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1. Introdyction

In many applied problems, e.g., signal estimation, time series analysis,
econometrics, etc., a wide sense stationary (WSS) assumption is unacceptable.
Various non-stationary models have thus been studied in connection with non-sta-
tionary phenomena. In system theory, the (finite dimensional linear) state space
model has been favored; in time series analysis the ARMA model is preferred, while
periodically correlated processes are models for economical data which exhibit
some periodicity. Very simple transformations of WSS processes do not preserve
the stationary structure, for example, finite or infinite sampling, deterministic
or random scaling, linear transformations, etc. To study the effects of those
transformations on stationary pocesses, as well as to encompass the various
models mentioned above, general non-stationary notions have to be studied and
characterized.

The main successes of the theory of WSS processes and its applications rely on
harmonic analysis techniques and in particular on two Fourier integral
representations. On the one hand, the shift invariant covariance kernel is the

-

Fourier transform of a positive measure. On the other hand, the process itself is »,‘
the Fourier transform of an orthogonally scattered stochastic measure. Hence, i%_ « /

s

is natural in extending the WSS concept, to try to preserve . potential use of
Fourier analysis techniques. Various generalizations in that direction have been

presented, among others, the classes of harmonizable processes introduced by Loéve

[16] and Rozanov [27], as well as Bochner's [4] V-bounded class. In the present /

work, this line of investigation is pursued, and some new classes of non—stationary [ %'
0

processes are introduced then characterized. ]

)
d

A brief synopsis of the paper is as follows: Section 2 is mainly introductory, _
various non-stationary concepts are recalled and related to one another. Theorem -~

2.4 characterizes the orthogonal processes which are harmonizable in the sense of °F

pevwalda
i

| !
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Loéve and Proposition 2.5 clarifies a minor point. The third section is the core of
the paper. A new notion, (2,p)-boundedness, is introduced and the stationary processes
which are (2,p)-bounded characterized. We then prove a special form of Grothendieck
inequality (Theorem 3.6) and this leads to various characterizations of
(2,p)-boundedness (Theorem 3.8). Finally, some important practical examples are

shown to be (2,2)-bounded.

Notations and Conventions: R is the real field, € the complex one, I the integers,
N*={1,2,3,...}. L2(Q,B,P) (L2(P) for short) is the usual Hilbert space of
complex valued random variables with finite second moments. A process x is always
taken to be of discrete time and L2—bounded, ie., x: I — L2(P), with Exnin =

Elxn|2 = ”xn”i2(P) <K, K>0, nel (Edenotes expectation and overbars complex

conjugates). It is also always assumed that Elxnl2 > 0 for at least onen € Z. The
covariance kernel of x is the doubly indexed sequence {R(n’m)}n,mel with R(n,m) =
Exnim, n,meZ.

The usual identification is made between 27—periodic functions on R and
functions on Il = R/zﬂ with ]-r,7] a model for II. For 1< p <+, LP(II), Lp(I'I2),
denote the Lebesgue spaces on II and M2 = I x 11 associated to the normalized

Lebesgue measure d#, dédy. The corresponding norms are denoted by |||

P(m)’
”'”Lp(ﬂz). For 1 < p < + w, P(I) denote the usual discrete spaces with
corresponding norms ||| . A (complex) measure will always be a complex valued

£(1)

(regular) Borel measure on II. When added, the adjective positive will refer to
non-negative valued measures. A stochastic measure is a o-additive set function
¢: HI) — L2(P) (&) is the Borel o-algebra of IT). A stochastic measure is
said to be orthogonally scattered whenever EC(A){(B) = 0, A, B € B(I), AnB = ¢. The

integration of scalar functions with respect to stochastic measures is taken in




the sense of Bartle, Dunford and Schwartz [2], the reader being referred to Dunford
and Schwartz [6,IV.10] for further details. Finally, K denotes a generic absolute

constant whose value might change from one expression to another.

2. Harmonizability and V-boundedness

The simplest processes admitting a "harmonic decomposition" are the wide sense
stationary (WSS) processes. As is well-known, their covariance kernel R has a Toeplitz
structure. Hence, and this is also well known, a process x is WSS if and only if there

exists a (unique) finite positive measure u on II such that
~ b g .
R(n,m) = a(n-n) = [ e ™ bu(0), nmet. (1)
-

Equivalently, there exists a (unique) orthogonally scattered stochastic measure ¢

such that

= ) = [0, net @)

On the model of (1), Loéve introduced, as follows, a first generalization of the
WSS class.
Definition 2.1. A process x is [—harmonizable if there exists a (unique) complex

measure /4 on I12 such that

R(n,m) = p(n,m) = | | e™eiau(0,4), nomel. 3)

-T -7

In Loéve's original definition, x is given via a distribution function and is
also unnecessarily assumed, as first noticed by Hurd [14], to be positive
definite. The positive definiteness of u and R are equivalent, in fact, even in a
more general framework (see Proposition 2.5). L-harmonizable processes are also

known as strongly harmonizable, Loéve harmonizable or simply harmonizable. We

.
K ]

K. ]




N =N ¢ =

introduced the terminology L-harmonizable to avoid confusion with another class of
harmonizable processes first studied by Rozanov and which are also known as Rozanov

harmonizable, weakly harmonizable or simply, harmonizable.

Definition 2.2. A process x is R-harmonizable if there exists a (unique) complex

bimeasure S such that

R(a,m) = Bn,m) = | J eiMe 104800, 4), nomel. (4)

T -7

Remark 2.3. The basic difference between (3) and (4) lies in the fact that B is a
bimeasure, i.e., fB(-,B) and A(A,-) are complex measures for all A,B € B1I). In
other words B(-,-) is a separately o-additive function on B(II) x B(II) which does
not necessarily extend to a measure on 2(IT) ® B(I1). Hence, in order to define the
integral in (4), a non-absolute integration technique has to be used. This
integral has to be understood in a restricted Morse-Transue sense as defined in
Houdré [11]. The exponentials being continuous, the Morse-Transue integral or any
of its restricted versions can also be used (see [11] and the references cited
there for more details). When 8 is of bounded variation, it uniquely extends to a
neasure on II° and (4) reduces to (3). For J concentrated on the diagonal of
Q) x AM), i.e., #(A,B) = 0 whenever ANB = ¢, A,B € B(I), (4) becomes (1) and
the WSS case is recovered. In analogy with the stationary case, #is called the
bispectrum of the corresponding R-harmonizable process.

The distinction between L-harmonizable and R-harmonizable processes is non
vacuous and in fact quite important. To be of interest, the harmonizable classes
have to include the simplest cases of non-stationary processes. The Loéve class
does not do so.

Let x be a (non-stationary) white noise, i.e., R(n,m) = 0121 6n p LM E Z, with
b

4.

L
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0121 <K, n €1, vhere R the Kronecker symbol. Then x is R-harmonizable (see

Definition 2.6 and Theorem 2.7) but not necessarily L-harmonizable. White noises

which are in Loéve's class can be characterized.

Theorem 2.4. A white noise is L-harmonizable if and only if there exists a complex

measure v on II such that 0121 = ;/(n), forallnel.

Proof. For the necessity, it is enough to show (see Zygmund [29,p.314]) that
N lal, 2 .ing
J1 20~ of ella0 < K, (5)
-

(K independent of N).

Since 0121 = ;;(n,n) and by Fubini's theorem, the left hand side of (5) is majorized by

r = = N _:inp in@, —iny
/] f|j(1—§2—ba 0 1o L 1dad ) (6;,9,)

- —-T -7

= | p (1'[2), since the above integrand is non-negative.

For the sufficiency, it is enough to show that the two dimensional version of (5)

holds when ‘7121 = ;(n). But,

™ = NNM i —-ind, imy
S I(1-4) (- R(n,m)e e 1]ddd

PR by (1 - J8h R(a,m) |46,dy,

P11 Sa-feh? e e e agay
= 1- e v(d) e e

-t -7 -1 -N * 17
< vt (D)

by the same arguments as above. -

This elementary proof was set to illustrate a use of one of the various




i

)

criteria for a sequence to be a Fourier-Stielt jes transform. A disintegration of p
over the map (0,9¥) — 0+ y trivially gives the result.
Using Theorem 2.4, R-harmonizable processes which are not L-harmonizable are

now easy to find. ‘Let x be a white noise such that lim 02 =aand lim 02 = b with a #
D=+ N~ n

b, then x is not L-harmonizable. This is a direct consequence of Theorem 2.4 and of the
following classical result: let 4 be a measure on I such that ;;(n) has a limit as n — +u,

then p(n) has the same limit as n — — . In particular, let x be a unilateral white

. 2 _41forn>0 . .
noise, €.g., o = {0 othervise’ then x is not L-harmonizable. We thus recover a

classical counterexample which first appeared in Helson and Lowdenslager (9] and

was subsequently used for similar purposes by various authors.

An extra assumption, as for example in [25,p.305], is sometimes imposed on the
bimeasure § in (4), namely, § is assumed to be positive definite (pd), i.e., B’Ll
Bl 238005 A5) 7520, forallNeW |2y, ... 2y €€ Ay, ..., Ay€ B(I). This is
unnecessary; the positive definiteness of the bimeasure 8 and of the sequence
{R(n,m) }n,mel are equivalent.

Proposition 2.5. Let {an,m}n,mel be a doubly indexed sequence such that & o=

b(n,m) for some bimeasure 8. Then, j is positive definite if and only if {an m} is

*
. . . . —. ‘
positive definite, namely, EILI 2’;=1 z a“i’“sz >0, forall NeWN , Dyy... Dy €
zZ, Zl,...,zNe(.
Proof. Since the Borel functions are the pointwise limits of continuous functions

and by the dominated convergence theorem for vector measures ([6,p.328]) it is

equivalent to show that

K J

"




for any f continuous on II. Let the left hand of (6) be satisfied and let .
b(n,m). Then, since continuous functions are uniform limits of trigonometric
polynomials, another application of the dominated convergence theorem for vector
measures gives the direct implication. For L b(n,m), the reversed

implication is immediate. .

L- as well as R-harmonizable processes are modelled after (1). Another class of
non-stationary processes modelled after (2) has been introduced and studied by Bochner

[4]. It is as follows:
Definition 2.6. A process x is V-bounded if there exists a constant K > 0 such that

N
1Z Px |, <K[P| (7)
=t 3 05Ee)T e |

—in. 4

for all trigonometric polynomials P of the form 2?:1 P. ),

j€
~ As already noticed by Bochner, it immediately follows from (3) and (7) that
L-harmonizable processes are V-bounded. However, this inclusion is strict since

for a white noise, (7) is always satisfied. The condition (7) just says that T: P(-) =

-in.- .
Er;:l P je g E?:l P(nj)xn. extends to a bounded linear operator from C(IT) to LQ(P).
]
Hence, as in the scalar case, (see Phillips [22], Bartle, Dunford and Schwartz {2,p.301], or

Kluvanek [15]), T has an integral representation, and (7) characterizes the Fourier
tranforms of stochastic measures on II. In other words, the V-bounded processes are
exactly the Fourier transforms of stochastic measures.

The recent studies on V-bounded processes have been initiated by Niemi; in
his thesis and a sequence of papers [18-20], he essentially obtained the equivalence

of the conditions (ii), (iii) and (iv) below.

Theorem 2.7. The following are equivalent:




(i) x is V-bounded,

(ii) x is the Fourier transform of a stochastic measure,

(iii) x is R-harmonizable,

(iv) there exist L2(I~’) b L2(P) and a WSS process y on L2(l~’) such that x = Qy, i.e.,

x, =Qy,, ne 1, where Q is the orthogonal projection from Lz(f’) onto L2(P) .

The condition (iv) is not only a purely theoretical result and is in fact of
great practical importance. It allows, by just interchanging  and lim, V-bounded
generalizations of the asymptotic mean squared results, such as a law of large
numbers, valid for WSS processes. In particular, the bispectrum can be recovered
from its transform, i.e., an inversion formula holds. Since typical examples of
projections are conditional expectation operators, (iv) also identifies
conditional expectations of WSS processes. Combined with (7), Theorem 2.7 also
easily shows that white noises are R-harmonizable with bispectrum given by 3(8,)
- Enel 0121 e—in(&—w)‘

Results on bimeasures usually rely on Grothendieck inequality [7], such is the
theory of V-bounded processes. For example, the proci of (iii)=>(iv) as given in
Miamee and Salehi [17) relies heavily on the following form of Grothendieck
irequality: Let ( be a stochastic measure, then there exists a finite positive

measure u on I such that
2 2
|/ £ddil < I 1| %dp, (8)
1 1P

for all continuous functions f on II. The (non-unique) 4 in (8) is usually called a

Grothendieck measure, a dominating measure or a 2—majorant.

3. (2,p)-boundedness

The V-bounded class is of interest, since it is potentially subject to harmonic analysis




(]

studies. However, it also has the disadvantage of being too broad since typically one is
more interested in some specific subclass of non—stationary processes. In the WSS case, for
example, the processes with absolutely continuous or discrete spectrum play a particular
role, while the ones with singular continuous spectrum are pathological. To initiate such
studies, in the case of V-bounded processes, a natural step is to replace the L* norm in (7)

by a smaller one, an LP norm for example. This is done now.

Definition 3.1. A process x is (2,p)-bounded, 1 < p < +o if there exists a constant
K > 0 such that

N
IS Px ||, <K[P| 9)
=1 ey P

for all trigonometric polynomials P of the form El;:l PJ-e.mj 0.

Bochner {3}, {4] also introduced and studied a (2,p)-boundedness notion for stochastic
measures. With the help of Theorem 2.7, it is immediate to verify that his definition of
(2,p)-boundedness and the one above are dual of one another, i.e., a process is
(2,p)-bounded if and only if it is the Fourier transform of a (2,p)-bounded stochastic
measure.

Let 4P, 1 < p < +w and ¥ denote respectively the classes of (2,p)-bounded and
of Y-bounded processes. Then since Il has finite Lebesgue measure, we have M c A
C¥% 1<p<qc< +o. While WSS processes are always V-bounded, they are not
necessarily (2,p)-bounded. It is readily seen that for 1 <p < 2, a stationary white
noise does not satisfy the condition (9) while for 2 <p < +o a WSS process with
discrete spectrum also violates (9). These two types of counterexamples reflect a
more general situation. We say that a WSS process has Lp-spectrum, 1<p<+oif its

spectral measure is absolutely continuous with Radon—-Nikodym derivative in Lp(II) .
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Theorem 3.2. A WSS process is (2,p)-bounded, 2 < p < +o if and only if it has
LP/ (p-2) spectrum (L®-spectrum when p=2). For 1 < p < 2, the only (2,p)-bounded WSS

process is the zero process.

Proof. If x is a WSS process with Lp/(p—2)—spectrum, (9) follows directly from

Holder's inequality and x is (2,p)-bounded. Let x be a WSS process of type (2,p), and

let 4 be its spectral measure. Then,
(] 1Pyt <k [ piPagyt/e, (10)

for all trigonometric polynomials P. By the density of the trigonometric poly-

nomials, (10) can be extended to LP(IT) and becomes
rllig\?dusK{llllg\de}Q/p, g € LP(IT). (11)

In particular, let g = x, with |A] =0 (|A] denotes the Lebesgue measure of A); then
4(A) = 0; hence du = £40, £ 0, £ € LI(T). Now let 2 < p < +w, and let g = £/ (P2)
then g € LP() and by (11), [y /(P Das < k{ jp /P Dag?l?, e,
1]l

Lp/(p—2)(H)S K. Forp=2, let g = xg, [E|] > 0, then arguments similar to the

ones above give TFI,TfEfdaS K,i.e.,f<K a.s. (Leb.).
Let 1 < p < 2 and let x be a non zero (2,p)-bounded WSS process. Then, since A c Jt? the
inequality (11) holds with du = fdd, f > 0, f € L®(IT). First, if { is bounded below the

result is immediate. If f is not bounded below but is continuous, and for n large enough,

1 1 . . .
E|= <f< > 0. Hence, 11) with g = es 1/(n+1
| nl H{ (n+l)72-p/p 2 2p/P H ence, using (11) with g XEn gives 1/(n+1)
< KlEn! and summing up over n leads to a contradiction. To finish the job, just notice that

for f in L*(II), there exists a sequence {fn} of continuous functions such that f = lim f o &S

(Leb.). ]
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The connections between the L-harmonizable and (2,p)-bounded classes are less
natural and no inclusion type relation has been obtained. In fact, x such that
R(n,m) =1, n, m € ¥ is L-harmonizable with bispectrum the unit mass at (0,0) but
not (2,p)-bounded. More generally, as a direct consequence of (9), if a process is
L-harmonizable and in 4P, its bispectrum must be jump free. In particular, a
L-harmonizable process with spectral measure du(8,y) = f(O)T(v)dédy, f €
Lp/ (p'l)(II), is (2,p)-bounded. The above examples do not provide necessary
conditions for L-harmonizable processes to be in M. Again, the white noise
processes play a particular role, since it is trivially verified that for p > 2 they are
(2,p)-bounded. Moreover, for 1 < p < 2, the only (2,p)-bounded white noise is the zero
process. It also readily follows from this, that any bounded sequence {an}nel of
non-negative elements is the Fourier transform of a (2,2)-bounded p.d. bimeasure.
Furthermore, in contrast to Theorem 2.4, the diagonal sequence of a R-harmonizable
covariance is not, in general, a one dimensional Fourier-Stieltjes transform.

Processes in the boundary class A possess another particular covariance
structure: Let T be a bounded linear operator on t2(l), i.e., from t2(l) to lz(l) It
is well-known that the continuity of the inner product and the existence of the
canonical basis on £ (L), ensure for T a representation as a (doubly) infinite
matrix {T

Reciprocally, any infinite matrix {T g Such that

n,m}n,mel' n,m}n,me

YExT y K 2
22T, al <K o I (12)

represents a bounded linear operator on lz(l). In our framework, this simple fact

can be restated as

Pr ition 3.3. A process is (2,2)-bounded if and only if its covariance kernel,

in infinite matrix form, is a (positive) bounded linear operator on 82(2) .

)

.A.

,
@
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The Hilbert space isometry between tz(l) and L2(II) , makes the analysis of the
(2,2)-bounded case easy to handle. For p # 2, Proposition 3.3 admits only partial

generalizations. For 1 < p < 2, since ||| <l

pa <z Mg Maa

the covariance (in infinite matrix form) of a (2,p)-bounded process is a bounded
linear operator from #(Z) to lz(l). In general, the converse does not hold: a
diagonal matrix {R(n,n)}nel with 0 < R(n,n) <K, n € Z maps # () to 62(1) boundedly
but a white noise is not (2,p)-bounded, 1 < p < 2. The case p > 2 is also
recalcitrant. If a covariance R is a bounded linear operator from #(Z) to é @,
then again since LP(I) c L2(H) and lz(l) ¢ (@), R is the covariance of a
(2,p)-bounded process. Conversely, a white noise is (2,p)-bounded. However, the
associated diagonal matrix {R(n,n)} maps £ (I) to tz(l) boundedly when and only
when {R(n’n)}nel € lp/(p—-Z)(l). Finally, similar arguments show that the
covariance of processes in AP, 1 < p < 2 are bounded linear operators from 2 (I) to
A(T), q = p/p-1, while if R maps lz(l) to #(Z) boundedly then the associated

process is in 4. Again, these conditions are not characterizations.

The main objective in the rest of this section is to give a few character-
izations of the classes 4P. These results, which are the (2,p)-bounded versions of
the characterization stated in Theorem 2.7 rely on a specialization of (8). Our goal is to
obtain (8) with special types of dominating measures. To do so, we "generalize"
(since A#° = ¥ and since the elements of the dual of C(IT) are the complex measures)
Pietsch's [23] proof of the classical inequality (see also Miamee and Salehi [17]
and Remark 3.7). Towards this, we first state a standard result obtained by Rogge [26]

in the real case and generalized to the complex case in [17].

Lemma 3.4. Let R™, n > 2 be the real Euclidean space with inner product <-,-> and

norn ||+ and let m be the normalized Haar measure on the unit sphere S of R". Let
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the kernel L(-,-) be defined on R" x R® by L(r,s) = ]S sign(r,t)sign(s,t)dm(t).
Then,

N N N N
LT <tyt> AN <E L D OL(t,t) It eslas X, (13)
i=1 j=1 J 71=1j=1 SRS LA AS LIRS L W

*
forallNeN ,tl,...,tNERn, Aoy €€

Before presenting our version of Grothendieck inequality, another preliminary result is
needed. With the uniform norm replacing the p/2 norm, and for real valued f ;> this
result is also due to Pietsch [23]. The extension to complex valued f; as given in [17]
does not hold (F there is implicitly assumed to be real). However, our arguments

can be used to obtain the corresponding version for complex valued f ; and V-bounded

processes.

Lemma 3.5. Let x be a (2,p)-bounded process, p > 2, with spectral stochastic measure

¢. Then there exists a constant K > 0 such that

N
2 f.d K|S [f.]2
LA 1 2 <EIE g (14)

*
forallNeN , fl’ e ,fN, continuous functions on II.

Proof. Since continuous functions on IT are uniform limits of simple functions, it

is enough to show that (14) holds for simple functions. Let fi be real valued. By

|
eventually taking common partitions of II, let f. = I f. (6)x, » then
k=1 ! k

N
)3 fd = X 2 E f f.(4,) EC(A
I <||L2(P) I 5 T (81 (0) BT

M M
=X ¥ <t,.,t,>ECA
oy iy Stete B L)
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where t, = (£;(8),...,y(4)) € R". Let {e_} _be an orthonormal basis of L(P),

then by Parseval identity E¢(A,)C(R,) = & EC(Ak)é'a E¢(A )€, hence from Lemna 3.4,
a

we get
NN _ _
1>: I £a00%  <2 B B <R )5, BE,
Ty M M
Syl 2_:1 Lt el It AIEC(A ) e, EC(A e,
W M M —
-5 I T Lty TG Ch)

M
. 2
SF{IfE s t0lind x 4O, ).

Now, x is (2,p)-bounded hence by applying (9) (extended to Borel bounded functions

by the density of trigonometric polynomials) to the above expression, ve obtain

: ) IRy KEL (12 sign(ey, )l (0 |P46)2/Pan(t)

i=1 L2(p)

) |

=K Tl xAk(0)d0}2/ Pdn(t)
|

=G (E lyl? xy (0P 07

N
2 2
1 i§1 13 (%)) XAk(ﬂ))p/ agy*/P

M
=KX T
g{lfI(k=
N
= KT 5 £2(9))P 2ap2/P,
E{ﬂ(iﬂ 1(8))/ “d6}

and the result follows for any set {fl"“’fN} of real valued continuous
functions. For the general case, decomposing the fk 's as well as ¢ in real and

imaginary parts, flr(, fli(, (;r, (i, we get

A .

19

e

1®
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o< J f1adl, —Illfkd<||2()+llrllfkcn

L2(p) 12(p)’

and similarily for the fli 's. Hence,

E fd
o< TS k‘"ﬁ(p)
=2 f.d £ d + f f.d
DAL LTSS k<‘n2 I facl + i kcfuLz(P)
_2znffdc‘u2 +I|ffd<|l |l § £dd)? +n/fdc|| )
N k K2 T K T2 ) K% 2 p)
228 (1 agd, AFEL
k=1 1 K L) K012y

Since flr( and fli( are real valued, the previous result applies and

20 fddl,  <Ka(1E (DY RN )
k=1 01 K2y " ket KOP2my ker o KO'P/2(m

< 2K ( II 2 £, 21 ),

P/ 2(1'1)
since ()% < |, % and (£))% < £, | .
We are now ready to prove the following Grothendieck type inequality.

Theorem 3.6. Let x be a (2,p)-bounded process, p > 2, with spectral stochastic

measure (. Then, there exits a non—negative function g in Lp/ (p-2) (IT) such that
2 2
I [ fac1®, <1 1£1% gdo, (15)
I L=(m 11

for all continuous functions f on II.

Proof. For f continuous real valued on IT and for K any constant in (14) let
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N N
=1 £k £ 2702y g g f.dc?
) = Inf(( [ 1#KE 15,17 2a0?/P- 3§ 1 g300P)

where the infimum is taken over all finite sets {fl""’fN} of complex valued
continuous functions on II. Then { is an homogeneous subadditive functional on

CR(II) (the space of real valued continuous functions on IT) such that - llflle/2

<UD <y,

(IT)
To prove these assertions, let us define

()
N N
Sty ofy) = (] 1HKE lfi|2lp/2)2/"-i§1 I ] #5417,

N N
Then for @ = 0, S(afify,....fy) = K( [ (T 1£,12)P/2)2/p - £.4¢1%) 2 0,
1= 1=

where we also used (14). Now fl = f2 =...= fN = 0, gives the infimum hence §(0) = 0.
Let a > 0, then S(of,f,,...,fy) = aS(f,a *f,,...,a7Hy) 2 oQ(f), hence Q(of) 2
oQ(f). On the other hand, S(f,f,,...,fy) = S(af, a*f;,...,efy) 2 Q(af), hence
o (f) > Q(of) and § is homogeneous. For the sublinearity, let {fl,...,fN} and
{gl,'...,gn} be two arbitary sets of continuous functions. It follows from
Minkowski's inequality that Q(f+g) < S(f+g,f1,...,fN,g1,...,gM) < S(f,fl,...,fN) +
S(g,gl,...,gu), and Q(f+g) < Q(f) + Q(g). For the last assertion, again by
Minkowski inequality, S(f’fl"“’fN) < ||f||Lp/2(n)+ S(O,fl,...,fN). Hence, Q(f) <

”f”Lp/2(H)+ Q(0) = "f”Lp/2(II). Similarly, S(f,fl,...,fN) > —||f||LP/2(H)+
S(O,fl,...,fN), hence Q(f) 2 —Ilflle/2(n)+ Q(0) = _”f”Lp/z(H) and the three

assertions are proved. Since { is real homogeneous and subadditive, by the Hahn—
Banach theorem, there exists a real linear functional L on CR(H) such that -Q(-f) <

L) < Q) hence such that 4f1 pyp €A L) <UD €Ul g - Vv

L can be extended to C(II) via L(f1+jf2)1‘ = L(fl) + jL(f2) (Hahn-Banach again).

tMathematicians beware: j is not the intensity of an electrical current.
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Furthemre, [L(£+if5)| = (ILCE)| %+ LE)IDY2 < (181 )2

+|if
2oz )
< Uiyl 2 hence, L can also be extended to LP/2(IT). Now, by the Riesz
I

representation theorem there exists g € Lp/ (p-2) (IT) such that Lf = f(I fgodo, for all

£ e LP/2(m1). For f continuous 2 0, S(f) > S(0) hence Q(f) 2 §(0) = 0, while for f < 0,
ie, f=-h, h>0, we have §(f) < S(f,K*nt,0,...,0) = - / K thid¢)? < 0. Hence, L

is a positive linear functional and g 2 0. To finish the proof, let f € C(II), then
Q(KI£12) < S(&If12,5,0,...,0) = - Ifldelliz(P)- Finally, KL(|f])® = L(K|£]?)

2 2 . 2 2
X|f|°) <l [ fd¢ , i.e., || [ fd¢ <K | |f|°g,d4, and the result follows
UK < ] 8Ty R SRR

by taking g = KgO. s

mark 3.7. A few comments on the above results are in order. The version of
Theorem 3.6 where C(II) replaces Lp/ 2(II) is due to Pietsch, who also introduced a
"scanning" sublinear functional as above. The function g is trivially non unique but,
by simple modifications of the arguments of [23], it can easily be seen that there

exists a unique g such that llglle/(p_2) (H)= Inf K appearing in (14). Construction

of such a minimal g can also be obtained by adaptation of the techniques and results of
Niemi [21]. If x is L-harmonizable with spectral measure v, Abreu [1] showed that
p(A) = %(|v|(AxH) + |v|(I1xA)), A € (1), |v| the total variation of v, defines a
Grothendieck measure. For ¢ of bounded variation, then u(-) = |§l(-)[|(|(H)]—1
also defines a dominating measure (Chatterji [5]). Both these results hold in
special form in the (2,p)-bounded case. For (2,2)-bounded processes, Lemma 3.5 and

Theorem 3.6 are immediate since in this case the right hand side of (9) is just

T
( JIP(6) |2d0)1/ 2, Hence, the Lebesgue measure is always a dominating measure for
~-r

processes in Jtz, and Theorem 3.6 can be viewed as an interpolation result.

x
A9,
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We now present a few characterizations of (2,p)-boundedness which are essentially

based on the previous result.

Theorem 3.8. Let x be a L2(P)—va1ued process and let 2<p< +w. Then, the
following are equivalent.

(1) x is (2,p)-bounded,

(ii) x is V-bounded with a Grothendieck measure in 1/ (p-2) (1),

(iii) there exists L2(l;) b) L2(P) and a (2,p)-bounded WSS process y on Lz(f’) such
that x = Qy, where { is the orthogonal projection from L2(l~’) onto L2(P) .

Proof. Our proof is cyclical.

(i) => (ii) (7), (9) and Theorem 3.6.

.(ii) => (iii) We exhibit the projection by a method due to Abreu in the
L-harmonizable case and which has been subsequently used by various authors in the
R-harmonizable one. Let g be as in Theorem 3.6, then there exists a measure v on

.S’(Hz) (the Borel o-algebra of 1'12) which is concentrated on its diagonal and such

T T T
that [ [ f(6,v)dv(8,¥) = [ 1(0,0)g(8)ds, for any f continuous on . Let
-r -7 -7

B(-5) = BG(-)TCT, then (see [111), B(J bydQ) (J bydd) = [ J hyddy, by, by €

C(IM). Hence from (15), <h,,ho> = [ [ h ki dv— [ [ h, h,dB defines a semi—inner
PR2" " g 12 18 B

product on C(IT). After having identified the functions h such that <h,h> =0 (i.e.,
taking the quotient) and after completion under <-,->, the resulting space is a
separable Hilbert space H. Hence there exists a probability triple (Ql,.ﬂl,l’l)
such that H = Lz(ﬂl,.ﬂl,l’l). Now, let 1 be the canonical projection C(II) —
12(0,,8,,P)), let w_=I(e!™), n €7, and let (2, 8,P) = (2, ZP) ® (2, 8,,P,).
Then, L2(2, 8,P) @ L2(Q,,.2,P,) can be naturally identified with a subspace of

-~ ~ -~

12(2, 2,P), and so is L2(P) = L2(P) @ {0}. Finally, let y_ = x_ +w . Since x and v are
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mutually orthogonal, we have x = Qy, where { is the orthogonal projection from ) 4
L2(l;) onto L2(P). So it just remains to show that y is a WSS process with
Lp/ (p- 2)—spectrum. But,
Ey ¥, = Ex X + W W > .ﬂ
T T . . T T . . T .
= [ JetMei™apea,p) + | [ etV ™an(a,y) - | [ et ™ap(s,y)
- -7 -x -7 - -7
|
T T .
= [ [ el ™au(s,y)
- -7
= !el(n—m)a (0)(10 q
]
which proves the result. We note too, that in the extreme situation where <W WD = 0, '
we have ‘
°
T T
j jelnﬁ -lmwdﬂ(a w) j jelnﬂ —lmwdy(o d)) - jel(n—m)ﬂ (o)do
-7 -7 -7 -7
(iii) => (i) ®
uz P.x u2 ST Py 2,
j'n, o1 J'ny
#1275 2 =t 7] LA(P)
.
<NQ? 2 P
& Jyn II 2(h)
= N in-02
= [|Z Pe J|°“g(h)dd .
-r j=1 J
(p-2 )/p
<(T1 T e Pagle lg(0)p/(p'2)d0)
-T J—l J
L J
Remark 3.9. For 1 < p < 2, we do not know if a result similar to Theorem 3.8 holds.
1)
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Since (2,p)-bounded processes (1 < p < 2) are (2,2)-bounded, they also are
projections of WSS processes with L”*~spectrum but, taking g = 1 above shows that the
inclusion is proper. However, we do not know which additional condition their spectra
has to satisfy in order to obtain a characterization. In view of Theorem 3.2, such a
characterization seems to be very unlikely since the spectral stochastic measure of a
(2,p)-bounded process always has dependent increments. Furthermore, as indicated by
white noise processes, this dependency has to be quite strong. Finally, we note that altough
we do not recover Ll—spectrum (this is classical: L°°(II)* # LI(II)), the bimeasures
associated to (2,p)-bounded processes play a rdle similar to the absolutely continuous

measures for WSS processes.

To finish this section, we apply some of the methods developed to this point to
show that certain classes of processes are (2,p)-bounded.

A non-stationary model of great practical importance is the ARMA model, e.g.,
Xy,q = 0 + Vi, k€L, a€el, |a] <1, where say {Vk}kel is a white noise. When the

recursion ison I, the analysis of such models is not difficult: since {v)}, 7 isa

T .
white noise, it is (2,2)-bounded and v, = | €% d¢ (9), with 8 dominated by the

T
7 eikﬂ
Lebesgue measure. It is then straightforward to verify that | =7 d¢_(6)
-1 et Y
satisfies the recursion and is in fact the unique V-bounded solution to this

d¢ 4
recursion. Furthermore —T—V is dominated by ———?d and x is not only
LA -l

V-bounded but also (2,2)-bounded. Its bispectrum is given by dﬁx(ﬂ,w) =

(ew—a)—ldﬂvw,w) (ela—a)"l. In particular, if v is WSS, we recover the classical
formula, dﬂx(ﬂ) = lew—a|_2d0. When the recursion is not given on Z but say for k >
0, an initial condition X is given with Elxol2 = 1. For definiteness, we also

assume that x, =0, k < 0 and to facilitate the computation that EkaJ- =0, j>kand
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EVkv = 6k, i Then, a simple computation shows that

1 k+1—j+1 _ k—(kAj)=j—(kAj) .
- 9 (0 aJ -a aJ )7 ks.] 20
E.xka- = 'al "1
0 otherwise

where kAj = min(k, j).

. . 2 1 . 2 . .
Since lim E|x; |® = —— # lim E[x, | = 0, the process x is not L-harmonizable.
k-+a0 k 1-| a| k-+w k

Nevertheless, it is (2,2)-bounded. Stated differently, the covariance of x is a bounded
linear operator on 12(1). Directly verifying that (12) is satisfied is quite impractical
and we will not do so. However, a nice sufficent condition for (12) to hold is that
EkellExkijl < K, j € T (this follows from the Cauchy-Schwarz inequality). In the

above time invariant ARMA example , we get the following inequalities, EkellExki j‘ <

1 j k+1—j+1 —j—k k+1—j+1  k-j 1 4 2
I—_I—alz(zﬂﬂ)la a']+ —Q’J |+E;=j+1|a+0‘] -Q Jl)sl_lal2 (l_la|+1_-l&[)

Hence x is (2,2)-bounded. Its spectral bimeasure which cannot determine a measure

.. 1 .
is given by §(8,9) ~ — — — . These examples are just samples
(1-e 10e”5)(1—oze ﬂr)(l—aelw)

of large classes of non-stationary processes, including the time varying ARNMA
models, which are (2,2)-bounded. The reader is referred to Houdré [10] for a more

detailled analysis of the (2,2)-bounded case.
4. Conclysion

This work represents an attempt at presenting a unified theory for some classes
of (discrete time) non-stationary processes subject to harmonic analysis studies.
Very often, one is not interested in the full generality of the V-bounded class but

more likely in some special classes. This is particularly true in applications in

which case the class 2 seems to be the most promising for further studies. In
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fact, the linear least squares prediction problem for V-bounded processes has a
particularly nice solution in the (2,2)-bounded case (see Houdré [10], [12]). The
results presented here can also be rephrased or extended in various ways. Theorem
3.6 and 3.8 can be translated in equivalent statements in terms of dominating
Toeplitz kernels, projection of orthogonally scattered stochastic measures or
p-summing operators. A first type of extension is the multidimensional case, and this
is presented in [12]. The order structure of Z has not been used in our main results,
only the compactness of II and commutativity have some importance. Hence,
comparable techniques will give similar results for processes x: W — LQ(P) where W
is a compact abelian Hausdorff space and, in particular, for discrete random fields.
Non—commutative analogs of our results can also be obtained following the works of Pisier
[24], Haagerup (8] and Ylinen [28]; while the approach developed by Chatterji [5] will give
finitely additive versions. We mention finally that, for continuous time processes, new
difficulties arise due to the non—inclusion of the various spaces LP(R), ie., a
(2,p)-bounded process is no longer automatically V-bounded. Different techniques to
obtain Fourier integral representations have to be developed. This is presented in Houdré

[13] where processes of order 1 ¢ a < 2 are also studied.

y £ T




10.

11.

12.

13.

14.

References

Abreu, J. L.: A note on harmonizable and stationary sequences. Bol. Soc. Mat.
Mexicana 15, 48-51 (1970)

Bartle, R. G., Dunford, N., Schwartz, J. T.: Weak compactness and vector
measures. Canad. J. Math 7, 289-305 (1955)

Bochner, S.: Harmonic Analysis and the Theory of Probability. Berkeley and Los
Angeles: University of California Press 1955

Bochner, S.: Stationarity, boundedness, almost periodicity of random valued
functions. Proc. Third Berkeley Symp. Math. Statist. Prob. 2, 7-27 (1956)

Chatterji, S. D.: Orthogonally scattered dilation of Hilbert space valued set
functions. In Measure Theory Proc. Conf. Oberwolfach, pp. 269-281, Kolzav,
D., Maharam-Stone, D. Eds. Lecture Notes in Mathematics 945. Berlin: Springer
Verlag 1982

Dunford, N., Schwartz, J. T.: Linear Operators, Part I: General Theory. New York
Interscience 1957

Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels
topologigues. Bol. Soc. Mat. Sao—Paulo 8, 1-79 (1956)

Haagerup, U.: The Grothendieck inequality for bilinear forms on C*—algebras.
Adv. Math. 56, 93-116 (1985)

Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several
variables, I. Acta Math. 99, 165-202 (1959)

Houdré, C.: Non-stationary Processes, System Theory and Prediction. Ph.D.
Thesis, McGill University, Montréal, Québec 1987

Houdré, C.: A vector bimeasure integral and some applications. Center for
Stochastic Processes Tech. Rept. No. 214, University o. North Carolina, 1987

Houdré, C.: On the linear predictiom theory of multivariate (2,p)-bounded
processes. Center for Stochastic Processes Tech. Rept. University of North
Carolina, 1988

Houdré, C.: Fourier integrals for stochastic processes and dilations of
vector measures. Center for Stochastic Processes Tech. Rept.(In preparation)
University of North Carolina, 1988

Hurd, H. L.: Testing for harmonizability. IEEE Trans. Inform. Theory. 19,
316-320 (1973)

Kluvanek, I.: Characterization of Fourier-Stieltjes transformations of
vector and operator valued measures. Czech. Math. J. 17 (92), 261-277 (1967)




16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

24

Loéve, M.: Forctions aléatoires du second ordre. Note in P. Lévy's Processus
Stochastiques et Mouvement Brownien. Paris: Gauthier-Villars 1948

Miamee, A. G., Salehi, H.: Harmonizability, V-boundedness and stationary
dilation of stochastic processes. Indiana Univ. Math. J. 27, 37-50 (1978)

Niemi, H.: Stochastic processes as Fourier transforms of stochastic measures
Ann. Acad. Sci. Fenn. AT Math. 591, 147 (1975)

Niemi, H.: On stationary dilations and the linear prediction of certain
stochastic processes. Soc. Sci. Fenn. Comment. Phys.-Math. 45, 111-130 (1975)

Niemi, H.: On orthogonally scattered dilations of bounded vector measures.
Ann. Acad. Sci. Fenn. AI Math. 3, 43-52 (1977)

Niemi, H.: Orthogonally scattered dilations of finitely additive vector
measures with values in a Hilbert space. Prediction Theory and Harmonic
Analysis. The Pesi Masani volume. pp. 233-251, Mandrekar, V., Salehi, H. Eds.
Amsterdam: North Holland 1983

Phillips, R. S.: On Fourier-Stieltjes integrals. Trans. Amer. Math. Soc. 69,
312-329 (1950)

Pietsch, A.: P-majorisierbare vektorweitige Masse. Wiss. Z. Friedrich
Schiller Univ. Jena Math.-Naturwiss. Reihe 18, 243-247 (1969)

*
Pisier, G.: Grothendieck's theorem for non—commutative C ~algebras with an
appendix on Grothendieck's constants. J. Funct. Anal. 29, 397415 (1978)

Rao, M. M.: Harmonizable processes: Structure theory. L'Enseign. Math. (2) 28,
295-352 (1982)

Rogge, R.: Masse mit werten in einem Hilbertraum. Wiss. Z. Friedrich-Schiller
Univ. Jena Math-Naturwiss. Reihe 18, 253-257 (1969)

Rozanov, Yu. A.: Spectral analysis of abstract functions. Theor. Prob. Appl.
4, 271-287 (1959)

Ylinen, K.: Random fields on noncommutative locally compact groups. In
Probability Measures on Groups VIII Proc. Conf. Oberwolfach, pp. 365-386,
Heyer, H. Ed. Lecture Notes in Mathematics 1210. Berlin: Springer Verlag 1986

Zygmund, A.: Trigonometric Series. Vol. II. London: Cambridge University Press
1959

.




¥ _ 1“ ) q ~4

‘g8 "3deg ‘edcuds 3JJ0qQIIH [WOIUOUED @AJITPPR Aeajuyj uo
SNINI[WO [RUOTSUIP #ITUijul pue teded 8, 040N PUR NY UO SNIWIL Suwog ‘snduwilley 'O

'g861 " Eny
‘89853001d 2]1315WYD0IE JO SSIUPIP

q-(d°g) * Pap

‘g8 By ‘sIBUOTIOUN} PIZ][wisual jo @ouds

® U0 UOTIENbY [BFIUIIFJIP DOFISWYP0IS edfa-ujreBuw] ¥ ‘wwor gy ] pue sndueyiiey ‘9 -

‘88 “Bny °"Xepujy [WEAIIXD Oyl BUjUIIOUOD S[dweXIIIUNOD Y ‘yYIjus ‘'Y °

"88 ‘Bny ‘Liysuajuy

damf [w00] YiIA WNIPAE wopuBL U} $52003d UOISNOXP BUVI SPIA ® UQ ‘udv[d F °

"88 AInf

'S19powW MU Swos puw LIAINE Y :$9580001d O[qVIE JO S£IIV[SULL) S[QISSIUPY ‘SjUBqUE) 'S °

‘g8 LAInf ‘seouds

Jea[onu jo s{enp uy suojlenbe uorsnyyrq ‘1ded{og “T'Y ‘wwoIfy ‘I ‘snduerrrey 9 -

‘88 Ae ‘(11) senanb up suojrwjxoidde O13yuvld IYByT “YAS[OY ‘L ‘Asyeg ‘f°d -

‘88 "4dy ‘S2InsEIw WOPUBI UOSS[OJ AQ UPATIP uojIenba [BFIULISIITIP

D}38WY2035 pan[eA-sduds Jwe(onu y ‘uvjuwurelqnseurey ‘S pue andueiiiey 9 ‘Apiey o -

‘g8 "ady ‘sessadoxd
91QISTAIP A[e3IuUfjul JO UOTIVI[]OS0 oYl UQ ‘Pisuisoy ‘[ pue usloyN °d ‘[ ‘SIUBqURD ‘S

‘88 ‘ddy ‘SUOIID}IISII UOJIV[[10SO PllW Jopun saduanbas
1d jutod P ug ‘ueg P

Aavuojlels Jo03

‘g8 "idy ‘swe1qoad Juwaup] pesod-I} 10j S 3WALIS? [EUOIIOUNF uQ ‘eroBrag ‘Y -

‘88 ‘J¥l 'sessaooad ueissney LIiBUOIIEIS

JO SUOI3IDUNF JOIDIA JBRUITUOU JO UOIINQIIISTIP Bulijwy] ‘ung ‘H°L pue O "O'H °

qQ-A ‘A3}1IqeZIUOWIBY @IpnOY ‘D -

N 'S PUB 19339qped] "W T

‘o¥e

“1€e

‘g8 "4uy ‘suorjeqinited

yBnoJyl SUIWD AONJIBY JO SUOLINQIIISIP AIVUOlIEIS JO uojiIwmIndwod oyl ‘seumy f°f -

‘88 ‘g4 ‘'1e1B3i1u] 2[|qEIS-D Dyliauwafs

s1djaynu e jo [jEl 9yl jJO uojlEn{wad Oj3o3duksv uy ‘eB[nzg ‘[ pue Lfsijuposoweg D -

‘88 ‘Q94 ‘suojienba UOIIN[OAD DIISEYIOIS PIN[BA

eoeds JE9(ONU JO SSB[O B JO SUOFIN|OS PIZ][BISUID °*BZ]1$010H "D’ puv uosawg "y'd °

‘g8 Q94 ‘sassadoad
AA9] pue uossyog 03 1o9dsaa Yija uojredBaiul o1diI[nK ‘eBInzs ‘[ pue Biaquaitey ‘0

g8 "qe4 ‘sessedcoid-ysIe 03 suojjeciidde yija uoliEnba 20Ul IP O1IFVYO0IS ® 03

SUOJINOS JO JNOJARYDSQ [BURIIXT ‘SPTJIA OP D PUB UPZIOOY °H ‘MOJusey 'I'S ‘veey op "7 -

‘88 "q3d

‘aouds [EUO}IOUNJ PIz]}BIUE B U0 UOjIeNba ujAdBuUET Yl JO UOLIN]OS NN ‘WWOITH ] -

-aeadde 03 " -ouy jPluDnInyg Cf
‘gg "wel *BuyIII[1J OSIOU 9IFYM PATIIPPE A[2ITUJJ Ul uO}ILIDAAXD [BUOTIPUCO
a3 jo setisadoad sseuyioows ‘sejjpuedey ¥ pue snduepiiey ‘O ‘MONH ‘d'H

‘88 ue[ ‘sjuawaldu}l Kieuoyiels

Yaja sassaocoid o1qeIs JU[JWIS-J[2S JO SISSB[D OAl ‘muifoEy °j PUe sjueque) S -

*18 *9%] ‘SUCIINQIJISIP JO S3[iuwe} paiopio pue sain: Buiddoig ‘ispaeg [
18 o9 ‘S)IoAlsu Bujenenb pue sassacoud AoxJey jO S[BUOIISUNY UOSS]O4 ‘0Z03I9S “J°Y

rJuadde 03 *-1ddy -Doud D1I5Oy203IS LS
-29( ‘XPPU] [VWAIIX? YIJA §9ouInbas LIvuojieis Ul SIDUEPIIdXS [IA9] YBIH ‘wind[y "L°M

-(uo13vyaassig) L8 "AON ‘sassadoid
o1qeds £q pIdNPU SIINSBIW JO UO[3}sodwoddp anBsaqa] uo Apnis y ‘sanbiey K

18 ‘A0 ‘'sassad01d AIBUOTIRIS 10J FIINSESW WOPUBI SOUBPIIIXI 9Yd UQ ‘I93113qped] ‘YN
-(pesiad)Y) 88 eunf ‘suojaeojldde awos YIja [BIBIIU] JInswow]q JOIDFA YV ‘IPNOH ‘D

*18 *390 ‘uojimmyxoidde uossjod
JO poyieuw UIYH-ULRIS Y3 BIA seouenbas juapuedep Joj AIoayy enjea swalIIXy ‘Yitms “T°U

‘18 ‘350 ‘uojienba 1wy oy: pue ‘Jojid Yioows ® Yija
ss9001d Jaudy ® JO 1J1Jp OY3 J0j $3591 [ejIUaNbIS ‘ny ‘X pue OBL D'} ‘suowis ‘D

-18 "19Q ‘suojjenbs Tejauslaijip 03 suojredjidde
$1] pUB SIUS]D}JJAOD UOTSNIIIP 9IBIuaBsp Yija uojIenbs wem[(eg pauioN ‘pesifng N

-Jeadde 03 ‘fi)111qoqodd "uuy 18 "idag ‘wAIOIYI IjWIY [BIIUID
9yl U} IOUIBILPAUOD JO $9IBVI PUR SITJISW UOTIN[OAUCY ‘Yopmi "I-°[ PUe Adydey °1'S

+18 3dag ‘S1IA9] 9OUED]FIUBIS PIAIISQO puR SI[NL Buiddoag ‘aeyawg ‘f
+18 "ideg ‘uojrezjiuend pue Bujjdwes £q $1211}§ O uojyeyndwo) ‘niBoyizeso) ‘H'Y

-18 "1dag °*sassad0ad I[QISTAIP A[SIJUTJUT UTBIIID jO satiaedoad qawd ug ‘yysuysoy

18 "3deg ‘S]jEl UCTIN[OAUGD jO UOCTIBWIIST ‘SUMSTIIA "3

o

‘vT

‘1%

‘61T
‘812

PAt4

‘91T
s t4
bz

t1e

K414

‘e

‘012
‘608
‘80T
"L0T
"90T

P




