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1. Introduction

In many applied problems, e.g., signal estimation, time series analysis,

econometrics, etc., a wide sense stationary (WSS) assumption is unacceptable.

Various non-stationary models have thus been studied in connection with non-sta-

tionary phenomena. In system theory, the (finite dimensional linear) state space

model has been favored; in time series analysis the ARIA model is preferred, while

periodically correlated processes are models for economical data which exhibit

some periodicity. Very simple transformations of WSS processes do not preserve

the stationary structure, for example, finite or infinite sampling, deterministic

or random scaling, linear transformations, etc. To study the effects of those

transformations on stationary pocesses, as well as to encompass the various

models mentioned above, general non-stationary notions have to be studied and

characterized.

The main successes of the theory of WSS processes and its applications rely on

harmonic analysis techniques and in particular on two Fourier integral

representations. On the one hand, the shift invariant covariance kernel is the

Fourier transform of a positive measure. On the other hand, the process itself is

the Fourier transform of an orthogonally scattered stochastic measure. Hence, i ,. /

is natural in extending the WSS concept, to try to preserve , potential use of

Fourier analysis techniques. Various generalizations in that direction have been

presented, among others, the classes of harmonizable processes introduced by Lodve

[16] and Rozanov [27], as well as Bochner's [4] V-bounded class. In the present

work, this line of investigation is pursued, and some new classes of non-stationary EL

processes are introduced then characterized.

A brief synopsis of the paper is as follows: Section 2 is mainly introductory,

various non-stationary concepts are recalled and related to one another. Theorem od2s

2.4 characterizes the orthogonal processes which are harmonizable in the sense of er
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Love and Proposition 2.5 clarifies a minor point. The third section is the core of

the paper. A new notion, (2,p)-boundedness, is introduced and the stationary processes

which are (2,p)-bounded characterized. We then prove a special form of Grothendieck

inequality (Theorem 3.6) and thiis leads to various characterizations of

(2,p)-boundedness (Theorem 3.8). Finally, some important practical examples are

shown to be (2,2)-bounded.

Notations and Conventions: R is the real field, ( the complex one, Z the integers,

N ={1,2,3,...}. L2(Q2,B,P) (L2(P) for short) is the usual Hilbert space of

complex valued random variables with finite second moments. A process x is always

taken to be of discrete time and L2-bounded, i.e., x: Z - L2(P), with Exn n =

Elxn]2 lix 112 2 K, K > 0, n E Z (E denotes expectation and overbars complex
Elx ~ L L(P)

conjugates). It is also always assumed that Elxn1 2 > 0 for at least one n E Z. The

covariance kernel of x is the doubly indexed sequence {R(nm)}n,mEZ with R(n,m) =

Exnxm, n,m e Z.

The usual identification is made between 2r-periodic functions on R and

functions on 11 = R/2 xZ with ]-r, r] a model for I. For 1 <p S + , LP(II), LP(ll 2 ),

denote the Lebesgue spaces on II and 1]2 = I x H associated to the normalized

Lebesgue measure dO, dO. The corresponding norms are denoted by 11.11LP(i),

11"i1LP(112) For 1 S p < + w, 6P(Z) denote the usual discrete spaces with

corresponding norms 1 .1 . A (complex) measure will always be a complex valued

(regular) Borel measure on 1. When added, the adjective positive will refer to

non-negative valued measures. A stochastic measure is a a-additive set function

(: (H) -, L2(P) (3(1) is the Borel a-algebra of 11). A stochastic measure is

said to be orthogonaUy scattered whenever E((A)71 = 0, A, B E 2(rH), AnB = ¢. The

integration of scalar functions with respect to stochastic measures is taken in
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the sense of Bartle, Dunford and Schwartz [2], the reader being referred to Dunford

and Schwartz [6,IV.10] for further details. Finally, K denotes a generic absolute

constant whose value might change from one expression to another.

2. Harmonizability and V-boundedness

The simplest processes admitting a "harmonic decomposition" are the wide sense

stationary (WSS) processes. As is well-known, their covariance kernel R has a Toeplitz

structure. Hence, and this is also well known, a process x is WSS if and only if there

exists a (unique) finite positive measure p on H1 such that

R(n,m) =p(n--m)= fei(n-m)Odp(6), n,mEZ. (1)

Equivalently, there exists a (unique) orthogonally scattered stochastic measure ¢

such that
mO

xn = (n)= fe d((), n E Z. (2)

On the model of (1), Love introduced, as follows, a first generalization of the

WSS class.

Definition 2.1. A process x is L-harmonizable if there exists a (unique) complex

measure pon 112 such that
S 7r 7rnOi4

R(n,m) = p(n,m)= f f e in e-im~dp(0,?), n,mEZ. (3)
- r -r

In Lo~ve's original definition, p is given via a distribution function and is

also unnecessarily assumed, as first noticed by Hurd [14], to be positive

definite. The positive definiteness of p and R are equivalent, in fact, even in a

more general framework (see Proposition 2.5). L-harmonizable processes are also

known as strongly harmonizable, Lodve harmonizable or simply harmonizable. We

fS



4

introduced the terminology L-harmonizable to avoid confusion with another class of

harmonizable processes first studied by Rozanov and which are also known as Rozanov

harmonizable, weakly harmonizable or simply, harmonizable.

Definition 2.2. A process x is R-harmonizable if there exists a (unique) complex

bimeasure / such that

R(n,m) =13(n,m) = I einOeiIIbd/3(8,0i), n,mEZ. (4)
-ir -It

Remark 2.3. The basic difference between (3) and (4) lies in the fact that /3 is a

bimeasure, i.e., !6(.,B) and 3(A,.) are complex measures for all A,B E 2(11). In

other words /(.,.) is a separately u-additive function on $(11) x 2(11) which does

not necessarily extend to a measure on .(11) ® .(11). Hence, in order to define the

integral in (4), a non-absolute integration technique has to be used. This

integral has to be understood in a restricted Morse-Transue sense as defined in

Houdr6 [11]. The exponentials being continuous, the Morse-Transue integral or any

of its restricted versions can also be used (see [11] and the references cited

there for more details). When /3 is of bounded variation, it uniquely extends to a

measure on I12 and (4) reduces to (3). For /3 concentrated on the diagonal of

(11) x 3(11), i.e., /3(A,B) = 0 whenever A n B = 0, A,B E (r), (4) becomes (1) and

the WSS case is recovered. In analogy with the stationary case, /3 is called the

bispectrum of the corresponding R-harmonizable process.

The distinction between L-harmonizable and R-harmonizable processes is non

vacuous and in fact quite important. To be of interest, the harmonizable classes

have to include the simplest cases of non-stationary processes. The Lodve class

does not do so.

Let x be a (non-stationary) white noise, i.e., R(n,m) = 6n,m n,m E Z, with
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2 < K, n E Z, where 6 is the Kronecker symbol. Then x is R-harmonizable (see

Definition 2.6 and Theorem 2.7) but not necessarily L-harmonizable. White noises

which are in Love's class can be characterized.

Theorem 2.4. A white noise is L-harmonizable if and only if there exists a complex

measure v on II such that o2 = v(n), for all n E l.

Proof. For the necessity, it is enough to show (see Zygmund [29,p. 3 14 ]) that

7r N 04

I O - ,) ) N 2eine dO < K, (5)

(K independent of N).

Since = p(n,n) and by Fubini's theorem, the left hand side of (5) is majorized by

r 7r r N n ini -inld 1
f I I I E + )e~ne e I~djII(91,¢'1)
-ir -7r -ir -N+

-- I (M2), since the above integrand is non-negative.

For the sufficiency, it is enough to show that the two dimensional version of (5)
2 = n But

holds when a zvn). But,

X r N M in -inO1 imol
i f I E E(1-+4) (1-j')R(n,m)e e IdO d-01
-- N-- -+-1

7r r r N 2 i -Oin inipl
= f Il f (1-4)e i dv(O) e e dO1dV1
-r -7 - -N

_ Iv (H)

by the same arguments as above.

This elementary proof was set to illustrate a use of one of the various
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criteria for a sequence to be a Fourier-Stieltjes transform. A disintegration of p
over the map (0,tp) ---- 0 + 0 trivially gives the result.

Using Theorem 2.4, R-harmonizable processes which are not L-harmonizable are

now easy to find. Let x be a white noise such that lia 02= a and lia o2= b with a 0
n-+Mo n---b, then x is not L-harmonizable. This is a direct consequence of Theorem 2.4 and of the

following classical result: let p be a measure on II such that p(n) has a limit as n - +o,

then i(n) has the same limit as n - D- . In particular, let x be a unilateral white

2= l for n O
noise, e.g., an =O otherwise' then x is not L-harmonizable. We thus recover a

classical counterexample which first appeared in Helson and Lowdenslager [9] and

was subsequently used for similar purposes by various authors.

An extra assumption, as for example in [25,p.305], is sometimes imposed on the

bimeasure / in (4), namely, /3 is assumed to be positive definite (p.d.), i.e.,
j=zi#(Ai'Aj) ->0, for allNEH ,z I, ... zN E,A , ... ,A N E(lI). This is

unnecessary; the positive definiteness of the bimeasure /3 and of the sequence

{R(nm) In, mE are equivalent.

Pro~osition 2.5. Let {anm}nmEZ be a doubly indexed sequence such that an,m =

3(n,m) for some bimeasure /. Then, / is positive definite if and only if {anm} is

positive definite, namely, E= z , 0, f or all N E , n,. .. ,nN E
i=1 j=1 j P

1, Zl,...,ZN E C.

Proof. Since the Borel functions are the pointwise limits of continuous functions

and by the dominated convergence theorem for vector measures ([6,p.328]) it is

equivalent to show that

N N
E E zianinjj>O <=> f f fd!ff?0, (6)i=l j=l n n21
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for any f continuous on H. Let the left hand of (6) be satisfied and let an,m

/(n,m). Then, since continuous functions are uniform limits of trigonometric

polynomials, another application of the dominated convergence theorem for vector

measures gives the direct implication. For an m = 0(n,m), the reversed

implication is immediate.

L- as well as R-harmonizable processes are modelled after (1). Another class of

non-stationary processes modelled after (2) has been introduced and studied by Bochner

[4]. It is as follows:

Definition 2.6. A process x is V-bounded if there exists a constant K > 0 such that

N
[[jEl P j xn j "L2 KIIPII (7)

-in .0

for all trigonometric polynomials P of the form ej1 Pie -

j=1 J

As already noticed by Bochner, it immediately follows from (3) and (7) that

L-harmonizable processes are V-bounded. However, this inclusion is strict since

for a white noise, (7) is always satisfied. The condition (7) just says that T: P(.) =
-ini .... :2

P  je  JP(n)X extends to a bounded linear operator from C(Hl) to L2(p).
3=1 J nj()

Hence, as in the scalar case, (see Phillips [22], Bartle, Dunford and Schwartz [2 ,p.301], or

Kluvinek [15]), T has an integral representation, and (7) characterizes the Fourier

tranforms of stochastic measures on II. In other words, the V-bounded processes are

exactly the Fourier transforms of stochastic measures.

The recent studies on V-bounded processes have been initiated by Niemi; in

his thesis and a sequence of papers [18-20], he essentially obtained the equivalence

of the conditions (ii), (iii) and (iv) below.

Theorem 2.7. The following are equivalent:
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(i) x is V-bounded,

(ii) x is the Fourier transform of a stochastic measure,

(iii) x is R-harmonizable,

(iv) there exist L2 (P) : L2 (P) and aWSS process y on L2 (P) such that x = Qy, i.e.,
Xn = Qyn, n E l, where Q is the orthogonal projection from L2 (P) onto L2 (p).

The condition (iv) is not only a purely theoretical result and is in fact of

great practical importance. It allows, by just interchanging Q and lim, V-bounded

generalizations of the asymptotic mean squared results, such as a law of large

numbers, valid for WSS processes. In particular, the bispectrum can be recovered

from its transform, i.e., an inversion formula holds. Since typical examples of

projections are conditional expectation operators, (iv) also identifies

conditional expectations of WSS processes. Combined with (7), Theorem 2.7 also

easily shows that white noises are R-harmonizable with bispectrum given by 0(0,0)
2 e-in (O-0)

- EnEZ an(

Results on bimeasures usually rely on Crothendieck inequality [7], such is the

theory of V-bounded processes. For example, the proo; of (iii)=>(iv) as given in

iarmee and Salehi [17] relies heavily on the following form of Grothendieck

inequality: Let ( be a stochastic measure, then there exists a finite positive

measure p on II such that

I Lf fdc12 < f IfI 2d,' (8)
I L(p) -

for all continuous functions f on Hl. The (non-unique) A in (8) is usually called a

Grothendieck measure, a dominating measure or a 2-majorant.

3. (2,p)-boundedness

The V-bounded class is of interest, since it is potentially subject to harmonic analysis
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studies. However, it also has the disadvantage of being too broad since typically one is

more interested in some specific subclass of non-stationary processes. In the WSS case, for

example, the processes with absolutely continuous or discrete spectrum play a particular

r6le, while the ones with singular continuous spectrum are pathological. To initiate such

studies, in the case of V-bounded processes, a natural step is to replace the L" norm in (7)

by a smaller one, an LP norm for example. This is done now.

Definition 3.1. A process x is (2,p)-bounded, 1 < p < +w if there exists a constant

K > 0 such that

N[[j~l Pj x n j l[L2 (P-K[IPI[p I (9)

IIL (P PP (11)< ~

for all trigonometric polynomials P of the form el Pje - in

j=1 j

Bochner [3], [4] also introduced and studied a (2,p)-boundedness notion for stochastic

measures. With the help of Theorem 2.7, it is immediate to verify that his definition of

(2,p)-boundedness and the one above are dual of one another, i.e., a process is

(2,p)-bounded if and only if it is the Fourier transform of a (2,p)-bounded stochastic

measure.

Let <AP, 1 5 p < +w and Ydenote respectively the classes of (2,p)-bounded and

of V-bounded processes. Then since II has finite Lebesgue measure, we have d? c ,p

c Y, 1 < p < q < +. While WSS processes are always V-bounded, they are not

necessarily (2,p)-bounded. It is readily seen that for 1 < p < 2, a stationary white

noise does not satisfy the condition (9) while for 2 < p < +oo a WSS process with

discrete spectrum also violates (9). These two types of counterexamples reflect a

more general situation. We say that a WSS process has LP-spectrum, 1 < p +w if its

spectral measure is absolutely continuous with Radon-Nikodym derivative in LP(fl).
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Theorem 3.2. A WSS process is (2,p)-bounded, 2 < p < +® if and only if it has

LP/(P -2 ) spectrum (Lw--spectrum when p=2 ). For 1 p < 2, the only (2,p)-bounded WSS

process is the zero process.

Proof. If x is a WSS process with LP/(P2)-spectrum, (9) follows directly from

l6l1derIs inequality and x is (2,p)-bounded. Let x be a WSS process of type (2,p), and

let A be its spectral measure. Then,

{ I IPI 2d} <_K{ f IPIPd0}t/P' (10)
IH n

for all trigonometric polynomials P. By the density of the trigonometric poly-

nomials, (10) can be extended to LP(ll) and becomes

f 1g1 2 djA<K{ I Jg1PdO} 2 /p, g E LP(11). (11)

1H II

In particular, let g = XA with IAI = 0 (IAI denotes the Lebesgue measure of A); then

p(A) = 0; hence d/i = fdO, f > 0, f E LL(I1). Now let 2 < p < +o, and Iet g = f1/(p- 2 ),

then g E LP(H) and by (11), fH fP/(P-2)dO 5 K{ fH fP/(P- 2 )d} 2 /p, i.e.,

1LP/(p-2) (H) 5K. For p =2, let g XE IEI >0, then arguments similar to the

onesabovegive fdO< K, i.e., f K a.s. (Leb.).

Let I < p < 2 and let x be a non zero (2,p)-bounded WSS process. Then, since 4 p C i? the

inequality (11) holds with dp = fdO, f > 0, f E Lm(II). First, if f is bounded below the

result is immediate. If f is not bounded below but is continuous, and for n large enough,
E} > 0. Hence, using (11) with g XE/(nl)

n n

SK I En I and summing up over n leads to a contradiction. To finish the job, just notice that

for f in Lw(fl), there exists a sequence {fn} of continuous functions such that f = lim fn a.s.

(Leb.).
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The connections between the L-harmonizable and (2,p)-bounded classes are less

natural and no inclusion type relation has been obtained. In fact, x such that

R(n,m) = 1, n, m E Z is L-harmonizable with bispectrum the unit mass at (0,0) but

not (2,p)-bounded. More generally, as a direct consequence of (9), if a process is

L-harmonizable and in 0i, its bispectrum must be jump free. In particular, a

L-harmonizable process with spectral measure dp(8,O) = f(O)T(O)d dV, f E

LP/(P-1)(II), is (2,p)-bounded. The above examples do not provide necessary

conditions for L-harmonizable processes to be in .i. Again, the white noise

processes play a particular role, since it is trivially verified that for p ? 2 they are

(2,p)-bounded. Moreover, for 1 < p < 2, the only (2,p)-bounded white noise is the zero

process. It also readily follows from this, that any bounded sequence {an}nEZ of

non-negative elements is the Fourier transform of a (2,2)-bounded p.d. bimeasure.

Furthermore, in contrast to Theorem 2.4, the diagonal sequence of a R-harmonizable

covariance is not, in general, a one dimensional Fourier-Stieltjes transform.

Processes in the boundary class i? possess another particular covariance
structure: Let T be a bounded linear operator on 2 (Z), i.e., from t2(Z) to e2 (Z). It

is well-known that the continuity of the inner product and the existence of the

canonical basis on 2 (Z), ensure for T a representation as a (doubly) infinite

matrix {Tn,mIn,mEZ* Reciprocally, any infinite matrix {Tn,m n,mE Z such that

IJExnTnmYml KIIx yll (12)n m ' Z (Z)

represents a bounded linear operator on 2(Z). In our framework, this simple fact

can be restated as

Pronosition 3.3. A process is (2,2)-bounded if and only if its covariance kernel,

in infinite matrix form, is a (positive) bounded linear operator on 2(Z).



12

The Hilbert space isometry between 2(Z) and L2 (IL), makes the analysis of the

(2,2)-bounded case easy to handle. For p # 2, Proposition 3.3 admits only partial

generalizations. For 1 < p < 2, since 1" -<(H 2 = 1111 ?() _

the covariance (in infinite matrix form) of a (2,p)-bounded process is a bounded

linear operator from tP(Z) to 2 (Z). In general, the converse does not hold: a

diagonal matrix {R(n,n)}n Z with 0 < R(n,n) 5 K, n E Z maps IP(Z) to t2(Z) boundedly

but a white noise is not (2,p)-bounded, 1 < p < 2. The case p > 2 is also

recalcitrant. If a covariance R is a bounded linear operator from 6P(Z) to ?(Z),

then again since LP(II) c L2(II) and e2(Z) c R(Z), R is the covariance of a

(2,p)-bounded process. Conversely, a white noise is (2,p)-bounded. However, the

associated diagonal matrix {R(n,n)} maps IP(Z) to 2(Z) boundedly when and only

when {R(n,n)}n1EZ E p/(p-2)(Z). Finally, similar arguments show that the

covariance of processes in .0, 1 < p < 2 are bounded linear operators from m(Z) to

tq(Z), q = p/p-, while if R maps P2(Z) to tR(Z) boundedly then the associated

process is in Aq. Again, these conditions are not characterizations.

The main objective in the rest of this section is to give a few character-

izations of the classes Al). These results, which are the (2,p)-bounded versions of

the characterization stated in Theorem 2.7 rely on a specialization of (8). Our goal is to

obtain (8) with special types of dominating measures. To do so, we "generalize"

(since e = Y'and since the elements of the dual of C(1) are the complex measures)

Pietsch's [23] proof of the classical inequality (see also Miamee and Salehi [17]

and Remark 3.7). Towards this, we first state a standard result obtained by Rogge [26]

in the real case and generalized to the complex case in [17].

Lemma 3.4. Let nn, n > 2 be the real Euclidean space with inner product <.,.> and

norm and let m be the normalized Haar measure on the unit sphere S of Rn. Let
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the kernel L(.,.) be defined on Rn x Rn by L(r,s) = fS sign(r,t)sign(s,t)dm(t).

Then,

N N N NiE j=E <t i t j> Ai i  _I Xj=IE L( ti Iti [[ti[ [ [1tj[[Ai-Xj,1 (13) -

i=l j=1 1= 3~ 1

for all N E , tl, I..tNER A 1N E .

Before presenting our version of Grothendieck inequality, another preliminary result is

needed. With the uniform norm replacing the p/2 norm, and for real valued f i' this

result is also due to Pietsch [23]. The extension to complex valued fi as given in [17]

does not hold (F there is implicitly assumed to be real). However, our arguments

can be used to obtain the corresponding version for complex valued fi and V-bounded

processes.

Lemma 3.5. Let x be a (2,p)-bounded process, p > 2, with spectral stochastic measure

c. Then there exists a constant K > 0 such that

N NN 2 < K N 2 fill2 (i1 )(14)

i=1 II L ! id l2(P)- i=l /2(I

for all N E N I f1'"" 'fN' continuous functions on RI.

Proof. Since continuous functions on 1I are uniform limits of simple functions, it -S

is enough to show that (14) holds for simple functions. Let fi be real valued. By

M
eventually taking common partitions of II, let fi ==E fi(80)XAk, then

k=1 k

N N M M k
EI 11f fid(112 2  E = f Ai6 ) fi (0) Ec((A 0)TRIY
i fid L (P) i=1 k=1 M

M M
_ E <tk,tt> E((Ak A-y
k=1 1=1
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where tk = (f1(00),...,fN (80) E RIN. Let {ea}a be an orthonormal basis of L2(P)

then by Parseval identity E((Ak)7 = E E((Ak) a E((At);a, hence from Lemma 3.4,

we get

dII2  =E <tk,tt>E((Ak)eiE((Al)ia
i=1 ak=1 1=1

M M
< E E L(tk,t )EtklI Htt1IE¢(Ak)EC(At) i t

a k=l=1 i

MMH
E E L(t k'tl~lk [ ltl¢A)(

k=1 1=1 d1t1 j E(k (t

M 2
fIl E sign(tk,t)itkll XA (O)d(1)2 2 ( dm(t).
S 1 lk=1 k L (P)

Now, x is (2,p)-bounded hence by applying (9) (extended to Borel bounded functions

by the density of trigonometric polynomials) to the above expression, we obtain
N M

11ff 12 <dK.2  (fI E sign(tkt)itkII XA (O)IPdO)2/Pdm(t)

iI fl L 2 (p) S I k=1
M

Y k ItkI XAk (O)d 2/Pdt

= K ~ { ~ M 2-7 EI1tkI XAk
H k=1k

K M kMN 2 k ( 9) ) p/ 2 d812 / p

H k=1 i=1 k
N

Kr{ E ( l  ( d}2/P

and the result follows for any set {f,... IfN} of real valued continuous

functions. For the general case, decomposing the fk's as well as ( in real and
ik

imaginary parts, fr, f r, i, we get

k k
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0 < 11 f f d(II22  II f fr dr112  + I f fkd( i 2 p
0 k L 2 (P) H k  L2(P) I L(P)

and similarily for the f' Is. Hence,

N 20<k E 11 f f k d(I2()

k=1 Hi L (P)

N rdr22
E (11f fdr - f f1 dell22  + Ill fkde+ f f'dr 112 )

k=1 H k L(P) H L (P)

N (11l fdrI2  1 ff~~I 2 rd11 I f~~iI2  11 f f 'd I 22
k=1 n L (P) H L(P) HL (P) H L(P)

N (11 f f dCII22  + II f d~ 2()

k=1 H L (P) H1 L (P)

Since fr and f 1 are real valued, the previous result applies and

N 2 N N .
EII I kd 22 <Kr( II E (fr)2 IL/2(+ IE (f ) 2 IIP 2 )

k=1 H L (P) k=1 1 L(H k=1 k L(H
N2< 2Kr( 11IE Ifk12 11 /2)'

k=1 LP(HI)0
since (fkr) 2 < fk2 and (f%)2 < 1 2k1 .

We are now ready to prove the following Grothendieck type inequality.

Theorem 3.6. Let x be a (2,p)-bounded process, p ? 2, with spectral stochastic

measure (. Then, there exits a non-negative function g in LP/ ( p- 2) (Hf) such that

11 f fd 2
2  5 f If12 gdO, (15

-l L (H) H

for all continuous functions f on H.

Proof. For f continuous real valued on II and for K any constant in (14) let
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N .2p2N2

Q(f) =if{1( If+K If 112 p/2de)2/p -_ L I! f fidII2}

where the infimum is taken over all finite sets {f1 '. fN} of complex valued

continuous functions on II. Then Q is an homogeneous subadditive functional on

C' (1l) (the space of real valued continuous functions on II) such that - IiLP/2(l)

< Q(f) S Ifi 1 2 . To prove these assertions, let us define
N NS(f,f1,...,fN = ( / If+Ki 1 (nI) 2lP* 2)21P-i-I n l

N N

IIi= I i= I 1I
Then for a = 0, S(af,f 1,1.. If N) = K( f (E If~I)' 1  F, 11 f f id(I2) 0,

II i=1 1=1 11 -
where we also used (14). Now fI = f2 =' "= fN = 0, gives the infimum hence Q(0) = 0.

Let a > 0, then S(af,f1,... fN) = aS(flafl,. ... a f) > a4(f), hence Q(af)

oA (f). On the other hand, aS(f,f1,. ..,fN) = S(af, Iafl''"',&fN) ? Q(af), hence

aQ(f) ? Q(af) and Q is homogeneous. For the sublinearity, let {fl'. IfN and

{gl,...,g M be two arbitary sets of continuous functions. It follows from

Minkowski's inequality that Q(f+g) S S(f+g,fI,... ,fN,g1 ,. .. ,g) S S(f,f1,... ,fN) +

S(g,gl,...,gM), and Q(f+g) S Q(f) + Q(g). For the last assertion, again by

Minkowski inequality, S(f,fl,...,fN) S If LP/2(11)+ S(OflI... IfN). Hence, Q(f) S

1LP/2 (11) + Q(.) = 'IfILP/2(n) Similarly, S(f,f1,... fN) ? -fIILP/2+I)
S(O,f1,... fN), hence Q(f) ? -IIfII LP/2(R + Q(O) = -"lf]"LP/2(l1) and the three

assertions are proved. Since Q is real homogeneous and subadditive, by the Hahn-

Banach theorem, there exists a real linear functional L on e (1) such that -Q(-f) <

L(f) S Q (f), hence such that -1<f 1 2 ( -Q(-f) 5 L(f) 5 Q(f) S IjfjILP/2() Now,

L can be extended to C(fl) via L(fl+jf2)t = L(fl) + jL(f2) (Hahn-Banach again).

tMathematicians beware: j is not the intensity of an electrical current.
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Furthemore, IL(f +Jf2 )l = (IL(f,)1 2+IL(f 2)t2 )1/ 2 < (,Ifl,,LP2(fi)+I1f2Iy1/2(ii))l/ 2

4 if "1 j 211LP/2 (1) hence, L can also be extended to LP/ 2(M). Now, by the Riesz

representation theorem there exists go E LP/(P-2) (1) such that Lf = f fgod#, for allri

f E LP) 2 (1). For f continuous 0, S(f) S(O) hence Q(f) Q(O) = 0, while for f < O,

i.e, f = -h, h > 0, we have Q(f) _ S(f,K-'hl,0,. .. ,0) = -11 f Kh~d h 112 < 0. Hence, L

is a positive linear functional and go 0. To finish the proof, let f E C(II), then

Q(_f 12) 5 S(-KlfI12,f,0, 0) = -11 f fd(iII2  . Finally, -KL(If1) 2 = L(-KIf1 2 ) _

Hi L (P)
q(-Klf 12) 5-1f fd(11 2  , i.e., 1l f fdgj 2

2  < K I IfI 2 godO, and the result follows
Hf L2(P) H1 L (P)

by taking g = Kgo.

Remark 3.7. A few comments on the above results are in order. The version of

Theorem 3.6 where C(I) replaces LP/ 2 (fl) is due to Pietsch, who also introduced a

"scanning" sublinear functional as above. The function g is trivially non unique but,

by simple modifications of the arguments of [23], it can easily be seen that there

exists a unique g such that IIgIp/(p_2) = Inf K appearing in (14). Construction
(p)

of such a minimal g can also be obtained by adaptation of the techniques and results of

Niemi [21]. If x is L-harmonizable with spectral measure v, Abreu [1] showed that

1s(A) = (IvI(AxHI) + IvI(IHxA)), A E I(II), lvI the total variation of v, defines a

Grothendieck measure. For ( of bounded variation, then p(.) = VI(')[I I(H)I

also defines a dominating measure (Chatterji [5]). Both these results hold in

special form in the (2,p)-bounded case. For (2,2)-bounded processes, Lemma 3.5 and

Theorem 3.6 are immediate since in this case the right hand side of (9) is just

(f P(O)12dO) 2 . Hence, the Lebesgue measure is always a dominating measure for
-7r

processes in .2, and Theorem 3.6 can be viewed as an interpolation result.

01
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We now present a few characterizations of (2,p)-boundedness which are essentially

based on the previous result.

Theorem 3.8. Let x be a L2(P)-valued process and let 2 < p < +®. Then, the

following are equivalent.

(i) x is (2,p)-bounded,

(ii) x is V-bounded with a Grothendieck measure in Lp (p '2) (II),

(iii) there exists L2(P) D L2 (P) and a (2,p)-bounded WSS process y on L (P) such

that x = Qy, where Q is the orthogonal projection from L2(P) onto L2(P).

Proof. Our proof is cyclical.

(i) => (ii) (7), (9) and Theorem 3.6.

.(ii) => (iii) We exhibit the projection by a method due to Abreu in the

L-harmonizable case and which has been subsequently used by various authors in the

R-harmonizable one. Let g be as in Theorem 3.6, then there exists a measure v on

2(1I2) (the Borel a-algebra of rl2) which is concentrated on its diagonal and such

that f f f(0,*)dv(O,0) = Jf(O,O)g(O)dO, for any f continuous on II. Let
- 7 r -7r 

- 7 r

= E((.) -, then (see [11]), E(f hldo) (f h2d ) = f f hidO , 2
nl I ri r

C(fI). Hence from (15), <hl,h 2> = f J h 'Fdv - f f h1T2dfo defines a semi-inner2 1 ri1 2 nfl11

product on C(HI). After having identified the functions h such that <h,h> = 0 (i.e.,

taking the quotient) and after completion under <.,.>, the resulting space is a

separable Hilbert space H. Hence there exists a probability triple (1 , 1lP1)

such that H = L2 (flI,2 1 ,P1 ). Now, let I be the canonical projection C(fl)

2(111, 2,P,), let wn = I(e'), n E Z, and let (Q,3,P) = (1 ,e,P) ® (fl1, 1,Pi).

Then, L2(11,2,P) * L2(?l1, 1,P1) can be naturally identified with a subspace of

L2.(f, 2,P), and so is L 2(P) = L2(P) 0 10). Finally, let yn = Xn + Wn' Since x and w are

I iL , ,,),a d,,sL (P y, x 1 w n i lmd.i.lr a am
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mutually orthogonal, we have x = qy, where q is the orthogonal projection from

L2 (P) onto L2(P). So it just remains to show that y is a WSS process with

Lp/(P-2)-spectrum. But,

Eynym = EXnm + <Wn,Wm>

ir Ti7 iV 2rin -i7 7inG i'
I I feinqe-im d(O,') + I f einqe-im dv(0,0)- f I e ne-im d#(O, )

7 7 eine-imOdv(O, )

-Ir -7r

= /ei(n-m)Og(O)dO

which proves the result. We note too, that in the extreme situation where <wn,Wm> = 0,

we have
in ir ) e" ei (n-m) O )d0
e e-'mOd#(O, t)= 0 ) e dz'(O,dv )=

--7" -Tr -2-7 -"-T

(iii) => (i)

N N 2
12 = IIQ( Pjy " )11 2

j= Ijxnj L 2 (P) j=1 "j L (P)
N

-IIq 11121," EI pJYn 1122 P

q N in . 2

F 1 E Pje JIg(OldO 3-xj=l 1

f<(- I E-Z N fijO d)/ _r g(8)P/(P-2)d)P)/PI

Remark 3.9. For I < p < 2, we do not know if a result similar to Theorem 3.8 holds.
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Since (2,p)-bounded processes (I < p < 2) are (2,2)-bounded, they also are

projections of WSS processes with LO--spectrum but, taking g = I above shows that the

inclusion is proper. However, we do not know which additional condition their spectra

has to satisfy in order to obtain a characterization. In view of Theorem 3.2, such a

characterization seems to be very unlikely since the spectral stochastic measure of a

(2,p)-bounded process always has dependent increments. Furthermore, as indicated by

white noise processes, this dependency has to be quite strong. Finally, we note that altough

we do not recover L1-spectrum (this is classical: L®(I) * # LI (fl)), the bimeasures

associated to (2,p)-bounded processes play a r6le similar to the absolutely continuous

measures for WSS processes.

0

To finish this section, we apply some of the methods developed to this point to

show that certain classes of processes are (2,p)-bounded.

A non-stationary model of great practical importance is the ARIA model, e.g.,

xk+1 = k + vk, k E Z, a E C, lal <1, where say {vklkEZ is a white noise. When the

recursion is on Z, the analysis of such models is not difficult: since fvklkeZ is a

'rik 0
white noise, it is (2,2)-bounded and vk = fe 1  d~v(O), with Ov dominated by the

7r ikO
Lebesgue measure. It is then straightforward to verify that-f e 16 d~v(8)

satisfies the recursion and is in fact the unique V-bounded solution to this
d~v d Orecursion. Furthermore, v is dominated by dO2 and x is not only

eT- (1- aj)2

V-bounded but also (2,2)-bounded. Its bispectrum is given by dIx(O,0) -

(eia)- d,3v(#, 0) In particular, if v is WSS, we recover the classical

formula, dIx(O) = lee-al -2dO. When the recursion is not given on Z1 but say for k >

0, an initial condition x0 is given with EIxol2 = 1. For definiteness, we also

assume that xk = 0, k < 0 and to facilitate the computation that Exk vj = , j > k and
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EVk j = bk j" Then, a simple computation shows that

X j 2_1 ( k+ljj+l _ k-(kAj)jj-(kAj)) k,j > 0

0 otherwise

where kAj = min(k,j).
Since lim ElXk 12= lm~

Since I- 5 k--li2 im ElXkl 2= 0, the process x is not L-harmonizable.

Nevertheless, it is (2,2)-bounded. Stated differently, the covariance of x is a bounded

linear operator on ?(Z). Directly verifying that (12) is satisfied is quite impractical

and we will not do so. However, a nice sufficent condition for (12) to hold is that

'kEZIExkxj < K, j E Z (this follows from the Cauchy-Schwarz inequality). In the

above time invariant ARIA example , we get the following inequalities, Ek EXk j i j1

1I ( _o I ak+ 1.j+l_4-k I + E;=j+11I k+l jj+1_ak-J) 1 1 I

1-IaI 1-jaJ27F T_5)
Hence x is (2,2)-bounded. Its spectral bimeasure which cannot determine a measure

is given by 0(0, 0) - ( These examples are just samples

of large classes of non-stationary processes, including the time varying ARIA

models, which are (2,2)-bounded. The reader is referred to Houdr6 [10] for a more

detailled analysis of the (2,2)-bounded case.

4. Conclusion

This work represents an attempt at presenting a unified theory for some classes

of (discrete time) non-stationary processes subject to harmonic analysis studies.

Very often, one is not interested in the full generality of the V-bounded class but

more likely in some special classes. This is particularly true in applications in

which case the class J? seems to be the most promising for further studies. In
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fact, the linear least squares prediction problem for V-bounded processes has a

particularly nice solution in the (2,2)-bounded case (see Houdr6 [10], [12]). The

results presented here can also be rephrased or extended in various ways. Theorem

3.6 and 3.8 can be translated in equivalent statements in terms of dominating

Toeplitz kernels, projection of orthogonally scattered stochastic measures or

p-summing operators. A first type of extension is the multidimensional case, and this

is presented in [12]. The order structure of Z has not been used in our main results,

only the compactness of 1 and commutativity have some importance. Hence,

comparable techniques will give similar results for processes x: W -- L2 (P) where W

is a compact abelian Hausdorff space and, in particular, for discrete random fields.

Non-commutative analogs of our results can also be obtained following the works of Pisier

[24], Haagerup [8] and Ylinen [28]; while the approach developed by Chatterji [5] will give

finitely additive versions. We mention finally that, for continuous time processes, new

difficulties arise due to the non-inclusion of the various spaces LP(R), i.e., a

(2,p)-bounded process is no longer automatically V-bounded. Different techniques to

obtain Fourier integral representations have to be developed. This is presented in Houdr6

[13] where processes of order 1 < a < 2 are also studied.
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