
U~~1' ~ UNLIMITED ''~

V RSRE

MEMORANDUM No. 4083

R RYA L S p5IGNALS & RADAR
ESTABLISHMENT

A MONTE CARLO PERFORMANCE ANALYSIS OF
ACCIELERATED SVD-BASED HIGH DISCRIMINATION ALGORITHMS

Author. J L Mather

PROCUREMENT EXECUTIVE,
6 MINISTRY OF DEFENCE,

R SR E MLERN,
WORCS.

DTICS ELECTE
0 ~OCT 2 4 198'8

0

-UNULMITED 89



ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4083

TITLE: A MONTE CARLO PERFORMANCE ANALYSIS OF ACCELERATED

SVD-BASED HIGH DISCRIMINATION ALGORHlIhMS

AUTHOR: J L Mather

DATE: July 1988

SUMMARY

High discrimination algorithms are increasingly being considered for the task of processing
data from arrays of sensors and in the form of time series. Many such algorithms rely on
singular value decomposition of a data matrix or eigen analysis of the corresponding
covariance estimate, thereby imposing a heavy computational requirement. However, if the
data is oversampled, or if the solution vector may be constrained, in terms of its angular
extent or frequency range for example, it is often possible to pre-process the data matrix
in such a way as to reduce its size. This may be carried out by means of a fixed matrix
pre-multiplication, and can lead to a substantial acceleration of the subsequent analysis.
The method is described, and its use exemplified in combination with a number of
well-known high discrimination algorithms. A number of results from a Monte Carlo
analysis are given which show that the new technique can lead to significantly improved
parameter estimates being obtained from the high discrimination algorithms.
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1. INTRODUCTION

There is currently a substantial and growing interest in high discrimination (or high
"resolution") algorithms for processing the data collected from arrays of sensors and in
the form of time series. Particular attention has been devoted to algorithms employing
singular value decomposition (svd) of a data matrix, or equivalently, eigenvector
decomposition of the estimated covariance matrix [1]. It is thought that such algorithms
hold great potential for the interpretation of signals collected in radar and sonar phased
array systems, since, under suitable conditions, they are able to locate multiple
independent sources of signal within the conventional correlation filter beamwidth
limitations.

However, such algorithms have serious shortcomings which must be dealt with before their
full potential for high discrimination may be realised in practical systems. Principal among
these is the huge data processing burden imposed by the singular value decomposition or
eigen analysis in problems of realistic size.

In order to tackle the requirement to process data quickly, whilst using inherently
computer intensive algorithms, attempts have been made to increase the available
processing rate through the design of parallel svd and eigen decomposition algorithms and
special purpose systolic processing architectures [2]. Under some special conditions, it is
possible to reduce the dimension of the data matrix by employing the spatial averaging or
sub-aperture technique [1], more commonly encountered as a pre-processing stage if
coherent multipath is suspected [3]. Methods have also been described [4,5] by which the
processing requirement of multi-domain data may be reduced below that of naive
extensions of previously available algorithms. One of these [5] makes use of the
sub-aperture technique to pre-process domains of the data subsequent to the first (for
example, to process time domain data, following a spatial analysis), and could be carried
out still more rapidly by processing multiple channels of sub-aperture data in parallel.

In general, the approaches referred to above make use of additional prior knowledge
about the form of the problem in order to provide a suitable framework for the
subsequent straightforward use of the normal singular and eigen vector based algorithms.
Following an introduction to our data model in section 2, and a review of traditional
methods of analysis in section 3, we give details of a further novel stage of
pre-processing, in section 4, which reduces the size of the data matrix. It does this by
making use of prior knowledge concerning the degree of oversampling of the data, or the
boundaries of the required solution. The reduction is achieved in such a way that the
maximum practical number of signals may still be detected, given some knowledge of the
signal to noise ratio. Section 4.2 describes the application of the new technique, which we
refer to as an eigenvector projection method (EPM), to a number of well-known high
discrimination algorithms, such as MUSIC [6,18]. Section 4.3 is a more detailed discussion
of the effect of EPM pre-processing. Section 5 presents examples of our computer
simulations, and, in particular, discusses typical results from a Monte Carlo analysis of the
performance of the EPM modified algorithms. A larger number of Monte Carlo results
are collated for reference in the Appendices, together with some discussion regarding their
consistency and the possibility of a more economical representation of such data.

2. THE DATA MODEL

The usual data model employed [1] is as follows

4(t) = M fYt) + w(t) (I)
where f(t) is a vector representing the input which is to be reconstructed, M is a linear
transformation matrix, 2!(t) is a vector sample of zero mean Gaussian white noise, and



4(t) is the resulting data vector, or snapshot, at time t. We wil assume for simplicity
that the matrix M (often referred to as the array manifold [61) is known to within a
negligible calibration error [1]. For example, in the case of an array of n sensors
expected to receive signals from independent point sources, M will be an (nxN) matrix,
whose N columns (denoted m(e), i = 1 to N) represent the independent spatial
transformations of calibration signals from N possible discrete angles, 8i. Thus, M
contains a representative subset of the continuum of possible received waveforms: it
provides calibration information about the array manifold rather than details of specific
signal sources. If f(t) represents the complex amplitudes of the signals associated with m
independent point sources, as measured at a given instant, d(t) will be given by the
linear combination of m corresponding columns of M, scaled by the signal amplitudes and
perturbed by additive noise. From a reconstruction of f(t), we hope to locate the m
sources and estimate their powers.

3. METHODS OF DATA ANALYSIS

The usual method of solution is to use the calibration matrix, M, to form a set of
correlation filters which are "matched" to each of the potential signal directions, Oi, and
to evaluate

p(oe,t) = lf'(01,t)l 1 = H(0i) d(t) ,H(t) hn(O.) / {mH(9i) M(8i)} , i = I to N, (2)

where the superscript H denotes the complex conjugate (Hermitian) transpose, and il2
denotes the squared magnitude of the individual elements of the vector, x, and ml(6i) is
a row of the matrix MH. This is a simple estimate of the spatial power distribution of
the input, f(t). Such processing may be considered as "scanning" the data with the
beamforming weight vector, mH(Oi). P(6,t) has the familiar broad multiple lobed pattern
of classical analysis, with consequent poor discrimination of multiple signals, resulting from
the wide beamwidth and high sidelobes.

Traditional least squares techniques [7] suggest a possible alternative solution of the form

If(t) 12 = I(M
H 

M)-IMH 0(t) 12 1 (3)

where (MHM)-'MH is known as the pseudo-inverse of M. However, in order to solve for
lf'(t)l 

2
, limits to the angular extent of the required reconstruction, 0- and 6+, are

necessarily implied [1], since the matrix M must be fully defined before its pseudo-
inverse can be evaluated. Thus, it is not sensible to "scan" the data beyond these pre-
defined limits. In addition, the resulting reconstruction is extremely sensitive both to the
accuracy of the implied angular bounds, and also, as written in equation (3), to the
additive noise within the data [].
The solution in equation (3) may be rewritten in terms of the singular value

decomposition of M [7]. Thus,

jf'(t)1 2 = IV S-I U
H 

d(t)1
2  

(4)

where U and V are unitary matrices containing the left and right singular vectors of M
respectively, and S is the diagonal matrix of singular values of M. That the decomposition
depends on the limits, 0- and 0+, is illustrated by Fig. 1, which shows the singular value
spectra calculated for each of four M matrices corresponding to different angular
coverages. Fig. 2 demonstrates the similarity between an angular limitation for a 0.5
wavelength spaced linear array, as defined by s- = -14.5" and 0+ = +14.5", and spatial
oversampling using an array with 0.25 wavelength inter-element spacing, a- = -30 and
0+ = 30'. By setting both the smallest singular values (those for which (s,/sd , the
squared ratio of the first to ith singular values, is greater than the signal to noise ratio)
and their corresponding inverses to zero, and thus forming a reduced rank pseudo-inverse
of M, the sensitivity to noise, referred to in the previous paragraph, may be reduced [8].
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4. AN EIGENVECTOR PROJECTION METHOD (EPM)

4.1. REDUCTION OF THE DATA MATRIX

The reduction in the sensitivity to noise of the method defined by equation (4), is
achieved by projecting the data onto the subspace defined by those k vectors, denoted
below by Uk , which are contained in the matrix U and are associated with the remaining
k non-zero singular values. It can be seen from equation (4) that the validity of this
processing rests on the assumption that the signal components in the data may be
sufficiently accurately represented by the vector

Q = UV d(s) . (5)
By this we mean that the components of the data which are suppressed by this projection
are assumed to be indistinguishable from the noise. The vector S(t) has dimension k 4 n,
which depends on the assumed signal to noise ratio, the limits 0- and 0+, and the
degree of spatial oversampling or redundancy in the array.

Under conditions of low signal to noise ratio, the single snapshot pseudo-inverse
reconstruction technique of equation (4) achieves little better discrimination performance
than the classical matched filter, despite the additional implied constraint on the spatial
extent of the input [1]. However, it is under these very conditions that the dimension of
the vector . is most significantly reduced. Furthermore, the singular transformation of
equation (5) may also be applied to multiple snapshots of data, stored in a matrix D of
dimensions (nxP), where P is the number of snapshots. Thus,

C = UV D , (6)

where C is a matrix of dimensions (kxP). This forms the basis of our eigenvector
projection method (EPM).

4.2. APPLICATION OF EPM TO HIGH DISCRIMINATION ALGORITHMS

The widely quoted MUSIC method 16] makes use of the left singular vectors, E, of the
data matrix, D (which are the same as the eigenvectors of the (nxn) covariance matrix,
(D DH1 )), to form the angular estimate

p(6i) = mH(oi) E Eq rn(o) i = I to N(7
rn(Oi) m(Oi)  ,()

where EN is the matrix of so-called "noise-subspace" singular vectors corresponding to
the (n - m) smallest singular values of D. The normalsation term in the denominator of
equation (7) is included (as in equation (2)) to allow for non-uniform weighting of the
gain vectors represented by the array manifold. The locations of the minima of this
function are used to estimate the positions of the signal sources.

Clearly, finding E for a large sensor array dimension n imposes a heavy processing
burden. However, if the corresponding singular vectors, F, of the reduced data matrix C
are evaluated, a bounded solution may be calculated, via the MUSIC algorithm, as

P(6 ) = _.U F q UV M ) I i = I to N, a- 4 8i < 04 (8)
mM"oi) Uk UV ) '8

where FN is the matrix of noise-subspace singular vectors of C, and Ut transforms these
vectors back into the n-space of the array manifold. Correct normalisation is retained by
using the "modified" array manifold vectors, UV M(0i), in the denominator.

Normalisation of the angular spectrum is of particular importance in the extension of
EPM to certain other high discrimination algorithms, such as Burg's MEM 1111 and the
method of Kumaresan and Tufts (9]. Without correct normalisation, the methods fail to



perform correctly. MEM, in normalised form, may be written as

P(o) M Hp 0 N re (o) , i = 1 to N, (9)

where

w = R
-  

, (10)

and P,, is the first column of the identity matrix.

Therefore, EPM/MEM may be written as

r- H'oo H -m(O. i = I to N, 0- < 0,< 0+

where

Uk, = uk (C CH)-, UV t, , w 2 = Uk f , (12)

The Kumaresan and Tufts algorithm (KT) may also be written in normalised form as in

equation (9), but with the weight vector, w, now given by

EN e)

where .N is the first row of the noise subspace matrix of singular vectors, EN.

Thus, EPM/KT, the EPM pre-processed version of the KT algorithm, has the same form

as equation (11), but in this case,

(Uk FN)() and 3_-2 = up(14)
Sg gri UI

where m. is the first row of Uk, and g is the first row of (Uk FN).

EPM may also be appiied to the MLM method of Capon [10], which is then written as

m(Ho6) Uk C- u m_(P) (15)

M (l) Uk Uk' rM(O

Variants of the above algorithms, specifically designed for regularly spaced linear arrays,

and involving the location of complex polynomial roots in the z-plane [15), may also

benefit from the accelerated calculation of the singular vectors and matrix inversions made

possible by EPM. The numerator terms of the algorithms given above in equations (7) to

(15) may be written in the general form

P(O1 ) = mH(8.) X M(O) (16)

where, for example, X = (EN EP) in the MUSIC algorithm, and X = (Uk FN FP UV) in

the EPM/MUSIC algorithm, etc. We may now define the polynomial,

n- I
D(z) = F - (17)

j..-f+ I

where each of the coefficients, x- is calculated as the sum of the values along the j'
h

diagonal of X. Locating the roots of this polynomial is approximately equivalent, in the

case of data from a regularly spaced, uniformly weighted linear array, to finding the

peaks of the spatial spectral estimate given by equation (16,. Barabell et al 1151 have

shown that root-finding variants of such algorithms have enhanced signal location

performance over the more usual "spectral" versions that we have concentrated on in this

report.
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Again for the case of regular linear or planar arrays, sub-aperture processing may still be
utilised to combat coherent multipath or to analyse time series information, provided that
it is applied to the corresponding original data and reference matrices, D and M, prior to
EPM. The matrix Uk will then be that corresponding to the sub-aperture array manifold.

Signal powers and time-domain behaviour may be extracted [1,6] simply by replacing M
in the usual equations by A = (UV M). Each identified signal direction is referenced to a
particular column of the matrix A. Thus if these columns are collected together and
stored in a matrix, As, the time series associated with each direction is a row of the
matrix, T, given by [1]

T = (AV A,)'A, C ,(S

and the signal powers may be estimated as the diagonal elements of the matrix

P = T TH (19)

As the Monte Carlo simulation results described in section 5 show, EPM pre-processing
leads to improved angular estimates as a result of noise reduction. The fidelity of the
extracted time series, and the accuracy of the estimated powers will be improved over
results from the equivalent "conventional" high discrimination processing principally at low
signal to noise ratio, by virtue of the enhanced probability of resolution.

4.3. PROPERTIES OF EPM

EPM is equivalent to a spatial beamforming process, using the conjugate transpose of the
principal eigenvectors, UV, of M in place of the more usual beam steering vectors. The
effect is similar to directing a limited number of conventional beams into the angular
region of interest (14]. This may be illustrated by plotting the effective beam pattern,
which may be considered as a spatial filter transfer function. Fig. 3a shows a typical
function applied to the data space by EPM, generated by assuming a 4 beamwidth
angular region of interest, using a 16 element 0.5 wavelength spaced linear array, and
k = 5. Fig. 3b shows the function obtained using five equally weighted conventional
beams, directed at -1.78, -0.89, 0, 0.89 and 1.78 beamwidths away from boresight. The
beam positions have been chosen such that the resulting pattern approximately resembles
that of the eigenvector processor. In filter terms, the choice of beam positions gives a
trade-off between in-band ripple and out-of-band rejection. We have not explored the
effect of using differently weighted beams or irregularly spaced beams, for example. EPM
provides a secure basis for choosing the optimal maximum number of "beams", based on
knowledge of signal to noise, and automatically places those "beams" so as to give a
good trade-off as described above.

Although the angular estimates of signals located within the region of interest, derived
following EPM pre-processing are not sensitive to the validity of the assumed angular
frequency constraints, 0- and 0,., the same is not true of the signal extraction and power
estimation stages (equations (18) and (19)). If significant signal amplitudes exist at
unknown angles beyond these boundaries, the estimates of power and time behaviour may
degrade [1]. The same is true for any of the high discrimination algorithms if they fail
to locate one or more signals accurately. For example, the signal estimation performance
based on the output of MUSIC would deteriorate in a similar manner if the P(6i) of
equation (7) was also to be limited to a- 4 i < 8+. This sensitivity arises because the

inversion required by equation (18) is sensitive to power leakage into sidelobes which fall
beyond beyond 6- and 84.. This is illustrated by an example in Fig. 4, which shows a
typical filter function, as applied by equation (18) to a three target scenario, where we
have assumed that only two of the targets have been detected, the third being located
slightly beyond the assumed angular window delimited by the vertical dotted line at 8+.
The third target falls within the main "lobe" of the filter response, but has not been
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Fig. 4. A three source scenario is defined by the vertical broken lines surmoued by diamond shapes,

uldicating the positions and powers of the signals, The MUSI C spectral estimate, represented by the dotted
line, locates all three signals. However, assumning that 8, is insdicated by the vertical dotted line, estimation
of signal powers using equations (18) aid (19) ignores one signal postion and is in error, as shown by
the solid vertical lines surmouted by short hori,.ontal bars. The continuous line in the diagramn shows the

spatial filter function applied by the incorrectly supported pseudo-inverse in equation (18).
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reconstructions of equation (2). Vertical lines surmtnated by diamond shapes indicate she actual source

powers and positions. In this reconstruction it ise not possible to locate the majority of the signals with

confidence.
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Fig. 7. The continuous line shows the result of w,-' ysing the sane data as in Figs. 5 and 6 by

EPM MUSIC (equation (8)), processed in order to *educe the total number of eigenvectors to 26, and the
colmputation time by a factor of 56, At in Fig. C. the source positions an power estimates are well

matched to the actual source parameters. The minima of the MUSIC scan in this case are deeper than those
of Fig. 6 by' approximately 10dB as a result of the enhanced noise immunity conferred by the EPM
pre-processing.



Fig. 8. A plot of the locations of the zeros of the polynomial generated by equation (17) applied to the
MUSIC noise space eigenvectors used in Fig. 6. True signal locations are indicated by the short lines close
to the unit circle and the asswoned angular constraints (which denote the limits of Fig;. 6 and 7) by the

broken radial lines.

Fig. 9. A plot of the locationst of the zeros of the polynomial generated by equation (17) applied to the
EPAf(k=5);MfUSIC noise space eigenvectors wsed to create Fig. 7. True signal locations are indicated by the

short lines close to the unit circle and t6e assigned angular constraints (which denote the lintits of Figs. 6

and 7) by the broken radial lines.



detected. Thus the power estimate is higher than if only two targets were present, :he
excess being falsely attributed to the two identified angles and any spurious noise-related
detections. It may be possible to reduce such sensitivity by the application of multiple
constraint adaptive canceller techniques to null signals in the sidelobes of the EPM filter
during the power estimation step.

5. EXPERIMENTAL RESULTS

As a demonstration of the EPM technique, we present the results of processing a set of
simulated snapshots of data corresponding to a multiple source scenario, using EPM in
combination with the MUSIC algorithm. This is followed by a discussion of the results of
Monte Carlo analyses of data from a variety of two source scenarios, in which results
obtained from high discrimination algorithms acting on the normal covariance matrix are
compared to those obtained from the same algorithms acting on the reduced size
covariance matrix output from EPM. The actual Monte Carlo results are more
comprehensively presented for reference in the Appendices.

5.1. MULTIPLE SOURCE SCENARIO

The data matrix for the multiple source scenario consisted of 100 simulated snapshots of
complex data from a linear array of 100 omnidirectional elements separated with 0.5
wavelength spacing, receiving signals from 14 independent point sources distributed
between -15" in the far field. Independent samples of zero mean Gaussian noise were
added at each sensor and time instant.

As a basis for comparison, Fig. 5 shows the conventional matched filter response (an
average of the 100 single snapshot reconstructions given by application of equation (2)) to
this scenario. This plot displays the broad multiple lobed structure characteristic of this
method. It also serves to demonstrate that the discrimination problem is often more
related to a difficulty in the detection of low power signals which have been obscured by
the sidelobes of the high power signals, rather than simply a lack of resolution per se.

To demonstrate the performance of the new technique, we have derived two further
reconstructions of the same multiple source scenario, as analysed in each case by MUSIC.
In Fig. 6 the data has been processed in the normal manner, involving the eigen
decomposition of the full 100xl00 complex valued covariance matrix. In Fig. 7, the data
has been pre-processed using EPM, taking into account the assumed maximum angular
distribution of the targets of ±15 , and a dynamic range (signal to noise) estimate of only
6dB, to form a reduced (26x26) complex covariance matrix for input to the eigenvector
decomposition. The result, running typical serial Householder reduction and QL
diagonalisation routines 112), was a reduction in the time taken for this stage by a factor
of approximately 56, as would be expected. The reconstructions of Figs. 6 and 7 are
virtually indistinguishable, apart from the fact that the nulls in the pre-processed result
are deeper than those in the usual MUSIC plot by some 10dB. This has occured as a
result of discarding noisy degrees of freedom in the data via the EPM processing, and
indicates an improvement in the ability of the algorithm to extract signals from noise, as
is further demonstrated by the results of section 5.2.

To demonstrate the applicability of EPM to the z-plane root variants of high
discrimination algorithms, Fig. 8 shows the z-plane locations of the zeros of the
polynomial given by equation (17) in the root version of MUSIC. The data used was the
same as that for Figs. 5, 6 and 7. Fig. 9 shows the corresponding plot of roots from the
EPM pre-processed MUSIC algorithm. Root positions beyond the assumed field of view
(indicated by the radial lines) may be ignored.



DATA COLLECTION AND ANALYSIS ALGORITHM

1. RECORD DATA:
FOR each emitter separation

FOR each signal to noise ratio
FOR each repeat

generate new data matrix
FOR each algorithm

RECORD angle and power estimates onto disc
RECORD null depths

NEXT algorithm
NEXT repeat
RECORD average of covariance eigenvalue spectra

NEXT signal to noise ratio
NEXT emitter separation

2. ANALYSE DATA:
FOR each separation

FOR each signal to noise ratio
FOR each repeat

FOR each algorithm
FOR each angle estimate

test against thresholds in angle and power
assign targets to estimates
record positions and powers of resolved pairs

NEXT angle estimate
count total false alarms
count total resolutions

NEXT algorithm
NEXT repeat
FOR each algorithm

average probability of resolution
average false alarm rate

NEXT algorithm
NEXT signal to noise ratio
FOR each signal to noise ratio

FOR each algorithm
FOR each emitter

IF resolved THEN
calculate mean position
calculate bias of mean from true position
calculate standard deviation of angle estimates

END IF
NEXT emitter

NEXT algorithm
NEXT signal to noise

NEXT separation

Fig. 10. Monte Carlo data collection and analysis procedures.
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EPM(k-.3)lMUSIC. Asszaned angle of view front -2 to 42 beaintwidtk.
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5.2. MONTE CARLO ANALYSIS

5.2.1. DATA COLLECTION AND ANALYSIS

A more complete investigation of the performance of algorithms incorporating EPM has
been canied out via a series of Monte Carlo simulations. These enable comparison of the
performance of algorithms, with and without EPM, over many trials. The results are
collected in terms of such parameters as the bias and standard deviation of the angle and
power estimates, the probability of resolution and false alarm rate. Statistics have been
collected, based on 100 trials of each algorithm at each of a number of discrete angular
separations and signal to noise ratios. The results are presented in a similar format to
those of Barabell et al [131.

Fig. 10 is a summary of the procedure used in the collection and analysis of the
statistical data. During the Monte Carlo trials, the positions of all minima of P(0) and
their depths are recorded, together with the corresponding powers estimated using
equations (18) and (19), and an average of the eigenvalue spectrum of the covariance
matrix at each signal to noise ratio. During analysis, thresholds may be set in angle,
power or null depth in order to distinguish between correctly identified signals, false
alarms, and estimates which may be ignored. For example, Fig. 11 shows how thresholds
may be set in power and angle. First of all a noise level power threshold is set, all
signals falling below this line being rejected. Signals above this threshold are assigned as
detections if the estimate of (angle, power) falls within the window defined by an angular
uncertainty, 10, and a power uncertainty, I.P, each centred on the appropriate true signal
coordinate. All other detections are counted as false alarms. The statistical results
presented in the following sections (and in Appendices Al to A4 and A6) are all
conditioned on resolution (detection of both targets), as indicated in Fig. 10.

In the following sections, signal to noise ratio is measured in terms of the "array signal
to noise ratio" (ASNR) of one of the two targets. This is defined as ((signal to noise at
each element of the array, per snapshot) - 10 log1 0(n)).

5.2.2. TARGETS CLOSE TO BROADSIDE

The results presented in Figs. 12 to 17 relate to the analysis of 16 snapshots of data
from a 16 element linear array with 0.5 wavelength element spacing, and with 0+ and 0_
set to t14.5 (±4 beamwidths). Using a dynamic range of 6dB in the selection of the
significant basis vectors, Uk, has resulted in the dimension k being equal to 5, unless
otherwise stated. The target scenario simply consists of two equal powered random phase
signal sources in the far field, the first located at the broadside position (perpendicular to
the line of the array), and the second at a fractional beamwidth to one side. The
beamwidth referred to here is the angle from the peak of the main lobe of a matched
filter (equation (2)) placed on the first target location, to the position of the first null.

Fig. 12 shows the variation of the performance statistics as a function of ASNR (the
theoretical integrated signal to noise power ratio for each of the two emitters) for an
emitter separation of 0.1 beamwidths. The results, taken at 3dB signal to noise ratio
increments, are shown for the MUSIC algorithm acting on the 1616 covariance matrix
(dotted lines) and for MUSIC acting on the EPM processed SxS covariance matrix
(dashed lines). The solid line in the plot of standard deviation is the Cramr Rao bound
[161 for the problem, assuming uncorrelated emitters. A noise power threshold of
10 log, a(n) has been used, together with A0 = I beamwidth and AP = 6dB. In both
cases, as the ASNR rises, the probability of resolution increases (associated with a peak in
the false alarm rate), bias of the angle and power estimates tend to zero, and the
variance of the angle estimates, var(O), tend towards the CramEr Rao bound. The bias
and variance results are plotted for the "left-hand" signal, and thus negative angular bias



indicates that the nulls of P(8) corresponding to the signals have moved further apart.

Unexpectedly perhaps, the variance of the power estimate, var(), increases with rising
ASNR. Examining the results given in Fig. 13 and Appendix 1, we see that var(f1 )
decreases with increasing angular separation. This fluctuation of the power estimate is
likely to arise from mismatch between the derived direction vectors, as used in A5, and
the actual signal direction vectors. A mismatch in the direction vector of the "desired"
signal is likely to be correlated both with the noise background, and also with any residue
arising from poor cancellation of the second signal (as a result of an inaccurate angle
estimate), and would thus contribute to var(p1 ), in manner similar to that observed for
constrained adaptive cancellers [171. The primary root cause may thus be assumed to be
time domain correlation of the signals and noise. In support of this, we note that the
algorithm which delivers the values of var(Oi) closest to the Cramer Rao bound is
generally also associated with the lowest var(p1 ), and that both variances decrease as
angular separation and the number of snapshots increase (Appendix 1). Plotting var(i) as
a percentage of the true power results in a curve which tends towards a constant variance
as ASNR increases.

We see that, for this scenario, in addition to reducing the time taken for the computation
of the eigenvectors by a factor of approximately 32, processing by EPM has an effect on
performance which is roughly equivalent to a 5-10dB increase in array signal to noise
ratio. If the noise was distributed equally amongst all the available degrees of freedom
(and the signal was concentrated in the k primary degrees of freedom) before processing
by EPM, we might expect an improvement of approximately SdE in this case, and so the
observed change seems reasonable.

Fig. 13 shows a similar set of performance curves, plotted now as a function of emitter
separation (in 0.1 beamwidth increments) for an array signal to noise ratio of 21 dB. The
results again show that the performance of the EPM/MUSIC combination consistently
equals or improves upon that of MUSIC alone.

Further results, similar to those of Fig. 12, but demonstrating the behaviour of MUSIC,
KT, MEM, MLM, their z-plane root counterparts, and the EPM pre-processed equivalents
for a range of signal separations, are given in Appendix 1. Also included in that
Appendix are results obtained from analyses of only 5 snapshots of data. The degree of
improvement in performance is seen to depend on the choice of basic algorithm,
reflecting the different emphasis given by each of them to the covariance eigen
components. Generally, some improvement in performance is apparent, in addition to a
reduction of computation time, until the limits imposed by the chosen thresholds are
reached. Whilst the z-plane algorithm variants have enhanced performance over the
"spectral" versions when the array is perfectly regular, the application of EPM tends only
to lead to further improvements in probability of resolution at the expense of increased
angle estimation bias. Bias increases as the estimates become increasingly contaminated by
noise, and the z-plane roots move away from the unit circle.

In order to investigate the effect of choosing a particular threshold, we have analysed
Monte Carlo data so as to measure the variation of resolution probability and of false
alarm rate as a function of the noise level threshold. Thus, for a given signal separation,
plots such as those of Figs. 14 to 16 for EPM(k=5)/MUSIC may be produced, the
multiple curves corresponding to different array signal to noise ratios. Examination of
false alarm rate as a function of noise level threshold (Fig. 16) shows that false alarms
may be rapidly reduced at signal to noise ratios which are much higher or lower than
the range in which resolution is first achieved. This suggests that such false alarms are
largely related to the noise background. In the range for which resolution probability is
increasing, many false alarms are likely to result from the situation in which only one
target has been detected within the (AO,AP) window, and a second detection falls beyond
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one or both of the thresholds. Such a second detection is most likely to be "signal
related" rather than "noise related" when the resolution threshold is approached.

Finally in this section, Fig. 17 again compares the results of normal MUSIC processing
with that of EPM/MUSIC, for a signal separation of 0.1 beamwidths, and 16 snapshots of
data from the 16 element linear array. In this case however, the dimension k assumed
for EPM was 3, the minimum necessary for resolution of the two targets using MUSIC.
Computation time is further reduced, and the ASNR required for resolution lowered.
Thus, (within certain angular limits which we have not explored - see the following
section) if the number of targets, m, is known a priori, k may be reduced to m+I for
maximum enhancement of performance.

5.2.3. TARGETS FAR FROM BROADSIDE

Because of the similarity of the assumption made in the previous section regarding the
extent of the field of view (ie, signals confined to a region about the broadside position)
with an assumption of spatial oversampling, it is perhaps strange to consider being able to
use EPM for a field of view in which such oversampling cannot be assumed. However,
the rank reduction which forms the basis of the method is related to a more general
assumption of "redundancy" in the array which includes the possibility of oversampling.
Thus, having created a calibration matrix, M, corresponding to 0- = 30 and 6+ = 90
for example, its singular values decline in a similar way to those of the previous M,
based on the oversampling assumption. Once again, the maximum number of "significant"
basis vectors, Uk, can be determined from knowledge of the overall signal to noise ratio,
and an EPM filter defined. For the example of the 16 element linear array, Fig. IS
shows the EPM spatial filter function created by taking k = 5. The function is not as
sharply confined to the region of interest as was the case in Fig. 3a, but spreading over
a range of negative angles. However this will not be a problem, and the additional range
may be ignored. (We further note that, in this example, choosing k < 5 leads to nulls
of the spatial filter function being placed within the assumed angle of view, and a
consequent loss of performance in the region of such nulls.)

Taking the above situation, with two equal power independent sources located at 7.8 and
7.9 beamwidths (77 and 81 ) from boresight, Fig. 19 compares the performance of
MUSIC acting on the full 16x16 covariance matrix with that achievable via the 5x5 EPM
processed covariance estimate. Probability of resolution has improved as a result of the
EPM pre-processing, although by the equivalent of only a 2-3dB shift along the ASNR
axis, which is somewhat less than was the case for targets close to broadside. In this
case, variance of the angle estimate has actually increased following EPM. Appendix 2
gives further results, for a range of algorithms, corresponding to targets placed well away
from broadside. These results show a range of behaviour which depends on the basic
algorithm. For example, the performance of the KT algorithm is virtually unchanged in
the present case, whereas that of MEM is improved by the equivalent of an increase of
up to 10dB in the power of each signal as measured by probability of resolution, and by
approximately 5dB in terms of variance of the angle estimates.

5.2.4. TWO UNEQUAL POWER SIGNALS

High discrimination algorithms, of the type referred to in this report, have the important
characteristics of enabling the detection of multiple signals within the beamwidth defined
by the matched filter (equation (2)), and, perhaps even more importantly, of enabling the
detection of targets whose powers fall below the sidelobes of the conventional
beamformer. Combining these two features, we expect to be able to resolve signals of
differing powers within the main beamwidth.

Fig. 20 compares the performance of MUSIC with that of EPM(k=5)MUSIC for the
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example of two signals, located at 0 and 0.1 beamwidths with respect to broadside. In
this case, the ratio of the power of the signal at broadside to that of the signal at 0.1
beamwidths is -20dB, and the ASNR scales in Fig. 20 correspond to the lower power
signal. Again, the performance of the basic algorithm is improved through the application
of EPM, in this case by the equivalent of approximately 5 or 6dB ASNR. It is also
interesting to compare this result with that of Fig. 12 for the case of equal power
targets. It can be seen that there has been a slight deterioration in overall performance
for both MUSIC and EPM/MUSIC in the present case, in that the false alarm rate is
slightly higher and that the probability of resolution curve falls to zero at slightly higher
ASNR.
Further results for a range of algorithms, including the z-plane variants, are given in

Appendix 3.

5.2.5. ARRAY CALIBRATION ERRORS

The particular high discrimination algorithms referred to in this report are known to be
sensitive to errors in the calibration of the antenna array, embodied in the matrix M. In
order to investigate the effect of EPM pre-processing under such circumstances,
simulations were carried out of 16 snapshots from a 16 element linear array, as used in
previous sections, but with ±10% random amplitude weights and ±1% random phase
weights across the elements. These weights were chosen from independent rectangular
distributions. The particular set of weights used for these simulations is given in
Appendix 4, together with results which compare the behaviour of different algorithms.

For illustration in the present section, Fig. 21 shows results obtained for two equal power
signals, located at 0 and 0.2 beamwidths away from boresight (as measured on the basis
of the assumed uniform calibration). The algorithms used on the data from the
mis-calibrated array were MEM and EPM(k=5)/MEM, assuming a field of view extending
from -14.5' to +14.5

The presence of errors in the array calibration has caused the performance of MEM to
deteriorate considerably. Probability of resolution reaches only around 0.6 for ASNR less
than 60dB; false alarm rate is higher than in the accurately calibrated case (as can be
seen from Figs. Al.8 and AI.9) and continues to rise with increasing ASNR; standard
deviation of the angle estimates declines only gradually with increasing ASNR; and the
particular choice of errors in this case has resulted in an almost constant bias of both the
angle and power estimates. Pre-processing using EPM increases probability of resolution to
greater than 0.9 by 40dB ASNR, reduces the false alarm rate for the same thresholding
procedure (although the trend is still rising as ASNR increases), and reduces both
standard deviation and bias. Power estimation variance remains virtually unchanged after
EPM, following a curve which lies between those for the accurately calibrated case.

Further results, given in Appendix 4, show that the behaviour of MLM is similar to that
of MEM under the same circumstances, whilst MUSIC and KT seem to be more robust.
However, it is worth noting that these results have been collected f,)r a single perturbed
antenna calibration. More work needs to be carried out before general conclusions
regarding the relative robustness of algorithms can be derived with certainty.

6. CONCLUSIONS

We have shown how the svd based rank reduction of the constrained calibration matrix,
M, leads to a scheme for accelerating the data analysis required by modem high
discrimination algorithms such as MUSIC. We have referred to this scheme as an
"eigenvector projection method", or EPM. In the spatial resolution problem, the



achievable speed-up depends on the angular limits to the required reconstruction, the
degree of spatial oversampling, and the assumed signal to noise ratio. In general, our
experiments have indicated that the rank reduction may sometimes be taken to the
extreme of choosing only msI significant basis vectors, where m is the number of signals
to be detected, in order to obtain maximum processing economy without degradation of
the source reconstruction. The choice of this limit will depend in practice on the number
of high power signal sources to be reconstructed, and the range of spatial sampling rates
corresponding to the chosen field of view. The simulation results presented here have
shown that a substantial decrease in the processing time may be achieved. In addition, a
large number of Monte Carlo results have been presented which have demonstrated
significant improvements in the ability of a number of high discrimination algorithms to
extract signal parameters from noisy data, following processing by EPM. Furthermore,
EPM processing has been observed to have a beneficial effect on data taken from an
array whose calibration was randomly perturbed. Following consideration of the consistency
of our Monte Carlo results, we have concluded that the performance of svd-based
algorithms, for a perfectly calibrated array, is limited primarily by the cross-correlation
between the signals and the additive noise, as perceived through a limited number of
snapshots. Finally, we note that, although demonstrated here using linear arrays, EPM is
equally applicable to alternative array geometries.
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APPENDIX 1. MONTE CARLO RESULTS: TWO TARGETS CLOSE TO BROADSIDE

Contained in this appendix are a number of results relating to the problem described in
section 5.2.2. Data from a uniformly weighted 16 element 0.5 wavelength spaced linear
array, receiving signals from two tar-field random phase point sources, has been simulated
and analysed by a variety of high discrimination algorithms and their EPM pre-procesed
counterparts. Results, in terms of probability of resolution, false alarm rate, and bias and
variance of the resolved angle and power estimates, are plotted in a variety of ways as
follows:

Section Al. I: all as a function of array signal to noise ratio (ASNR) for a variety of
angular separations.
Section Al ,2: probability of resolution as a function of the average ratio of second
to third eigen'ialise of the data covariance estimate.
Section AI.3: all as a function of angular separation for a given ASNR.
Section Al1.4: probability of resolution and false alarm rate as a function of noise
threshold, parameterised by ASNR.

Each set of plots corresponds to results from a particular group of algorithms, as follows:

A: MUSIC -------- B: EPM(kz5)/MUSIC C: EPM(k=3)/MUSIC
KT ...... EPM(k=5)/KT EPM(k=3)/KT
MFM ------- EPIM(k "5)/MEM EPM~k=3)/MEM
MLM ---- EPM(k=5)/MLM EPM(k=3)/MLM

0: ROOT-MUSIC E: EPM(k=5)/ROOT-MUSIC
ROOT-KT EPM(k=5)/ROOT-KT
ROOT-MEM EPM(k=5)/ROOT-MEM
ROOT-MLM EPM(k=5)/ROOT-MLM

Al1.1. RESULTS AS A FUNCTION OF ASNR

The results as a function of ASSR are plotted as follows:

Location of signals
?Jumber of (beamwtdths from~

Figure Methodi sgnapshpts -bnresipht)

AIAl A 16 0, 0.1
A1.2 B3
AI.3 C
A1.4 D

A1.5 E

A1.6 A 5
AI.7 B

A1.8 A 16 0, 0.2

A1.9 B
A1.10 C
A1.11 D
A1.12 E

Al13 A 5
AI.14 0



AlI.15 A 16 0, 0.3
AI. 16 B
AI. 17 C
Al.18 A 5
AI.19 B

At.20 A 16 0, 0.4
A1.21 B

A1.22 A 5
A1.23 B

Comparing Figs. 1.1 and 1.7, for example, we see that EPM(k=5) pre-processing causes
algorithms to perform at least as well for 5 snapshots in this situation as do the
straightforward algorithms for 16 snapshots.

A1.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO

Since the high discrimination algorithms under consideration depend on the separation of
signals as perceived from the point of view of the eigen basis of the estimated covariance
matrix, it was thought that plotting against some measure based on the average eigenvalue
spectrum might allow a more compact representation of the statistical results.
Qualitatively, one might expect that the likelihood of successful resolution would depend
on the separation of the signal subspace eigenvalues from those of the noise space 11). In
particular, for the case of two partially correlated signals investigated here, the magnitude
of the second eigenvalue with respect to the noise background is clearly important. We
have therefore plotted our results as a function of E(2)/E(3), where E(2) and E(3) are,
respectively, the averages of the second and third eigenvalues of the covariance matrix. In
the case of the EPM pre-processed methods, the eigenvalues are those of the reduced
size covariance matrix.

A selection of the probability of resolution results as a function of eigenvalue ratio are
plotted as follows:

' Location of signals

Number of (beamwidths from

FEiure Me t hods snapshots boresight)

AI.24 A 16 0, 0.1
AI.25 B

$ AI.26 C

A1.27 A 5
A1.28 B

A1.29 A 16 0, 0.2
A1.30 B
A1.31 C

A1.32 A 5

AI.33 B

A1.34 A 16 0, 0.3
A1.35 B
A1.36 C

AI.37 A 5
A1.38 B



For a given number of snapshots and angular separation MUSIC, for example, achieves a
high probability of resolution for approximately the same eigenvalue ratio in both normal
and EPM forms. However, in general, as can be seen from these plots, the eigenvalue
ratio required for resolution is a function both of signal separation and number of
snapshots, the latter corresponding to "separation" or decorrelation in the time domain
(both between the signals themselves and the noise background - see Appendix 7). We
therefore appear not to have a convenient means of compressing our statistical results.

A1.3. RESULTS AS A FUNCTION OF ANGULAR SEPARATION

A selection of results have been replotted as a function of angular separation for a given
ASNR, as follows:

Number of
Fleure Methods snapshots ASNR (dB)

A1.39 A 16 21

A1.40 B

AI.41 A 5
A1.42 B

Al.4. RESULTS AS A FUNCTION OF NOISE THRESHOLD

Further to the example given in Figs. 12 to 14, described in section 5.2.2, we present a
few plots of probability of resolution and false alarm rate as a function of noise power
threshold and ASNR for a given angular separation. The results are as follows:

Loeation of signals
Number of (beamwidths from

Figure Method snapshots boresight)

A1.43 MUSIC 16 0, 0.1
AI.44 EPM(k-5)/MUSIC

AI.45 KIr
AI.46 EPM(k-5)/KT

A1.47 MEM
AI.48 EPM(k-5)/MEM

AI.49 MLM
A1.50 EPM(k-5)/MLM
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APPENDIX 2. MONTE CARLO RESULTS: TWO TARGETS FAR FROM BROADSIDE

Contained in this appendix are a number of results relating to the problem described in
section 5.2.3. Data from a uniformly weighted 16 element 0.5 wavelength spaced linear
array, receiving signals from two far-field random phase point sources, has been simulated
and analysed by a variety of high discrimination algorithms and their EPM pre-processed
counterparts. Results, in terms of probability of resolution, false alarm rate, and bias and
variance of the resolved angle and power estimates, are plotted in a variety of way, as
follows:

Section A2.1: all as a function of ASNR, for a number of angular separations.
Section A2.2: probability of resolution as a function of the average ratio of second
to third eigenvalue of the data covariance matrix.

Each set of plots corresponds to results from a particular group of algorithms, as follows:

A: MUSIC ----- B: EPM(k=5)/MUSIC
KT .......... EPM(k=5)/KT
MEM ---.-. EPM(k=5)/MEM
MLM --- EPM(k=5)/MLM

C: ROOT-MUSIC D: EPM(k=5)/ROOT-MUSIC
ROOT-KT EPM(k=5)/ROOT-KT
ROOT-MEM EPM(k=5)/ROOT-MEM
ROOT-MLM EPM(k=5)/ROOT-MLM

A2.1. RESULTS AS A FUNCTION OF ASNR

The results as a function of ASNR are plotted as follows:

Location of signals
Number of (beamwidths from

Flure Methods snapshots boresight)

A2.1 A 16 7.8, 7.9
A2.2 B
A2.3 C
A2.4 D

A2.5 A 16 7.7, 7.9
A2.6 B

A2.7 C
A2.8 D

A2.9 A 16 7.6, 7.9
A2.10 B
A2.11 C
A2.12 D

A2.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO

The remarks in section A1.2 are pertinent to the following plots of probability of
resolution:



Location of signals
-Y-&-r Mthds Number of (bearnwiciths fromFiaore- hehd snsot s b---ores fiht)

4A2.13 
A 16 7.8, 7.9

A2.14 B
A2.15 A 16 7.7, 7.9
A2.16 B
A2.17 A 16 7.6, 7.9A2.18
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APPENDIX 3. MONTE CARLO RESULTS: TWO UNEQUAL POWER SIGNALS

Contained in this appendix are a number of results relating to the problem described in
section 5.2.4. Data from a uniformly weighted 16 element 0.5 wavelength spaced linear
array, receiving signals from two far-field random phase point sources, has been simulated
and analysed by a variety of high discrimination algorithms and their EPM pre-processed
counterparts. Results, in terms of probability of resolution, false alarm rate, and bias and
variance of the resolved angle and power estimates, are plotted as follows:

Section A3.1: all as a function of (ASNR) for a variety of angular separations.
Section A3,2: probability of resolution as a function of the average ratio of second
to third eigenvalue fo the data covariance matrix.
Section A3.3: all as a function of angular separation for a given ASNR.

The ratio, P1IP2, where P1 is the power of the source at 0 beamwidths and P2 is the
power of the other signal, is maintained at -20dB throughout. The ASNR scale in each
of the graphs corresponds to the lower power signal.

Each set of plots corresponds to results from a particular group of algorithms, as follows:

A: MUSIC ----- B: EPM(k=5)/MUSIC
KT .......... EPM(k=5)/KT

MEM ------- EPM(k=5)/MEM
MLM ---- EPM(k=5)/MLM

C: ROOT-MUSIC D: EPM(k=5)/ROOT-MUSIC
ROOT-KT EPM(k=5)/ROOT-KT
ROOT-MEM EPM(k=5)/ROOT-MEM
ROOT-MLM EPM(k=5)(ROOT-MLM

A3.1 RESULTS AS A FUNCTION OF ASNR

The results as a function of ASNR are plotted as follows:

Location of signals
Number of (beamwidths from

Fivure Methods snapshots boresight)

A3.1 A 16 0, 0.1
A3.2 B
A3.3 C
A3.4 D

A3.5 A 16 0, 0.2
A3.6 B
A3.7 C

A3.8 D

A3.9 A 16 0, 0.3
A3.10 B
A3.11 C
A3.12 D



A3.2. RESULTS AS A FUNCTION OF EIGENVALUE RATIO

A selection of probability of resolution curves have been re-plotted as a function of
E(2)IE(3), where E(2) and E(3) are respectively the average values of the second and
third largest eigenvalues of the sample covariance estimates.

Location of signals
Number of (beanmidths from

Fgure Methods snapshots boresight)

A3.13 A 16 0, 0.1
A3.14 B

A3.15 A 16 0, 0.2

A3.16 B

A3.17 A 16 0, 0.3
A3.18 B

A3.3. RESULTS AS A FUNCTION OF ANGULAR SEPARATION

A selection of results have been replotted as a function of angular separation for a given
ASNR (corresponding to the signal located at broadside), as follows:

Number of
Figure Methods snapshots- ASNR (M

A3.19 A 16 21
A3.20 B
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APPENDIX 4. MONTE CARLO RESULTS: ARRAY CALIBRATION ERRORS

Contained in this appendix are a number of results relating to the problem described in
section 5.2.5. Data from a 16 element 0.5 wavelength spaced linear array, receiving
signals from two far-field random phase point sources, has been simulated and analysed
by a variety of high discrimination algorithms and their EPM pre-processed counterparts.
The calibration of the array is assumed by the algorithms to correspond to uniform
amplitude and phase weighting across the elements, but in fact has been perturbed b)
randomly distributed errors chosen from independent rectangular distributions. Amplitude
errors at each element are between ±10%, and phase errors are between ±1%. Assumed
and actual weights are as follows:

assumed assumed perturbed perturbed
Element amplitude phase (rads) amplitude phase (rads)

1 1.0 0.0 0.917188 -1.204603x10
- 2

2 1.0 0.0 0.978620 4.648638x10
- 2

3 1.0 0.0 1.072075 -1.910583x10-
2

4 1.0 0.0 0.934826 1.410884x10l
2

5 1.0 0.0 0.999926 -2.143270x10-
6 1.0 0.0 1.092877 -0.472322x10-

2

7 1.0 0.0 1.057702 0.350052x10
-2

8 1.0 0.0 1.036057 0.536220x10
-
2

9 1.0 0.0 1.034596 3.968480x10l
2

10 1.0 0.0 0.935603 4.797734x10
l 2

11 1.0 0.0 0.954129 3.087766x10-
2

12 1.0 0.0 0.951808 2.046928x10-2

13 1.0 0.0 0.936404 -3.966099x10
- 2

14 1.0 0.0 0.901499 -5.989737x10
- 2

15 1.0 0.0 0.994882 -1.169561x10
- 2

16 1.0 0.0 0.952047 3.292482x10
- 2

Results, in terms of probability of resolution, false alarm rate, and bias and variance of
the resolved angle and power estimates, are plotted as a function of ASNR. Each set of
plots corresponds to a particular group of algorithms as follows:

A: MUSIC ----- B: EPM(k=5)/MUSIC
KT .......... EPM(k=5)/KT
MEM ---- EPM(k=5)/MEM
MLM ....-- EPM(k=5)/MLM

C: ROOT-MUSIC D: EPM(k=5)/ROOT-MUSIC
ROOT-KT EPM(k=5)/ROOT-KT
ROOT-MEM EPM(k=5)/ROOT-MEM
ROOT-MLM EPM(k=5)/ROOT-MLM

The results as a function of ASNR are plotted as follows:

Location of signals
Number of (beamwidths from

Filure_ Methods snapshots boresight)

A4.1 A 16 0, C.I
A4.2 B
A4.3 C
A4.4 D



A4.5 A 16 0, 0.2
A4.6 B

A4. 7 A 16 0, 0.3
A4. 8 B

A common feature in the results from all algorithms is a bias in the angular estimates.
The magnitude (and possibly even the sense) of any such bias is likely to depend in
practice on the precise nature of the calibration errors. The present results can only be
considered as preliminary.

It is interesting to note that, in the cases of MUSIC and KT and the EPM equivalents,
the variance of the angle estimate is slightly below the Cram~r Rao bound. This is
because the bound is only valid for unbiased estimates of the unperturbed problem.
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APPENDIX 5. TIME DOMAIN CROSS CORRELATIONS FOR MONTE CARLO TRIALS

In section Al.2, brief mention was made of the residual time domain correlation of the
two random phase signals employed in the Monte Carlo trials. Clearly, there will 'e a
difference in the correlations, both between the signals and the background noise, in the
results based on 16 snapshots of data and those based on or'. 5 snapshots. To investigate
the time domain decorrelation between the signals we have repeatedly generated pairs of
32, 16 and 5 snapshot sequences of random phase signals, and measured the distribution
of the magnitudes of their cross correlation coefficients, p, where

IpI 2 = I .H X1 
2 / {xH X){P y)} (AS.)

and j and X denote the two time series.

Fig. A5.1 is a histogram showing the distribution of p, as obtained over 2000 trials for
the 16 snapshot case, and Fig. A5.2 is the equivalent histogram for the 5 snapshot case.
We note that for 16 snapshots, the cross correlation coefficients fall below 0.6, and that
the distribution peaks at approximately 0.2. For 5 snapshots, on the other hand, the
graph includes the possibility of almost perfectly correlated signals, and features a very
broad distribution, peaking at around 0.4. For comparison with these results, Fig. A5.3
gives a distribution for p obtained from pairs of 128 snapshot time series. Corresponding
to the further decrease in the average cross correlation coefficient in this ease, we should
expect a further decrease in the array signal to noise ratio (and ratio of second to third
eigenvalue) required for resolution. This is demonstrated by the results of Fig. 5.4, which
show the performance of EPM(k=5)/MUSIC, /KT, /MEM, and /MLM operating on 128
snapshots of data from a 16 element linear array, as in Appendix 1.

The broad distributions of cross correlation coefficients observed here, and the known
sensitivity of the particular algorithms investigated to the assumption of uncorrelated
signals, calls into question the validity of the Monte Carlo results, based as they are on
only 100 trials at each ASNR. This is particularly important for the results based on only
5 snapshots. This matter is investigated in Appendix 6.
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APPENDIX 6. CONSISTENCY OF MONTE CARLO RESULTS

The variability of the signal time domain cross correlation coefficients, and the sensitivity
of the algorithms to the assumption of uncorrelatedness (discussed in section A1.2 and in
Appendix 5) calls into question the consistency of our Monte Carlo analyses, based as
they are on only 100 trials. In order to investigate this, a small number of experiments
have been repeated, and the results compared with those of the earlier trials. The results
are presented here by superimposing the two sets of curves obtained from a number of
such instances. The results are typical of those observed. The algorithms used are as
follows:

A: MUSIC ----- B: EPM(k=5)/MUSIC
KT .......... EPM(k=5)/KT
MEM ------ EPM(k=5)/MEM
MLM EPM(k=5)/MLM

The results are plotted as follows:

Location of signals
Number of (beamwidths from

*.vure Methods snapshot.s boresight)

A6.1 A 16 0, 0.1
A6.2 B

A6.3 A 5 0, 0.1
A6.4 B

The probability of resolution curves have been re-plotted as a function of E(2)/E(3)
(where E(2) and E(3) are the averaged second and third largest eigenvalues of the sample
covariance matrix) as follows:

Location of signals
Number of (beamwidths from

Figure Methods snapshots boreslght)

A6.5 A 16 0, 0.1
A6.6 B

A6.7 A 5 0, 0.1
A6.8 B

Comparing the twin sets of results in each figure, we conclude that, for the purposes of
this report, the Monte Carlo data is more than sufficiently consistent, even for the 5
snapshot case. In particular, curves corresponding to different algorithms are seen to
retain their shapes and relative positions along the ASNR axis, and false alarm rates,
biases and variances remain consistent. In addition, the probability of resolution reaches
100% at approximately the same values ASNR (and eigenvalue ratio) in each of the two
sets of trials.

As a further check on the validity of our results, an additional set of experiments has
been carried out, in which perfect time domain decorrelatior. of the two signals has been
achieved over 5 snapshots by using regularly sampled sinusoidal waveforms. The algorithms
used were as in group B. Fig. A6.9 shows the corresponding plots of the performance
measures for this situation (two equal powered signals located at 0 and 0.1 beamwidths
from boresight). In order to directly compare these results with those previously obtained



from the random ph' .e signals, Monte Carlo results from both experiments have been
plotted together in Fig. 6.10. Figs 6.11 and 6.12 are the corresponding plots of
probability of resolution as a function of second to third eigenvalue ratio.

It can be clearly seen from Figs. 6.9 to 6.12 that the results for uncorrelated signals are
remarkably similar to those for experiments involving a wide distribution of cross
correlation coefficients (Fig.AS.I). Only false alarm rate differs significantly, being lower
for the fully decorrelated signals. Such similarity indicates that the variation of
performance measures with respect to the number of snapshots is largely a result of
changing the cross correlation between the signals and the noise background, an element
which we have not been able to control. Thus, for a small number of snapshots, the
limiting factor in performance when using SVD based algorithms, for a given angular
separation, is cross correlation between the noise and the signals.
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APPENDIX 7. RELATIONSHIP BETWEEN ASNR AND E(2)/E(3)

In section A1.2, re-plotting of the Monte Carlo results as a function of eigenvalue ratio
was justified on the basis that resolution of two targets would intuitively seem to depend
on the ratio of second to third eigenvalue (E(2)/E(3)) of the sample covariance estimate.
However, our results suggested that, even for signals which were uncorrelated in the time
domain, spatial domain correlation (the cross correlation of the signal steering vectors)
was still important, and that simplification of the presentation might not be possible.
Nevertheless, if we examine the relationship between the ASNR and the ratio E(2)/E(3),
as a function of emitter separation, some progress can be made.

Figs. A7.1 to A7.4 show curves relating the average measured eigenvalue ratio, E(2)/E(3),
to the ASNR for emitter separations ranging from 0.1 to 0.6 beamwidths. A corresponds
to the separation of the parallel portions of the curves along the E(2)/E(3) axis. For
un-processed data (A), and EPM(k=5) pre-processed data (B), the results are arranged as
follows:

Location of signals
Number of (beamwidths from

.Feure Methods snapshots boresight)

A7.1 A 16 0, 0.1 to 0.6
A7.2 B

A7.3 A 5 0, 0.1 to 0.6
A7.4 B

We see that the curves in each set converge to a constant eigenvalue ratio at low ASNR
as the second eigenvalue is limited by noise. Note that the ratio is greater than 0dB as a
result of non-whiteness in the noise arising from the limited time and space apertures. At
higher ASNR, the curves form a parallel set. The shift. /, along the eigenvalue ratio
axis, depends on angular separation. Taking the curves of Fig. 7.2, and referencing A to
zero for a separation of 0.1 beamwidths, Fig. 7.5 shows a set of EPM(k=5)/MUSIC
probability of resolution curves (corresponding to the separations 0.1, 0.2, 0.3, 0.4, 0.5,
and 0,6 beamwidths) plotted as a function of E(2)/E(3) + A. Fig. 7.6 shows a similar set
of curves for EPM(k=5)/KT. In both eases the signal to noise threshold for detection has
been deactivated. It seems clear from these results that, as E(2)/E(3) + A increases, the
probability of resolution curves converge to approximately the same line. The same is true
of curves measured for all the algorithms investigated in this report.
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