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The problem of interpreting transient tracer surveys in the ocean is formally identified as correspond-
ing to placing a "terminal constraint" on a"distributed system boundary control problem." The math- -. ""
ematics available in control theory can then be brought to bear on the tracer data. Some of control
theory is reviewed in the context of a simple tracer example to isolate the major issues. To use a transient
tracer to invert for flow and mixing rates involves a two-step process: start with an initial model, found
independently, and determine if acceptable boundary conditions drive the model to reproduce the
interior transient tracer at the observation times. If the model succeeds in that reproduction, one stops;
the model is adequate and need not be changed. Only if this test fails does one obtain constraints on the
fluid flow and mixing, which can be invoked in parameter estimation techniques of control theory.
Terminal constraint observations can also be used to estimate the tracer concentrations at earlier times
using a smoothing filter.

1. INTRODUCTION problem was solved. By regularization is meant the problem

Direct inference of ocean circulation parameters (flow and of determining whether the boundary conditions governing

mixing rates) from measurements of transient "dyes" in the the evolution of the tracer field could be determined from

ocean is not entirely straightforward. In two previous papers interior, noisy observations. As is discussed in PI, regu-

[Wunsch, 1987, 1988] (hereafter referred to PI and P2, respec- larization is equivalent to solving a diffuse system upstream

tively) I began what was intended to be an exploration of and backwards in time. That such solutions are possible was
procedures for making direct inferences about the circulation demonstrated by one-dimensional pipe flow models through
while simultaneously evaluating the information content of what is called a "'whole-domain method," in which the unsta- .,, ,)'

the tracer fields relative to that of more conventional oceano- ble components of the solution are controlled in a global sense

graphic measurements. by treating all of space and time simultaneously. Although not
P1 pointed out that unlike the problem of steady tracers, an inverse problem, the methods employed are similar to

one had to distinguish between three distinct types of math- those used for inverse ones.

ematical system: (1) the forward problem, (2) the inverse prob- In P2, application was made to determining ventilation
1em, (3) the regularization problem. The results can be summa- rates of the eastern Atlantic thermocline, combining geo- I

rized by recognizing that most discussions of the solution of strophic and vorticity constraints with those of helium-3 ('He)

partial differential equations focus upon the conventional, and tritium (3H) in a three-dimensional, time-dependent
well-posed forward problem, in which perfect (in the Cauchy- system. Regularization was accomplished by writing the miss-

Hadamard sense) boundary conditions are used to step a ing boundary conditions as unknown coefficients of a bound-

system forward in time and space. Almost all ocean models ary Green's function. The procedures used in both papers were
T are formulated in this sense. Unfortunately, the prohl~em ofalvariants of whole domain ones derived from inverse meth- ,.

using oceanic observations with models (not just tracer ods.traer The great advantages of whole domain methods are their
models) is fundamentally that of making inferences about ill- s T o ept tei owe dain etyher ret

pose sytem, (Te trmioloy "il-psed is omehatun-simplicity of concept, their power, and flexibility. Their great~posed systems. (The terminology "ill-posed" is somewhat un-

fortunate, suggesting shortcomings in the investigator who disadvantage is the rapid escalation of the computational load

works with such systems. But well-posed problems exist that occurs in three space dimensions and time. Much of the
R discussion in P2 concerned means to reduce the system size to

mainly in textbooks and rarely in the universe of scientists one mcu onitn t 2 te means trdat

trying to compare models with data). one me me consistent with the available data.
The inverse problem for tracers, steady or otherwise, ishad already become

easily stated: given a set of observations of a tracer C(x , ti) clear to me that many of the methods being employed could

distributed irregularly and with specificable noise statistics be unified under the general umbrella of "control theory." The
distraibuteirrgulal and onith s le nies e atistics purpose of this present note is to point out the formal simi- ,
overlarity between many control problems and solutions and those
flow parameters. For steady ocean tracers, a decade of work involved in understanding and using ocean tracers. The calcu-
has led to a variety of procedures for making inferences, either ivol ed rta n and uin oceanotra hclcu-

in astaistcalsene (~g. maimu lieliood orin bond-lations are freed of the many regional oceanographic problems
ing a statisticalenvelope sense (egformaximUm likelihood) [1984] or Schlit- of P2 so as to isolate the mathematical issues, which are very

i v s ( f mh[ ] t general. This paper is not a review of control theory; that
zer [1987]). subject is very large, subsuming major parts of modern engi-In Pl and P2, it was shown, however, that once time is,",- ,

amitted P ithe wasbl shn, hwevper, tace tien i neering and pure and applied mathematics. Indeed, one of theadmitted to the problem in the shape of a tracer transient obstacles to learning control methods is the overwhelming size !

(while still keeping the flow field steady), inferences about the of the literaure.

flow parameters had to be deferred until the regularization
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tration, the problem will be formulated as almost a "cartoon" or, in finite differences, or finite elements, etc., as
tracer problem, abstracted from the situation in P2, as follows. C0 + 1) = AC(t) + Bu(t) (4)

A, tracer, denoted C, is supposed to satisfy a generic
advection-diffusion equation of form where the matrices A and B are constant with time (to keep

C the discussion as simple as possible; this assumption is not
at" + v • VC = VaVC - AC + Q (1) necessary). The elements of the vector C(t) are the values C(x,,

t) at the grid points xi or the finite element coefficients at time
where a is a mixing tensor, A. represents a decay rate, and Q (or any other proper representation of the -state" variables C.
represents interior sources and sinks. To generate simple examples. I will use an elementary 4 x 4

We suppose that as with Freons, 3 H, and 3 He, a time his- box model (Figure 1), a reduced version of that used in P2. Let

tory of the surface concentration C(x, y, z = 0, t) is known, the net flux of mass from box i to box j be written J ,' with the

with an error c(x, t) of specified mean square. Suppose further, resulting tracer flux, then C,J,. The model is thus represented

that at time ti , an oceanographer arrives on the scene and by a crude form of upstream differencing, but I emphasize that

surveys the tracer concentration within some interior volume much more complex discrete representations of (I) can be

of ocean, obtaining a set of concentrations written in the form (4) and the simplification to a box model
does not remove any of the fundamental mathematical issues;

C(x,, if) = C(xi, If) + gxi, if) (2) the appendix makes this assertion explicit. The model in

where E again represents the errors (analytical and sampling). Figure 1 is intended to be abstract and generic to focus on the

The survey time is supposed sufficiently short that we can essential mathematical issues. For convenience of reference, 1.

regard all the observations as having occurred at the single the boxes numbered 1-4 sometimes will be referred to as the
time tI. "surface" layer, which might correspond to the ocean surface

Suppose at t = 0, the initial tracer distribution in the region layer, with the horizontal coordinate being either latitude or

is known C(x, t = 0) = Co(x). Co may well be zero, with little longitude. Explicit geographical identification is, however, nei-

or no uncertainty, as with the tracers already mentioned, if ther necessary nor intended here. Similarly, the physical inter-

t = 0 is in the early 1950s (say), or it might be the result of a pretation of the J,, need not distract us; readers who wish to

previous survey some years before, in which case its errors pursue the question are referred to P2 or Keeling and Bolin

must also be accounted for. [1967].

Conventionally, data like those described (e.g., the Transient Under these circumstances, for any interior box i, in the

Tracers survey of the North Atlantic) have been used as fol- absence of sources or sinks, the time evolution is described as

lows: one takes a dynamical model (as Sarmiento [1983] took At
the K. Bryan model), imposes the boundary conditions at the C,(t + 1) = Cj(t) - ..AtCAI) - - CA)Ji + - Cjt)jj
surface, and computes the model distribution of tracer C +

through time, stopping the calculation of model time ti . The where the summation on j is over all neighbors to box i, At is
calculated tracer is compared with the measured one, and the the time step, and V is the box "volume." We took At/V = 0.1.
result is deemed acceptable or not. If the results are sufficiently The rows of A appearing in (4) sum to 1 - ., because mass
similar, one concludes that the tracer distribution has thus conservation requires the Jj and J, entering and leaving a
"verified" the model. box to sum to zero, except in the boundary boxes; ; has been

Consider now the more common problem when there are set to zero here.
discrepancies too large to ignore. It is often asserted that the The term Bu represents the boundary conditions in the
great power of tracers lies in their integration of the circu- shaded boxes of Figure 1; they are being taken here as speci-
lation over long distances and times. But this integration is fled values of the time derivatives of the concentrations there.
simultaneously their great weakness. Suppose the model allud- Unless otherwise specified, all vectors are column vectors.
ed to were "perfect," having correct flows and mixing. How- More generally, this term can also represent any interior
ever, if there are slight systematic errors in the surface bound- sources or sinks. The separation of the structures of B and u is
ary conditions (e.g., that the tritium concentration in some somewhat arbitrary; they can be chosen at the investigator's
region is estimated to be 10% higher than it really was for 10 convenience. Here I have opted to let B consist of a matrix
years), then this small systematic error will accumulate in the which specifies, through its nonzero elements, those boxes in
model, in some cases at regions far from the initial difficulty. which boundary conditions affect the interior and put interior
The final comparison between computation and measurement Q, including ;., to zero. The vector u is chosen to be a scalar
may well be a poor one, leading perhaps to the incorrect function of time producing time histories in the active boxes
conclusion that the model was in error. It was this specific which are identical. To be as explicit as possible, the full A
concern about boundary conditions which motivated PI. P2 matrix and B are written out in Figure 2.
showed that uncertainty about the tracer time history at the
boundaries leads to treating the boundary conditions as part
of the problem unknowns, rather than, as one is taught and 2.1. The Forward Problem"%,--

teaches, as "given." The necessity of treating boundary con- The forward problem is specify Bu (see Figure 3a) and cal-
ditions as part of the system unknowns is what leads us to culate forward in time from an initial concentration
control procedures. C(t = 0) = 0. After tf = 14 time steps (define At = I). the dis-

Consider a bounded volume of ocean. Equation (1) is now tribution of tracer in the boxes is as shown in Figure 3h. (P2
supposed to govern a region with v, a known perfectly and discusses the size of the time step necessary for stability.) For
completely. Equation (1) can be rewritten as illustration, this solution is deemed the reference case: the

fluxes Jj are assumed to be correct, and the tracer distri-
OC(x, 0 = A I(C(x, t), Q) (3) bution, at the end of t time steps is taken as "truth." Here u

was the scalar u = exp (I), t = 0 to 6. u = 0. thereafter so that
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Fig. 1. Simple box model used to illustrate control form of transient tracer problem. The four corner boxes (stippled)
are not involved in the calculation: boxes with partial shading are regions in which formal boundary conditions are
required. The flow fields J. used in the computations are displayed with the numerical values attached. Concentrations in
boundary boxes from which there is no flow into the interior are physically irrelevant ("unobservable"), e.g., box 9.
C'oncentrations in boxes 8, 12. 14. and 15 are specified as zero. Active interior boxes are 6, 7, 10, and 11.

all boundary boxes at the top and left have the same history. exist any values of u, such that the system (4) is carried from
B vanishes in the bottom and right boxes, fixing zero co :- its initial conditions to the terminal conditions as observed. If
centration there (Figure 2 (bottom)). such a u exists and it is acceptable, then the flow field is

A simple illustration of the bias problem is obtained by consistent with the transient tracer distributions. If no such u
recomputing in the forward direction with the boundary con- can be found, then the flow field is not consistent with the
centration time rate of change in box 5 artificially raised by transient tracers, can be rejected, and hence modified. But we
0.5 tracer units. At tf = 14. the biased forward calculation do not need to grapple with the problem of determining a
gives the values displayed in Figure 4. The error in C(tr) is modified flow field until it has been demonstrated that the old
caused solely by the error in the boundary conditions. (Use of one is inconsistent with the observations.
the concentration time rate of change for the boundary con- An "acceptable" set of boundary conditions would be those
ditions, rather than concentration itself, does exaggerate the not in conflict with what is known a priori about them. At one
effect of the systematic error. But the present system is being level, the boundary concentrations may only have to be posi-
computed for only 14 time steps and basin scale models inte- tive to be acceptable. Or. one may have some measurements
grated for thousands of time steps would accumulate poten- of them to which the calculations most conform within the
tially massive systematic errors from concentration boundary error estimate. We will show below how to explicitly accom-
conditions.) modate numerical values of boundary data where they are

availiable. For the moment, however, attention is confined to
2.2. The Interse Prohlem the case where they are only required to be physically realiz-

The oceanographer arrives with his ship at time t = tf and able (i.e.. positive and not infinite in value). A4.
measures with some error the concentration shown in the It is possible to attempt simultaneously to modif) .he model
boxes of Figure 3h. including the boundary boxes. He may and the boundary conditions -initial conditions, but given the
also know the boundary concentrations of Figure 3a through size and complexity of time evolving systems, there is real
time in the surface boxes, again with an error. The inverse advantage to being able to adopt a stepwise approach. One
problem is infer the J,, (or. equivalently, the elements Aq of first asks the simpler question of whether all discrepancies can
equation (4)). be eliminated acceptably through modification of estimates ofAs is discussed in P2. unlike the steady problem this inverse boundary data, before setting out on the potentially long road '""

calculation is nearly intractable: from one survey at t= tfwe of simultaneously modifying the model too.
do not know CQr + 1) - Ct) on the time scale required for The tracer survey represents a terminal constraint. It is the
numerical stability in (4), and we do not know the time histor- point to which a complex system must evolve at a given time.
ies in the left boundary boxes of Figure 2. An analogy is the control problem of a robotic arm. At i = 0,

Use of the values of C((t) to constrain the Jj to make a robot arm is at a known initial position, A. At t = t it is
improved estimates of them by inversion must therefore be required that the arm be in a position, B, within some toler-
deferred, pending the outcome of the calculations described in ance, for grasping an object within some tolerance. Merely
the next section. observing that the arm was initially at A at t = 0 and at B at

2.3. The Control Problem if does not tell us the trajectory or velocity that the arm had
in between. Conventional control problems are to find a tra-

Let us restate the problem. Given the C,. the "terminal jectory from A to B that minimizes the energy required to
constraint" C(ti) = C. the evolution equation (4), and any move the arm or gives the smoothest trajectory, etc. The
restrictions we might wish to place on Bu, determine if there tracer problem consists instead of determining whether any
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3.0- Equation (5) is chosen as only one example of the general -lass
of L 2 norm objective functions. We are omitting the possibility

2.5. that any of the elements of the terminal state should be repro-
z duced exactly, i.e., we do not demand that

0q

_ CAtf) = C4, for any i (6)

without error. Although the control formalism admits of such
Z L requirements (see the discussion in the work by Luenberger
0

[1979]), they needlessly complicate the mathematics and are
0.5 unlikely ever to be realistic in any case. The terminal state can

be pushed arbitrarily close to the observations by use of G,
without encountering the degeneracy involved in imposing (6).

0 2 4 6 8 10 I 14 (The fundamental difficulty is that exact satisfaction of the

TIME terminal state often renders the second term of J irrelevant,

Fig. 3a. Concentration time histories for a 14 time step forward there being only one, or even no, possible values of u produc-
integration. Boundary boxes were driven by the concentration rates ing a fixed terminal state.)
of change shown in Figure 2 resulting in the concentrations marked The second term on the right of (5) is only an example,
"boundary." Time histories for interior boxes are also depicted as which is most appropriate if there was reason to seek the
calculated from (4). smallest mean square injection consistent with the system and

the terminal constraint observations. No implication that this

physically acceptable trajectory exists given that the arm was is necessarily the most useful such objective function is intend-

observed to have been at A at t = 0 and at B at t = tf.  ed, and much more complex ones can be used. In section 2.4.

The problem is mathematically interesting because the we will extend (5) to minimize the mean square deviation from

tracer "control" is represented by the boundary conditions, an a priori estimate which differs from the zero a priori value
and they must be determined. Because the tracer system is implicit there.
governed by a partial differential equation, the problem is that Solution of this unorthodox problem is usually obtained

of "distributed system boundary control." Readers interested through either the so-called Pontryagin minimum principle, or

in the general mathematical issues are referred to Lions [1971] dynamic programming methods. For systems of the present
or Stavroulakis [1983a, b]. type, the minimum principle appears to be computationally

As the intention is illustrative here, we will proceed to a more feasible. I will not derive the discrete time optimality
specific example. Mimicking our hypothetical oceanographic theorem (see Luenberger [1979], who however refers to it as

case, we seek boundary histories u such that we minimize the the "maximum principle" having introduced a sign change).

objective function The reader is willing, I hope, to take the theorem on faith.
Thacker and Long [1988] derive a version of it. It can be

J = [CQtf) - Cd ]rG[C(f) - Cd] + Y uT(t)u(t) (5) stated fairly concisely, although not in its most general form

as follows. Let H be a Hamiltonian defined as % *
The matrix G is proportional to the reciprocal covariance of
the error in the terminal state observations Cj (equation (2)). H(C(t), X(t), u(t)) = XT(t)[AC(t) + Bu(t)] + uT(t)u(t) (7)
For present purposes, it suffices to notice that by varying G,
we can weight the demand for reproduction of the terminal Let the system satisfy the evolution equation (4), subject to the
state survey against the demand for ai minimum "energy" u. initial conditions C(t = 0) = C0, and the minimum of (5) is

2S

X.25 2.252

6 8

2.252 2.138 1.911 0

2.252 1.695 .424 0

-, .0 0 0 Kx *

Fig. 3b. Concentrations at terminal time t 14.
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3. been widely recognized [e.g., Lewis and Derber, 1985; LeDimet

and Talagrand. 1986; Thacker and Long, 1988] as the key to
2.5- system sensitivity. In the present case, the X. represent the

othe ,uy systematic, stable, backwards propagation of information

0 2.0- about the terminal constraint to the prior time history of the
< 5/ system. It can be shown that the Green's functions employed

1.5 in P2 satisfy the adjoint system (8). As is usually the case [e.g.,

z S'hrater and Wunsch, 1986], the X are readily interpretable as
t7 the sensitivity of the objective function to perturbations in the

Z tracer concentration C(t) at any time t, i.e.,

0.5 AJ(t) = -X7T(t)AC(t) (12)

To solve this system (equations (7H9)) and (11), we must
00 2 4 6 8 10 12 14 find (t) and C(O) such that (7) and (9) are simultaneously

satisfied. The system is awkward because the C(t) evolutionTIME equation must be solved forwards in time, and the XMt) equa- !

Fig. 4a. A biased calculation in which box 5 had the (by definition
erroneous) concentration shown, leading to the erroneous final state tion backwards in time, with the boundary conditions on C
shown in Figure 4h. applied at t = 0, and those for X at t = t. This latter con- S

dition is particularly awkward because the value of C(tf) ap-
pearing in (9) is unknown until the problem is solved.

sought. Then there exists an adjoint system trajectory )4t) such Proceeding with A constant, it follows from (8) that
that

)and specifically that f

subject to the adjoint terminal boundary condition and s tat[

=k(O) 
= (A)(kit(f) ( )(A-))2G 

[C(tf) - Cl (14)

We can therefore develop the following sequence from (4):
and such that the Hamiltonian (7) is stationary over u: C( I) = ACo - BB rk(0)/2 = AC o - BB T(AT rrG(C(s)- C,)

-=0(1)H1H = (10) C(2)=AC"1}-BB'kiI)/2=A2Co-ABBT 0O/2-BlBrkI)/2

(This theorem has direct generalizations to nonlinear systems = A 2 Co - ABB'(Ar)lfG(C(f)}-Cd)-BBT(ATYf -'G(C(tf)-C)

and continuous time ones.)
Applying the theorem to the system (4), the Hamiltonian

minimum condition leads to C(tf) = AC(tf - I) - BBTX(tf - 1)/2

Brkit) = -2u(t) u(t) = -(l/2)B T (t) (11) = A'Co - (A) I BBT(AT)"G(C(tf) - Cd) + (15)

giving the control in terms of k. The k are Lagrange multi- Using (13) and (14) we see that this last expression involves
pliers, and perhaps the most important thing we can observe only terms in C(tf), Co, and Cd on the right. Collecting all the
about them is that they satisfy an evolution equation (8), in- coefficients of C(Ff) on the left-hand side, we can solve ex-
volving backwards running time, and the adjoint of the matrix plicitly for C(rt) by a single matrix inversion. (The matrix
A. Such adjoint systems pervade control problems and have dimension is that of A. Existence of the inverse of this matrix

2.252 2.252

5 6 7 8

3.552 2.618 2.093 0

9 10 11 12

2.252 2.003 I,600 0 o

1314 15.: 16

.. ..... 0 0

Fig. 4h. Concentration resulting at ts when flow is precisely the same as in Figures I and 3. For obvious reasons, the
"right" model leads to an erroneous terminal state.
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030 2.4. Further Constraints

0.25 A not uncommon tracer situation is one in which two or

0.20-more surveys are available and the boundary conditions and
other information must be consistent with both. (A restricted

0.1 version of this situation was solved in P2).
0oo.,0 A second form of constraints on the boundary conditionsz

< are represented in the problem worked, through supposedknowledge of the surface boundary concentration histories;
0 0 i.e., we did not use directly any knowledge of C(t) in the sur-
!ao.05 face boxes. This type of information can be accommodated in

ir 0 2 42 141
0.6 a number of ways [e.g., Stengel, 1986). One simple approach is

- to modify the objective function from (5) to
1,_ 0.5.

I-J = [C(t1-) - C]TG[C(t.) - CAJI'_ 0.4-

S0+ [u(t) - U(t)]F[u(t) - uo(t)]
o
U0.

0.2- 35where uo represents any prior estimate of what the control

0.1. ought to be and F is another reciprocal covariance matrix.
The calculation proceeds as before, with the second-term of
the Hamiltonian in (7) modified appropriately.

-0.1
0 2M 6 0 '2 14 2.5. Time-Dependent Inversion

Fig. 5a. Bottom panel shows concentration rates of change u in Although we will not pursue it in detail at this time, the
boundary boxes 2, 3. and 5 (same as the time histories displayed in control formalism suggests an approach to model change if it
Figure 3). Top panel displays the concentration rates of change as must be modified to bring it into accord with the observa-
determined from control solutions of (15), (8), and (11). These differ tions, simple changes in the boundary conditions having
markedly from the "correct" solution in the lower panel, but drive the proved inadequate. We only sketch the procedure, leaving de-
m del to the observed terminal concentrations, within slight per-
missible errors. The top panel histories are those with smallest mean tails to the future.
square with that property and clearly demonstrate the nonunique A standard control representation is the so-called feedback
character of the terminal constraint solution. Box 9 is a passive reser- form:
voir. and hence the value of Bu there is set to zero.

u = -K(t)C(t) (16)

is related to the ideas of "controllability" and "observability" where the control at time t is chosen to depend explicitly upon
of a system, which we will not take up here. Should the matrix the value of the state at that time. (The form used in section
be singular, various generalized inverses can be used.) 2.3 is the so-called open loop control representation; text-

With C(tf) then known in terms of Co and C4, we can now
go back and calculate u explicitly, as well as C(t). The control
u is what is known as an "open-loop" one, because it involves
only C(t = 0) and Cd(tf), both of which are external parame-
ters. (So-called closed-loop, or feedback controls, with
utt) x C(t) can be obtained from this solution.) For one exam- 20.

ple, we took G = I and C,(tf) from Figure 3b. The simple form .-

of B shown in Figure 2 was retained. The solution that re-
sulted gave a control variable u as depicted in Figure 5a and
an interior time history as shown in Figure 5b. The terminal
state (Figure 5c) found differs slightly from the "true" terminal 0..,

state of Figure 3h because we permitted a tradeoff between Z
deviations from the exact observations and minimization of u 20
over the time history. When G = 101, the terminal state re- I 2 2 4 6 a 0 12 14

suiting (not shown) is closer to the observations, but the mag- Z

nitude of u has necessarily increased. The X are displayed in 2._

Figure 5d.
"D "These solutions were obtained in a two-pass system: we

have to solve the system once completely to determine CQtf)

and then again to calculate C(t). But if the control u is accept- 1.-

able, we have demonstrated that our model has passed its
consistency requirements for reproducing the terminal state. If 0.5

no acceptable u can be found, then we are assured that no
error in the boundary conditions can explain the failure, and 0 "-"

we must modify the A matrix (i.e., the J j parameters defining 10 12 14

this model). In carrying out the calculations just described, a r .t,.,

lot of matrix multiplications, but only one matrix inversion, of Fig. 5h. Bottom panel shows concentration time histories in the
interior boxes in the reference calculation (same as depicted in Figure

a matrix of dimension equal to the number of boxed, are 3a), and the top panel interior time histories when driven by therequired. boundary control of upper panel of Figure 5a.
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2 ...................

2.258 2.258

5 678

2.258 2.103 1.820

9 10 II 1

0 1.583 1.322 0

.. . . ... .. II

....... 0 0

Fig. 5c. Terminal state corresponding to Figures 6a and 6b. and differing from the correct state of Figure 3b because
G = 1.01 and the tradeoff permitted between deviation from the terminal constraint and the magnitude of I.

books show how to derive one from the other.) As before, acquired over significant periods of time, often with large tern-
some objective function involving u is choscn to reflect the poral gaps in any given area. One may have previously esti-
needs of the particular situation. Suppose the boundary con- mated the tracer distribution within the ocean up to and in-
ditions are held fixed, and the control is applied instead to the cluding the time t, of some prior survey. With new data
model parameters. available, one seeks to make a best estimate of the field using

In feedback form, (4) becomes the new data, without having to recompute all the previous

C(t + 1) =AC(t) - BK()C(t) history as well. The fundamental motivation is that the obser-
vations obtained at tf > t, carry information that ought to be

- (A - BK(t))C(t) = A'(t)C(t) (17) useful in improving the estimate of the state at I and earlier.
Suppose at time t we observe the tracer concentrations, in i

absorbing K into A to generate a new system matrix A'. If an boxes in the sct I, el. Define the square matrix E as having
appropriate K has been found which reproduces the required dimension equal to the total number of boxes, and let all its
terminal constraint, one has a modified model, given by A', elements vanish except for unity along the diagonal in row or

which is consistent with the observed data. column i. Then the observations zt) at time d can be written

This latter conclusion can be accepted only if the structure

of A' is physically consistent. Thus the elements of A are z(t) = ECQ) + n(t) (18)
composed of balancing sums of the J as discussed in section
2. To assure that A' has elements J' satisfying mass conser- 0.2,

vation in each box would require solving the feedback control % %
problem subject to these additional constraints. In principle,
these additional constraints can be accommodated by existing 02.5,//"
control methods, but such a model modification procedure 3

has not yet been attempted in practice for the tracer problem. -

If K(t) is permitted to vary with time, the new J,' found %
would also be time-dependent. One can anticipate that feed- ,0.4-
back control methods will eventually provide the key to in- -0..
vetting models with time-dependent flow fields. . _ - -.

-0.6 ~A 1

3. STATE ESTIMATION 0.2' 12 4

3. 1. Recursive Improvement, Forward in Time 0 .

Control methods encompass a variety of goals associated -0.2-

with t',-ne evolving systems and their connection with realistic
observations. Section 2 was directed to control per se, relating E .0.4- 7

missing boundary conditions to observations of a terminal -!
state. The calculation of the state C(t) given the set of observa- -0.0-

tions (2) while simultaneously improving prior estimates of the -0.--
boundary condition is also advantageously examined in the
control format because it permits a flexible and efficient ap- -"0 2, 4 6 6 ,10 12 14--

proach to combining data with observations. T I ME ,J6

Several reasons exist for tackling the state estimation prob- Fig. 5d. Adjoint solution (Lagrange multipliers) for problem dis-
lem, as distinct from the control problem just described. The played in Figures 5a 5,. Not surprisingly, the most important con-

nature of oceanographic observations is such that they are straints are the evolution equations at times near the terminal time.
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Fig. 6. (Left) Correct concentration values for boundary (top) and interior boxes (bottom). (Right) Kalman filter
estimate, with observations of the interior made available at times 5. 9, and 12. Initial boundary concentrations were set to

a value of 2. (correct value is 0); initial interior concentrations were set to 0. but with a large error estimate. Note
convergence to correct values as more data are acquired.

where n represents the observational noise whose mean is as- generalized inverse of E; i.e., the observations replace the cal-

sumed 0 and whose covariance is R = (nnT>. culations. Thus the minus sign in the argument denotes an
Suppose that an estimate of C, called iiO), is known at estimate made from the evolution equation alone, and the plus

some initial time t = 0 (it might be zero) and with an error sign the modified estimate made after the observations are

covariance used.

p() = <(C() _ C(0)XC() _ C()) T > A general expression for K can be derived that minimizes

the mean square error of the estimate. It is [e.g., Liebelt, 1967]

An estimate i(1) of C one time step in the future is com-

putable from (4) and is K = P(1, -)ET(0)[E(0)P(I, -)E (0) + R]t (22)

(The behavior we anticipated K would have can be confirmed
?(1, -) = A (O) + Bu(O) (19) by examination of this expression). The expected error of this

(the reason for the minus sign will become clear). If the initial new estimate (21) can be shown to be

state estimate is uncertain, then surely the calculation (19) is P(l, +) = [P(l, -)-1 + ET(O)R- IE(O)]-I

also uncertain. It can be shown without difficulty [Brogan,
1982] that the uncertainty of t(1, -) is = P(l, -)- KEP(I, ) (23)

P(, -)= AP(O)A T + O (20) Readers may recognize the forms (20H23) as a Kalman
filter operation. M. Ghil [e.g., Ghil et al., 1981] has pioneered

Q has been introduced to represent the covariance of any this approach to meteorological updating and forecasting and
unobservable or unpredictable contribution to the driving a small oceanographic literature has followed that path [e.g.,

term in ,41 This noise process is assumed to have zero mean. Brammer et al., 1983; Miller, 1986]. The new estimate (19)
If some observations z(1) become available at t = I, they then replaces I(0) and time evolves, leading to the recursion

will in general differ from the initial estimate (19). If the differ-

ence between estimate and observation lies outside the esti- I(t + 1, Alt(t, +) + But (24a)

mated uncertainty of both z(). C(l), it seems reasonable that P(t + 1, -)=AP(t, +)AT + (24b)
we should be able to combine the measurement with the ini-

tial estimate, with due regard for the relative errors of both, K(t) = P(t + 1, -)ET(t)

into a better estimate of C() than is represented by either [E(t)P(t + 1, -)E(t)T + R(t)i (24c)
alone. We therefore demand an improved estimate, following

the initial calculation (19) and the observation in the form P(t + 1, +) = [P(t + 1, - )- + E(t)TR- '(t)E(t)] -'

ii +) = (, -) + K[z(l) - ECt(l, -)] (21) = P(t + 1, -) - K(t)E(t)P(t + 1. -) (24d)

where the "gain matrix" K must be determined. Structurally, 1(t + +) = 4C(t + 1, -)

the logic is simple. In the absence of any observation, the best I
fl estimate we can make should reduce to the calculated one, i.e.,

K = 0: if the difference between observation and calculation is At time steps with no observations, K vanishes, and we simply

large. and if. for example, the observational noise is much less continue without it.
than the uncertainty expressed in (20), then K becomes the Figure 6 shows how such a calculation could work in prac-
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and accumulating observations carry information about the
tracer concentrations prior to the time of observation. How
can an observation of C(tf) be used to help improve an esti-

3 mate of C(t), where t < tf? (We previously employed C(tf) to

2.5 help estimate u at prior times; the present problem seeks in-

2, stead to use the available information to estimate C(t) both onboundaries and in the interior.) The question leads to the

Kalman "smoother"; we follow Liebelt [1967, p. 198] and
Meditch [1973] and use the Rauch et al. [1965] algorithm.

0 Recent meteorological work [e.g., LeDimet and Taagrand,
,_ _ _1986] directed at improving estimates of the initial state of the
0 5 0 15 atmosphere from subsequent observations are a similar appli-

Z 4- cation of the smoothing method.
WLo Derivation of the algorithm is lengthy (more so than for the
Zo Kalman filter) and is not described here. We suppose that we

2- have retained all prior estimates it and P from the forward in

7 .- time calculation (22). Then using the plus sign to denote the

0_.... improved estimate, the Kalman smoothing calculation is

-t+(t) = ej(t) + ±(t}( (t + 1) - A(t)) (25a)

P (t) = P(, +) + J(P+(t + 1) - P(t + 1. -))J T  (25b)

4 J(t) = P(t, +)Arp(t + 1, ) (25c)

0 5 10 1'5

TIME P(t + 1,-) AP(t, +)A T + Q (25d)

Fig. 7. Smoothed boundary (top) and interior (bottom) values. Com-
pare to Figure 6. (J should not be confused with the objective function J or the

flow parameters J1). Notice particularly the appearance of the
transpose of A in (25c), which should be no surprise in view of

tice. The initial concentrations in the boundary boxes were its previous appearance as the fundamental quantity for carry-
(deliberately erroneously) set to C = 2 (the correct value being ing information backwards in time. The essence of the calcula-
zero). The initial interior concentrations were correctly set to tions is a comparison of the prior estimate of C(t) with the
zero. Figure 6(left) compares the correct interior con- value computed backwards from later observations and a
centrations through time with those calculated using the ini- modification to the prior estimate as an appropriately weight-
tially incorect boundary data. For the first four time steps, the ed average of the two values. The observations themselves do
interior estimates diverge rapidly from the correct values be- not appear in (25) because the information they carry has
cause the erroneously high boundary estimates rapidly dye the already been extracted in making the Kalman filter estimate.
interior boxes. All information has now been exhausted. There is nothing

At time t = 5, observations are introduced in the interior further to be gained by another calculation in the forward
boxe only, with an estimated error covariance of R = 1.01. direction: the estimates would not change unless more obser-
This set of noisy observations drives the estimated interior vations became available.
observations toward the correct values. Another set of obser- The Kalman smoother (25) was used to reestimate the
vations is introduced at time step 9, and again at time step 12. values of C. The result is shown in Figure 7. Notice the great
As more observations are included the system state estimate is improvement in the values at times when no observations
gradually converging toward the correct values, were previously available, including the much improved esti-

For purposes of this illustration, the error in all the initial mate of the incorrect initial state. Comparison of the
boundary concentrations was taken to have a variance of 5, in smoothed estimate in the interior shows that the backward
boxes = 2, 3, and 5 and Q = 0.11. In this instance, Q repre- propagation of the future observations has generally improved
sents the error owing to the failure to specify the values of Bu. the estimates compared to those from the Kalman filter esti-

Even though the assumption was made that no subsequent mates. At early times prior to the first observations at t = 5.
boundary concentration observations were available following the smoothed interior estimates diverge from the true state,
the initial estimate, Figure 6 shows that the interior observa- going unphysically negative. The apparent reason for this be-
tions are able to improve the estimates of the boundary con- havior was the use of a large initial error estimate, for the
centrations too, simply because boundary values and interior interior initialization at r = 0. When the initial interior error
observations are connected through the system evolution estimate was made much smaller, the system drove the esti-
matrix A. mates of the initial boundary concentrations much closer to

(All estimates shown are accompanied by a complete error zero, rather than permitting them to asymptote to nonzero
covariance matrix which has not been displayed to keep the values, and the interior initial values of 0 were much more
figures uncluttered.) closely recovered (this case is not shown here).

The error estimates for the interior values at t = 0 in Figure
3.2. Smoothing 7 are - + 1.5 and thus within the formal errors, are unphysical

Meteorological oceanographic practice until recently has fo- negative values are indistinguishable from zero. It is also clear
cussed on the forecasting calculation, represented by (24a). We that imposition of positivity constraints on the system would
now part company with that emphasis by noting the evolving be helpful additional information.
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4. SOME GENERAL COMMENTS APPENDIX

The Kalman filter has been much discussed and used since We justify the assertion made in the text that a finite differ-

its introduction in 1960 (see the history in Sorenson [19851). ence formulation of the tracer problem can be put in the

Although sometimes appearing extremely mysterious, the canonical form of (4). For example. if we discretize the Lapla-

basic ideas it embodies are straightforward, and our own dis- cian with i a scalar, u and r constant, and using upwind

cussion here has not introduced anything original into the differencing following Roache [1976], we have a simple ex-

subject. The purpose of its discussion here is twofold: the plicit scheme:
application of the filter method into an advection-diffusion ,+ i- + R(UC. - i ) + R(tC' -

system does seem to have some practical result, and more C - R 1.1+ R C

* important, the control ideas described above, and the Kalman - d C,, .' + Ci 1. - 2Cc,' + (Cj,. ' + Ci.j -' - 2C"'1

state estimation are so-called dual problems of each other [see 0 (Al)
Stengel, 1986]. That is, somewhat surprisingly, the control
problem and the state estimation problem, both of which rely R = UAtAx d = aAt/Ax2

upon a state estimate, are mathematically equivalent.
The numerical operations demanded by the algorithm dis- U being a velocity scale and the other variables are conven- 'U

cussed here are easy to imnlement for small-scale systems (all tional. (Al) is, in turn, of the form of the homogeneous version
the examples displayed were generated on an IBM PC-XT of (4), the boundary data being added in an obvious way. An

using the software system entitled PC-MATLAB, for which implicit scheme would require an extra matrix inversion to

matrix operations are both easy to code, and very fast). For reduce to (4).

basin scale general circulation models, the number of degrees Acknowledgtments. Comments by E. Tziperman have been very
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