e e copy P @

NAVAL POSTGRADUATE SCHOOL
Monterey, California

(o)
o0
0
o2
o)}
P
T
Q
a

DATA STRUCLURES AND ALGORITHMS
FOR SUPPORTING GLAD INTERFACES

by
Paul D. Grenseman

June 1988

Thesis Advisor:

Approved for public release; distribution is unlimited

¥

Nl FoY

G >, A%,
] }.s"‘.l;ﬁ ()

MRS S N

<2908 2" 8. ¢t P I u 4D A 00 0 WK 4 Ve

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIZ:CATION
UNCLASSIFIED

‘b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION AVAILABIL " OF REFORT

Approved for public releasc:

2b DECLASSIFICATION : DOWNGRADING SCHEDULE

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

-

5 MONITORING ORGANIZATION REPCR™ ‘v Nfbin

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

(If applicable)

7a. NAME OF MONITORING ORGANIZATION

»

Naval Postgraduate School Code 52 Naval Postgraduate Schocl

6c. ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and 2iP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicahle)

9. PROCUREMENT INSTRUMENT IDENT'FICAT ON NUMBER

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

WOFR N1
ACCELSION NO

TASK

PROGRAM PROJECT
NO NO

ELEMENT NO.

11 TITLE (Include Security Classification)

DATA STRUCTURES AND ALGORITHMS FOR SUPPORTING GLAD INTERFACES

12. PERSONAL AUTHOR(S)
Grenseman, Paul D.

13a. TYPE OF REPORT

Master's Thesis FROM

13b. TIME COVERED

14. DATE OF REPORT (Year, Month Day)

15 PAGE (Avr,”
8, June 79

TO

156 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official

* policy or position of the Department of Defense or the U.S. Goverrment.

17

COSATI CODES

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

GROUP

SUB-GROUP

FIELD

Graphic Interfaces; Relational Databases

19 ABSTRACT (Continue on reverse it necessary and identify by block number)]

.»The relational database model has become the most popular and widespread

database model.

Most current database systems are based upon or related to

the relational model.

cant limitations, pitfalls and deficiencies.
substantially improved with graphical interfaces.

However, the relational model is beset with signifi-
The relational model can be
To this end, the Graphics

Language for Accessing Database (GLAD) can prcvide easy to use and learn
graphics inte:xfaces for the relational model. Data structures and

1ttt e

algorithms for GLAD will be presented to extend the relational model.

- i

oo - Y A A Va T A 2
. L : |)
’ - ’
K t

o LT fz‘;’r:'{' . 3 SABSTRACT 2" ABSTRACT SECURITY CLASSIFICATION

i 2 cocnnseen oo [SAME AS ROT O omic USERS Unclassified

i 1; .Ag'r 'E JfT ‘s wu ST LA 22b TELePHONE (Include Area Code) | -2c OFFICE SYMBOL
. Prof. C.T. (408) 646-3391 Code 52Wg

DD FORM 1473, <2 /7.

33 APR edition may be used until exhausted
All ather editinns are obsolete

i

R T 90 st A TN T A T AT AT L T I AT AT 2 i AT

SECURITY CLASSIFICATION OF THIS PAGE

® U.S. Government Printing Office: 1986—606-24_

UNCLASSIFIED

WS NE N

Approved for public release; distribution is unlimited

Data Structures and Algorithms for Supporting
GLAD Interfaces

by
Paul D. Grenseman

Captain, United States Marine Coxps
B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Paul D. Grenseman

Approved by: W

C.T. Wu,lthesis Advisor

Mc N s A

D.K. Hsiao, Second Reader ’

RO e

Robert B. McGhee, Acting Chairman
Department, o omputeﬁ Science
/i

Author:

/(/¢—-- T
. James M« Fremgen,
Acting Dean of Information and\Policy Sciences - ?
4 ,/ /
/ —

L,“ ii

v s 5 t toi bt g g bR g Thoy)
AEOG0N ‘n’ i, \l ek, IO O ROURAAK i‘.’a’. AR N L R L R AL R RTINS
* LN B i

nye A RATIC AT 3
0 Y W .. 't‘e'%‘f PO ARIS Bl A

A
N

. . S
- oy -
-

v,‘,.-‘ A.,_,.
.—4.’- | -
C o R 4 .l‘x.’-’:

L A A

..-
L

RO e 2 2

ABSTRACT

The relatior 1 database model has become the most
popular and widespread database model. Most current
database systems are based upon or related to the relational
model. However, the relational model 1is beset with
significant limitations, pitfalls and deficiencies. The
relational model can be substantially improved with
graphical interfaces. To this end, the Graphics Language
for Accessing Database (GLAD) can provide easy to use and
learn graphics interfaces for the relational model. Data
structures and algorithms for GLAD will be presented to

extend the relational model.

Accession For

NTIS GRA&I

DTIC TAB

Unannounced O
Justification .

By
Distribution/]
Availability Codes
‘AJali and/or
Specilal

4l

Dist

iii

.' o 54‘ ” { J‘ '\f-'.' rd “ J‘ " .“.‘.J‘.;-'x.". ﬁ.&.{ S f -F f_ "5,-

i) t

Ve 8 p g b h e e g N Ry Ry
"..4‘3‘ A".‘s‘..' !“.' W e

~

II.

TABLE OF CONTENTS

INTRODUCTION = o o e e oo o o v e e oot e e o om0 5 e 20 5 e e e e e e
A. GLAD WILL RESOLVE SEMANTIC LIMITATIONS ==e—=-
B. GRAPHICS OBJECTS IN GLAD =wmmesmccwmccocaacon-
C. STANDARD RELATIONAL LANGUAGES =—==—=wm——a—ame--
D. IMPROVING THE RELATIONAL ENVIRONMENT ====—==-
E. GLAD DEVELOPMENT =——mremcmcom oo ———o oo —————
F. DATA STRUCTURES AND ALGORITHMS FOR THE

GRAPHICS INTERFACE ==mmmem———m—e—— e e e
G. OUTLINE —-——====== —————————————————— e
THE NEED FOR AN INTERFACE AND EXTENSION -~=wwcw=-
A. A HISTORY OF THE RELATIONAL MODEL =~==ec===e——-
B. PITFALLS AND DRAWBACKS OF THE

RELATIONAL MODEL =~—~=—=—==—==—em—————————————
C. SEMANTIC LIMITATIONS OF THE RELATIONAL

MODEL = o o o o o v o o o e e o o o o 28 0 e
D. ALTERNATIVES FOR IMPROVING THE ,

RELATIONAL LIMITATIONS —=—-~=e—c=mee—e———————
E. EXTENDING THE RELATIONAL SYSTEM —-————m—ww—e—-
F. BASIC RELATIONAL SYSTEMS ARE DIFFICULT

TO LEARN AND USE ====~ e —————— ————————— :
G. RELATIONAL QUERY LANGUAGES MUST BE

IMPROVED ==m=mmm === oo oo o s
‘H. GEM AS AN EXTENSION OF THE RELATIONAL

MODEL ==-========mm—mm———— cmmmmmm——— m——————
I. VALIDATION OF THE NEED FOR A BETTER

INTERFACE =-=-- e m e ———— —-—

iv

R OO OO NNTOERCUCSICWARYC
..'.;:,"n“‘gg 000 s l.qfﬂ‘éi‘.’ 1ttt it R RN N)

11
12
16

17

19

21

22

23

25

28

30

32

f‘:‘;\f‘ccﬂ*)

R R R A S U NN L YT T N T T O R O R R O O O P O U I ORI O Y OV UY U IR U WY

N III. OBJECT ORIENTED LANGUAGES AND GRAPHICS
in INTERFACES ===— === 34
b'!:
o A. OBJECT ORIENTED REPRESENTATION OF THE
el DATABASE MODEL ==—====m-mmmmmmm— e o mmmmmmmem 35
Tt
I B. THE INTERFACE FOR ACCESSING DATABASE —--——-——- 37
o
Ny IV. THE QUERY WINDOW —===mmmmm—mmmmmmem e 39
Q.a: ™
- A. GLAD TO SQL =-==m=m== e oo 39
")
3 B. GLAD QUERY OBJECTS THAT REFER TO OTHER
Rt QUERY OBJECTS -=======—==mm—mmmmmm e — 68
3 C. GLAD'S CORRESPONDENCE TO SQL —-—==——=——————-m- 73
" v. SYNTAX FOR THE GLAD SCHEMA ——=—————=—=—=—=———cem- 74
gﬁ A. A VIEW OF THE UNIVERSITY DATABASE ----——————- 74
U B. SCHEMA CONSIDERATIONS =——==———=——mm——e——oeoeee 82
°
B VI. DATA STRUCTURES TO SUPPORT THE INTERFACES ----—-- 83
5? A. A USEFUL ANALOGY ===—=——-==-m—mmm—————eomme 84
'1‘..:
e B. ABOUT COLLECTIONS =========———————mmmmmmeooe 85
o C. GLAD DATA STRUCTURES FOR THE UNIVERSITY
DATABASE ======m==m—m———m e 89

o
s D. THE QUERY COLLECTION =———————————mmmm——————em 93

E. THE PHYSICAL DESCRIPTION ————=====—=e——o————o 95
*&
Y
-~ VII. ALGORITHMS FOR THE TRANSLATION —-----—=-==——m—— 97
o A. THE TRANSPARENT LINK TO THE SYSTEM -=---———-—- 97
o B. GLAD ON TOP OF SQL ——-—————=—=——mmmmmmmm o 98
Ly
K7 C. THE TRANSLATION SCHEME ———=—=--——m=————————m- 99
.r'

: D. AN ALGORITHM FOR THE TRANSLATION OF GLAD ---- 101
. E. AN ANALYSIS OF THE TRANSLATION ALGORITHM ---- 103
w .
aé F. FROM EXTENDED SQL TO SQL SYNTAX —-———=—=====n 108
0
S G. A TRANSLATION EXAMPLE ——————=---————-—mm———ec 109
°
-

w \'

o

§

?

::‘

®

""

o

5 P S R R A TR R S
B e T T e ¥ e T S Y T A O o N N A A M WA N RSNV

VIII. CONCLUSION = oo o m oo i o o e oo o e o e o o e e e e

117
A. EXTENDING THE RELATIONAL SYSTEM =—===—=m===—=- 118
B. THE OBJECT ORIENTED SYSTEM ~=-—=—==—=———————— 120
C. FUTURE GLAD APPLICATIONS =====n===—======c——m 120
D. REMARKS ON IMPLEMENTATION ==========—-—==---- 122
E. EPILOGUE ==~===emssescesmecccesmasameesnemm--e- 124
APPENDIX A: A SIMULATED GLAD TRANSLATOR ======m===—==- 126
APPENDIX B: TRANSLATOR OUTPUT -=-==-==-—-===—======—o=-- 160
LIST OF REFERENCES =---=======——=——————o-o—os——ssososooo- 170

INITIAL DISTRIBUTION LIST —======—==—osro—ss——===—o=s=- 172

4

vi

R ot . - ppt + T et St et S gat ja* Ra' fa® $2° §a® Ea® 0p* et Da® 00 Ja® Bt Ba” 85" 84° 02" 82" 2% o 82*
ol s - e As L'9 o W UV : et oipiad A’ Ia" b N jg” 82t 0 .

. I. INTRODUCTION

Although considerable work has been accomplished on

extending and 1improving data models with graphical

WP

interfaces, the graphical or pictorial approach to

representing a database 1is far from being fully explored.

L

The potential of this approach has not been fully realized

Y

with current database systems that wuse a pictorial

e representation of the data stored 1in the database.

Therefore, many more approaches will be proposed, explored

and implemented before graphical interfaces for database are

maximized for the best possible user environment and

powerful semantic extension of a basic data model.

a 8B A I I

Graphical interfaces can be employed to extend the user
capabilities of the entire audience of database users. 1In
particular, the naive user will greatly benefit from

graphical interfaces to a database model.

¥ a A&

Progress with graphics interfaces has largely been

3

confined to academic and prototype systems. Most current
database systems have poor user interfaces that do not
represent data 1in an easily understandable manner. For

example, the popular relational database system represents

T IRAAAAOCS B

data as tuples in tables. The user interface is a standard

relational type of query language that has no graphical or

pictorial features. Without good user interfaces, most

® ...

N iy araCINCARN

Mo e, . i ke r m o im mm m e Mt A E e mc AT AT M R, s T E T R AT R AT AT AP, T g™ L R %

: . ; - e \ - . Lot AL S P e P L T
B, N LA A AT AL T N \.’ "\"'\ *"\""\- X '5."'-'.':\ \. \DN OSSN AT AT WA AT e s s
o W O e Y LN WA ATl

database systems are beset with drawbacks, pitfalls and

limitations for the database user. These liimitations can be
resolved by extending the capabilities of these systems with
additional features and by adding easy to use and learn

database interfaces.

A. GLAD WILL RESOLVE SEMANTIC LIMITATIONS

Limitations with many basic data models, such as the
relational model, are widely recognized. These limitations
are caused by lack of semantic capability. Implementations
of inadequate semantic models can result in systems that are
difficult to learn and use. When implemented, the Graphics
Language for Accessing Database (GLAD), proposed in Wu [Ref.
l:pp. 1-11], will provide a user with semantic capabilities
that a basic model does not have and a friendly, easy to use
and learn pictorial database environment. GLAD will
ultimately eliminate many of the deficiencies that make the
relational model difficult for the naive database user to
learn and use. The naive database user will be able to
access and manipulate a database with a minimum amount of
difficulty. GLAD will utilize a unique graphics object
approach to eliminate the relational model's deficiencies

and limitations.

B. GRAPHICS OBJECTS IN GLAD
GLAD shall wutilize Graphics Objects to pictorially

represent data items as simple pictorial objects. These

o Ty "n"'p I S R S S e R gt Py

Of, v, Wy €y Cu o, . . .
0 A vt A i

X .

T

."\

graphics objects «:.! represent ar_srmat.lln trtat s sT.iel
in the database. dnen lea.if”g w1t a2 lavtalase I S
natural for rTheé d4ser %, {il%efe ol el%Ts ot e!Tlv.esx T Ul
database and The sAafeltiufs %Tna¥Y fha; ca.zt Lteluwee! 1'c
entities. GLAD will provide %He L%ef w.1% 3imWi.c fe.Tat).es
O represent entli?lesd 9f lJataasde JLlelTz atd Llhexm tlal
connect the oblects. T™his apptoack si.. Lo sopet.c1 1.
simply reviewing <urren? fopfesentaliofas of TRe = hlela
L. GQLAD Will Ex%end And Inpgrove INe He,al.cfa, Mulde,

GLAD shall be 4% ifel "o ea%er3 Tre Jaz..
relational motel %"Ma% was leve.uped % *re ear,y sevetr? .ex
and refined with a decade of 2Theofel’a, teasatct and
implementation. The rela%iona, wnode;’ wide aftead
acceptance, popularity and ayccenafy] comMetc Al
implementatinn has made (% %oday'a noat 4yman.c and w.dely
used Jdata model. Mnweveyr, ke te,aticra, mode, tras
significant deficiencies and [imita%ions that makea ;t 2
perfect candidate for extension by GLAD. The aycraaafyu]

desiqgn and implementaltion effar%s n»

-8

systenmas =zuch ar TR, and
[NGRES can be buil® upon - *ake advartagqe cf wer¥v that
painstakingly and previousiy Xas beer Jccenptliizhed.
Resources <can be %Htally A.iccated o deve.-pirg an
effective higher level interface. The higher Jeve]

interface that will ©be provided by GLAD will te a

substantial improvement cver the standard guery languaqge.

N NN A NN S S Ny

e~ .
N s N o N A A A N A S P AN P p MR 2 P TR

(R ANPu

TR

- s

578223 2~ 0 «5X3]

D @ e

-
E 3

A, E,

U
.
'
'
1
\
D
L]

3

o~

NN

C. STAMNDARD RELATIONAL [ANGUACES

Relativnal QYuery Llangquages are d:ifficult to learn and
432, semanT. lifricglries assollatel «alThOIIgHh L@Ve., OOh-
procedural languagdes snocdld be reluced as much as pessiple
or tota.ly eliminated. GLAD w:l! previde graph:ical

interfaces that elilminate the syntactic difficulties cf

standard relationai models. Semantic power and capability
shall be addea to "he basic model. GLAD will support
complex objects and data types. These additicnal

capabilities will make the database environment easier to

utilize.

1. Standard Query Languages Are Unsuitable For
End Users

Difficulties associated with standard relational
languages makes them unsuitable as an end user language for
a database. High level, non-procedural languages, such as
QUEL or SQL, are designed to allow the end-user to avoid
mastering the details of the embedded programming language.
Thus, the user does not have to understand the syntax,
semantics, data structures and otlier features of an embedded
host language, effectively eliminating the difficulties of
navigating the data through the system. The user 1is only
required to manipulate the high level set language commands
to formulate the query. However, the use of set language
constructs to formulate queries 1is not always a trivial
task. A significant amount of syntax and semantics must be

mastered to formulate meaningful queries.

TR ‘J_:‘_ -
'

R R R O R A RS
T S R T YO .

NSNEARY

. R WV S LW XL W, W, TV, T el a

2. An Environment That Is Unsuitable For Naive_ Users

A The standard query language environment is not well
)

. suited to naive database uszo=. Learning and using 21
? conventional query language is difficult for users with or
3

3 without only minimal computer science and mathkamatics
? background. This situation is unacceptable because the

difficulties associated with mastering the syntax and

semantics of conventional query language handicaps a large

portion of the database user populace. The standard
’g relational environment must be improved for this large
! category of users. Systems that do not ccnsider 1large
: segments of the user populace will ultimately be replaced.
K
B D. IMPROVING THE RELATIONAL ENVIRONMENT
;) Considerable work has been accomplished in softening the
D harsh and unfriendly environment presented to the user by
'; - systems that are based on the relational model. It 1is
- difficult for an office worker, administrator or secretary
i to relate to data representation and presentation in a
& manner that is dissimilar and seemingly unrelated to the
- normal way that they obtain, review and process data. Human
> factors studies have shown systems that relate new require-
ﬁ ments to familiar concepts are easier for workers to learn
2‘ and use than systems that do not consider a user's working
z environment and previous experience.
.:'
i 5
L

N L ' . '.' ’ ' " '. ' oL “‘—)‘h’\% ‘- F‘ﬁ."'—‘ -)l) A"&\ '{\h ﬂ J-‘ \ \1 , .‘ﬂ.- ’-J‘—v f .‘\. . .D‘Q .l~‘

2«30 TR 2% ath ate ate ata e ket T O T O T U I Y W UV W VIO A OO OO T LY W T OV VW W W S AL AT TR AT 47 &7 R P Ty

¢

bt

o

9

x 1. OBE and Electronic Forms

|'t

; Systems such as QBE by 2Zloof [Ref. 2:pp. 324-342)
N

I' . »

' and Query by Electronic Forms by Miyao ([Ref. 3:pp. 17-25)
k have largely remedied the above mentioned problenmn. With
[}

) . N .
t QBE, the user is supplied example queries that can be used
L]
s:‘

to formulate his associated query. The example query serves
;: as a template for query formulation. Although this approach

3 is powerful as a learning aid or tool, it is limited to a

finite amount of frequently used query examples. If the

2 user wants to formulate an unusual or complex query, he may
Lal
v be unable to find a QBE example to serve as a template for
W
° his extraordinary requirement. The Electronic Forms System
j:: provides a type of graphical representation of a form or
) document that is similar to an office form that is used in

the business aenvironment. The advantage of this approach is

-
¥ the correlation between the paper form and the electronic

o

o

‘ display screen. The mechanism that is presented to the user

tor accessing data 18 similar to a real world paper form

. that exists 1n his office environment. The drawback 1s that
¥ the Electronic Forms approach is very l:imited in scope and
d must be individiz2ily %aillored To the tusiness environment.
. Neverthei.ess. “hese system's grarhical apprcaches o ajding
’

; the user are a siFnifictar® .rprovenent (n ease cf access for
o the 1a*abase user.

/

P

o

v

o
®

i :

.

~ "- \. \t N' a® ,-' " .
N N N, A

'

)

2. Iwgh_mup_p:o_a_mé

Many of these early graphical approaches to database
are user friendly but lack powerful semantic capabilities.
In developing a graphical system for database representation
and access, we not only want to provide a user friendly
environment but also want to add additional semantic
capability to the basic relational model. In particular,
the graphical system must have the semantic capability of
direct representation of non-atomic data.

3. Relational Data Representation

The basic relational model is unable to directly
represent certain types of data. This shortcoming is due to
the relational model's view of data stored as atomic types
in tables. An experienced user may be able to indirectly
represent non-atomic types of data by Jjoining successive
tables of data together to ultimately represent a complex
data type. Unfortunately, this technique requires
substantial knowledge of database beyond the scope of what
should reasonably be expected from a naive database user.
Glad will provide complex data type representation of non-
atomic data. The details of this type of data representa-
tion will be entirely shielded from the user. To the user
point of view, a complex data type is handled the same way
as an atomic data type, such as integer, real or char. 1In
fact, this is certainly not the case. A significant effort

will be required to allow these special kinds of data to be

........... P & - A o P o T, e T T T e T e e e e e T
-r-f.-r.vv'..- \." - .r\._ ~\I v\.. ..\ o -r Vs S A A S T e A R X

oy

A

T

73?

¢l

he' i e D

]

'l‘l
YR

P A A
hn

.’.
P

A

¥ \{~I. v

LR R
l\!:'t".' . ,fi’"

* .‘\.": .,

o
b

RSN

directly represented in the GLAD 1=plementat.on. However,
from the user view, the complex data types are accessed
directly because the 1implementation of ncn-atomlc data
representation will make data retrieval transparent to the
end-user. Therefore, GLAD will resolve a serious relational
database limitation, the inability to express and represent
certain kinds or non-atomic intormation.
4. Lack of Semantic Features

The basic relational model lacks powerful semantic
features. 1In addition to the previously mentioned problens,
the relational model has the following semantic
deficiencies:

1. It is unable to represent generalized entities as
composites of more specialized entities.

2. The relational model is unable to represent aggregate
entities as a collection of atomic and non-atomic sub-
entities.

3. It is unable to classify instances of certain types of
objects.

4. The relational model can not show the associations
between entities in the database.

5. GIAD Will Eliminate Relational Problems
A lack of powerful higher-level abstraction repre-
sentation prevents the basic relational model from providing
a powerful and flexible user interface. The basic
relational system can not accurately represent and display
entities of a real world environment that are composed of
both complex and simple sub-entities. GLAD will eliminate

all of the previously mentioned semantic 1limitations by

cEAE

ey

“ |
YO L A

...-‘.’-. -
-
B - n»

o X r Y0

| o~ .
OO XN, n".‘sé‘l\ AN

supporting the following powerful abstract database
concepts:

1. aggregation

2. classification

3. generalization

4. association.

6. OQbject Oriented Approach
Powerful abstraction concepts such as the above

mentioned aggregation, classification, generalization and
association are best implemented with object oriented
programming. These concepts require objects to be
represented as composites of other objects with

specializations and generalizations of object type.

E. GLAD DEVELOPMENT

GLAD 1is being developed with an object oriented
programming approach. The object oriented approach for
database development seems to be well suited for database
representation. Database objects can be designed to
represent real world entities in a natural and realistic
manner. The object oriented approach is well suited for
supporting complex data types and powerful semantic
features. Conventional programming languages separate data
and program instructions. This separation severely 1limits
the capability of a conventional high level language to make

an easily understandable representation of real world data

objects.

(YW

N - t\-*(,.,.'..’,‘._:\"'; IR S SR IO I N I Ny

» I A i -2
.q‘... .&‘.\!‘.\‘. - \‘ Ma g ¥ P O\ () 2R o F Wy Wy 9 00 0.0."0. .59 N

A i Ly t
R AA R R YN R

{ €

aaaaa 12 288 ath a’s a's at) akgativals ofa’alfs-afat fev far S Pad aob ‘R AL Gt RT3t RS i i

' 1. i i base

§ GLAD will <combine object oriented graphics
: interfaces with a standard relational database system. In
' essence, GLAD sits on top of the relational model and adds
i< object oriented flavor to the standard relational system.
‘ Therefore, the combined system is neither purely object
; oriented nor set oriented. The new system will ultimately
i be the synthesis of the high 1level, object oriented,

graphics interfaces and the basic relational database

systemn.

Since GLAD will be built on top of a relational

PO
.

. -

model, the object oriented graphics language must have the
ability to interface with the relational model. Queries
that are received in GLAD'S object oriented syntax must be
translated into relational syntax to access data that is
stored in the relational backend. The retrieved data, in
relational format, must be reformatted to object oriented

syntax and ultimately displayed to the user via the graphics

% interface.

3 2. The High Level Interface

: GLAD provides an effective data manipulation
ﬁ interface for the database. The graphics objects are
i actually used to access the information contained in the
; database. This approach seems to be well suited for easy

-
S

learning and use by all categories of users because GLAD

-
- -

10

-l v

>

Yy
§

o.l)

O AT A AT AR A L TR T o P A T e P ot P A A
l’o‘.’c..u..‘.ﬂ P .0... OO O o Y VAT AR A TR LA AR AR

fa g el

U T T T T T T AT O O U T T TS T T PO WU R WO WO VO VOO Wl W g P oy

uses a single coherent interaction method for both the data

- e

manipulation and the data application program interactions.

)

-

The hich 1level, graphics interface objects prov:de
the basis for this thesis research. This research 1s a

portion of a project that is using ACTOR by Whitewater [(Rer.

L -

4:pp. 25-115], an object criented programming language, to
develop a user friendly interface to the relational database
model. In addition, GLAD's implementors hope to provide a
semantically rich data model that users directly manipulate
in gathering information with a minimum amount of effort.
This thesis is done in conjunction and in parallel with
research on a data manipulation and data definition language
for GLAD. The above mentioned areas will not explicitly be
; covered in this paper. References to the parallel areas
- will only be made in conjunction with data structures or
it translation of the information that is held in the object
\ . oriented interface.
g F. DATA STRUCTURES AND ALGORITHMS FOR THE
Y GRAPHICS INTERFACE

This study's primary focus is the definition of data
e structures to store data that is pertinent to the designated

f database and development of algorithms that shall be

utilized to translate object oriented information into

relational syntax. To this end, SQL like syntax will be
used to illustrate the translations. In addition, careful

consideration must be given to how data shall be stored in

Polt ...“‘-.‘.-.

11

-te

-

oty @

B Rt R SR W N Wk e N N8
n‘.. of 4’?))’3‘!@&# hkih Qm’xﬁ m“‘ S h

the oOblect oSrienteld parallg:n. Théere are many possible ways
to store davta w»lTtnin ="ne s,3%em. Data should be stored in a
manner that w~:.! maximize erreczive and efficient transla-
tion. 0t secondary Laportance s an analysis of the basic
relatli - nal model's derficrencles and validation of the need

for a graphical interface.

G. OUTLINE
This research shall present one major topic per chapter.
Higher level abstractions for the graphics interfaces will
be discussed in conjunction wWith the major focus of this
thesis: data structures and algorithms tor supporting the
graphics interfaces. A simulator using the translation
algorithm is included in Appendix A to show possible GLAD
translations and Appendix B to show translated output. In
addition, a brief conclusion will be offered in support of
the major topics. The major topic areas of this thesis are
presented in the following manner:
1. Introduction
2. The Need For An Interface And Extension
3. Object Oriented Languages For Graphics Interfaces
4. The Query Windows
5. Data Structures To Support The Interfaces
6. Algorithms For The Translation
7. Conclusion.
The above 1listed topics are presented from a higher

level perspective to a lower level perspective to present a

12

b o} N 2 P]) IR I (L R AF AT AAR ST VIV P S L
\,:'if:" A \’ ’ ‘ "“'(' 0y 4 l. e 5

- o T A ' ny
W e 0 3% W M x o g .'c.'~-.'0- e -'l-‘h‘lo LA R V'&) X

-

- AW

R R RS AN AN AN AN N T R M YN NLA N VAR UR WY VKUK WX LN e ‘g Rl Sal TRbS AN O VR . IO Ak LA ¥ A TR NN dF T T e Te T TeTe
?

) coherent argument for GLAD as an object oriented database.
!
$ In addition, data structures and algorithms to support this
N
K interface shall be discussed in detail. The topics are

e : presented to show the user a higher level, abstract view of
Y the requirement and a possible scheme for the physical

implementation of the interface.

% 1. Introduction
? In the introduction, the major topics of this
b research were introduced. The introduction s.aall preview
§ the entire thesis and lead into the need for a graphics
; interface.
: 2. The Need For An Interface And Extension
: In Chapter II, the need for an interface to the
Q relational model will be validated. Chapter II will explore
i i the history and foundation of the relational model from Ted
? Codd's original research to the relational based SQL and
% QUEL systems that are today's industry standards. These
* relational systems will be shown to be inadequate for the
ﬁ entire audience of database users. To that end, a graphics
? interface to the relational model will be proposed to
;. eliminate relational limitations and deficiencies.
; 3. Object Oriented Langquages For Graphics Interfaces
;? In Chapter III, object oriented concepts will be
i discussed. Languages that are based on these concepts are
@ particularly well suited for implementing graphics inter-
;% faces. The language for implementing these systems, ACTOR,
5

13
o

b
[y
4,

B o N N A AT N N A N T = MRS TS N SN S e

& will be discussed and ana.yZed 1 TALS CLApTer and sulse-

quent chapters.

4. The .37y Win3cw
XA . o ‘. v - C e g
, The query window wi.. Le presented :n Jhapter IV as
Wy
L] . . .
o the principle lazerface 20 %ne .ser. A w:ide variety of

queries shall be presented ami cvorrelations wi.. be shown o

?f the SQL syntax of RThe re a%iufa, dysten, In addi®ion,
;1 correspondence between SLAD gueried with non-atomic data
i, types will be discussed.

'

:'. 5. Syntax For The ZLAD jchenma

% In Chapter ', the syntax for the GLAD schema wil! be
;‘ defined. In addition, correla%ions Dbetween the GLAD,
HE extended SQL and SQL schems wvill be shown. The example

v UNIVERSITY database, presented in Wu [(Ref. 1l:pp. 1-10), will
be used to illustrate the definition of the GLAD schema.
The major objects and sub-objects of the UNIVERSITY database

illustrate both complex and simple data types.

.TH"r' e

6. Data Structures To Support The Interfaces

N

; In Chapter VI, data structures to support the GLAD
?

L interfaces will be defined. The Collection is the GLAD
rd

® class that will be utilized to form all of the database
~l

Y, objects. Various descendants of the collection class, such
~!

. as KeyedCollection, Set, Array and Dictionary, will be
o

o utilized ¢to represent entities, attributes and query
v,

o collections.

Yo~

4

9

- 14

l’

M)

v

A

@

P
Y 4

\r\\Nz.fﬂJ ,:-r

My

AOSEN SN Y N N T LSy \ -'x'-. ‘.'-\.'-w'\ "-\." "\l"v' '-' ALYy ﬁ"\ LYS \'

%
.’
»

vy e

Vgt g% BV Wat @at 4t fa* taV 6avaini e ain ATE 0 VA 4R 240 40 00 2 V2 0.0 U B 0 Vol i3 Va0 3) Nal igd e ., ke R RS - (L¥LV

7. Algorithms For The Translation
In Chapter VII, algorithms for the translation of
the GLAD query collections to relational format will be
presented. These algorithms will be explained in detail
with axample queries to show the translaticucn scheme. In
addition, a simulator for object translation was constructed
to show possible translations of queries. Pascal code for
the simulator is located in Appendix A with output located
in Appendix B.
8. Conclusion
A brief conclusion shall reemphasize the major
points of this thesis. Potential future applications of
GLAD will be discussed with an emphasis on military applica-
tions. In particular, the naive user will benefit greatly

from learning database concepts with GLAD.

15

s , : , . R L A AL TS - . TN
B D N R e L Al Lok Pl s o o LW LA M i o O A R M X ML MGt N

-

s]

W

AFa

A A U Ty gt TS e e W Va Ve P R S XV ¥

II. THE NEED FOR AN INTERFACE AND EXTENS N

If the relational database systems were cent.re.;
suitable for the entire audience of database users Ttlere
would be no need for various interfaces to and extensicnrs oF
the relational model. The standard relational systems are
generally adequate for trained, casua. and experienceaq,
sophisticated users. But for the naive user, ;* .=
untenable. Since many users can be cateqgorized as na.ve
users, system designers should consider the naive users'
lack of database background and training when devising the
syntax and semantics of the database system. Unfortunately,
many system designs gave little consideration to the novice
user.

Recent advances in computer technology have made data-
base technology available to a wide spectrum of organiza-
tions, institutions, and businesses. The demand for
database technology has drastically increased as various
organizations assimilate computer technology and replace old
manual, automated and batch oriented systems with
sophisticated on-line database systems. Systems that
require the smallest amount of overhead costs and time for
training will become the new industry standards.

The history and evolution of the relational model

provides insight into the limitations and deficiencies of

16

v 9 e @ _*

e e =y

-~ ¢

LI 4

Lo SR LY

)
)
[X

the model. In addition, the relational =model can serve as a
viable foundarion for ©bpullding higher level, database
abstractions. An analysis of the relational model shall
confirm the need for a powerful, user friendly interface to
the relational model. The interface should have semantic
capabilities that basic systems do not possess and provide
easy to use and learn data access, data definition and data

manipulation features.

A. A HISTORY OF THE RELATIONAL MODEL

Database management systems have evolved from simple
collections of flat files to complex data base models.
These models are utilized by the sophisticated products that
are today's industry standards. A significant advance in
database technology has been attributed to Dr. E.F. Codd.
While working at the IBM San Jose Research Laboratory, Codd
wrote his classic paper, A Relational Model for Large Shared
Data Banks. This paper, Codd [Ref.5:p. 1], was the basis
for the unified set of theoretical ideas that became the
relational model. While reflecting on the recent history of
database development, Chris Date, a former database resear-
cher who worked with Dr. Codd, wrote that prior to the
development of the relational model, database models lacked
solid principles and well-defined terminology. Dr. Codd
added mathematical rigor to his database model to validate

his ideas [Ref. 6:p. 99].

- AR T Y Mt (AT T LY R LY LT LI TR
YSRGS Y St 0 6 PNy P

S a'¢ad 4. wad “ad.val ¥al ‘el 8 S a¥ gl Vpt FUN U UNUN N O N R R Y TV IV IR b FTHT. oa’s FRT]

1. Relational Products

The relational model has received wide spread
acceptance and acclaim. The simplicity and the uniformi:y
of the relational data model has contributed to its popular-
ity. Successful commercial relational database systems have
been developed. Some of the successful relational products
are listed below:

1. 1IBM DB2 utilizes IBM hardware and IBM MVS software.

2. IBM SQL/DS utilizes IBM hardware and IBM VM & DOS
software.

3. IBM QMF serves as a front-end for DB2 or SQL\DS, and
uses Fujitsu 0S IV F4 software.

In fact, most of the current systems are in some way
based upon the relational concept. Furthermore, many
prototype and research systems are actually utilizing, based
on, related to or extending the relational model. Some of
these systems are as follows:

1. Interface for Semantic Information System (ISIS) is an
experimental system for graphically manipulating a
database. ISIS is based on a simply specified high-
level semantic data model. [Ref. 7:pp. 328-342]

2. Gambit is an interactive database design tool for data
structures, integrity constraints and transactions.
It supports the definition of static data structures
in terms of the extended relational model. [Ref. 8:
pp. 399-407]

3. An Intelligent Database System for End Users (AIDE/AI-
DE-II) provides a user friendly and an easy to use
query language called AQL. [Ref. 9:pp. 25-30; Ref.
10:pp. 34-37]

4. Graphics Language for Accessing Database (GLAD). It
is a unified interface method for interacting with a
database. It is currently being built on top of a SQL
based relational model. ([Ref. l:pp. 1-11]

18

e 80 0% 0% 1% 4% .v. "

L PR o - L » v - - L) - - " -« » -
() "(a!‘» .ﬁ Lo, ?‘ y" * *'V :

......

W,

-~ -

P gk oo SR LN

R g 4

9@ 555 T2

P . P 2t g A o8

R

(l’(‘".

i B. PITFALLS AND DRAWBACKS OF THE RELATIONAL MODEL

b Even though the relational database model has changed
and revolutionized database technology, it is not without
y ; pitfalls and drawbacks. A bad relational database design
Y can have significant problems. As addrassed in Korth [Ref.
. ll:pp. 173-181], the most serious problems are as follows:

? 1. The Repetition of Information.

" 2. The Inability to Represent Certain Information.

3. The Loss of Information.

1. Redundant and Repetitious Information

&y o . .

ﬁ Repetition of information not only wastes valuable
® storage space but also complicates database update. Simple
; changes to a relational scheme can have a large impact on
A

vf the database. The addition of new tuples to the database
’) can cause problems. In some instances, repetitive informa-
33 tion will be needed for the new tuple to preserve the
X validity of the table. These additions and updates can be
"

) costly.

m 2. Certain Types of Information Cannot be Represented
E Inability to represent certain information cai. occur
e

e during the database update. A problem occurs when a tuple
~J

- must bhe added to a table, and the table dces not possess
l

K, values for all of the attributes that are represented in the
1

é takle. The representation of an attribute without value is
s ' not easily solved. A method for representing nothing or
ﬁ null values must be utilized. 1In addition to the difficulty
[)

%,

‘ 19

S

M

'

A

J'

S

T oy Py T

O N T A N e N AT A A N I NN AN

of determining what symraol snal.l Jdesilgfia¥ce t..c
the system implementation or null valye aTtiritrules
trivial task.
3. ecomposition
Loss of information can occur when relational
schemas with many attributes are decomposed 1i1ntc many
schemes with fewer attributes. More tuples but Jess
information are obtained because many of the new tuples
contain erroneous information. When the new tuples contaln
erroneous information, we have actually lost informaticn and
do not have access to the information that was stored in theo
old tuples that were decomposed. This situation is called a
lossy decomposition.
4. User Created Database
From the above mentioned problems, it is easy to en-
counter problems with database design. An obvious cure for
the problem is not allowing Jlatabase users to create the:ir

own databases. Management shall require that all datal..e

definition and creation be accomplished by database profes-

sionals of the organizational, information systems or data
processing department. This cure may be acceptable for a
highly structured organization with a «centralized data
processing environment. However, it will not suffice for an
organization that has a decentralized data processing
department, encourages the use of computer technology, makes

personal computers available to many employees, and gives

R S S R L A

the workers a great deal of flexibility and latitude 1in
using this technology. For this type of organization, the
solurion certers on giving these people the tools to
accomplish good database design and definition while
avoiding the common relational pitfalls. It appears that
basic relational systems are <votally 1nadequate 1i1n this

regard.

C. SEMANTIC LIMITATIONS OF THE RELATIONAL MOLEL
Perhaps the most serious liaitation of the relaticnal

model (s the Linability <t0 express complex real world
relationships. The inability to handle complex relation-
ships is defined in Tsur (Ref. 12:pp. 286-29%) as semantic
scantiness. In Date (Ref.6:p. 609), this linjtation is
discussed in detaii. Date writes:

At the time of this writing (1983), mcst database systems

relational or otherwise really have only a very limited

understanding of what the data in the database neans:

They typically "understand™ certain simple atonmic data

values, and certain many-to-one relationships amsong those

values, but very little else (any more sophisticated
interpretation is left to the human user).

1. Poor Semantic Capability
The relational database model's lack of semantic
capability precludes this model from completely expressing
the natural relationships and mutual constraints that exist
between entities in the database. [Ref. 12:pp. 286-295]
For real world entities to be expressed as complex
non-atomic types, cumbersome and indirect methods must be

utilized. For example, postal worker could not be directly

21

, represented in the database as a type of or member of the
ﬁ set of government employees. The Relational Model does not
allow direct representation of these complex types of data.
W Only atomic types such as characters, integers and reals can
" be directly represented in tables.
N Although the relational model is very popular and in
) many ways has revolutionized database technology, it not
only has serious design pitfalls but also is unable to
’k handle many real world situations. We must develop a better
N approach to database modeling and design that can solve the

l'
)
® above mentioned problems.

D. ALTERNATIVES FOR IMPROVING THE RELATIONAL LIMITATIONS

¥ There are many specific approaches that can be utilized

M to improve the 1limitations and pitfalls of the basic

<

M relational database system. However, these approaches can

f ¢

> be classified into two groups. Database designers have the

: . lowing two basic alternatives for improving the relation-

Ao

\: al mcdel:

N

X 1. The relational model could be abandoned, and a new

@ system could be designed and based on a new model.

]

]

p 2. The relational model could be extended with new
semantic capabilities added to existing systems.

.

2 1. The Construction of a New System

@

N The construction of a new system based on a new

=

N

t model is a monumental task. Developing the architecture,

: commands and dquery language takes considerable effort and

¥ 22

o

v

4

v

)

*al

-

~ . - gL PRI IR C TRy T Cy) [--.’-‘ ----- . N 1\--'\-.\- -..-.\.._‘. e v~«,\"‘|"“"'v'v '-_'.,‘-"\J,'vl -*.‘.-.(- -4;
RO S N Ay ool o 3 o W S T R PRIV A e

‘al

4

time. Putting the new system into production requires
arduous debugging, testing and numerous iterations.
Developing the new system could be costly and unfruitful.
2. Adding Addjtional Features to Existing Systems

The other alternative, adding capabilities to an
existing relational system, may be a faster and more
effective way to develop a database system. With this
approach, capabilities could be added to systems with a
solid theoretical and functional base. Much of the dif-
ficulty associated with the system design and development
prccess would be entirely avoided. Advantages of this
approach include capitalizing on existing technology and
saving development costs that are associated with designing
new machines, backends and components. The new system, with
the additional capabilities, can be built on top of a
functional relational database system. The new system shall
be a combination or synthesis of the basic model and higher

level interface.

E. EXTENDING THE RELATIONAL SYSTEM

Consider the two following approaches that database
designers have utilized to extend the capabilities of the
relational system:

1. A modified query language approach that offers
enriched semantic and simplified syntax.

2. An object oriented approach that provides easy to use
graphical interfaces and rich semantic features for
the database user.

o € T L O OO 20 7

1. Extension Through Semantic Models

To understand the rationale for the first approach,

we must examine the concept of a semantic data mcdel.
Consider the Entity-Relationship (E/R) semantic model
proposed in Chen ([Ref. 13:pp. 1-10]. The E/R model can
conceptually be thought of as a thin layer or an extension
sitting on top of the relational model. An entity is a
distinguishable object of some particular type or a thing
which can be distinctly identified. An E/R relationship is
merely a one-to-one, many-to-one or many-to-many association
between the entities.
2. Advantages and Shortcomings

The advantage of this approach is that it provides a
built-in set of integrity rules to the user so he does not
have to explicitly formulate certain foreign key rules.
Foreign key rules are implicitly understood by the system
when the user specifies the type of the relationship as
many-to-one, one-to-one or many-to-many. Although these
concepts are powerful, they are not well-defined and left
open to a designer's interpretation.

3. A Step in the Right Direction

Chen's model has enjoyed great success as a design
tool. However, a successful implementation of the E/R Model
has not been accomplished. Perhaps this is due to the E/R
model's lack of precisely defined terms. Nevertheless,

these ideas form powerful concepts that can be used to

24

ca b - 3 Y §a* - YW
iy st ¥ovat . at "t tag tag b P RO N R U UV FURST LSRN AR O MU R IR ¢ 2 @4¢ Bac Qe 0 vy o ia u¢ -
i . . =W

R improve the relational model by making it easier to under-
', stand. Understanding is enhanced by adding enriched

semantic features and simpler syntax to the basic relational

model.

§ . F. BASIC RELATIONAL SYSTEMS ARE DIFFICULT TO LEARN AND USE

Q It is not surprising that many of the current relational
B database products are conceptually very difficult for users
" to learn and understand. Even with sinple data base opera-

tions, a user may not understand how to formulate a query to

-
X

access the database. Analysis of primitive relational

-
ot

constructs validates the need for a natural presentation of

v,

; the data to the user in an easy to understand manner.

} 1. Deficiencies with Relational Based Systems

r . Most database users do not have adequate math and
;g computer science backgrounds to effectively understand and
? - efficiently use the full range of primitive relational
5 constructs. Two of the most widely used relational query
= languages, SQL and QUEL, are based on relational algebra and
3 tuple calculus. Even though the design details and imple-
ﬁ mentation of the data model are shielded from the user, he
@

will need to understand certain types of math-like con-

P
Oy

structs that are related to the represrntation of data that

L
N

»

is stored as tuples in tables.

Consider the complex SQL query contained in Date

oo wi]

[Ref. 14:pp. 76-77] and shown in Figure 1.

o 25

‘ |

A N - ’ ORI iy f"v“"'(f ' . PP "
f:'l..'ifn".n'*,»'05".0! B N N O RS A R 0, 0 S e ah e e G 4, SRR,

2 (S 2
Nyt 0,01 N

Select supplier names for suppliers such that there does
not exist a part that they do not supply.

SELECT SUPPLIER_ NAME
FROM SUPPLIER
WHERE NOT EXISTS
(SELECT *
FROM PARTS
WHERE NOT EXISTS
(SELECT *
FROM SHIPMENTS
WHERE SUPPLIER_NO# = SUPPLIER.SUP-
PLIER_NO#
AND PART NO# = PARTS.PART NO#));

Figure 1. Complex SQL Query

To formulate this query the user must have extensive
knowledge of many different math and computer concepts. 1In
addition, it must be noted that the above method is not the
only way to formulate the query to retrieve the supplier
names. Even though the above query is ti.2 most literal
interpretation of the request, there are numerous ways to
formulate this complex query. This situation can be
overwhelming to the inexperienced wuser. For example,
ccnsider the following nested query contained in Date
[Ref.14:pp. 67-68)], observe the differences 1in query
constructs, and determine which query is the easiest to use

for 'Get supplier names for suppliers who supply part P2':

1. SELECT SUPPLIER_NAME
FROM SUPPLIER
WHERE SUPPLIER _NO# IN
(SELECT SUPPLIER_NO#
FROM SHIPMENTS
WHERE PART NO# = P2);

L

(Mo o io® o4

> B =

e

X) X R YN «ah € b)R U @l 0 Vo ual San Sal 529 ¥ [wal S, W/ UURNR N L agd Safh e Saloal taloal Sal SR Sal. el Al

R

A

¥~ 2. SELECT SUPPLIER_NAME

i FROM SUPPLIER

; WHERE SUPPLIER_NO# IN

- ('s1', 's2', 's3', 'S4');

*

ox 3. SELECT SUPPLIER.SUPPLIER_NAME

N : FROM SUPPLIER, SHIPMENTS

3: WHERE SUPPLIER.SUPPLIER NO# =
e SHIPMENT.SUPPLIER NO#

2(- AND SHIPMENT.PART NO# = 'P2';

A Which of the above queries is easiest to formulate?
!’q

[}

? The first query requires the user to understand the use of
)

h nested selects. The second query requires the use of set
‘ theory and explicit knowledge of suppliers who supply part
]“

i P2. The user may not have this knowledge. The third query
x‘ requires use of table joins and dot notation. 1In addition,
> there are many more methods for formulating a query for
ny suppliers that supply part P2. The user must make many
¥

& decisions to formulate a SQL query. The user's choice will
4 depend on his background and preference.

0"

N 2. Too Much is Expected From the User

N Perhaps too much is expected from the user in query
: formation. For the example dqueries, we have required
v knowledge of the following:

K 1. Takle joins on specific attribute conditions.

@

K 2. Dot notation used with joins of a relation.

)

)

; 3. Order of precedence of the query operators

\ (i.e., nested selects).

4

o 4 Syntax of the language. Terms and meanings.

(I.e., from, where, select, and not.)

-y

N 5. Logical operations and meanings. Existential
$ quantifiers and negation.

@

-

j 27

o »

2

\d

v

5

’.0

OIS o ¥ MR NN P TRAT WA RN WO T N N N T LG G L A O Y,

Pada g Rt ey §oad ¢4

3. Difficulties in Translating the Requirement

The difficulties in understanding the syntax and
semantics are not the only problems the user will have in
formulating a gquery. Perhaps the greatest problem is the
translation of the gquery requirement from the domain of
plain English to set type constructs. The human mind does
easily translate a plain English requirement to set type
structures because the mind simply does not reason and think
in set type constructs. Humans tend to reason in both
simple and complex conditional statements that are analogous
to if then else type statements. Translating the require-

ment to set type syntax, that will obtain a range of answers

from specified domains, will not generally be trivial for
naive users.
4. Substantial Training Is Required

The user 1is required to learn and understand a
significant amount of information to access the database.
In summary, this approach is acceptable for sophisticated
users and computer professionals, but it will undoubtedly
present problems to naive users that lack formal backgrounds
in math and computer science. A substantial amount of

training is required to use these systems.

G. RELATIONAL QUERY LANGUAGES MUST BE IMPROVED
In Wong [Ref. 15:pp. 22-23), the following factors are

discussed and given as reasons for user difficulty in

28

iy T W I T R I IR S S O O O R R T R R O IOU T OO A O K 4 " Al e 0% t¥a Ats AVa AVa hia Sl Aha Ate Ve ARl Ria BAlaAle Ala Al diReAle i

learning, understanding and wusing the standard query
languages:

1. The user is forced to remember too many things. The
user is required to remember attribute names, at:tri-
bute formats, record types and values. In addition,
the user must remember the meaning of certain reserve
words that will be vsed in query formulation.

2. Standard query languages support semantically poor
data models. Query languages that are based upon
solid mathematical principles such as tuple calculus
and relational algebra are difficult for non math
oriented users. A user that has not had formal ed-
ucation in calculus, logic, discreet mathematics
and set theory will not be able to understand the
finer points and implicit assumptions that exist
within the relational model.

3. There is no feedback during the query process.
Users generally do not formulate a correct query on
their first attempt. Logical mistakes with queries
can be very subtle and hidden to even sophisticated
and experienced users. A query language should have
features for building a complex query in a piece
meal, interactive fashion. Such features would make
the formulation of a difficult query, such as example
one, a much easier task. With feedback on partial
results, the completed query would be correct.

4. Lack of levels of detail in schemas. In a large data
base hundreds of attributes may be stored. It is very
difficult for the user to select relevant attributes
for a query when he must review a very large potential
set of attributes for query. There is no mechanism
available to control the amount of detail that is pre-
sented to the user during query formulation.

5. Lack of meta-data browsing facility. The user needs

a facility to browse the meta-data to obtain a general
overview of the database.

Friendlier query languages must be provided to the

user to access the database. Simplifying the syntax of the

query 1is important for extending the usability of the

relational model.

29

. U A . S I L R R T R I R WY RS SR
T et T R o R T I o, S A U I R A SR S R S VT TS R TR TSR

f; H. GEM AS AN EXTENSION OF THE RELATIONAL MODEL
I The GEM semantic data model, Tsur [Ref. 12:p. 286], is
implemented on a dedicated backend and remedies semantic
W scantiness by supporting features that the relational model
", does not provide. Zaniola and Tsur describe their DBMS as
consisting of a user-friendly front-end supporting the GEM
) semantic model and query 1language under the UNIX time-
it sharing system. In addition, they utilize a dedicated back-
end processor to provide concurrency control, recovery and

y support for all database transactions. A high level diagram

a: of the model is contained in Figure 1. GEM provides the
:' following extensions to the relational model:

§:. 1. Notions of entities with surrogates.

‘ﬁ 2. Aggregation and generalization are supported.

" 3. Null values and set valued attributes.

? 4. GEM has extended the basic QUEL language to handle

2_ the new constructs.

:) 1. Semantic Scantiness and User Friendliness

‘b The system designers of this GEM implementation have
éé not only tried to remedy the semantic scantiness of the
;' basic relational model but also have attempted to provide a
’:E friendlier query language for the user. They have capital-
: ized on the good features of the relational model by
ﬂi building GEM on top of the relational model and have
: eliminated the relational limitations with the more powerful
g GEM nmodel. Furthermore, this system also improves recovery
'f and performance issues of the basic INGRES system.

B

& 30

)

é

¥
'

L)
3

-
-

! - Mg B \ 3 s O U™ B e Tt Gt At Bt Rt S AT R N T i i - 'J'-J'-'-'-'V.V" "L U S Y
T e 0 0 T 0 0 U O Ty o S T R R e o e G S

3

[2. Simplified Syntax of the GEM Implementation

iy However, the simplified syntax seems to fall short
of truly improving the difficulties associated with making a

relational query. This GEM extension to QUEL still seems to

o

)
-

be unsuitable for users with little computer science or math

-

T
P2

background. The GEM queries have potentially simplified the

-
-

QUEL syntax by allowing the user to directly address non-

3

4 atomic data types in the query. Without this feature, at

" least one additional table would be required for the query.

g The length of the query would be increased because either

ﬁ nested selects or table joins to indirectly address a non-

; atomic data type would be required. But, even with this

f abstract improvement, the same types of basic problems with

: formulation of queries still exist. For example, consider

:% i the following example query:

E" GEM --> range of E is EMPLOYEE

) retrieve (EMPLOYEE.NAME)

p where EMPLOYEE.DEPARTMENT is

C~ E.DEPARTMENT and E.NAME = "J.Black";

> The user is required to be familiar with ranges,

; attributes and conditions. These constructs can provide a
considerable challenge in formulating a complex query. The

: user must understand the logical operations. Furthermore,

;: he must become proficient with tuple calculus to master the

t_ GEM extension. It would seem that the goal of supplying a

i user friendly interface to naive users is not accomplished.

’ The syntax is still basic QUEL syntax that allows the direct

: expression of certain non-atomic data types. The GEM model

" 31

.O

@

P O I e T P TP I S)
i 's | 8 e Co T R q L8 v} 'V\‘ ."\-.'I. !-- .-l .-' -\-;. ."-' (WL S W \-.. ' \" . " ‘wle _.-l‘
‘.l,‘!. . olq o..d.\u S » W M . o o) £ / PPN, 3 R

e A o
AR G e o

o,
LRI L8V

L AN O N Ny Ny e NN Tl W Wu V.

may be untenable for unsophisticated and inexperienced
users.

Many other semantic data models that have been
developed to extend the relational model have similar
strengths and failures of the GEM model. However, none of
the models that have been implemented with the first
approach, semantic extension with a simplified query
language, are both powerful and friendly. These models are
genera.ily implemented with a conventional high-level
language (procedural) and accessed with a set oriented (non-
procedural language). These types of languages are not well
suited for providing powerful features and user friendly

interfaces to the relational model.

I. VALIDATION OF THE NEED FOR A BETTER INTERFACE

Systems that utilize standard query languages as an end
user interface are limited in both capability and potential
use. SEQUEL and QUEL are clearly not the best choices for
an end user 1interface to the database. However, these
standard query languages have potential to aid a higher
level interface to data that is stored in a relational
backend.

The graphics interface of GLA will add an additional
layer of higher level abstraction to the data base system.
It is possible to obtain more meaningful representations of
entities as database objects instead of tables of attribute

names and values. Finally, the expression of complex data

32

LAt S AT g AR AR e
O PO N W S TG N Sl N .

X) types as sub-objects will provide a realist:ic view cf the
A . .

) data base. The mutually supporting goals of supplying Lkecth
L)

a friendly user interface and a powerrul semant:c extens:cn

. shall be realized with GLAD.

Sy

o

o O

<1070

L o

@ X

)

33

oLl @iy

TN

N e O i R e e P Tt Pt § 1 et S T S R LA . ’ ASASER TR GO

Hu¥ g Co X it

oV Vg e AT e T e e e) o
B A N A S A A Y LA

III. QBJECT CRIEMNTED TANGUASES AND SRAFHISS INTIWIE LY

Object oriented progra=a:ng languages, such as
SmallTalk-80 and ACTOR, offer an avtract:ve alTrernative 1<
the conventional approcach of developing a semant:c data
model. A distinct advantage of the oblect oriented approach
is an object oriented programming language's i1nteqration cf
active programming instructions with fpassive data. In a
conventional, high level prcgraceing language, such an C or
pascal, data is separated from the control structures, and
operations are performed on the data by procedures and
functions. Since object oriented languages do not separate
the data and control structures, the data and instructions
are integrated into a self-contained unit called an object.
The objects themselves become active elements 1in program
execution because the code to do things such as sort,
divide, square root and print 1is actually part of the
object. An object has the capability to perform operations.
The -t ject performs an operation when it receives a message.
A program 1is executed by an object sending messages to other
objects. The operation is performed by the object utilizing
a method it contains or inherits from one of its ancestors.
Just as we 1inherit traits and characteristics from our
parents and ancestors, an object inherits methods from its

parents and ancestors. If a method is in an object's class

34

. c
-

SIS RT LV R AT ATET R . VLT

hierarchy or family, the oblect 1is able to utilize the

method. (Ref. 4:pp. 1-50]
Object cricntzd languages, such a3 ACTCR, possess
powerful graphical capabilities. These graphical

capabilities can be used to present data to the user in a
manner that best represents a high level abstract view of
the 1individual data entities and the relationships that
exist between these entities. Pictorial objects can be
easily accessed and tailored for any specific database.
Basic graphics objects of the object oriented language are

general enough to be used for many different applications.

A. OBJECT ORIENTED REPRESENTATION OF THE DATABASE MODEL
Object oriented languages seem to be particularly well
, suited for implementing database models. The use of objects
: to represent real world information is clearly superior to
» the conventional approach of data base modeling. The
conventional approach attempts ¢to represent real world

entities as tables that contain tuples of data.

1. Database Objects Modeled For Real World Entities

P

-
Pl

Real world entities, such as student, professor and

o employee, have the ability to perform certain tasks.
o

" Objects modeled to represent the real world student,
ﬁ professor and employee can be given methods to perform
h operations. These operations represent real world tasks.
\‘

:ﬂ For example, suppose the chairman of the computer science
!

; department tells his secretary to sort all of her student
N 35

'S

k)

@

N

i

e N A B et AN I A g e ey

T NN
TR

ALh l‘- .

h. > ..

files in ascending alphabetical order. The secretary

receives the instructions and sorts the student files by
utilizipa a simple method that she has developed in the
office. After she accomplishes the task, she informs the
chairman that she has finished sorting the student files.
2. Modeling the Obijects
The database objects perform in a similar manner to
the real world entities that the objects represent. In
addition, the chairman could send the same message to many
different objects, and each of the objects could perform the
request in a different way. This is similar to the chairman
giving two secretaries the same instructions. Each of the
secretaries perform the instructions in a different way
according to the method that each of the secretaries has
learned or developed. This ability is a form of polymor-
phism, the property of having, assuming or passing through
various forms and stages. It is a powerful concept because
it closely parallels the way the human mind functions and
thinks. [Ref. 4:p. 33]
3. Objects That are Easy to Use and lLearn
The object oriented model can be constructed for
ease of use and learning. The primary objective of this
approach is to eliminate user associated difficulties with
conventional query languages like QUEL and SQL. Users can
be given a data model that can be directly manipulated.

They shall be able to gather information and access data

36

N R T P L I A I P A B I I N A N N N SN NN A AT AN
A N Y 0 I P e T R T N U I e I v R A A YA TR

4a® " Y7 a%n"a4a"& K- BSRS

with a minimum amount of difficulty. This approach will
make database usage available to a very wide audience.

[Ref. 1: pp. 1-11]

B. THE INTERFACE FOR ACCESSING DATABASE

GLAD shall be implemented with an object oriented
programming language called ACTOR. This 1language was
developed by the White-water Group, Incorporated. ACTOR
possesses powerful features that will be realized by using
the Microsoft Windows environment. The White Water Group
claims:

There are many benefits to this approach,...object
oriented programming makes it easier to develop, change,
and debug advanced programs. Actor is a complete pro-
gramming environment. It uses all the power of Micro-
soft Windows (MS-WINDOWS) to help you organize and
analyze your work. So you can see all of your work at
the same time and trace the influence of one part on
another as you make changes. This makes programming
in Actor a fluid, natural extension of the way you
think--entirely unlike conventional programming.

[Ref. 4:p. 25]

1. Easy to Use and Learn
Through implementation with ACTOR, GLAD will achieve

the important objective of being both easy to use and easy

to learn. GLAD will be a unique approach to utilizing
graphical information to represent real world entities.
With the Microsoft Windows programming environment, entire
objects will be as easily manipulated by the user as simple

atomic data types.

2. Coherent Interaction Method

In addition, ACTOR will be utilized to provide GLAD

with a coherent interaction method for data manipulation and

:} program development. Although GLAD 1is not based on a
i specific data model, it can be used to extend a specific
model's capabilities. It possesses tremendous potential for
W improving a current relational system's capabilities and
K} providing the user with a friendly graphics interfaces.
Other visual models are based upon specific models and are

W therefore limited in capability, portability and potential
‘5 use. GLAD combines the best features of higher level data
; base abstractions from many of the other data models. 1In
“l addition, GLAD provides an efficient and effective means for
X interacting with the database through data definition
interaction, data manipulation interaction and program
N development interaction. ACTOR 1is the ideal language for

% developing this type of interactive environment.

leﬁ-

@ -

38

- l‘),l"

] OF

'

-

| -y P S NI TS » ’ 1 o
DT P TP SRR SR v L 0 {00 T TS 2 0 L D KO e X L0

f AAA . LA A0
B I AR NN e IO LR WM NI Mot O Mok MM M I MM KM B,

NN N N T O R NI I I I TR AN N AN AN AU ETW U

IVv. THE QUERY WINDOW

The most important window interface to the user is the
query window. The query window is the most frequently
employed user interface for accessing information stored in
the database. A result window is automatically activated by
the query window to show the user the information that was
accessed and retrieved. Since the information is actually
retrieved from a relational backend, it is necessary to
understand the high 1level correspondence between the GLAD
window interface and the relational SQL query. Therefore,
the correlations between the major types of user windows to
SQL queries shall be shown. The window queries are based on

: the sample relational queries that are contained in a
pedagogical database that was utilized in Date [Ref. 14:pp.
65-90]. Accordingly, the relational syntax for the DB2
system is standard SQL and will be utilized in conjunction

with the GLAD queries.

A. GLAIr TO SQL

The GLAD window 1is able to eliminate most relational
type constructs from the user query. Essentially, a
translation from the GLAD object oriented query to the set
oriented SQL query must be accomplished. Before the transla-

tion algorithm 1is discussed, an in-depth examination of

39

,) AL AU LN :
DO e N i N L T e D ML A A O o™ ot S A e "

A=) @

271 O gt

) . A , e A P P P
DTN A, T O P e g, e T A NN N

s

o v
b K~ .

a2

G 1@ vV

RS

"‘— ;:..::.

W
1]
D

h
Ny !

U
@
)
1,
L)

Y otk il ad A8 47N A" g MR B al’ Al 9,0 daf Wah ¥ah ad ¥, B."2%. "k oo, fab Sal Fad b I TR UV R YA NV S LT LT

possible user queries shall be conducted, and GLAD to SQL
query correlations will be reviewed.
1. Simple Queries
A few simple examples will be utilized to explain

the simple query. The simplest queries are of the following

SQL form:
- SELECT designated fields
- FROM a designated table
- WHERE a designated condition is met or true.
The GLAD query window is selected by the mouse and

opened for query on the display screen. Figure 2 shows the

basic GLAD query window.

[GLAD QUERY]

OBJNAME QUERY

OBJNAME

SUBOBJ

SUBOBJ

SUBOBJ

Figure 2. The GLAD General Form Query Window

After the query window is opened, instructions can
be typed next to the OBJINAME, * or SUBOBJ's. The window

items will be used in the following manner:

40

' D ™ o (UK W W () { - ' ¥ a?. '
R l""."l".i?‘n!' 09‘.{'.0!’.0:‘:’,‘-'! Wt gt IO I, o'!‘a':ﬁ'!'"a KOO OO G i T LU A MR S K e e

- e o

1. OBJNAME can be used for object instructions.

-
- -

o ol

2. * can be used for aggregate operations and
fermulation of nested selects.

-
L

3. SUBOBJ can be used for retrieval of attribute
values and forming conditions with relational
operators.

a. Simple Query with Condition

Consider the following query:

Get supplier numbers and status for suppliers in Paris.

The GLAD query window and corresponding SQL

query are shown below in Figure 3.

[GLAD QUERY]

SUPPLIER QUERY
SUPPLIER
‘ [SQL QUERY]
*
, > SELECT SUPP_NO#, STATUS<q
SUPP_NO# .P
_J L—. FrROM SUPPLIERS
STATUS p
> WHERE CITY = 'Paris’' ;
CITY - - paris e
SNAME

Figure 3. Simple Query with Condition

With this simple query, it is easy to correlate
the GLAD query entries to the SQL query lines. The GLAD

query window for the SUPPLIER object was previously selected

41

and can be correlated to the FROM line in the SQL query.
The SUPPLIER object is analogous to the SUPPLIERS table of
the relatinnal data base. Therefore, the selection of the
SUPPLIERS query can automatically be substituted in the FROM
line of the SQL query. The '.P', next to the attributes or
sub-objects, SUPP_NO# and STATUS respectively, designates
the SELECT line attributes. The user can think of '.P' as
being analogous to a print command. Essentially, the system
is instructed to print the sub-object values that satisfy
the query. Finally, the " = ‘'Paris' " specifies the
condition that must be met for the '.P' sub-objects to be
retrieved. The CITY sub-object must be equal to the string
value 'Paris'. Ultimately, attribute values for SUPP_NO#
and STATUS will be retrieved from a tuple that has an
attribute value of 'Paris' for the city attribute.
b. Simple Query without Condition
A simple query may be formulated without a
qualification. Essentially, the system is instructed to
retrieve the specified sub-object or sub-objects from a
designated object. Consider the following example query:
Get the part numbers for all parts that are supplied.
The GLAD query window and corresponding SQL
query are shown below in Figure 4. The user must be aware
that every part number will be retrieved since no qualifica-
tion is used. In addition, redundant entries in the data-

base will not be eliminated with this type of retrieval.

42

i BRI e ey RTINS v ea'ath 2l bt 2l ‘abh’
ip' V2t aty et el gta i R T I WU WO U WU WU WL W WUV YLU Y

{GLAD QUERY]

SHIPMENT QUERY .
SHIPMENT
[SQL QUERY]
*
> SELECT PART_NO#

SHIP_NO#

. L—> FrROM SHIPMENT
PART_NO# P
QUANTITY

Figure 4. Simple Query without Condition

c. Retrieval with Duplicate Elimination

The above-mentioned problem can be eliminated by
directing the system to eliminate duplicate items. Consider
the following example query with duplicate elimination:

Get the part numbers for all parts supplied, with
redundant duplicates eliminated

The GLAD query window and corresponding SQL
query are shown below in Figure 5.

The redundant elements have been eliminated by
specifying that the '.P' operation be done in a DISTINCT
manner. Duplicate entries have been eliminated. But
additional syntax, that must be understood by the user has
been added to query. If eliminating the duplicates is
important to the user, the trade-off of adding syntax to

eliminate duplicates will be equitable.

43

O AL AT A T .. RS Y o W o M N WY g d\d‘~ \~\p“..-'.f\
L T A A AT T AT T AN N e N A AT T fo ey

-
e -

R N o Vi W

D00 o S

-

i-ho

- >,

[GLAD QUERY]

SHIPMENT QUERY

SHIPMENT
[SQL QUERY)

>SELECT DISTINCT PART_NO#
SHIP_ NO# "
J ->FROM SHIPMENT
PART NO# .P DISTINCT
QUANTITY

Figure 5. Simple Query with Distinct Ordering

2. Retrieval Using Computed Values

Simple arithmetic operations can be performed on
selected sﬁb-objects that have been designated for retriev-
al. GLAD shall allow addition, subtraction, multiplication
and division to be performed on queried sub-objects to
obtain certain types of numerical conversions. Conversions
from pounds to grams is an example of a numerical conversion
that can be accomplished.

a. Retrieval with Multiplication Operator

Retrieving a sub-object that is modified by an
arithmetic operation is a simple task. Consider the
following query that utilizes an addition operator:

Get the weight in grams (stored in pounds) from PARTS that

are located in Paris. The GLAD and SQL queries are listed

below in Figure 6.

SOOL

.

[GLAD QUERY] _

(4

n W

PARTS QUERY =X

"N

PARTS]

[SQL QUERY)] 3

*]

> SELECT WEIGHT*454c< ()

COLOR L] ~

> FROM PARTS .

WEIGHT .P * 454 N

> WHERE CITY = -

CITY = ’'Paris’ __J_ ‘Paris’ ; i
)

PNAME -
9
b,

. Ll

Figure 6. Retrieval with Arithmetic Operation e

N
This arithmetic operation is easily accomplished f,:'i,‘

by typing the arithmetic operator and operand immediately b
bat'i

after the '.P' retrieval designator. .
v

l.-‘

b. Retrieval with Addition Operator o

)
Retrieval with an addition operator is handled :';

‘.J'

the same way that the above multiplication operator is L
handled. The syntax is '.P + Number'. ::I:
c. Retrieval with Subtraction Operator :‘_:;

-

Retrieval with a subtraction operator is 3
-\ L
analogous to the retrievals that have been discussed. The >
'S

user must take greater care 1in using the subtraction :\
operator because the range of numbers allowable for database ;-3_-.
v

representation must be considered. The syntax is '.P- ::‘_
Number"'. o
.-'J_:
45 \::
o~

-'._

D
e
;-,.

\
y - Cw A ! ("y Ny N G SEE PR Vol WL - '-,.-_‘ [it ¥ LW " A ¥. ‘- N k! 4
{{ L) a9, ‘n‘i ‘\) tl. 'I I AR [, ..l., - -l-‘ “- ‘ - - ’ ". }‘ TRV -TRE - "‘ -

el TMDS

'0
D

A AT Lo AT A T T v e P T Y VR v A A A A R Y

d. Retrieval with Division Operator

Retrieval with a division operator is similar to
the multiplication, addition and subtraction retrievals.
Again, the user must take care in wusing the division
operator not only because of the range of allowable numbers
but also because of gross potential error problems such as
division by zero. The syntax is '.P / Number', and Number
must be <> 0.

e. Use of Strings with Aggregate Operations

Additional flavor can be added to a query by
specifying a message to be returned with the query results.
It is possible to convert a weight that is stored in pounds
to grams and describe this conversion with the returned
results. Figure 7 shows how a message may be ordered. The
2 in front of the string, 'Weight in grams', indicates that
the string message will be mapped to the second item in the
SQL SELECT line.

It is anticipated that the results of the query
will be returned to the user in the GLAD results window.
Figure 8 shows a possible representation of these returned
results.

The query contained in Figure 8 represents one
way to use a message. Messages can be individually tailored
for specific queries. They do not have to be limited to use
with aggregate operations. In addition, messages can be

inserted anywhere in the SELECT 1line by explicitly

o .f_ J‘\I\d‘j

"N

e s A abachia Abe Aladin ~ o v 9
T R R Yo AR RS R L N R R RS W s, Saly \J P A N) <Y n

¢
'
)
)
q

—
! PARTS QUERY
PARTS 2 'weight in grams’
*
COLOR
PNAME .P
CITY
[WEIGHT P * 454 memy
:)
v v \Y
SELECT PNAME, ‘Weight in grams’, WEIGHT * 454
FROM PARTS <

Figure 7. Query with a Message

RESULTS
PNAME MESSAGE WEIGHT)
wrench Weight in grams 720
bolt Weight in grams 567

Figure 8. Results with a Message

designated position of 2, 3 or any desired position. If f
explicit ordering is not designated, the system translation ’
will default to position one. 1

Fu R T s o A O Lo Al o

3. Print All Sub-Objects of an Object

A very desirable query feature 1is the ability to
orint out all the sub-object attribute values contained in
an object with out explicitly selecting all sub-objects with
'.P' operaticons. This ability 1s analogous to tne SQL query
where the entire table is copied.

Consider the following query:

List all the sub-object values of the SUPPLIER object.

The GLAD query and corresponding SQL query are

listed below in Figure 9.

[GLAD QUERY]

SUPPLIER QUERY
SUPPLIER
[SQL QUERY]
* .P
L spreer +
SUPP_NO#
> FROM SUPPLIER
STATUS
CITY
NAME

Figure 9. Copy the Entire Table

The '*' is useld to represent the retrieval of all
sub-objects in the designated GLAD objects. The '*' in
GLAD is directly correlated to the 'SELECT *' in SQL which

directs the system to produce an entire copy of the table.

48

WP A RV Al a N N NNl N ™ P ¥

Using the '*' for retrieval is a shorthand method of copying
the entire table by explicitly doing a '.P' operation on
every sub-object.
4, Qualified Retrieval With More Than One Condition

The user may place further restrictions or qualifi-
cations on a GLAD object by using relational operators on
more than one sub-object in the query. Consider our first
query, but, with an additional restriction that the status
must be greater than 20. The first query is modified as
follows:

Get the supplier numbers for suppliers in Paris that
have a supply status greater than twenty.

The GLAD query and corresponding SQL query show the
correlation of the GLAD query to the SQL constructs. The
second condition is simply represented by 'AND' which is
used to form the conjunction of the conditional statements.
The query in Figure 10 has more than one condition to
illustrate the ability of GLAD to form conjunctiuns with
multiple conditions.

The only difference between this retrieval and the
simple retrieval is the mapping of successive conditions to
'AND' for conjunction with other SQL statements.

5. Retrieval with Ordering

The user may wish to guarantee that the retrieved
information be returned in either descending or ascending
order. This ordering can be explicitly specified in the

query. Generally, the retrieved information is not

49

RN AL A

[GLAD QUERY]

A
SUPPLIER QUERY _-r
!
SUPPLIER
[SQL QUERY)
*
r——) SELECT SUPP NO#
SUPP_NO# .P
e > FROM SUPPLIER
STATUS > 20
—__L—-> WHERE STATUS > 20;
CITY = ‘PAris’ ==
—-1——> AND CITY = ‘Paris;
NAME

Figure 10. Retrieval with Conjunction of Conditions

guaranteed to be in any particular order. Order in either
ASC (ascending order) or DESC (descending order) can be
specified.

Consider the following query requirement:

Get the supplier numbers and status for suppliers in
Paris, in descending order of status.

The GLAD query window and corresponding SQL query
are shown in Figure 11.

The compact GLAD query must be translated to the
more complicated SQL query. The '.P' and 'DESC' operation
on the status attribute must be translated from the GLAD

guery to both the SELECT and ORDER lines in the SQL query.

50

2 A0 Al A LB R e Ak A L Ao R D I AR R DS SLE A IR A

(GLAD QUERY)

SUPPLIER QUERY -___-__ﬂ‘
SUPPLIER |
[SQL QUERY]
L}
> SELECT STATUS
SUPP_NO#
be—o> FROM SUPPLIER
STATUS .P DESC
> WHERE CITY = ’'Paris’
CITY = ‘Paris’]
l——> ORDER BY STATUS DESC
SNAME

Figure 11. Retrieval in Descending Order of Status

6. Retrieval Using Between
GLAD will allow the use of retrieval with BETWEEN so
. that a user may specify an explicit range of values for
retrieval of the designated sub-object. Consider the
following query requirement:
Get the parts whose weight is in the range 16 to 19.
In addition to the above query, consider this query
requirement:
Get the parts whose weight is not in the range 16 to 19.
The first query retrieves all parts whose weight is
greater than or equal to 16 or less than or equal to 19.

The second query 1is the contradiction of the first and

vV . T L

retrieves valuec less than 16 and greater than 19.

51

o e e L O e S IR e T

N AT " T A L o

The GLAD and SQL queries are listed below in Figure

12.
GLAD QUERY |
PARTS QUERY '
PARTS
&
COLOR P
!
WEIGHT .P BETWEEN 16 & 19 !
CITY
PNAME .P
PARTNO# - P=
v v \Y v
SELECT PARTNO#, PNAME, COLOR, WEIGHT
(SQL QUERY] FROM PARTS <

WHERE WEIGHT BETWEEN 16 AND 19; <=

Figure 12. Using a Range of Weight Values

The negation of the above query 1is accomplished
simply by changing the last line to the following:
WHERE WEIGHT NOT BETWEEN 16 AND 19

7. Retrieval Using IN

GLAD queries to determine if a sub-object value is

an element of a user specified set of values can be stated.

52

-
At e e 73
YaTw W = -

-

-

v.'.i'\' l: o

1
]

N

The definition of the set is dependent on the user query.

This query can also be thought of as a shorthand method for
a predicate involving a sequence of individual comparisons
that are ORed together. [Ref. 1l4:p. 50]

We shall not encourade the user to utilize the OF
expression when formulating GLAD queries. The OR expression
can lead to subtle logic errors. For example, consider the
following type of query referred to in the above referenced
literature:

SELECT PARTNO#, PNAME, COLOR, WEIGHT

FROM P

WHERE WEIGHT = 12
OR WEIGHT = 16
OR WEIGHT = 17;

Although we can explicitly allow a GLAD query to
translate to this SQL format, the same results will be
obtained through use of the below listed query shown in
Figure 13.

The above GLAD query translates very efficiently to
SQL. The syntax used in the GLAD query utilizes the
familiar set type notation, { memberl, member2, member3,
«++.}, introduced to most people in elementary school. This
type of a query is an effective and efficient method of
obtaining a specific result from a group of alternatives

that are members of a user defined set.

53

¥ [GLAD QUERY)

o 1
. PARTS QUERY
! FARTS
; *
3 COLOR .P
r z

R WEIGHT P IN {12, 16, 17}——
)
¢ CITY
iy
4 PNAME .P
K RTNO# .P
? PA o) -1
1 |
‘.
\ A" v A" v
X SELECT PARTNO#, PNAME, COLOR, WEIGHT
@
" [SQL QUERY) FROM PARTS <
[}
o WHERE WEIGHT IN (12, 16, 17); < emm—na
.
y Figure 13. Retrieval Using a Set of Weight Values
¥
»
X 8. Explicit Use of OR for Query

If the user determines that he wants to explicitly
i: formulate a query with OR disjunctions, he can format his
f query in the following manner shown in Figure 14.
2
' Essentially, the default conditions for GLAD specify
o that all conditional statements should be made into a
K
Y conjunctive query. In order to utilize 'OR', the user must
‘ explicitly designate the use of 'OR' to prevent the transla-
; ,
. tion from defaulting to 'AND'.
L

NPT P T I BT TN
',,t, A%, |t. m

. XX * 4 SV LY UV N YW UYL UYWL LW 7o L™ T T e e T

®
.
[GLAD QUERY]
j
PARTS QUERY
PARTS
*
COLOR .P
| G !
WEIGHT .P =12 OR =16 OR =17
CITY
PNAME . P—————
PARTNO# . P—
v v v \
SELECT PARTNO#, PNAME, COLOR, WEIGHT
[SQL QUERY] FROM PARTS <
WHERE WEIGHT = 12 <
y OR WEIGHT = 16 <
OR WEIGHT = 17 <

Figure 14. Retrieval Using a Set of Weight Values

9. Use of OR to Form a Disjunction of Attributes

A GLAD query can also be formed on the disjunction
of two distinct attributes. Consider the query that was
previously shown in Figure 10. Shown below is the disjunc-

tion, vice conjunction, of the attributes.

55

p gt
P e T e

’ N . _0e7_ Rt ' par, ’ . . - TR TR T - .
T T T N T T R T O O T O P T T P S S TR RS P P D TR T WU R OO sa" g aogin ¥, U 5

(GLAD QUERY]

o T

]
SUPPLIER QUERY ——«T

" SUPPLIER
. [SQL QUERY)
N *
[}
) > SELECT SUPP NO#
! SUPP_NO# .P I
D > FROM SUPPLIER
X STATUS > 20
: ~ L. weERe STATUS > 20;
) CITY OR = 'Paris’-

: —l—-> OR CITY = 'Paris;

NAME

[}
"
3 Figure 15. Disjunction of Attributes
5'
4

10. Retrieval Using a Character or String Sequence
The user may utilize a character or string sequence
to specify a retrieval. Consider the following query
requirement:
Get all parts who's names begin with the letter c.
Therefore, every part name that begins with a letter
b c should be rgtrieved by this gquery. The 1length of the
) string or value of any subsequent characters in the string
e are irrelevant to the retrieval instructiocns.
- The query displayed in Figure 16 will retrieve all
. the sub-object values that are contained within the PNAME
9 that has C as the first character of the PNAME. The PNAME

object 1is mapped to the relational PNAME attribute for

. retrieval, and the instructions on this sub-object are

- '
s |

N i
.
, 56
A
.
)

e |
- {
s |
:-. A S R e R R T A Ty NI ' A Ty ‘-:, e, N T AT ARSI NN A N N Y

, R . e I R O R Y O U I TR) & pat $a? fat » gav fa¥ vad 4a” ‘D e et g ‘g 20 0922 08 V.0 4,8 728 *ab "ok ‘AR Al 1220,
< TR BNy ; : AICRA

\
PARTS QUERY . {
PARTS]
N)
COLOR .P
WEIGHT .P '
: CITY !
PNAME .P HAS ’'C*’
J PARTNO# P ‘]
|)
v v v v G
SELECT PARTNO#, PNAME, COLOR, WEIGHT '
{SQL QUERY] FROM PARTS < 3
WHERE PNAME LIKE ‘C%’;< b

- Figure 16. Retrieval Using a Search String

translated to the 'SELECT PNAME' and 'WHERE PNAME LIKE C%'
portions of the SQL query. ;
A GLAD query can be formulated for an embedded
character string in the following manner as shown in Figure
17. >
This query will retrieve all the sub-object values
designated for retrieval by the .P operation whose PNAME
value has a 'cre' embedded in it. For example, the string ?
R
1

'screw' would satisfy the query condition.

57

..........

Ty RNV . ey . / PRI e S AN LAl
A NI D S R PRI o ot R W NASA A e e o

N MG) rah LA LA G N Al)

[GLAD QUERY)
1
PARTS QUERY l
PARTS ‘ -
*
COLOR .P
WEIGHT .P
CITY
PNAME .P HAS '*cre*’
PARTNO# . P
ool
SELECT PARTNO#, PNAME, COLOR, WEIGHT
[SQL QUERY] FROM PARTS <

WHERE PNAME LIKE '%cre%’;<

Figure 17. Retrieval with Embedded Sting

11. Query with More than One Object
A powerful feature of GLAD is the ability to utilize
more than one object for a dquery. The user can easily
accomplish this task by opening more than one GLAD query
window. The user may open a query window for every object
in the database. Depending on how the query is formulated,
the GLAD query will either translate to a SQL join or nested

SELECT query.

58

\N\

D AN A N A R N e AN S AN A ¢

LBl Sof Qo Cul Gub S50 Sall i

12. More than One Qbject--Equijoin

We can retrieve all sub-objects of two tables by

opening two cquery windews as shown in Figure 12,

SUPPLIER QUERY
T
SUPPLIER ! B R
(GLAD QUERY]
* [WINDOW 1]
SUPP_NO#
STATUS
CITY = PARTS.CITY
SNAME
L> SELECT SUPPLIER.*, PARTS.* <
| > FROM [—>SUPPLIER, PARTS<q

WHERE SUPPLIER.CITY = PARTS.CITY; <+

PARTS QUERY [SQL QUERY)
PARTS .P
* [GLAD QUERY]
. [WINDOW 2]
COLOR
WEIGHT
CITY
PNAME

Figure 18. Retrieval with Equijoin

59

T LA S

‘- 1'...-‘.-‘,.

P

13. Multiple Objects with Multiple Conditions

When more than one object query window is opened,
any number of qualifying conditions may be specified for the
GLAD query. The first qualifier is mapped to the WHERE line
and subsequent conditions are mapped to the AND line of the
translated SQL query. Any ambiguity with sub-object names,
such as CITY in both the PARTS and SUPPLIERS objects, 1is
resolved by translating the GLAD query with explicit
specification of object name to table name. A '.' will
divide the object from the attribute, and the sub-object
name will be translated to the attribute name. Figure 19
contains and example of this type of query.

14. Retrieval of Specified Fields from a Join

Specific fields can be retrieved from a multiple
object query with the '.P' operations. Any number of sub-
object fields may be retrieved in this manner. If ambiguity
exists with sub-object names, the system will resolve the
ambiguity by using the entire object name with dot notation
for the translated SQL.

15. Copy Sub-Objects From Separate Tables

A copy of all sub-objects that meet specified condi-
tions can he obtained in an efficient manner. With multiple
query windows, all sub-object tuples that meet the specified
conditions can be retrieved by using the shorthand notation,
'.P' on the '*' for sub-object. Consider the query in

Figure 19. The result window shall obtain all sub-objects

60

Rt A S A T T o0y A A o T A T R R AN (R)

AT A IV VL LN v

- o

2
@
R
4
. r 1
i SUPPLIER QUERY i
\
g T i

SUPPLIER | |
s \ I
b * .P
.
]
R . SUPP_NO#
[}
. —STATUS <> 20
>
3 CITY > PARTS.CITY

SNAME

[—> SELECT SUPPLIER.*, PARTS.* <
K l > FROM L>SUPPLIER, PARTS:l
WHERE SUPPLIER.CITY > PARTS.CITY; <<

> AND SUPPLIER.STATUS <> 20
|
A PARTS QUERY
Al
‘ - PARTS
] * .P
q COLOR
WEIGHT
: CITY
°
‘ PNAME
»
o
s Figure 19. Copy Joined Tables on Conditions
S
e
' from both tables that have (SUPPLIER.STATUS <> 20) and
! { SUPPLIER.CITY > PARTS.CITY). Therefore, the STATUS can
-)
L]
) 61
K
)
)
'

L '

P et AT T At At et -.',.- “a” --.-.,-..‘-.‘\-'..--: e \.-.~..- --“--‘-.‘..-"-\‘.\--.' N-l'-‘,\’)‘*N \""d '\lw\\"\‘- ‘jl‘.\ " i%)
¥ ‘. " - - = B ‘ . » B N 0 i3 - y . -

bPe anything but 20, and SUPPLIER.CITY must alphabeticall

<

fellow the PARTS.CITY.

1. Querv With Mhwass Shdect

As stated previously, a GLAD query is not limited to
any specific number of tables. For example, three GLAD
query object windows can be utilized to make a query. An

example using three QUERY windows is contained in Figure 20.

SUPPLIERS QUERY ' | SHIPMENT QUERY
SUPPLIERS SHIPMENT
* *
SUPP_NO# SHIP_NO#
STATUS PART_ NO# = 'P5'—
CITY 'P-j QUANTITY
SNAME

SELECT SUPPLIER.CITY, PARTS.CITY <

> FROM SUPPLIER, PARTS, SHIPMENT

WHERE SUPPLIER.CITY = PARTS.CITY <

aND PART _NO# = 'P5';<
[PARTS QUERY
PARTS
J
COLOR
WEIGHT
CITY .P = PARTS.CITY
PNAME

Figure 20. Three Cbject GLAD Query

62

............... .. i ot m N M At Tt e
- . T A T i T S I P

o CP N A e W . N a e

= - . N e s e e . A TS .

....

The query contained in Figure 20 has been condensed

to allow the three object windows and the correspondence to
the SQL constructs on the same page.
17. More Than One Object--Nested Select

GLAD 1is not o2antirely 1limited to translating a
multiple object query to a SQL query that joins tables. As
mentioned earlier, the GLAD query may be translatcd to a SQL
query that uses nested selects. Consider a query that was
previously handled by simple joins. The query that gets the
supplier names for suppliers who supply part 'P2' can also
be obtained through the use of the existential quantifier.
Consider the query contained in Figure 21. This query, that
makes use of the existential quantifier, was originally
expressed in the following manner:

Get the supplier names for suppliers who supply
part 'P2'.

a. GILAD'S Use of the Existential Quantifier
The GLAD query that utilizes nested selects is
expressed as follows in plain English:

Retrieve supplier names for suppliers such that there does
exist a shipment relating them to part 'P2'.

b. The Negation of the Nested Query

In addition, the contradiction of the above men-
tioned GLAD query can easily be obtained by utilizing '.NOT

EXISTS' as an operation on the '*' sub-object.

63

AT AT A AT N e e

I . g \.‘
el .\.‘!‘:\iﬁx“. % A%

SUPPLIER QUERY =mmem
SUPPLIERS
»*
SUPP_NO# {GLAD QUERY]
[WINDOW 1}
STATUS
CITY]
SNAME o P _‘
[SQL QUERY)
t——==> SELECT SNAME
> FROM SUPPLIER
> WHERE EXISTS
[GLAD QUERY2] E-——- _J
(SELECT * <
SHIPMENT QUERY
L>FROM SHIPMENT
SHIPMENT
>WHERE SHIP_NO# =
—k .EXISTS~ SUPPLIER.SUPP_NO#
SHIP_NO# = SUPPLIER.SUPP_NO# J—>AND PART_NO# =
IPZI) ;
PART_NO# = 'p2’
[GLAD QUERY)
QUANTITY [WINDOW 2]

Figure 21. Query Illustrating Nested Selects

c. The Use of '*! for Translation

Finally, ic must be mentioned that the '*' sub-
object is displayed for every object. It is not a real sub-
object that wonld be contained as a database object. The

'*' js a special designator or pseudo object that is used

64

T

. o

-'-'- ’.'

7

o Y a
NG 0R

)
7Y

W - = -

. ; Y AR AT AT
AT A A AR AT AT AT AT A O N I NN T "

% T

J i, A0

oo

RSNG4

SO

P

ARNBE M

PR S

- -'\‘\\‘
e

for the sole purpose of translating a GLAD query to a nested

select SQL query or retrieval of all sub-objects of a
database object.
18. Retrieval With Aggregate Operations
Aggregate operations can be utilized with '.P!
operations on sub-objects or independently on the entire
object to retrieve a numerical answer that is not directly
stored in the database. The query utilizes the aggregate
operation to calculate the retrieved result. For example,
consider the below listed queries:
1. Get the total number of suppliers supplying parts.
2. Get the number of shipments for part 'P2'.
3. Get the total quantity of part 'P2' supplied.
All of these queries use aggregate operations to
calculate the retrieved results of the query.
a. GLAD QUERY--Total Number of Suppliers
Figure 22 contains a GLAD query that utilizes
two aggregate operations to retrieve the number of suppliers
that are currently supplying parts.
b. Retrieve the Number of Shipments for 'P2'
Aggregate Operations provide the power and
flexibility to the user to obtain computed results that are
not directly stored in the data base. A COUNT operation
performed on the '*' in the query window will allow the user
to formulate an efficient query to retrieve the total number

of tuples that meet a designated condition.

65

. - -
\’-\l‘d\-f-f‘-fi'r'\f\-“,f_\q’f-II’."‘J' r.'.'...r.* ./'-J'-Jv"-"-""-f‘

'\"‘\.\".'-‘. "\\\\.'\"-“-\\\'\-'\'\

nnnnn

R

LS

"

\-

\.r\

[GLAD QUERY)

‘ SHIPMENT UERY
SHIPMENT
* |
SHIP_NO# COUNT DISTINCT
PART NO#
QUANTITY
SELECT COUNT(DISTINCT SHIP_ NO#)<d

> FROM SHIPMENTS

Figure 22. GLAD Query with Distinct Count

Consider a GLAD query that utilizes a simple
aggregate operation to calculate the number of shipments for
part 'P2'. The query is listed in Figure 23.

This query will simply count up all the
shipments in the database that has 'P2' for a shipment
number in the database.

c. The Total Quantity of 'P2' Supplied

Aggregate operations can be used in conjunction
with '.P' operations on designated sub-objects to compute
specific computed values of these sub-objects. Consider the
query 1in Figure 24 that utilizes the SUM function to
calculate the total quantity of the part 'P2' that 1is

supplied.

66

[GLAD QUERY]

SHIPMENT QUERY

SHIPMENT

SHIP_ NO#
PART_NO#

QUANTITY

[SQL QUERY]

COUNT e==e——> SELECT COUNT(*)

FROM SHIPMENT

= 'P2' ew=——> WHERE PART_NO# =

]

!PZI;

Figure 23.

Using COUNT on Object Name

[GLAD QUERY]

SHIPMENT QUERY

SHIPMENT

SHIP_ NO#

PART NO#

QUANTITY

[SQL QUERY]

= 'p2’

> SELECT SUM(QUANTITY)

FROM SHIPMENT

.P SUM —

> WHERE PART_NO# =
‘P27 ;

Figure 24. GLAD Query that Computes SUM of QUANTITY

In a similar manner,

queries can be formulated

with the following aggregate operations:

- W

TICIUNAT I AN N e N TG

b

ol ™~

[o

>
A
-
*
)
S
.
"
«
s
3
-
I

Pl

1. MAX will calculate the largest value of a sub-object.

™ »

2. MIN will calculate the smallest value of a sub-object.

o>

3. AVG will calculate the average value of a sub-object.

15. GROUP BY to Conceptually Rearrandge the Data 3
GLAD shall employ the GROUP operator to conceptually X
rearrange the translated table and retrieve partitions so :
that within one group all rows have the same value for the &
GROUP field. €
Consider the following query: ?

5l

For each part supplied, get the part number and the “
total quantity supplied of that part, excluding ship- 3
ments from supplier 'D1°'. ;

A GLAD query shall make use of the GROUP function to :
accomplish the query. Consider the following GLAD query and :§
the corresponding SQL query translation in Figure 25. &
B. GLAD QUERY OBJECTS THAT REFER TO OTHER QUERY OBJECTS ﬂ
The previously discussed queries showed GLAD objects :
composed entirely of simple sub-objects that hold atomic ';
data. As mentioned earlier, one of the most powerful E
features of GLAD is the ability to represent complex non- F
atomic data as simple atomic data. However, queries must be :;
translated in a two phase process to accomplish this type of k
representation. First, the gquery must be translated to E;
extended SQL syntax. Second, non-atomic data types must be -

translated to primitive SQL syntax for the final SQL query.

Figure 26 illustrates the results of this process.

P
68 A

I AN IO
0 LA s

(GLAD QUERY]

i
s SHIPMENT QUERY

SHIPMENT

SHIP_NO# <> 'S8S1’

!
PART_NO# P GROUP<—

QUANTITY .P SUM

[SQL .QUERY]

L> SELECT SUM(QTY), PART NO <—

> FROM SHIPMENT

WHERE SHIP_NO# <> 'S1' <

———> GROUP BY PART NO#;

Figure 25. GLAD Query Using GROUP BY

The query in Figure 26 shows what happens when a query
has a sub-object that refers to another object. In this
case, the sub-object CITY is a non-atomic sub-object of type
TOWN. The TOWN object consists of NAME, LOCATED and
POPULATION. The TOWN sub-objects are atomic sub-objects of
type integer and character.

1. Retrieval of a Non-Atomic Object

The dquery requires the retrieval of the
SUPPLIER.CITY sub-object. Since CITY refers to another

object, TOWN, all the attribute values of instances of TOWN

A

1o alie 300 88 B's $a D A B A0 0t A’ Rel Aa Rt BE ots o08 M AU FL ARl Rl 2ol

SUPPLIERS QUERY : % SHIPMENT QUERY j
SUPPLIERS | (SHIPMENT |
* * i
SUPP_NO¥ j SHIP NO# ‘ - 1011 |
STATUS PART NO# = p5 — |
g;:ia | - P QUANTITY | %}

SELECT SUPPLIER.CITY
————> FROM SUPPLIER, SHIPMENT
WHERE SHIP NO# = 1011
AND PART NO# = ’'P5';<
IDTOWN < l
TID TIDNAME
TOWN <
TID NAME LOCATED POPULATION

| 1

l—> SELECT TOWN.NAME, LOCATED, POPULATION

FROM SUPPLIER, SHIPMENT, IDTOWN, TOWN

1011 L 1

L > WHERE SHIP_NO#

> AND PART NO# = 'P5';

Figure 26. Query with Objects that Refers to an Object

that satisfy the gquery must be retrieved. Therefore, CITY
is retrieved by translating the CITY sub-object to a TID
(TOWN Identifer) attribute._ TID is used to join the
SUPPLIER and TOWN tables. SUPPLIER is joined to the IDTOWN

table. The object TOWN, which is referred to by the CITY

70

@Ry s e @

RS LN A
n.}:f.‘(' W L M e

sub-object, is translated to the TOWN table and joined to
the IDTOWN table. Ultimately, to retrieve the CITY sub-
object that meets the query conditions, SUPPLIER must be
joined to both the IDTOWN table and TOWN table. All of the
attributes in the TOWN table shall be listed in the SELECT
line. In other words, every tuple that satisfies the query
conditions will be selected.
2. Use of Complex Objects to Specify Query Conditions

Consider the query previously presented in Figure 1.
The query translation will change significantly if CITY is a
complex sub-object. Consider Figure 27 with CITY as non-
atomic data of type TOWN. Relational operators can be used
on CITY to specify query conditions by using an identifer

table that refers to the TOWN table with the complex CITY

object.

In Figure 27, a query with the string value 'Paris'
is used to specify a condition for the retrieval. However,
CITY is of type TOWN and not type string. To avoid

generating an error resulting from SQL's inability to

utilize complex data, the line CITY = 'Paris' is translated
to TIDNAME = 'Paris', and the SUPPLIER table is joined to an
identifer table. The identifer table (IDTOWN) maintains

string information that is not stored directly in the
SUPPLIER table. The SUPPLIER and IDTOWN are actually joined

on an integer value that is stored as an identifer in these

71

P N et (B NP WY B N P e W &\ |

o aT e s el W u, Citah Sak Sy jigh al duh Nk dub Gl ad Bl o0 Uo) 300 S0 LR S0 0.0 Al N La0ab il ta 0 Sal tal Tod SF dei ol Vol

o -

[GLAD QUERY]

-

- e

SUPPLIER QUERY

- -

SUPPLIER |
| ! [SQL QUERY]

= -
*

, > SELECT SUPP_NO#, STATS—
, SUPP_NO# | P oy ‘

_J > FROM SUPPLIER
P

-

STATUS
> WHERE CITY = 'Paris’:
CITY = ’Paris’——,_

<t

SNAME

3 IDTOWN

0 TID TIDNAME

] SELECT SUPP_NO#, STATUS <

FROM SUPPLIER, IDTOWN <

WHERE TIDNAME = ’'Paris’;<

Figure 27. Non-Atomic Sub-Object with a Condition

>

tables. This integer, referred to as TID, is used as a
surrogate value to join these tables. Since the complex
sub-object is not designated for retrieval, it will not have

to be joined with the TOWN table. Most conditions that

DA R s

utilize relational operators on complex sub-objects will be

performed on the information that is held in the identifier

table. For example, CITY = 'Paris' will be translated into

[Iy

TIDNAME = ‘'Paris'. The operation is actually performed on

the string value 'Paris'. Therefore, unless a retrieval is

72

specified on the complex sub-object, it will be unnecessary

to join all three tables like the query in Figure 26.

C. GLAD'S CORRESPONDENCE TO SQL

The GLAD gqueries attempt =c =2liminate nmuch of =the
difficulty associated with SQL queries. The GLAD queries
remove much of the formulaticn of <+he relational synt-::
associated with SELECT, FROM, WHERE, AND and GROUP BY.
Multiple objects can be used in a query by opeaning a query
window for each object. These query windows will be trans-
lated to either a SQL join or nested select query.

Because GLAD will be built on an underlying relational
model, the GLAD query windows have been developed by working

backward from DB2 SQL to GLAD windows to ensure the best

possible correlation. Therefore, the object oriented GLAD

interface corresponds well to the SQL query language of an

underlying relational system. In most cases, the GLAD query

elements form a perfect one-to-one mapping to the relational

backend. Therefore, at a higher, conceptual 1level, GLAD

queries have the potential for effective and efficient

transfer and translation to the relational system.

Translating the data structures of the object oriented

interface to a relational format requires easily accessible

data structures and effective translation algorithms.

T T R O N O T O O o R O T O R U OO U T WL LW O D Lw UV T U LY LW Wt e DT R A EARUALRARTRAAT RTRE RN
+

;

i

u V. SYNTAX FOR THE GLAD SCHEMA

ﬁ In the previous chapter, the graphical query windows to
$ formulate a GLAD davabase query were discussed at the
'

f database user level. In this chapter, the higher level
% schema for defining objects that will support the window
% interfaces of the previous chapter shall be discussed in
¥ detail. The schema presented for GLAD in Wua [Ref. 16:pp. 1-
;‘ 10] shall be examined in detail and used with the University
? Database example presented in Wu [Ref. 1l:pp. 1-10] to
‘% illustrate the schema definition of a GLAD database. Figure
% 28 contains the syntax for the schema, defined in Wu [Ref.
ﬁ l:p. 3], for GLAD.

) Each of the database items of Figure 28 shall be used to
xg examine the schema for the database objects of the pedagogi-
‘3 cal UNIVERSITY database. The user interface shall provide a
; view of the database as graphics objects.

2

j A. A VIEW OF THE UNIVERSITY DATABASE

:ﬁ Consider the high level view of the UNIVERSITY database
ﬁ that will be presented to the user from Wu {[Ref. 1l:pp. 1-
.ﬁ 10]. The UNIVERSITY database's major database objects are
: shown in Figure 29.

;; The schema definition for each of the above specific
E: database objects shall be analyzed in detail.

J

L

\: 74

Syntax For Schema Definition
<db-schema> ::= <object-declaration> <object-declaration>

<object-declaration> ::= +
DEFOBJ <cbject-name> <attribute-declaration> ENDOBJ

<attribute-declaration> ::= <attribute-name> : <type>;
*

<type> ::= <member-type> <or-list> | SETOF <member-type>

<member-type> ::= <system-object> | <object-name>

<or-list> ::= OR <member-type> | OR SETOF <member-type>
<system-object> ::= STRING [<size>] | NUMBER

<size> ::=1] 2 | 3 | ... | maxint /* whole number */
<object-name> ::= /* string, uppercase */

<attribute-name> ::= /* string, uppercase */

Figure 28. GLAD Schema

STUDENT COMMITTEE

DEPT ‘ EMPLOYEE

"x,_\,.

N

Figure 29. User View of University DB

A’-
s

G

75

l$ * ls l‘- :.

|
WG

TR PR TR R RNt LRt AT A A TR T e 'N-'\-\q o w
N e e T N IR N LN WL A e 3

Rl e i e Pha pte d a0l ad Al MO M Db il e i

1. The STUDENT Object Schema

The schema for the STUDENT object shall follow the

GLAD schem dz2finiticn zcnvention. For —ae sax=2 oI clar.cy

and space, the <Zatzkbase definitions will be shown :in

")

vertical manner. The STUDENT object is a complex database
object that has both atomic and non-atomic attributes as
sub-objects. The GLAD representation of the complex attri-
bute MAJOR allows all of the attributes to be uniformly
defined by the GLAD schema definition. Figure 30 represents
the schema for the STUDENT OBJECT in GLAD, extended SQL and

SQL syntax.

GENERAL OBJECT DEFINITION
<object-declaration> ::= DEFOBJ <object-name>
X <attribute-declaration>*
. ENDOBJ

SPECIFIC STUDENT DEFINITION
Student ::= DEFOBJ STUDENT
NAME: string:;
) AGE: integer;
<. GPA: integer:;
MAJOR: DEPT;
ENDOBJ

. GENERALIZED ESQL & SQL DEFINITION

<table> ::= <table-name> <attribute-declaration>t

SPECIFIC ESQL STUDENT DEFINITION
- STUDENTTABLE ::= STUDENT (NAME:string, AGE:integer,

GPA:integer, MAJOR:DEPT)

SPECIFIC SQL STUDENT DEFINTITION

r.. STUDENTTABLE ::= STUDENT (NAME:string, AGE:integer,
S GPA:integer, DID:integer, SID:integer) &
- IDDEPTTABLE ::= IDDEPT (DID:integer, DIDNAME:string)

Figure 30. The STUDENT Object Schema

76

D - - n - R . YA N AP) R o '{_ ' ‘.'_'. .'.- .z ".‘_ o ‘-'_‘._'.' *. ”‘."“'_'-. . R
.r".-‘-.','. ,‘r._r .I‘ R) . - . . P . 3 .

........
.....

The schema for the STUDENT object is both easy to

construct and effectively corresponds to the extended
relational type schema. This extended S¢L tyre c=chema Iz
similar to the schema that was defined for the GEM extensicn
of a relational model in Tsur (R~f. 12:pp. 1 - 8]. Since
the extended SQL STUDENT table contains complex data types
it is unsuitable for use as a relational query. It must be
joined with an identifier table that holds a string of
characters. The character string is equivalent to the name
of the complex data type.

An effective correspondence between schemas shall
prove to be fruitful for minimizing the translation scheme.
However, we shall defer the discussion of the translation
scheme and algorithms to accomplish the translation to the
subsequent chapters.

Of particular importance is the treatment of the
MAJOR attribute in the STUDENT sub-schema. The higher level
representation of the MAJOR sub-object, which is not atomic
but is represented to the user like any other atomic type,
is one of the most important features of GLAD. This feature
ultimately allows the user to view everything in the
database as real world entities that correspond to database
objects. The disadvantage 1is design difficulties and
challenges associated with the implementation and transla-

tion of this data to primitive SQL.

77

5 \}, - \\, -."rv'_!.\)l~ ,.__‘bf-,y \-'\1 .x*'h\'\.."..

.......

“w
'»

* * J\.“-)\

0 e d ate alla 00 (A" V8% " a0a" 2 at KAY 2ot G 0at (ot GaY B2 18 .8a% 18" 200 €R% €a® 4oV fat ga¢ Sa® N2 Ba¥ 8 P Rt Jo¥ $ot 4, @ fav §a® §10 4 W\ oSat Gt Bt

The ESQL to GLAD translator can substitute an atomic
ESQL attribute directly for a corresponding SQL attribute in
the translated SQL query. For the non-atomic attributes,
this process requires a complicated translation vice an easy
substitution for atomic attributes. The translator must
analyze every line of the extended query and determine if
any attributes in the line are not atomic. The translator
will consult a table that contains all non-atomic attri-)
butes. If an attribute is non-atomic, the translator will
call procedures that will form joins on surrogate identifier
tables to express the complex data in primitive SQL con-

structs.

2. The DEPT Object Schema)

The DEPT object is related to every object in the . X
UNIVERSITY database. The Schema for DEPT, shown in Figure
31, contains both complex and atomic data attributes.

The CHAIR object 1is a complex object of type
FACULTY. The FACULTY object is a specialized instance of
the EMPLOYEE object. NAME is a simple string type that
contains the name of the university department. TENURED is :
a complex type of sub-object of type TPROF, and TPROF is a
type of set that contains all the tenured PROFS in the
UNIVERSITY database. Therefore, identifier tables will be
needed for the TENURED and CHAIR sub-objects to formulate
the primitive SQL query. In conclusion, the DEPT type of

object is the <center piece of the UNIVERSITY database.

78

o T . g o -
l:‘.r'_*;?.r:".r. I A I I A A A P S Y P P

GENERAIL OBJECT DEFINITION
<object-declaration> ::= DEFOBJ <object-name>

<attribute-declaration>*
ENDOBJ

SPECIFIC DEPT DEFINITION
Dept ::= DEFOBJ DEPT
CHAIR: FACULTY;
NAME: string;
TENURED: TPROF;
ENDOBJ

GENERALIZED ESOL & SQL DEFINITION

<table> ::= <table-name> <attribute-declaration>"

SPECIFIC ESQI DEPT DEFINITION
DEPTTABLE ::= DEPT (CHAIR: FACULTY, NAME: string,

TENURED: TPROF)
SPECIFIC SQL DEPT DEFINITION
DEPTTABLE ::= DEPT (FID:integer, NAME:string,
TID:integer, DID:integer) &
IDFACULTYTABLE ::= IDFACULTY (FID:integer,
FIDNAME:string) &

IDTPROFTABLE ::= IDTPROF (TID:integer,
TIDNAME:string)

Figure 31. The DEPT Object Schema

Every object of the database is related to the DEPT object.
GLAD interfaces have the unique capability of treating
complex data types like atomic data types. This unique GLAD
capability will be used to provide the user the best
possible data definition, data access and data manipulation
capabilities.
3. The EMPLOYFE Object Schema
The EMPLOYEE Object 1is a generalized object that

includes FACULTY and SECRETARY specialized objects. The

Schema for the generalized EMPLOYEE object 1is shown in

o @

s

Figure 32.

"."..'."i- -~

GENERAL OBJECT DEFINITION
<object-declaration> ::= DEFOBJ <object-name>
<attribute-declaration>t
ENDOBJ

SPECIFIC EMPLOYEE DEFINITION

: Employee ::= DEFOBJ EMPLOYEE

oy NAME: string;

! PAY; real;
DEPARTMENT: DEPT;
JOBTYPE; CATEGORY;

ENDOBJ

GENERALIZED ESQL & SQL DEFINITION
<table> ::= <table-name> <attribute-declaration>%

SPECIFIC ESQL EMPIOYEE DEFINITION
EMPLOYEETABLE ::= EMPLOYEE (NAME:string, PAY:real,
JOBTYPE: CATEGORY, DEPARTMENT:DEPT)

SPECTIFIC SQL EMPILOYEE DEFINITION
EMPLOYEETABLE ::= EMPLOYEE (NAME:string, PAY:real,
CTID:integer, DID:integer, EID:integer) &

/ IDCATEGORYTABLE ::= IDCATEGORY (CTID:integer,
3 CTIDNAME:string) &
IDDEPTTABLE ::= IDDEPT (DID:integer,
- DIDNBAME:string)

Figure 32. The EMPLOYEE Object Schema

The EMPLOYEE object contains both complex and atomic
¥ data objects. NAME is the name of the specific EMPLOYEE.

The PAY attribute is of type real to allow the decimal

representation of the EMPLOYEE salary. DEPARTMENT 1is of
) type DEPT and 1is analogous to the MAJOR attribute of the
2, STUDENT object. However, the user 1is presented with

distinct conceptual representations of both of these

80

attributes. The system must translate distinct sub-objects
cf the same complex type and correlate these sub-objects to
relational attributes for translation. At the schema level,
the translation process 1is accomplished with identifier

tables for complex objects.

4. The COMMITTEE Object Schema
The COMMITTEE Object is a complex object that has
both atomic and complex data objects. 1In addition, COMMIT-
TEE is associated to the EMPLOYEE object through the MEMBERS
sub-object. Figure 33 shows the er .i.re COMMITTEE schema and

the COMMITTEE to EMPLOYEE association.

GENERAL COMMITTEE DEFINITION
<object-declaration> ::= DEFOBJ <object-name>
<attribute-declaration>*
ENDOBJ

SPECIFIC COMMITTEE OBJECT
Committee ::= DEFOBJ COMMITTEE
NAME: string:
MEMBERS: FACULTY;
PURPOSE: string;
ENDOBJ

GENERALIZED ESQL & SQL DEFINITION
<table> ::= <table-name> <attribute-declaration>t

SPECIFIC ESQL COMMITTEE DEFINITION
COMMITTEETABLE ::= COMMITTEE (NAME:string,
MEMBERS: FACULTY, PURPOSE:string);

SPECIFTIC SQL COMMITTEE DEFINITION

COMMITTEETABLE ::= COMMITTEE (NAME:string,
FID:integer, PURPOSE:string) &
IDFACULTYTABLE ::= IDFACULTY (FID:integer,

FIDNAME:string, CMID:string)

Figure 33. The COMMITTEE Object Schema

81

>

i3

T e
- v

SIS g

¥ ¥ a

. \"-".- . “{,‘:"' o' 1"-::1;!.

LI A
o

4..

Lok g8 gt gan S yad BaV gav gar auv bal fuoofat watotat atntath ata 0ol “uia’okat gt il i gt hadiiasi ath L M AL R RS IE AR C%, LA A Sl Vol g St A S AL S A S

» B. SCHEMA CONSIDERATIONS

An easily understandable and usable schema is important

for both the designer and user of the database. The
4 previous discussion illustrated the syntax for schema
"
4 definition of the GLAD UNIVERSITY database. This higher
K
y level gapproach to database 1is well suited to naive or
%: inexperienced users. The burden of implementing the complex
ke sub-object types is placed entirely on the implementors of
)
. GLAD. The higher level object oriented approach to implemen-
.
S ting the schema may be well suited for the user but presents
)
: unique challenges to the designer.
[X
[Unique design challenges await the database designer.
j The GLAD schema must be implemented at the physical level
)
2 with effective data structures that will adequately support
’ the user interfaces.
X
X
g
N
@
¥
L4
&
;
e
\.
-
N
X
N
. i
-
&
£ 82
[
[)

o o g O e e

R bttt et o fat a1 0ah 0 R Bt a8 D e e e AR R o rab g B0 i au kLAl v Al

VI. DATA STRUCTURES TO SUPPORT THE INTERFACES

Efficient and effective data structures must be
developed and employed for supporting the window interfaces
to the GLAD user. GLAD's data structures maintain the
information that is supplied to the GLAD window interfaces
and displayed to the user. Object oriented data structures
are particularly well suited for the task of supporting the
GLAD windows. ACTOR has many classes that can be utilized
to construct efficient and easily accessible data struc-
tures. Of these classes, various descendants of the
Collection class are ideal for holding database object
information. The Collection class is easily accessible
through keys, indexes and elements. In addition, a Collec-
tion can store heterogenous information. Moreover, various
complex and primitive data items can be stored in the same
Collection. A GLAD database object is a Collection of GLAD
objects. To access different databases, a global variable
Collection named GLAD must be created. This Collection will
hold all of the GLAD databases. 1In other words, we can view
GLAD databases in the following manner:

1. Databases contained within the GLAD application
are ultimately Collections of Collections.

2. Each database Collection consists of a group of
database objects.

83

A A A R A L e AT AT T T A et T R AT B A A A R A A W e e g e v W T T T
R e o e SN L S NN L S e A e T S A N S A

PRI &

> e e e

» i - =

«'x & B RN

L

s AL R LA KN

Py e

et et et ata ald ald nil e ta ali ata alf ate als et st ava ot ala HR A0 lat alatotge byt byt R T R ht. ol "Bl ¥ "G’ et

3. Each database object is a Collection of sub-
objects that are analgous to tables and
attributes of the relational model.

A. A USEFUL ANALOGY

An analogy that compares a GLAD database to an office
building will be useful for illustrating the capabilites of
the Collection class in developing GLAD data structures. An
office building with many floors can be compared to a
Collection with many elements. The Collection corresponds
to the building, and the elements of the Collection corres-
pond to the floors that are contained within the building.

The elements of the collection are database objects that
define a database. Each of these objects are either related
to, associated with or used in conjunction with other
objects that define aggregate or generalized objects. The
floors of the building correspond to the elements of the
collection. Each element carries out tasks that are inte-
grated to accomplish a function or represent specialized
functions of a generalized office function. The objects of
the database are collections of sub-objects. Each of these
sub-objects describes the parent object. The parent object
is composed of one or more sub-objects.

Rooms that are located on the floors correspond to the
sub-objects of the database. These rooms carry out activi-
ties that contribute to tasks that are assigned to each

floor. In other words, these room activites describe the

floor's tasks.

84

. . 0 o fat
SN AT TR P PR Y LA WG W 2% ¢ ot Ga Ga¥ fa° 02" Kt a? 0y, v..l W) W S G2t Ba? $a® Be? Sat et o i VoSt Bae flat i W h I o 8 bt t Bat o

o s oy em e

Additional databases can be added to GLAD by increasing
the size of the Collection. Collection size can be increas-
ed through the grow method. Similarly, 1if we need more
floors for the building, additional floors can be added onto

the top of the building.

B. ABOUT COLLECTIONS
The ACTOR manual states that the class Collection is the
richest part of the ACTOR class tree. Collection is defined
as an object that holds a group of sub-objects called h

elements. However, the Collection class can not be directly

accessed. It is a formal class *that provides universal
properties for descendents. The Collection descendents
serve as types of Collections that hold database objects. '

Array, Set and Dictionary are descendents that can be used
to hold GLAD objects. [Ref. 4:pp. 169-210] 3

1. Arrays For Glad Objects ‘

An array is a descendant of the formal <class
IndexedCollection. The IndexedCollection 1is a type of
collection in which individual elements are referenced by j
integer values Whitewater [Ref. 4:p. 164]. In addition, the
IndexedCollection unifies the Array, ByteCollection and
Interval classes. ByteCollection, Array and Interval can be
classified as siblings in the ACTOR class tree.

An Array can be created to hold database informa-
tion. The Array information can be accessed by refering to

the Array name with the bracketed index of the desired h

85

T R O R O N N T A N Ry, O COUTOOIC AR RS N “ghopt

element. The Array class shall be utilized to maintain at-
tributes\sub-objects of a particular database object. The
attributze array will e cne of the elements of the database
object collection.

2. The Dictionary Class

The Dictionary is a type of KeyedCollection class.
The keyed collection allows direct access to elements
through use of a user specified index/key. The KeyedCollec-
tion maintains elements in an unordered manner analogous to
set elements. The advantages of the KeyedCollection over an
ACTOR set are substantial. An ACTOR set has elements that
can only be accessed through membership operations. The
element itself must be specified to be retrieved from the
SET. A KeyedCollection element can be accessed through a
user specified index/key. In many cases, the user may have
access to the key/index but not know the name of the
element. The KeyedCollection has greater flexibility than
the Set and powerful operations that the Set does not
possess. The below listed operations can be performed on
Dictionaries that are descendants of KeyedCollections.
a. The Add Method
An element can be added to a Dictionary with the
inherited KeyedCollection method Add. An Add message to the
method takes two parameters and can be utilized in the

following manner:

86

N

L NSy

AT A A

e A

a
»
)

MY ¥ 8 0
Pt e
K

v
P

Jd el
A

'v

' .:'l'f (‘. *

»
s

P

-~
*

BTN
L N oY

aa e e T
2 e

-
o

.
-

1. Datadictionary := new(Dictionary, 10); <CR>

2. add(Datadictionary,"Student", "University Object 1");
<CR>

3. Datadictionary; <CR>
4. Datadictinary("Student").
b. The At Method

The At method can be used to obtain a value that
is associated with a specified user defined key. The At
method can be used in the following manner:

1. at(Datadictionary, "Student"):; <CR>
2. "University Object 1".

"University Object 1" is the returned item that
is stored at the above specifed user defined key. If an
attempt is made to access an item that either does not exist
or has a non-existent key, nil is returned by the systen.

c. The Remove method

The Remove method can be used to remove an item
from the Dictionary. The Remove method deletes the desig-
nated element and returns the key, but if it does not find
the designated element, it returns nil. Consider the
following example:

1. remove(Datadictionary,"Student"); <CR>
2. "Student".
d. Other Useful Methods

The Dictionary <class possesses other methods

that can be used to return association objects, enumerate

elements 1in the Dictionary, get the key and values of

87

e - T S S T S S SR
- W VW W e Y .‘_.-'._'.:". ...‘_‘.. T, .‘_‘4_ . -. . _.- ey T . -,‘-. --_. K Ca

';J‘f‘f‘ﬁ’f L P "Ny "
| S A T N G e A AT P T VS

-

L Sl Bl Sl Sl Sl A Mt %

elements, and a host of other very useful and powerful
operations.
e. GLAD Object Use of the Dictionary Class

The Dictionary will be utilized to hold the
major objects of the database. Powerful methods of manip-
ulation and access will be made available to the data user
from the Dictionary Class. In addition, the database can
easily be expanded through the grow method. 01d objects can
be purged and space obtained through the reclaim method.

The Dictionary class seems to be well suited for
database objects. When information 1is desired about a
particular object, it should be a simple matter to access
the information through user defined keys. The access
method is analogous to looking up information in a diction-
ary with the alphabetized word index.

The above-mentioned methods will be transparent
to the user. The methods shall be utilized to support the
window interfaces and help provide the best possible data
manipulation environment. Ultimately, a Dictionary holding

a GLAD database, such as the University database discussed

aos a g o g o

-

in Wu [Ref. 1l:pp. 1-10], will be created. The dictionary

would contain all the major database object and would be

e Eeh

represented by the system in the following manner:

Univdb (#Student, #Employee, #Dept, #Committee)

e -

88

1
Fd

R
L
. 3. The Set Class
4
fi An ACTOR set 1is a collection of unique elements.
o
! Only unique elements can belong to a Set. A Set can not
4 contain duplicate elements, and any attempt to add an
i)
4 . . . , . .
& element that 1s already contained in the Set will fail. An
iy
, -
e element is either a member of the Set or not a member of the
\ Set. Set membership operations are the only operations that
N
‘% are allowed to be performed on an ACTOR Set. An ACTOR Set
e can store 16K-1 elements. The cardinality of a set is
,; maintained in the tally instaince variable. [Ref. 4:p. 201)
o a. Set Operations
!]
;" From the Collection class, the set inherits both
:§ add and remove methods to put elements into and remove them
<.
'? from the Set.
o
’ b. GLAD Object Use of Sets
[\
:3 The Collection that maintains all of the GLAD
~
N databases shall be a set. Essentially, these databases
'

merely have to be added to or removed from the GLAD applica-
ff tion. Any data manipulation and data definition would be
s done on the specific databases. The Set class is limited in
‘.
‘gl
® capability but is adequate to maintain the wvarious GLAD
| ‘-:
e databases.
o
-\'.
‘u
\
™, C. GLAD DATA STRUCTURES FOR THE UNIVERSITY DATABASE
L]
g; To illustrate the use of the GLAD data structures, the
.
. University Database of Wu {[Ref. 1l:pp. 1-10] shall be
i utilized to analyze database objects as instances of GLAD
®
R 89
A 7
M
D ,"
K.J
@
o
N
D ‘J
N .

O AT T T T A A)

X
X
X
Ea
s
5
g

s data objects. We shall define instances of GLAD objects for

% the higher-level STUDENT, COMMITTEE, EMPLOYEE and DEPT
objects.

" 1. The DEPT Obiject

" The DEPT object is a very important object of the

UNIVERSITY Database. DEPT is related to all of the other

g. major objects in the UNIVERSITY database. The DEPT object
i: contains both atomic and non-atomic sub-object or attribute
) types. The attributes are CHAIR, shorthand for chairman, of
és type FACULTY; NAME, the DEPT objects only atomic attribute,
g‘ of type string; and tenured, a complex set type attribute,
’j of type TPROF. All of the other UNIVERSITY database objects
%ﬁ contain a sub-object of type DEPT. In summary, DEPT
%& connects the objects of the database.

ji a. DEPT as an Instance of GLAD Object

ﬁJ Consider a Dictionary named DEPT with keys of
P "name," "location," "members," "type" and "attributes." The
; keys will be utilized to access the following information:
is 1. "name"--The string name of the object "DEPT."

': 2. "location"--A point which holds the origin of

o the rectangle. For example, 30@30.

22 3. "members"--of type Deptfile that contains tuples

P

of the DEPT object.

R,

"type"--of type char. Either "a" or "g" for agg-
regate or generalized. DEPT is "a" since it is
the aggregation of several sub-objects.

® R
-

1
4

-~

>

?t 5. M"attributes"--an array of attributes. Each array

i element shall contain an ordered pair of the
AR data attribute name and object name. [Ref. 16:p. 6]

o
s

".'

» 90

.l
0
L

)

.'
2

;\.* » ,. e, -"'j‘ -y.’-\ ‘J‘ ,\‘.\ o \-'\')_.'_,_.\ \\ ‘u'.’-‘_.\.‘y AN \.-\‘.\:»'
N, MR e : » e DS Y. , Sy Y, :

AAAR USRS o RSN g A0 o a U SN o ¥ s

e I
> . R

!

"f-f/f

b. Files and Delimiters for DeptFile

In addition to the above information, the follow-
ing points need to be emphasized. First, the "members"
element index of the Dictionary refers to a DeptFile of type
TextFile. The entries in the file will be represented in
the following manner:

Lum@"Computer Science"@Set ("Lum" "Hsiao" "Wu" "McGhee") |
Latta@"Math"@Set ("Lucas" "Weir" "Latta" "Devito") |

The "@" and " |" symbols are used respectively to delineate
fields and tuples. The final element of the tuple consists
of a set of tenured professors for each department. The
elements of this set are strings of names. The first
element in the tuple is the name of the department chairman
and is of type faculty. The name will probably be contained
within the set of tenured professors. The name attribute is
a string value. This string is not the same type as an
element in the set of tenured professors, TPROF.
2. The_ STUDENT Obiject

The STUDENT object is an aggregate object composed
of both atomic and complex sub-objects. NAME is an atomic
attribute of type string, AGE and GPA are atomic sub-objects
of type integer, and MAJOR is a complex sub-object of type
DEPT. These previously mentioned objects define the aggre-
gate STUDENT object. In essence, the complex aggregate

object DEPT is nested within the STUDENT object.

91

" " f W .
N"s\- A d - A -'Q) l.l A NA 0~.' A A A <, -8

Yy "\' W Vo Y ‘.‘\".".'N"s'-.". ""». ‘ ,.'. NN LY,
)

)

f

58

X gy ®

A e napp ot]
B m R Al e e, Ca

a. STUDENT as an Instance of GLAD object

An instance of the STUDENT object is similar to
the instance =< the DEPT ~hiect. The najcr difference is
that STUDENT maintains DEPT as one of its attributes or sub-
objects. In other words, the STUDENT object is an instance
of a complex GLAD object. STUDENT maintains another
instance of a primary database object, MAJOR of type DEEFT,
as an attribute. The attribute array maintains the attri-

bute names and shall be represented in the following manner:

- STUDENT("attributes") =
Array(Array ("NAME" #basic) Array("AGE" #basic)
Array ("GPA" #basic) Array("DEPARTMENT" #DEPT):;

As stated in Wu (Ref. 16:pp. 1-7], basic is used
when the attribute type is defined in ACTOR. The Object
name 1is necessary for appropriate shading to describe the
window interface. If the object name is not defined in
ACTOR, the name of the object will be a complex type, such
as DEPT or TPROF, that has been defined for the database.

3. The EMPLOYEE Obiject
The EMPLOYEE Object, of the University database, is
a different kind or object than the DEPT and STUDENT objects
that have been discussed. EMPLOYEE is a type of generalized
object. This type of object is a generalized type of a more
specialized object. FACULTY and SECRETARY are specialized
objects of the more generalized EMPLOYEE type. The attri-

bute "JOBTYPE" ~f type CATEGORY indicates the type of the

specialized EMPLOYEE.

92

S Nl "

A ., - . <" a”e L S T B S U S T TS X TR T L P T LR T Y.
‘.u.“ﬁ.' RN, {.'n‘.", L q. -'p\'ll__'.-: "’- ‘-\‘ N -'. ‘.’\1" o '\. A ; " ' \. b '(‘ - ". o f

Ol

s oy

»
\

sy

RS
-’

-

) - -
o ey s e s Ew

.”- ata @D a A YA

a.

-

¥

----- LRI R S FCA P LTS A" P g o, Wy o u"y o
P N L N .. Sl oy o M.' e ey

4. The COMMITTEE Object

The COMMITTEE Object is an aggregate object. It has
attrioutes of "NAME", "MEMBERS" and "PURPOSE.'" The "MEMBERS"
attribute is of type FACULTY. FACULTY is a complex special-
ized object that is nested within COMMITTEE. This implicit
relationship forms an abstract, higher 1level association.
Specifically, COMMiTIEE 1is associated to EMPLOYEE through
the specialized FACULTY object.

5. The Higher lLevel Abstractions
The above objects illustrate how the higher level

abstractions of generalization, aggregation and association

are supported by GLAD., In addition, GLAD also supports
classification of objects. Every specific element of an
object can be classified as that type of object. For

example "John Smith" 1is an element of "MEMBERS" of type
StudentFile. Therefore, "John Smith" is classified as a

STUDENT.

D. THE QUERY COLLECTION

The data structures that collect information from the
query window shall be designated as query collections.
Essentially, these data structures shall take information
from the database user via the query window and pass it to a

translator. An array shall be utilized to obtain the query

information.

93

AN A2 AL
L) L) < LAl » -

b 1

e mT A" . -t

ol o

Y

-

S

B R R N R AU U T R U N Y TR U R S R N R RN AR K TR AT N NUW PUPURUN

1. Query Array Entries
The array entries shall contain all of the data that
is pertinent to the designated query. Each entry shall
consist of an ordered pair of items. The first entry shall
couatain the object name and any instructions to be performed
on the query object. Subsequent entries will contain the
attribute names and any instructions to be performed on the
attributes. The fcllowing 1is the general form for a
possible representation of the GLAD query collection:
- QUERYCOLLECTION ("OBJECTNAME") =
Array(Array (OBJNAME OBJINST) Array(AttNamel Instl)
Array (AttName2 Inst2) Array(Attrname3 Inst3):;
2. An Example Query Collection
The general form contains all of the pertinent
information of the query collection in object oriented
format. A specific example shall further illustrate the
query collection. Consider a query of the STUDENT object of
the UNIVERSITY database where the goal is to retrieve the
names of students who have grade point averages equal to or
higher than 3.5. After the user inputs information into the
STUDENT query window, the query is represented by the query
collection in the following manner:
- QUERYCOLLECTION (#STUDENT) =
Array(Array(#STUDENT " ") Array(#* " ")
Array(#SNAME ".P") Array(#AGE " ")
Array(#GPA ">= 3.5") Array(#MAJOR " "y;
The above returned example Array could be obtained

at the ACTOR level if 'QUERYCOLLECTION (#STUDENT); <CR>' was

typed into the ACTOR display window. The system is asked to

94

................

[X a M a Xy A g0

‘ A e
”, 4 ‘ . A..‘Q‘C AN ¢ ‘g\'u"-.lﬂ""l A ARy '\."-'_;.\'-.‘,"."_.P T T A gt S Py v

P .~ WM W
I XXX £t

o Lt @

4O L4

¥ Wy ¥ v
oo

L)

N ams BE.ah ab ool B “a “afd e Batafiat 6.9 vt
AU AL AR R UMY R MY R N7 VUL 10 WU G O VAR AR TR VRO W R VAR W TH UV IV N . el

show the representation of the STUDENT query array contained]
in the indexed collection that holds all query collections.
The information is taken as symbols for the first element of
each array and strings of characters for the second element
instructions. A blank string is used to indicate no 0
instructions on the object or attribute. The above example

is pedagogical in nature, and it is not intended that the 3
user would have access to the ACTOR systemn. The example

merely shows the physical representation of the query

- -

object.

-

E. THE PHYSICAL DESCRIPTION

The data structures that support the GLAD interfaces

A«

have been discussed in great detail. The Array, Dictionary

T X

and Set classes, direct descendants of the Collection class,

are ideally suited for supporting the GLAD interfaces.

- -
\

Essentially, the entire GLAD database application can be

&

implemented -as a Collection of Collections. The pedagogical
University database example illustrated the use of specific

ACTOR classes as data structures for supporting instances of

ol

GLAD objects. [Ref. 1l:pp. 1-10]

Both physical and 1logical views of the GLAD data

- -
v !

[

structures have been discussed. Data structures to support

the window interfaces have been described in detail.

Information contained in these data structures must be
translated into extended SQL and ultimately primitive SQL to

obtain data from the relational backend. Ultimately, data

95

A N]
ot N M

L A AT LA A W)
.. X AN R X Y 2

AN WY
) SO RO AR S AR,

.....

] A e AR,

¥
)
1
L}

v

N ;- . - - - - ~ - o Na® A R)

v Ul At A3 a3at AR R vac BaP Bas Gat %ot Ha¢ 02t 2t 0av ga ba¢ §4v dat Bt fat €a¥ 000 Ba0 d.Y @V 020 a8 @ab §.6 e 028 Rt g.0" M AN AN X

from the supporting data structures must be accessed 1in
object oriented format, translated to relational format, and
retranslated to object oriented format. The translation

scheme and algorithm for the interfaces will be discussed in

the subsequent chapter.

96

N b el e S

o
)

ricd

@ rd

o X ‘. L'.'.-d;‘

TP DS NP

VII. ALGORITHMS FOR THE TRANSLATION

The window interfaces and data structures that will
support GLAD have bpeen discussed and analyzed 1in great
detail in the previous chapters. Essentially, all of the
objects and wirdows support the GLAD system with object
oriented interfaces to the user and to the relational
database system. GLAD can be thought of as a kridge that
data travels on to the relational side and back to the
object oriented side. However, this bridge is invisible to
the user. From the user's vantage point, he only sees

object oriented data.

A. THE TRANSPARENT LINK TO THE SYSTEM

Implementors of databases that use higher-level inter-
faces spend a great deal of time and effort in designing the
database system in a manner that will allow the user to be
ignorant of the design and implementation details. There-
fore, when the user formulates a query, he does not have to
know how the system is actually retrieving the data. With
GLAD, efficient implementation of the higher level abstrac-
tions, supporting data structures and window interfaces is
critical for obtaining an efficient database system with
reasonable response time. Since the user is removed an

additional 1level from the physical database, an efficient

97

R B (M A

Y P LY R IrE) 17 0 PV ¢ L AL al 2 % e TS e T ‘h.\‘-"\)"\'\"
' ‘ L3 'l..v ' ' s * &) “ Aok WAL, ‘.

BTN IRV IVAY UYUN UL OW UN DR DS T UOROA AR Hp'e, TRV GNP W XS T R NN T e P N

9
> implementation of the interface is extremely important for
N
4 retrieving data in a reasonable amount of time.
N B. GLAD ON TOP OF SQL
%
N As mentioned earlier, GLAD is to be built on top of a
N
1 SQL based relational database system. It is anticipated
o that the SQL based system will function in the same manner
3
"
g as it would if it were the end user system with the SQL
[
o query language as the interface to the user. Instead of
i, being directly supplied information by the user, the SQL
) based system will obtain information from GLAD and return
;; data to GLAD in a manner that is entirely transparent to the
9
e user.
\ Consider a modular view of GLAD sitting on top of a SQL
-
v based system, DB2 by Date [Ref. 14:p. 103], and main com- -
i ponents. A diagram of the system is shown in Figure 33.
: A user of a SQL-based relational database system would
f,
)
< perceive the database as base tables. In Date [Ref. 6:p.
- 103], the following definition of tables and views are
;: given:
2 A base table is a "real" table--i.e., a table that
e physically exists, in the sense that there exist
% physically stored records, and possibly physical
) indexes....By contrast, a view is a "virtual" table--

i.e., a table that does not directly exist in storage.
p With GLAD the user will be entirely shielded from the
1
' lower half of the diagram that uses SQL as the end user
)
v interface and tables and views to represent data entities.
]
‘ Instead of tuples in tables, the user perceives data as A
D
'l
b 98
Y
h.
o)
.]

A
\
L)

0 T A AT AL AL AT AT R R T A 4 1 e 4 T T R R N T g e ATy VA T W TR Y F ARSI P ULl TN
B 0 M .l.. V0%, 0%¢ B NS 3‘} AN,0%,0%, 70 4] ~..l \ > L * »

~0gl.-!‘l .

T _,- ~
s g, ¥, ® P R

e

-
@
»
2
L]
ot
i »/
~
e
LS
®
L~
W
K)

P PN SN .*_.- ’. Sy 'J'.:.;.- RN

)

GLAD WINDOW

EXTENDED SQL

**************i**************

SQL

TABLEL TABLE2 TABLE3 TABLES

Figure 34. GLAD and SQL System Modules

graphics objects that maintain all the relevant facts and
information about the data entities. Therefore, the user
does not have to navigate through the rudimentary constructs

of the relational SQL query language.

C. THE TRANSLATION SCHEME

A transparent link to the user can be formed with an
effective translation scheme and efficient algorithms to the
support the scheme. Consider the translation scheme of GLAD
in Wu [Ref. 16:p. 5]. It is shown in Figure 35.

The left side of the diagram contains the data manipul-
ation language scheme. The user formulates a database query
with the query window. The data from the query is collected

from the query window in an object query collection. lNext,

99

T T L e W O
ALY e Tl o

. . L
AN AT A N TR A
- - L v » - » w (3 »

. ™
o>

R PR U

P L

7, @ O

O s @ . 45N

PR

vyt @ T,

LW W™ .‘.u':

e R R W e W Wy W W i Vi T T a T T T e LA O N

DML USER DDL USER
data Create
* * def. * window
GLAD GLAD SLAD
CUERY CUERY RESULT DB
TRANSLATOCR DISPLAYER GENERATOR
extended query result
SQL gquery in GLAD data
o cbject * format def. in * ESQL
ESQL - SQL RELATIONAL-toO ESQL - SQL
~-GLAD Object
TRANSLATOR REFORMATTER TRANSLATOR
SQL gquery = result cdata
* query in * def. in * SQL
relational format
SQL - BASED RELATIONAL DBMS
db
Figure 35. Translation Scheme

the query collection is translated into extended SQL syntax

by the GLAD query translator. Then, the extended SQL query

is finally translated into SQL syntax. The formatted SQL

query 1is used by the relational database model to retrieve

100

UXMTUNE TN

P s R TR ST A AT R VA S A A N T e A D T

* 0ty et b IS 1S g b LTS T At LA\ A AR AR AU b e A e

or select information stored in the database. The relation-
al query result 1is sent to a relational-to-GLAD object
reformatter to change relational query results to object
oriented format. The query results, now in GLAD object
format, are sent to the GLAD query result displayer. The
result displayer takes the gquery result information and
displays the results to the user in a result window.

The right side of the diagram contains the data defini-
tion language scheme. The user defines his database through
the create database window. Information from the create
window is collected by a create data base object and sent to
the GLAD database generator. Data Definition is completed
and the data is put into extended SQL syntax. The ESQL-SQL
translator translates the extended SQL query and formulates
the syntax for the SQL create table operation. The tables
are then created and stored in the database. This diagram
presents a high level view and summary of GLAD used in

conjunction with a relational data base model.

D. AN ALGORITHM FOR THE TRANSLATION OF GLAD

As mentioned earlier, GLAD objects move across a bridge
like interface to the relational system. By the time these
objects arrive at the relational system they must be trans-
lated or converted to relational format. The relational
system will only understand commands and queries in its
native query language. Therefore, a generalized translation

algorithm to accomplish conversion from object oriented

101

“qe .t
LS N >

W o

»

N ¥

AL

» e A e~

'-.". :

catn 4t ard “avh oih 2t a'd 0% 2l o't a'e utd <18 2" 2t "ath", 329 0 $a®. 02 0% b (a8 fal Bad 3. M R)

format to relational format must be developed and imple-

mented. Consider the translation algorithm contained below

S A ok B opm

in Figure 36.

if (MORE_THAN ONE_ OBJECT USED_IN_QUERY) then
JOIN OBJECTS,

N an e e

: for i := 1 to NO_PARTIAL QUERIES IN QUERY do begin

) if (INSTRUCTIONS ON_OBJECT NAME(i)) then ,
p OBJ_OPERATIONS (i) ; *

while (EXECUTE AND DECODE(i)) do

begin
d if (ASTERISK FOR ATTRIBUTE NAME(i)) and
! EXISTENTIAL QUANTIFIER(i) then
~ SPECIAL OPS (i)

else if (DOT_P_ON_ATTRIBUTE(i)) then
f RETRIEVE SELECT(l)
else if (NO_INSTRUCTIONS(i)) then NO OP(1i)
else if (INSTRUCTIONS ON _ATTRIBUTE(i)) then
RELATIONAL OPERATORS;

P am o

end;

if (not EXECUTE AND DECODE(i)) then »
RESET GLOBAL_COUNTER;
end; { for i := 1 to NO_PARTIAL QUERIES IN QUERY)

Figure 36. The GLAD Translation Algocrithm

The algorithm of Figure 36 shall be used to make the

(translation to extended-relational format by accomplishing ’
the correlation of specific object oriented constructs to

relational ccnstructs, and substituting or converting these

[)
constructs to extended SQL format.

102

.

y . M o o gat Bav.gav bat G2t gt et Sa® Sat o Aar et a0 L Aa ol
RN §.0 #,¥ 0.t 2t Bat $.¢ h"#‘b" r da* Rat §pY A T W WUWU W 23 af 12 '!"‘t'l.' v 4y® oy B4 S0t 02 280 e 1 Sa" Satal 3 i

:;' E. AN ANALYSIS OF THE TRANSLATION ALGORITHM

: The algorithm to translate the GLAD query divides the
query collection into number of objects, object instruc-
i tions and attribute instructions to formulate the SQL query
ﬂ on a line by line basis. The SQL translation is handled in

. A a line by line manner to form the SELECT, FROM and WHERE

A 4

lines that define the major components of a SQL query.

s

ia Consider the translation of any GLAD query that consists of
¥ a query collection that has sub-queries on objects. The
§ following major query items must be translated:

W 1. The number of objects in the query.

?1 2. Any instructions on the object name.

3. Specific instructions for each attribute.
1. If There are Multiple Query Objects
If there are multiple objects used in the GLA.
query, these objects must be joined as tables in the SQL

query. Simple Objects can be directly correlated to a table

AL e

that exists in the relational database. Complex Objects can

-

be directly correlated to one primary table and one or many

supporting identifier tables. It is anticipated that the

=
el 3

IR IS

2

PY create database function of GLAD will create primary rela-

2 tional tables that have the same name as the corresponding

7,

- database object. Therefore, the translation will be able to

; substitute the object names directly into the FROM line of

£y .

&N the SQL dquery. This process will be accomplished by the

%

\l

N.

d

- 103

b,

v,

-

L

.

" LI DL IPNE R L AL AL
o A AT N T B P NN TN N N S NN

- . s n 8.0 - T al Sl Tak ‘al ¢
= 02t yig o -ata 4¥a 0 §%2 8788 Bat ‘Bat $at Ba* £ favabst e i ol L o .a o} g il Bk Aal” il S0 O £a4 8.5 vat rah gt ‘i]

-

implementation of the following portion of the translation)
algorithm: 3

- if (MORE_THAN ONE SRJECT USED IN QUERY) then
JOIN OBJECTS;

In a conventicnal manner, MORE_THAN_ONE_CBJECT USED-

IN QUERY would be implemented as a function that returns a | ¥
boolean value of true if multivle objects are used for the
query. The gquery collection would be scanned by the
function. 1If true was returned, a procedure called JOIN_OB-
JECTS would be utilized to formulate a relational join on
the from line of the SQL query. !
2. Each Object as a Partial Query 3
Each object that is used to formulate the GLAD query ;

shall be considered to be a partial query for the GLAD
query. Therefore, each of these objects must be decoded by - -

the translator. The following portion of the algorithm

Lo A

steps through each of the objects in the algorithm:
- for i := 1 to NO_PARTIAL QUERIES IN QUERY do
3. Decoding the Individual Objects
Inside of each iterative step of the above loop, the v

instructions on the objects and attribute names are decoded.

®
a. Decoding Object Instructions N
First, consider decoding instructions on the 3

object name. Instructions on attribute names are used to
print out string messages in the query. These messages make) ;
the returned results more understandable. The following N
.
3
104 ﬁ
,

§
- ~ R A A T L S G N R S T R I I N N LN IR S I e LR TR R LT 1 P o v, e e S A A N L
.." ‘n"‘:l..:t o‘;‘.n .‘. .uﬁ \ S\, I ‘! ".N‘r"' 3) '. 0 ‘ - .‘\ N "‘ N " PRGNS .l .r eV, Py A IR TRENT Y S

portion of the algorithm shall accomplish the translation
of object instructions:

- if (INSTRUCTIONS ON OBJECT NAME(i)) then
OBJ_OPERATIONS (i) :

If there are any instructions to be carried out
on the object, such as a string to be returned with the
retrieved values, they will be executed through a procedure
named OBJ_OPERATIONS(i). This procedure will be called if

a function called INSTRUCTIONS ON_OBJECT NAME(i) returns a

boolean value of true. The function will evaluate to true
if the attribute entry that holds object instructions does
not contain a blank string.
b. Decoding Attribute Instructions

Each query collection has an array of ordered
pairs that contain the attribute name and specific instruc-
tions that are to be performed on that attribute. The
following portion of the algorithm steps through each
attribute in the array and decodes the attribute instruc-
tions:

- while (EXECUTE AND DECODE(i)) do

This system shall continue to execute this
portion of the algorithm until all of the attributes have
been decoded. Essentially, EXECUTE_AND DECODE(i) is a
function that returns a boolean value of true as long as
attribute instructions remain to be decoded. The attri-

bute's are referenced in specific decode procedures by a

-
. A
W a0] n Vs T W W W NS,

I - S e
R I I .

e

e - -

e

-

-
-

- v

)

- e

PRI 6 T e

..........
R T AT R IO IO WO o PTER TR TIR SA R T R TR TR] 3) 4100 la 2V #9°04, Saaiet

global counter that is reset when each sub-query is decod-
ed. After an attribute's object oriented instructions are
decoded, control of the translation returns to the top of
the while loop. While decoding attribute instructions, the
translator keys on the following items for the translation:

1. An asterisk for the attribute name used in
conjunction with an existential quantifier

2. A '.P' operation for an attribute instruc-
tion to indicate an attribute retrieval

3. A blank character string for attribute
instructions

4. Relational operators for attribute instruc-
tions.

(1) Asterisk and Existential OQuantifier.
Special operations will be executed if both functions
evaluate true in the following portion of the translation
algorithm:
- if (ASTERISK FOR ATTRIBUTE NAME(i)) and

EXISTENTIAL QUANTIFIER(1) then
SPECIAL OPS(i)

The SPECIAL OPS(i) procedure sﬁall formu~
late a nested select query from the pseudo attribute
asterisk '*' containing instructions of '.EXIST'. However,
if some type of instruction other than the existential
quantifier is used with the '*' attribute, a nested select

query will not be formed.

(2) '.P' Operations for Retrieval. If the
attribute instruction field contains a '.P', then that

particular attribute will be designated for retrieval as

106

LA S o L LI A P ‘v------.-\-. - ..
T I NN S NP NN AP S0 DN NI AT 02 oY,

indicated by the below listed portion of the translation

algorithm:
- if (DOT_P_ON_ATTRIBUTE(i)) then RETRIZVE SELECT/i]
DOT_P_ON_ATTRIBUTE(i) is a boolean function that
will call the RETRIEVE SELECT procedure if the <function
evaluates true. The function shall evaluate true when '.P!
is contained in the character string for attribute instruc-
tions. In addition, it must be emphasized that '.P' can bhe
qualified with further operations that the translator will
handle.
(3) No Instructions on the Attribute. If the
instruction field contains a blank character string, then a
simple no-operation procedure is executed and control is
returned to the main decode loop after the attribute counter
is incremented. The following portion of the algorithm will
execute the no-operation procedure if the boolean function
evaluates to true:
- if (NO_INSTRUCTIONS_ON ATTRIBUTE(i)) then NO OP(i)

(4 Relational Operators {(=, <>, <, > 3}, If

instructions exist on the attribute besides those that have
already been covered, the instructions will be relational
operators. If the attribute instruction field contains
equal to (=), not equal or unequal (<>), less than (<) or
greater than (>), the INSTRUCTIONS ON ATTRIBUTE(i) function
will evaluate to true. The RELATIONAL OPERATORS procedure

will be invoked to handle the attribute instructions.

107

- ‘..‘,,'.‘:. LRy

PR L LW \ " It U i Yo" [T O o o “lrﬁ" "\'vﬂ. rO?
R SRR RN AT MM QAT ISR St R KW R e G L b o] e OO A AN R I e SN AN T M S 653,0

L nivosua At oem et Bia @a 8% A1y $Y4°0' A2 8.4 4% A%a 2ta At B A%a‘atatabatal *atatal., R N N O O T O Y N T A T a N O Vi Wy

F. FROM EXTENDED SQL TO SQL SYNTAX
As previously discussed, the correlations between the
object oriented to extended SQL syntax are nrearly a perfect

one-to-one correspondence. However, the format of <tk

[}

extended SQL syntax is not suitable for the final SQL que.iy.
This extended syntax shall translate the complex data types
of the extended query to atomic data types. Through the use
of a join on a surrogate identifier table, the complex data
type will be represented in the relational database as
atomic data. Consider the following algorithm that is
contained in Figure 37 and will be used by the ESQL to SQL :

translator.

for i := 1 to NUM_LINES_IN_ EXTENDED QUERY do begin
if ESQL_Line_CONTAINS_COMPLEX_DATA(i) then
begin
TRANSLATE_ATOMIC_DATA_CONSTRUCTS(i);
COMPLEX := true:;
end;
if COMPLEX then
JOIN_IDENTIFIER TABLES_WITH OBJECT TABLE ;
else y’
SQL_ EQUALS_ESQL
end;

Figure 37. Algorithm for ESQL to SQL

Essentially, the ESQL to SQL translator will be required ;
to iterate through an array type structure that holds the \
complex data, parse the data, and substitute atomic con-
structs (i.e., DID: integer <-- MAJOR: DEPT). Then the '

{
108]
‘l
3
»

[}

SRR N N L T ~ " ~ AT R T e R I TS S T T e g RN TR L e L% TS 89, 0 S P I NN
= . .. s -n,o) 'r " f "l, N b.l ‘n.l,'t. .." ‘lll. “ A\ N 0 LGSR ERINS ‘A~.-l D AN A e\

il

PR ETE

,-,'*
%k

2:5e

®
ol
s
'
®
;'

»? [P . - : ; . W N - TN A
L) » . KB4 (] (
:'..'A'b\0?‘:'!’;’!‘.’:';’!‘;‘!‘|':'|'. Whata' l'.l'.‘t‘. UL R M U IO DTN 0"‘"- AT ORI AT A Ty UM TREN A

surrogate identifier table will be substituted in the FROM

line (i.e., FROM DEPT, IDDEPT <-- FROM DEPT).

G. A TRANSLATION EXAMPLE

Consider a simple example to 1illustrate the entire
translation process. The database user wishes to make a
STUDENT gquery that will retrieve all student names for
students that have a grade point average of greater than or
equal to 3.5 and are math majors. The first step in the
query process is putting this plain English query informa-
tion into the query window. Figure 28 illustrates the

STUDENT query window after the user has entered the data.

| STUDENT QUERY

; STUDENT i |
-, 5
!
!
SNAME | .P
. AGE
. GpPA >= 3.5 |
| MAJOR = 'MATH'

Figure 38. GLAD Query Window

After the user has entered the above information, a
method that loads the query collection shall be utilized.

The query collection shall contain only one element:

109

LT LA

=

=

MR

!

Vet 40a WYL 300 B g 8 2.0 4.0 Ba¥ B8 a0 Eav Bar ol bl ok AR ACA

- QUERYCOLLECTION (#STUDENT) =
Array(Array(#STUDENT " ") Array(#* " ")
Array(#SNAME ".P") Array(#AGE " ")
Array(#GPA ">= 2.5") Array(#MAJOR "MATH");

Next, the STUDENT element will be translated by the GLAD
guery translator into ESQL syntax.
1. Number of Objects in the Query i
The first step in the translation is determining if
there is more than one object used in the query. In the
example, there 1is only one object in the query. The
function MORE_THAN ONE_OBJECT USED_IN QUERY evaluates to
false2, and the procedure JOIN OBJECTS is not called.
Moreover, the ESQL FROM line will only have one table. At
this point in the query the ESQL query array only has two
elements that are not blank. Figure 39 contains the ESQL

query after the FROM line has been translated.

ESQL ARRAY

1 SELECT

FROM STUDENT
3 | @RRREERERERE
4 | @eeEEeERRRE
5 = @RRREERRRRE |

Figure 39. ESQL Array during Query Translation

110

R 47 Y 8 L

R TR TP L U R S R R I O N N O TR R T O N UM LN RN W LY o M N UN N U UY W U UG Val Sal Val iy " Sat tal N RO T Yy

. At this point, the attributes have not been decoded
» so the only lines that are resident in the ESQL array are
the SELECT and FROM STUDENT lines. The other lines have
been initialized to '@@EEEEREEGE' which 1is a sentinel for
decoding.
2. Number of Partial Queries in Query

Each of the objects in the query collection repre-
e sent a partial query. The loop with i := 1 to NO_PAR-
. TIAL_QUERIES_IN QUERY will execute only once for the example

query of Figure 38 because there is only one query object in

i -

i the query collection.
i
™ 3. Decoding the Object and Attribute Instructions
s
4 The loop while EXECUTE_AND DECODE(i) will continue
"
5 to execute until the function EXECUTE_AND DECODE (i) evalua-
s

tes to false.
; a. Decoding the Object Instuctions
g The query collection is checked to determine if
. there are object instructions that must translated. The
s first element in the query array is evaluated by the
) . . .
e function INSTRUCTIONS ON_OBJECT_NAME(i). The function will
® check to see if the instruction field has instructions. 1If
F.
. the field is blank, the function will return a boolean value
’ of true and call OBJ OPERATIONS (i). In the example con-
o tained in Figure 38, there are no instructions on the
)
o attribute name. The function will evaluate to false.
C
:l
b 111
‘0
)
@
4
W

REp S T

R A IR

» » -SAT. BT . . V.

a . R ‘aa i B PR L Y N N WYY R W W) A‘ 0k ¥
3 ovow Usw em Kal Yok Vag Sl 100 ¥af a0 saf G B Wal ¢ ol of 0 aah iap S B 0ol ioh ol ad 828’ Val o Ol VR R AN () -

p b. Decoding the Attribute Instructions
e Next, each of the attributes will be checked to

determine if there are instructions for decoding. The while

W EXECUTE_AND DECODE(i) 1loop will continue to execute until
. -

i

;- all the attribute instructions have been decoded. The * and

AGE attributes contained in the query have no instructions.

These attributes cause the NO_INSTRUCTIONS(i) function to

120

'% evaluate true and call the NO_OP(i) procedure. The NO OP(i)
J? procedure increments the global counter but does not write
é' to the ESQL gquery array. The second attribute, SNAME,
ig? causes the DOT_P_ON_OPERATION_ function to evaluate true.
;‘ The translator analyzes the instruction field of SNAME and
-

E' determines a '.P' operation must be performed on SNAME. The
%E RETRIEVE SELECT(i) procedure is called, and SNAME is written
w to the select line. At this point, the first two lines of
R

gs the query have been formed, and the system could retrieve
ﬁ? all of the STUDENT names from the STUDENT table. However, a
l~ condition still needs to be specified and the translation is
'§ still incomplete. Figure 40 shows the partially completed
:-Z.E ERSQL query.

‘0. The fourth attribute, GPA, is translated, and
{ the INSTRUCTIONS ON ATTRIBUTE(i) function evaluates true and
;N calls the RELATIONAL OPERATORS procedure. This procedure
® translates the instruction field and determines that a legal
}z operation, '>=' (greater or equal than), is to be performed
% on the integer 3.5. Since this operation represents the
B 112

W

I] A T AT A AT AT RS R A RS LRV LV S S s A -‘

- e
- -

-y
X X O

v .

)

ESQL ARRAY

SELECT SNAME

FROM STUDENT

eEeereeeee
gelelelelclelelele
@eeeeeeeeee

Figure 40. ESQL Array after Two Lines are Translated

first condition of the query, the attribute operation is
written to the third line of the query that will be composed
of 'WHERE GPA >= 3.5°', Figure 41 shows the translated
ESQL. This partiai query represents the first three lines
of the ESQL translation. The final attribute to be decoded
is MAJOR. The MAJOR attribute is a complex attribute of
type DEPT. For the ESQL translation, the complex data type
is represented like any other attribute in the ESQL query.
The INSTRUCTIONS_ON_ATTRIBUTE(i) function is evaluated to
true and calls the RELATIONAL OPERATORS procedure. The
RELATIONAL OPERATORS procedure determines that a wvalid
operation, '=' (equals), is to be performed on the MAJOR

attribute. This operation will be translated to 'AND MAJOR

= 'MATH' ' and written to the fourth line of the ESQL query

array. Figure 42 displays the final ESQL translation after

all attributes have been decoded.

Ry o aat e e A e " gt 1% da 4% 8% 472 ' 1% A4 2la"g! Vat uad alm . L0ah S g Ul el T T L Pl R VU o PR PV W WOT o
al
"
g
L J
o
W ool ARRAY
;,‘: ZSQL ARRAY
®
" 1 SELECT SNAME
"y 2 TRCM STUZENT
l:q
]
N 3 WHEERZ GPA >= 3.5
u';‘
g 4 eeeeeeeeee
D 5 feeeeeeree
A
3
K
N Figure 41. ESQL Query with Three Lines Translated
R
)
¢
!
P
® j ESQL ARRAY |
Q ’ '
> .1 | SELECT SNAME ;
Yy ! I |
R 2 ' FROM STUDENT ;
B
)
3 WHERE GPA >= 3.5
D
‘, 4 AND MAJOR = 'MATH'
i. .
p 5 cleleleiedelelelele
Lo/
K
o
'A Figure 42. ESQL Array after Translation is Complete
L
o
": The ESQL query is ready to be translated to
N
]
ﬁ primitive SQL syntax for the final SQL query. The ESQL
o query shall be sent to the ESQL to SQL translator to
y :
X accomplish the final translation.
)
e
@
W
‘ 114
/
é
o
L
-

.

-

b by

R R N A N I L I LI T RSN St mate” AT AR - '.H"".".‘:_':, A ~"-.-‘--¢ o \.‘v"-"n.."(.. {
' ﬁ&hjljk;*iﬁjﬁiﬁﬂ}iﬁi”:.l“i‘i\;}iﬁ45:?.\;“;h‘?.\Zﬁi}ukgh;}nﬁgﬁ?VTiEiL R AR R A G GRe

4. ESQL TO SQL

For the final translation, the ESQL to SQL trans-
lator shall iterate through the query array and determine if
a line contains a complex data type. The first four lines

in the ESQL query can be substituted without change to final

SQL query.

The last line of the query has a non-atomic attri-
bute type and a complex translation must occur. The SQL
translator determines that MAJOR is not atomic by consulting
a table that holds all complex data types. MAJOR is of type
DEPT. The ESQL Line CONTAINS COMPLEX DATA(i) function
evaluates to true, and the procedure TRANSLATE ATOMIC_ DATA -
CONSTRUCTS (i) will translate the final line to read 'AND
DIDNAME = 'MATH' '. DIDNAME is an identifer of type string
that will be compatible with primitive SQL constructs.

The final step in the translation process is the
procedure JOIN_IDENTIFIER TABLES WITH OBJECT TABLE adding
the identifier table, IDTOWN, to the FROM line. IDTOWN acts
as a surrogate table that is joined with the STUDENT table
to indirectly represent complex data as atomic data. The
completed SQL query is shown below in Figure 43. Now the
SQL gquery can be delivered to the relational system to
retrieve the desired student names.

The results of the query will be returned to the
translator in set type format and retranslated to cbject-

oriented format for user view.

115

- - - - - - - -
S RN A N Nt AR L TR LR L

7, “l ’l el',zl LS

caw

L

e
N
%

s @

ShRAS

RO Y A

SQL ARRAY

1 SELECT SNAME
FROM STUDENT, IDDEPT

3 WHERE GPA >= 3.5

4 AND DIDNAME = 'MATH'

5 eeeeeeeeee

Figure 43. SQL Array after Trénslation is Complete

116

l.._’, R L N R R e (aa o € M i Ny W™ " “ R G TR
A A N I T S o s A A S Y (A N T A AN

o,

S

)

Sy

-

-

-

VIII. CONCLUSION

The need for a user friendly graphics interface to the
relational database system has been validated by examining
the deficiencies and limitations of the current relational
database systems. The deficiencies and limitations of these
systems are caused by the relational model's 1lack of
semantic capability. Relational systems lack semantic power
because they are based on poor semantic data models.
Systems that support specific higher 1level abstraction
concepts have the power, flexibility and capability to
provide a user friendly environment and extended relational
capabilities. These systems should support aggregation,
association, generalization and classification.

Inadequate semantic capability is not the only reason
that relational systems are not well suited for the entire
population of database users. Moreover, standard relational
query languages are untenable for naive and inexperienced
database users. People who generally do not have formal
computer education or training are often in administrative,
clerical and technical positions that require the use of
computers to do their jobs. In fact, computer technology
has experienced wide spread proliferation, and computers
have permeated our society. Therefore, it is important that

non-computer professionals who need computer technology to

117

; N : N gyt T AL AT AT A R IR B R L, AN e A W e e Lt
R % \ _‘q Y \ Y ‘\)‘\ 'k‘\l \‘- \-‘ "R NN '\ .'\q .' .". A 4."“\ i . A)

AT B LA N A OSCLAC S AR LA WRHERERE BRERY A T N

R R IR TR O T T I T R O T O R T R R S IR S U LR W AR IO W T WO W N PUC A A U WM AR SRR X et et ga® bgt

perform every day Jjob functions be given the best possible

g user interfaces for their working databases.
N Research has determined that the previously discussed
ﬁ relational query languages are entirely unsuitable for these
é types ol individuals. Tuple calculus and relational algebra
i based systems may provide and effective user interface with
g QUEL and SQL for the mathematician or computer scientist.
‘; The mathematical query concepts can be associated by the
user to already familiar math or computer concepts. Unfor-
§' tunately, the naive user will probably not be familiar with
? these concepts.
; From a human factors design point of view, a system must
& provide the user with functional items that can be as-
4‘ sociated to familiar concepts. Database entities and sub-
' entities can be effectively associated with simple graphics
* objects. GLAD utilizes rectangles and lines to make these
‘ correlations between the real world entity and abstract
,f object.
Q A. EXTENDING THE RELATIONAL SYSTEM
? More than a decade of arduous research has validated the
‘i existing relational database technology. Relational theory
:S has provided a sound theoretical basis for the current rel.a-
3 tional systems. It would be unwise to totally abandon this
’: technology and start from ground zero to develop a new
f system. Perhaps, a major technological break through in
: computer architecture would merit a complete database system
" 118
™

1

N AT S N

N WY . "~ A

Y . - . - - - - -

.....

redesign. Furthermore, most of today's database technology

is based on research that was done nearly 20 years ago at
IBM research center in San Jose, California. In addition to
Codd's relational model, considerable advances were made in
all aspects of database technology that are entirely
relevant to today's systems.
1. A Stable Database Technoloqgy

Today, computers have become relatively inexpensive
and have been designed to be easier to learn and use.
Hardware component prices have consistently plummeted in
value. In the last decade, memory has become orders of
magnitude cheaper. Despite advances in both hardware and
software, database theory has fundamentally remained consis-
tent since the advent of the relational model.

2. Extend Existing Database Technology

Therefore, until a major technological break through
has been accomplished, such as the development of an
inexpensive secéndary storage device that is orders of
magnitude faster than disks, the wise approaches for
improving database systems are centered around extending the
existing data base technology. GLAD extends the existing
relational system through graphical user interfaces that

transport data and results to and from the relational

system.

119

ottt R MG,

=0 f'c'n,‘_" Py ':_’_‘_ Y

-

N
&
N

e

(IR TSGR T LRI LIRS FLE TR 3 (XM A RAR U ARG . », U @, a¥_ a2l el _%aP b AN AR XXY AN UL YT L. VYUY 3 Salk At dad) 8, c-"i 'd

i B. THE OBJECT ORIENTED SYSTEM

X When implemented, GLAD's power, flexibility and user
friendliness will provide the best possible interface to the

g user. Much of this capability is derived from the object

:q oriented approach. ACTOR, the object oriented language used
for GLAD implementation, will provide the window interfaces

% to the user. The capabilities of GLAD's user interfaces

will be derived from ACTOR's object-oriented classes and

methods. ACTOR's object oriented classes will supply GLAD

'$ with the graphical objects that represent the database. 1In
g addition, GLAD shall utilize ACTOR's Collection descendants
; to define data structures that will effectively support the
;g user interfaces.

The relationship between ACTOR and GLAD is analogous to

the relationship between SQL and embedded PL1 or Cobol.

-
A

% However, a major difference is that GLAD can be represented
)

y in a much more natural manner than SQL embedded in PL1.

.l

= C. FUTURE GLAD APPLICATIONS

"

N

é GLAD has many potential uses for future applications.
.- It has potential military, administrative, educational and
(! training possibilities. The easy to use and learn inter-
Wl

B, faces will make the system available to the widest range of
.4

4 database users.

K 1. Military Applications

& GLAD has tremendous potential for a wide variety of
[}

® applications. In particular, GLAD seems well suited to a
K

4 120

B,

W

L J

6‘

o)

5 e - .
” ” L LY L -~ - - - A " Ry \ i B ny ~
DO NN M T ‘ Attty ..o RO ORI BN I RS TATAT AO STMTIAIN Tt B S

) Y ‘-.'l'_
AN A

[) -

a“});‘.’f

ey

s %
8 Sl XS

R Y P - T T PR RS - P R A T - -\
M N e A M M W o " " o P VY = TR fads

wide variety of military uses and applications. Military

office usage of database could be aided significantly by
providing gonod graphics interfaces to military administra-
tive and data processing clerks. Military personnel often
report to their commands and must be immediately integrated
into the work environment without any significant on-the-job
training. In addition, there are high turnover rates in
most units due to transfers, discharges and reenlistments.
Persmrnnel must constantly be retrained on systems. GLAD
could certainly help a clerk, that did not have computer
experience, to quickly become a proficient database user.

In a tactical environment, GLAD could be very
valuable to the field commander. It could be used to
formulate queries for portable PC based military data bases.
Intelligence, 1logistic and historical information could be
quickly accessed by troops and passed to their superiors for
important tactical and strategic evaluation.

2. Database Educational and Training Requirements

GLAD could be useful as a tutorial for teaching
naive users to use other database systems. Since GLAD is an
extension of the relational database, a one-to-one corres-
pondence can be established for the GLAD items that are
substituted and translated to SQL items. This correspon-
dence can be used to show the user, in piece meal fashion,

how the GLAD query corresponds to the SQL query.

121

-

- AR T T T T
T At T, i Vi R e e

na €aUia ada iup aVh 4t ath it JUA QR add oty atsavh ath gth ik aliiavh el xS At b Rl PRl Gl B b 2ok Kah A Sud o0 sob Vol Sal Sob Vol Valb mald Rsd el ARl M

D. REMARKS ON IMPLEMENTATION
y GLAD implementation of dgraphics interfaces is an on a
going project with considerable work remaining in striking
the ACTOR code for the higher 1level interfaces. However,
much work has already been accomplished. 1In particular, the
higher level abstractions have been formulated. Conceptual-
ly, GLAD is entirely ready to be implemented.
) 1. Mastering ACTOR
3 The most significant challenge to the implementors
! may be mastering the ACTOR programming language. The object
oriented approach requires considerable departure from
4 previous ways of forming code and writing programs. Many
programmers have developed their programming strategies in
ways that will require significant adaptation to object i
oriented format. Although ACTOR programs will generally be

i much shorter than a corresponding conventional, higher level

N A ™ ey

language programs, the ACTOR code may actually require more
thought than conventional code. The 1learning curve on 3
object oriented concepts seems to be high.

2. Interfaces and QuervCollections

However, once these concepts are mastered, object
oriented programming power can provide methods for graphical
P interfaces that can not be obtained with conventional

languages. ACTOR maintains graphical methods, in a compact

| and precise manner, that are readily available with object

D

LV o LRy

oriented languages. ACTOR will be ideal for developing

122

- e

hs e a

i oy - e % B% - - » - L
1% ‘.l | e 0. 50, 50 T N, * . * ‘ St N 50y, ‘l‘l‘- .. b g ol B Lty LSRN F A ..l" AV 0% I'..l‘. O

't L C
it

RIS T R R P TR A PR T A TN AR AT AR LN UNLY U UwWUN N LA L i LWL N VAWM A YR X 15 gt Pl O NCW W RYTY

X methods and classes that will define the data structures
i that will support the ACTOR interfaces. The interfaces
' shall be a collection point for data, and QueryCollection's
‘ ' will serve as the transportation medium of this data to and
from the user.
3. The Bus Station Analogy

The bus station analogy should prove to be useful in
illustrating the interface implementations. A bus station
can be thought of‘as a collecting point for people that need

to ride the bus to a given destination. The query window is

T

a collecting point for data that must ultimately be trans-
ferred to the relational system and back to the user. The
bus is the vehicle of transportation for taking the people

to their destination. In fact, there are two types of

oo et o e Y e

buses:
1. extended buses i
! 2. native buses.

The extended buses take the people long distances
from state to state and city to city. The native or local
buses are driven by residents of the local community and
4 take the bus riders, who have completed their extended bus
: ride, to the ultimate inner city or community destination.
X In other words, the native buses are short range buses, and
4 the extended buses are long range buses.

. The methods that translate the GLAD query informa-

tion to extended SQI information can be compared to the

123

BN N

, o™X wEw (A CURPI M N) Ve M N NS PR AT YL S 'v"'.‘."' “'\\il‘.'r‘l' '_'_-\‘{.,""
AL “.‘f.‘\‘o‘“l RNAIEM I GV N A‘!‘t AN ", .,q‘.-l Lo 0, . Py N (L La Ul

-
3

et h aiira eV e kR a"d ¢t at2 ahe ati “ath at8”ath’ a¥a ala®aVa" cfa 00" 02" 2t tat Ra8 22" "Gat B2V 1a® Rat”R:

extended bus that takes the user to the city of his inter-
mediate destination. The methods that translate the
extended SQL to native relational SQL can be compared to the
native or 1local bus that takes the user to his ultimate

destination.

Voag e v e e

E. EPILOGUE

The system formed from GLAD and a relational database

A
e

will provide a powerful and easy to use interface to the
widest possible audience of database users. GLAD represents
the natural evolution of the relational system. 1In essence,
the GLAD approach to database is evolutionary vice revolu-
tionary. GLAD is not revolutionary because it does not
propose a new database model with a new architecture to
support the implementation. It is evolutionary because it
takes a model that has already been validated and builds the
interface on top of that model. In fact, GLAD could be
implemented on the network, hierarchical and inverted list

data models. Since GLAD is not based on any specific kind

of model, it has a great deal of flexibility for serving as

a bridge between the user and database. This approach has
not been entirely explored and many systems based on this
concept should be implemented before graphics extensions
have been truly maximized as an effective man to machine
interface. Until technology surpasses the capabilities of

existing computer systems, the evolutionary approach

R R R R R R T IR R R T R A o e R R T O I T S T I T T T U W R T T

XA

to designing new database systems will provide the highest

yield for the least investment.

e . -

- e P

-
- -

LY
Ay

(W
0'.

~ .
! R T

-,-o'_.A.‘
- -'1’-’1.

!
§

<
"y
y
v
L4

125

AT O L P T LN LRt LR UL N S R U PR RS L C IR | ST TR T
ol .l“l o AN e .‘M MR NN A PPN . - »

A Sl Py

D N SRR ARy
a ; ,

-
> £ o

< X1

P

-

2
§

' 8
¥
N X

- 7 o - 4 ‘8.8 g “* N
PRTTI R . ~agatav Vo' B*) & ot ga fav ixta V2", * o4 K] 7 > b g* 'S 28 0" 84" 2°0.8° G0 8ol Aol 0.0 val ¢ J VA

APPENDIX A

A STMUTATED GILAD TRANSLATOR

program ObjectTranalator;

{ This program illustrates the use of the algorithm that
will be used to translate object query windows to SQL
syntax. The program is written in Borland Turbo
Pascal 3.0 and executed on IBM compatible PC/XT micro-
computer.

FOR THESIS RESEARCH IN CONJUNCTION WITH GLAD
Author Paul D. Grenseman, NPS/CS-71 - March 1988 }

type

OPERATION = string(16];
{ Used to hold relational operators for attributes
or sub-objects that are queried)}

NAME = string[30];
{ Used to hold the NAME of the objects }

OFERATIONS = array([l..10] of operation;
{ attribute operations of the query }

NAMES = array(l..10] of NAME;
{ The NAMES of the objects that will be queried)

INSTRUCTIONS = string([16];
{ INSTRUCTIONS to be performed on the entire

object such as select all attributes or count
all object attributes)

ABOUT_OBJECTS = record
OBJECT_NAME: NAME;
OBJECT_INST: INSTRUCTIONS;

end;

ABOUT_ATTRIBUTES = record

ATTR NAME: NAMES;

ATTR:OPERATION: OPERATIONS;
end;

PARTIAL QUERY = record

OBJECT INFO: ABOUT OBJECTS;

126

N T g A T A T N R O TS VAN S ek ety s AN 2 B V) MR

LA 'S -ufﬂ". - N K L) R\ ‘. .. .' X M "l .“.‘. 4t . L Lw & - .. et g C Ve - - . Hal 4 -

o m_a_ a

ATTRIBUTES: ABOUT ATTRIBUTES;
IS_QUERIED: boolean;
end;

{ A query that is not joined or completed. The
user can elect to make a rartial query complete
by selecting the QUIT option }

OBJECTS = record
NAME: string[20];)
ATTRIBUTES: array([l..10] of string(20];

end;

{ The Pascal simulation of the ACTOR object. A
< Object-declaration > ::=
DEFOBJ < object name >
< attribute-declaration >+
ENDOBJ)}

OBJECT_QUERY WINDOW = array(l..10] of PARTIAL QUERY:
{ Partial Queries to be joined or nested }

OBJ_STR = string(40];

'~

JOBS = (FACULTIES, SECRETARIES):;
{ Possible Employee Jobs }

e O]

DEPT_SET = (MATH, COMPUTER, MUSIC, PHYSICS, HISTORY):
{ Departements the students can major in }

QUERY STR = string[50]; \
{ One line of the TRANSLATED object query) -

SQL_QUERY = array(l..49] of QUERY STR; 0
{ The translated sequel query in relation syntax)

EXTENDED_SQL QUERY = array[l..40] of QUERY STR; y
{ The translated object query in extended "
SQL syntax }

1 const !
SENTINEL = '@Q@@@@@@@e@’';
{ used during decoding process)

var .
ITH_ATTRIBUTE: integer; ‘

| { The Ith attribute in the query it is used to ;
. determine the placement of WHERE & AND } '

e,
X: integer;
{ Subscript for array of attributes)

@ i e sl

127

M@ 5

Mo

» oMo e,

N W W WY e W, TR TN TR TS N W R T
-".':F{.. ‘F.‘ o i ﬂ\-~\¢ 1.“ ‘. -. .‘

{-¢"_-J-’:"n.‘;'-
™ »

".‘o’o‘g . e

-

B N

'~

NO_SELECTS: integer;
{ Number of nested selects in partial query }

1: integer;
{ Loop control variacle oy guery)

JOIN: boolean;
{ Global boolean variable to indicatz that
objects in a query are joined }

F: char;

{ choose F or £ to exi%t guerv prccess |}
FINISHED,

{ FINISH set by f or F }

MORE_THAN: boolean:

{ more than one sub-query }

MAJOR, JOBTYPE, DEPT, MEMBERS, WORKSFOR: boolean:
{ Used for decoding SET TYPES }

NO_ PARTIAL QUERIES IN QUERY: integer;
STUDENT_QUERY, EMPLOYEE QUERY, COMMITTEE QUERY,
FACULTY_QUERY,

{ Simulated Object Query display windows)}
PARTIAL QUERY OBJECTS: PARTIAL_ QUERY:;
OBJECT_NAME_STRING: OBJ STR;

FACULTY, STUDENT, EMPLOYEE, COMMITTEE: OBJECTS;
{ Simulated GLAD University DB Objects)

QUERY: OBJECT QUERY WINDOW;
{ The Completed Object Query to be translated)

ERSQL: EXTENDED SQL QUERY;
{ The Sequel Query with COMPLEX TYPES }

SQL: SQL QUERY;

{ The Translated :equel Query in Relational format)}

FSQL: text;
{ The text file that holds object, extended and
relational queries }

128

RS ‘---__.--‘-
»

S e, e

- —,\

- ‘h. "-
o

nm T AT W E
-+ o~ o o

-

e . e g - . kA I PR R waly dad 4
R R R R R A R I R M Yo W R W R R PR AR 8w - " T WL FUNGRA N KA LN R KRR ’ v

AL e

,,
x5

| procedure INITIALIZE GLOBALS;

| begin (INITIALIZE GLOBALS)}

| { Set all Gobal variables to initial values } 4
’ X :=1;

| e := 1; { All arrays subscript start at one }

JOIN := false; y
MORE _THAN := false; Wy
DEPT := false; MAJOR := false; WORKSFOR := false; :
JOBTYPE := false; MEMBERS := false;)
NO_PARTIAL QUERIES_IN QUERY = 07 ot
STUDENT.NAME := '
COMMITTEE.NAME := ' '
FACULTY.NAME := '

EMPLOYEE.NAME :

v

Y-

for i := 1 to 10 do begin -
QUERY[1].IS_QUERIED := false; =
STUDENT.ATTRIBUTES([i] := ' ', o
COMMITTEE.ATTRIBUTES[i] := ', ';
FACULTY.ATTRIBUTES{i] := ' ', ‘
EMPLOYEE.ATTRIBUTES[i] := ' ' .
end; { for 1 := 1 to 10 do } e

~e

for i := 1 to 40 do begin
ERSQL[i] := SENTINEL;
SQL[1] := SENTINEL;

end; { for 1 := 1 to 40 do } X

end; { INITIALIZE_GLOBALS)

procedure LOAD OBJECTS;
{ Simulated Objects loaded with attributes/sub-objects }

procedure LOAD STUDENT; -

begin { LOAD_STUDENT)}
STUDENT.NAME := 'STUDENT'; ,
STUDENT.ATTRIBUTES[1] Th!; .

STUDENT.ATTRIBUTES[2] := 'SNAME'; e
STUDENT.ATTRIBUTES([3] := 'ADDRESS'; ‘o
STUDENT.ATTRIBUTES([4] := 'SSNO'; ~
STUDENT.ATTRIBUTES[5] := 'GPA'; o
STUDENT.ATTRIBUTES[6] := 'MAJOR'; hD
end; { LOAD_STUDENT)} -3
RS

procedure LOAD COMMITTEE; i
begin (LOAD COMMITTEE)} NS
COMMITTEE.NAME := 'COMMITTEE'; Y
COMMITTEE.ATTRIBUTES(1] := 'CNAME'; N
COMMITTEE.ATTRIBUTES[2] := 'MEMBERS'; "
COMMITTEE.ATTRIBUTES([3] := 'PURPOSE'; A
end; { LOAD COMMITTEE) °

..-
N
\-
Y
N
~
»
L

129

-X

[
-

@

x

=

»
-

!

v

g -

TH T N G G T T
> e

procedure LOAD FACULTY;
begin { LOAD_ FACULTY }
FACULTY.NAME := 'FACULTY';

FACULTY.ATTRIBUTES([1] := 'FNAME';
FACULTY.ATTRIBUTES([2] := 'AGE':
FACULTY.ATTRIBUTES([3] := 'WorksFor';

end; { LOAD FACULTY }

procedure LOAD_ EMPLOYEE;
begin { LOAD_EMPLOYEE)}
EMPLOYEE.NAME := 'EMPLOYEE';

EMPLOYEE.ATTRIBUTES[1] := 'ENAME';
EMPLOYEE.ATTRIBUTES[2] := 'PAY';
EMPLOYEE.ATTRIBUTES[3] := 'DEPT';
EMPLOYEE.ATTRIBUTES[4] := 'JobType':

end; { LOAD EMPLOYEE }
begin { LOAD_OBJECTS }
LOAD_ STUDENT;

LOAD_ COMMITTEE;
LOAD_FACULTY;

LOAD EMPLOYEE;

end; { LOAD OBJECTS)}

procedure LOAD WINDOWS WITH OBJECTS;

{ Query windows loaded “with object information)}

procedure LOAD STUDENT QUERY;
var
W: integer;
begin { LOAD_ STUDENT QUERY)}
STUDENT QUERY.OBJECT INFO.OBJECT NAME
STUDENT.NAME;
STUDENT_QUERY.OBJECT_INFO.OBJECT INST
t 1.

STUDENT QUERY.ATTRIBUTES.ATTR NAME[1]
STUDENT.ATTRIBUTES([1]:

STUDENT QUERY.ATTRIBUTES.ATTR_NAME([2]
STUDENT.ATTRIBUTES([2];

STUDENT_QUERY.ATTRIBUTES.ATTR_NAME([3]
STUDENT.ATTRIBUTES(31]:

STUDENT QUERY.ATTRIBUTES.ATTR NAME[4]
STUDENT.ATTRIBUTES(4]:

STUDENT_ QUERY.ATTRIBUTES.ATTR NAME([5]

STUDENT.ATTRIBUTES([5];

130

v.\wn.rsw“\\.r

»
n’-r" St HAAEN

.
.

R T e e LTSRN\ NS]
X Lot N g

3% \},“-

....

“‘\ ‘\.\ ‘&\‘

x"_\. "o

el Ve Y2l €ad . Val VAl Mat Vs ‘2l Vel Sal Cup vak Wap Wng V29 ¥op 0o} ¢ 0. Wall Wb o) ¢ v ol ol Cad ah dgd) 4, Aol

| Y T
-q 1'1'-'(".'

STUDENT_QUERY.ATTRIBUTES.ATTR NAME([6] :=
STUDENT.ATTRIBUTES[6];

« v
s

(9
STUDENT_QUERY.IS QUERIED := false;)
A
for W := 1 to 6 do
STUDENT Q”VRY.ATTRIBUTES.ATTR_OPERATION[W] 1= :ﬁ
. 7
’ a0
end; { LOAD STUDENT QUERY)} ﬂg
o

procedure LOAD FACULTY QUERY; o
var "
W: integer:; A
begin { LOAD FACULTY QUERY)}
FACULTY QUERY.OBJECT INFO.OBJECT NAME : X
FACULTY .NAME; '
FACULTY __QUERY.OBJECT INFO.OBJECT INST .
| Y

FACULTY_QUERY.ATTRIBUTES.ATTR_NAME[l] :
FACULTY.ATTRIBUTES([1]; WY
FACULTY QUERY.ATTRIBUTES.ATTR NAME[2] : 2
FACULTY.ATTRIBUTES([2]; X
FACULTY QUERY.ATTRIBUTES.ATTR NAME(3]

FACULTY.ATTRIBUTES([3];

FACULTY_ QUERY.IS QUERIED := false; b
for W := 1 to 3 do Kl
FACULTY QUERY ATTRIBUTES ATTR_OPERATION([W] := 'ﬁ

. hd
end; LOAD_FACULTY_QUERY }

procedure LOAD COMMITTEE QUERY: q}
var "
W: integer; e
begin { LOAD_ COMMITTEE_ QUERY)} N
COMMITTEE _QUERY. OBJECT INFO.OBJECT NAME := iy
COMMITTEE.NAME; N
COMMITTEE _QUERY.OBJECT_INFO.OBJECT_INST := f‘

COMMITTEE_QUERY.ATTRIBUTES.ATTR_NAME[l] :=
COMMITTEE.ATTRIBUTES(1]:
COMMITTEE QUERY.ATTRIBUTES.ATTR_NAME[2]

COMMITTEE.ATTRIBUTES[2]; 2
COMMITTEE QUERY.ATTRIBUTES.ATTR NAME[3] := o
COMMITTEE.ATTRIBUTES([3]:;)

COMMITTEE QUERY.IS QUERIED := false; 3
for W := 1 to 3 do >

COMMITTEE_QUERY.ATTRIBUTES.ATTR OPERATION([W] := 3

1] 1. W

end; (LOAD_COMMITTEE_QUERY } RS

EEEEES.

b
b

'.“:}’f" -

-
-
’0

e ; -

-

VL utd ave 2V8 2%% 492 0 2 V2", .0 U g Vo8 o3 Vel VB Nal vad wal ¥ RIS Ny 0 85084, 8" B PR YA ‘A

procedure LOAD EMPLOYEE QUERY;
var
W: integer:
begin ({ LOAD EMPLOYEE QUERY }
EMPLOYEE _QUERY. OBJECT INFO.OBJECT NAINE :=
EMPLOYEE.NAME;
EMPLOYEE_QUERY OBJECT_INF0.0BJECT_INST 1=
EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME[l] :=
EMPLOYEE. ATTRIBUTES[1]:
EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME[2]
EMPLOYEE. ATTRIBUTES(2]:
EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME([3] :=
EMPLOYEE. ATTRIBUTES[3];
EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME(4] :=
EMPLOYEE.ATTRIBUTES([4];
EMPLOYEE QUERY.IS QUERIED := false;
for W := 1 to 4 do
EMPLOYEE QUERY.ATTRIBUTES.ATTR OPERATION[W] :=
1 .

end; { LOAD EMPLOYEE QUERY }

begin { LOAD_WINDOWS WITH OBJECTS }

LOAD_STUDENT QUERY;
LOAD EMPLOYEE _QUERY;
LOAD FACULTY QUERY,
LOAD COMMITTEE _QUERY;

end; { LOAD_WINDOWS WITH OBJECTS)

procedure DISPLAY QUERY OPTIONS;

{ Screen Display that allows you to exit the query
process or choose various query windows to be
selected, nested, or joined }

var
SUBSCRIPT, COUNT, V: integer;
Q, OPTION: char:
P: PARTIAL QUERY;
S_INST, C_INST, E_INST, F_INST: boolean;

132

S Ra At Na St At At S A

R T T N O R I LN ORI D A DN T A R AN VL U LR OO Y I TN T MU X UWUWOPORT PV
a:' .

ot

n

K2 procedure CLEAR (INST:boolean);

. { Just blank Screen of old information }

i begin { CLEAR)}

! if INST then begin

writeln; writeln;

- write ('REVIEW YOUR QUERY AND HIT ENTER':50):
N ' readln (Q):

g clrscr;
W end; { INST)
N . writeln;

end; { CLEAR }

Y, procedure DISPLAY OBJECT INSTRUCTIONS(INST:BOOLEAN;
[D:PARTIAL QUERY);
& begin { DISPLAY OBJECT INSTRUCTIONS)}

{ You may select special instructions '*' to select
" all attributes or 'COUNT(*)' to count all rows of

? object that meets specified conditions }

4

[}

5 if not INST then

N writeln('*':24)

@ else

% begin

: writeln (D.OBJECT_ INFO.OBJECT INST:22,

B vk

R writeln (FSQL,

R D.OBJECT INFO.OBJECT INST:22, ' *');
end;

Dn end; { DISPLAY OBJECT_INSTRUCTIONS }

)

? procedure DISPLAY ATTRIBUTE OPERATIONS(INST:BOOLEAN;

A D: PARTIAL QUERY);
begin { DISPLAY ATTRIBUTE OPERATIONS)}

K ({ Operations on attributes such as >, <>, =, >=, <=
- will be displayed to user after they are typed in)
: COUNT := COUNT + 1;
v if not INST then
4 writeln('*':24)
X else
- begin
-, writeln
3 (D.ATTRIBUTES.ATTR_OPERATION[COUNT]:16,
X '%1':8);
: writeln (FSQL,
Y : D.ATTRIBUTES.ATTR_OPERATION[COUNT]:16,
b '*':8);
z- end;
4 end:; { DISPLAY ATTRIBUTE OPERATIONS)}
®
133

------------------ " . LR L R I T e T T A T T L A R A TN
X - : T . . '_- -» .f'_ SN _-‘J.'_‘. < _,.‘..-_ .‘.\.J‘ '.J‘.:.“_.-f'.: ‘“‘. R .‘-‘ ~,~ ,‘ J' - o> ‘- l ‘~. \'

Nl

{ The blank Query window is initially displayed
to the user. He is asked to input instructions
for objects and relational operations for
attributes. To skip Object Instructions or an

Attribute, hit enter.)}
procedure DISPLAY STUDENT;
begin { DISPLAY STUDENT)

COUNT := 0;
if S_INST then
begin
STUDENT_QUERY := P;
writeln (FSQL,

writeln(FSQL,
end:;

write('*':10,
writeln(' QUERY ',
if S_INST then
write (FSQL,
T%1:10,

'*1:10);

write ('*':10,

'%1:10);

STUDENT_ QUERY) ;
if S _INST then
write (FSQL,
'x1:10,

'%1:20)7;

Vddkkdddkhhhkkddikkdhkikkihkikiikk
**************************5:60);
write (FSQL,'*':10,

STUDENT_ QUERY.OBJECT_INFO.OBJECT_NAME:25) ;
writeln(FSQL,' QUERY ', '*':18);

¥ d sk e de K ke d de e de d do de ek Kk e de ok Kk ke de ke kK
**************************':60);

writeln('*%kkkkdkkhkkhkhkkhhhkhihhkn
dkhkkkkkhkkkkhkkkkkkkkkkkkxk!:60) ;

STUDENT QUERY.OBJECT_INFO.OBJECT NAME:25) ;

'x1:18);

Writeln('*xdkkddkdkddkhhhhhhhkhhkhdkhhk
hhhkhhhhhkhkkhhkdkkkkkkkkkxkxx!:60) ;

STUDENT_ QUERY.OBJECT INFO.OBJECT NAME:16,

STUDENT QUERY.OBJECT INFO.OBJECT_NAME:16,

DISPLAY OBJECT_INSTRUCTIONS(S_INST,

STUDENT_ QUERY.ATTRIBUTES.ATTR_NAME([1]:6,

134

I

-

-

TR

B A M P TN AR N IR
I v.l’u\ TR M, .9. N AR Al

Ng Vbt 6 0T g gttty

R RTCR NT TA

.

P T T T R P P R P L LR N T U TR S N R TR DV U SR WAL PO RO TOF "ON WO PO PORTTON 7 U AN I “Bal

write ('*':10,
STUDENT_QUERY.ATTRIBUTES.ATTR _NAME(1]:6,
1%1:20);

DISPLAY ATTRIBUTE_OPERATIONS(S_INST,
STUDENT_QUERY) :

if S_INST then

write (FSQL,

'%1:10,

STUDENT_ QUERY.ATTRIBUTES.ATTR_NAME[2]:7,
'*1:19);

write ('*':10,

STUDENT_ QUERY.ATTRIBUTES.ATTR NAME(2]:7,
tx1:19);

DISPLAY ATTRIBUTE_OPERATIONS(S_INST,
STUDENT_QUERY)

if S_INST then

write (FSQL,

'*1':10,

STUDENT_ QUERY.ATTRIBUTES.ATTR_NAME([3]:9,
Yk1:17);

write ('*':10,
STUDENT_ QUERY.ATTRIBUTES.ATTR NAME[3]:9,
1%1:17);

DISPLAY ATTRIBUTE OPERATIONS(S_INST,
STUDENT QUERY);

if S_INST then

write (FSQL,

'%¥':10,

STUDENT_ QUERY.ATTRIBUTES.ATTR _NAME([4]:6,
'*':20);

write ('*':10,
STUDENT QUERY.ATTRIBUTES.ATTR NAME[4]:6,
T#':20);

DISPLAY ATTRIBUTE OPERATIONS(S INST,
STUDENT_QUERY)

if S_INST then
write (FSQL,

'#1':10,
STUDENT_QUERY.ATTRIBUTES.ATTR_NAME[5]:5,
Tk1:21);
135
A NI NSO R AN Ny N e e gl e e

T
) ;

s N2t B a8 R8s £ @4 A% A% BIntals
VTR RN RI AL R LR AL AR SaReat ol vap B LR VIR Y 0 e e et e NNURVY U VUND YOV WU WOWCSANRUY (N TN TR s) Y Yg

write ('*':10,
STUDENT_QUERY.ATTRIBUTES.ATTR_NAME[S]:5, :
t1:21); y

DISPLAY ATTRIBUTE OPERATION3(S_INST,
STUDENT QUERY) ;

if S_INST then

write (FSQL,

t*v:10,
STUDENT_QUERY.ATTRIBUTES.ATTR_NAME(6]:7,
tx1:19);

write ('*':10,]
STUDENT_QUERY.ATTRIBUTES.ATTR_NAME[6]:7, :

'x1:19); "

DISPLAY ATTRIBUTE OPERATIONS(S INST, J
STUDENT QUERY) ;

if S_INST then h

begin !

writeln(FSQL, 3

Thkdhhhhkhhhhkhkhdkkhkkrkhkhkhkhk
khdekhhhhkhhhhhdehhhkdekhddkhd! H 60) H
writeln(FsSQL) x
end; '
Writeln('*kkxkkkdkdkddhdhhdhdhkhihkhkir)
khkkkdkkkhhhkhkkhkhhkhkekkk':60) ;

if S_INST then begin
SUBSCRIPT := SUBSCRIPT + 1; g
QUERY[SUBSCRIPT] := STUDENT QUERY; h
QUERY [SUBSCRIPT].IS QUERIED := true; . ﬁ
end; (if S _INST)

CLEAR (S_INST); -
P := STUDENT QUERY; :

end; {(DISPLAY STUDENT)} F

procedure DISPLAY EMPLOYEE; .
begin { DISPLAY EMPLOYEE) PN
COUNT := 0; :
if E_INST then
begin
EMPLOYEE QUERY := P;
writeln(FSQL,
¥ e Jde e de e de de Fe e Je e ok ek ok de ke e de ok dok ke ok
deddddhhkhkdhhhkhhhkkhhdhkhhkkih! :60) H
write (FSQL,
'%':10,
EMPLOYEE QUERY.OBJECT_ INFO.OBJECT NAME:25) ;
writeln(FSQL,
' QUERY ', '*':18);

-

o
4
<
\
R

\J
N
)
X
\J
G
J

136

R e e p e P T .~ ,
D g el Lo 2L D P sole £ i KALC 7 oo £ LN A I e A N2 R A 2 R SN L I N LA

AP A I W T P UNLY Y R AR AR T TR T WU YU U WU - Gat ¥, -" ya' be ¥ p ada" 02" v ya » 0 0 T gt » ¥ ¥ MW ga® gl gad B gat R “Sa® S

By writel:i{ FSQL,

Ry Vhhkkhhdkhhhhhhhhdkhhddhhhkkk

W Kdkkkhkdkkdhkkkkkkkkkkhkkkkkkx!360) ;

$ end;

kS Writeln ('*hkkksrkkihkhhhhnk bk akkhn

1 Rl hhihkdkhkhhkdhddkkddkhdkdh! ;60) H

N) write ('*':10,

Q EMPLOYEE QUERY.OBJECT_ INFO.OBJECT_NAME:25):;
™ writeln(' QUERY ','*':18);

" : Writeln('#*xkkkkkkkkhhkkkkkhkkhhhkx

khkkkkdkhhkkhhkkhhkkkhkkhhkkkhkkk':60) ;

if E_INST then

i write (FSQL,

o 1%1:10,

K™, EMPLOYEE QUERY.OBJECT INFO.OBJECT_ NAME:1l6,
'*':10);

write ('*':10,

;@ EMPLOYEE QUERY.OBJECT INFO.OBJECT NAME:16,
K} '%1:10);

K)

® DISPLAY OBJECT INSTRUCTIONS(E_INST,

s EMPLOYEE QUERY) ;

3

O

2 if E_INST then

b write (FSQL,

i , '%1:10,

: EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME[1]):7,
K t%1':19);

?‘ write ('*':10,

O EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME[1]:7,
['*':19);

L DISPLAY ATTRIBUTE OPERATIONS(E_INST,

A EMPLOYEE QUERY) ;

W

e

if E_INST then
write (FSQL,

® '%1:10),
. EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME[2]:5,
e Yh':21);
.
-,
1 write ('*':10,
" EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME[2]:5,
® 'k1:21);
'
W DISPLAY ATTRIBUTE_OPERATIONS(E_INST,
e EMPLOYEE QUERY) :
)
' ¥
®
5
e
N 137
N
°
"
5

[

N " o % g L) ' ‘v‘,-f.‘-f" .-\ I~f~ " .

- - A : i L S SO S
K J"'-l M) .0". .A‘.J ‘l.. ey A.|l,u c.O- LRUNN 2 O 2 » Y “ BTN .% .' "‘ P" > A s

St WA Lty atas afl ol

if E_INST then
write (FSQL,

'%*':10,
EMPLOYEE QUERY.ATTRIBUTES.ATTR_NAME(3]:6,
"*k13:20);

write ('*':10,

EMPLOYEE QUERY.ATTRIBUTES.ATTR_NAME([3]:6,

'%1':20);

DISPLAY ATTRIBUTE OPERATIONS(E_INST,
EMPLOYEE QUERY) ;

if E INST then

write(FSQL,

'*1':10,

EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME(4]:9,

tx':17);

write ('*':10,
EMPLOYEE QUERY.ATTRIBUTES.ATTR NAME([4]:9,
'%1:17);

DISPLAY ATTRIBUTE_OPERATIONS(E_INST,
EMPLOYEE QUERY) ;
if E_INST then
begin
writeln(FSQL,
¥ de e Je o 7 K Jo K de e de ke K de ok de K de K de e de ke de ke ke ke
Rhkkhkkhkhkhhkhhkdkhhhhhkkhkddkd! :60) H
writeln(FSQL) ;
end;
writeln(thhkhdkhhdhohkkhkhkkkddhhkddkkkdhikkk
kkdkdkkhkkkkkkkkkkhkhkhkkkkkx):60) ;

if E_INST then begin

SUBSCRIPT := SUBSCRIPT + 1:
QUERY[SUBSCRIPT] := EMPLOYEE QUERY;
QUERY[SUBSCRIPT].IS QUERIED := true;
end; ({ if E_INST)

CLEAR (E_INST):;
P := EMPLOYEE QUERY;

end; (DISPLAY EMPLOYEE)

procedure DISPLAY FACULTY:;

begin { DISPLAY FACULTY)
COUNT := 0;

if F_INST then

begin
FACULTY QUERY := P;
writeln(FSQL,

Cati M BV ARER S 0 Sol Sal ¢ud Saf <u8 gl

¥ % % % % J Je % J Je K kK Kk Kk Kk kk ok ok kkk k%
***************************':60);

write (FSQL, '*':10,

FACULTY_QUERY.OBJECT_INFO.OBJECT NAME:25);

rryey b Y / COMNT

Wdh A e (W SRS A

' QUERY ','*':18);
writeln(FSQL,

Thkhkhkhkhkhkkkkhkhkhkhkhdkhkhkkbhkhhkhrkhx
************************':60);
end;
writeln('*************************
**************************':60);
write ('#*':10,
FACULTY_QUERY.OBJECT INFO. OBJECT_NAME:25) ;
writeln(' QUERY 1,'%1:18);
wrlteln('************************
***************************':60);

if F_INST then
write (FSQL,
l*l.lo
FACULTY _QUERY.OBJECT_INFO.OBJECT NAME:16,
l*l.lo)
write ('*':10,
FACULTY QUERY.OBJECT_INFO.OBJECT NAME:16,

'*"10)
DISPLAY OBJECT_ INSTRUCTIONS (F_INST,
" FACULTY QUERY) ;

if F _INST then
write (FsSQL,
l*l.lo
FACULTY _QUERY.ATTRIBUTES.ATTR __NAME(1]:7,
l*l.lg)'
write ('*':10,
FACULTY_QUERY.ATTRIBUTES.ATTR NAME([1]:7,
'*"19)
DISPLAY ATTRIBUTE_OPERATIONS(F_INST,
FACULTY _QUERY) ;

if F INST then
write (FSQL,
l*lulo
FACULTY _QUERY.ATTRIBUTES.ATTR NAME([2]:5,
|*l.21)’
write ('#*':10,
FACULTY_QUERY.ATTRIBUTES.ATTR __NAME([2]:5,
l*l.zl)'
DISPLAY ATTRIBUTE _OPERATIONS(F_INST,
FACULTY _QUERY) ;

if F INST then
write (FSQL,
txt:10,
FACULTY*QUERY.ATTRIBUTES.ATTR_NAME[3]:10,

i

s RMLALLAAN]

-
-

129

o XTXLLXL]e

o LR

o VoAt O AR . Vi e N Wy
it e let e .oc.o LAY g"‘. B0 .o".! o l.' a! :0 o .i b‘-"-‘ Lo AL BN AAN A DN LR RN X

T N I R T R O T O I N R TR R T O R T R U AT R R T R AR PRI NN K NN T A a s o " a7 gy " a” w®

A

®

W

Py T%1':16) ;

" write ('*':10,

jg FACULTY QUERY.ATTRIBUTES.ATTR NAME([3]:10,

;t‘ '%':16) ;

- DISPLAY ATTRIBUTE OPERATIONS(F_INST,

o FACULTY QUERY);

! if F_INST then

ﬁ. begin

2 writeln(FSQL,

24 Pohdkdhdhhhdhhdhhkhdhhhkhhdddhdhddi

. kkkkhkkkkikkhkhkkhrkkhkkkkkkk':60) ;

o writeln(FSQL);

5 end;

i, Writeln('*axkkkkhkhdkrkhhhhhrhrkhdhk

B kkdkkkkhkkkrkkkkkkkkkrkkkkkk!:60) ;

™~ writeln;

o if F_INST then begin

m SUBSCRIPT := SUBSCRIPT + 1;

ot QUERY [SUBSCRIPT] := FACULTY QUERY;

W QUERY [SUBSCRIPT].IS_QUERIED := true;

X end; (if F_INST)

®

' CLEAR(F_INST) ;

» P := FACULTY QUERY;

Q end; (DISPLAY FACULTY)

R procedure DISPLAY COMMITTEE; -
begin { DISPLAY COMMITTEE }

% COUNT := 0;

2 if C_INST then

3 begin

? COMMITTEE QUERY := P;

. writeln(FSQL,

dkhkkdehhhhkhkhkdhkhkkhdhkkdkkkhkkkk

.ﬁ ***************************':60);

| write (FSQL,

ity T%':10,

{ COMMITTEE QUERY.OBJECT INFO.OBJECT NAME:25) ;

N writeln(FSQL,

o ' QUERY ', '*':18);

> writeln(FSQL,

h Vddkdhdhhdhhhhdkdhdhddkdkkdikdkkikkkdk

ﬁ kdkekkkkhkkkhkkkkhkkkkkkkkk®!:60) ;

L end;

'ﬂ writeln('*************************

; **************************':60);

1 write ('*':10,

] COMMITTEE QUERY.OBJECT INFO.OBJECT_NAME:25) ;

writeln(' QUERY !','*':18);

Writeln('**k&kkkkkdkhkdkdkkhkhkhknk
**************************':60);

-
=

140

-
o~ ‘-

s=>]

"

if C_INST then
write (FSQL,
'*':10,
COMMITTEE QUERY.OBJECT INFO.OBJECT NAME:16,
1%1:10);
write ('*':10,
COMMITTEE QUERY.OBJECT INFO.OBJECT NAME:16,
'x1':10)
DISPLAY OBJECT_INSTRUCTICNS(C INST,
COMMITTEE _QUERY) ;
if C_INST then
write (FSQL,
'%1:10),
COMMITTEE_QUERY.ATTRIBUTES.ATTR NAME[1]:7,
'x1:19);
write ('*':10,
COMMITTEE_QUERY.ATTRIBUTES.ATTR NAME(1]:7,
tx1:19);

DISPLAY ATTRIBUTE_OPERATIONS(C_INST,
COMMITTEE _QUERY) ;
if C_INST then
write (FSQL,
'*':10,
COMMITTEE_QUERY.ATTRIBUTES.ATTR NAME([2]:9,
'x1:17);
write ('*':1¢C,
COMMITTEE_QUERY.ATTRIBUTES.ATTR_NAME[2]:9,
'*1:17);
DISPLAY ATTRIBUTE_OPERATIONS(C INST,
COMMITTEE_ QUERY) ;
if C_INST then
write (FSQL,
'*1':10,
COMMITTEE QUERY.ATTRIBUTES.ATTR NAME[3]:9,
'x1:17);
write ('*':10,
COMMITTEE_QUERY.ATTRIBUTES.ATTR NAME[3]:9,
l*!.17),
DISPLAY ATTRIBUTE OPERATIONS(C_INST,
COMMITTEE _QUERY)
if C_INST then
begin
writeln(FSQL,
¥ ode e gk ke de e K ke de ke ko ke de K ke ok Kk hok ok

khkkkdkkhhkkhhhkkkkhkkkkkkkxx!:60) ;
writeln(FSQL) ;

end;
writeln('**kdkkkhkkhkhhkhkhkhkhkkhhdkhk

**************************':60);
writeln;

.

- " . v
.l‘\l‘s' Qo T S N X)

-v-J‘wi

-
K “I AL S AL e 0w

0 g3, g8, 2% a0, 0ab YAt et aR S0 8.2 4.0 22000 2% 22 A AN AR A AL LAY AR A S A Sal R S el AtV VA R0 d ot paV a0 MBS He S A) MR SRl AN N, L S Sl P

B if C_INST then begin

% SUBSCRIPT := SUBSCRIPT + 1;

% QUERY [SUBSCRIPT) := COMMITTEE QUERY;
5 QUERY [SUBSCRIPT].IS QUERIED := true;
i end; { 1f C_INST }

A CLEAR(C_INST) ;

0 P := COMMITTEE QUERY;

i end; { DISPLAY COMMITTEE)
)

procedure GET_INSTRUCTIONS (Var P: PARTIAL_QUERY) ;
. var
' w: integer:
o begin { GET_INSTRUCTIONS)
" write ('INPUT INSTRUCTIONS FOR OBJECT ')

write (P.OBJECT_INFO.OBJECT NAME, ': ")

. readln (P. OBJECT INFO.OBJECT INST),
(X for w := 1 to 3 do begin
;‘ write ('INPUT INSTRUCTIONS FOR ATTRIBUTE ‘!,
! P.ATTRIBUTES.ATTR NAME(w], ': ');
W readln (P.ATTRIBUTES.ATTR OPERATION[w]) ;
e end; { for w := 1 to 3 }
3
)

) if (P.OBJECT_INFO.OBJECT_NAME
[(P.OBJECT_ INFO.OBJECT _NAME
begin
write ('INPUT INSTRUCTIONS FOR ATTRIBUTE '
P.ATTRIBUTES.ATTR_NAME[{4], ': '):
{ readln (P.ATTRIBUTES.ATTR OPERATION[4])
' end; { P NAME = 'EMPLOYEE or STUDENT' }

'EMPLOYEE') or
'STUDENT') then

!

if (P.OBJECT_INF0.0BJECT_NAME = !'STUDENT') then
begin
write ('INPUT INSTRUCTIONS FOR ATTRIBUTE ‘'
P.ATTRIBUTES.ATTR NAME([{S5], ': ');
readln (P.ATTRIBUTES.ATTR _OPERATION([5]);
write ('INPUT INSTRUCTIONS FOR ATTRIBUTE
P.ATTRIBUTES.ATTR NAME[6], ': ')
readln (P.ATTRIBUTES.ATTR_OPERATION[6]);
if P.ATTRIBUTES.ATTR _ OPERATION([6] <> '!' then
MAJOR := true;
A end; (P = STUDENT_ QUERY)

-
\
w e w

’

PRI W

’

"

if (P. OBJECT_INFO.OBJECT NAME = 'COMMITTEE') then
if P.ATTRIBUTES.ATTR OPERATION[z] <> '' then
MEMBERS := true:;
if (P.OBJECT_INF0.0BJECT_NAME = 'FACULTY') then
if P.ATTRIBUTES.ATTR_OPERATION[3] <> '' then
WORKSFOR := true;

P)
LA N@ ™ w

.

. o A
-

142

- -

AN @ EET T T

;-
A
4
o
<
3
”
4,
/4
A
]
<
3
?
>
2
£
7]
‘l
«
1 3
%,
-
¥
)
.
Ny
‘
-

)

if (P.OBJECT_INFO.OBJECT NAME = 'EMPLOYEE') then

begin
if P.ATTRIBUTES.ATTR_UPERATION[{3] <> '' then
DEPT := true;
if P.ATTRIBUTES.ATTR OPERATION([4] <> '' then
JOBTYPE := true;
end;
clrscr;

end; { GET_ INSTRUCTIONS }

procedure SHOW_USER HIS ENTRY;
begin { SHOW_USER_HIS ENTRY)
case OPTION of
's','S': begin

S_INST := true;
STUDENT QUERY.IS QUERIED :=
true;

DISPLAY STUDENT;
S_INST := false;
end;
'e','E': begin
E_INST := true;
EMPLOYEE QUERY.IS_ QUERIED
true;
DISPLAY EMPLOYEE;
E_INST := false;
end;
'f','F': begin
F_INST := true;
FACULTY_ QUERY.IS QUERIED :=
true;
DISPLAY_ FACULTY;
F_INST := false;

end;
'c','C': begin
C_INST := true;
COMMITTEE QUERY.IS QUERIED :=
true;
DISPLAY COMMITTEE:
C_INST := false;
end;

end; { case OPTION of }

end; (SHOW USER_HIS ENTRY)

143

- - - - P I VU R M m FR S - RN SRS S e .
A N N S L ST AT AR RS (T CR CRAS R A T AT T T T e T e

s -

o\

=%

- o

‘o

CRRAR

.-J-".

SO LAY

PR =l

e

P T
s R ¥ e 98

s e @]
?x-

begin { DISPLAY_ QUERY_OPTIONS }
SUBSCRIPT := O;
S_INST := false; E_INST := false;
F_INST := false; C_INST := false;
clrscr:

for V := 1 to 5 do writeln:;
while (OPTION <> 'Q') and (OPTION <> 'q') do

begin

writeln ('ENTER "S" FOR STUDENT QUERY':51);
writeln:;
writeln ('ENTER "E" FOR EMPLOYEE QUERY':52);
writeln;
writeln ('ENTER "F" FOR FACULTY QUERY':51);
writeln;

" writeln ('ENTER "C" FOR COMMITTEE QUERY':53):;
writeln;
writeln ('ENTER "Q" TO QUIT SELECTION':51);
writeln;

write (' ':31);
readln (OPTION) ;
writeln;
clrscr;

case OPTION of
's!,'S': DISPLAY STUDENT;

'e','E': DISPLAY EMPLOYEE;
'£','F': DISPLAY FACULTY;
'c','C': DISPLAY COMMITTEE;

end; {(case OPTION of)

if (OPTION <> 'Q') and (OPTION <> 'g') then
begin

GET_INSTRUCTIONS (P) ;

SHOW USER_HIS_ ENTRY;
end; {(if OPTION)

for V := 1 to 5 do writeln;

end; { while OPTION <> 'q' and 'Q' }

end; { DISPLAY QUERY OPTIONS)}

procedure HOW MANY PARTIAL QUERIES(Var PARTIALS:
- - - integer) ;
begin { HOW_MANY PARTIAL QUERIES)}
PARTIALS := 0;
while QUERY[PARTIALS + 1].IS5 QUERIED do
PARTIALS := PARTIALS + 1;
end; { HOW_MANY PARTIAL QUERIES)}

144

\'-'.“)'-. M*\"‘ :,f\q""i"f}" :.,_"4’- .',(,' . -"-‘(NJ\-* *- ¢"-Jf\ "-'\1.“‘\% 'i*\"-’v_\v'\.r V‘i“f‘.‘-‘fv*w‘\ ‘J‘ J“J“I‘.’J'
A " n P M (o x

.aH

function MORE_THAN ONE_OBJECT_USED_IN_QUERY: boolean;

var
i: integer:
begin { MORE_THAN ONE OBJECT USED_ IN QUERY)}
i := 0;
while QUERY[i + 11.IS CQUERIZID 4o
i:=1i+ 1;
MORE_THAN CNE OBJECT USED_IN QUERY := (1 < i)
end; { MORE THAN ONE OBJECT USED IN QUERY)}

procedure SELECT(k: integer):
{ Analogous to Relational SELECT
Substituted for Object .P }

begin { SELECT)
ERSQL[k] := 'SELECT ';
end; { SELECT)

procedure FROM(Jj,k: integer):
{ Analgous to Relational FROM - Object Name)
G begin { FROM }

ERSQL[k] := 'FROM ' +
QUERY[J].OBJECT INFO.OBJECT NAME;
end; { FROM)

procedure JOIN_ OBJECTS;

{ Unless * is used for attribute name, the selection
of more than one object window impliritly specifies
a join of Tables }

.5 - begin { JOIN)}

~ case NO_PARTIAL QUERIES IN_QUERY of

. 2: ERSQL[2] := ERSQL[2] + ', ' +
QUERY[2].0BJECT INFO.OBJECT_NAME;

) 3: ERSQL[2] := ERSQL[2] + ', ' +

A QUERY[2] .0OBJECT INFO.OBJECT NAME

. + ', ' + QUERY[3].0BJECT INFO.OBJECT NAME;

o 4: ERSQL[2] := ERSQL[2] + ', ' +

. QUERY[2] .OBJECT INFO.OBJECT NAME

o + ', ' + QUERY[3].0BJECT INFO.OBJECT NAME

. + ', ' + QUERY[4].0BJECT INFO.OBJECT NAME;

" end; { case NUM_PARTIAL QUERIES IN QUERY of)

; JOIN := true;

> end; { JOIN)

" function INSTRUCTIONS ON OBJECT NAME(i:integer) :boolean;
‘. begin { INSTRUCTIONS ON OBJECT_NAME)}

5 INSTRUCTIONS ON OBJECT NAME :=

o ' ' <> QUERY[i]. OBJECT INFO.OBJECT INST[1]:

° end; { INSTRUCTIONS_ON_OBJECT_NAME }

145

SN UY UW VWU AN

procedure OBJ OPERATIONS(i: integer):

begin { OBJ_OPERATIONS }
- if (ERSQL[1l] = 'SELECT ') and
: (QUERY[i].OBJECT_INFO.OBJECT INST = '*') then
ERSQL[1] := ERSQL[1] +
QUERY[i].OBJECT INFO.OBJECT NAME + '.' + '*!)

! else if (ERSQL[1] <> 'SELECT ') and

) (QUERY[1i].0BJECT_INFO.OBJECT_INST = '*') then

ERSQL[1] := ERSQL{1l] + ', ' +)

QUERY[i] .OBJECT_INFO.OBJECT NAME + '.!' + '*!

else if (ERSQL(1l] = 'SELECT ') and

(QUERY(i].OBJECT_INFO.OBJECT_ INST = 'COUNT')
; then ERSQL({1] := ERSQL[1] + 'COUNT(*)'
| else if (ERSQL[l] <> 'SELECT ') and
! (QUERY[i].OBJECT_INFO.OBJECT INST = 'COUNT')
! then ERSQL[1] := ERSQL[1] + ', ' + 'COUNT(*)';

end; { OBJ_OPERATIONS }

i function EXECUTE AND DECODE(i: integer): boolean;
- { Global counter X is used to step through all of

¢ the attributes until the query window is decoded
! and translated to ERSQL }

i begin { EXECUTE_AND DECODE)}

) if QUERY[i]. OBJECT INFO. OBJECT_NAME = 'STUDENT'

_ then EXECUTE_AND DECODE := (X< 7)
! else if QUERY[i]. OBJECT INFO.OBJECT NAME =
'EMPLOYEE' then

‘ EXECUTE_AND DECODE := (X < 5)
3 else EXECUTE AND DECODE := (X < 4);
‘ end; { EXECUTE_AND DECODE }

function ASTERISK_FOR_ATTRIBUTE NAME(i:integer):
) boolean;
{ Selection of * attribute indicated a nested query)
begin { ASTERISK_FOR_ATTRIBUTE_NAME)}
ASTERISK FOR _ ATTRIBUTE _NAME :=
QUERY[l] ATTRIBUTES. ATTR_NAME[X] = '*';
end; { ASTERISK_FOR_ATTRIBUTE NAME)}

function EXISTENTIAL QUANTIFIER(i: integer): boolean;
{ Used with nested queries)

. begin { EXISTENTIAL QUANTIFIER }

EXISTENTIAL QUANTIFIER :=

(QUERY[i] .ATTRIBUTES.ATTR _OPERATION[X] = 'EXISTS')

or (QUERY[i].ATTRIBUTES.ATTR OPERATION(X] =

'NOT EXISTS'):
. end; { EXISTENTIAL QUANTIFIER)}
4
146

MRE A G

LA LAMYSY S AW . "

..... A ;oo ;o e D S S T R N Y RSP
e \ .J." w." "-\." - "- \"-. AT T x'-". N wie R ~n \\' R R A AR R

W et e R e TN ‘-' RSP LRSSy,) N AT
o) £y 3 -

R R TI AT OT R T T W W T WUNU YUWC FU WL PO WU WU YU TR T v 0a'agat bl a#aata a iy oty

function DOT_P ON ATTRIBUTE(i:integer) :boolean:;
{ Indicates pr1nt or .P = SELECT attribute }
var
TEMP: string[30]:
begin { DOT_P_ON_ATTRIBUTE }
TEMP := '!';
TEMP := QUERY[1].ATTRIBUTES.ATTR OPERATION[X],
DOT P _ON_ATTRIBUTE := ((TEMP[{1l] = '.') and
(TEMP[2] = 'P'));
end; { DOT_P_ON_ATTRIBUTE)}

procedure RETRIEVE SELECT(i: integer);
{ Checks to see what is selected)
procedure CHECK OPS (i: integer; COMPARE: NAME) ;
{ Allows attribute with mathematical operation
to selected DISTINCT, COUNT, or other
AGGREGATE Ops)}
begin { CHECK OPS }

if (COMPARE[1] in ['+', '=', '#', '/']) then
ERSQL{1] := ERSQL[1] +
QUERY [i].ATTRIBUTES.ATTR NAME[X]
+ COMPARE
else if COMPARE = '!' then

ERSQL[1] := ERSQL[{1] +
QUERY[i].ATTRIBUTES.ATTR NAME[X]
else if COMPARE = 'DISTINCT' then
ERSQL{1] := ERSQL[1] + 'DISTINCT '
+ QUERY[i].ATTRIBUTES.ATTR_NAME[X]
else if COMPARE = 'COUNT' then
ERSQL[1] := ERSQL[1] + 'COUNT('
+ QUERY[1i].ATTRIBUTES.ATTR NAME[X]
+ 1o
else if COMPARE = 'SUM' then
ERSQL{1] := ERSQL[1] + 'SUM('
+ QUERY[i].ATTRIBUTES.ATTR NAME[X]
+ 1)
else if COMPARE = 'AVG!' then
ERSQL[1] := ERSQL[1] + 'AVG('
+ QUERY[i}.ATTRIBUTES.ATTR_NAME[X}
+ "t
else if COMPARE = 'MAX' then
ERSQL[1] := ERSQL[1] + 'MAX('
+ QUERY[i].ATTRIBUTES.ATTR NAME[X]
+ l)l
else if COMPARE = 'MIN' then
ERSQL[1] := ERSQL[1] + 'MIN('
+ QUERY (1] .ATTRIBUTES.ATTR NAME[X]
+ l)l;
end; { CHECK OPS }

147

vt e ot an e e e an
o NS f.-"'".r"r"f"."f‘.:ff\

J-.r.»"

"v.’&\‘\-\\

s al g

Jataiatain’ath ald 2" D 2 R0 e SRR PR N 8,0 %l faf *ad ‘gt vab “ab " at."gt."ata 1% A e NV 302’0 b a2 e tin s 8t ' 000 V0. 0's.0

var ¢
COMPARE: NAME;

begin { RETRIEVE_SELECT } {
COMPARE := '';
COMPARE := - !
copy (QUERY[1].ATTRIBUTES.ATTR OPERATION([X],4,27);)
if (MORE _THAN) or
(INSTRUCTIONS _ON_OBJECT _NAME(i)) then
begin { if MORE THAN } 1
ERSQL[1] := ERSQL{1l] + ', ';)
CHECK OPS (i, COMPARE) ; ’
end { if MORE_THAN))
else if not MORE_THAN then
begin { if not MORE THAN)}
CHECK OPS (1, COMPARE) ;
end; { if not MORE _THAN) -
MORE _THAN := true; X := X + 1; 3
end; { REIRIEVE SELECT }]

function NO_INSTRUCTIONS(i: integer): boolean; !
begin { NO_INSTRUCTIONS }
NO_INSTRUCTIONS =
QUERY([1i].ATTRIBUTES.ATTR_OPERATION[X] = '';]
end; { NO_INSTRUCTIONS)} 9

procedure NO OP(i: integer);
begin { NO OP }
{ DOES NOTHING BUT IS USED TO ILLUSTRATE THE MAIN)} . '
{ LOOP'S ALGORITHM FOR DECODING THE OBJECT QUERY } v

X 1= X + 1; "
end; { NO_OP } \
1
function INSTRUCTIONS_ON_ATTRIBUTE(i: integer): boolean; (
begin { INSTRUCTIONS _ON_ATTRIBUTE) :
INSTRUCTIONS ON ATTRIBUTE := N
QUERY([i].ATTRIBUTES. ATTR_OPERATION([X] <> '!'; ®
end; { INSTRUCTIONS ON_ATTRIBUTE) x
procedure RELATIONAL OPERATORS:; .
var N
TEMP: string([30];
begin { RELATIONAL OPERATORS }
TEMP := QUERY[1].ATTRIBUTES.ATTR OPERATION(X];

148

B T e T T AT T AT A et e e s e e e T . -, AR S N RS CRE R WL A ORI,
N e Y N Y NN L e A T e, DA SN ST B e i R ALY

cr-v..A%..o Ry
- -

-
-

@ TN S

-

- o
B Je B Seb o J

e AL

-

Py, eq®,

';f.' .}.J_."..f,

iy 0 80 2 £ 2 AT €70 8% 8% 1% Bt AN ¥ A0a %l Ak ata VAt Fal tal Vaw da ks Ul il Sl Ga b a0 el Ba 0”0, *§ 07 8.0 AN W R SR RS VA VA oV oW oFh o) o ¥y

if TEMP({1] in ['>','<','='] then
begin { if TEMP{1])}
if (ERSQL[e+2] = SENTINEL) then
begin { ERSQL[e+2] = SENTINEL }
ERSQL[e+2] := 'WHERE ‘!

+ QUERY[i].ATTRIBUTES.ATTR_NAME[X]
+ ' ' + TEMP:;

end { ERSQL[e+2] = SENTINEL }

else
begin { ERSQL[e+2] <> SENTINEL }
ERSQL[e+3] := 'AND !
+ QUERY[i].ATTRIBUTES.ATTR_NAME[X]
+ ' ' + TEMP;
e :=¢e + 1;
end; { ERSQL[
end { if TEMP(1] }
else
begin { else }
if (ERSQL[e+2] = SENTINEL) then
begin { ERSQL[e+2] = SENTINEL }
ERSQL[e+2] := 'WHERE '
+ QUERY[i].ATTRIBUTES.ATTR_NAME[X]
+ ' SYNTAX ERROR W/REL OP':;
e 1= e + 3;
end { ERSQL[e+2] = SENTINEL)}
else
begin { ERSQL[e+2] }
ERSQL[e] := 'AND '
+ QUERY[i].ATTRIBUTES.ATTR_NAME[X]
+ ' SYNTAX ERROR W/REL OP';
e :1=e + 1;
end; { ERSQL[e+2] <> SENTINEL)
end; { else } X :=X + 1;
end; { RELATIONAL OPERATORS }

e+2] <> SENTINEL }

procedure SPECIAL OPS(i: integer);

begin { SPECIAL OPS)
e := 3;
ERSQL[2] := 'FROM ' +

QUERY[1].0BJECT INFO.OBJECT NAME;
if QUERY[i].ATTRIBUTES.ATTR OPERATION[X]
then ERSQL[e] := 'WHERE EXISTS';
if QUERY[1i].ATTRIBUTES. ATTR_OPERATION[X]
'NOT EXISTS' then
ERSQL[e] := 'WHERE NOT EXISTS':;
e 1= e + 1;
ERSQL[e] := '(SELECT *';
FROM(i,e+l); X := X + 1;
end; { SPECIAL OPS)}

'EXISTS!

149

D P T R T R TR TS I W R R T i SN S S N e L PO R RN T TR TR S
o 4 s v L ANy G, o s

var

begin

var

procedure ESQL VIEW;

i: integer:

LEFT_PAREN: boolean;

TEMP: string(50];

{ ESQL_VIEW }

i :=1;

LEFT_PAREN := false;

while ERSQL({i] <> SENTINEL do
begin { ERSQL{i] <> SENTINEL }

TEMP := ERSQL{i];
if (TEMP[1] = '(') then
LEFT PAREN := true;
if LEFT PAREN then
begin { LEFT PAREN }
if TEMP([1] = '(' then
ERSQL[i] := ' '
+ TEMP
else
ERSQL[i] := " ' + TEMP;
end; (LEFT_PAREN }
if (ERSQL[i+1) = SENTINEL) and
LEFT PAREN then
ERSQL([i] := ERSQL[i] + ')';
writeln(ERSQL[1]):
isx=14+1;

end; (ERSQL[i] <> SENTINEL)}
end; { ESQL_VIEW)}

procedure SQL VIEW;

r: char;
i: integer;
j: DEPT_SET;
k: JOBS:;

CONTINUE, DONE, SETTABLE1,
SETTABLE2, SETTABLE3, SETTABLE4: boolean;

procedure TRANS MAJOR(VAR CONTINUE, DONE, SETTABLE1l,

SETTABLE2,SETTABLE3, SETTABLE4:
boolean; VAR i:integer;
j: DEPT_SET; k:JOBS);

begin { TRAN MAJOR)}

if ERSQL[i] = 'WHERE MAJOR = "COMP.SCI."' then
SQL[{i] := 'WHERE IDNAME = "COMP.SCI."'
else if ERSQL[i] = 'WHERE MAJOR <> "COMP.SCI."'
then SQL[i] := 'WHERE DIDNAME <> "COMP.SCI."'
else if ERSQL[i] = 'AND MAJOR = "COMP.SCI."'
then SQL[i] := 'AND DIDNAME = "COMP.SCI."'
else if ERSQL[i] = 'AND MAJOR <> "COMP.SCI."!'
then SQL[i] := 'AND DIDNAME <> "COMP.SCI."'

150

P - . . ik ‘% [a5, N va &ia Bie &% 4508 Q0" Ty Y R RO
RN T TR T SN RN RN R AR AR AR AT R RA RN W R Y WU Ve Y <, . v] - 7

else if ERSQL[i] = 'WHERE MAJOR = "MATH"' then

SQL{i] := 'WHERE DIDNAME = "MATH"'

else if ERSQL{i] = 'WHERE MAJOR <> "MATH"' then
SQL[i] := 'WHERE DIDNAME <> "MATH"'

else if ERSQL[i] = 'AND MAJOR = "MATH"' then
SQL{i] := 'AND DIDNAME = "MATH"'

else if ERSQL[i] = 'AND MAJOR <> "MATH"' then
SQL{i] := 'AND DIDNAME <> "MATH"'

else if ERSQL{i] = 'WHERE MAJOR = "MUSIC"' then
SQL{i] := 'WHERE DIDNAME = "MUSIC"'

else if ERSQL[i] = 'WHERE MAJOR <> "MUSIC"' then
SQL[i] := 'WHERE DIDNAME <> "MUSIC"'

else if ERSQL[i] = 'AND MAJOR = "MUSIC"' then

» SQL{i] := 'AND DIDNAME = "MUSIC"!

: else if ERSQL[i] = 'AND MAJOR <> "MUSIC"' then {
SQL[i] := 'AND DIDNAME <> "MUSIC"' '
else if ERSQL[i] = 'WHERE MAJOR <> "PHYSICS"'
then SQL[i] := 'WHERE DIDNAME <> "PHYSICS"!'
else if ERSQL[i] = 'AND MAJOR = "PHYSICS"'
then SQL[i] := 'AND DIDNAME = "PHYSICS"' !
else if ERSQL[i] = 'AND MAJOR <> "PHYSICS"! ,
then SQL[i] := 'AND DIDNAME <> "PHYSICS"' ,
else if ERSQL[i] = 'WHERE MAJOR = "PHYSICS"!
then SQL[i] := 'WHERE DIDNAME = "PHYSICS":
else if ERSQL{i] = 'WHERE MAJOR <> "HISTORY"'

then SQL[i] := 'WHERE DIDNAME <> "HISTORY"'
else if ERSQL[i] = 'AND MAJOR = "HISTORY"'
then SQL[i] := 'AND DIDNAME = "HISTORY"'
else if ERSQL[i] = 'AND MAJOR <> "HISTORY"!
then SQL[i] := 'AND DIDNAME <> "HISTORY"'
else if ERSQL[i] = 'WHERE MAJOR = "HISTORY"'
then SQL[i] := 'WHERE DIDNAME = "HISTORY"' §
else CONTINUE := TRUE;

AL A 0 4

if (not SETTABLEl) and (not SETTABLE2) and
; (not SETTABLE3) and (not SETTABLE4) and
! (i = 2) then
begin { SETTABLE)} \
SQL[2] := ERSQL[2] + ', IDDEPT'; 3
SETTABLEl := true;
' end { SETTABLE) s
else if (not SETTABLEl) and (i > 2) then
begin (SETTABLE)}
SQL[2] := SQL[2] + ', IDDEPT'; ‘
SETTABLEl := true; J
end; { SETTABLE) ~
' if not CONTINUE then begin L
MAJOR := FALSE:;
DONE := true;
end; 3
end; { TRAN MAJOR } 3

151

CXa] @ S0 v

Lo G

J W Tad o lt‘
QST Lo XAt o ST L E a2 4 o

) LU W PR AT, WA N KR R $a 8%y

procedure TRANS DEPT (VAR CONTINUE, DONE, SETTABLE1l,
SETTABLE2, SETTABLE3,
SETTABLE4: boolean; VAR 1i:
integer; j: DEPT_SET; k:JOBS);
begin { TRANS DEPT }
if ERSQL{i] = 'WHERE DEPT = "COMP.SCI."' then
SQL{i] := 'WHERE DIDNAME = "COMP.SCI.™!
else 1f ERSQL{i]) = 'WHERE DEPT <> "COMP.SCI."!
then SQL[i] := 'WHERE DIDNAME <> '"COMP.SCI.™"!
else if ERSQL[i] = 'AND DEPT = "COMP.SCI."!
then SQL[i] := 'AND DIDNAME = "COMP.SCI."'
else if ERSQL[{i] = 'AND ZZPT <> "COMP.SCT.™!
then SQL[i] := 'AND DIDNAME <> "CCiiP.SCI."!
else if ERSQL[i] = 'WHERE DEPT = "MATH"' then
SQL[{i] := 'WHERE DIDNAME = "MATH"'
else if ERSQL[i] = 'WHERE DEPT <> "MATH"' then
SQL[i] := 'WHERE DIDNAME <> "MATH"'
else if ERSQL[i] = 'AND DEPT = "MATH"' then
SQL[i] := 'AND DIDNAME = "MATH"'
else if ERSQL[i] = 'AND DEPT <> "MATH"' then
SQL[i] := 'AND DIDNAME <> "MATH"'
else if ERSQL[{i] = 'WHERE DEPT = "MUSIC"' then
SQL[i] := 'WHERE DIDNAME = "MUSIC"'
else if ERSQL{i] = 'WHERE DEPT <> "MUSIC"' then
SQL[i]) := 'WHERE DIDNAME <> "MUSIC"'
else if ERSQL[i] = 'AND DEPT = "MUSIC"' then
SQL({1i] := °‘AND DIDNAME = "MUSIC"'
else if ERSQL[i] = 'AND DEPT <> “MUSIC"' then
SQL[i] := 'AND DIDNAME <> "MUSIC"'
else if ERSQL{i] = 'WHERE DEPT <> "PHYSICS"'
then SQL[i] := ‘WHERE DIDNAME <> "PHYSICS"!
else if ERSQL[{i] = 'AND DEPT = "PHYSICS"!
then SQL[i] := 'AND DIDNAME = "PHYSICS"'
else if ERSQL[i] = 'AND DEPT <> "PHYSICS"'
then SQL[i] := 'AND DIDNAME <> "PHYSICS"'
else if ERSQL{i] = 'WHERE DEPT = "PHYSICS"'
then SQL{i] := 'WHERE DIDNAME = "PHYSICS"!
else if ERSQL[i] = 'WHERE DEPT <> "HISTORY"'
then SQL{i] := 'WHERE DIDNAME <> "HISTORY"'
else if ERSQL[i] = 'AND DEPT = "HISTORY"'
then SQL[i] := 'AND DIDNAME = "HISTORY"!
else if ERSQL[i] = 'AND DEPT <> "HISTORY"'
then SQL[1] := 'AND DIDNAME <> "HISTORY"'
else if ERSQL[{i] = 'WHERE DEPT = "HISTORY"'
then SQL[i] := 'WHERE DIDNAME = "HISTORY"'
else CONTINUE := true;

T N G Rt T AT NG T N VO T AR I P P Vg Y
. A av. N 'a®.

£ G x)

if (not SETTABLEl) and (not SETTABLE2) and
(not SETTABLE3) and (not SETTABLE4) and (i = 2)
then begin { SETTABLE)}
SQL[2] := ERSQL[2] + ', IDDEPT';
SETTABLEl := true;
end { SETTABLE }
else if (not SETTABLEl) and (i > 2) then
begin ({ SETTABLE)
SQL{2] := SQL{2] + ', IDDEPT';
SETTABLEl := true;
end; { SETTABLE }
if not CONTINUE then begin
DEPT := FALSE;
DONE := true;
end;
end; (TRANS DEPT)}

procedure TRANS JOBTYPE (VAR CONTINUE, DONE,SETTABLE1,
SETTABLEZ2 ,SETTABLE3,
SETTABLE4: boolean;
VAR i: integer; j: DEPT_SET:

k:JOBS) ;

begin { TRANS JOBTYFE)
if ERSQL[I] = 'WHERE JobType = "FACULTY"'
then SQL[i] := 'WHERE EIDNAME = "FACULTY"'
else if ERSQL[i] = 'WHERE JobType <> "FACULTY"'
then SQL[i] := 'WHERE EIDNAME <> "FACULTY"'
else if ERSQL[{i] = 'AND JobType = "FACULTY"'
then SQL[i] := 'AND EIDNAME = "FACULTY"'
else if ERSQL{i] = 'AND JobType <> “FACULTY"'
then SQL[{1i] := 'AND EIDNAME <> "“FACULTY"!'
else if ERSQL[i] = 'WHERE JobType = "SECRETARY"'
then SQL[i] := 'WHERE EIDNAME = "SECRETARY"'
else if ERSQL{i] = 'WHERE JobType <> "SECRETARY"'
then SQL[{i] := 'WHERE EIDNAME <> "SECRETARY"'
else if ERSQL[i] = 'AND JobType = "SECRETARY"'
then SQL[i] := 'AND EIDNAME = "SECRETARY"'
else if ERSQL[i] = 'AND JobType <> "SECRETARY"'
then SQL[i] := 'AND EIDNAME <> "SECRETARY"'
else CONTINUE := true;

if (not SETTABLE2) and (not SETTABLEl) and
(not SETTABLE3) and (not SETTABLE4) and (i = 2)
then begin (SETTABLE)}
SQL[2] := ERSQL[2] + ', IDEMP';
SETTABLE2 := true;
end { SETTABLE)}

T e T N

" ™ - n-
R T T b o o i s o L N sl o O O el P

end;

Ea Rt P Bl Rall B Ba¥

S RAR R AT)

W W By R T WUW S Wy L ooy ™y

else if (not SETTABLE2) and (i > 2) then

begin

{ SETTAB

LE }

SQL({2] := SQL[2] + ',

SETTABLE2

end;

{ SETTAB

:= true;

LE)}

if not CONTINUE then begin

JOBTYPE

:= FALSE

DONE := true;

end;

{ TRANS JOBTYPE }

.
14

IDEMP' ;

procedure TRANS WORKSFOR (VAR CONTINUE,DONE, SETTABLE1,

SETTABLEZ2, SETTABLE3,
SETTABLE4: boolean:;
VAR i: integer; j: DEPT_SET:;
k:JOBS) ;
begin { TRANS WORKSFOR }
if ERSQL[i] = 'WHERE WorksFor = "COMP.SCI."' then
SQL[i] := 'WHERE DIDNAME = "COMP.SCI."'
else if ERSQL[i] = 'WHERE WorksFor <> "COMP.SCI."'
then SQL[i] := 'WHERE DIDNAME <> "COMP.SCI."'
else if ERSQL([1] = 'AND WorksFor = "COMP.SCI."!'
then SQL([i] := 'AND DIDNAME = "COMP.SCI."!
else if ERSQL[i] = 'AND WorksFor <> "COMP.SCI."!
then SQL{i] := 'AND DIDNAME <> "COMP.SCI."!
else if ERSQL({i] = 'WHERE WorksFor = "MATH"' then
SQL{i] := 'WHERE DIDNAME = "MATH"'
else if ERSQL[i] = 'WHERE WorksFor <> "MATH"' then
SQL[i] := 'WHERE DIDNAME <> "MATH"'
else if ERSQL[i] = 'AND WorksFor = "MATH"' then
SQL[i] := 'AND DIDNAME = "MATH"'
else if ERSQL[i] = 'AND WorksFor <> "MATH"' then
SQL[i] := 'AND DIDNAME <> "“MATH"'
else if ERSQL[i] = 'WHERE WorksFor = "MUSIC"' then
SQL[1] := 'WHERE DIDNAME = "MUSIC"'
else if ERSQL[i] = 'WHERE WorksFor <> "MUSIC"' then
SQL[i]} := 'WHERE DIDNAME <> "MUSIC"'
else if ERSQL[i] = ‘'AND WorksFor = "MUSIC"' then
SQL[i] := 'AND DIDNAME = "MUSIC™!
else if ERSQL[i] = 'AND WorksFor <> "MUSIC"' then
SQL[{i] := 'AND DIDNAME <> "MUSIC"'
else if ERSQL[i] = 'WHERE WorksFor <> "PHYSICS"'
then SQL[i] := 'WHERE DIDNAME <> "PHYSICS"'
else if ERSQL[i] = 'AND WorksFor = "PHYSICS"!
then SQL[i] := 'AND DIDNAME = "PHYSICS"'
else if ERSQL[i] = 'AND WorksFor <> "PHYSICS"!
then SQL[i] := 'AND DIDNAME <> "PHYSICS"!
else if ERSQL[i] = 'WHERE WorksFor = "PHYSICS"'
then SQL({i] := 'WHERE DIDNAME = "PHYSICS"'
else if ERSQL[i] = 'WHERE WorksFor <> "HISTORY"'
154

T . R odd Bk 8.8 B0 g L PRy = & .
"9""“?"“.“.""'. R AN AR RN N N L T R T YU WU AR AR WO RO (R K O U ‘a g on Bea R LY haral gl

Wy then SQL[{i] := 'WHERE DIDNAME <> "HISTORY"'
i else if ERSQL{i] = 'AND WorksFor = "HISTORY"'
Y then SQL{i] := 'AND DIDNAME = "HISTORY"'
i else if ERSQL[i] = 'AND WorksFor <> “HISTORY"“'
then SQL{i1l := 'AND DIDNAME <> "HISTCR.U,'™'
. else 1f ERSQL{1il = 'WHERE WorksFor "HISTORVY"!
f then SQL[i] := 'WHERE DIDNAME "HISTORY"!
¢ else CONTINUE := true;
&
L]

o if (not SETTABLEl) and (not SETTABLE2) and
‘ {not SETTABLE3) and (not SETTABLE4) and
o (i = 2) then
v begin { SETTABLE)
$ SQL[2] := ERSQL{2] + ', IDDEPT';
N SETTABLE1l := true;
T end { SETTABLE)}
else if (not SETTABLEl) and (i > 2) then
) begin ({ SETTABLE)}
{ SQL[2] := SQL[2] + ', IDDEPT';
g SETTABLEl := true;
ﬁ end; { SETTABLE)}
KX if not CONTINUE then begin
® DEPT := FALSE;
s DONE := true;
end;

end; { TRANS_ WORKSFOR)}

procedure TRANS MEMBERS (VAR CONTINUE, DONE,SETTABLEl,
SETTABLE2, SETTABLE3,
‘ SETTABLE4: boolean;
Wt VAR i:
integer; j: DEPT_SET; k:JOBS);
begin { TRANS_ MEMBERS)}
if ERSQL[i] = 'WHERE MEMBERS = LUM'
then SQL[i] := 'WHERE FIDNAME = "LUM"'
else if ERSQL[i] = 'WHERE MEMBERS <> "LUM"'
then SQL[i] := 'WHERE FIDNAME <> "LUM"'
else if ERSQL[i] = 'AND MEMBERS = "LUM"!'
then SQL[i] := 'AND FIDNAME = "“LUM"'
else if ERSQL[i] = 'AND MEMBERS <> "LUM"!
then SQL[i] := 'AND FIDNAME <> "“LUM"'
else if ERSQL[i] = 'WHERE MEMBERS = "JOHNSON"'
then SQL[i] := 'WHERE FIDNAME = "JOHNSON"!'
else if ERSQL[i] = 'WHERE MEMBERS <> "JOHNSON"'
then SQL[i] := 'WHERE FIDNAME <> "JOHNSON"'
else if ERSQL[i] = 'AND MEMBERS = "JOHNSON"'
_ then SQL[i] := 'AND FIDNAME = "JOHNSON"'
L. else if ERSQL[i] = 'AND MEMBERS <> "JOHNSON"'
; then SQL[i] := 'AND FIDNAME <> "JOHNSON"'

l.'. POl @ & o .(Lx.LLlA';'

'y 155

, - ‘@ il eV eVl o nd avh atd el at A atd i, . gav T T TR TS T A T o T v
Va g vap % da) 1) LB AR VAl hp el daf Al B g tal é S A A S 00 L RN IR0 400,00 PR Y N 4 - 1

WdaT

else CONTINUE := true:)
if (not SETTABLE2) and (not SETTABLEl) and
(not SETTABLE3) and (not SETTABLE4) and (i = 2) then
begin { SETTABLE }

SQL[2] := ERSQL[2] + ', IDCOM';

SETTABLE3 := true;
end { SETTABLE }

else if (not SETTABLE3) and (i > 2) then
begin { SETTABLE }
SQL[2] := SQL[2] + ', IDCOMP';
SETTABLE3 := true;
end; { SETTABLE }

Paa- Ty -

if not CONTINUE then begin f
JOBTYPE := FALSE;
DONE := true;
, end; i
end; (TRANS_MEMBERS } ’

begin { SQL_VIEW }
f iz:=1; -
writeln; g
writeln; .
write ('HIT ENTER TO VIEW SEQUEL QUERY t:47);
readln (r):;
ClrScr;
SETTABLE1l false; SETTABLE2 := false;
SETTABLE3 := false;
SETTABLE4 := false; "
; CONTINUE := false; h
) DCNE := false;
, SQL[1] := ERSQL[1];
while ERSQL[i] <> SENTINEL do begin
if MAJOR then
TRANS MAJOR(CONTINUE, DONE. SETTABLE1,
SETTABLE2, SETTABLE3,
SETTABLE4, i, j, k):
if DEPT and not DONE then >
{ TRANS DEPT(CONTINUE, DONE, SETTABLE1l,)
‘ SETTABLEZ2, 3
SETTABLE3, SETTABLE4, i, j, k):
if JOBTYPE and not DONE then
TRANS _JOBTYPE(CONTINUE, DONE, SETTABLE],
SETTABLE2, SETTABLE3,

v eo o=

(OB »
\ SETTABLE4, i, j, k): !
if WORKSFOR and not DONE then

TRANS_WORKSFOR(CONTINUE, DONE, SETTABLE1l, :

SETTABLEZ2, Y

» SETTABLE3, SETTABLE4, i, j, k): 3
q

156
A

r-!‘.'i*'.‘-J.'%-'.‘-,“-I\':i‘.:vf'\..‘-{‘-a\”'-'.:-..'i.,\ .\(.J':_J‘ * . -....;_. ~.r.;’.‘t "‘.. .:.. 'J'\'J' AR -‘-{*.-:.-"ﬁ - o) LI _ _ .
v . o) A - . » B 5 Chdt A i A e A » Bl Al) L LR 4 g MY

OIS LTSI Y N T AT WUMT YO P P N W T M0 WO TN P R TN N PO W0 T U T YO N RO WO T R T X O O ™) AKX "8t 0e” Rav bat et ba¥ Ra< ta~ fy- 8

2 if MEMBERS and not DONE then
X TRANS_MEMBERS (CONTINUE, DONE, SETTABLE1,
3 SETTABLE2,
- SETTABLE3, SETTABLE4, i, j, k):
’ i:=1i+ 1;
SQL({i] := ERSQL([i]:
a ’ DONE := false;
O CONTINUE := false;
] end; { ERSQL[i] <> SENTINEL }

for i := 1 to 5 do writeln;
i:=1;
while SQL[i] <> SENTINEL do
begin { while SQL{i] <> SENTINEL)
writeln (SQL[i]):
i:=13i+ 1;
end; (while SQL[i] <> SENTINEL)}
end; { SQL VIEW)

procedure START UP;
begin { START UP)

INITIALIZE GLOBALS;

LOAD OBJECTS:;

LOAD _ _WINDOWS WITH OBJECTS:

DISPLAY _QUERY OPTIONS;

HOW_MANY PARTIAL QUERIES

(NO_PARTIAL _QUERIES_IN_QUERY) ;

end; { START UP)

procedure GET_AND REVIEW OUTPUT;
var
i: integer;
begin { GET_AND_REVIEW OUTPUT)
. i = 1;
vy ESQL_VIEW;
SQL_VIEW;
writeln(FSQL); writeln(FSQL);
writeln (FSQL, 'EXTENDED SEQUEL QUERY IS AS FOLLOWS:');
writeln(FSQL) ;
while ERSQL[i] <> SENTINEL do
begin
wrlteln(FSQL ERSQL[i)]):
i=1+ 1;

DCHLEAL RO

'-

end;
i = 1;
writeln(FSQL); writeln(FSQL);
R writeln(FSQL,
- 'TRANSLATED SEQUEL QUERY IS AS FOLLOWS: ') ;
o writeln(FSQL) ;

e - _1. ey

157

.“‘.-'V\. NN‘_..-.;_,)_A‘\'\S,

“'kA TN AN TN AN, ol

I T T R T T R R O O O U T R O VYo e TR W it e AR A A
p)
;
)

while SQL[i] <> SENTINEL do
: begin
3 writeln(FSQL, SQL(i]):
' i =1+ 1;

end;
writeln(FSQL); writeln(FSQL);
end; { GET_AND REVIEW_OUTPUT }
; procedure RESET GLOBAL COUNTER:;
; begin
_ X :=1;
begin { ObjectTranslator)}

FINISHED := false;
' assign (FsSQL, 'SEQUEL.SQL') ;
X rewrite (FSQL):;

REPEAT { Until all the queries are completed)

(START UP;

SELECT (e) ;

FROM(e,e+l) ;
‘
‘
‘

158

o et e L. P R S R R N L P T T F R R P L TR LI L T B T T T0 I O S T T R JAPIA NN
T s R T R T Iy P Y T A S R R (R R R NN : v

YUy

(Fkkkkkhkkkkkkkkkk TRANSLATION ALGORITHM ks d sk ks ok % % %)

if (MORE_THAN ONE OBJECT USED IN QUERY) then
JOIN OBJECTS;

for i := 1 to NO_PARTIAL QUERIES_IN QUERY do begin

if (INSTRUCTIONS ON OBJECT NAME(i)) then
OBJ OPERATIONS (i) ;

while (EXECUTE_AND DECODE(i)) do
begin { while (EXECUTE AND DECODE) }
if (ASTERISK_ FOR ATTRIBUTE _NAME(i)) and

. EXISTENTIAL . QUANTIFIER(i) then
; SPECIAL OPS (i)
i else if (DOT_P_ON_ATTRIBUTE(i)) then
RETRIEVE_SELECT(i)
else if (NO_INSTRUCTIONS(i)) then NO OP(i)
else if (INSTRUCTIONS ON ATTRIBUTE(l)) then
i RELATIONAL | OPERATORS ;
s end; { while (EXECUTE AND DECODE))

. if (not EXECUTE AND DECODE(i)) then
RESET_ GLOBAL_COUNTER;

end; { for i := 1 to NO_PARITAL QUERIES_IN QUERY)

{**}

GET AND REVIEW OUTPUT;

writeln; writeln;
write('ENTER "F" OR "f" TO STOP MAKING QUERIES ':60):
readln(F) ;
if (F = 'F') or (F = 'f') then FINISHED := true;
UNTIL FINISHED;
close (FSQL);

end. { ObjectTranslator }

159

- e .- R P I TR e . - AR RN
AT 4 A AT T T T L e T e ’\.’\"' AR AR RN Y e T T T "-. N " "
. ! 'y v . - . K E . " . O af o ol o ot ol B B ol L L b

LT YCR RN TUR MU KR PO PN LN R AN R ‘Bat 8V Fa" tat $4°. 00" fa® Ra® 0t e’ ata” dat 80" 82 aln o 0a Y but B2t 020 Bat B G0 00" 6" Wat taatataint pY

APPENDIX B

TRANSTATOR OUTPUT

de Je e de e de ok de K e K de ke ke ok Kk ke K e e de de de ke ke ke ke e ke de e e e de ke ek ke ok ke ok gk de ok ke ok k ok ok

* STUDENT QUERY *
dekdhkdhhkhhkhkkhhhhdkhhkdhhhhkhkhkhkhhkdohdhrkkhkhhkhhhkkkkhrxk
* STUDENT * *
* * * *
* SNAME * .P *
* ADDRESS * *
* SSNO * *
* GPA * >= 3.5 *
* MAJOR * *
dkhkdkdkhkdkhkdhkdhhkhhhhhhhhdkhhhhhkhhkkhkhrkhrkkhkkkkkkx*

EXTENDED SEQUEL QUERY IS AS FOLLOWS:
SELECT SNAME

FROM STUDENT
WHERE GPA >= 3.5

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:
SELECT SNAME

FROM STUDENT
WHERE GPA >= 3.5

Je e J K e J Kk do e de d de e e de ke de s de de dode e ke dede de e K de de ke de g de e e g de ek de e ok ke ke ok Kk k ok ok

* FACULTY QUERY *
dhkkdhkkdhkkhhkhkkhhkhkhkhkdhhkhhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkkkkkhkkkkxk
* FACULTY * *
* FNAME * .P *
* AGE * >= 30 *
* WorksFor * *

kkdhkhkdkhkhhkhhkhkhkhkhkkkhkhkhkhkhkhkhhkkhkhkhhkhkhkkhkkhkkkhkkkhkkkkkkkxx

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT FNAME
FROM FACULTY
WHERE AGE >= 30

D T A N et e am At AT AT AT AT A ot
~ -,,:_\‘-q.‘."-,t \---_'{;.:}._- L .,---.:--_-’._' ._:’. T, DDA ‘}- et LN =" 5-_-_"",’_ ST \-.\"’_’\._‘\-_\P_ "o
P oy .S FS, ' @O ~ S al o ! A B A '

. *apat
B4 407 $ava9n7oba” ba° o g’ 08" ¥ “aBn*

AR D™

S|

@

Foy a4t 0. 4 Y PRI L Pt PLPY SO AT I 3 RN g ¥ ~';» Cw s Jat ¢ i A IR Sad S Sub Sall 7 aie alta" “ ‘&% %2 '8 b ¥ M ks AW ».

i TRANSLATED SEQUEL QUERY IS AS FOLLOWS: g

SELECT FNAME G
FROM FACULTY
WHERE AGE >= 30

khkhkhkhkkhkhkkhkhkkhkhkihhkhkdkhhkhkhkhkhhkhkrkhkhkhkhhkhkrihkhkkhkkhkkhhkkikhkkxk (]
* EMPLOYEE QUERY * y
khkkhkhkhkhkhkhkhkhkhkdhkhkhkhhkhhdikihiddkhkdhhkdhhdhdhdkhkdkhdhhhkkkkhkkkihki ik
* EMPLOYEE * * A\
* ENAME * .P *
* PAY * >= 30,000 * -
* DEPT * * ‘s
* JobType * *
khkdkhkhkhkhkhkhhhkhkhkhkhkhhkkhkkrhkhkhkhhkkhkhkhkhkhkhkhkhkkkhkhkhkrhkhhkhkkhkikk

LN .f .~

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

XSS

SELECT ENAME
FROM EMPLOYEE
WHERE PAY >= 30,000

[S

&
TRANSLATED SEQUEL QUERY IS AS FOLLOWS: v,
SELECT ENAME i
FROM EMPLOYEE 3
WHERE PAY >= 30,000 N
y
khhkhkdkhhkhkdkhhkhkhkhkhkhhkhhkhhkhkkhkhkhkhhkhhkhkhkhkhhkhhhkhkkhkdkhkhkhikk ,’
* COMMITTEE QUERY * i~
hhhkhkkdhkhkdekhhkhkhkhkhhhhkhkhhkhkkhkhkhkhkhhhkdkdkhhkhkdkdkdhhdhkhikhhk -ﬁ
* COMMITTEE * * "
* CNAME * .P * A
* MEMBERS * * B’
* PURPOSE * = "RECRUITING" * ;
khkkhkkhkkdkhhkkhkkhkhkkkhkkhkdehkkkkkhkkhkkhkhkdkkhkkhkhkkhkkkkhkhkkixk ::
X
EXTENDED SEQUEL QUERY IS AS FOLLOWS: o
o~

SELECT CNAME
FROM COMMITTEE R
WHERE PURPOSE = "RECRUITING" N
'
®

vy v W

I,

161

A A A SR ARG A R A

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

'l
SELECT CNAME ‘
FROM COMMITTEE
WHERE PURPCSE = "RECRUITING"
kkkkkkkhkkhkhkkkhkhkkkhkkhkkkhhkhhkhkkrhkkkkkkkkkkrkk)
* STUDENT QUERY *
Fkkkkkhkhhkhhkkkhhhhhhkhhkhkhkkkhkhhkrkhkhhkkkhhkkkkhhkkkrkhsk
* STUDENT * *]
* * * COUNT * ”
* SNAME * * (
* ADDRESS * * :
* SSNO * * t
*# GPA * *
* MAJOR * . 3
Kkkdkhkhkhkkkkhdkkkkhhkhhhhhhkkkkkkhhhkkhhkrhhhhdkkkkk ko .
EXTENDED SEQUEL QUERY IS AS FOLLOWS:
SELECT COUNT (*) X
FROM STUDENT -
h
TRANSLATED SEQUEL QUERY IS AS FOLLOWS: L/
SELECT COUNT (*) . "
FROM STUDENT "
é
hkkdkhkhkhhhhhhhhkkhhhkhkhhhkkkhhhhkhkhhhhhhhkdkddkddhhkk 2
* STUDENT QUERY * 7
Khhkhkkkkkhkhkkkkkhhkhkhhhkkkhkhkhkhkhhhhhhhkkkkkhkrrkhkhdokd A
* STUDENT * *
* * * .P *
* SNAME * % 2
* ADDRESS * * X
* SSNO * * d
* GPA * * <
* MAJOR * * -
Je Je sk e e e de ok o e de ok ke ok ok ok ke ok ok ok ok ok e ok ok ok ok ok ok ok ok ok e ok ok ok ok ok ok ko ‘
EXTENDED SEQUEL QUERY IS AS FOLLOWS: t
.
SELECT STUDENT. * :
FROM STUDENT -y
[
U
162 J
]
|]
¥
!
B T B A O R Nyt (R L N N N N T N T O R T T i

LA

-
I AP

L]

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

]
"
SELECT STUDENT. * :
FROM STUDENT -
(]
¥
KA hhkhkhkkrrkhhkrkhhkhkkhkRhkhhkhhkhkhkkkhkhkhhkkrhhhkhkhbhkihkhkhkdhkkhkkixkxk ':
* EMPLOYEE QUERY * N
d Je K de g K J de de gk de koK odeodk ok odede Kok ok ok ok de ke kok ok ok ok ok k ok ok ok k ok ok ok ok ok ok okdkkkkkk ‘
* EMPLOYEE * *
* ENAME * .P COUNT * -
* PAY * > 20,000 * }
* DEPT * * ;
* JobType * * .
Je Je % Je e K Kk Fe g do kKK do g ko k ek ok vk ok ok k Tk dede ok odede kg dek ok dek ok ok dokokdkkkk '
X
?
A
EXTENDED SEQUEL QUERY IS AS FOLLOWS: ﬁ
SELECT COUNT (ENAME) 2
FROM EMPLOYEE
WHERE PAY > 20,000 -
TRANSLATED SEQUEL QUERY IS AS FOLLOWS: >
J
SELECT COUNT (ENAME) -
FROM EMPLOYEE ht
WHERE PAY > 20,000 N
khkAkkhkhkhhkhkrhkhkdhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkkhkkihkhkhkk ,.*
* FACULTY QUERY * *
de Je Je do K ke de kK de de de ke do gk de de Kk ok deodek dod gk deh Rk ok ok ok dkokdkk gk kkdkhkkkkkkk -
* FACULTY * *
* FNAME * * y
* AGE * P * .
* WorksFor * *
dhkdkhkhkdhkhhhkdhkdhkdhhhhhkhkhkhhkhhhkhkkhkhkhkhkhkhkhkkhkhkhkkhkhkkkkhkkkhihk :
R
EXTENDED SEQUEL QUERY IS AS FOLLOWS:
SELECT AGE ;?
FROM FACULTY o)
p
4
®
N
163 Q
3
)
o
-~

™ o™ X .
(O Dc,‘u) "vM!.‘n‘l‘ h. .J’! N

L T B

IR O R R R R N T T N Y R O P R T T O YV W W WU W N N OO O IO R S WO U]

TRANSILATED SEQUEL QUERY IS AS FOLLOWS:

SELECT AGE d
FROM FACULTY

dehdddehhdekhkddehhddhhhhhdhhkhhhkdhkhhkhhbbddhdhhhdhkkkikkk

* STUDENT QUERY * i

de e e g o e e e o ko o ke ok e ke ok ok ok o o ok ok e ok o ok ke o ok o e vk ok ok ok ek e ok kK ok

* STUDENT * * 7
% * % * /
* SNAME * .P *

* ADDRESS * *

* SSNO * *

* GPA * >= 3.0 *

* MAJOR * * b
kkkhkkhkhkkhkkhkkkkhhhkdhhhhhdhhhhhdkdhhhkdhhhhddkkhddxkkkkr 1

% Je Jo Je de e e e Je e Je e Je e Je do e e de Fo e o e do e e ke e he e e ke Fe Fe K K de Fe Je K de Kk Kk k ok ok kk Kk ok

* EMPLOYEE QUERY *]
KAk EkAkAAIAIA A AR AA AR AR A AAA AR AA IR A AR A A A A AR A XA K)

, EMPLOYEE * *

- * ENAME * = SNAME * .
* PAY * >= 20,000 * $
%* DEPT * % -
* JobType * * N
Fhkhkhkdhhkhkhkhkhhkdohkhkdhdhkhkhkhkhhkhhkhkhkhkhkhkhkdhhhhhhhhkkkxdhkhkkk .

EXTENDED SEQUEL QUERY IS AS FOLLOWS: ®

. SELECT SNAME {
FROM STUDENT, EMPLOYEE !
WHERE GPA >= 3.0 L
' AND ENAME = SNAME .
p AND PAY >= 20,000

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:)

~
SELECT SNAME N

FROM STUDENT, EMPLOYEE :

\ WHERE GPA >= 3.0 :
; AND ENAME = SNAME A
‘ AND PAY >= 20,000 »
4
| J
j 164 X
\ X
{

»

h - O LT R LRURT & R ARV VE NS Py, L P PATE LT A T Y NN o
RN A MNP DO MR 2 e o oo AT e L T L R o S D AT S RN Ty

T T T O T R e T O O IR o W A AR R AN T R OO O TG O LW VA U OV LU U UV AW LUALRNLRS

KhFhkhkhkhkhkhkrRhkkhkhhkkhkhkkhrkhhkrhkhrhkhkhkhkhhkhkhhkdhkhihkihdhohkhthhikhdikk “i
\J

* EMPLOYEE QUERY * ¥
dhkdkhkhhkkhdkhhkhkhkkhhhkhkhhhkhkhkhrdhhkhkhhkhkhkhddkhkhhkhkhhkhkhkkhrkkhk m.
o,

* EMPLOYEE * * e
i * ENAME * .P * v
* PAY * >= 30,000 * 4
* DEPT * * “ x]
14

* JobType * *)
Jdekdedkddeddedddddhdehhhkhkhkkkhkhdkhhdhhhhhkhhhkhhhrhhkhkhhkkkkkhk N
(]

L)

»
khkkhkhkhdhhhkhhhdhhhhhkkhkhkhkhkhkikhkhkhhdhkdhhkkdhhhhhkhihikkkik ﬁ
Pl

* FACULTY QUERY * -
khkkhkhkhhkhkkhhhkhkhhhkhkhkhkkhhhhkhkhkhkkdhkhkhkhkhhhhhhkhkkkkhkhkhkhik Y
J
* FACULTY * * 4
* FNAME * = ENAME * bt
* AGE * >= 30 * :
* WorksFor * * ;
de g Je Je Je K Je de do g K de kK de deke ke de K ke de kK dedek ke dededek dekdkkhkhkkdkhkkdkdkhkkkdhkkhk \}

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

&
f
SELECT ENAME >
FROM EMPLOYEE, FACULTY ps
WHERE PAY >= 30,000 g
AND FNAME = ENAME

AND AGE >= 30

d

TRANSLATED SEQUEL QUERY IS AS FOLLOWS: ,&
@

2
SELECT ENAME o
FROM EMPLOYEE, FACULTY -
WHERE PAY >= 30,000 v
AND FNAME = ENAME s
AND AGE >= 30 ®
A
[J
J
O]
165 g
.

e
[J

.‘-‘

o~

.

,_-- TR _..-.\..-_ ‘\.' ,‘.'.

\'~“'~.\- \"'\x-\.x-f Vo

- -) | N N i ’. " .. . - ..- .-. - - .'. = -a . n
: ey R i g e AN VRS RS
"s ,'l 203y Y M .,.t NS, NS * \ ﬂ ~ . % -, ¥ D o

‘
.

AR WA AR “Nal 2B Vet ¥ak ¥, b TR U R AN P CX) YRR RN TR IUTR KU R A tat Bt Sal b L Sulh Vol &

Je % % e de % Kk de de ke Je de e Kk Kk Fe Fe o g Kk do e g Kk Ko e ok ke K de gk ke de ok de e ok ke ke ke ok ok ke ok ok ke ok ok ok

», - - o -
PP ® [x xR

o * FACULTY QUERY *
h hkkdhddrrhrhttbhbhbhbhkdhrkhkrddkbrrrbdrbrxddrwdsbrvdddedd
" * TLIoULT * *
g * % * COUNT =
i * FNAIE * .P *
) * AGE %* >= AVG (AGE) *
4 * WorksFor * *
s hkkdehkhddhdhkhkhkhhkhkhhkhkhohkhkhhkhkhkhkhhhkhhkhkdkhkhkhkhkhkhkhkhkhkhkhkkkkhkkk
K)
N)
¢ khkkhkhkkdbhkhhhhkhhkkdhhkhkhkhhkhkhkhkhkhkhkkhkhkhkhkhkkkhhkhkhkkhkhkkhkkkkix
[* COMMITTEE QUERY *
‘:| kddhhkhkhhkhkhhhhkachkhhdhkhhhkhhkhhhhddhkdhkhhdhhhhhkhhhdkdhkik
) * COMMITTEE * *
4 * CNAME * = FNAME *
o * MEMBERS * *
i * PURPOSE * = "RECRUITING" *
;O. khkkhkhkkhkkhhhkkhhkhhhhhkhhkhkhkdhkhkhkhkhhkkhkhkhkkhkhhhkhkdhkkhkhhkkk
»
b EXTENDED SEQUEL QUERY IS AS FOLLOWS:
b
X SELECT COUNT(*), FNAME
FROM FACULTY, COMMITTEE
§ WHERE AGE >= AVG(AGE)
AND CNAME = FNAME)
AND PURPOSE = "RECRUITING"
’ TRANSLATED SEQUEL QUERY IS AS FOLLOWS:
‘N SELECT COUNT (*), FNAME
s FROM FACULTY, COMMITTEE
‘N WHERE AGE >= AVG(AGE)
® AND CNAME = FNAME
» AND PURPOSE = "RECRUITING"
N
N
®
R)
L)
®
; 166
®
-~
i)
"l
)

() T % § o I o e P { 0 T e S | e » - am - 4= A R LR LT I
":’?’:‘:‘ﬁ!‘:’!‘.‘- :’!‘ﬁ- LK Q‘.“l’-l’!‘! » t.!‘l At A l‘: G l‘t‘"’.‘:‘..u A i LA NSNS W e, .P .!. L .’" o vle" .i A'r ‘P J‘ "2

N

S

Al

v g
" 3

- h
T L
L3 I‘ Y Ly

@ V..

¥

L: ® vt

s

%"” . cals

a2 AR B e A BV Bt Bt Pad $atofav (av tav NaT davata 2ia ot e v ave a- AN AN R AT KK WY AN A/ ol Cayival Bah Val ab Uat val maf at tai o "ata gty gl AV

khkkhhkkhkhkkhkhkhkhkhkhkhkhhhkhhkhkhkhkhkhkkhkhkkhhkhhkhkkhkkhkhkhhhkhkkhkkk

* STUDENT QUERY *
‘ khkkhkhkkhkhkkkhkhkkhkhkhkhkhkhkhkhkhkhhhkhkhkhkihkhkhkhkhkhhkhkhkhkkkhkhkhkhkkhkhkkkkx
* STUDENT * *
* * * *
v * SNAME * .P *
* ADDRESS * *
* SSNO * *
* CPA * .P AVG *
* MAJOR * *
dkhkkkhkkhkhkhkhhhkkhhhhhkhhhhhhkhhhkhhhkhhhhhkdhhdhhhkdhdrrdk

EXTENDED SEQUEL QUERY IS AS FOLLOWS:
SELECT SNAME, AVG(GPA)

FROM STUDENT

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:

SELECT SNAME, AVG(GPA)
FROM STUDENT

kkkdhkkhhkhkhhkhkhhhkhkhhhhkhhkkhkhkhkkkhkhhkhhhhkhhkhkhkhhhrhhrhkhkhkhx

* EMPLOYEE QUERY *
dekdhkhkhkhhkdddhkddhhhdhhkhkhkhhkkhhkhhhkhkhhkhhkhkhkhkhhkhkhkhkkhkkkkk
* EMPLOYEE * *
* ENAME * *
* PAY * .P MAX *
* DEPT * *
* JobType * = "SECRETARY" *
khkhhdddhdhhhhddehkhhkhhhhhhhkdkhkhkkhkhkhkdkdhkhkhkhkhkhkhkhkhkhhkikkhkkdki

EXTENDED SEQUEL QUERY IS AS FOLLOWS:

SELECT MAX(PAY)
FROM EMPLOYEE
WHERE JobType = "SECRETARY"

TRANSLATED SEQUEL QUERY IS AS FOLLOWS:
SELECT MAX (PAY)

FROM EMPLOYEE, IDEMP
WHERE EIDNAME = "SECRETARY"

167

i

W NN A A T T g
g N T e Y R R A T N P

Ak fac ¥ Yaalatatalata® 42" 8% Bat Ra? 828 $af B0 .0 Gat B2t 22t 08 0 % LW M W ® LWL VWL UW U U

khkkhkhhkhkhkkhkhkhhkhkhkhkhkkhkkhhhkhhkhhhkhhhrhkhhkhkhbhhhhhkhhkhkkik

; * FACULTY QUERY * .
4 % de e Je g e Je Kk e ek ke e de ke ke de de de de de de e dede ke e kg ek de ke o ke ke ke ok ke ke ok ek ok ke ok ok kX
g * FACULTY * *
" * FNAME * * .
' * AGE * .P MIN *

* WorksFor * *
'S Khkhkhkkhrkhkhkhkhkhkhhkhohhkkhkhhkhkhhkhhkhkhkhkhkhkhhkhkhkhhhkhhkhkhkhkdkhkhkikkhkk

H
K)
i EXTENDED SEQUEL QUERY IS AS FOLLOWS:
) SELECT MIN (AGE)
! FROM FACULTY
y
&
b TRANSLATED SEQUEL QUERY IS AS FOLLOWS:
@
o SELECT MIN (AGE)
™ FROM FACULTY
o
-ﬁ kkdkhkdkhkhkhkhkhkhkhkhkikhkhkhkkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkhkhkkhkhkkhkkkkxx -
* COMMITTEE QUERY *
khkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhhkhkhkhkhkhkkkkkhkhhkhkhkhkkkkhkkhkhkhkkkkkkkkk
5 * COMMITTEE * * .
» * CNAME * .P COUNT *
’ * MEMBERS * *
. * PURPOSE * = "RECRUITING" *
khkhhkhhhkhhkhhkhkkhkhhkhkhkhkhhkhhkhkhkhkhhkhkdhkhhkhhkhhhkhhhkhkhkikhkkikkkk
&)
o
! EXTENDED SEQUEL QUERY IS AS FOLLOWS:
o SELECT COUNT (CNAME)
: FROM COMMITTEE
, WHERE PURPOSE = "RECRUITING"
A
®
S
" TRANSLATED SEQUEL QUERY IS AS FOLLOWS:
[
- SELECT COUNT (CNAME)
R FROM COMMITTEE
o WHERE PURPOSE = "RECRUITING"
K
l
! 168
L)
L)
[]

e imama s m e ea e N e ena e . et At AR A g A
et a T n L o Sl Sl I L T T g vy 0 WS e

. I N . T S ..

g

R T I P U R X o v a0 Y Rt bevalg"ala o R ala et Bat Pat 0aV tav FAU QAT ot BV W TR T NEERATHR TR THM RN TUNTEF "R
:
1
il
4
3
{
®,
R R R AR EEE LS EEEEEEE R R EE R R R R X R R R R R T
! - * STUDENT QUERY *
,‘: khkhkhkkhkhhhhkikhkhkhhkkhkhkkhkhkhkhkrcshkhkkrrkdhkhkhkhkhkhhkhhrhkkhkhkhkkhik
o * STUDENT * *
: * * %* * *
. * SNAME * .P *
[* ADDRESS * *

* SSNO * *
) * GPA * .P MAX *
' * MAJOR * *
: kkhkhkhkkhkhkkhkhkhkhhkhkhhhkkhkhhkhkhkkkhkhhkkhhkhkxhhkhhhkthkhkhkhkkkkhkhkk
;
K EXTENDED SEQUEL QUERY IS AS FOULOWS:
L)
: SELECT SNAME, MAX(GPA)
e FROM STUDENT
.
) TRANSLATED SEQUEL QUERY IS AS FOLLOWS:
. SELECT SNAME, MAX(GPA)

FROM STUDENT

L ** NOTE : With the simulator, * is displayed in window
" for STUDENT object and only when needed for

the query with the other objects.
N
e
X
q
¢
- 169
¥
|

'
[- " N AT 1T a® " 4 P I TR I IR T S PR A I S L S L L L LA "0 A" P L O W MO W W, e, W DR 2N
B S AT AN N A N Nt e M e, N N LM AT A M W S T A S AN

......
.................

LIST OF REFERENCES

1. Wu, C.T., "GLAD: Graphics Language for Database,"
NPS52-87-030, Naval Postgraduate School, July 1987.

2. Zloof, M.M., "Query-by-Example: A Database Language,"
IBM Systems Journal, Vol, 16, No, 4, 1977.

3. Miyao, Jun'ichi, Design of a User-Friendly Interface for
Database Systems, Ph.D. Dissertation, Hiroshima

University, Hiroshima, Japan, January 1987.

4. The Whitewater Group, Inc., Actor Language Manual, 1987.

5. Codd, E.F., "A Relational Model for Large Shared Data
Banks," Comnunications of the ACM 13, No. 6 (June 1970),
reprinted in Communications of the ACM 26, No. 1
(January 1983).

6. Date, C.J., An Introduction to Database System, Addison
Wesley, 1986.

7. Goldman, K.J., Goldman, S.A., Kanellakis, P.C., and
Zdonik, S.B., "ISIS: 1Interface for a Semantic Informa-
tion System," ACM 0-89791-160-1/85/005/0328, 1985.

8. Bragger, R.P., Dudler, A., Rebsamen, J., Zehnder, C.A.,
"Gambit: An Interactive Database Design Tool for Data
Structures, Integrity Constraints and Transactions,"
IEEE CH2031-3/84/0000/0399%01.00, 1984.

9. Miyao, J., Hirakawa, N., Kikuno, T., Yoshida, N.,
‘ "Design of a Form Interface Language in Database System
-, Aide," I1EEE Workshop on Lanquages for Automation, 1987.

10. Miyao, J., Tominaga, K., Kikuno, T., and Yoshida, N.,
"Design of a High Level Query Language for End Users,"
IEEE Workshop on Lanquages for Automation, 1986.

11. Korth, H.F., Silberschatz, A., Database System Concepts,
McGraw-Hill, 198s.

S

2 l12. Tsur, S., Z2Zaniolo, C., "An Implementation of GEM--
- Supporting a Semantic Data Model on a Relational
> Backend," ACM 0-89791-128-8/84/006/0286, 1984.

- 13. Chen, P.P.-S., "The Entity-Relationship Model-Toward a

Unified View of Data," ACM TODS 1, No. 1 (March 1976).

170

‘I})-‘.'-‘t“

. @
' L
L] IR AL S PR

1@ ":";',-.‘)"l.‘ o J. . \‘ 4 ’-:\..' !

l‘ »

=

14.

15.

16.

A e e A

L LA

Date, C.J., A_Guide to DB2, Addison Wesley, 1984.

Wong, K.T., Juo, I., GUIDE: Graphical User Interface
for Database Exploration, Applied Mathematic Sciences

Research Program of the Office of Energy Research,
Department of Enerqgy, 1982.

Wu, C.T., Schema and Translation Scheme for GLAD, Thesis

Lecture Notes, Naval Postgraduate School, Monterey,
California, April 1988.

171

"o ™

O Ll A0

W R R SR L L T SRR T AL R Y
e R P -

o .

YN S R R N

W

2

= SN AP

s

Ry -

PR Bt Y,

AY
e

RN

LN

vy -
° R

v
s »

MOPRE SAEK

SRR DONOI VN NN

a s
et

AESE I

'''''''''''

INITIAL DISTRIBUTION LIST

Defense Technical Information System
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Director, Information Systems (OP-945)
Office of the Chief of Naval Operations
Navy Department

Washington, D.C. 20350-2000

Curricular Officer

Computer Technology Programs, Code 37
Naval Postgraduate School

Monterey, California 93943-5000

Department Chairman, Code 52
Department of Computer Science
Naval Postqraduate School
Monterey, California 93943-5000

Commandant of the Marine Corps
Code TEO6

Headquarters, U.S. Marine Corps
Washington, D.C. 20360-0001

Professor C. Thomas Wu, Code 52Wqg
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

Capt. Paul D. Grenseman
c/o Mr. Hector Licong

4210 Palmira Street
Tampa, Florida 33629

172

- . .- N W 4

. o Y .
\."\-‘_ l-f‘-/'--f‘-f‘ '&{\ \’\-

\' '-_‘ -"4 -~ .-"”\'.u_“‘ \". . .-""."‘.. LSRN
{ » a > =

