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Chapter |

INTRODUCTION

A picture is said to be worth a thousand words. [t seems an appropriate sayving when you
contemplate trving to describe a scene to someone. There is a vast amount of information that
'can be extracted from just a single image. and to obtain a symbolic description of all this
information is virtuallv impossible. One possible way around this is to narrow our goals, and
attempt to locate and identifv only particular features contained in the image. For instance we
may want to distinguish whether or not noise is present in the image. If the image contains
objects. we mav wish to know where they are located, and their general configuration.

The purpose of this research was to study and implement a computer vision
technique. Our goal was to have the ability to input a digitized image containing objects in a
noise background. and output an image that contains oniy the ovjects. This goal was reached.
How we have reached this goal is the subject of this paper.

The following chapters discuss the methods used to isolate the objects in the image. Chapter
2 gives an overview of the ideas underlying the techniques that have been devaicped to display the
image, and to segment the image into regions. Instead of referring to the image in terms of the
intensity levels of the individual cells, we group celis together into regions, and then refer to the
regions in the image.

Chapte-r 3 focuses on the implementation of the techniques described in Chapter 2. A
detailed description is given of the stages of processing involved in obtaining an image that
contains only the objects that were in the original image. The processing involves filtering the
image at different spatial scales, locating and representing the intensity changes, known as zero-
crossings, in the filtered image, and then forming regions from the zero-crossings. Smualler regions

are thresholded out. The remaining regions are compared across the different spatial scales. If




regions are found to be in the same location. then they are saved. These regions that have been
saved are most probably due to an object in the image.
The final chapter, Chapter 4, discusses the results of implementing the algorithms presented

in Chapter 3. and offers recommendations for further study.




Chapter 2

IMAGE REPRESENTATION

This chapter focuses on the methods used to represent an image. Initially. the image i<
represented by a two-dimensional matrix of intensity levels. It is very difficult to look at this raw
data and understand what the image is and what it represents. Therefore, we need to obtain a
symbolic representation.

The first method discussed does not change the format of the image or encode information
symbolically, but it does allow a graphic representation of the image. The intensity levels are
mapped into a grevscale. and then the grevscale correspending to the mtensity lIevel 1s plotted
‘The seccond method processes the image and gives a symbolic representation of the image
Instead of “sceing” the image tn terms of individual cells (or pixels). as in the first method, we can

group the pixels together and look at the image in terms of regions

2.1 Greyscale

The first method used to mve a clearer representation of the image 15 a grevscaie. Tach
intensity level in the orginal image matrix 1s given a grev level. The grey levels start at 0
indicating whitc, and go to however many levels are desired. or obtainable. The highest level
indicates black. Tiach level in between will be an increasingly darker shade of grey. The intensity
levels arc scaled to fit the number of grey levels available. If any objects are located in the image.
they should be relatively casy to sec. using the greyscale, unless the noise level is of such high

intensity that the object intensity gets lost.
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2.2 Constructing Regions

The greyscale representation is helpful in understanding what the image looks like. but 1t
does not help to output a description of the image. The descoption of an mmage, that 1s a
description of the objects contained within the image. consists of three phases. The first phase s

to construct the Primal Sketch. The primal sketch consists of a svmbolic representation of the
intensity changes m the tmage. and their Jocation. The second phase 1s to develop the 2 — -

Dimensional Sketch. This phase consists of a representation of the properties of the visible
surfaces 10 the 1mage from the perspective of the viewer. The last phase. the 3-Dimensionai
Model Representation, gives a description of the shapes in the image from the perspective of the
object. This framework was denved by David Marr [3]

We will concentrate our efforts on the first of these phases. developing a method to segmemt
the tmage using the locations of the intensity changes as the partitioning agents. There are three
stages to the construction of the Primal Sketch. There is the detection of the micnsity changes
within the image, the formation of the Raw Primal Sketch. and the creation of the Full Pramal

Sketch.

2.2.1  Detection of Intensity Changes

One mcthod to locate the intensity changes in the image. i« based on the following two
principles.  [irst, regulantics in intensity changes occur at various spatial scales throughout the
image. Sccond. an intensity change will cause a peak or dip in the first derivative or. a zero-
crossing in the sccond derivative. A zero-crossing ts a place where the value of the function
changes sign.  According to Marr and Hildreth (1980) [2]. the operator that fits both these critena

best is the filter V2G| where V7 is the { aplacian operator




‘I

P 5
VZ=—2+ <
ox" av”

and G is the two-dimensional Gaussian distribution

NtaS'al

20?

G(xy) = e

5

2no’
VG is a circularly symmetric Mexican-hat shaped function whose distribution can be expressed as

follows:

2
T

2
2a

!

4
T

ViG(r) = — -
20

There are two reasons why the VG filter is attractive. The Gaussian blurs, vr smooths. the
image without introducing changes that were not present in the orgnal image. The second
consideration is that V? saves in computation time. First-order or second-order dircctional
derivatives can be used rather than V2. For first-order we must search for the peaks or dips
indicating intensity changes, and for second-order we look for zero-crossings. The disadvantage to
using these methods is that they are directional. For first-order, there is a great deal of
computation that must be performed. and the computations necded for second-order are worse
Using an orentation-independent  operator will allow us to avoid performing all these
computations. F'or reasons of parsimony. we choose the lowest-order operator we can find. We
also would like a circularly symmetric operator, making it dircctionally independent.  The
I aplacian, V? | fits these requirements, and it can be used to detect intensity changes.

We will first smooth the image using the Gaussian,

Gl
where, *, represents the convolution operation, and I, represents the tmage. We then apply the

laplacian to the smoothed image,




VG = (VGY* I

fi

A mathematical identity allows us to move the V2 inside the convolution allowing us to ceonvolve

the image with V*G.

2.2.2  The Raw Primal Sketch

Now that we have a method to detect the intensity changes in the image, we can proceed to
the next stage in developing the Primal Sketch. In this second stage, we need to combine the
information obtained by convolving the image using vanous-sized filters.  According to Marr.
there 1s a physical reason why the zero-crossing detected by using one filter 1s related to the zero-
crossing obtained when using a different sized filter. It is due to the spatial comcidence
assumption [3]:

If a zero-crossing segment is present in a set of independent VG channels over a
contiguous range of sizes, and the scgment has the same position and onentatton
in each channel, then the sct of such zero-crossing scements indicates the
presence of an intensity change in the image that is due to a single physical
phenomenon (a change in reflectance, illumination. depth. or surface onentation)

According to this assumption, we can state that if a zero-crossing is present across scveral
filtered 1mages, then 1t is probably duc to an object located 1n the image and not due to noise. If
it was due to notse, then there 1s high probability that it will not appear in several filtered images.

We will modify this assumption to include groups of rero-crossing scgments. If a group of
zero-crossing segments appear on several filtered images, then we can assume that they are due to
an object in the image and not to noise. We want to do this because we would like to group
zero-crossings together to form regions, and then compare regions across several filtered images to
see if a particular region appears inside of a region from a filtered image that 1s tuned to a larger
scale. If we find that a region does have a corresponding region in a filtered image of a different

scale, then we can presume that the region is not due to noisc and that it is due to an object

located in the image.




We would like to form these regions, because it is easier to deal with the image at the level of
regions. or groups of pixels, rather than at the pixel level. The description of the image using the

primitives edges, bars, and blobs, and terminations having attributes of length. width. and position.

is called the Raw Primal Sketch [1]. Since our representation of the image using regions does not
use those primitives, we cannot truly call it a Raw Primal Sketch. We can however give the
regions attributes of length, width, and position. if we desire. Tach region is either made up of
cdges, bars, or blobs., or combinations of these. There are. however, no terminations. So. in
some scnse, we can consider that after we compare regions from several filtered images, and
choose the regions that have been present in all. or most of, the filtered images we have obtained

the Raw Primal Sketch.

2.2.3  The Full Primal Sketch

The last step according to Marr was to make tokens and find boundaries to obtain the Full
Primal Sketch. Since we have adapted ‘¢ Raw Primal Sketch for our purposes, we have
obtained the Full Primal Sketch alrcadv. The regions formed from the zero-crossings can be
thought of as tokens. and the borders of these regions can be thought of as their boundaries.

The next chapter gives a detailed description of the implementation of the filtering, detection

of the zero-crossings, and formation of regions.




Chapter 3

IMPLEMENTATION

The previous chapter discussed the various methods of representing the image, and
modifying it so that it can be easily analyzed. This chapter focuses on the implementation of the
techniques discussed. The techniques can be broken down into five main parts. First. we discuss
a way to represent the image in a different format. Then a greyscale representation of the image 1s
presented. The third part involves the construction and application of filters for the image. Once
the image is filtered. we can detect and represent the intensity changes within it. These intensity
changes, known as zero-crassings, can then be grouped together to form regions. lastly, regions
from a filtered image of a particular o value arc comparcd with rcgions from a a filtercd image of
a smaller o value. Regions that correspond to each other are then placed in a resultant image.
These regions can then be compared with another filtered image of an even smaller ¢ valuc. The

final image obtained after all comparnisons have been done should contain only the objects of

interest within the image.

3.1 Representation of Image

Before we modify the image, we must represent it so that the vanous techniques can be
implemented conveniently. The initial representation of the image is as a two-dimensional matnix
of mntensity levels. Specifically, it is a 64 by 64 matrix. Fach cell in the image contains a value
that represents the intensity at that position in the image. Another way the image can be
represented is to give each of the cells a number to distinmuish it from the others, and to allow
each cell to be given properties. The only property at the moment is the intensity level that it

contains. The numbers for the celis are shown in Figure 1.




q
]
0 1 2 3 4 5 ... 58 59 €0 01 62 63
64 65 c. 126 127
128 129 130 .. 189 190 191
192 193 194 195 C 252 253 254 255
256 257 258 259 260 ce 315 316 317 318 319
320 321 322 323 324 325 ... 378 379 380 381 382 383
3712 3713 3714 3715 3716 3717 ... 3770 3771 3772 3773 3774 3775
3776 3777 3778 3779 3780 R 3835 3836 3837 3838 3839
3840 3B41 3842 3843 e 3900 3901 3902 3903 |
3904 3905 3906 - 3965 3966 3967 ;
3968 3969 .. 4030 4031
4032 4033 4034 4035 4036 4037 ... 4090 4091 4092 4093 4094 4095 :
|
|
Figure 1: Cell numbers for 64 by 64 matrix —j

3.2  (revscale

The next stage in our representation is to plot the image using grey levels in place of the
intensity level. This representation is only uscful in giving us a visual image of the intensity levels.
Fach cell is represented by an 8 bv 8 matrix of pixcls. These 64 pixels are used to give 65 grey
levels. For each level. the corresponding number of pixels is tumed on. For instance. if the grev
level is 0. no pixels are turned on. If the grey level is 4. 4 of the 64 pixels are turned on. and so
on. The highest level is 64. where all the pixcls in the & by § matrix are tumned on.

To make a grey scale plot of the entire image, the maximum and minimum values of the
image are found, and the intensity values arc then scaled from ) to 64 to plot the correct grey
scale for that intensity.

To make the plotting of these grey levels easicr, the greyscale was made into a font. Fach

character of the font represents a particular grey level. So, when a grey level needs to be plotted.
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each individual pixel does not need to be turmned on separatelv. The character in the font that
represents a particular grey level is plotted, and so all the pixels for that character are turned on at

once.

3.3  Filtering

There are two stages to the process of filtering an image. First we need to construct filtering

matrices. and then we convolve them with the image matrix.

3.3.1 Filter (onstruction

To construct the filters, we will use the V? introduced in the previous chapter. We will
construct five different filters, each representing the o values of .5, .75, 1.0, 1.5, and 2.0. Using
these five different values will allow us to filter the image at five different spatial scales.

The process used to construct the filters can be thought of as a double summation within a
doublc Toop. The outer loops go through every cell in the filtering matrix and calculate the value

for each cell using a double summation. The double summation computes 121 values within
each ccll in increments of —lll— in both the x direction and the v dircction giving 121 values for the

subcells contained within the cell. The sum of these valucs is divided by 121, and that number i<
used as the value for the cell.

Using this method of calculating the valuc for the cell will vicld a better approximation of
the actual value for cach cell. The value 121 was obtained through expenmentation. Using the
average of 121 values gives a verv accurate value for the value of the cell. The number of valucs
used for the average depends on how accurate the value for the ccll needs to be. If a more

accurate value is needed, then more than 121 values can be used. Ulsing less than 121 values will




i1
vield a less accurate value for the cell. The increment _l!l- is the reciprocal of the square root 121.

Once the values have been calculated for each cell, an appropnate scale value is determined.
and each value in the matrix is multiplied by the scale value. The scale value is determined by
evaluating what size matrix is needed that will represent the shape of the curve accurately enough.
with only integer values, for a particular 0. Integer values are used rather than real values to
increase speed of computation. Once the matrix is constructed, it can be reduced in size if all the

values located in the outer rings are zero’s. An illustration of this is given in Figure 2.

| ) 0 0 o 0 \
|
0 1 1 1 0 1 1 1 i
] 1 -8 1 o] ———— 1 -8 1
|
0 1 1 1 0 1 1 1 |
0 0 o ) 0
i  Figure 2: Reduction of filter size f

33.2 Convolution

After the filtering matrices are constructed, the next step is to convolve the image with each
of the them. There are two ways that the image matrix and the filtering matrix can be convolved.
The first method is to use Fourier Transforms. The method involves taking the Fourer
Transforms of the image matrix and filtering martix, and then doing an inverse Fourier Transform

of the product of the two transforms. This method is probably the most efficient and time saving
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computationally, but we chose to use the method of Digital Convolutions rather than the Fourier
Transform method because of its simplicity and because our primary interest lies in locating the
intensity changes in the image and not in how efficiently we can do convolutions.

Digital Convoiution o, the image matrix and the filtering matrix can be represented by the
following equation:
u
F*l=Fl(xy) = Z Z F(m-u+im-u+ij) [(x+iy+j)
1= j=-u

m—1
2

u=

where m is the size of the filtering matnx. Iet F be the 3 by 3 filtering matrix,

1 1 1
1 -8 1
1 1 1

and let I be the image matrix

0 0 0o 1 1 1
0O o o 1 1 1
O 0 0 1 1 1
O 0 o 1 1 1
O 0 0o 1 1 1
O 0 0 1 1 1
m = 3, the size of the filtering matrix, and u = mTI = 1. The filtered image matnix, I'l, will be
as follows:

X X X X X X
X 0 3 =3 0 X
X 0 3-3 0 X
X 0 3-3 0 X
X 0 3-3 0 X
X X X X X X
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The “X" is used to indicate that FI, the filtered matrix. does not have values fur those
positons. This problem is known as Start-up Artifact and Ending Artifact. There are four ways
that we can handle this. The first way is to just ignore it and accept the fact that we will losc an
outer border proportional to the size of the fillering matrix every time we convolve an image.

The second and third methods give values for the locations in the image matnx that arc
needed for the calculation of the filtered image. For instance, to calculate FI(1,1), we need to
know the values of 1(0,0), 1{C.1), and 1(1.0). The second method sets these vaiues to zero, along
with all the other unknown values needed for the computation of the filtered matrix. The third
method scts the values equal to the closest known value. (00 | [{0.1), and I(1.0) would all he
set equal to I(1.,1).

There arc problems that we need to be aware of for both of these methods. For the sccond
method, giving a valuc of zero to those positions would causc a zcro-crossing to be detected along
the border if the background noise is of sufficient intensity. This may not be desirable. Using the
ciosest value, as in the third method. mav not lead to a zero-crossing being detected, but if the
values n the cells being copied are due to some particular characteristic of the image that s
present at that location, then that charactenstic will be evident in the outer cells as well. This also
mav not be desirablc.  Another consideration for both of these methods 1s that sctting the
unknown values to the appropriate value will take time, cspecially if the filtering matrices are
large.

The fourth method is to set thosc cells equal to a value based on the previous two points.
For example, the value for I(1.0) 1s equal to I(1, 1) + (I(1.1) - 1 (1.2}), or equivalently. 2 1(1.1) -
1(1.2). This computation is done to get all the necded values. Although this method scems to
solve the problems associated with the previous two methods, the computation involved s very
cxpensive, especially when large filters are used. It does not seem worthwhile to use it, unless it is

cruzial to preserve the size of the image matrix.
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It is important to realize that something can be done about the Start-up and Ending Antifact.
but for our purposes, it is not necessary to preserve the image sizc. Therefore, we will choose the

first option. and ignore the fact that the outer border is lost.

34 Zero-Crossings

The next phase in our implementation is to detect and represent zcro-crossings. The zero-
crossings will be used to detect where the intensity changes are in an image. and then will be
grouped together to form regions. There are a number of wayvs to detect and represent zero-

crossings. The following sections outline the methods we used.

34.1 Detection

We know that a zero-crossing occurs when there i1s a change in sign between the numbers
contained in adjacent cells in the filtered image. To detect where these intensity changes occur, all
we need to do is go across and down cach filtered image matrix and check to see if there is 2 sign
change between the values contained in adjacent cells. To make it easy to determine whether or
not there 15 a sign change, the values in the matrix arc first converted to positive one’s for all
positive numbers, and negative one’s for all negative numbers. Then, if the sum of two adjacent
cells adds up to zero, then we can state that a zero-crossing cxists between those two cells.

One problem with this method is if the value in a cell is zero. In ocur implementation, we
assumc that zero is positive. and so. it becomes a positive one. Doing this causcs the zcro-
croseing to be shifted slightly, or an extra zero-crossing (o appear. Both these two cases arc

illustrated in Figurc 3.




w
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Figure 3: The Case of Zero !

In the first case. there should only be one zero-crossing which appears through the middle of the
cell contaming the value zero. lHowever, the zero-crossing is shifted (o the left so that it hes
between the first cell and the second cell. In the second case, two zero-crossings appear where
there should not have been a zero-crossing, one between the first cell and the second cell, and the
other 1s between the second cell and the third.

We arc allowing this error to be introduced into our zero-crossing representation of the
image for two reasons. The first is because there will be very few cells whose values are zero
The second is because the segmenting techniques used to group the zero-crossings together 10
form regions rely on the .zero-cross‘mgs being between two cells, and not through celis. If a cell
has the value zero and 1ts zero-crossing goes through the middle of the ccil, and the cell adjacent
to it has its zero-crossing at the edge of the ccll, there is no way to connect them. The
segmenting technmiques also relv on the zero-crossings being connected on both ends. Having a
zero-crossing that did not connect to anything will cause an error to be rteported. and the
segmenting program will not continue to segment the image.

Once the zero-crossings are detected. we need to select a representation that wiil store what
zero-crossings are located around a particular cell. If we can storc this information. we can access

it to traverse the zero-crossings to group them together to form regions.
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34.2 Representation

The first way we will represent the zero-crossings is graphically. Its purpose 1s to
conveniently display zero-crossings. Recall that the image is represented as a 64 by 64 matnx of
cells. Each of these cells was then represented by an 8 by 8 matrix of pixels to plot the grevscale
of the image. We will again use the 8 by 8 matrix of pixels, but this time, we will plot lines to
indicate the presence of zero-crossings between two cells.

If there 1s a sign change between two adjacent cells, then a line is plotted down the last
column of pixels in the 8 by 8 matrix of pixels of the cell to the left. and a line is plotted down
the first column of the cell to the right. If the sign change occurs between cells sitting one on top
of the other. then the lines plotted are in the last row of the tcp cell and the first row of the

bottom cell. The two types of zero-crossings are illustrated in Figure 4.

Figure 4: Two tvres of zero-crossings

Along with plotting the zero-crossings, we need to save them in some way. One method is
to make an array of 4096 elements, one for each ceil. Each element of the arrav wiil contain 2
bits, one bit for each zero-crossing. A bit is sct if a cell contains a particular zero-crossing. The
first bit corresponds to the Right zero-crossing, and the second bit corresponds to the Bottom

Using bits will allow us to access the information verv quickly, because bit operations can be
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performed to determnine whether or not the cell contains a particular zero-crossing. An example

of this representation is illustrated in Figure 5 and Figure 6.

1 2 3 4 5 & 7 |
i 5 ¢ 8 10 11 12 13 1 14 }
L e 5 |
15 ' 16 17 1 18 1 19 20 1 21
' 1 ' :
22 | 23 | 24 25 26 | 27 | 28
i 29 | 30 31 1 32 33 ) 34 @ 35
1 38 1 37 38 39 40 41 1 a2
i ! |
e
! 43 44 45 46 47 48 49
Figure 3 Cells with zero-crossings
l
1 00 8 : 10 15 : 10 22 : 10 29 : 10 36 : 10 43 . 00
2 : 01 9 : 00 16 : 00 23 : 10 30 : 00 37 . 01 44 @ 00
3:01 10 : 00 17 . 11 24 @ 01 3 10 38 01 45 : 00
4 : 01 11 : ¢C1 18 1¢ 25 . T 22 01 39 : 01 46 : 00
5 : 01 12 : 00 19 : 01 26 : 10 33 ¢ 11 40 : 01 47 : 00
6 01 13 : 10 20 : 10 27 : 10 34 ¢+ 10 41 11 48 : Q0
7 00 14 : 00 21 : 00 28 : 00 35 00 42 00 49 00
Figure 6: Bits set for each cell of previous figure
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Iven though each cell onlv has 2 zero-crossings that are actually stored. to understand the
segmentation algorithm, we will think of each ccll as having 4 possible zero-crossings. A cell
could also have zero-crossing above it. referred to as the Top zero-crossing, and a Left zero-
crossing, along with the Right and Bottom. To sce if a ccll has a Top zero-crossing, we check if
the cell above it has a Bottom zero-crossing.  Similarly, to check if a cell has a Left zero-crossing,

we check if the previous cell has a Right zero-crossing.

3.5 Regions

I'he final stage 1s to form the regons. This involves two major steps. We first find the
borders of the regions. and then we “fill in the borders™ 1o form the regions. Before we can beain
to do this. however. we need to take carc of onc detail. The outside border of the filtered image
does not contain zero-crossings.  If we attempt to implement a segmentation algonthm to group
zero-crossings together to form regions, many potential regions will not be considered because
they are not closed contours.

The first section shows a wayv to handle this probiem and the following sections discuss the

method used to segment the image into regions.

351 Qutside Border

To insurc that potential regions arc not lost, we will place zero-crossings around the outside
of the filtered image. The cells on the corners of the border can be determined ahead of tme,
based on the a value of the filtered image, and scro-crossings can be placed at the appropriate
places to create a border surrounding the filtered image. The point 1o remember here is that the
zero-crossings placed around the border are not due to intensity changes in the image. They have

been placed there to avoid losing cntical information about the image.




3.5.2  Traversing Zero-Crossings to Create Border Paths

This section explains the decision-making process that occurs when we follow the lines made
by zero-crossings to form regions. We first need to analyze the steps we go through when we
traverse the zero-crossing lines on the plots. We will formulate rules that can be applied to the
representation of the zero-crossings that we developed in the previous section.

Before we can analyze what decisions we make when we traverse the lines to form zcro-
crossings, we must define what a region is. A region is an arca which is completely bordered by
zero-crossings. If there are zero-crossings within the region, then no part of the those zero-
crossings can he a part of the border of zero-crossings of the outer region. Two or more regions
can be adjacent to cach other, in which case. the outer borders of the regions are touching. In
Figure 7. cells 11, 17, 18, 19, 25, and 26 form a region, while cells 24, 31, 32, 33, and 39 form a

second region adjacent to the first.
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In Figure 8. cells 10, 11, 12, 17, 18, 19, 24. 25, 26, 31, 32. 33, 38. and 39 form a region. while cells

18 and 25 form a second region.
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Notice that cells 18 and 25 are located in both regions. [t is possible to stipulate that these
celis are only in the second region and not the first. but for our purposes, we will allow them to
exist in both regions.

Now that we have a definition for what we consider a region to be, we need to make up a
set of rules that will tell us how to traverse the zero-crossings to form regions to fit that criterion.
We first need to think about how we mentally form the regions when we look at a map of zero-
crossings. Looking at Figure 7 on page 20, we could form a region by starting at the cell
numbered |1 and going in a clockwise direction along the lines until we reach cell 1 again. We

notice that at cell 26, we have to decide whether to make a right tum, or continue going past cell

33 and then make the right tum. To form the smallest region possible, we turn at cell 26. Then,

—y — - e — w



between cells 17 and 24, we have to make another decision. We need to decide whether to go
right or left. Again, to make the smaliest region, we choose to turn right.

Before we can form a set of rules to traverse the zero-crossings, we nced to realize that it was
not just at the intersections of cells 26 and 33 and cells 17 and 24 that we had to make decisions
about what direction to go. We were making decisions from the moment we began to follow the
Zero-crossings.

To make a set of rules about the method of traversal, we need to first specify three things.
We nced to specify a starting place, a direction in which we will traverse, and a stopping place.
Once these things are sct, we can form a set of rules to do the traversing.

We will always start at the top-left ccll of a region. This will be the starting ccll. The
starting ccll must have a Top zero-crossing, a Left zero-crossing, and must not be a part of any
other region. [f it does not have Top or Left zcro-crossings, or is part of a region. then we
attempt to form a region using the next cell. If that cell does satisfy the starting conditions. then
we begin traversing with the Top zero-crossing, and travel in a clockwise direction. We know that
we have finished when we have reached a cell which has a Left zero-crossing, and it is the starting
cell. This will be our stopping condition. Then we attempt to form another region starting at the
next cell, and we start the whole process again until we have processed the last cell in the filtered
tmage.

The thing to keep in mind when we are forming the rules is that we always want to move in
a clockwise direction. and we want to form the smallest region possible. Figure 9 presents an

algonthm which shows the steps taken to form a region from zero-crossing segments,




start = first cell on map
cell = first cell on map
end = last cell on map
region = 1
while start -= end do
if Top(cell) and Left(cell) and
cell not in a region then
goto 1
if border-path (region) then
region = region + 1

endif
endif
start = start + 1
cell = start
endwhile

condition

1 start > cell
Right(cell)
Top(cell + 1)
left(cell - 63)

2 start > cell
Bottom(cell)
Right(cell + 64)
Top(cell + 65)

W

start > cell
left(cell)
Bottom(cell - 1)
Right(cell + 63)

4 start > cell
start = cell
Top(cell)
Left(cell - 64)
Bottom(cell - 65)

operation(s)

border-path(region) = nil;RETURN

goto 2
cell = cell + 1;goto 1

cell = cell - 63;goto 4

border-path(region) = nil;RETURN ‘

goto 3
cell = cell + 64;goto 2

cell = cell + 65;goto 1

border-path(region) = nil;RETURN

goto 4
cell cell - 1;goto 3

cell = cell + 63;goto 2

border-path(region) = nil;RETURN

Done With Region : RETURN

goto 1
cell cell - 64;goto 4

cell = cell - 65;goto 3

Figure 9: Region Making Algorithm

In the algorithm. the notation “Top(cel)” is a check to see if that particular

crossing Top. ‘The other 7ero-crossings are checked in the same manner.

cell has the zero-
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The first part of the algorithm is an initialization routine that sets up the start, end, cell, and
region variables accordingly. Then it calls the first function if all the conditions are satisfied. The
start cell must have both the Top and Left zero-crossings and must not be part of a region. A
# goto statement is used in the algorithm to represent that a function is being called. At the label,

I. we begin traversing with the Top zero-crossing of cell.  Here. we first check to make sure that

we have not somehow started to traverse backwards, and reached a cell that is smaller than the
starting cell. If this condition is true, then we do not consider this as a possible region, and set 1t
to nil. We do this so that we can use the region number for a legitimate region. Before we
increment the region number to the next region, we check to make sure that it has not beer set to
nil, indicating that there was a problem with the traversal.

If the cell is greater than the start ccll, then we proceed to the other choices. We select the
| first condition that i1s satisfied in the list, and perform the indicated operation or operations. If
none of the conditions are satisfied, then we have an open contour, and will have to signal an
error. Since we should not have open contours, we should never have the problem that none of
the conditions are satisfied.

The other sections are basically the same as this first one. except the last section, Section 4.
which has an extra condition. If the cell is the same as the start-cell. then we have finished
forming a region, and can return.

The algorithm looks more complicated than it is. The casiest way to understand what the
algorithm is doing, and if it is constructing regions. is to go through the algorithm using one of
the zero-crossing plots in the previous figures. Another way it can be viewed is to pretend that
the zcro-crossings represent paths in a maze. Fach zero-crossing will be opposite sides of a wall
in the maze. The object is to place vour finger on a side of the wall. and follow it around until
| vou come back to where vou started. The direction vou move is unimportant. It can be cither
clockwise or counter-clockwise. The algorithm arbitrarily uses a clockwise dircction. and all the

“turns” arc made accordingly.
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The algonthm will find all regions located within one map of zero-crossings. We first set the
variables starting-cell and cell equal to the first cell in the map. The value of this depends on the
value of o. If ¢ is equal to .5, the value of the first cell would be 65. It is 130, 195, 260. and 325
for & values of .75, 1.0, 1.5, and 2.0, respectively. Similarly, the last cell on the map also depends
on the value of 0. The last cells are 4030, 3965. 3900, 3835, and 3770 for o value: of .5, .75, 1.0.

1.5. and 2.0, respectively.

3.5.3 Marking Cells Within Borders

The algorithm assigns region numbers only to the cells located along the border of the
region. The cclls that are contained within the region will not be given a region number. The
test used o start making a region is that a cell must have Top and Left zero-crossings. and that 1t
cannot be part of a region. Assume that a cell is part of a region and has Top and Left zero-
crossings. Since we have not given region numbers to cells located in the in eror of regions. we
can assume that the cell is part of the border of a region, and cannot be allowed to be part of
another region. If the ccll has Top and Left 7ero-crossings, and has not been assigned a region
number, then we can start a new region using this cell as the starting cell. We can do this because
this new region will either be adjacent to another region or be in the intenor of onc. Both of
these possibilities are acceptable according 10 our definition of a region.

Once all the regions are found on a map., we will know what cells are located along the
borders of these regions. We need to figurc out a way to identifv the cells contained within the
borders and mark them with the appropriate region numbers. We must analyze cxactly what
information we use to decide what cells arc contained within a region and what celis are not.

Looking at Figure 10, we notice that there is onc region that takes up the entirc 12 by 12
matnx, and there is a second region that is contained completely within the first. according to our

definition of region. Using our algorithm for traversing the lincs allows us to mark the cells




around the border as we go along, but to mark the region number for the cells in the interior wil

require information about the path of the traversal.

Marking Cells

re 10:
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We ueed to know what cells we went through and marked and which zero-crossing in the

cell we were following. One way to keep track of the traversal path is to create a border-path as
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we traverse the zero-crossings to form a region. The border-path 1s a list of cell numbers and
zero-crossings encountered while traversing the zero-crossings to form a region. It is represented
as a list of lists. The lists contained within the outer list will have two elements. The first
clement 1s the cell number that we have come to in our traversal. The second element is the
position of the zero-crossing. For exampile. the very first list in the border-path list will be “(first-
cell Top)” indicating the first cell in the region and the first posttion of the zero-crossing we start
the traversal. We continuce adding these lists to the outer list as we traverse along the zero-
crossings to form the region. [iventually, we reach the last element of the list. This will be

“(first-cell T.eft)". I ooking at our example, region | (the region that is the entire 12 by 12 matnx)

has the following border-path:

( (1 Top) (2 Top) ... (12 Top)

(12 Right) (24 Right) ... (144 Right)
(144 Bottom) (143 Bottom) ...(133 Bottom)
(133 Left) (121 Left) ... (1 Left) )

The cells contained in the border-path for region | have been circled with the fainter circles. and
the cells contained in the border-path for region 2 (contained within region 1) have been circled
with the more solid circle.

Now that this is set up. we can figure out what cclls are within this border. The following

algorithm will mark the cells contained 1n the region.




border_path_copy = border_path
cell_list = (pop border_path_copy)
while cell_list do
if (cadr cell-list) = Right then
cell = (car cell_list)
while (list cell Left)
not member of border_path
and cell-1 not in region do |
mark cell-1 with region !
cell = cell - 1 i

endwhile i
endif C
cell_list = (pop border_patl_copy) \
endwhile ‘
. ligure {1 Algorithm to mark all cells in 4 reon

The algorithm goes through the border-path of a region, locates the cell that has a Right zero-

crossing and marks the cells located to its left until it reaches a cell that has alreadv been marked.

or one that contains a Left zero-crossing.

3.6 Comparison of Regions

Now that we have methods to Jocate and mark regions within a filtered 1mage. we will apply

them to various filtered images. In Figure 12, we can sce the filtered images of an image for three
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Figure 12: Filtered Images of Image
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different values of o. The o values from top to bottom are 2.0, 1.0, and 0.5. The image that the
filtered images were obtained from contains three objects that were placed in a noise background.
There 1s a considerable amount of noise through the center of the image giving the effect ot a
mountain range. We would like to be able to isolate the three objects contained within the
image.
To do this we will first threshold the images using the arca of the regions as the thresholding
factor. This will allow us to disregard many of the smaller regions formed when connecting the

7ero-crossings. Iigure 13 shows the images after they have been thresholded.




35 < Threshold

35 < Threshold < 100

35 < Threshold < 100

Figure 13: Thresholded Filtered Images
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Once the images arc thresholded, regions on two different images arc compared to see 1t they
match up. The comparnison process involves placing a region contained in the 1image of the
smaller & on top of a region contained in the image of the larger o, and matching up the ccll
numbers that make up the region. If there are more than a predetermined number of cells in the
region of the smaller » that do not match up with the cell numbers of the larger o, then the
regons do not correspond.

If. however, there arc only a limited number of cells that do not match. then the remons do
correspond. and the region in the smaller @ image is placed in a third image. This third timage will
contatn all the regons that have matched up when the first two images were compared. This
third 1mage can then be compared with an image of an even smaller » value. and so on. unul we
decide to stop.

The next two figures, Figure 14 and Figure 15, illustrate the comparson process.
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Figure 14 shows the result of comparing the thresholded images with o values of 2.0 and 1.0.
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Then, Figure 15 shows the results of comparing the result of the previous comparison with the

thresholded image of o value of 0.5. The three objects placed in the noise background in the

image have been isolated.
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3.7  Summary

This chapter has described the implementation of the techniques discussed in Chapter 2. We
now have a way to interpret a greyscale representation. We can detect and represent the intensityv
changes in the image by finding and storing zcro-crossings. And, lastly, we have the capability to

group these zero-crossings into regions. and comparing them across several spatial scales.
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Chapter 4

RESULTS AND CONCLUSIONS

The application of the algorithms in the preceding chapter resulted in segmenting the initial
digitized image into regions, and then regions were compared across scveral spatial scales to select
particular regions that could represent objects contained in the image.

The results of applying the algorithms 1o images have been encouraging. The objects have
been isolated on sceveral images. The regions nbtained using an image of a greater amount of
noise tend to be distorted. and so make it difficult to isolate the objects completcly. More testing
needs to be done to determine at what point the algorithm fails to locate the objects as we
increasc the amount of noise.

Now that we have these regions that exist across scveral spatial scales, we can lock at what
we should do next. At this point we have the capability to analyzc the image at a higher level.
Instead of attempting to look at every cell in the image, we can look at groups of cells. This will
allow us to give propertics to each region that will distinguish it from the other regions. The
purpose of doing this is to use the propertics to identify the object that caused the region. The
propertics that can be given to the regions include such things as area, length, width. center of
mass, and so on. A combination of some of the propertics may be enough to identify the object,
especially if we have an idea of what it could be.

This is only one of the possible ways to continuc this project. Another possibility is to
automate the decision-making process involved throughout the application of the algorithms.
Decisions are made when sclecting the threshold values for the region size, determining when to
halt the comparison of regions, which values of o will be more cffective for a particular image.
and so on. Rules can be developed to make these types of decisions, and an Expert System can

be built.
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Finally, a third possibility is to apply the algorithms to real images, and test whether or not

the algorithms are as cffective on them as on the generated oncs. Real images will introduce
several problems that need to be addressed if our vision system is to work properlv. There are a
number of factors that affect the intensity levels, and each factor must be considered for the

results of the processing to be correct.
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