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ABSTRACT

The overall objective of this research is to develop a constitutive

model for granular materials accounting for its micro-structure. The

project focussed on the theoretical development of stress-strain

relationship from a micro-mechanics approach, the law governing the force-

displacement behavior at a contact under a general cyclic loading

condition, and the mathematical characterization of the packing structure in

the form of fabric tensor of a granular assembly. Experimental tests were

conducted on rod assemblies in a directional shear box to verify the

developed theory. Analytical expressions were obtained for the stiffness

constants of anisotropic granular assemblies.

U

Acession For

DTICTAi "Just f e tio n -

Distribution/

Availability Cdces
Avail and/or

Dist Spmclal



~ii

5 TABLE OF CONTENTS

PAGE

ABSTRACT

TABLE OF CONTENTS ii

LIST OF FIGURES iv

1. SUMMARY OF THE PROJECT I
1.1 RESEARCH OBJECTIVES 1
1.2 ACCOMPLISHMENTS 1

1.2.1 Theory 1
1.2.2 Contact law 2
1.2.3 Fabric and its effect on the mechanical

properties 3
1.2.4 Experiments on rod assemblies 3
1.2.5 Verification of the theoretical model 4

1.3 SUMMARY 4
1.3.1 Grant information 4
1.3.2 Professional personnel associated with the

project 4
1.3.3 Publications under this grant 5

1.3.4 Presentations at conferences 6

2. THEORETICAL DEVELOPMENT 7
2.1 STRESSES AND CONTACT FORCES 7
2.2 KINEMATICS OF GRANULAR MEDIA 10

2.2.1 Relative displacement between two
contacting spheres 10

2.2.2 Strain tensor 12
2.2.3 Particle spin and rotatinn tensor 13

2.3 RELATION BETWEEN INCREMENTAL STRESS AND STRAIN 13
2.3.1 Local constitutive law 13
2.3.2 Constittutive law for the packing 14

2.4 INCREMENT OF 'MEAN' STRESS TENSOR AND INCREMENTAL
STRESS 17

2.5 CONSTITUTIVE EQUATION FOR A CONTINUOUS SYSTEM 18

3. CONTACT LAW UNDER CYCLIC LOADING 20
3.1 NORMAL CONTACT OF TWO NON-CONFORMING SOLIDS 20

3.1.1 Hertz theory 20
3.1.2 Non-Hertzian theory 21

3.2 CYCLIC TANGENTIAL LOADING ON CONTACT 22

4. PACKING STRUCTURE AND THF FABRIC TENSOR 26
4.1 GEOMETRICAL PROPERTIES OF THE PACKING STRUCTURE 26

4.1.1 Coordination number and void ratio 26



piii

424.1.2 Fabric tensor 29

4.1.3 Distribution density of contact normals 30
4.2 STIFFNESS CONSTANTS FOR RANDOM PACKINGS 32

4.2.1 Constant contact stiffness 32
4.2.1.1 Packings of equal spheres 32
4.2.1.2 Packing of equal discs 35

4.2.2 Hertz-Mindlin contact 36
4.3 TYPES OF MATERIAL SYMMETRY 37
4.4 DISCUSSION 39

5. EXPERIMENTAL STUDY ON ROD ASSEMBLIES 48
5.1 APPARATUS 48
5.2 SPECIMENS AND MEASUREMENT 48
5.3 STRESS PATHS 52
5.4 TEST DEVIATION 52

6. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 54
6.1 COMPARISON WITH EXPERIMENTS ON ROD ASSEMBLIES 54

6.1.1 Regular packings 54

6.1.2 Random packings 556.2 COMPARISON WITH EXPERIMENTS ON GLASS BALLS

IN RESONANT COLUMN DEVICE 60
6.3 COMPARISON WITH EXPERIMENTS ON SANDS UNDER LOW

AMPLITUDE WAVES 63
6.3.1 Comparison with empirical equation 63
6.3.2 Effect of initial stress conditions 65

REFRENCES 72

S



p iv

LIST OF FIGURES

Fig. 2.1 Assembly of spherical particles divided into 'Voronoi' cells.

Fig. 2.2 Displacement of two particles in contact.

Fig. 2.3 Local coordinate system.

Fig. 3.1 Tangential force versus displacement at a contact.

Fig. 4.1 Coordination number m vs void ratio e.

Fig. 4.2 Section of density function &(n) for statistically transverse
isotropic, orthotropic, and monoclinic packings along x=O, y=O,
and z=0 planes.

Fig. 4.3 Variation of Young's modulus and Poisson's ratio with the ratio
K s/Kn for statistically isotropic packings.

Fig. 4.4 Variation of Young's moduli with the ratio K /K for statistically
transverse isotropic and orthotropic packings respectively.

Fig. 4.5 Variation of Poisson's ratio with the ratio K /K for
statistically transverse isotropic and orthotropoc packingsS respectively.

Fig. 4.6 Variation of Shear moduli with the ratio K /K for statistically
transverse isotropic and orthotropic packings nrespectively.

Fig. 4.7 Ratios of Young's moduli and Poisson's ratio for statistically
transverse isotropic packings to the Young's moduli and Poisson's
ratio for statistically isotropic packings respectively with the
parameter a20.

Fig. 5.1 The directional shear box.

Fig. 5.2 Six regular packings of cylinders.

Fig. 5.3 Stress paths followed for the tests on rod assemblies.

Fig. 6.1 Apparent moduli with direction for the six regular packings.

Fig. 6.2 Apparent Poisson's ratio with direction for the six regular

*Q packings.

Fig. 6.3 Branch vector distribution for one size random packing of
cylinders.

Fig. 6.4 Branch vector distribution for two-size random packing of
cylinders.



Fig. 6.5 Strains versus direction of major principal stress axis o for the
one-size random packing of cylinders.

Fig. 6.6 Strains versus direction of major principal stress axis a for the
two-size random packing of cylinders.

Fig. 6.7 Comparison of predicted and measured shear moduli for a packing of
glass balls.

Fig. 6.8 Co-ordination number vs void ratio for Eq. 6.4 compared with the
experimental data.

Fig. 6.9 Comparison of shear moduli obtained from the theory with that
obtained from Hardin's equation.

Fig. 6.10 Stress paths for different initial stress conditions.
Fig. 6.11 Young's moduli, Ezz and Exx, versus stress ratio ai/3 .

Fig. 6.12 Shear moduli, Gzx and G xy, versus stress ratio a I a3

zx x 13



Chapter 1

SUMMARY OF THE PROJECT

1.1 RESEARCH OBJECTIVES

The general objective of this research is to study the mechanics of

granular material from a micro-structural point of view. The specific

objectives of this research are as follows:

1. development of a mathematical model to obtain the stress-strain

relationship for a granular material explicitly considering the micro-

structure characteristics of the packing,

2. study of the force-displacement law at a contact between two non-

conforming bodies and its implementation in the stress-strain relationship,

3. development of the mathematical characterization of the

micro-structure of a granular assembly and investigation of its effect on

the stiffness characteristics of the packings,

4. experimental study on rod assemblies in a directional shear box to

investigate the effects of packing structure and loading conditions on the

mechanical behavior of granular assemblies, and

5. verification of the theoretical model by comparing the theoretical

results with those from tests on rod assemblies in directional shear box and

other available tests in the literature.

2

1.2 ACCOMPLISHMENTS

1.2.1 Theory

A general mathematical model is developed to evaluate the stress-strain

behavior of granular packings based on micro-structural considerations. Two



approaches are followed, namely, (a) mobilized plane approach and (b)

* particulate approach.

(a) The mobilized plane model assumes that a large number of mobilized

planes are developed in a soil element when subject to loading. The

overall mechanical behavior of a packing can be obtained based on the

movement of the mobilized planes. Work on this approach is given in

publications 1, 2, 4 and 7 shown in section 1.3.3.

(b) The particulate model explicitly incorporates the geometrical

characteristics of the packing, such as, the void ratio, the

coordination number, and the contact normal distribution. The work

accomplished in this approach is as follows:

(b.l) The formulation of the stress-strain relationship for regular

packings of equal size particles is given in publications 5 and

12 in section 1.3.3.

(b.2) The formulation of the stress-strain relationship for regular

packings of multi size particles is given in publication 8 in

section 1.3.3.

(b.3) The formulation of the stress-strain relationship for random

packings of multi size particles is given in publications 3 and

10 in section 1.3.3.

The theoretical development for the particulate model is discussed in

Chapter 2 of this report.

1.2.2 Contact Lay

The contact force-displacement law for two non-conforming bodies in

contact is incorporated in the stress-st-ain formulation for the particulate

approach. The work accomplished is as follows:

- '..~ - S.S. W
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(a) Closed-form solutions of the constitutive matrix for linear

3 contact law are given in publications 6, 9 and 10 in section 1.3.3.

(b) Solutions for non-linear Hertzian-Mindlin contact law are given in

publications 6, 9, 10 and 11 in section 1.3.3.

The contact law is discussed in Chapter 3 and the solutions are shown

in Chapter 4 and 6 of this report.

1.2.3 Fabric and its Effect on the Mechanical Properties

Mathematical characterization of the micro-structure of a granular

assembly is developed. This is incorporated in the stress-strain

formulation for the particulate approach to study the effect of packing

structure on the stiffness properties. The work accomplished is as follows:

(a) The formulation for representing contact normal distribution and

its relationship with the fabric tensor is given in publications 9 and h

10 in section 1.3.3.

(b) The stiffness properties of packings with anisotropic micro-

structure are given in publications 9, 10 and 11 in section 1.3.3.

pThe discussion on fabric and its effect on stiffness properties of a

packing is given in Chapter 4.

1.2.4 Experiments on Rod Assemblies

Experiments are conducted on assemblies of cylindrical rods to

investigate the deformation behavior. The work accomplished is as follows:

(a) Results on directional shear box are given in publications 5, 8

and 13 in section 1.3.3.

(b) Results on model footing tests are given in publication 14 in

section 1.3.3.

V-
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The experimental results on the directional shear cell is presented in

Chapter 5 of this report.

1.2.5 Verification of the Theoretical Model

The theoretical model is verified by comparing the theoretical results

with those from the tests in directional shear box and other available test

results in the literature. The work accomplished is as follows:

(a) Comparison with results from tests in directional shear box are

given in publications 5 and 8 in section 1.3.3.

(b) Comparisons with results on assemblies of glass balls in resonant

column device and sands under low amplitude waves are given in

publication 11 in section 1.3.3.

The comparisons are discussed in Chapter 6 of this report.

1.3 SUMMARY OF THE PROJECT

1.3.1 Grant Information:

Grant Number : AFOSR-86-0151

Amount: $ 150,489

Period: Apr. 1, 1986 - Aug. 31, 198L

Title: Deformation Behavior for Sands Under Cyclic Loading
- A Micro-structural Approach

1.3.2 Professional Personnel Associated with the Project

Principal Investigator: Ching S. Chang

Research Assistants:

Anil Misra (Master's degree completed, Ph.D. in progress)

Gopal C. Biswas (Ph.D. in progress)

Naila M. Hashash (Master's degree completed)

Jia H. Xue (Master's degree completed)

7;)

' ..



5
I,

Sivanuja Somasega (Master's degree in progress)
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Chapter 2

3THEORETICAL DEVELOPMENT

The stress-strain modelling of discrete systems, such as granular

packings, can only be acheived by considering the continuum field quantities

as averages of their discrete analogues (Chang 1987, Chang and Misra 1988b).

The stress, a continuum field variable, is related to the discrete contact

forces in a granular media. Similarly, the strain in a granular media is

related to the contact displacements.

2.1 STRESSES AND CONTACT FORCES

Assembly of spherical particles can be divided into polyhedral sub-

volumes defined as 'Voronoi cells' such that the space occupied by the

assembly is completely filled (see Fig. 2.1). This polyhedral cell is

Schosen to contain a particle and the void space closest to that particle
-n

(Finney 1970). The average stress tensor aij within the nth (see Fig. 2.1)

'Voronoi cell' is given by

-n 1 {(21.. - I f aij dv (2.1)

where AVn is the volume of the nth 'Voronoi cell'. From Eq. 2.1 and using

the theorem of stress means (Truesdell and Toupin 1960), the average stress

tensor for the 'Voronoi cell' is expressed in terms of surface tractions on

the 'Voronoi cell' as follows

. n _1 ti r ids (2.2)

where t. is the traction vector on the surface of the nth sub-volume at the

location given by the position vector r. with the origin chosen at the
c

?. centre of the sphere contained in the nth sub-volume. In a packing of

" .w-K. W K
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Fig. 2.1 Assembly of spherical particles divided into 'Voronoi' cells.
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spheres, instead of continuous surface tractions there are discrete contact

points on the surface of the nth sub-volume where the forces act (see Fig.

2.1). Therefore, for this system, Eq. 2.2 reads as

-n 1 T t n m r.m  (2.3)ij = Vn  i

where tnm is the contact force at the mth contact of the nth particle and

nmrn represents the position vector of that contact.

For continuum modelling of packings of spheres, it is necessary to

define the stress for a representative volume which best represents the

packing. This representative volume comprises ot many 'Voronoi cells' of

the packing. Clearly, the stress field in an assembly of spheres, due to-n on
its discrete nature, is heterogeneous, that is, the average stress 0.. o

0the 'Voronoi cell' varies from one cell to another. Therefore, in this

case, a 'mean' stress tensor for a chosen representative volume may be

defined. The 'mean' stress tensor, for this representative volume, is

defined as an average of the stress tensors of its sub-volumes ('Voronoi

cell') as follows,
1 -n n

<a..> = V T- ii AV  (2.4)
n n

where aij is the average stress tensor for the sub-volumes AV and the

volume V is given by

V E vn (2.5)
7n

Further, substituting Eq. 2.3 into Eq. 2.4, the 'mean' stress tensor of the

medium can be written as

<a t~~nm rm(.6G<(ij)> V L (i r) (2.6)
n m

where () represents the symmetric part. The skew symmetric part, given by,

< 1 :tnm nm (2.7)
n m Ii il



10
I

represents the 'mean' torque of the representative volume contributed by the

nm m
torque for each sub-volume caused by the contact force t.m acting at rn.

1 J
In absence of any applied torque or couple stresses, the skew symmetric part

is expected to be zero in order to satisfy Cauchy's law of balance of

angular momentum (Truesdell and Toupin 1960).

It is noted that representation of stress tensor in granular media,

similar to Eq. 2.6, have also been developed by Chrisstoffersen et. al.

1981, Rothenburg and Selvadurai 1981, and Kishino 1978 using different

arguments.

2.2 KINEMATICS OF GRANULAR MEDIA

2.2.1 Relative displacement between two contacting spheres

Under an increment of loading, the spheres comprising the granular

* assembly displace from their original position leading to the deformation of

the assembly. Each particle in the assembly, in general, has two modes of

movement, namely, translational movement denoted by vector u and rotational

movement denoted by (a. These movements are accompanied by the interactions

at the contact between two particles. Assuming the particles to be rigid,

the relative displacement at a contact between two particles, n and p (see

Fig. 2.2), can be expressed by

& = (un- up ) + ( x + (wp x rp ) (2.8)

where the first term on the right hand side of Eq. 2.8 is contributed by ther translation, while the other terms are from particle spin. Further, the

relative displacement 8 can be expressed as

6 .nm + pm (2.9)

where 6nm and &pm are the relative displacements associated with particles n

and p respectively, and superscript m represents the contact between n and



n u p

Fig. 2.2 Displacement of two particles in contact.
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p. The relative displacement 6 has, in general, two components, namely, the

normal relative displacement and the shear relative displacement.

2.2.2 Strain tensor

Similar to the stress field, the strain field in a packing of spheres

is, in general, inhomogeneous and discontinuous. Analogous to the 'mean'

stress tensor, a 'mean' strain tensor can be established for the chosen

representative volume. The 'mean' strain tensor for the representative

volume is defined from energy equivalence, which states, in general terms,

that the work done expressed in terms of the 'mean' stress and 'mean' strain

tensor is same as the work done expressed in terms of the contact forces and

the relative displacements at the contacts.

The work done, for the representative volume V, expressed in terms of

the 'mean' stress and the 'mean' strain is given by

Sd = V <a(ij)> <kij> (2.10)

where <ki> is the increment of the symmetric 'mean' strain tensor. By

definition, the increment of symmetric 'mean' strain tensor is related to

the increment of displacement gradient <Di> and the increment of the

rotational tensor <2..> as follows,i3

<tij> = <Dij> - <9ij> (2.11)

Needless to say that, as the stress tensor is symmetric, the rotational

tensor <2i> (i.e., the anti-symmetric part of the displacement gradient)

does not contribute to the work done, dW.

The work done expressed in terms of the contact forces and the

incremental relative displacements at the contacts for the same

representative volume, is given by

V -V I
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dW~ r7 T tnm 6 nn (2.12)

1 1 1

n m i i

Equating Eq. 2.10 and 2.12 and substituting the expression for
<a j)> from Eq. 2.6, one obtains the relationship between the relative

displacement and the 'mean' strain tensor

nm nm
6 . = ri. <C ..> (2.13)1 J 1j

Using Eq. 2.11, Eq. 2.13 can be further written in terms of the displacement

gradient tensor and the rotation tensor as follows

nm nm nm6. = r. <D. .> - r . <9. .> (2.14)1 J 1J J IJ

2.2.3 Particle spin and rotation tensor

In Eq. 2.14, 6 m represents the relative displacement at the mth

contact of the nth ball with respect to its contacting neighbor p

considering that the pth ball does not move. Further, by definition, the

relative displacement of the nth and the pth balls, compatible with the

displacement gradient field Dij, is

n _ up = rm <Di > - r~m <D..> (2.15)

Thus comparing Eqs. 2.8, 2.14 and 2.15, the following relationship is

obtained between the particle spin and the rotation tensor,

r nx W +r x = [ r .m + rpm I <9 j> (2.16)

Eq. 2.16 represents an underlying assumption that the mean particle spin is

same as the 'mean' rigid body rotation Qij of the representative volume.

2.3 RELATION BETVEEN INCREMENTAL STRESS AND STRAIN

2.3.1 Local constitutive law
Alocal constitutive law relating the incremental contact force and

the relative displacement at the contact is defined. For convenience, the

local constitutive law is defined in a local cartesian coordinate system

;%~
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formed by the base vectors n, s and t. Where n is the unit normal vector at

the mth contact and s and t are chosen arbitrarily in general (Fig. 2.3).

Let T n denote the transformation between the local coordinate system and

3the global coordinate system such that

nm nm nm nm nm nm
i A k ' and i ik tk (2.17)*hr fnm and nm

where f a t are the force increments at the mth contact of the nthi k

S~n particle in the local and global coordinate system respectively, d.
m and nm

are the relative displacements increment at the mth contact of the nth

particle in the local and global coordinate system respectively. The

transformation tensor Tjk , from the global to the local coordinate system,

is given by

T e j )  
(2.18)

jk = k

where e(j ) = (n, s, t) is a set of basis vector forming the local coordinate

(1) (2) (3)_system, such that e =n, e =s, and e( t. Vector n is defined as

n = ( cosy, siny cosO, siny sinO) (2.19)

s is given by

s = ( -siny, cosy cosO, cosy sinO) (2.20)

and t by

t = ( 0, -sinS, cosO) (2.21)

where y and 0 are defined in Fig. 2.3.

If the local constitutive law is defined in the local coordinate system as

follows,

nm nm nm
f.= K.. d. (2.22)

where K..m is the stiffness tensor. Then, in the global coordinate system,

the local constitutive law reads as follows,
nm Tnm nm Tnm nmmm m .m. m n (2.23)
SI li ij jk k

L 2.3.2 Constitutive law for the packing

X!-r'
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Using the local constitutive law defined above, the overall

constitutive relationship of a packing of spheres can be derived.
nm

Substituting for k from Eq. 2.13 and multiplying by the position vector

nm on both sides, Eq. 2.23 becomes
q
nm nm nm nm nm nm nm
rq ti = r T1. K.. T. r <t > (2.24)q I q lij Tjk rp k

Summing up on both sides of Eq. 2.24 and dividing by volume V, the

relationship between incremental stress and the incremental strain is

obtained as follows

< lq> - lqkp <tkp> (2.25)

where

C T T rnm Tm nm nm r nm (2.26), Clqkp V _-  ' q li ij jk rp (.
n m

and the incremental stress is defined as
<&l > = I t m r m (2.27)

n m

It can be shown that the incremental stress and the incremental strain in

Eq. 2.26 are frame indifferent quantities, thus satisfying the principle of

material objectivity. For example, let Q be any orthogonal transformation
,*

tensor from coordinate system X --+ x , such thatS* * O
tnm tnm nm nm
t ai i ; r = r Qjb (2.28)

where t nm  and rnm  are in the transformed coordinate system. Then thea b

transformed incremental stress is given by

<r>*1 = Onm <rm (2.29)n m

implying that the incremental stress defined in Eq. 2.27 is a frame

indifferent quantity under any orthogonal transformation. Similarly the

incremental strain can also be shown to be a frame independent quantity.
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2.4 INCREMENT OF 'MEAN' STRESS TENSOR AND INCREMENTAL STRESS

The increment of the 'mean' stress tensor is defined as

< .. > = <a .. > - <a. .> (2.30)

where <ai _> and <a..> are the 'mean' stress tensors in the deformed and the13 1J

original configurations respectively. Clearly, the incremental stress

<& ij >, defined in Eq. 2.27, is not same as the increment of the 'mean'

stress tensor. In order to express the constitutive equation in terms of

the increment of 'mean' stress tensor, the relation between the incremental

stress and the increment of the 'mean' stress tensors needs to be

established.

From Eq. 2.6, the 'mean' stress tensors in the deformed and the

original configurations respectively are given by

<a m 1 t. r., and <1o> = .1: 1 t? ro (2.31)
n m 1 V0  n m

The superscript nm has been dropped in Eq. 2.31 for clarity. The contact

force t. and the position vector r. in the deformed configuration can be1 3 0

expressed in terms of the contact force to and the position vector r. in the
i 3

original configuration as follows

t t i + t. (2.32)

0r. =r. . (2.33)
J 3 3

where the dot refers to the incremental change. The incremental change in

the position vector ii, by definition, is given by

i. = <D. .> r. (2.34),s, J 13 J

where <D ij> is the Eulerian displacement gradient. Further, the Tr(D) is

defined as

Tr(D) = <Dn> 1 - V (2.35)
nn V
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Substituting Eqs. 2.31, 2.32, and 2.33 into Eq. 2.30, using Eqs. 2.34

and 2.35 and neglecting all the quadratic terms, the relation between the

increment of the 'mean' stress tensor <Aa..> and the incremental stress

tensor <r..> is obtained as follows
1.3

<b ij> = <. i.> + < im> <D mj> - <aij> <D nn> (2.36)

Eq. 2.36 represents the familiar relationship between the increment of

Cauchy stress <&o. .> and the increment of first Piola-Kirchoff stress <.. -.4>1.3 1.3

(Truesdell and Noll 1965). If the symmetry of the incremental stress tensor

<er .3> is rendered explicit, Eq. 2.36 becomes

<a..>=<6..> 1 <a. > <D .> + <a. > <D > ]+ a.. <D > (2.37)
1.3 L 2 i mj jm mi j lij nn

Thus the constitutive equation can be written in terms of the increment of

the Cauchy stress tensor as follows

<65i j > = Cijkl < -kl>+  <cim > <D mj>+<jm > <D mi1- . .<D > (2.38)

For the case of small deformations the increment of the Cauchy stress can be

assumed to be same as increment of the first Piola-Kirchoff stress, that is

the second and the third terms on the right side of Eq. 2.37 are negligible

compared to the first term. In that case, Eq. 1.38 reads

<Ati > = Cijkl <'kl>  (2.39)

where C is same as defined in Eq. 2.26.

2.5 CONSTITUTIVE EQUATION FOR~ A CONTINUIOUS SYSTEM
The constitutive equation discussed thus far is defined for the case .. '....

of a discrete distribution of the contact position vectors. However, for a

random packing, as the number of contacts becomes very large, the contact

position vector distribution can be reasonably treated as continuous. A

distribution function &(Q) of the contact position vectors can be defined

such that -

0.,

I!° , 'W2"% ' -%. 'b ;.. yv- e . e :? "; c¢ "" ej-'.¢ , ... ..
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2  )(d!dQ=l1 (2.40)

3 Thus the summation in Eq. 2.26 can be replaced by integration and the

constitutive tensor becomes

C r ? 9 K. .()T(? r (9) QQ) dQ (2.41)lqpk fV r9q(Q T1 (Q )j T~j

where N is the total number of contacts in volume V, dS? = siny dy d13 is the

differential solid angle associated with a unit sphere with 0(y Tt and 0(8(2n

and &(Q) represents the distribution of the contact position vectors in

space.

WU
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Chapter 3

CONTACT LAW UNDER CYCLIC LOADING

THe force-displacement behavior at a contact significantly effects

the stress-strain behavior of a granular packing. The force-displacement

law of two non-conforming bodies in contact can be obtained from the Hertz-

Mindlin theory of frictional contacts. The normal and the tangential

stiffnesses based on this theory are presented. The assumptions of this

theory and their consequences on the contact law are discussed.

3.1 NORMAL CONTACT OF TWO NON-CONFORMING SOLIDS

3.1.1 Hertz theory
For two spheres of radii Ri and elastic properties E., Gi and i

p(i=1,2) the classical theory of Hertz relates the normal force N to the

relative approach o of the centres of the two contiguous spheres and the

radius a of the circular contact area by the following equations (Johnson

1985):

3 9N2  (3.1)

16R E

3 3NR
a -4 (3.2)

4E

where

1 1 1 (3.3)
R RFl _T2

1 (-v 1 2) (1-v 2
2 )

+ -(3.4)
E 2 EI E 2

a

-, R(3.5)

As can be seen from Eq. 3.1,

Vi
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N = 4E (R 
3)1/2 

(3.6

3 (3.6)

The incremental stiffness is defined as

k =N - 2E'a (3.7)n Am

from Eq. 3.6 using Eq. 3.5.

For two cylinders in contact the normal stiffness at contacts is

based on the Hertz-Mindlin theory of frictional contacts with modifications

for conditions of local yielding at contacts (Chang and Misra 1988a). The

normal contact stiffnesses is given by

n 1 [ 2 in (2R/a) - 1] (3.8)
n n G

1/2where a= (2 (1 - v) N R / R G) , G is an equivalent shear modulus less

than the elastic shear modulus, v is the Poisson's ratio, R is the

equivalent radius of the cylinders.

3.1.2 Non-Hertzian theory

The assumptions and restrictions made in the Hertz theory of elastic

contact are parabolic profiles, frictionless surfaces and elastic half space

theory. However the real situation is much more complicated. For example,

when two non-conforming elastic bodies having continuous profiles are.

pressed into contact, the pressure distribution between them is not

determined uniquely by the profiles of the bodies within the contact area.

Two further conditions have to be satisfied: (1) that the interface should

not carry any tension and (2) that the surfaces should not interfere outside

I IVthe contact area.

4 Friction at the interface of two non-conforming bodies brought into

normal contact plays a part only if the elastic constants of the two

materials are different. The mutual contact pressure produces tangential

gt 
9.



H displacements at the interface as well as normal compression. If the

materials of the two solids are dissimilar, the tangential displacements

will, in general be different so that slip will take place. Such slip will

3 be opposed by friction and may, to some extent, be prevented. Therefore a

central region where the surfaces stick together and regions of slip towards

the edge of contact may be expected. If the coefficient of limiting

friction was sufficiently high slip may be prevented entirely.

When the limits of elastic behavior have been exceeded and plastic

flow has begun, the plastic zone is fully contained by the surrounding

material which is still elastic. For bodies having smooth profiles, e.g.

cylinders or spheres, the plastic zone lies beneath the surface. In these

circumstances the material displaced is accommodated by an elastic expansion

of the surrounding solid. The resulting deformations are of approximately

the same magnitude as the elastic deformations. However the results of the

Hertzian theory needs to be corrected for the yielding.

As the load is increased further, the plastic zone breaks out to the

free surface and the displaced material is free to escape by plastic flow to

the sides. This is the 'unconstrained' mode of deformation analysed by the

theory of rigid-plastic solids. The plastic zone would be expected to break

out to the surface and the unconstrained mode become possible when the

pressure at the contact reaches the value given by the rigid-plastic theory.

4The contact behavior acounting for these Hertzian restrictions and

assumptions have been primarily studied by numerical techniques. No simple

closed-form solutions of contact deformations or stiffness for non-Hertzian

contacts exit in lietrature to the authors knowledge.

3.2 CYCLIC TANGENTIAL LOADING ON CONTACT

v-.
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For a constant normal force, the effect of a tangential force T < uN

is to cause 'slip' over part of the contact area. Slip is initiated at the

circumference of the circular contact area and, as T increases, an annular

area of slip develops spreading radially inwards until, when T = wN, rigid

body sliding occurs. If the tangential force is reduced then the slip in

3the opposite direction spreads radially inwards from the perimeter of the

contact area. Thus, all load reversals cause slip reversals that propagates

radially inwards from the perimeter of the contact area, instead of receding

the existing slip annulus. Consequently the tangential stiffness is

dependent on the loading history.

The tangential stiffness is also dependent on the magnitude of the

normal force. Fig. 3.1 shows schematically, the loading, unloading and

reloading behavior for values of normal force at the contact. Mindlin and

Deresiewicz (1953) have identified several loading sequences involving

* variations of both normal and tangential forces and developed theoretical

solutions for the tangential stiffness.

A general procedure based on Mindlin and Deresiewicz (1953) work has

been reported by Thornton and Randall (1987). The procedure is to update

the normal force and contact area radius followed by calculating AT using

the new values of N and a. By reanalysing the loading cases considered by

Mindlin and Deresiewicz (1953) it can be shown that for loading, unloading

and reloading, the tangential incremental displacement may be expressed as

1 [ N + 6T - UvN ](39)46 -8G a E)+8(39

except when

686 < a and sign (66) = sign (AN) (3.10), 8G a

From Eq. 3.9

9..
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Fig. 3.1 Tangential force versus displacemient at a contact.
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aT = 8G a 0 AS + uN (1-e) (3.11)

* where

1 (2 - vi) (2 - v2 )

G G 1  G (3.12)

3 1 -(T +u N)
3 i - ( N (loading) (3.13)

2 u N (unloading) (3.14)03 1 - CT - T + 2uBN) (reloading) (3.15)
0= 2uN*e3 I (T T** 2u6N)
= 2 u N (reloading) (3.15)

and the negative sign in Eq. 3.11 is only evoked during unloading, T and

T are defined in Fig 3.1. For a current state given by point 1 in Fig 3.1

(during loading, unloading, or reloading) a tangential incremental

displacement corresponding to

146I N with AN > 0 (3.16)la61 =8 G a

will result in a new state given by point 2 on the curve corresponding to

3 the new value of N. Larger values of IA61 will result in a state farther

along the curve such as point 3. A problem occurs if the conditions given

in Eq. 3.10 is satisfied, since point 2 is not reached and the new state

does not lie on the curve corresponding to the new value of N. This case

can be solved by setting 6=- in Eq. 3.11 until 8GaU > pE&N.

For two cylinders in contact the shear stiffness at contacts based on

the Hertz-Mindlin theory of frictional contacts with modifications for

conditions of local yielding at contacts (Mindlin 1949, Chang and Misra

1988a) is given by

1 1 - / T/(tan + N)] - / 2 (3.17)

s n

where * is the friction angle between the two particles, N and T are the

n la

norml ad sear orc atthe ontct espctivlyand'V i a onsant
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Chapter 4

FABRIC TENSOR AND STIFFNESS PROPERTIES OF RANDOM PACKINGS

U
Among the significant geometrical features that influence the stress-

strain behavior of a granular assembly are the void ratio, the coordination

number and the spatial distribution of the vectors joining the centroid of

the particle to the contact point on the surface called the contact position

vectors. For convenience the distribution function of the contact position

vectors can be represented in a tensorial form. The distribution function

is related to the 'fabric tensor' of the granular packing. Using this

distribution function and assuming a contact force-displacement law the

stiffness constants for anisotropic packings of spheres and discs can be

obtained (Chang and Misra 1988c, 1988d).

4.1 GEOMETRICAL PROPERTIES OF THE PACKING STRUCTURE

Geometrical properties of granular packings have been of interest in

various areas of engineering. Various efforts have been made to identify

the geometrical characteristics of importance in the study of granular media

in general (Gray 1968, Shahinpoor 1983, Oda et. al. 1982). Studies suggest

that among the geometrical properties of granular packings that influence

the mechanical behavior are the average coordination number, the void ratio,

and the distribution of the contact position vectors in space.

4.1.1 Coordination number and void ratio

For a granular assembly, the coordination number is defined as the

number of contact points per particle. The average coordination number of a

random assembly is a useful measure of the closeness of the packing or the

I

* !.t- W
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void ratio. The void ratio is defined as the ratio of the volume of voids

with the volume of solids in a packing. The total number of contacts N in a

given volume V of a granular packing can be obtained from the knowledge of

the void ratio e, the coordination number m and the particle size. For a

packing of equal sized particles, the ratio of number of contacts to the

N
volume of the packing, V, can be expressed as follows

N 3m (for spheres); N M (for discs) (4.1)
V 4n p3(l + e) i p2(1 + e)

where p is the particle radius.

Further, the correlation between the coordination number and the void

ratio of the packing have been studied experimentally by several

investigators (Oda et. al. 1982, Yanagisawa 1983). The relationship between

m and e have been experimentally found for lead and glass balls by Smith,

Foote and Busang (1929), Filep (1936), Field (1963), and Oda (1977).

W Experimental results are also obtained by Marsal (1973) for rockfill

materials and Yanagisawa (1983) for gravels with round and flat shapes.

Some of the empirical equations are listed as follows:

1. Yanagisawa (1983) m = 3 .183 (2
"469e) (4.2)

2. Smith, et.al. (1929) m = 26.486 10.726 (4.3)(1-n)

3. Filep (1936) =3.1 (4.4)
n

4. Field(1963) (1 e)(4.5)

These four empirical equations are plotted in Fig. 4.1 and compared

V with experimental data. Experimental results from Oda et. al. (1982)

;I
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Fig. 4.1 Coordination number iii vs void ratio e.
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suggests that the relation between the coordination number and the void

ratio is independent of grain size distribution.

4.1.2 Fabric tensor

Another important measure of the packing structure of granular media

is a second order symmetric tensor, termed the 'fabric tensor', that has

been introduced by some investigators (Ref. Satake 1982, Oda et. al. 1982,

Cowin 1985). More general form of the 'fabric tensor' has been introduced

by Kanatani (1984). In general, the 'fabric tensor' represents the average

of the tensor product of the observed directional data, such as contact

position vectors. The contact position vector is defined as the vector

joining the centroid of a particle to a contact point (representing contact

with a neighboring particle) on its surface (rn and rp in Fig. 2.2). For

packings of spherical particles the contact position vector is same as the

contact normal vector. If only the unit vector n in the direction of the

contact normal vector is considered then, in general, the 'fabric tensor'

can be defined as a tensor of rank m given by

N. . .i = [ nin ** .n. (y,O) dQ = <i n. .n. m> (4.6a)
112* .i .J9 i1 2  i 112

where < > denotes the ensemble average of the m observed contact normals

n , ni2 ... , ni , O(y,0) is the density function of the directional

distribution of the contact normals, and dQ = siny dy d8 is the differential

solid angle associated with a unit sphere with Oy n and 0<8 2n (y and 8 are

defined in Fig. 2.3), such that,

N.. . m  nin.. .n. (y,O) siny dy d1 (4.6b)

The 'fabric tensor' defined here is useful in defining the tensorial form of

the distribution density function (y,8). The relationship between the
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'fabric tensor' and the density function &(y,O) will be discussed in the

9next section.
4.1.3 Distribution density of contact normals

The empirical distribution of the contact normals in space, for a

random granular system, is in general expected to be discrete and random.

For continuum modelling of granular packings, it is useful to represent this

empirical discrete distribution of contact normals by a smooth density

function. Such a directional distribution, in three dimensions, can be

expressed as a spherical harmonics expansion given by

t(y, L i += akO Pk(cosy)

k
+ L P (cosy) [akmcos m + bksin m1 (4.7)

~m~1

where y and are defined in Fig. 2.3. Here, E denotes summation with

respect to even indices only, Pk(cosy) is the kth Legendre polynomial,

P (cosy) is the associated Legendre function and akO, aki, and bkm are

parameters. In order to ensure that the density function &(y,O) is centro-

symmetric, i.e. t(y,8) = (R+y,O+f), only the even harmonics are admissible.

It is evident that the first term, i.e. 1, in the expansion, Eq. 4.7,

represents a sphere and the subsequent terms can be regarded as a function

defined on the surface of the sphere. Further, since the Legendre

Fpolynomials and the associated Legendre functions are orthogonal to 1, it

follows that the Eq. 4.7 satisfies the identity

9 (y,0) dQ = 1 (4.8)

signifying it is a density function.

Similarly, in two dimensions, the directional distribution can be

expanded in form of a Fourier series given by
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S akcos k + b sin ke (4.9)
k=2

Due to the centro-symmetric nature of the distribution, that is (8)

&(e+n), only the even terms appear. Clearly, Eq. 4.9 also satisfies the

identity 8 &(0) de = 1.

The expression for the distribution of contact normals, i.e. Eq. 4.7

or 4.9, can be alternatively written as a cartesian tensor equation

&(n) - L 11 + tjn n + $ klninjnknj ........ (4. lOa)

or

&(n) = L 1 4 ninj + Iijklninjnkn, . ........ (4.lOb)

which represents a polynomial in terms of direction cosines of n. In Eq.

4.10, 4i 1 is a coefficient tensor of rank m of appropriate choice such

that Eq. 4.10 expands to Eq. 4.7 or Eq. 4.9. It is evident that the

coefficient tensor . can be expressed in terms of the coefficients of

Eq. 4.7 or 4.9.

Since Eq. 4.7 represents a spherical harmonics expansion, Kanatani

(1984) has shown that the coefficient tensor 4. is a traceless tensor.11...i m

He has further shown that the coefficient tensor *. can be determined
i m

using the 'fabric tensor' N.. .  and hence is directly related to the
1. m

packing structure of the assembly. The 'fabric tensor' Nili2" i is

related to the coefficient tensor I . For example, for m=2 the

coefficient tensor 4.. is related to 'fabric tensor' N.. as

0 i. [ [Nj - 6 i ] (for spheres);

§N 4 ij 8ij ] (for discs) (4.11)
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Mathematical details on the spherical harmonics expansion are discussed in

(Butkov 1968, Kanatani 1984).

4.2 STIFFNESS CONSTANTS FOR RANDOM PACKINGS

Using the general expression of the constitutive tensor for packings

of given by Eq. 2.41, the density function of the form given by Eq. 4.7 or

4.9 and assuming a local constitutive law, the stiffness constants for a

random assembly of any packing structure can be obtained.

4.2.1 Constant contact stiffness

Closed form solutions for the stiffness constants are derived by

assuming that all contacts in the assembly have the same mechanical property

independent of the stress state. A simple diagonal form of the local

constitutive matrix Kj relating the relative displacement vector dj=(dn,

ds, dt) and the incremental force vector fi=(fn, fs ft) (or d j=(d , ds) and

f =(f n f s) in two dimensions) is assumed, such that, K11= Kn K22=K33=Ks

and Kij= 0 (isj). Kn and Ks are the normal and the shear stiffness

respectively at the contact. It is assumed that there is no coupling

between the shear and the normal forces at the contact such that the off

diagonal terms of the local constitutive matrix are zero (K. =0 for isj).

4.2.1.1 Packings of equal spheres

* For the simplicity of further derivation, a truncated form of the

expansion in Eq. 4.7. consisting of second order terms is used. The

Legendre polynomial of degree 2, i.e. P,(cosy), is given by (Abramowitz and

* Stegun 1965)

2
P (cosy) (3cos y -1) (4.12)

The associated Legendre function P (cosy) can be obtained from the Rodrigues
o2

formula (Abramowitz and Stegun 1965)
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( 2x) k (x-1).m/2  d k 1m

k 2k k! dx k m

U For k=2 and m=2, Eq. 4.13 yields

P 2 (cosy) 3 sin 2 y (4.14)
22

Thus the truncated expansion is given as

1 1 20i (3 cos2y + 1) +
3 sin 2 y (a22cos20 + b22sin2) ] (4.15)

Alternatively, writing Eq. 4.15 as a cartesian tensor equation

&(n) -[ 1 + ..n.n. (4.16)
4n 1 J1 1 J 1

where n = (cosy, siny cosO, siny sine), and the coefficient tensor 9.. is

given by

[ a20  0 0

[4ij = 0 3a 3b22  (4.17)
I 1

0 3b22  -2 a 20 - 3a22

The first term in Eq. 4.16, clearly, represents the isotropic portion of the

distribution while the second term represents the anisotropic part. For

brevity, the isotropic and the anistropic parts can be combined as follows

E(n) = ( +ij ) ninj ] = [F nin j  (4.18)

where Fij is a generalized 'fabric tensor' that characterizes the

distribution function of the normal vectors at the contacts. Substituting

Eq. 4.18 into Eq. 2.41, the constitutive tensor becomes

Clp r2 N n T Kij T n F n n siny dy dO (4.19)
lqpk=nV 0 q li jk p rs r s

Taking into account the symmetry of the incremental stress and strain
tensors, the stress-strain relationship, equivalent to Eq. 4.19, can be

expressed in Voigt's notation as follows,

<m > =Cmn <t > (4.20)

where

* , Y* P(-
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m >S(&z, yy' xx zy 'Zx, rX

and

<b n> ZZ t y t x 2 zy 2t z , 2 nd

The stiffness constants C mnfor a packing fabric of a 2n order spherical

expansion form (Eq. 4.15) are given as

C- r LN(3K + 2K) + .a2 (6K +~ K (4.21)

C 5F L(An+ 2K ) - O (6Kn+ K) + 6a2 (6K +K) (4.22)

N2 5- n6+K -ns n (423

2 A [K ) a20 6 6a 22  (4.2K3)

2 [(Ku K ) + -42. (K- K ) + 6a22 (K- K) (4.24)

152 ( K ) + -v-- (K- K ) - 6a2(K-Kd(-5

2 j(K..K. 2a2..4.(K K] (4.26)

C r2 N a' (2K K - 6a22  (K+ K(4.28)
C55 30 V(Kn+3K)s+7 s+ 7K n- (2K s)

2 [(2 + -K) a2a (2K K) ] 2 (K K) (4.29)

C 2N 12 b22 (K K (4.30)IC30 V 7 n K)
L7
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036 r, OK_+ 1 1 (4.32)

¢26- 30 V 7 (3n 2 Ks)4.1

C 30 (3K + 2 K)

045= 2 N [12b 22 ]K+ (4.33)

The other elements of the stiffness matrix C are zeros. The ratio of
mn

number of contacts to the volume of the packing, !, is expressed in terms of

the coordination number m and void ratio e by Eq. 4.1.

4.2.1.2 Packings of equal disks

For simplicity, a truncated form of the Fourier expansion in Eq. 4.9

with terms upto fourth order are used. The truncated expansion is given as

(e) = - [1 .+ a2 cos2e + b sin2O + a cos4e + b4 sin4e (4.34)

Alternatively, Eq. 4.34 can be written as a cartesian tensor equation

&(n) = - 1 + ..n.n. + tijklninnknl (4.35)

where n = (cose, sine).

Taking into account the symmetry of the incremental stress and strain

tensors, the stress-strain relationship, equivalent to Eq. 4.19, can be

expressed in Voigt's notation as follows,

<m > = Cmn <tn > (4.36)

where <am> = (a ,y xx& yx) and < n> = (t yy, xx' 2t yx)

The stiffness constants Cmn are given as

C1 1m 8 nn( 1 ) (6K + 2Ks ) + 4a2 K n a4 (Kn -K S) ] (4.37)

C2 2- 8n (1+e) (6K + 2Ks) - 4a2 Kn +a (K s (4.38)

n

.... ....-
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C 812- 8 + (e) 2 (Kn - Ks) -a 4 (Kn - KS) (4.39)

C3 3- 16n(1) [4 (K n+ K) 2a 4 (K KS) (4.40)

C13- 16n (1+e) 2b2 Kn + b4 (Kn - KS ) (4.41)

C23- 16n (1+e) 2b2 (Kn + Ks) - b4 Kn (4.42)

It is noted that for the case of isotropic packing structure, i.e.

a2=a4=b2 f=b4 f=0, Eqs. 4.37-4.42 yield similar results as Bathurst and

Rothenburg (1987).

4.2.2 Hertzian-Mindlin Contact

Under the condition for which the shear force does not exceed the

frictional strength at a contact, the local constitutive law can also be

defined based on frictional Hertzian-Mindlin contact. The contact

stiffnesses, Kn and Ks, obtained from the Hertz-Mindlin theory for

frictional contacts (Mindlin and Deresiewicz 1953) are given in Chapter 3.

If, instead of a linear local constitutive law, a non-linear

Hertzian-Mindlin contact law is assumed, the expressions of Cmn become very

complex and the close form solutions can only be obtained for the case of

statistically isotropic packing under initial isotropic stress condition.

For a statistically isotropic packing, the contact force vector f,

under initial isotropic stress (aij= P8ij), is the same for all contacts,

given by

f 3 V P fs f = 0 (4.43)
n,.' r N
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Thus using Eqs. 4.21-4.33 with a20=a22=b2 2=O, the Poisson's ratio and the

* Young's modulus for the packing are given as

. 2 (5-3v) (4.44)

E El 4 r 2 K5-4v) 9P ]1/3[ G N ]2/3 (445)
EiSO: 30 (5-3v) [ P [(i - V) V (.5

For other packings and initial loading conditions other than isotropic, the

expressions become very complex and a numerical approach to the solutions is

*more tractable.

4.3 TYPES OF MATERIAL SYMMETRY

Due to the different packing structure, a granular assembly may,

conceivably, exhibit different types of material symmetries. The forms of

the stiffness matrix for various types of material symmetries are shown in

Table 4.1 (Nye 1957). Evidently, the various types of material symmetries

can be represented by an appropriate choice of the 'fabric tensor' Fij.

Along with the forms of stiffness matrix for the different material

symmetries the corresponding 'fabric tensor' Fij are presented in Table 1.

The packing structure of a granular packing with orthotropic material

symmetry non-coincident with the stress axes can be represented by a second

rank symmetric fabric tensor with three non-zero parameters a20, a22, and

b2 2. A granular packing in this case will have 13 independent non-zero

stiffness constants given by Eqs. 4.21 to 4.33. It is noted that for this

material the normal stresses azz, ayy, axx are coupled with the shear strain

Cxy"

Granular packings with orthotropic material symmetry can be

represented by a diagonal second rank fabric tensor with two non-zero

parameters a20 and a22. Orthotropic material is characterized by symmetry

lo
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TABLE - 1 Forms of stiffness matrices C anand the fabric tensor F.

for various material symmetries

Stiffness Matrix C Fabric tensor F i.

Orthotropic Vith
non-coincident stress axes

+ 00 0

0* 1 a1 l~ 2 20 + 3a 22  3b 22
symm * *1

*0 3b22 1 a 2 0 - 3a 22

KL Orthotropic
+* * 20  10 0

*0 1- a + 3a2  0
symm 2 20 2

0 0 1- a2 0  3a2

Tet ragonal
+* a- 1 a2 0  0 0

*ym 0 1+-a20  0

sym0 0 1 -2a 20

Transverse isotropic
+* a- l 2 0  0 0

0 1~a0 1 2a20 j

0 1

Isotropic

N **0 0
0 1 0symm 0J

0

N0

.- zero components, *-non-zero components, o- C2 -C), -*-equal

6- ~components (C2C3)
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II
about three mutually orthogonal planes. The stiffness matrix of materials

with orthotropic symmetry is represented by 9 independent constants. For

orthotropic materials the normal stresses are not coupled with the shear

strains and the vice versa.

Granular packings with tetragonal material symmetry have 6

independent stiffness constants. Tetragonal symmetry is characterized by a

an axis of symmetry. If the parameters defining the fabric tensor F., were

chosen such that a2 0 = 2a2 2 and b2 2=0, then packings with tetragonal

symmetry can be represented.

In addition to possessing an axis of symmetry, certain granular

assemblies, have an additional condition on the stiffness constants, that is1

C66 =1 (C22 - 023). The number of independent constants characterizing the

stiffness matrix for such packings are thus reduced to 5. This type of

3 material symmetry is termed transverse isotropic symmetry. The fabric

tensor for the transverse isotropic material can be represented by choosing

a2 2=b 2 2=0.

If the fabric tensor is chosen such that a20=a22=b22=0, then packings

with isotropic material properties can be represented. It is noted that the

stiffness constants for packings with different material symmetry can be

obtained from Eqs. 4.21 to 4.33 by using appropriate values of a20, a22 and

b 22 '

4.4 DISCUSSION

To demonstrate the effect of packing anisotropy on the mechanical

properties of random packings, parametric studies are performed for the

statistically isotropic, transverse isotropic and orthotropic packings.

Fig. 4.2 shows the density functions Q(n) of the contact normal vectors for

r •



40I

TRN-ISO TRN-ISO TRN-ISO

RA -%1 S.i

ORTHO ORTHO ORTHO

-0. 03 0lae 1 - 03 0l3e - Ople

@1 0. 

038U.

MONO MONO MONO

U0 Q 8 _

U4GA -3-.

y =O plans x =O0plans z =O0plans

Fig. 4.2 Section of density function E(n) for statistically transverse
isotropic, orthotropic, and monoclinic packings along x-O, y=O,
and z=O planes.



the monoclinic, the orthotropic and the transverse isotropic packings.

Three sections of the density function, along x=O, y=O, and z=O planes

respectively, are plotted in Fig. 4.2. The following values of the

parameters are used for this plot: a20
= 0.8, a22=b22=0 for transverse

Isotropic packing, a20= 0.2, a22=0.25, b22 =0 for orthotropic packing, and

a20= 0.2, a2 2=0.25, b22=0.1 for monoclinic packing.

The solutions are computed based on Eqs. 4.21 to 4.33 using the

following values for the parameters: n = 9, e = 0.57, r=0.01 in., and K =

3800 psi. Fig. 4.3 shows the Young's modulus and the Poisson's ratio

plotted against the ratio K /K (the shear stiffness K to the normal
s n s

stiffness Kn) for statistically isotropic packing. As expected, the Young's

modulus increases and the Poisson's ratio decreases with the ratio K /K
s n

The maximum value for the Poisson's ratio is 0.25 when the ratio K /K is
s n

zero for perfectly smooth spheres with no tangential interactions.

Figs. 4.4, 4.5 and 4.6 show the variation of the Young's moduli, the

Poisson's ratios, and the shear moduli, respectively, with the ratio Ks /Kn

for the transverse isotropic and the orthotropic packings. The Young's

moduli Exx=Eyy and Ezz, the two Poisson's ratios vzx=vzy and vxy, and the

shear moduli G zx=G and Gxy for the transverse isotropic are computed for

the parameter a20=0.8. It is noted that the shear modulus Gxy can be

expressed in terms of Exx and vxy, thus there are only 5 independent

constants for the transverse isotropic packing. The three Young's moduli

Eyy and E , the three Poisson's ratio v , % and v x, and the three

shear moduli Gzx, Gzy and Gxy for the orthotropic packings are plotted for

the value of the parameter a20=0.2 and parameter a 220.25.

To show the effect of degree of anisotropy on the mechanical

properties, the ratios of Young's moduli for transverse isotropic packing to
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Fig. 4.4 Variation of Young's moduli with the ratio Ks/Kn for statistically
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the Young's modulus for isotropic packing are plotted against the parameter

a20 in Fig. 4.7. The ratios of the Poisson's ratios for the two packings

are also shown in Fig. 4.7. Clearly the more anisotropic packing structure

has a more anisotropic mechanical properties.
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Chapter 5

EXPERIMENTAL STUDY ON ROD ASSEMBLIES

Experimental tests were performed to provide a database for the

verification of the developed theory. Experiments were performed to obtain

stress-strain response of packings with regular and random structures.

Specifically of interest was the directional dependence of the stiffness

properties of the packings. Details of the experimental setup are presented

in Xue 1988.

5.1 APPARATUS

The apparatus used in this study consists of a loading frame composed

of 4 rigid aluminium plates 1/2" thick and 2" high. The maximum size of rods

3 assembly that can be placed in the loading frame is 8" by 8" in dimension.

Each rod of assembly is placed vertically, resting on a glass table top

(shown in Fig. 5.1). The frame is so designed that it can be compressed

independently in X and Y directions. The box can also be made to swing about

Y-axis, hence it can serve as a directional shear box.

The loading is applied using a set of push-pull type pneumatic

cylinders (or pistons) controlled by regulators with air pressure gages

attached. Cylinders can be pulled or pushed to apply compressive forces and

shear forces to this box with desired stress conditions, such as: isotropic

compression, biaxial compression, and shear loading with a controlled

rotation of principal stress axis. Five dial gages that read to 0.0001" are

attached (see Fig. 5.1) to monitor deformations.

5.2 SPECIMENS AND MEASUREMENTS

, 5 2

N'5
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Fig. 5.1 The directional shear box.
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Six regular and two random packings have been investigated. Samples

of approximately 300 aluminum cylinders, of 2 in. high, are placed randomly

or in accordance with a given regular packing arrangement.

Regular packing structres selected in this study consist of four

packings of equal sized cylinders and two packings of multi-sized cylinders

as shown in Fig. 5.2. For packing A, B, C and D, the diameter of the

cylinders used is 0.5 inch. For packing E, the diameters of the cylinders

used are 0.5 inch and 0.25 inch, and for packing F, 0.75 inch and 0.5 inch.

Two types of random packings are used, namely one sized packing made of 271

rods of 0.5 in. diameter and two sized packing made of 229 rods of 0.5 in.

diameter and 190 rods of 0.25 in. diameter.

Strains of the rods assembly is obtained from the deformation of the

box measured from the attached 5 dial gages. The thickness of the frame

plates is designed to be large enough such that the bending deflection of

the loading frame is insignificant.

Stresses applied on the rods sample are calculated from the readings

of the pressure gages connected to the pneumatic cylinders. Since the

actual forces transmitted to the rods assembly are different from those

directly calculated from pressure gages due to friction loses in the system,

calibration was made to account for the friction loses in the piston of the

pneumatic cylinders and the friction loses between the loading frame and the

glass plate. In addition, the stress madnitude applied to the assembly was

selected to be much larger than the friction between rods and the smoothened

6 glass plate so that the effect of friction is expected to be insignificant.

Photographs of the assembly packing were taken for the random

assembly. The rods are painted black on the top and their centers are



Packing A Packing 8

Pakn akn

Packing C Packing 

Fig. 5.2 Six regular packings of cylinders.
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I
marked so that, from photographs, the coordinates of the center point of

each circle can be digitizd to give the contact normal distribution.

5.3 STRESS PATHS

The stress path applied to the sample is a shear test with fixed

principal stress axis as illustrated in Fig. 5.3 on a normalLzed deviatoric

stress vs shear stress plot. All tests start with isotropic initial stress

state, represented by the point of origin in Fig. 5.3. An initial isotropic

stress of 2.5 psi is used for all the tests. Then the incremental stress of

0.5 psi is applied to the sample in a direction with an angle a inclined

from Y-axis such that the principal stress axis is rotated by an angle of (,

with the major principal stress aI= 3.0 psi and the minor principal stress

a3=2.5 psi. For each packing, tests were conducted for the following

angles (00, 150, 22.50, 30.00, 37.5 ° , and 45.00).

5.4 TEST DEVIATION

Each test was repeated several times to evaluate the test

variability. The coefficients of variations of the measured strains x' CY

and shear strain c xy are found to be about 20%, 18% and 15% for c x, c y and

C xy respectively. The scatter may be caused by many factors. In addition

to the factors associated with loading system and apparatus, one factor

identified is that the rods are not perfectly circular and equal in

diameter. Thus identical samples are not possible to be reconstructed.

Wp.,
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Chapter 6

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Verification of the theory is carried out by comparing the

theoretical computations with the measured experimental results.

Comparisons are made with the experimental results from the tests on rod

assemblies in directional shear box. Comparisons are also made with test

results from glass balls assembly in a resonant column device and tests on

sands under low amplitude waves. Response under different initial stress

conditions are also computed and compared with measured trends.

6.1 COMPARISON WITH EXPERIMENTS ON ROD ASSEMBLIES

6.1.1 Regular packings

To compare with the experimental results, the response of the six

regular packings (shown Fig. 5.2) under the loading conditions discussed

above were computed using the theory. The values of the constants used for

theoretical computations in this work are: G = 15000 psi (105000 kN/m 2), T =

2.5, v = 0.1, and * 150.

The apparent deformation modulus of a packing is defined by

E E ot (6.1)
r£

where A is the incremental stress in the direction a, c is the measured

incremental normal strain in the direction a, calculated from measured
~,I

deformation of test box. The apparent Poisson's ratio can be given by

- (6.2)
CE+90
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where c +90 is the normal strain measured in the direction perpendicular to

that of c . Normal strains e and c+90 are not necessary the principal

strains.

Figs. 6.1 and 6.2 show the apparent moduli and apparent Poisson's

ratio for the six packings respectively. The measured results are compared

with the predicted theoretical results for various values of a on polar

coordinates.

Packing A (square packing) is most stiff when loaded in the direction

of Y-axis. When it is loaded in the diagonal direction (i.e., as t becomes

to 45 degree) the modulus is minimum while the Poisson's ratio is maximum.

Packing B (hexagonal packing) behaves isotropically. Both moduli and

Poisson's ratio are equal in all directions. Packing C, is a mixture of

square packing and hexagonal packing. Remarkably the modulus and Poisson'so ratio of packing C are average of those of packing A and packing B. Packing

D shows the similar isotropic behavior as that of packing B, however, the

magnitude of the modulus of packing D is much smaller than packing B. Both

packing E and F are two-sized packings. Their moduli and Poisson's ratios
are anisotropic. More detailed comparisons are included in Chang and Misra

1988a, Chang, Misra and Xue 1988.

6.1.2 Random packings

,F, Two types of random packings are used for the experiments. Random

packing A is made of one size rods with total number of contacts N=1372, the

void ratio e=0.179, and the coordination number m=5.06. Random packing B

consists of rods of two different sizes with total number of contact N=1991,

the void ratio e=0.179, and the coordination number m=4.75. The

distribution of the branch vectors, vector joining the centroids of two

particles in contact, is shown in Figs. 6.3 and 6.4 for the two packings.

F
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Clearly the branch vector is two times the contact position vector for the

case of one size packings.

To compare with the experimental results, three sets of values of the

constants to represent stiff, soft and average response were used. The

values of the constants used are: G = 40000 psi (280000 kN/m 2), T = 1.0 for

St. 2
stiff packing; G = 15000 psi (105000 kN/m ), T = 2.5 for soft packing; and G

= 25000 psi (175000 kN/m 2), = 2.0 for the best fit of the experimental

results. For all the computations the value of j is 0.1, and #' is 150.

The theoretical predictions and the measured strains are shown in

Figs. 6.5 and 6.6 plotted against the direction of the principal stress axis

o. The measured data is completely bounded within the predicted response.

The theory gives reasonable predictions of the trend. Measured strain c
xx

shows more scatter since it is very small in magnitude and therefore

expected to have more measurement errors.

6.2 COMPARISON UITH EXPERIMENTS ON GLASS BALLS IN RESONANT COLUMN DEVICE

* To evaluate the applicability of the theory, the theoretical results

are also compared with the experimentally observed shear modulus of packings

10 of uniform glass balls from resonant column method. A confining pressure

is initially applied to the cylindrical samples made of glass balls

contained within a rubber membrane (Yanagisawa 1983). Then the torsional

oscillation is applied on the top of the specimen to develop a shear wave
transmitted through the specimen. The shear wave velocity or the shear

modulus of the material can be obtained from the observed resonant frequency

and the dimensions of the specimen.

.' Since no information is available on the packing structure, for

computing the theoretical r-sults we assume that the packing of glass balls

4.
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is statistically isotropic. The shear modulus is taken to be 5.75xi0 6 psi

U (4.Ox1O7 kN/m 2 ) and the Poisson's Ratio is 0.13 for glass. The relationship

between the co-ordination number m and the void ratio e used in this

prediction is given by Eq. 4.2 by Yanagisawa (1983).

Fig. 6.7 shows the comparison of the predicted and measured moduli

for the packing of glass balls. As can be seen from Fig. 6.7, the shear

modulus is influenced significantly by the confining pressure ac. The

experimental values show that the shear moduli increase in proportion to the

0.42 power of the confining pressure ac while in theory the power is 0.33.

6.3 COMPARISON WITH EXPERIMENTS ON SANDS UNDER LOW AMPLITUDE WAVES

6.3.1 Comparison with empirical equation

Applicability of the theory is also evaluated by comparing with an

S empirical equation for sand which was obtained from the results of a large

amount of resonant column tests conducted on dry Ottawa sands by Hardin and

Black (1968). The shear modulus of sands is empirically expressed as

G - 2630 (2.17-e)2  a/2G= (l+e) (6.3)

where the shear modulus G of the packing and the confining stress a are

expressed in psi.

A modified form of contact law for rough inelastic non-conforming

bodies (Chang, Misra and Somasega 1988a) is used for computing the

theoretical results for the comparison purposes. The shear modulus of

material used is 7.5xi0 6 psi (5.2x10 7 kN/m 2) and the Poisson's ratio \' is

0.13. The relationship between m and e used here is in the following form,

e (23 -)
e 25 (6.4)

25N
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Fig. 6.7 Comparison of predicted and measured shear moduli for a packing of
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Eq. 6.4 is shown in Fig. 6.8 compared with measured data on void ratio and

Pcoordination number. For convenience, a linear line is used to fit the

measured data. The comparison between the shear moduli obtained from the

theory and the empirical equation is shown in Fig. 6.9.

6.3.2 Effect of initial stress conditions

The initial stress condition is an important factor influencing the

mechanical behavior of a packing. A closed-form solution is difficult to

obtain for initial stress conditions other than isotropic for the reason

that the forces vary at contacts and hence the contact stiffness is

different for each contact.

a Moduli of an isotropic packing are computed for different initial

stress conditions. The different initial stress conditions are represented

by points of stress state lying on three stress paths shown in Fig. 6.10

namely, 1) compression path, 2) constant mean path, and 3) reduced

compression path. Initially, stresses a1= a 2= a 3= 10 psi (69 kN/m2). In

path 1, the axial stress a is increased while the confining stress (a 2=a3 )

is kept constant. In path 2, a I is increased and a2 and a3decreased while

the mean stress is kept constant. In path 3, a3 and a2 are decreased while

the vertical stress aI is kept constant. The moduli are computed using

G=7.5xlO psi (5.2x10 kN/m ), v=-0.13, and f =24 . It is observed that,

under these stress conditions, the packing exhibits cross-isotropic behavior

with properties symmetrical about z axis.

The computed Young's moduli in the vertical direction are shown in

Fig. 6.11 for the three stress paths. With an increase of stress ratio, the

moduli in the vertical direction increase for the compression path while the

moduli decrease for the reduced compression path. For the constant mean

path, the moduli decreases only slightly. This trend is in agreement with

.t~gu
I
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the trend observed in the experimental tests by Yanagisawa (1983). For

stress ratio alI /a3 greater than 2.3, the Young's moduli and the shear moduli

show appreciable decrease because the shear force exceeds the contact shear

strength for many contacts. For comparison, the computed Young's moduli in

the horizontal direction and the shear moduli are also shown in Fig. 6.11

and 6.12 respectively.

P -
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