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Chapter 1
Introduction

N
In recent years, researchers in electromagnetics have expended considerable effort

capitalizing on computational advances made possible by new developments in computer
technology. These advances have made it easier to develop highly efficient, specialized
computer codes for many scattering or radiation problems. However, because of the high
cost of developing a code for each specialized geometry, it has increasingly become more
cost effective to use possibly less efficient, but more general purpose codes which apply to
a broader class of problems.

Most general purpose codes employ an integral equation formulation which is solved
by the method of moments /[1] jUnder this type of formulation, the structure geometry
is usually modeled either as a wire mesh or as a surface subdivided into discrete planar
patches. The wire grid geometry modeling approach has been successfully used where
primarily far field quantities such as RCS or radiation patterns are of interest. Principal
advantages of the wire grid approach are that the geometry is easily specified for computer
input, and only one-dimensional integrals need be numerically evaluated in the method of
moments. The wire grid modeling approach, however, often proves unsatisfactory where
near field quantities such as surface currents or input impedance are desired. One obvious
difficulty is in interpreting computed wire currents as equivalent surface currents.. Also,

however, the storage of energy in the neighborhood of a wire mesh is not completely
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equivalent to that of a continuous surface. As a result, computed resonant frequencies and
reactive components of computed impedances are often shifted from their correct values.
Most of the difficulties involved in wire grid modeling may be overcome by surface patch
modeling, and several such approaches have been developed. One well-tested scheme [2]
makes use of the electric field integral equation (EFIE) formulation and a triangular surface
patch modeling approach to represent the geometry. There are two principal advantages

of this combination:

1. The EFIE formulation, in contrast to the magnetic field integral equation (MFIE),
applies to open structures, and it allows voltage and load conditions to be easily

specified at terminals defined on the structure.

2. Triangular patches are the simplest planar surfaces which can be used to model
arbitrary surfaces and boundaries, and they permit patch densities to be varied

locally so as to model a rapidly varying geometry or current distribution.

A disadvantage of the EFIE approach, however, is that the resulting integral equation
contains both a singular kernel and derivative operators. These features require that an
algorithm based on the EFIE formulation must be developed carefully to ensure that it is
both accurate and numerically stable.

In this report, we extend the approach of [2] to develop a procedure for analyzing
an arbitrary configuration of conducting wires and bodies. An important feature of the
algorithm developed is its ability to handle wire-to-wire, surface-to-surface, and wire-to-
surface junctions. Numerous applications requiring these modeling capabilities exist. For
example, many practical antennas are formed by attaching some thin wire configuration
to a conducting body, and exciting the resulting structure by maintaining a potential
difference between the wire and conducting body at the attachment point. Often, the

shape or electrical size of the conducting body is such that it cannot be treated as an




infinite ground plane. Examples of such structures include automobile radio antennas and
wire antennas for shipboard communications. In both applications, the vehicle supporting
the antenna has a complicated geometry whose physical dimensions are only on the order
of a wavelength at the frequency of operation.

Several approaches to specific wire/body junction problems have been reported in the
literature. Bolle and Morganstern [3] numerically solved the classically formulated case
of a monopole protruding from a small sphere by considering it to be the limiting case of
a conical antenna. Tesche and Neureuther[4] found current distributions on a monopole
mounted on a conducting sphere by using the Green’s function for the electric field pro-
duced by a point source in the presence of the sphere. Tsai [5] solved the problem of a
monopole attached to spheres and cylinders based on a Fourier transform solution for the
wire and the equivalence principle for the body. Cooper [6] measured current distributions
and input impedances of monopoles attached to conducting cylinders. Albertsen et al. [7]
determined radiation patterns for wires attached to a circular cylinder modeled by quadri-
lateral patches. Their formulation was based on the EFIE formulation for wires and the
magnetic field integral equation (MFIE) for the cylinder. Shaeffer, Medgyesi-Mitschang
and Putnam [8,9,10] have treated wires attached to bodies of revolution and to finite
cylindrical bodies. Richmond [11] solved the problem of a monopole antenna mounted at
the center of a circular disk by using the piecewise-sinusoidal Galerkin moment method.
Marin and Catedra [12] used hybrid moment method/GTD techniques to treat a monopole
mounted off-axis on a circular disk.

None of the above procedures treat wires mounted on a surface at an edge or vertex.
Snch problems seem to require an a priori knowledge of the form of the surface current
distribution near the junction. This information usually must be determined by obtaining
a Green'’s function associated with the specific junction configuration. Glisson and Wilton

[13,14] determined this distribution for an edge by analyzing a semi-infinite current filament




attached to a conducting wedge. The derived distribution was used together with an EFIE
formulation to treat a bent rectangular plate with an arbitrarily oriented wire attached
to the plate at the bend. Newman and Pozar [15] treated the same problem by a similar
procedure, later extending it to treat a wire attached to a plate at or near a knife edge [17]
or at a bend [18].

To our knowledge, none of the above authors attempted to treat wires attached to ar-
bitrarily shaped vertices on conducting bodies, presumably because Green'’s functions for
arbitrary vertex geometries are unavailable. Rao [19], however, attempted to treat the ar-
bitrary vertex attachment problem by numerically determining the variation of the current
near an arbitrary junction at an edge or vertex. However, his approach was found to be
ill-conditioned due to a near linear dependency in the basis functions associated with the
wire junction and the neighboring surface patches. Costa and Harrington [20,21] closely
fcliowed Rao’s approach, but eliminated the dependency in the basis functions. They im-
plicitly assumed that for a junction of any geometrical configuration, only a junction basis
function with a 1/r variation is needed to represent the surface current at the attachment
point. They reasoned that basis functions on the surface would account for any angular
variation of the junction current. Their approach is appealing because of its simplicity and
generality.

In this work, we use the approach of Costa and Harrington—with a modification in the
potential computations to increase the numerical efficiency—and apply this procedure to
wire-to-surface junctions of arbitrary geometry. The problem of modeling arbitrary wire-
to-surface junctions is the least well understood portion of the present analysis, and hence
particular emphasis is placed here on validating numerical results from such provlems.
Unfortunately, bounds on computer resources limit our study to structures whose largest
electrical dimensions are only a few wavelengths. Furthermore, very few measurements or

computed results involving antennas attached to edges or vertices may be found in the
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literature, and hence we make use of some indirect methods for validation of the results.
In Chapter 2, the formulation of the electric field integral equation for an arbitrary con-
figuration of wires and conducting bodies is given. Current expansion functions and testing
procedures are intreduced in Chapter 3 to convert the integral equation into a matrix equa-
tion for numerical solution. Numerical results for a wide variety of wire-to-surface junction
problems are presented in Chapter 4. Numerical examples are given illustrating the calcu-
lation of current distribution, charge density, input impedance, and far field patterns for
various junction configurations including wires mounted on smooth surfaces, edges, and
vertices. A brief summary of the research reported here is found in Chapter 5. Detailed
derivations of the numerical methods used to compute the potential integrals required
in the numerical procedure are given in appendices. A computer program, JUNCTION,
based on the numerical procedures of this report has been developed and is described in

[22].
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Chapter 2

Electric Field Integral Equation
Formulation

In this chapter the equivalence principle is used together with boundary conditions on

conducting bodies and wires to derive the electric field integral equation (EFIE).

2.1 Equivalence Principle

Consider a perfectly conducting body which is placed in a homogenous medium (g, €)
and whose surface is denoted by S with unit normal vector i. The body is illuminated
by an incident or impressed field (E', H') due to impressed electric and magnetic current
sources J' and M, respectively. (The incident field (E', H') is defined to be that which
would exist in space if the body were not present.) The incident field induces a surface
current on the conductor and this current in turn radiates scattered fields (E*, H®). The
total field exterior to the body, (E,H), is a superposition of the incident field and the
scattered field (i.e., E = E' + E*, H = H' + H*). The induced surface current is related
to the surface tangential magnetic field (J = @i x H), but is unknown. Qur task is to
derive an integral equation for the induced surface current. If the integral equation can be
solved for this current, all other electromagnetic quantities may be determined from it.

We invoke the equivalence principle [23] to allow the metal conductor to be removed and

12
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f replaced by a system of currents radiating in free space such that the fields produced are

- identical to those of the original problem. The steps to generate this equivalent situation
P are:

1. First the conducting body is removed and the resulting void is filled with the same

material as the surrounding medium.

2. On the mathematical surface S previously corresponding to the conducting body,
we place an electric surface current J.q and a magnetic surface current M. These
currents are required to produce the same fields as in the original problem; therefore,

they are called equivalent currents, and they are the sources of the scattered field

(E*, H*).

3. The impressed currents as well as the equivalent currents now radiate in an infinite
homogeneous medium and the fields produced by these currents can be determined

by superposition (or equivalently, by means of potential representations of the fields).

4. We specify the exterior fields to be that of the original problem (so E\,, = 0 on S).
We also specify the field interior to S to be zero.

5. The equivalent magnetic current must support any discontinuity in electric field at
S, but since the tangential electric field is zero on both sides of S, the equivalent
magnetic current M., must be zero. Since the interior magnetic field is zero, the
equivalent electric current is identical to the actual surface current J on the conduc-

tor.

The correctness of the equivalent model can be easily verified by checking to see that all the
postulated fields satisfy Maxwell’s equations, including the jump discontinuity conditions.

The above argument permits us to assert that the scattered fields due to currents on

13




conductor surfaces can be computed from potential integrals as if the currents were in an
snfinite homogeneous medium. This fact will be used in the next section.

At this point the surface current J is unknown because we do not know the scattered
fields on the exterior of S. Since the equivalent current radiates in an infinite homogeneous
medium, however, we may express the scattered fields produced by J in terms of potential
integrals, and enforce boundary conditions on S to obtain an equation from which J may

be determined.

2.2 Coupled Electric Field Integral Equation

The previous section provides a scheme for determining fields if the induced surface
currents are given. The task now is to derive an integral equation for determining the
currents.

Let S denote a configuration of perfectly conducting surfaces immersed in an incident
electromagnetic field. In general, S may consist of a collection of conducting bodies and
wires. The wires may be connected to smooth surfaces, edges, or vertices on the bodies,
forming different junction configurations as shown in Fig. 2.1. §S is then to be viewed as

the union of the bodies and the wires, which can be expressed as follows:

Ny Nuw
S =~SB USW = lU SBE] U [U Swl] (21)
k=1 =1

where N, and N, are the number of bodies and the number of wires, respectively. The
wire radii may vary but are always assumed to be small compared to the wavelength,

thus eliminating the need to consider any circumferential variation or components of wire

currents.
An electric field E’, defined to be the field due to an impressed source in the absence
of S, is incident on and induces a surface current J and total current I on Sp and Sw,

respectively. A pair of coupled integral equations for the configuration of wires and bodies

14




Figure 2.1: Typical wire/surface configuration may consist of a collection of conducting
bodies and wires. The wires may be connected to smooth surfaces, edges, or vertices on
the bodies, forming different junction configurations.
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may be derived by requiring the tangential component of the electric field to vanish on
each surface. Thus we have

Ei = (jwA+V®)m, rons (2.2)

where
. al .
_m eIk It e *R
A=a [/s," St Ly &S| (2:3)
1 ' e~ kR ' 1 dI e~7*R ’

¢ = _j41rwe [ Sp v-J R 5’ + sw 2ma(€)d¢’ R as’l (24)

and R = |r — r'| is the distance between an arbitrarily located observation point # and

a source point ' on S. In (2.3) and (2.4), k = 2%, where A is the wavelength, 4 and € are
the permittivity and permeability, respectively, of the surrounding medium, € is the arc
length along the wire axis, and a is the radius of the wire. Egs. (2.2)-(2.4) constitute the
EFIE for the unknown surface currents J and wire currents I. Because of the thin wire
assumption, we further assume that only components of electric field parallel to the wire
axis need satisfy (2.2). In the following chapter, the EFIE is approximated by a matrix

equation for computer solution.
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Chapter 3

Numerical Procedures

In this chapter, a procedure for the numerical solution of the electric field integral
equation is developed. Basis functions are chosen to represent the unknown currents,
testing functions are chosen to enforce the integral equation, and these are used to derive

a matrix approximant to the integral equation.

3.1 Development of Basis Functions

In order to determine the current distribution J, we must first represent it in a form
that is convenient for numerical computation. In this section we discuss three sets of basis
functions which may be used to represent the current induced on bodies, wires, and in the
neighborhood of wire-to-surface junctions. It is required that the basis functions be linearly
independent and capable of approximating the actual surface current. A triangular patch
model of Sp and a linear tubular segment model of Sy is assumed (c.f. Figs. 3.1 and 3.2).

Basis functions suitable for representing currents induced on Sp and Sw are given by

P
-, Y=Bor W ,rinS}*
Ar) = { Bn (3.1)
0 ,otherwise

where, as illustrated in Fig. 3.3, S7%, v = B (W), is the % reference triangle (segment)
attached to the nth non-boundary edge (node) of a body (wire). The height (length)

17
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Figure 3.2: Arbitrary wire modeled by tubular seginents.
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of S7* relative to the nth edge (node) of S,y = B (W) is hT*, and p™ is (£1)x(the
vector from the free vertex (node) of S7* to r). The surface divergence of A}(r), which is

proportional to the linear charge density associated with this basis function, is

¢ 2 .
i;g;, y=B ,rinSB*
CAN(P) = 1 . .
V,-Ay(r) = 4 ihr':t’ y=W ,rinS%* (3.2)
L 0 ,otherwise.

Finally, we define a basis function associated with wire junctions on Sg. A wire-to-
surface junction is assumed to exist only at a triangle vertex. Referring to Fig. 3.4, the

vector basis function associated with the nth junction is

( Kuyll- (h:;.')2 AB(T) rin S.H-
n m nl ’ nl
As(r) = W AY(r) ,rin SJ- (33)

(| 0 ,otherwise,

where the double index nl refers to the Ith triangle, S7;t, at the nth junction (c.f. Fig. 3.4).
AB(#) and hl} are the previously defined body basis function and the vector height,
respectively, associated with the edge opposite the junction vertex in SJ*. The total flux

from the junction triangles into the wire is normalized to unity if we choose

Qn} Q!
Knl = N,]'\ = e t!? (3'4)
nlQy,
lnl z Qyy
i=1

where a,; is the angle between the two edges of S}t common to the nth junction vertex,
£, is the length of the edge opposite the junction in SJ*, and af is the sum of the nth
junction vertex angles. Nyn is the number of patches attached to the nth junction. We
list here some of the properties which make this basis function suited for representing the

current in the neighborhood of a junction:
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Figure 3.3: (a) Geometrical parameters associated with the nth node of wire. (b) Geo-
metrical parameters associated with the nth edge of body.
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J
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Figure 3.4: Geometrical parameters associated with the nth wire-to-surface junction.
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1. The radially directed basis function has a 1/|p’| magnitude variation in the neigh-
borhood of the junction vertex. It can be shown that the current has this radial
variation in the neighborhood of a thin wire junction regardless of the vertex shape.
The normalization (3.4) of (3.3) distributes the associated surface current approxi-
mately uniformly around the junction regardless of its shape; it can be shown that
the surface currents on Sp at the junction are capable of representing any angular

variation of the junction current.

2. The function A;](r) vanishes at the edge opposite to the junction vertex; thus no

charge is deposited along this edge.

3. The surface divergence of AJ(r), which is proportional to the surface charge density,

is given by
[ 2K, :
hJ’+I , ¥ 1 S:I+
V.-Aj(r)=94 __1 ,rin §J- (3.5)

hJ-

n

L 0 ,otherwise.
4. The current flows parallel to the two edges of SJ;' common to the junction vertex.

This implies that no line charges are deposited along edges of S7;t.

The current on the surfaces Sp may now be represented as

Np Ny
J(r) = Y IPAZ(r) + 3 IJAJ(r), ron Ss, (3.6)
n=1 n=1

and the total axial current on the wire may be represented as

. Nw N,
Ir)t =~ Y I¥A¥(r) + 3 I]Al(r), ronSw, (3.7)
n=1 n=1

where N3, 8 = B,W, or J is the unknown number of bodies, wires, or junctions, respec-
tively. Note that according to (3.2) and (3.5), the surface divergence, and hence the charge,

is constant or. all body, wire, and junction subdomains.
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3.2 Testing Procedure

;- » The next step in applying the method of moments is to select a suitable testing
procedure. Referring to Fig. 3.5, we enforce the integral equation on Sp by integrating the
vector component of (2.2) parallel to the path from the centroid of S+ to the middle of

h the edge £8 and thence to the centroid of S3-. Similarly, we enforce the integral equation

' on Sw by integrating the vector component of (2.2) parallel to the path from the centroid

of S¥+ to node m and thence to the centroid of S¥¥~. At a junction (c.f. Fig. 3.6), we

first integrate the tangential electric field along a path from the centroid of each junction
triangle to the junction, and then along the wire axis to the center of the attached wire
segment. The resulting equations are then combined into a single equation for the junction
by weighting each with the associated triangle vertex angle, and summing the results for
each junction patch. For all path integrals, E' and A are approximated along each portion
of the path by their respective values at the centroids. The integral on V& reduces to a
difference of scalar potentials at the path endpoints, thus tie eliminating the requirement
implied in (2.2) that ® be differentiable. Witi £]*, ¥ = B, W, or J, as the vector path

segment, we thus have
Jw A LF+AT) 67 ] + [2(r37) - 2(r3F) ]
= [E(r3H)-F + E'(r20)- 47 ], (3.8)

m=12,...,N,, y=BorW,

and
1 N_ym
— 3 ami [jwA(rLE) 405 - B2 +iwARL) - £ + @(r))
m {=1
NJM X
Y amBi(ril)- €3 + Ei(rl) -4, (3.9)
m 1=1
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(b)

Figure 3.5: (a) Testing path associated with the mth node of wire. (b) Testing path
associated with the mth edge of body.
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junction

Figure 3.6: Testing paths associated with the mth wire-to-surface junction.
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m=12,...

9NJ°

Using the source expansion defined in (3.6) and (3.7), we obtain from (3.8) and (3.9) a set

of linear equations whose solution yields the unknown current coefficients.

3.3 Evaluation of Matrix Elements

Substituting the current representations (3.6) and (3.7) into (3.8) and (3.9), we obtain

an N x N system of linear equations, where N = Ng + Nw + N, which may be written

in matrix form as

=

J —
Zmen -

+
AYE =

A-’ﬁ+ —

min

AJ(r)

®(r) =

' [27#] (2] (227 [P
[z 2] 2] || )

[z [z™] [2]

where the elements of the submatrices are given by

1 Nm

. AdBE  gd Jo+
-aT Z Qm! (JwAmln : tmT .

m =1

AZ(r7E),

AT, B = el

ml /s

i B(p!
£ /s, A%(r")

jénwe

| ] ]

0 = BUrTY),

min ml /1

e-ij ,
B

~-jkR

1 Bron € '
/S’v. A(r')y s
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v*]

| [v] )
jo [ARr - + AT ) + (9 - 0], v #7,

) + jwAl:

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)




vy = B,W,orJ g = B,W,orJ (3.16)

and
Vo = [Bey) gt + Ber)-67] 1#7, (3.17)
7 1 = irod4y gl i d=\  gy—
Vo= o 3 emBE(r) 41 + Bl 4 (3.18)

For plane wave scattering problems, for example, we may set (c.f. Fig. 3.7)

Ei(r) = (Eif' + Ei3")e*T (3.19)
where the propagation vector k is

k = k(sin 6 cos ¢'% + sin ' sin ¢'§ + cos 6°'%) (3.20)

and (9‘, &»‘) define the angle of arrival in the usual spherical coordinate convention, and

can be expressed as

X

0 = cosbcos¢'z +cosbsing'y —sinb'z

a:i = —sin¢'E + cos ¢'y.

For antenna radiation problems Ej = Ej = 0, in this case the wire segments attached
to node (junction) m may be thought of as separated by a gap across which the voltage
VY (V.]) is specified.

Solution of the linear system of equations (3.10) yields the set of unknown current
coefficients used in the representation of the surface, wire, and junction currents, (3.6) and
(3.7). Once the surface current is known, the scattered field or any other electromagnetic

quantity of interest may be readily determined.
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Figure 3.7: Incident field geometrical parameters.
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Chapter 4

Numerical Results

In this chapter numerical results such as the surface current near a junction or the
input impedance of a monopole or far field pattern are presented for different junction
configurations. The geometries considered include wires attached to a smooth surface, an

edge, and a vertex.

4.1 Calculation of Current and Charge Distributions

Fig. 4.1 illustrates the current distribution near the junction between a circular cone
and a monopole attached at the vertex and inclined at an angle of 60° to the axis. The
length of the monopole, the height of the cone, and the diameter of the cone base are
all a = 0.333)\. The radius of the monopole is r = 0.001a. The result is compared with
the magnetostatic current distribution on an infinite cone with a semi-infinite filamentary
current attached to its vertex [24]. The current filament is also inclined at an angle of 60° to
the cone axis. Since the magnetostatic result gives the shape but not the magnitude of the
current distribution, a complex normalizing constant is chosen so that the magnetostatic
current interpolates the dynamic result at one point. Also shown is the uniform distribution
that would result from taking the current in the wire and distributing it uniformly about

the cone.
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Fig. 4.2 illustrates similar quantities near the junction of a circular disk and a monopole
attached at the center and inclined at an angle of 30° to the disk axis. The length of the
monopole, and the radius of the disk are a = 0.333\. The radius of the monopole is
r = 0.001a.

Figs. 4.3 and 4.4 show the computed current distributions on a circular cylinder with
monopoles attached to the center of each endcap and driven at the attachment point.
Measured results by Cooper [6] are shown for comparison. The diameter and the height
of the cylinder are 0.25). The wire radius is 0.007)\ and the lengths are 0.125A and
0.25) in the two figures, respectively. Similar results are shown in Fig. 4.5 for a cylinder
whose diameter and height are 0.5\ with a wire length of 0.125)A. Charge distributions

corresponding to these three cases are shown in Figs. 4.6, 4.7 and 4.8.
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4.2 Calculation of Input Impedance

4.2.1 Wire mounted on a smooth surface

Fig. 4.9 shows the input admittance as a function of frequency for an monopole at-
tached to the center of a flat plate and fed at the attachment point. The length of the
menopole is 0.421 m, its radius is 0.0008 m, and it is oriented normal to the 0.914 m
square plate. The results are compared with those calculated and measured by Newman
and Pozar [15].

In Fig. 4.10 is shown the input impedance of a monopole of length h = d and radius
a = 0.0165d mounted on a sphere of radius d as a function of the frequency. The results
are compared with calculations by Bolle and Morganstern [3], [4].

In Fig. 4.11 is illustrated the input impedance versus frequency of a monopole inclined
at an angle of 60° from normal and attached off-axis on a circular disk. The results are
compared with measurements by Marin and Catedra[12]. The agreement is very good
except for the reactance at the highest frequency measured.

Fig. 4.12 illustrates the input admittance of a monopole mounted near the corner of a
box on an infinite ground plane. The box is a 100 mm cube and the monopole length is
60 mm with a radius of 0.8 mm. The measured results of [25] on a ground plane of 780 mm
x 780 mm are also shown in the figure. Also shown are results computed by replacing the

monopole with an equivalent tape model and then modeling the structure as in [2].
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4.2.2 Wire mounted on an edge

Fig. 4.13 shows the input admittance as a function of bend angle for a monopole attached
to the edge of a plate and fed at the attachment point. The length of the monopole
is 0.25), its radius is 0.001)\, and it is mounted at the center of the longer edge of a
0.4\ x 0.5) rectangular plate. The reactance is not in agreement with [18], in which
both an exact Green’s function to model the current in the neighborhood of the junction
and a rectangular patch model was used, but several different calculations have been used
to validate the present results. First, as shown in Fig. 4.14, the magnetostatic current
distribution at the junction was calculated and used to deduce weighting coefficients for
the junction triangle basis functions for representing the angular variation of the junction
current. However, this produced an insignificant change in the result. Secondly, the wire
was replaced by equivalent tape models, shown in Fig. 4.15, in which the width of the
tape is four times the radius of the wire antenna [26, p. 20], and either 1, 2 or 3 patches
are used at the junction to connect the tape to the surface. As Fig. 4.14 shows, as the
number of patches increases, allowing the current to flow more freely in any direction on
the plate, the results approach those of the present method. Finally, we also observe that
as the wire angle a approaches zero, the wire and ground plane configuration approaches a
quarter wavelength section of open circuited transmission line, whose input resistance and
reactance should approach zero. The present results, contrasting to those of [18], more

nearly follow this trend.

4.2.3 Wire mounted near or at a vertex

Fig. 4.16 illustrates the variation of the impedance as a function of attachment position for
a quarter wave monopole mounted near or at a corner of a 0.4 square plate. In Fig. 4.17,
the same monopole is attached at or near a corner formed by three 0.4\ square plates. The

antenna is attached normal to the top plate and driven at the attachment point. Its radius
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is @ =0.0015). The results for these two cases are compared with calculated and measured
results by Newman and Pozar [15]. The agreement is good in all three cases. Since the
present method, in contrast to [15], should also apply for the wire located directly at the

plate corners, we give results for these cases also.

4.3 Calculation of Far Field Patterns

Fig. 4.18 shows the radiation pattern of a wire of length 0.25\ and radius 0.007A
attached to a circular cylinder with diameter and height 0.25\. Figs. 4.19-4.21 show
similar results for cylinders of various sizes. The measured results shown for comparison
are by Cooper [6]. In Fig. 4.22 is depicted a 0.25A monopole mounted near the corner of a
square plate with 1.0\ edge length. The results of Pozar [18] are also shown for comparison.
Figs. 4.23 and 4.24 show a 0.25)A monopole mounted on a sphere with radius 0.2 and 0.3

respectively. The results are in good agreement with those of Tesche [4].
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Chapter 5

Summary

The electric field integral equation (EFIE) is used with the moment method to develop
a simple and efficient numerical procedure for treating problems of scattering and radi-

ation involving arbitrarily configured and arbitrarily connected bodies and wires. Three

A
i

=

triangular-type basis functions are used to represent the physical currents on bodies, wires,
and wire-to-body junctions. A junction basis function is developed which appears to be
applicable to any junction configuration. Numerical results, which include comparisons
with calculations and measurements found in the literature, illustrate the versatility, ac-
curacy, and efficiency of the method for various junction configurations, including wires

mounted on smooth surfaces, at edges, or at vertices.
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Appendix A

Computation of Potential Integrals
for Wire Basis Functions

The basis function associated with current crossing the nth node of a segmented wire
model is given by (3.1), and its divergence is given by (3.2). Since dS’' = a d¢ df', the
vector and scalar partial potentials due to a unit current source associated with the nth

node are given in terms of (3.14) and (3.15) as (c.f. Fig. 3.3(a))

Ao = £ [, . ANO ke a

47 Js¥
4% [/w+ s K(6.£) df + /w = — K(&,¢) de'] (A.1)
w - 1 AW
O = j41rwe/.9.“.”++s, - (V, 4. (e’)) K(¢,€) dt

-j411rwe [/ we hW+ K(6,£) dt' + / w- hw K(,2) de'] (A.2)

where £ is arc length measured from a segment endpoint along the axis of the wire segment
in the positive current reference direction, and

1 /* ekR

K@e) = o= [ T—ds, (A.3)
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is the so-called ezact kernel in which R is the distance between observation point r and

source point *’ on the wire surface.

A.1 Integrals Associated with a Segment

It is computationally efficient to simultaneously compute all potential integrals associated
with a given segment $"* (either S¥'* or S¥-). The vector and scalar potentials associated

with a segment involve the following three integrals:

h
L = % [ ¢ Ks,s) as, (A4)
1 rh
L =3 /o (h — s')K(s,s') ds, (A.5)
h
I = /o K(s,s") ds', (A.6)

where s’ is a local segment arc length measured from the end of the axis of the source
segment, and k is the length of the segment. The first and second integrals above are
involved in the vector potential computation and the third is related to the scalar potential

calculation.

A.2 Treatment of Singularities in Wire Potential In-
tegrals

In numerical evaluation of (A.4)-(A.6), two cases are considered:

(2) The observation point is at least two segment lengths away from the source

segment.

(b) The observation point is less than two segment lengths away from, or possibly

on, the source segment.

For case (a), the so-called reduced kernel,
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e-_4"er
K,(s,s') = R (A.7)
where
R, = \/lr —r'|* 4+ a? (A.8)

and a is the source segment radius, may be used in place of (A.3) to eliminate the numerical
integration which computation of the latter implies. With this replacement, (A.4)-(A.6)
may be numerically integrated by Gaussian quadrature.

For case (b), the kernel is rewritten as

K(s,s) = %[/_:ﬂ;—‘—ld¢+/_:%d¢]. (A.9)
The first integral of (A.9) now has a slowly varying integrand in which the reduced kernel
approximation can be used (i.e., R is replaced by R, of (A.8)) to obviate the need for
double integration:

=/ —-——C-Jk;' L dp ——-——-C_Jk;" : (A.10)
The integral resulting from substituting (A.10) for this slowly varying part of the kernel
in (A.4)-(A.6) can be easily evaluated numerically by Gaussian quadrature.

The second integral in (A.9) contains the rapidly varying part of the kernel for ob-
servation points close to or on the source segment. Often the reduced kernel is used for
this term as well, and its contribution can then be determined analytically. For segment
lengths smaller than about five times the wire radius, however, this approach is not suffi-
ciently accurate. On the other hand, it is easy to show that the second integral in (A.9)
is expressible in terms of the complete elliptic integral of the first kind. To demonstrate
this, we define a number of geometric parameters associated with the segment and the
obeervation point in Fig. A.1. The distance between observation point # and source point

r'is
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Figure A.1: Geometrical parameters associated with integration of a wire basis function.
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€ )

R=|r -7 = \[(sm —5')? + p? + a? — 2pacos @, (A.11)
_ where
' Smo=(Pm —1,):8, p=Irm—r.| =3t +al. (A.12)

Vector 8 is the unit vector pointing in the direction of the source segment, and a,, is
_ the radius of the observation segment. Derivation of the relationship between the singular

integral of (A.9) and the complete elliptic integral of the first kind may now be summarized

as follows:
1 ¢~ 1
)R
- A o
2nJ-x \/(sm —~8')2 4+ p? + a® — 2pacos ¢
- Lir d¢ —
27 Jx \/(sm ~ 8')2 + p? + a? + 2pacos ¢
1y dé
= 2 :
\[(sm — 82 + (p+ a)? — 4pasin’ 3
_ 2 1 [ ==
T (sm =P+ (p+ap P 1= preinty
2 K(B) B
- 2 = —— K(B), A.1l3
"V (m =9+ (ptap TV . 9
where
2 _ 4pa
B = PR Sy para , (A.14)

and K(B) is the complete elliptic integral of the first kind, which can be computed from
(17.3.34) of [27).




y— *—T

The elliptic integral becomes logarithmically singular when the observation point ap-
proaches the source point. It is difficult to numerically evaluate the integrals (A.4)-(A.6)
F in this case, and hence this singularity is first removed from the integrand by subtracting

from it a singular term to which it is asymptotic, and then adding back the analytically

evaluated contribution of the removed singular term. For extremely thin wires, better
accuracy of the numerical integration is obtained if the singularity is extracted only in the
interval ' € [s,,s,], where s, = max(0, s, — 15a) and s, = min(h, s,, + 15a). For

source points near observation points, the elliptic integral behaves as ((17.3.26) of [27])

8 _ 2 VI=F
ko) ~ - i (U
_ 2 V(sm = ) + (p—a)?
= ‘w<p+a)‘°( 5o ) (A.15)

The last term is extracted from the kernel for numerical integration, and its contribution
is determined by integrating it analytically. The resulting procedure is summarized in the

following section.

A.3 Summary of Computation of Wire Potential In-
tegrals

The computation of potential integrals associated with a wire segment, as given by (A.4)-
(A.G), is summarized as follows:
For an observation point at least two segment lengths away from the source segment, the

kernel is replaced by the reduced kernel approximation, (A.7) and (A.8), and the integral

e—JkR:

I = /0" f(s) g df (A.16)

is evaluated by Gaussian quadrature.
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For an observation point less than two segment lengths from the source segment, the

integral of the exact kernel is decomposed for evaluation as

/ £(s) [ e - 1] 4y

(["+ [1) 5 L= ke as

2 (L L) ae [7%"“’) * e T w0

-+
3=

2
pta

Li, 1 =12 or 3 (A.17)

where

s \/(Sm -3P + (p—a)?) ,
I, = Y In ( o+ a) ds
= {724 (o-an [ism = o) + (o= o] -2 1ala(o + a),

_3'

— 45,(p —a)tan™! (3’"

»—a ) - ¢(s' 23,,.)} A (A.18)

L /., - (\/(s,,, — )2 + (p-a)?) oy

4(p +a)
(52 b (=)
- (p — a)tan™! (8;_—:')} A (A.19)
I, = Iz — I, (A.20) |
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and where R,, sm, and p are defined in (A.8), and (A.12), and
’ 3, ’ 1 ! ’
L) = T fi(s) = ¢ (h = 5), fi(s) =1
The quantities s, and s, are defined as
s, = max(0, sm — 15a),
s, = min(h, 3, + 15a).

If s,, is located outside of the source segment then ( / " + / “) in (A.17) is replaced by

(L)

All the integrals in (A.17) have smooth integrands and can be numerically integrated

by Gaussian quadrature.
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Appendix B

Computation of Potential Integrals
for Body Basis Functions

The basis function associated the nth edge of a surface patch model is given by (3.1),

and its divergence is given by (3.2). The corresponding vector and scalar partial potentials

due to this basis function are given in terms of (3.14) and (3.15) as (c.f. Fig. 3.3(b))

AB = AB ')ﬂdS'
"= ax Jopesss- M) TR

7 1 , e~ 7*R ’ 1 _ e kR
4—7{[@' /S£+ p+ R dS + hg_ [9”_ p' R dS, ’ (B.l)

1 e—ikR

B —_ . AB( ! ’

(I)n(r) - J4mwe ./5'{34'4_5'?- (V' An(r)) ds

1 2 e~*R 2 eiR
-7 RB+ & v 2
jdmwe [hf*‘ /sf+ = /s.‘." Rk (B-2)
where
R=|r-r|.

It is computationally efficient to stmultaneously compute all the potential integrals asso-

ciated with each patch S (either S8+ or S3-). The vector and scalar partial potentials
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Figure B.1: Geometrical parameters associated with integration of body and junction basis
functions.
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evaluated at observation point r due to a basis current directed outward across the ith

edge (i = 1,2, or 3 ) of the gth triangular patch, B9, are defined as (c.f. Fig. B.1)

B\ _ M pli R

Al(r) = o0 Bi R ds’, (B.3)
B _ 1 _2- e—ij ,

(r) = J4nwe /sao ki R ds’. (B.4)

If the current is directed inward across the ith edge, the right hand sides of (B.3) and (B.4)
are multiplied by (-1).

B.1 Treatment of Singularities in Body Potential In-
tegrals

The integrands of AZ(r) and ®B(r) are singular at R = 0 corresponding to an observation
point coincident with a source point  When r is not close to the source triangle, one
can easily evaluate (B.3) and (B.4) by numerical quadrature as discussed in Appendix
E. Thus when r is close to or on the source triangle, extraction of the 1/R behavior is
necessary before numerical integration is performed. We can represent both of these cases

by introducing a closeness parameter o(r) defined as
0 ,if distance R, is larger than the longest edge of SB9,
o(r) = (B.5)

1 ,otherwise.

where R, is the distance from the centroid of the source triangular patch to the observation

point. Thus we write (B.3) and (B.4) as

B — _"__1_ ’ e-ij_a(r) ' ﬂ:_ ’
A% = L& [saq o =" ds' + o(r) [ Bds (B.6)
and
B _ 1 z e—;kﬂ_a(’.) ' _1_ 7]
®P(r) =~z — 1 /S y o dS 4 0(r) /s . 595 (B.7)
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The integrand of the first integral of (B.6) and (B.7) is always slowly varying and can
be satisfactorily integrated numerically via the methods of Appendix E. The remaining
integrals in both (B.6) and (B.7) can be integrated analytically, and are given as [28]

—_ ’ R++l -1 }D‘OI;‘.
o = [ 795 = THw [P0 - 14t

Ry 417 (R9)? + |d|RY
PO
- -1 [ ]
s | .
and
= P_’, ' P'_Pi 7]
9i = /an R s s8¢ R ds
- P—p L. 1o
= /m 745+ (e-p) [, RS
R R} + 1} e
= 22 [(R0)2 R, + l- + I?’R;‘* - Ii Ri] + (p—Pi) 9s- (B.Q)

For numerical evaluation of (B.6) and (B.7), it is convenient to express all their terms
in the area coordinates of Appendix E. Accordingly, using (E.5), the position vector p;
relative to vertex i is expanded in terms of the adjacent edge vectors, which act as basis

vectors in the local coordinate system on patch S5
P = &inlisy — binalin, (B.10)

where the edge vectors £;4, are defined in Fig. B.1. Substituting (B.10) into (B.6) and

using (E.7), we can express the vector function A?(r) as

Af(r) = APY + o(r) g¥) tiy — (AP + o(r) g7) Lina|,  (B1D)

el

where

A7t = 2"/ e i ,-,m e =00 g, at, (B.12)
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= 24 / / 5‘*‘ dtisy dti. (B.13)

The singular integrals g in (B.11) are related to the vector g; of (B.9) as may be seen by
substituting (B.10) into (B.9) and comparing to (B.13). We obtain

9 = g by — g7 bipy, (B.14)

where, from (E.10), we have

gt = - :‘il g5 (B.15)
i+l

and this result, together with (B.8) and (B.9), allows all but the terms AP* in (B.11) to

be evaluated.

Similarly, the scalar function ®2(r) can be expressed as

1
B —
@’ (r) = " e h [I + o(r)gs], (B.16)
with
1 ri-& emikR _ 5(p)
I = 2A/0 /0 R dis1 dE;, (B.17)

and g, is defined as in (B.8).
The remaining terms in (B.11) and (B.16)—the nonsingular contributions to the vector

and scalar potentials, AZ* and I, respectively—are computed by numerical quadrature as

discussed in Appendix E.

B.2 Summary of Computation of Body Potential In-
tegrals

The vector potential integral associated with an edge as given by (B.3) is obtained by

substituting (B.8), (B.9), and (B.15) into (B.11) and is summarized as follows:
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— ~ v - n 3 " Tp— —— T " —~r— v -—-v—.—v—w-v——w‘T
3

AB(r) s [( / /1 & e"JkR U(T)df,ﬂd& — o(r) :+1 g; ) i,

ht+l

( / /1 ) Md&- & — ofr) Bt g') e,-H], (B.18)

:—l

where o(r) is defined in (B.5).

The scalar potential integral associated with face $B7 in (B.4) is evaluated by substi-

tuting (B.17) and (B.8) into (B.16) and the result is summarized as follows:

| -t ¢=ikR _ 4
p ®B(r) = —]471rwe h [ / / A T(T)déuu dé; + o(r) g,]. (B.19)

The integrals in Egs. (B.18) and (B.19) are well-behaved and may be integrated numerically
via (E.12).
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Appendix C

Computation of Potential Integrals
for Junction Basis Functions

The basis function associated with current entering the nth junction of a wire/body
junction model is given by (3.3) and its divergence is given by (3.5). The vector and scalar
potentials due to a unit current source associated with the nth junction may be given in

terms of (3.14) and (3.15) as (c.f. Figs. 3.4 and B.1)

e-ikR

Al(r) = & Al %

4r Jslt4s]-

ds’

Njn

:—W{/S'{_A:V(r) = ds’+ZK,.,[s:‘+ B(r') <

( )2 —JkR
- ————f—)— m(r') —— S'] } , (C.1)

sl ( p't-h

e-ikR
ds’

1 e—ikR

&lr, = —- /s,{"+s,." (v.-4i() S a5

J4mwe

' e~*R  Nnm 2K,.: e~i*R
= Jimee [E: /s,{— ———dS' + }: T o Hds|. (€2

All the integrais in (C.1) and (C.2) cxcept the last integral in (C.1) are evaluated in

Appendices A and B. For the remaining integral, we first assume that the gth junction
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surface patch has a junction at vertex ¢ (a local index) in the patch. Then the integral can

be written in the form

) 2 -jkR
AV = Er [ P AR g
' 4r" " Jsse (pt; - k)2 R
[z p; eIt

4r o B s (p/;-h)* R ds’. (C.3)

where K; is the weight factor for the patch and the remaining quantities are defined in

Fig. B.1. Evaluation of this integral is considered in the following section.

C.1 Treatment of Singularities in Junction Potential
Integrals

The integrand of A] (r) in (C.3) is singular when the source point is at junction vertex (i.e.,
when p’; = 0), and when an observation point is coincident with a source point (i.e., when
R = 0). Thus when r is close to the source triangle or #’ is close to the junction vertex,
extraction of the dominant singular or nearly singular form of the integrand is necessary
before numerical integration is performed. To discern the behavior of the integrand near
these singularities we expand it in a Taylor series about each singularity.

At p'; = 0 we expand terms of the integrand in Taylor series in p’; and then combine
them to obtain the Taylor series for the integrand as a whole. For example (c.f. Fig. B.1),
we first note that

R = |R - p| = VR® + ¢} - 2R;-p'. (C4)

Since for sufficiently small p,, it is clear from Fig. B.1 that R;? > i — 2R, p';, and

hence R may be expanded in the series

R 107 - 20 R
RER.[1+2 77 +] (C.5)
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Thus the exponential in (C.3) may be expanded as

y2 ¢
iR o kR |y _ P — 20 R
e = e [1 Jk 2R, + (C.6)
and hence
e—ikR e—ikR, . 1\ o R ]
- =~ 1 (k+—)—'——+---. C.7
- - R |'TVTR) TR €1
| Finally, we have
p'. e'ij
= = f, (C.8)
(o h? R
(|
where
g eI _ 1 p'..m]
= A 1 + (k + =) —5—|- C.9
5= 0 R Gk + ) B (C9)
®
o All the higher order terms in the series vanish as p} — 0.
B For the singularity at R = 0, we expand the integrand in a Taylor series in R.
P Since (c.f. Fig. B.1)
| Fi= R - R - (Ca0)
h then
. . R-h.
'hi = Ri-hi |1 - —— c.1
b R [ R;-h; ] (C.11)
and therefore
® A
- - R VR & [1+2R"f' +] (C.12)
o (o'; - hi)? (R; - h;)? R;-h;
Since
QO ¥R 1 k2R
£ & = k- —— 4 .- )
P”‘ :
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we have

p. e o 1 2R - h; ]

whr R - (®bplET @R

- 1 p'i + 2[(p—p) = (p— ¢ Rk, ]
(Bs-hor LR (R:-R)R
1 rpl. 2(p.-p) (R'_pl).ﬁ' ]
® wmIAplrR* Il VAL C.14
(Ri-ha)* LR (R:-R)R (C149)
n in which we have used the following relations:

pi=R ~R=(p-p)-(p-p)

= lp;p}-zl-l—z—ili——»OasR——»O since |p—p'| <R
q
P
: All the higher order terms in the series are bounded and well-behaved as R — 0, and since
F Rlil"=(R‘—P'e)‘i‘i=(P-Pi"P'.')'i‘h
we define
1 P 2(p—p;)[(P=p)— P hi
f = — [—l + L] r . C.15
"7 (Ri-h LR (Ri- k)R (9

With the expansions of f, and fp in (C.9) and (C.15), then (C.3) can be rewritten as

Al(r) = EKin [ /s , Fds' + /s S48+ o(r) /5 r dS'], (C.16)

where
F- pl'; e-ij
(v h? R

and o(r) is defined in (B.5). The integrand of the first integral in (C.16) has the singularity

~ £, - o(r) fr. (C.17)

at p/; = 0 removed, and—when the observation point is near the source triangular patch

5B9—_has the 1/R behavior removed. The integrand is thus bounded and continuous,
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and the integral can be integrated numerically by numerical quadrature as described in
Appendix E. At R = 0, F is indeterminant and hence, for numerical purposes, is replaced
by its limit,

, P . 1+ kR, :
lim F = ———— | jk+ —— kR;)| . .
Lim Ry 7k + R, (24 jkR) (C.18)

The second and the third integrals of (C.16), as shown below, can be integrated analytically.

C.2 Efficient Numerical Evaluation of Integrals

For efficient computation, we rewrite the vector integral equation (C.16) and (C.17) in
terms of adjacent edges which act as basis vectors in a local coordinate system. Since

~

o hi = hi(1 - &) (C.19)

from (B.10) and (C.16-C.18), we have

[} /»‘ id I 11—
Al'(r) = 4—7;I\ihi (A.'J+li—1 — A] £i+1)7 (C.20)
and
F = Fte, — F &, (C.21)
where
s _ £ o + o £ o
AVE = /quF s’ + /quf,, ds' + a('r)/sjqu ds’, (C.22)
and
1 &y e kR
+ 1 opx +
F* = Hi-6f E 5 o(r) fi, (C.23)
. + _ 1 &in : 1+ kR, .
R T e R A (©29
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with
. -JkR; o
fr= % (1%.;)2 : R [1 + (k + f]i)('fiﬂli—l = &iilia) - R, (C.25)
and
fi _ 1 {f.':ﬂ _ 2 [ili:i:l : (P — pi)]
R (R: . il,‘)2 R R,‘ . il,' hi:tl
h; - [(P —pi)— (fi+1}§i—l - 5{—1£i+1)]} (C.26)

The nonsingular integrand F'* of (C.22) can be integrated numerically by Gaussian quadra-
ture as described in Appendix E. The remaining integrals in (C.22) are singular and may

be evaluated analytically as follows. From (E.7), we note the results

it b aa U G o
Joo Tl a8 =24 [ [ 2 demdes = A, (c.27)
Similarly,
: ! Eirr€i- 1
ikl . i+18i-1 ' 24 .
/qu (1 - 61')2 ds 3At, _/qu (1 _ 6‘.)2 ds 6A" (C 28)

where A, is the area of the triangular patch $79. From (C.25-C.28), we now have

/ Ai 1 —ikRi 1 kR,
st = A (o g

R,' Ri
(C.29)
~ 2 A
(e () - s (5)]) 1
' 1 €ix1 ' 2 ili:i:l (p— Pi)}
0 = — = - =

500 TR 45 (&-hg)2{ sn B 9O &-h;[ hity

ili . [(P _ P.')[SM % dsl — li—l qu éél dS’ + £i+1 e E‘T?l dS’]} (030)

From (B.8), (B.9), and (B.15), the singular integrals (C.29) and (C.30) both can be ob-
tained explicitly.
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C.3 Summary of Computation of Junction Potential
Integrals

The vector potential integral associated with a vertex of a junction triangular patch as

given by (C.3) is obtained by substituting (C.22-C.23), (C.25-C.26), and (C.29-C.30) into

- (C.20) and is summarized as follows:
i ] # r ! —_
[ Al'(r) = Khi (A by — Al i), (C.31)
_ where
| are = g [T Ea (7
o Jo h? (1 = &;)? R
C e~ kR . 1 A
N - TR [1 + (Jk + E)(fiﬂfi-l - €i-1li+1)'Ri]>

- _ 1 §irn 2 hisi - (p - p))
h o) (R;-fzi)2{ R R; -k [ his: ]
L
)

ili- [(P— p;) — (€i+;;i—l - 6i—1£i+1)]}} dtisrdE,

. [eIkR: 1+ kR [ - 2 - 1
el o o (1) - e (5)])

 ® + 1 { his, 2 [hi:i:l (p— P;)}

o(r ~ .= <
( ) (R, . h,‘)2 hi;{:] ' R; . h, hi:tl
9 ili 1 il'—l
. hi (0= p)gs + bt g, — it g C.32
o [ P =Py Uiy 9 T b g,]} (C.32)
in which o(r), g,, and g; were defined as (B.5), (B.8), and (B.9).
®
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Appendix D

Computation of Far Fields

We define a normalized far electric field € as
Er) = lim r & " E*(r) (D.1)

in which the radial phase and amplitude dependence of the far field is removed, leaving

only an angular dependence, and where, in the far field,
E(r) = —jw[A(r) — A(r)-#+). (D.2)

The unit vector # points in the direction of observation of the far field, and is given by

F = TE— = &sinfcos¢ + ysinfsingd + 2 cosh.

In the far field, the vector potential A(r) reduces to

e—jkr
A(r) = f; -

/S J(r') T g5 (D.3)

which is evaluated in the same manner as (A.1), (B.1) and (C.1) except that the kernel

€22 is replaced by e/* ™', The various forms that the integrals take on are summarized

in the following sections.
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D.1 Far Field Vector Potentials for Wire Basis Func-
tions

The vector potential in the far field due to a unit current source across the nth node of a

wire is given as

Wiy = H eIk AV (¢ kv’ de'
An ( ) = 4—” r sw n ( ) €
@ e—jkr p+ P , P g
4T r [/.S,‘?'+ AW+ T de + /s,‘.”' h¥W- T de (D.4)

This integral may be evaluated in closed form, but it is generally more efficient to evaluate

it by Gaussian quadrature.

D.2 Far Field Vector Potentials for Body Basis Func-
tions

The vector potential evaluated in the far field point due to a basis current directed outward

across the ith (i = 1,2, or 3 ) edge of a triangular patch $P7 is given by

AB(r) = 4% /S . %eﬂ‘*-"’ ds’, (D.5)

which, using (E.5) and (E.7), may be expressed as

e', —7kr _
Al(r) = I‘:—w e_r__ [A?+ Lioy, — AP li+1], (D.6)
where
Bt R kP
A7F = /o ’/0 §iz1 € d§iy1 df;. (D.7)

The integrals in (D.7) may be evaluated in closed form, but it is generally more efficient

to evaluate them by numerical quadrature as described in Appendix E.
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D.3 Far Field Vector Potentials for Junction Basis
Functions

In the far field, the vector potential integral associated with a vertex of a junction triangular

patch as given in (C.3) becomes the following:

J' — .’i . b e-jkr P'.‘ ikP-r 7]
Al(r) = EKin S /S WG T as (D.8)
Note that there is still a singularity at p’; = 0, i.e., when the source point is at the

junction vertex. The treatment of Appendix C may be adapted to remove the singularity

from the integrand with the result that the final form of A; in the far field becomes

plK; ej

Ay = B2

[A7* £y = AT t44], (D.9)
where

I / / =6 L ejki'.r' _ ejki'-r.'] disy dE;

1-&)y )2
4+ ikt / /1 “ E‘*{‘ )2d§,ﬂ d¢;
el . . 13 .8 F

The integrals in the last line of (D.10) may be evaluated by numerical quadrature as

described in Appendix E.
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Appendix E

- Local Coordinates and Numerical
| Integration on Triangular Patches

In this Appendix, we introduce a convenient set of local coordinates defined on triangular
patches. This set of coordinates is useful for representing both scalar and vector functions

r on triangles and for performing numerical integration over the patches.

E.1 Normalized Area Coordinate System

We introduce the so-called normalized area coordinates &; (i = 1,2, 3), defined as
A;
fi = 74—1 (E.l)

where the area A, is the area of the triangle formed by point ¢ and edge : (Fig. E.1), and

A is the total area of triangle S9. Hence

o Y& =1 (E.2)

Clearly, only two of the coordinates are independent, and the third can always be elimi-
nated via (E.2). The transformation between the global and local coordinate systems is

summarized by the relation

r = §inrinn+Eiarion +6ir (E.3)
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Figure E.1: Definition of local coordinate system.
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where the position vector » and the vertex vectors r;, r;, and r3 are given in the global
coordinate system. Using (E.2) to express the position vector in terms of the two indepen-
dent coordinates £;4; and §;, and noting that r;3; — riz1 = F¢; and rizy — r; = Fliy,, we
have
r = (1-&in—&)rim +&nfin + vy
= Fllinrli — &ilin1) + i (E.4)

A frequently used result is that
oy = r'—r,

= LGurin+haria+ (- 1)

= LnTin + iaaric — i + Gia)r

= §inlia — &ialin. (E.5)

From (E.4) we also have

o Orlier, &) _ Or(6isn &), . ‘
ds' = I 6{.'3;1 X aE’ Idelil d€|

= |l x Lis1] dbiz dE;

= 24 d&iy, dE;. (E.6)

From (E.5) and (E.6), it follows that surface integrals over an arbitrary scalar function

f(p';) on 57 can be expressed in terms of local coordinates as

[ f@yas =24 [ [ flentin — &ertin) dein des (E7)

E.2 Expansion of Tangent Vectors on a Triangle in
Terms of Edge Vectors

Any tangent vector in S7 can be expressed in terms of a pair of triangle edge vectors, which
act as basis vectors in the local coordinate system. For an arbitrary tangent vector f, for

example, we wish to write it as
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f=f b, — f by, (E.8)

i.e., we wish to determine its expansion coefficients f* and f~ in terms of (non-orthogonal)

basis vectors £;_; and £;;,. This is easily done once we notice that (c.f. Fig. E.2)
hi-¢ = 0, (E.9)
(i.e. £ and h; are biorthogonal) where h; = h;h;. Hence, from (E.8) and (E.9), and since

his1 - liz1 = Fhi,,

we have
his1 - f = £ f5 gy - li;n = — fERY,.
Thus
froo b (E.10)
hig1

and finally, from (E.8),

P (_ti_lhul N £i+1hi—l> f (E.11)
h;‘+1 hi—l

where the quantity in parentheses is the identity dyad in local coordinates, multiplication
by which expresses a tangent vector in terms of the triangle’s edge vectors. Since the
vectors £;1; in (E.8) are constant, a frequent use of this result is to reduce an integral over

an arbitrary vector f to two scalar integrals of the form of (E.7) over the components f*.

E.3 Numerical Integration over Triangular Patches

Numerical integration over a triangle can be accomplished in terms of the area coordinates

by the following rule:




Figure E.2: Definition of triangle edge and height vectors.
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' 1 pl=€ina N

/o /o S(&y &ixn) d&i dixy = g w; (&) (iz1)5),s (E.12)
h where N is the number of evaluation points of the quadrature. Appropriate weight coeffi-
cients w; and coordinates ((£:);, (§i21);) of points at which the function must be evaluated
‘ for Gaussian schemes are given in [29]. Only one-point, three-point, and seven-point
P schemes (depending on the ratio of distance between observation point and centroid to the

1 maximum edge length of the source triangular patch) are used in the code JUNCTION,

and the corresponding weight coeflicients and corresponding coordinates are presented in

p Tables E.1-E.3.
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Table E.1: Weight Coefficients and Local Coordinates for One-Point Gaussian Quadrature
on a Triangle.

i w | (&); (€iz1);

1 0.5(0.333333333333333 0.333333333333333

Table E.2: Weight Coefficients and Local Coordinates for Three-Point Gaussian Quadra-
ture on a Triangle.

j w; | (&); (€ix1);

1 0.166666666666667 | 0.666666666666667 0.166666666666667
2 0.166666666666667 | 0.166666666666667 0.666666666666667
3 0.166666666666667 | 0.166666666666667 0.166666666666667

Table E.3: Weight Coefficients and Local Coordinates for Seven-Point Gaussian Quadra-
ture on a Triangle.

j w; (&); (Eiz1);

= W=

-] O v

0.1125
0.062969590272413
0.062969590272413
0.062969590272413
0.066197076394253
0.066197076394253
0.066197076394253

0.333333333333333
0.797426985353087
0.101286507323456
0.101286507323456
0.470142064105115
0.470142064105115
0.059715871789770

0.333333333333333
0.101286507323456
0.797426985353087
0.101286507323456
0.470142064105115
0.059715871789770
0.470142064105115
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