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1. Introduction. Let I be a nuclear Fr6chet space and 0' the strong

topological dual space. We denote by x[qp] the canonical pairing of elements x

C 0-. %pCO. Let (Et)t(a, be a complete, right-continuous filtration on a

complete probability space (.E.P). We will define below what is meant by an

Ft -Wiener martingale taking values in ', and give conditions on coefficient

functions A : + x 0' -* 0' and B : 1+ x 0' -+ L(O';O') and on the probability

distribution measure 0 = P 0 E-1 of a V-valued random variable f under which

we will prove the existence and uniqueness of solutions to stochastic

differential equations (SDE's) of the form

dXt = At(Xt)dt + Bt(Xt)dWt. 0 t < w; (1.1a)

with initial condition P(XQ = = 1 or. in integrated form,

Xt = + f AsXs)ds + Bs(Xs)dWs 0 t < -. (1.1b)

We begin by giving the definition of 0 and V in Section 2 as well as

preparatory material on 0'-valued stochastic processes and the definitions of

weak and strong solutions and of a solution to the martingale problem posed by

(1.1). The conditions for existence of a weak solution and for uniqueness are

given in Section 3. Section 4 is the pivotal section of the paper. It

introduces the finite dimensional approximations to (1.1), produces a solution

to the corresponding finite-dimensional martingale problem and obtains

dimension-independent bounds for certain moments that are crucial to the

Galerkin approximation. These results are used to prove the existence of a

solution to the infinite dimensional martingale problem and to derive a weak

solution (Sections 5 and 6). In Section 7, uniqueness is established by

S
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proving the pathwise uniqueness property and using the, by now familiar,

argument due to Yanmda and Watanabe [4]. Our final result, Theorem 7.4

concerns the existence of a unique, 0'-valued solution X t for all t 0. In

the preceding results leading up to it, however, it is advantageous to restrict

oneself to arbitrary finite intervals [O,T]. because the sample paths of the

solution process will lie in Hilbert subspaces of 0'. In general, the Hilbert

spaces will depend on the value of T chosen and no Hilbert space will contain

the sample paths for all time.

SDE's governing stochastic processes taking values in infinite dimensional

linear spaces occur in such diverse fields as nonlinear filtering, infinite

particle systems and population genetics. For many of these problems, the dual

of a separable, Fr6chet nuclear space provides a natural setting in which to

study infinite dimensional martingales and SDE's.

Most of the applications known to us lead to linear equations, i.e.

Ornstein-Uhlenbeck (Or Langevin) equations and their variants. (See [7] and

[8] for references). An exception where Banach or Hilbert space-valued SDE's

are concerned is the paper of Krylov and Rozovskii [8] which the present paper

resembles in adapting the Calerkin approximation procedure to the stochastic

context. An important difference is that here. the thrust of our efforts is

first, to obtain a solution to the martingale problem. It calls for entirely

different techniques which, moreover, do not involve the monotonicity

condition. The latter is invoked only in proving uniqueness.

One of the main motivations for our interest in diffusion processes in

duals of nuclear spaces is the possibility that they may provide a more

realistic model to describe the behavior of the voltage potential of a

spatially extended neuron. The celebrated, Hodgkin-Huxley deterministic theory

,. -m u m I I I| I0
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of such behavior takes into account many nonlinear features that are lacking in

currently studied stochastic models (See [6] and references therein). A study

just completed, of 0'-SDE's driven by a discontinuous martingale in place of a

O'-valued Wiener process suggests continuous approximations to diffusion

equations similar to the ones discussed in this paper [5]. Weak convergence

results of this kind would be of considerable use in the applications mentioned

above. The investigation of these questions will be taken up in a later work.

A more direct and immediate application, made in Section 8, is to the motion of

random strings studied using different ideas, in [3].

0
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2. Processes taking values in the dual of a nuclear Frchet space. We shall

present, in this section, preparatory material (including notation and

terminology) on Frechet nuclear spaces and on stochastic processes taking

values in their dual spaces, leading up to the definition of stochastic

differential equations governing such processes.

2.1 Fr6chet nuclear spaces.

Throughout this paper 0 shall denote a fixed but arbitrary Frechet nuclear

space with strong dual V. The topology of such a space can be given by an

increasing family of semi-norms {l-ir}_(r<. of the form iv'r = {P- 'rl % for

a family of continuous symmetric scalar products ("')r on 0 such that the

Hilbert-space completions H r of 0 in the -r of 0 in the IHr seminorms

satisfy the following conditions:

(2.1.1) Hr and H- r are canonically dual in the pairing whose restriction to

hr E 0 C 0' is given by <h-r hr> = h-r[hr]. If the canonical mapping

of Hr onto its dual H-r is denoted Jr' then

<h-r hr> = h-r[hr] = (h-rjr h)-r = (j-rh-rhr)r

(2.1.2) C Hr C H' C 0' -( s r < -, with

0 = n Hr in the locally convex topology determined by {''r ) .r

0' = U H -r  in the inductive limit topology.
r

(2.1.3) For each r there exists a p > r such that the injection mapping

i : Hp -* Hr is nuclear.

In the sequel we shall have to make sparing use of the completed tensor product

of two nuclear Fr6chet spaces E * F, which is also nuclear. The properties of

the latter as well as additional details about nuclear spaces are to be found
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in [12].

Fix any linearly-independent total set {j} C 0 and, for each s 0. let

{hs} be the result of applying the Gram-Schmidt orthogonalization scheme to

{P} in Hs . All finite linear combinations of the basis elements hs lie in 0,J I
so for each d the d-dimensional space Hd := sp{h 1 .... h} is contained in P.

For s > 0 let {h 1 S}, C 0' be the associated dual basis for H- s defined by the

relation

h1 [] := s(h )

for all %o E , and let HS -- sp{h s . .iih-.Hd" "l'dl The spaces Hs and H- are

canonically isomorphic under the mapping is. Denote by sIdu :2 h h s u]
S 11 u J~d j .1

the orthogonal projection of an element u C Hs onto the d-dimensional subspace

HS, and by ldsx :=Jd x[h ]h s the orthogonal projection of an element x E

H- s (or even x C V) onto the d-dimensional subspace Hds . For all - < s <

the space H is the image of Id under the continuous injection Jd d . '

given by

d

j=l i h

Note that iid and ITdS are dual or adjotnt in the sense that, for all x C 0' and
d d

x[ff?] = XJ~d x[hj]hj s [v9] = (1Udx)[J"

The space of continuous linear mappings from the Hilbert space Hr to the S

Hilbert space Hs will be denoted by L(Hr;Hs), while the subspaces of nuclear

(or trace-class) and Hilbert-Schmidt mappings will be denoted respectively by

LI(H r;Hs) and L2(Hr;Hs ) . The trace and trace norm of a mapping A C LI(Hr;Hs)

will be denoted by tr(A) and JAI r.s respectively, while the Hilbert-Schmidt

S
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norm of A 6 L2 (Hr;Hs) will be denoted by 11Al r, s .

In the sequel, probability measures will be studied on the spaces 0' of

continuous linear functionals on 0 and C({+;O') of V'-valued (resp., C(IR+;H - p )

of H-P-valued) continuous functions on [O.), which will now be denoted by CO.

(resp., C_ ). Denote by B, the Borel a-algebra in V; since V is a

countable inductive limit of Fr6chet spaces, the Borel sets for 0' endowed with

the weak topology are the same as those for the strong topology. The Borel

a-algebra on C . and the induced a-algebra on C will be denoted B and

B respectively.

H-P

2.2 Fr/chet differentials in 9'.

In order to study the generators of V'-valued diffusions we need first to

give appropriate definitions of Frechet differentials. For Hilbert and Banach

spaces the concepts are well-known but, since we were unable to find a

treatment of Fr~chet differentials of functions on the dual of a Fr6chet

nuclear space in the literature, we give the definitions explicitly in this

section.

Deftnttton. Let f : 0' -+ U be a continuous function. We call f Frfchet

dtfferenttable at x C 0' with (first) Fr6chet differential f'(x) E L(O';R) if

for every e > 0 there exists a neighborhood U of 0 in V. open in the strong

topology, such that for every index m < - and element h C U fn H- m

If(x+h) - f(x) - f°(x)[h]l < elhl_ (2.2.1)

If f has a Fr~chet differential f'(x) at x for every x E 0, then for each m,

the restriction of f to H-r (denoted temporarily by fm) has a Fr~chet

differential at each x C H- m in the usual Hilbert-space sense. Furthermore,

the derivative f'(x) is the restriction to H- m of f'(x).
m
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Again let £ have a Fr6chet differential f'(x) at x for every x E 0', and

suppose that the mapping x -+ f'(x) is continuous from 0' -# L(O';R) 2 0". We

say that f is second Fr~chet differentiable at x E 0' if the mapping x -* f'(x)

is itself Fr~chet differentiable, or equivalently if there exists a map f"(x) E

L(O'.O') B(O'.') 5 (0' 0 V)' such that, for every e > 0. there exist

neighborhoods U1 and U2 of 0 in 0' such that for every pair m and m2 of
-ml1 m

indices, every h 1  U1 n H and h2 ' u2 n H---,

If(x+hl+h 2 ) - f(x+hl) - f(x+h2 ) + f(x) - f"(x)[hl,h 2 ]1 (2.2.2)

<(e-hll_m lh2 1-m

Then f"(x) is called the second Fr6chet differential of f at x; we may regard

it either as a bilinear form on 0' or as a linear form on the tensor product 0'

0 0'. Again it can be shown that if x C H- m , the restriction of f"(x) to H-m x

H-m is the second Fr6chet differential of fm(x).

The classes 2(V') and g, 2(,,):-- g(0') denotes the vector space of all

functions f : 0' -+ P of the form

f(u) = f(u[']) (2.2.3)

for some bounded, twice continuously differentiable function f on R. (f E

C (R)) and v C £0.

12

The class ,2(4') consists of all functions f : % x 0' -*IR of the form

ft(u) = t(u[%]) for some f E ' (P+,P) and p C 0.

We will use the same symbol to denote the second class of functions even

when t is restricted to a finite interval [O,T].

If f is given by (2.2.3) it is easily verified that f' and f" are given by

the formulas

II ]1 - -0
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f(u)[h] = a f(u[,p])h[qp] for h C 0' (2.2.4)

and

f"(u)[hl.h 2] = o2 f(u[v])hl[,p]h 2 C[p] for hl,h2 E V. (2.2.5)

Z and Z2 are the usual differentiation of the function f.

2.3 *-valued processes and martingales:

Let (E t) t be a complete, right-continuous filtration on a complete

probability space (OF,P); all measurability conditions and martingale

properties will be taken with respect to this fixed filtration. Integration

with respect to P will usually be indicated with the expectation operator E.

which will be denoted by EP when the measure would otherwise be in doubt.

Definitions (i) A V-valued random variable is an F /B,-measurable mapping

: 40.

(ii) A 4'-valued, adapted process M = (N1t) is called a martingale with respect

to (F t) if M[tp := (Mt [f]) is a real valued (Et)-martingale for each p E 0.

The martingale N is called an L2-martingale if, for each p E 0.

E MN[op] 2 < W for t 0.

M is called a local (or local L2 ) martingale if there is a sequence (T n) of

(Ft)-stopping times T m a.s. such that, for each p £ 0, {MtAT [p]} is a
n

martingale (or L -martingale).

For a detailed discussion and properties of 0'-martingales we refer the

reader to [9] and [10]. We shall mention only those facts that will be
JI

directly useful for our purpose.

If M is a 0' local martingale vanishing at the origin, there exists a

unique 0' 0 V predictable process A = (At) which is increasing (in the sense

that for qp E 0, the real valued process At4pp] increases P-a.s.) and such that

m " li n i i I I I i I
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Yt[Y .P] := Kt[ ]Mt[+] - At[p,.i]

is a local martingale satisfying Yo[p,PJ] = 0 P-a.s.

Definition: A is called the bracket function or the quadratic variation

process of K and is often denoted by <MMt> or <K> t .

It is clear from the definition that

<K> t ]= <M[p]. .[ P]> t

An important property of a 4'-valued L -martingale with continuous paths is the

following [9,10].

For each T > 0, there exists a positive number p (possibly depending on T)

such that the sample paths lie in the Hilbert space H- p for 0 t T and are

-P T T
continuous in the H topology, i.e., K. EHC- p a.s. where Kt = 1 t for 0 t

< T and CT  := C([OT]; H-P).
H-

The martingale with which we will almost exclusively, be concerned with in

this paper is the one defined by a 0'-valued Wiener process.

Definition: A 0' Wtener martingate is a 0' L2 martingale W whose bracket

function <W> is P-a.s. a non-random, linear (in t) function

<W>t[,04 t Q[,4']

for all p,4i C 0. We call Q assumed continuous, the covariance quadratic form

for W.

It follows from the remarks above that any 0' Wiener martingale W may be

taken to have paths which lie in the subspace H-q for some q < -, and which are

continuous in the H-q-topology P-a.s.; the choice of q depends only on the

quadratic form Q, and the sample paths will lie in H- s for every s > q. The

squadratic form Q has a unique continuous extension to a nuclear form on H
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and can be represented there in the form

= s)s

for a unique non-negative trace-class operator Qs on H For later use, we

choose and fix a specific value of s. say r. We denote the trace norm of the

quadratic form Q (or, equivalently, of the operator Q*) on Hr by

IQ- r - Q2 r , r
IQI-r,-r = Q hJ.h].

For any continuous quadratic form Q[-,] it is easy to construct a

path-continuous 0' process Wt which is a Wiener martingale (with bracket

function <W>t = tQ) with respect to the filtration (F t)t< generated by W; in

Section 6 we face the more difficult task of constructing a Wiener martingale

with respect to a given filtration (EFt)t<c .

2.4 It6 stochastic integrals in 0'.

Because we are concerned primarily with diffusions in this paper, we shall

briefly comment on the definition of one type of a stochastic integral with

respect to a '-valued Wiener process and describe some of its properties.

Let W be a 0' Wiener martingale with continuous covariance quadratic form

Q and hence bracket function

(W> [pQ= t P

The space of integrands, L consists of those predictable functions f IR x Q

-L(';O') for which

E oT Q[fs%*, fsf]ds < =(2.4=.1la)

for each T > 0 and each f E 0. Because it occurs frequently, we introduce the

notation QA for the quadratic form given by
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QA['p,.P] :=Q[A" .e f

for any continuous linear mapping A C L(';'). In this notation we can

rewrite (2.4.1a) as

E [f; Qf [ Pf]ds] ( <. (2.4.lb)

In the above, A C L(O.) is the usual adjoint or dual of A E L(¢'., ).

fThe stochastic integral I := f fs dWs. ( t T), is a -valued

L 2-martingale with the following properties in addition to the usual linearity

properties:

<It > = f0 Qf [fp,4]ds. (2.4.2)

There exists m > 0 (depending on f and T) such that

ICC a.s. (2.4.3)
H-m

If (hj) C 0 is any CONS in Hm ,

I [ P] = , [ l dWs~p f f.h) dW [hill (2.4.3a)
i=1 m

the right hand side being an L2 -convergent series of ordinary Itb stochastic

integrals. Furthermore,

(Ijp.. = l s ~(~.h~ f4.h~' ds Q[h i!Xhm], ,)(f (2.4.3b)
iJ=l m m

i m ij mmThe Wiener processes bt := Wt[h1 ] satisfy <bi b> = t Q[hi.h]. and they are

independent if the set (hm) diagonalizes Q.

2.5. Stochastic integrals for cylindrical Brownian motions.

Let H be a real separable Hilbert space with inner product (')H" A

+ - mm, Im m l mm riili mimm- i itt~W~l I
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cyltndrtcal Brontian motion (or CBM) on H is a mapping WH :+ x H - L2 (f2,F.P)

satisfying the following conditions:

(i) For all hI , h2 C H and c1 , c2 C R, all t o.

W1H[c h1 + c2h2] = cl WH(hj] + VH1 [h2J P-a.s.

(ii) For each h C H, WH[h ] is a real-valued Wiener martingale with mean 0 and

bracket function

<WH>[hl]. WHh 2 ]> t = t(hlh 2 )H

It follows from (ii) that E[(WH[h]) 2 ] = t(hh)H and hence that WH cannot

have sample-paths lying in H. For any complete orthonormal set {h,} C H we can

produce independent real-valued standard Wiener martingales b := WEh] and

with them represent the CBM as the L2 convergent series

WHh] = I (h.hi)Hbt • (2.5.1)
i=1

The relation between V Wiener martingales and CBMs is given in the following

proposi ton:

Proposition 2.5 Let W be a ' Wiener martingale with continuous covariance

quadratic form Q, and let HQ be the closure in ' of 0 in the norm I'PQ
{Q[E, ]) . Then W has a unique L2(O,F.P)-continuous extension WH to the

Hilbert space H = HQ. and WH is a CBM on HQ.

Conversely, any CBM W_ on a Hilbert space H satisfying 0 C H C 0' (with

both inclusions continuous) determines a unique 0' Wiener martingale, which may

be given by the 0' convergent series

Wt =I b t h1 (2.5.2)
i=l

'm1w
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i WHt
for any complete orthonormal sequence {hi} C 0 C H, where bt : [hi) and

where h* C 0' is the adjoint of hi defined by

hi*] = (h, 'f)H

for all , C 0.

Proof. Let H be the closure in 0' of 0 in the inner product (p,4) :

w

I hEi[]h[+]. and let j be the canonical mapping of H onto its dual space H*;
i=l

now verify that (2.5.2) converges P-a.s. in the K topology for any Hilbert

space K C 0' such that H C K with the inclusion mapping nuclear. I

Fix a real separable Hilbert space K and let 2K(WH) denote the linear

space of L2 (H;K) 2- H 0 K - predictable processes

f R+ x + -L 2(H;K) (2.5.3)

satisfying the condition

T 2E [,; lilfsll2 ,K ds] <

for each T C +. For almost every t 0, ft is (almost surely) a

Hilbert-Schmidt operator from H to K with an adjoint f* Hilbert-Schmidt from K

ttto H. Then for each t > 0. k C K, and index i, the It6 stochastic integral

0 (f:()k.h 1),bi(W)

is well-defined and so is the L2 (fl,F,P) convergent sum

i-1

i~~~ 1=1 ,,~k 
h )H dbs - I I...I |I -
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An easy computation shows that E[It[k]] = 0 and

E[It[k]2  = i S E[(f'kh 2 ]ds = StO E[IfcI)ds,i=l

so for any complete orthonormal system [k1} in K,

GO Ca

2 If~k 12 ~2 t i2  )(
E; I k - E[ I=E[ H =; ,,11,f,. d1- =] < ,
J=l tJ=l sJH fKHsH,

With probability one the real-valued series 2 It [k 2 converges and hence so

does the K-valued series

I:= I. It[k ]kj
t J=l

Definition: The cylindrtcat stochastic tntegrat oF fs with respect to the CBM

WH is the sum
s

f (w) dW(W = It[k]k
j=1

or zero on the P-null set on which the series fails to converge.

The cylindrical stochastic integral of a process f; f dWs is a K-valued

process (denoted It above), whose inner product with an element k E K we write

(following (13]) as

(f*sk, dWHs) H :(Ik)K;

thic can be calculated as the convergent series

(f k, dW~sH t I J (f£s k . hi)H db i
i=l
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of real-valued It6 integrals.

2.6 Stocbastic differential equations for 0' processes:

Solutions of martingale problems. weak and strong solutions.

Fix a Fr6chet nuclear space 4'. a continuous quadratic for Q on the dual

space 0'. a probability measure go on the Borel sets B(O'). and a pair of

continuous functions

A : 11+ x d -. _0

and

B : + x ' -*' .

and recall from Section 1 the stochastic integral equation

+ f; As(Xs)ds + J; Bs(Xs)dWs. 0 t < T. (1.1b)

Definition. In the spirit of [4] we define a (weak) sotutton to equation

(1.1b) on the interval [O.T] to be any 0' process X := (Xt)te + on any complete

probability space (f,F.P) with a complete, right-continuous filtration (Et)t(w

satisfying the conditions:

(2.6.1a) The 0' random variable X0 has probability distribution 10 = P o

(2.6.lb) There exists a 0' Wiener martingale W for the given filtration

(Ft)t(0 on (_F,P):

(2.6.1c) X is adapted to (Ft)t(*. i.e. for every t C 6+ and fp C 0 the random

variable Xt [qp] is Ft/R(R) measurable;

(2.6.1d) For P-a.e. w, X has strongly continuous paths Xt(w) : + V;

(2.6.1e) The predictable process at := At(Xt) satisfies at[P] C L ([o,T])

P-a.s. for each p C 4, i.e.
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J;la I[ ])Ids < U;

(2.6.1f) For a sequence T n of stopping times converging P-a.s. to infinity

the predictable process Pe := BtAT (X)tA T  satisfies for each 0 6

and each t g T,

tAT
E[SO n Qs[f.w]ds ] < a;

(2.6.1g) With probability one. Xt and Wt satisfy (1.1b) for 0 9 t 9 T.

Note that although (l.lb) is only required to hold on the interval [O.T]. X is

defined on the entire positive half-line I+ and so induces a probability

measure AL = P 0 X 1 on the canonical space C(E +;V). We may define Xt

initially only for 0 t g T and then set Xt = XT for t > T if convenient.

Definition: A strong solution is just like a weak solution, except that we

specify the probability space (O.F,P), filtration (Ft)t<* Fo-measurable

initial random variable f with probability distribution go, and Wiener

martingale W with covariance functional Q at the outset. To produce a strong

solution we must construct the process X t on the given space and for the given

filtration.

Definition: A solution for 0 g t g T to the marttngate problem posed by (1.1b)

is a probability measure I on the Borel sets of the canonical space CV

C(R+;0') of 0'-valued continuous functions on [0.O) such that. for any

real-valued function f C 2 ('), the real-valued process

f :t(x - AT L f(xs)ds (2.6.2)Nt :- (tAT) - f(Xo) - s0

is a (C,*.(Ett<~..I) martingale and Wx 0 XoI = i.e. for all f C

• - ,=,m m m ~ m mmm mmmm mm mmml mmm mm m nm mu M in m I m~I
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E&[f(xo)] = f,. f(x) .o(dx) (2.6.3a)

and, for bounded s t T and F s-measurable functions g.

0 = E"[g(x)[Mft - 5 ]] (2.6.3b)

t

= Et[g(x)[f(xt) - f(XS) - fs Lu f(xu)du]].

Here L denotes the generator

Ls f(u) f'(u)[A(U)] + 1 f"(u)[% s(U)] (2.6.4)

V (u[p])A s(u)j[p] + %4 f"(ur*])Q(B:s(u)f. B :(u)M

which is well-defined for f C 5('). We describe this as the mrtingale

problem "suggested by (1.1b)" since (by It6's formula) the measure p induced on

Co, by any weak solution X to (1.1b) does in fact satisfy (2.6.2), so that a

solution to the martingale problem is just the marginal distribution measure W

for a weak solution Xt to (1.1b).

It is well-known (see, for example, [11]) that (2.6.2) is equivalent to

the apparently stronger time-dependent form requiring that, for any real-valued

1,2function f 6 % (0'), the real-valued process

MfATxA~-f( 0  tAT+sAsf th (0/as L xds (2.6.2')N t := f tAT(XtAT ) - fo(Xo ) - 66 +0 Ls)fsAT(Xs)dS (..'

be a (C-E,(r)t<4,) martingale.

A statement equivalent to saying that Wt is a solution to the martingale

problem is that, for every f C 0,

Mt[f] := xtJ0] - Xo[M] - fO As(xs)[f]ds

is a (C,,FtjA) local martingale.
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3. Conditions for existence and uniqueness. First of all we shall impose a

basic conditon on the nuclear space 0. To introduce the condition we begin

with the following observation: Let (h ) C 0 be a QXIS in Hm . The hm can be

obtained by applying the Gram-Schmidt orthonormalization procedure to a

countable subset {[} dense in 0. For every J. we then have

n i

= amkhN+ nj (3.1)
k=l

where n4 (depending on m and j) j and ImII = 0.
i i m

Our basic assumption is the following:

(A) For each m and p, (p m), in the relation (3.1)

= . (3.2)
p

Note that the relation (3.1) always holds but the possibility of satisfying

(3.2) is a restriction on the type of nuclear spaces considered here.

Condition A is of a technical nature. However, it is easy to see that it is

satisfied if there exists a sequence (fPj) C 0 which is a common orthogonal

system in Hm for all m 1. The Schwarz space V(R d ) belongs to this class as

well as the space 0 introduced in Section 8.

Condition (A) will be in force throughout the paper and will not be

repeated in the statement of the results.

The following set of conditions will be needed to prove the existence of a

solution to the martingale problem (and of a weak solution):

We assume given (i) a probability measure g0 on the Borel a-field B,. (ii) a

continuous quadratic form Q on 0 x 0 and (iii) coefficients A and B which, in

addition to the measurability assumptions stated in the previous section
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satisfy the following conditions:

For each T > 0 and sufficiently large m r (fixed above), there exists a

number 0 > 0 and an index p m such that for all s. t T.

(IC) Initial Condition:

c := fo, (I + lu1 2_) Clog(3 + u12 )]2  io(du) < ;

(CC) Coercivity Condition: for each u C j m ,

2 At(u)[j_ u]+ 1% (u) _ 6(1 + lu2 M);
t~u~j-ml +1QBt~ _-M -r

(LG) Linear growth condition: if u C H- m , then A t(u) E H- p and2t

IAt(u)ip < 6(1 + lul_2)

lQBt(u) I (1+ lul_2 )

(JC) Joint continuity condition:

A :U xlt* -+' and B :U x'-L

is each jointly continuous.

Fur thermore,

(i) Bs(u)(v) E H- m  if u,v E H- m and

(ii) Q(B(u)f. B(u)%p) is continuous in u on 0' for each 0p E *.

In addition to the above, the following condition will be needed in the

proof of uniqueness:

(MC) Monotonicity Condition: For all u, v E H-m (C H-P).

(At(u) - At(v) , u-v) + QB (u)-Bt(v) I e6 lu-v 2

-p t - , -p -
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In the initial condition (IC) we have had to assume the finiteness of a

moment of 1xoI slightly higher than the second. It is crucially used in
-m

solving the martingale problem for the infinite dimensional stochastic

differential equation as well as the martingale problem for the finite

dimensional approximation. The reason for a moment higher than the second is

because we are not dealing with bounded coefficients and Lipschitz conditions

but with linear growth and coercivity conditions.

0

• Im~m~im m l i m m inm mmmmI i m - i
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4. Nrtingale Problems in Finite Dimensions. In this section we address the

d
problem of the existence and uniqueness of a measure v on the canonical space

C d = CR+ :R d) of continuous paths in IR d, equipped with the Borel sets B
R I

for the compact open topology and the canonical filtration (BC ), solving the

martingale problem [11] for the generator

(f)]iai + % i [bd)bd ) 8 ij (4.1)

satisfying conditions outlined below. We apply these results in Section 5 to

the problem of existence and uniqueness of a solution to an

infinite-dimensional martingale problem (using a Galerkin method similar to

that of [8]), but even in finite dimensions the bounds (4.3) of Theorem 4.1

seem to be new and may be of independent interest.

The martingale problem introduced above is closely related to the problem

of the existence and uniqueness of solutions to the stochastic integral

equation

Xt = X0 + f; as(Xs)ds + f; bs(Xs)dWs

for an initial random variable X with probability distribution vand a0n 0

standard d-dimensional Wiener process W t with covariance E W Wt = (s A t)Id't)td

We return to this connection in the infinite-dimensional setting in Section 6,

after proving a useful lemma whose proof is modeled after that of lemma 1.4.5

of [11].

Lemma 4.1. Let M be a continuous Rd -valued L2 martingale satisfying, for some

< - and all 0 s < t T, the inequality

tr(<M> t - <M>S) 3(t-s).
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Then for each e there is a 6 depending on 13, e. and T (and not d) such that

P[ sup IN t -M sI > e] a

t-s(6

Proof. Set 00 : 0 and, for n 1, a : inf~s > an-i IM-s M an1I > e/4);

also put N :=inf~n : an > T) and a :=inf{a n an-i :O n NJ. Note that

s:up IMt - M sI > a) C (a < 6}, and so for any k,

t-s(6

P[ sup IN t -M s > e] P[a 6]

t-s(6

P[N >k] +P[a -a n-<6 for some n k]

We now show that k may be chosen large enough to insure P[N > k] < e/2 and

then 6 small enough to force P[{a n -a n- < 61J ] < /2k f or all1 n. By Doob's

inequality, for each n 1, t > 0, and stopping time a.

E[ sup IM -~ MN_ 12 IF] a 4 E[lM t+0 - M a12 IF ]

=4 E~tr((M> ta - (M> )IF_]

4 13t

It follows that

P[ n -an- <tIF a =P[ sup IN -N 0M 12 >(e/4)2 IF a
n-1 0 s~t n- i n-i -

4 1t/(e/4)2

-64 13t/a 2

and that



4-3

E (a n -a n1) IFJ0 e~ pr - a < tIF ]dt
a - a n-

n-i

0 e t min(1.64,6t/e 2)dt

If we denote the right hand by X. then X < 1 and

E[e - a k  = E[e -' k - I E[e - ( a k - a k - l ) IFakl X E[e - a k - l ]  X k

(by induction) for each k 1. By Chebyshev's inequality,

P[N > k] =P[ak  T] = P[e _> eT _] Tk

Pick k large enough to insure eTXk < e/2, and 6 small enough that 
k(6 6/6 2

< a/2; then

P[an-a n- < 6 for some n k] < k max Pla n-i < 6]
n<k

Sk(64 6/ 62)

< e/2 ,

proving the lemma.

Definition 4.1.: A probability measure v d on ld and continuous functions

a : R+ x Rd -+ Rd and b : R+ x lRd __, dxd satisfy the finite-dimensional initial

condition (ICd), coercivity condition (CCd), and linear growth condition (LGd)

if for each T < m there exist positive numbers c0 and 9. not depending on d,

such that, for all t T and f n E Jd,

.fd 1+ 12)[log(3 + 1f2)]2 vd(df) c < Cd

SP + ) 0 ( + 0  (lCd)

2(f~at(f)) + Ib' dEMb'~) * eW (1 + E2

t t (O~d
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Ia d(f)I 2  cd(1 + IE12 ) , (LGd)(a)

b bd ( f)bd*(M)I 6(1 + E1f2 ) (LG)(b)

Theorem 4.1. Let vd . ad. and bd satisfy conditions (lCd)' (LCd). and (03d)'
d

and fix T ( . Then there exists a measure v on (Cd, BC ) satisfying the

initial condition vd 0 X0 = vd and solving the martingale problem for Ls , i.e.

satisfying the condition that for each f C '(R x fd) and x j Cd' the

real-valued process

f tAT
M (x) f ATE" AT) - f0(xO) (a/as + Ls)f(x)ds (4.2)
t

should be a local L martingale on (C dB dB . v ). Furthermore, for each

IRd'2 RdIi R
d

t < T any such measure u satisfies the following inequalities:

2 c3 (O)T

vd[ sup IxsI > R 2 (4.3)
O<st (I+R2 )[log(3+R 2

)]2

for every R > 0;

d
EV [ sup fl(xs)] c4 (0) < w (4.4)

where fl(a) = (1 + a
2 ) log log(3+a

2),

2 c 3(O)T fi(a)
c4 (0) := c4 (;T) = 2c0 e O )[log(3+a22

and

c3 (0) = 175 0

Proof of Theorem 4.1. For each n C IN define a function c : IRd -, d and a
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stopping time Td byn

Cn(X) {= x if IxI (x) = inf(t I 0 :Ixt 1 n or t T}. (4.5)

nx/Ixl if IxI> n .

By Theorem 6.1.6 of [11] there exists a measure vdn satisfying (4.2) with ad

and bd replaced by the bounded continuous functions-d'n andb d n given by

dn dnadtn(ft ) := at(cn(Et). bt n := bt(cn(ft)) (4.6)

We will show that the sequence {v n is tight and produce a limiting

measure vd which satisfies (4.2). (4.3) and (4.4). Then, for f(f) = (1 +

i1 2 )[log(3 + If12)]2 (log(3 + Ifl2 ) is chosen instead of log(l + ItE2 ) since

it is greater than equal to 1 for iel 2  0). Nd given by (4.2) [with t

nd
replaced by t A Tn] is a continuous L2  vd ' n martingale. Using (OCd) and (LGd

b), it is easy to verify that

ILsf(E)l _ 156 f(E). (4.7)

d~n. . .n. d d d
Since at  xt) and nt txt coincide with at(xt) andbt(xt) upto time T d we

have

Ntd(X) = fx d- (x0) O L)ds (4.8)
tATtd )  t sATd

n n n

From (4.8) and (ICd).

d~n tEd.n
E f(XtAT d )]  c + 156 f E [f(x sATd)]ds

n n

and by Gronwall's inequality,
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dn
E [f(x d)] c0 elt (4.9)

tAT
n

the bound being independent of n and d. Hence it is easily seen that x istard

n

an It6 process. Applying It6 lemma we have

tATd

<Nf> = 0  (vf(x). b d'n(xs)b dn(x) vf(xs))dstAT d r ss

n

tATdfo Ivf(xs)12 Ibd(xs) 12 ds

From (OCd and the inequality

Ivf(E)1 2  20 f(f) [log(3 + l1E
2 )]2

it follows that

tATd

<Mf> = (20) So n f(xs) [log(3 + IXsI2)]2 (1 + Ixs 2)ds

n

tAT d
n

(20)0 fO  f(xs 2 ds

tATd
U

(20)0 { sup f(xs)) fo  f(xs)ds

0 s tATd
n

From Burkholder's inequality ([2], B. VII.92).

Ev  [ sup INf  d] 4 E vd n[(<N f > d ) ]

0 s~t sAT tATnn
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tATd

d.) n
N&3200 E [U sup f(x d)' (f f(xs)ds}

Ed S t sATdn

d.n t u ~ dSv3200 EVd[U sup f(X d) {* sup f(x u;d)dS}
0 s~t sAT nOs's sA-r

ndn dn
% E sup f(x sT d)]+ c2 (9) f; E [ sup f(x 'ATd)]ds

0 S t s OsSu+s s'nn n

(4.10)

a+b

where the last step follows from the elementary inequality v L- (a, b >
2

0). The constant c2 (0) = 160 a.

From (4.8).

sup f(x sup + f(x0) + (156) 0  sup f(x
0 s~t SAT 0s~t sAT OKs~t SATn n n

Writing c3 (9) for c2 (9) + 150. taking expectations, using (4.10) and (ICd) we

obtain the inequality

d.n Evd,n
EU [sup f(x d)] K 2 co + 2 c3 (6) f; E sup f(x d)]ds

Os~t SAT 05s's s An n11

Another application of Gronwall's inequality yields the uniform bound

d~n 2 c()

Ev [0 stsup f(x d) 2 co e 3 (0 t K T) (4.11)
0 S~t SATnn

Fix R > 0. Then for n > R,

vd'n[ sup IxsI > R] K vd'n[ sup Ix dI > R]
Os~t Os~t SATdni
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E sup f(x d)] /f(R)
O s~t SATnn

2c3 (6)T2c e
(1+R2){log(3+R2 )}2  (4.12)

Now, if a > 0. choosing R such that the right hand side of the inequality

(4.12) is less than e, we have

L vd
, [ sup Ixs I > R) < (4.13)

for all n > R.

Using (4.12) and taking fl to be the function introduced in the statement

of the theorem the following inequality is obtained:

d.n
Ev [ sup f1(xs)] c4 (9;T) < . (4.14)

The bound being independent of n and d. Details of the proof will be given a

dlittle later when a similar inequality is proved for v

Next, let TR be the stopping time

TR(X) := inf{t 2 0 : Ixtj R or t > T}

bd( dw

The continuous function Ibt )bt (f)l bounded on the compact set {(t,f) : 0

t T. If I R} by some number 1R which is independent of d in view of the

uniformity of the bounds in (LCd)(b) and (OCd). The stopping time TR is also

bounded, so by Doob's optional sampling theorem (applied at TR T). the

R d-valued process

Mt(X) XtA - 0 as(x)ds
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is a martingale for each vd 'n with n R. with bracket process

tATR

t = f bs x )bdw(xsd

satisfying

tr(<MR> <- (MR>Y) s (t 2 -tl) sup Ib(x 5)bd*(x )I OR't2-td

t t- s TATR

By Leima 4.1 and (LGd)(a) there is a number 6 such that for all n R.

d x sup IM -s > e/2] < e/2,

t-s<6

IS as(x)dSl ( 6/Cd(I+R2) S e/2
SATR

and hence

Vdn[x sup Ixt-XsI > ] < V d.n x: sup Ixs > R]

0Ns<t T 0Ns<tT
t-s<5

+ Vd.n[ : sup IMR - 0s > /2] < e.
Os<t T

t-s(/

By Theorem 8.2 of [1]. {v d n I is a tight sequence and so has a cluster point

d d.n d~n
v . Using the fact that v satisfies the martingale problem for at and

bd.n d~nbdn the uniform bound (4.14) and the tightness of {v we can show (after a

routine argument) that N in (4.2) (f C %) is a

tt

(Cd B B V

1k 'CRd 2CI

continuous vd-martingale. This proves the first assertion of the theorem. It

remains to show (4.3) and (4.4). From (4.12) taking, without loss of
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generality that vd'n : it follows that

2c3(6)T

vd [ sup ixI > R] 2 2c 22

Ogs~t (I+R2 ){log(3+R
2 )}2

which is (4.3).

Now let us write fl(a) = (1 + a2 ) log log(3 + a2). Since f1 is an

increasing function for a 0. by a standard formula we obtain

d w

EV [ sup f1(xs)) = d id sup f1(xs) > y]dy
O st O~s~t

' "d [ sup Ixsl > a] fiCa)da

2c3 (6)T f'(a)
2cO e Io f(a0 a--) da

The last integral is the sum of two integrals. The integrand in the first is

of the order log log(3+a2 ) as a -+ w; in the second, the integrand is of the
a{ log(3+a2)}2

-_ _f'(a)

order 1HenceJ a-- da < - and (,.4) is proved.a[log(3+a2 H]e3 0 f(a)

Remark. The uniformity of the bound in (4.4) w.r.t d is of crucial importance

and has been derived here with an eye on Theorem 5.2 which treats the corre-

sponding infinite dimensional problem. It may be noted that in the proof of

the above theorem, the uniformity with respect to n of the bound (4.14) is used

in showing that ud is a martingale solution of the finite dimensional problem.
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5. Iartitgale Problems in Nuclear Spaces. In this section we construct and

solve finite-dimensional approximations to the stochastic differential equation

(1.1) and prove that the solutions converge weakly along a subsequence to a

solution to the martingale problem in 0'. This method of finding a solution to

the infinite-dimensional problem is patterned after the "Calerkin" method of

reducing the problem of solving parabolic partial differential equations to

that of solving finite systems of ordinary differential equations.

Fix a continuous positive quadratic form Q[,*] on 0 x 0. a Borel

probability measure go on 0', and continuous functions A : R+ x 0' and B : + x

0' -* L(O';O') all satisfying conditions (IC), (OC), (LG), and (JC) of (3.3).

Note that Q[*o.p] : (Qf o. q) : I (QW)) h r[*] 2. where Q is a positive
i=l

selfadjoint nuclear operator on some Hr and * means the adjoint operator with

respect to the dual pair u[p] on 0' x 0. Fix any T > 0 and let p > m r be

the indices such that the injection from H to Hm is Hilbert-Schmidt and 0 > 0

is the constant appearing in (3.3).

For each integer d 1 and [ E *d set u Jd mE := li~d Eihi M and define a

vector-valued function ad  : I x a d -+ and a nonnegative-definite

matrix-valued function b : R+ X Rd -+ Rdxd by

ad()j A: t(u)(h m. and

b= i')h-r [Bt(u)hm]
t(Eij (r j t

Since A and B satisfy (OC) and (LG). we can verify 1

d d1f. = I A t(u)[h = A I(u)[i mu].
i d

0
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.7 {(l+ Iu12  12
( ~ 6( + Ium) IhI 2

i~d -M

= d(l + Iul s m) =Cd(l + If 12)

and bt(f)b t (f)I = tr d ()bd d

= I (Q)' hr [Bt(u)hi]
2

i<d J<d

I I (QP)* h- [Bt(u)hm]
2

i<d j< r t

S m m

.I Q[Bt(u)hi, Bt(u)hiJi~d

t -M.-M

It follows that ad and bd satisfy the finite dimensional bounds (for all t < T
t t

and f C Rd)

2(f, ad (f)) + Ib(d f)bd (E)l g 6(1 + If12)

Itbd (f)bd d 8(1 + I 12) (+Cd)t t " 1 sx+ 2 Ld)

for f ixed T, 0 independent of d and cd - 0 - hi 12  Here we remark thed i~d iP

following for later use.

I ad(f)i12 < Cd (1 + I1I2) if do  d. (5.1)
i <d0  0 d,here ~ ~ 0 ~

wherec 1 o i is independent of d.
d 0-~ i

Furthermore. the measure on go on 0' induces on each IRd a measure
d m)l - injd
0 := P 0o (ud o Jd satisfying the bound
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d (1 + l1 2)[log(3 + IfE12)]2 Ud(dE)

= f.(1 + jfdmu 2m)[log(3 + (Udmu 2 )]2 0 (du)

< $f. (1 + Iu12 _)(log(3 + u12 )]2 p(du) = co <= ~- , -m)]U~u o < (IC d )

again uniformly in the dimension d. It follows from Theorem 4.1 that there

exists on (C d'BC ) a measure vd satisfying the initial condition vd 0 ao

v and solving the martingale problem for L so that

d j _ d tad(x)ds (5.2)

t d2
is a (C d' B , v ) continuous L2 martingale for each j = 1.2.....d.

=C d %d

Define a mapping Jdm from Cd to C by

(dm d)(t) := Jdm xd(t).

d d
Then each such measure v induces a measure p on (C .B ) with support in

(C m. BC Hm) via the relation

11d[A] = v d[(jd-m)- I(A n c -M)], A C B4' (5.3)HH
H d -m-l

Theorem 5.1. For any continuous coefficient functions A : R+ x 0' -*0' and B

R+ x 0' -L(O';0') satisfying conditions (OC) and (LG) of (3.3),and any measure

P0 on B{(') satisfying (IC). the family (p d) defined above is tight on

(C pB ) and also on (C0,,. ). Here p > m is the index appearing in (L).

Proof. Again we apply Theorem 8.2 of [I]. For any e > 0. choose R > 0 large

i i i i ll i i il lil l l iIll - " i
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enough to insure that

2c3(G)T

2c0 e3(

< 2 /2.
(i+R2)[log(3+R2)]

2

By (4.3) we have

Ad [x cc SUP Ixtl_m> R] = vsdu Ep d  SUP I d, > R] < e/2. (5.4)

O5t T Id O5t T

Since I IhPI ~ we can choose some dosuch that
J=l

IoX x[h<] 2 ) _ /8 if Ixl < R. (5.5)
J=do0+1

From the way of choosing the C(XmSs (h } and {h}, we get

do0 do 2 %S(x-y)[h2 ( aO( I (x-Y)[h2) if x.y C H

j== j=1

where a0 is a constant only depending on do , m and p.

On the other hand, in a manner similar to that in Section 4, the

L-2mrtingale

tAR d
Mt xd R a (xd)ds
Nt fiXtATR -o J as

satisfies

vd[xd sup lM -M I < (/2 if rj 61 (5.6)
O~s~t T 0
Is-t I 7v

where 61 is some constant independent of d (by Lemma 4.1).

From now on suppose d > do . Since

'
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d d 2 d2
(a s(xS). c (I + l x

J=l d 0

from (5.1). if sup IxdI d R. we have some 6 < i. (6 independent of d), such
O~t T

that for It-si K 6 and t. s C [O,T],

d 0 t d d 2 K
I f'aT(xT) dT ) ) < a/4 a0  (5.7)

J=l T

Since

= -d t d s  MR

if sup xd d R, the inequalities (5.4), (5.5), (5.6) and (5.7) yield

Ad[x: sup Ixt-x sI p > E] (5.8)
OKs~t T

is-t j16

A d[x: sup IxtIt > R]

+ .d[x: sup Ixtl-m <R, sup Ixt-x sI > 6]
O~tT t = O~st T -P

Is-tl

< a/2 + vdd: <sup x t R. sup d - (xdS)2 > 3 e/4 aO]
O~t T - O~s~t T J=1

Is-tI :6

do

/2 + vEx: sup : d, < R, sup I N ((2) - /2
Ot T = O~s~tKT J=l t O -

Is-tj6

< e/2+ vd[xd: sup lxd_ R. sup (Nt 1sd > e/2 ao]
K tKT Os~tKT

Is-tI;6
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< a/2 + V d[x d: sup Ix dl (R. sup IMR -4R > e/2a]
O~tKT = Os<tKT

is-t 1

Since the ball {x; lxi = RI is compact in H-p, by (5.8) and the Hilbert space
-M danalogue of Theorem 8.2 in [1], (A ) is tight as a family of measures on the

space C . Since the embedding of H-P in CV is continuous, compact sets in

C are also compact in CO. and the theorem is proved.

Just before Theorem 5.2. we need another lemma guaranteeing the uniform

integrability to be used later.

Lemma 5.1. For 0 K t T.

(1) E [ sup (1 + Ixslm log log(3 + lxs12m)] c4(0), (5.9a)

OKs~t

(2) E[ sup (1 + lxs 12 ) log log(3 + Ixs 12)] K c4 (0), (5.9b)
0 s~t

(3) E '[1 + Ixt 12m] c5(6), (5.9c)

2 c eC(6)T

(4) C sup IxsI > R] < (5.9d)
Os t - (I+R2 )[log(3+R2 ]2

where c4 (a) is the constant appearing in (4.4) and c5 (6) is also a constant

independent of d.

In proving (5.9b), (5.9c) and the following Theorem 5.2, we use frequently

the Skorohod imbedding theorem guaranteed by Theorem 5.1 such that there exist

H-valued processes X d with the distribution jid and X with the distribution
t t. d

J on a probability space (0,5,P) and further Xt converges to X almost surely

inC
H-P

i S I ilm I I i l I I I I i i
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Proof. The inequality (5.9) follows from (4.4). Since sup (1 + Ix 12_)log

log (3+Ixl12 ) is lower semi-continuous on C,,. by (5.9a) we get

sup (1 + Ix 12 _) log log(3 + Ix 12m)]
O s~t s M

- E[ sup (1 + IXslm) log log(3 + IXs12m)]

< lim inf E[ sup (1 + jXd12_ ) log log(3 + jXd12_vi

d-4 O S t

- lim inf & sup (1 + Ix 1 ) log log(3 + Ix 12)]
d- Ost _ m

< c(1)

The bound (5.9c) can be obtained similarly from

d

Eld [1 + Ix: 12] < cs(e) ,  (5.10a)

which follows easily from (5.9a).

Also by (4.3) we get

P d Isup Ixsi_m > R] (5.10b)

= d[ sup Ixdl > R]

2c3 (6)T2c0 e

(l+R2)[log(3+R2)]
2

and hence noting that sup Ix ti_ is lower semi-continuous with respect to x
O~s~t

in C,,. we have

pL[ sup Ixslm > R]
O<s<t
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<lim inf d[ sup Ix I R]
d-i O s~t

2c0 e2c
3(

(l+R2)[log(3+R2)]
2

since { sup Ix s m > R) is open in C.,
O~s~t

Theorem 5.2. Let A. B, Q. and p0 satisfy the hypotheses (IC), (OC), (LG), (JC)

of (3.3). Then any cluster point A of the tight family (9d ) solves the

martingale problem for 0 t T on C, with initial distribution go and

generator

Lt f(x) = f'(x[w])Atx)[W] + % f"(x[*])Q(Bt(x), B(x)P),

2f(x) = f(x[p]) C%(0.) .

Furthermore, any such measure p satisfies the inequalities

Ssup (1 + Ixs12m) log log(3 + Ix s2)] c4(e)

w sup Ixs 2 22 ']
O.srt = - (1+R2)[log(3+R2)]2

and

* [ sup IxsI-m < 0] = 1

d
Proof. By Theorem 5.1, we may assume that ji converges weakly to A* without

loss of generality. Since po(Hm) = 1. we have

fC f(x)p.'(dx) = lim f fx0 (dx) = lim f -o fp mu) (du) (5.11)
0' d-4 4 ' o-du)

= f 0, f(u)p.L(du)
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w -1
for any bounded continuous function f on 0'. Noting that 1 o x0  and g0 are

Radon measures on 0', by the monotone class theorem in the form of Theorem 1.21
w -l

of [2] and (5.11) we get ox 0 1 = go

Now we must verify that for each 0 t 't T and bounded BCt

measurable function g.

EP [g(x)(VMx) - M(x))] = 0 (5.12)

and the sharp bracket function

= f*> Q(Bs(xs)w. B'(x )p)ds, (5.13)

where

Nt(x) = xt(V) - xo(p) - fO As(xs)[p]ds

We will first verify (5.11) for bounded, continuous functions g which depend on

x at only finitely many times, then extend to larger classes of g (by the

monotone class theorem). Suppose S

g(x) = g(xt ..... t)

for some N E N, 0 t < t2 < ... < tN  t, andg E Cb(0N) To prove

(5.12), we will derive some estimates. By (5.9d) and (5.10b), we get d (x;

IXs__ ( e) = 1 and A*(x; IxsIm < oo) = 1 and hence from (LG), (5.10a) and

(5.9c), we have

dE[A Is (X s0]12] (5.14)

d

< E!d[A )12 I1 2]
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& Eo 6IV 12(l + IxsI12)

and

< 9 c (0) Ip12

By assumption (QC) (1), if x C H-r,

Q=exBS. (x)Q)vkr]

k=1 r k

and hence we get similarly

d

d

M~bI nQB (xS)

< IVH2 &dL[G(1lx_ 12_)

< 9 c (6IV12

and

[Qe(x)' *,(sfl 9c(O V2 (.7
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d
dd dSe t __ I (p. h) hp and q _d Since <l and g is

J=l p -p

bounded, by (5.9c) and (5.15), for any e > 0. we have some N such that

IE [g(x) M4(x)] - C [g(x) kfN(x)]I < e/2

and hence

IE [g(x)( ,( ) - x Cx))

- EL N[x)C:Cx) - MN(x))]l ( e. (5.18)

On the other hand, since

N n(N) m=I a h + 1N 1 = 0.

we get

- d N N d
Jd Xs[p] I a_(x S) if d N

J=1

and since by assumption iONi = 0.
Np

kN -mJd) = Rd(x N d- t d d
tp -d t Ii (( P (XO)j - f as(xs)jds}

Noting that 1 is a martingale if d > N by (5.2) and using the boundedness of

g, the uniform integrability in (5.15) and the Skorohod theorem, we have

E[ [g(x) (N(x) - t4,N(x))]

= E[g(X)(M .(X) - MtN(X))]

tim E[g(Xd) (MtX) - )]
d-4w

_0
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d ipN -fN

= lie El [g(x) ( t.(x) x (x))]
d-im

dd4- . Iit xd)( , - -=o

which, together with (5.18), implies (5.12) holds for the special class of

functions g mentioned before. Since 0' is a standard space, by the monotone

class theorem (again in the form of Theorem 1.21 of [2)) (5.12) holds for all

bounded B - measurable functions g.

To prove (5.13), we first choose the following sufficiently large N.

Since Im _II

lim k-vdlm = 0 (5.19)
d-w

and hence

l'dlm lIm + 1 if d > d (5.20)

By (5.9c), (5.15). (5.17), (5.19) and (5.20), for any e > 0 we have some N > d

such that

IE4'[$ Q[B:(x s )N. B:(xs)vN]ds - J; Q[Bs(xs)f, B:(Xs)ip~ds]I < e/2 (5.21)

and

IEp a(x) 2 ] - E[MpN(x) 2 ]I < e/2 . (5.22)

Since MN(x) is continuous on Ce,, by the Skorohod theorem and the uniform

integrability in (5.9a), we have

[,cx)2 - N(X)2] (5.2

.... .. .-- (5r m m l n ~ lllllll ml ml :' .. 23)
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= lir E[Mf(Xd)2 ]

d

= lim E4 [ N(x) 2
d-00 d]

= lim EV [MIN(Jdm d 2

vd td t d

lim E Ifr BI(J d S r hrN 1 ]2 ds]
d"40 k=l

d t d B -r N2

= im& f0L 1sO B ~)(Q hk r[. )] ds]
d-iw k=l

=lim E[f; -. Bd s srP [] ds]

d-4w k=1

Now for w {w; IX l < -), we get

d -rN-(.4

d B(Xd)(QK)* hk [~ N
k=l

; B5(Xd)(Q° )- ,r[Ni2 - d I -r
=r h QrBs(Xs)v Bs(Xs} ] --

k=l

< IQ I SO,N 12m
B B s Xd)  -m -m

( ( + Ix d12_)IvN12

Since P(IXdI _m a) = 1 from (5.10b), noticing the uniform integrability (5.9a)

and the continuity of Q[Be(-)f, B(-)f] on 0' by (JC)(ii) the right hand side

of (5.23) is dominated by

lim E[ft QrB:(Xd)fN , BXd)'N]ds] (5.25)
d-w 0 s

- - r z .. .. ...... .... ..
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- ErJf; QB:(X,). B:€(X,)vN ds]

On the other hand, if d > n.

7. B s(X5(r) h k IN]2 (5.26)
k=1

n B(Xd)(Q )*-r N-2> I s s ) r h k [ If
k=1

so that we have

d N2
lim inf I B sX r)( Q h r[2k (5.27)

d- k=1

n B e rN 2
I lira inf S(X)(Q)E -r N 2 -

= k=l d-r

n %rx 2c .
k=1

The inequalities (5.26) and (5.27) yield

lrn dn BIx (f(h r kh p " " " (5.28)
d--m k=l

> I B (X)(P * h-r N 2

0- k=1 s r k~

N r N
= kl(X ),P, (x )V I

By (5.28) and Fatou's lemma. the right hand side of (5.23) is larger than

t N if N
E[J0 Q[BS(Xs)%p

, B (Xs)vN]ds].

which gives
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E N()2 E t; Q[B N ' N
E t [M x [ 0 QB(Xs) p , BS (Xs)p Ids]. (5.29)

Sunning up (5.21). (5.22). (5.23), and (5.29), we obtain (5.12). which

completes the proof of Theorem 5.2.

'A

.A,
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6. Existence of a Weak Solution. Let fD be the canonical space C,. = C(+; ')

t
with filtration Ft = B 0 t ( c and measure P = j, and consider the

*V0

coordinate process xt (w) wi(t) for w C Ci. In Theorem 5.2 it has been shown

that, for each f C 0. the real-valued process

= xt[I - XoEVJ - f; As(xs)[f]ds (6.1)

is a continuous local martingale with sharp bracket function

W Q[f f* ]ds (6.2)<t f; $o s 0

where we set f B (Xs(w)) and denote the adjoint of f by f*, given by the

relation

u[fW *] = (fsU)[p0 u C ', *C E0

and we also have

E[fT Q[fs v, fs p]ds] _ 0 c5( 81Tlvlm (6.3)

for each T > 0. Repeating the argument in Section 2. we find a continuous

H-P-valued L2 -mrtingale Mt with Mt[v] = Mt  and operator-valued Meyer (or

sharp bracket) process

A = (Mw()) = t h -p  (6.4)

where we have abbreviated Mt[hjP] by NJ' . An important consequence of (6.3) is

Ief (.i) hp. f(w) ]ds < (6.5)

a.s. for a.e. s, i.e. for all (s~ca) in a set A C [0.1T] x 17 with X~ 0 P (Ac) = 0.
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where X denotes Lebesgue measure. Note that, from (6.4), At  H-p 0 H a.s.

and for g, h E H

(At ()g.h) p = (At (w). g 0 h)_p,_ I <.k> (p)(g.hjP) (h.hkP)p

In particular.

(A(~h~.j~P (~ I ~ f; =J Q[f* ~ hpf' )ds. (6.6)

From (6.5) and (6.6) it is seen that A t(w) is a nuclear operator for

almost every w.

Let (sce) C A such that ixs(() I m < a, h C Hp and find a sequence Pn C 0

for which J~n-l p -+ 0. Setting Lh(s.) = I () hkp[f P n](h.hkP) for h C
k=l

H- p and noting

S s ~~k=1 fs()P
02

we have

tLh(w.,) - Lh(s,) 12 - 0 as mn - 00.

Since P :w Ix 12 ( ) = 1, define

rlim Lhs.'() (s,w) E An (w : IxsI < Col.
s = iO otherwise.

Then there exists a fixed P-null set outside of which we have, for all h C H-p

(Ath.h)_p = t IRshi12 ds. (6.7)

t=,~~~ smmm n-P d mlnllil~lldlII R I mm ..
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I IR ((j)h-pj2  2 Q[f* hp, f* hp] <
j=l -P J=l j s j

and

IRs()hl_p < ihlp { I Q[f:( )h p f'*(c)h )} < s C [O.t]j=l J's j

We summarize its properties below:

Proposttton 6.1.

(a) R () :H _- H is a Hilbert-Schmidt operator;
: p -P

(b) R S(()h[p) = I~ ( h)* P[f. f]1 (h. hk _p.k=1

t

(c) (At (w)g.h)p = j'O (Rs(w)g' Rs((j)h)p ds. a.s.

Denoting by Rs(c) the H_p adjoint of Rs (w). we now show that for each t T.

At(w ) = f R;(w)Rs(w)ds. (6.8)

The operator integral on the right-hand-side is easily defined by noting that,

for f and g in H-p

pt[g,h] := J Rs Rsg,h)_ p ds

is a continuous bilinear form on H-p, and hence

Pt~ ' h = (J[O R; Rs ds g,h)_p

=J'(Rs g.Rsh)_p ds

= (A g.h)_
t p

from Proposition 6.1(c), and we have the representation (6.8).
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Theorem 6.1. There exists a 0'-valued Wiener process Wt such that the

0'-martingale M t has the representation

= fs dWs 0 t T (6.9)

Proof. It has already been shown that, over the interval [OT], Nt is a

continuous, H valued, locally square-integrable martingale with bracket-p

operator

A t( ) = f; Rs(1 ) Rs(w)ds

Now Lemmas IV.3.3, IV.3.4. and Theorem IV.3.5 of [13] apply to yield a CBM 1s

on the Hilbert space H adapted to the filtration Bt and satisfying
-p H-P

t

Mt = O Rs d s

Now we can define

CO

J=I

where f 13 [h9] for the chosen CBN 1s" It is easy to verify that Wt is a1t t j t

0'-valued Wiener process with covariance E Wt[p) Ws[,] = (sAt) Q[ p,]. In

fact, W t  H P-a.s. since

ECIW 1 2 ]=t 2 (4Q)~ h-, (Q4)* hjp)
j=l _p

W

J-1

Since JO Rs(a)d1s[P] = SO Rs hkP[¢]d by the definition, it follows that,
k=l
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for t ( T.

JOfv hP) dW5 [hp] =2 S;(svhh-~ d _k=l

tt
2 f(f;~P. hq)~ dW [hp] I t Q~p -~h] k
j=l s j k=l j=l

w

k= 1

k=1 
s

= Mt[4p).

Hence

N = (tf fs dWs)[v]

for all E 0. i.e.

M f dW
t~0s s

;JO Bs(xs)d W.

The existence of a weak solution in C(R+ ;0') follows immediately from (6.1) and

(6.9):

Theorem 6.2. There exists a weak solution to the stochastic differential

equation (1.1) on the canonical space (Q.F.P).

It
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7. Existence and Uniqueness of a Strong Solution.

Deftnttton 7.1. If for any two weak solutions (X ,W) and (X2.W) of (1.1) on

the same interval [O.T] and the same probability space (Q,F tP) with the same

Wiener martingale W

P[W. E 0 : X () = X2 (w), 0 t T] = 1,

we say that (1.1) has the pathvtse untqueness property.

The pathwise uniqueness property asserts that two weak solutions X
1 and X2

on the same probability space, with respect to the same Wiener martingale, must

be identical. The natural notion of uniqueness for weak solutions is not

pathwise uniqueness but dtstrtbuttonal uniqueness, i.e. uniqueness of the

probability measure induced on the canonical path space by any weak solution;

the following theorem, due to Yamada and Watanabe (See [4)). connects the two

notions:

Theorem 7.1. (Yamada and Watanabe). Pathwise uniqueness implies

distributional uniqueness for solutions to (1.1).

Proof. The idea of the proof is to induce probability measures Pi on the

canonical space 11 := C(I+R; 0' x ') (with the canonical filtration) giving the

joint probability distribution of Xi and W1. and to verify that each Pi can be

factored as the product of Wiener measure P(dw 2 ) on the second coordinate times

a regular conditional probability distribution measure (RCPD) Pi(dw 1 1w2 ) on the

first coordinate. With these RCPDs it is possible to construct a measure

P(d 1 . d 2 ' dw31 : pldw1 1 3 ) P2(dw 2 Iw3 ) P(dw3) on the space Q c(I+ ;' x

' x ') such that the two processes Xi(1 .2, 3) := (i (i=1,2) are both

solutions to (1.1) on the same probability space (,P) with respect to the same

Wiener martingale W(1,2w 2' 3) := J3" Pathwise uniqueness now implies that P is
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concentrated on the set ('1.2"3 : (102 and hence that the marginals P must

be equal.

Although Yamada and Watanabe only state their result for -valued

processes, their proof remains valid for the V-valued processes which concern

is here; since 0' is a standard space, the existence of regular conditional

probability distributions presents no problem. I

Theorem 7.2. [4] Pathwise uniqueness and the existence of a weak solution

together imply the existence of a unique strong solution.

Proof. See Theorem IV.1.l of [4].

In view of the above result, it remains only to prove the pathwise

uniqueness property for Equation (1.1). We are able to do this by adding the

monotonicity condition (MC) to the conditions already assumed.

Theorem 7.3. Under the conditions (IC), (OC), (MC), (LG) and (JC) of Section

3. Equation (1.1) has the pathwise uniqueness property.

Proof. The argument here. closely follows [8] and we give it here only for the

sake of completeness and the reader's convenience. By Theorems 5.2 and 6.1. S

Equation (1.1) has a weak solution in C([O.T], H-m). Let X E C([OT], H -m)

(i=1.2) be two solutions. For convenience, set

2 $
Y :=X-X 2 , f := 2 X)-B( ,I f and a := A

Let p m be the integer mentioned in (MC). Recalling our notation that (h) C

* is a CONS in Hp and applying It6's formula to (Y [hP])2 we have S
t i

jlj=l J~W
2 J--I

f; 2 t fhp,1
(Y~~~~~~~~~ ~ ~ ~ t h] h1 h~s ;IQfs11
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which can be written as

1 2 t

iYt- -p 2 F; {(Ys.as)_p + IQf *I }ds + Mt
S -p,-p

where Mt is the continuous, local L 2-martingale represented by the last term in

the above equation. An application of It6's formula, this time to IY 12 e- 2 0 t

t -p

yields the relation

2 I t 2p = -9WO f;IYI 12 e-2 ds + 2 ft{(Ys.a_s)_  + IQf I -} e-20s

-p S

ds

+ J'e - 2 0s d

Using (NC) we have

-26 t Izt1 _p

where t -26s is a continuous, local martingale which is nonnegativeweeTt := fe d s

(in view of the above inequality). Hence, for a sequence of stopping times an

T w. we have for every e > 0,

eP[ sup 7ta > e] E[77 0 J= O,
O~t T n n

so that making an T o we obtain sup r, = 0, P-a.s..

Ot T

It follows that

Iy 12 = 0 V t T, P-a.s., i.e.t-p

s Ix 10 P-a.s.,

proving pathwise uniqueness for C([O.T], H-P).

Note that Theorem 7.3 implies the pathwise uniqueness property for
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solutions in C([OT],O'). For given two such solutions X i. there exists a

common index m > 0 such that Xi E C([O.T],H-m) for i=1.2. The proof of Theorem

7.3 then applies and the assertion is true.

The following result is an immediate consequence of Theorems 6.1. 7.1,

7.2, 7.3 and the above Remark. I

Corollary 7.3.1. For each T > 0 there exists a unique strong solution to

Equation (1.1) on the interval [O.T). By this we mean that for any probability

space (fO.F,P) on which are defined a 0' random variable f with probability

distribution measure A0 = P 0 -1 and a Wiener martingale W with covariance

quadratic form Q. if go, Q , and the coefficient functions A and B all satisfy

the conditions (IC). (OC). (MC). (LG) and (JC) of Section 3. then there exists

a unique strong solution X = (XtI to Equation (1.1) for all 0 t T.

Proof. Apply Theorems 6.1, 7.1, 7.2. and 7.3.

We now come to our main result, the existence of a unique solution to

(1.1) for all time:

Theorem 7.4. Let (O.F.P) be a probability space on which are defined a 0'

random variable f with probability distribution measure 110 = P 0 -1 and a

Wiener martingale W with covariance quadratic form Q, and suppose that g, Q,

and the coefficient functions A and B all satisfy the conditions (IC), (XC),

(MC). (LG) and (JC) of Section 3. Then there exists a unique strong solution X

= IX} to Equation (1.1) for all 0 t, <.

Proof. Use Corollary 7.3.1 to construct a strong solution t with starting

value f and Wiener martingale W on the interval [0,T) for T = 1.2,3.... ; verify

that the definition
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X t  n 1 1[n-l,n)(t) t

determines a strong solution for all time. Uniqueness follows from that of

each X n  H

Remark. Suppose that H is a separable Hilbert space with inner product ( )0

on which is defined a continuous, contraction semigroup with generator -A

satisfying the following properties:

-r1

(i) For some r1 > 0. (I + A) is a Hilbert-Schmidt operator on H. Then A

has a discrete spectrum with eigenvalues and elgenfunctions given by Ap =X

oj (Xj > 0) with

(ii) . (1 + x <j .

This set up occurs in many physical and biological problems (see [6] and the

references given therein). A convenient Frechet nuclear space 0 can then be

defined:

0 2r 2

= E € H : I (+ ) 1 +O X O )
J=l0

For fp C 0, define the Hilbertian norms

O0

I1 (2 + 2
J=l

Let Hr = 1, Ir-completion of 0. Then 0 is a countably Hilbertian nuclear space

-r r ras can easily be verified. Further, H is the dual of H r. o = fl H and
r>O

0, = U H-r. The stochastic differential equation (1.1) becomes quastttnear

with At(u) = -Au (u C 0') where A is the adjoint of A restricted to 0. (It 0

can be checked that AO C 0) and linear if, in addition. Bt(u) E I. For any m
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1 and u C H- m it is easy to verify that Au C H- p for p 1 m+l. Further since

IAPI r  iPir+1 for all r > 0. if u C H- m we have

IAt(u)[o]j = I-Au[v]l = Iu[-Av]l l_ uL m l'Pm+l

and hence

lAt(u)l p K lu im for p m+1.

Thus the first part of (LG) is satisfied.

Also, the drift coefficient "helps" the monotonicity condition because for

u C H- m and p m+l.

(At(u).u)-P = -(Au'u)-P = -I X (u.h - p 2)2 K 0
tJ=l i p

where hp := (l+X )-PP is a CDNS in HP. It is further to be noted that for

this class of nuclear spaces 0. our basic condition (A) is satisfied since ('p.)

r
is a common orthogonal system for all the spaces H
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8. Application to random strings. Funaki [3] has studied the random motion of

strings by appealing to the theorem on the existence of a unique solution of

the following nonlinear stochastic evolution equation on a separable Hilbert

space H.

JdXt = a(tXt)dBt + b(t.Xt)dt - AXtdt , t C [O,T].

xo  H.

where Bt is a cylindrical Brownian motion, the coefficients a(tx) and b(t.x)

satisfy suitable Lipschitz continuity conditions and A is a non-negative,

self-adjoint operator on H with pure point spectrum 0 < X = X 2 = such that
~ 1+6

c k (c. > O)ask .

In this section, we will show how Theorem 7.4 can be used as an

alternative approach in a similar setting. Let A be a non-negative

self-adjoint operator on H with pure point spectrum 0 ( X 2 =(... such that
= .1 X2=

0 (1 + X) 2 r ( 0 for some r > 0. Let us now work with the 0 introduced in
J=1

the Remark at the end of Section 7.

We will assume conditions on the coefficients of the stochastic evolution

equation

(8.2) d Xt = At(Xt)dt + B(t.Xt)d Wt .

namely, there exist a sufficiently large m, numbers 6 > 0 and p > m such that

A t(x) and Bt(x) satisfy the conditions (OC), (MC) and (LG).

Then by appealing to Theorem 5.3 and Theorem 7.4, for the support of the

solution Xt of (8.2). we get

P[ U ( sup IXtim( )= 1.
n=l Ogt n

0
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Hence from the weak continuity of Xt t . (l+X))-2r < and the Lebesgue
J=l

convergence theorem, we obtain

Corolary 8.1. Under the conditions on the coefficients A t(x) and Bt(x ) and

the initial value condition (IC) of Theorems 5.2 and 7.4. (8.2) has a unique

solution Xt such that X. E C(R+, H-(m+r)).

Now, we will consider the stochastic evolution equation of Funaki's type.

If 0 6, then we have for all e > 0

WI(I + X)2,0 (Ap. p)2

j=l

W (I + j 2R 2 2
+ )-= (+) 2 X(p, j~

J=l

<ie+l ( w

so that Af E *. Let AN be the adjoint of A with respect to the canonical

bilinear form (,> on 0' x 0. Let

(8.3) d Xt = a(tXt)d Wt + b(t,Xt)dt - A* Xt dt,

where W is a 0'-valued Wiener process such that E[Wt[f] 2 ] = t Q['p,'p] and

Q[fp] is a positive definite continuous quadratic form on 0.

Before proceeding to the assumptions on the coefficients a(tx) and

b(t.x), we notice that there exist an integer q and a constant C1 such that

1 q(8.4) __.<'pj cll[ l
2

From now on. we denote positive constants by Ci. i=2,3,..... Since

7 (I+X )2r ( . the support of Wt is contained in H-(q+r)
. 7]

J=l

Let a(t,x) R+ x 0' -. L(',') and b(tx) R+ x 0' -* 0' be jointly
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continuous mappings of (t,x) satisfying the following conditions:

There exist q' > q+r and m > q' such that a(t,x) maps H-(q+r) to H- q '

b(t,-) maps H-m to H- m and for xy C H- m

(A.1) 2 la(tx)h-qI2  < K(l + IXI~m)J= l ' J -q ' - '

-7 a(t~x)-a(t~y))h q q , < Kjx-y12mj=l

and

(A.2) Ib(tx) 12  < K(l+1x 2 ).

Ib(tx) - b(t,y) __ < Klx-y~ m ,

where h = p /(l+N)m and K is a constant.

To apply Theorem 7.2, it is enough to check the conditions (OC), (MC) and

(LG).

Setting At(x ) = -AOx + b(t,x) and Bt(x) = a(t,x), for x E H- m . we

lex
2 ( 1  =2 Ax[h +l] 2

A (M+l) j=l j

= xEAh+l 2  I xE)[N v +Pjm~]

J=l j= i

CIn 2 CO 22
< .2xEo/(l+Nj m  I 2x~hm] = [xl_2
= 1 J -1 M

and hence, together with condition (A.2), we get

(8.5) IA (x)12 < C2(l+xl2)
t -(M+l) = 2 -n

By (8.4) and (A.1), we have

9

(8.6) 1Bx)-m.-m= I. Q(a(tx) h M a(t,x)i')

t -re . -m j= l

.Jil I i i i i il m mmmmi m dmmI ll lil -7
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J~ljq

C0 I 7 h~qa(t.x *hT-]2

1 l k=l

C 2 a(t.x)h~' [h')
1k=1 J=1

C I1 k= a(t~x)hjq 12M

k=1

C 3 (1 + IxI2~)

Hence (8.5) and (8.6) yield the condition (LG).

Suppose x.y E H-M Since -A *x C H (I~r), we get

Go -(mrr (mnr))
(8.7) (AX.X)-(m.r) = I (x, h _(mr)) (A~x h~ )(mr)

J=1

= I X~ m~ x7 h2 m<

-2(-A
9 (x-y). x-y)_(mr) + 2(b(t.x) -b(t,y). -) mr

<2(b(t~x) - b(ty). X-Y)(~)
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= 2 . (x-y) [h j(b(t,x) - b(t,y), hj )-(m+r)
J=l

2 2 (x-y)[h) m (b(t~x) - b(x.y)) [~ h m h m (r

2 1 (x-y)[h ] (b(t.x) - b(x.y)) [h ] "m 2(-(rr
J=l k]'h 'lmr

j=l

< C4 1x-yl_m (b(tx) - b(t,y)j_m

< C4  Ix-y12

Using (A.1) and an estimation procedure similar to that of (8.6). we get

(s.) I <c51xyl2  o < t < T.
(8.9) t(x)-Bt(Y)-m.-m = Cm

Therefore (8.8) and (8.9) imply the condition (MC).

The inequalities (A.2) (8.6) and (8.7) yield the condition (C), which

completes the assertion. Therefore by Corollary 8.1, the equation (8.3) has a

unique solution X t such that X. C(R+,H-(r +r))
, ~ k1+6'

Now we specialize to Funaklis spectral condition: "k c k (c, 6 >

0). We replace the cylindrical Brownian motion (with Q[p , p] = I ,I). by a

Wiener process W in C(+, H-), r > 1/2(1+6). Using Corollary 8.1 we conclude

that (8.3) has a unique solution X such that
t

x C C(R+. H-s)

1
where s > m + r, and m + r > 2r > (1+6)

(1+6)
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