_p _p)ds + M

where Mt is the continuous, local L2-martingale represented by the last term in

the above equation. An application of Itd’s formula, this time to lYtl% e_29t

P
yields the relation

20t tyy |2 .20 t ~28
e lY = -90 Iolel—p e “%s + 2 fo{(Ys.a_s)_ + |Qf*| } e s

2
t-p p s -p.~p

ds

t -20s
e

+ IO d M

s
Using (MC) we have
-20t 2
e Y 12, <,

where LR t= f; e—265 dMs is a continuous, local martingale which is nonnegative

(in view of the above inequality). Hence, for a sequence of stopping times a
1 ©, we have for every ¢ > O,

e P[ sup n > e] < E[n ] =0,
ogest M oo,

so that making ol 1 ©® we obtain sup 7, = O, P-a.s..
0<t<T

It follows that

2
|Yt|_p =0 Vt<T, P-a.s., i.e.
sup IXt - X%I =0 P-a.s.,
0<t<T -p

proving pathwise uniqueness for C([0,T], H-p).

Note that Theorem 7.3 implies the pathwise uniqueness property for

|

— 4
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solutions in C([0,T].#'). For given two such solutions Xi. there exists a
common index m > O such that Xi € C([O.T].H-m) for i=1.2. The proof of Theorem
7.3 then applies and the assertion is true.

The following result is an immediate consequence of Theorems 6.1, 7.1,

7.2, 7.3 and the above Remark. B

Corollary 7.3.1. For each T > O there exists a unique strong solution to
Equation (1.1) on the interval [0,T). By this we mean that for any probability
space (Q.F,P) on which are defined a ¢' random variable E with probability
distribution measure Ho = P o E_l and a Wiener martingale W with covariance
quadratic form Q, if Hoe Q. and the coefficient functions A and B all satisfy
the conditions (IC), (CC). (MC). (LG) and (JC) of Section 3, then there exists

a unique strong solution X = (Xt} to Equation (1.1) for all 0 { t ¢ T.

Proof. Apply Theorems 6.1, 7.1, 7.2, and 7.3. B

We now come to our main result, the existence of a unique solution to
(1.1) for all time:
Theorem 7.4. Let (Q.F,P) be a probability space on which are defined a &'
random variable § with probability distribution measure Ho = P o E-l and a
Wiener martingale W with covariance quadratic form Q, and suppose that Ko Q,
and the coefficient functions A and B all satisfy the conditions (IC), (CC),
(MC). (LG) and (JC) of Section 3. Then there exists a unique strong solution X
= (Xt} to Equation (1.1) for all 0 ¢ v 4 ®,
Proof. Use Corollary 7.3.1 to construct a strong solution X{ with starting
value § and Wiener martingale W on the interval [0,T) for T = 1,2,3,...; verify

that the definition

.

..d




xt = 2 1[n—l.n)

(t)X7
n=1 t

determines a strong solution for all time. Uniqueness follows from that of

each X?. : B

Remark. Suppose that H is a separable Hilbert space with inner product ( . )O
on which is defined a continuous, contraction semigroup with generator -A

satisfying the following properties:

-r
(i) For some r >0, (I +A4) 1 is a Hilbert-Schmidt operator on H. Then A
has a discrete spectrum with eigenvalues and eigenfunctions given by A¢J = kj
. (A, > 0) with
o5 (A >0) w
-2r1
(ii) 2 (1 + Aj) { o,

J
This set up occurs in many physical and biological problems (see [6] and the

references given therein). A convenient Fréchet nuclear space $ can then be

defined:

[ ]
d={peH: 3 (1+2)% (s )2¢® Vr20}.
j:l J J

For ¢ € ¢, define the Hilbertian norms

©
2 2r 2
|¢Ir = z (l + 7\j) (¢-¢J)o

j=1
Let H = |°|r-comp1etion of . Then ¢ is a countably Hilbertian nuclear space

as can easily be verified. Further, H" is the dual of Hr. =N H and
r>0

¢’ = U H'. The stochastic differential equation (1.1) becomes quasilinear
with At(u) = -A" (u € ¢') where A* is the adjoint of A restricted to ¢. (It

can be checked that A¢ C ) and linear if, in addition, Bt(u) = 1. For any m
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1 and u € H™ it is easy to verify that A'u € HP for p > m+l. Further since

|Acp|r < |¢|r+1 for all r > 0, if u € H" we have
%*
A ()01l = [-A%ulell = luf-Aed] < lul__ lel_,,
and hence

lAt(u)l_p < Iul_m for p > m+l.

Thus the first part of (LG) is satisfied.
Also, the drift coefficient "helps” the monotonicity condition because for

u€H™and p 2 m+l,

»* oy -n.2
(A (w).u)_, = -(Auwu)_ = —jzl Aj(u.hjp)p <0

where h? t= (1+xj)’%j is a OONS in HP. It is further to be noted that for

this class of nuclear spaces ¢, our basic condition (A) is satisfied since (wj)

is a common orthogonal system for all the spaces H.
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8. Application to random strings. Funaki [3] has studied the random motion of
strings by appealing to the theorem on the existence of a unique solution of
the following nonlinear stochastic evolution equation on a separable Hilbert
space H.

©.1) {d X, = a(t.X )dB_ + b(t.X )dt - AX dt , t € [0,T].

Xo € H,

where Bt is a cylindrical Brownian motion, the coefficients a(t,x) and b(t,x)
satisfy suitable Lipschitz continuity conditions and A is a non-negative,
self-adjoint operator on H with pure point spectrum O é Al é A2 é ... such that
N~ e kP (e, 65 0) as ke,

In this section, we will show how Theorem 7.4 can be used as an

alternative approach in a similar setting. Let A be a non-negative
self-adjoint operator on H with pure point spectrum O < Al < kz € ... such that
® _

2 (1 + Aj)-2r < ® for some r > 0. Let us now work witﬁ the ¢ introduced in
j=1 '

the Remark at the end of Section 7.
We will assume conditions on the coefficiehts of the stochastic evolution

equation
(8.2) d Xt = At(xt)dt + B(t.Xt)d Wt.

namely, there exist a sufficiently large m, numbers 6 > O and p > m such that
At(x) and Bt(x) satisfy the conditions (CC), (MC) and (LG).
Then by appealing to Theorem 5.3 and Theorem 7.4, for the support of the

solution Xt of (8.2), we get

PLU { sup |xtl_m (®}] =1.
n=1 0<t<n

.|




(]
Hence from the weak continuity of Xt. 2 (1+7\j)_2r < © and the Lebesgue

J=1

convergence theorem, we obtain

Corollary 8.1. Under the conditions on the coefficients At(x) and Bt(x) and
the initial value condition (IC) of Theorems 5.2 and 7.4, (8.2) has a unique

solution X_ such that X, € C(R,. g (™)

Now, we will consider the stochastic evolution equation of Funaki's type.

If ¢ € ¢, then we have for all & > 0

©
3

28 2

[+ -]
b3
§=1

28 ,2 2
Ao, #5)

(1 +7\J)

2
lolgsy < =

A

so that Ap € ¢. Let A* be the adjoint of A with respect to the canonical

bilinear form <,> on ' x #. Let

]
(8.3) d X, = a(t.X,)d W_+ b(t.X )dt - A" X_dt,

where Wt is a ¢'-valued Wiener process such that E[Wt[ap]z] = t Qfe.e] and
Q[y.¢] is a positive definite continuous quadratic form on &.

Before proceeding to the assumptions on the coefficients a(t,x) and
b(t.x). we notice that there exist an integer q and a constant C1 such that
(8.4)  lalw.e1) < lol2 .

From now on., we denote positive constants by Ci' i=2,3,.... Since

w
3 (1+)\j)—2r { », the support of Wt is contained in H—(q+r)' [71.
J=1

Let a(t,x) : R, x &' > L(¢'.¢") and b(t,x) : R x &' = ¢’ be jointly

lo
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continuous mappings of (t,x) satisfying the following conditions:
There exist q' > q+r and m > q' such that a(t,x) maps H—(q+r) to HY ,

b(t.*) maps H " to H " and for x,y € H ",

% -q2 2
(A.1) jzl la(e.3n P12 <K+ Ix|Z).

-q )2 12
3 la(c.x)—a(t.y))hj l_q. < Klxy|Z .

j=1
and
A.2)  [p(e.x)]? < KO+x]).

lb(t.x) - b(e.y)|_ & Klxvl_ .
where h? = vj/(1+7\j)m and K is a constant.

To apply Theorem 7.2, it is enough to check the conditions (CC), (MC) and
(LG).

Setting At(x) = -A"x + b(t,x) and Bt(x) = a(t,x), for x € H™, we have

* 12 o mh12
|A xl_(m+1) =2 A'x[hy"]
> m+l 2 > m+1 2
= 3 x[AhT '] = 3 x[Ae/(14A) )
J=1 J j=1 33 d
®;
oy m 2 > m 2 2
< jil x[¢J/(1+AJ) ] = le[hj] = |x|_m
and hence, together with condition (A.2), we get !Q
(8:5) 1,092y < CUHIxIZ).
By (8.4) and (A.1), we have
® L]
% .m ¥ m
(8.6) laBt(x)l_m'_m = jil Q(a(t.x) hy. a(t,x) hJ)
®
i
4
. J




*
> |a(t.x) h?li

g -q . *hm 2
2 h " [a(t.x) j]

cc. 3 3 a(tun® A2
2 a(t.x)h "~ [ j]

1.2 Ia(t.x)h;qlgm

<c zl |a(t,x)h;q|%q.
<cy 1+ x2).

Hence (8.5) and (8.6) yield the condition (LG).

Suppose x.y € H™. Since -A" x € H—(m+r)' we get

% ® —(m+ % -
(8.7) (A" %.X)_(ur) = jzl(x. hj( r))_(m+r)(A X. hj(m+r))—(m+r)

= 3 x[h™7] x[A "™"]
j=1 ] J

=-3 A, x[t™712 < 0.
G Ny g

By (8.7) and (A.2), we have

(8.8) 2(At(x) - At(y). x—y)_(m+r)
= 2(-A"(x-y). XY)_(mer) ¥ 2(b(t.x) - b(t.y). xy)_ (o

¢ 2(b(t.%) =~ B(E.Y). X¥)_(pury

@
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00
2 3
j=1

(x-y) [BJ1(b(t.x) = b(e.y). b))

2 3 (xy)[h]] 2, ((ex) - blxy)) [hed (" b ™)y

j=1
=2 jgl (x-y)[B]] (b(e.x) - b(x.y)) (631 1" 12
S Culxyl_, Ib(tx) - b(t.y)]_,
<C K |xyl? .

Using (A.1) and an estimation procedure similar to that of (8.6), we get

2
< Cslx—y|_m. 0<tT.

(8-9) IQBt(x)—Bt(y)I-m.—m $ <

Therefore (8.8) and (8.9) imply the condition (MC).

The inequalities (A.2) (8.6) and (8.7) yield the condition (CC), which
completes the assertion. Therefore by Corollary 8.1, the equation (8.3) has a
unique solution X_ such that X, € C(R,.H (™T)) |

Now we specialize to Funaki's spectral condition: Ak ~ c k1+6, {(c, 6 >
0). Ve replace the cylindrical Brownian motion (with Q¢ . ¢] = |¢|g), by a
Wiener process W in C(R+. H_r). r > 17/2(1+6). Using Corollary 8.1 we conclude

that (8.3) has a unique solution Xt such that

x € C(R,. H "),

where s >)m+r, andm+r > 2r > (1+5)

o

1®
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