
Applied Research Laboratory
The Pennsylvania Sate University

Lfl[m

I n

USING COMPUTER VISION TECHNIQUES
TO LOCATE OBJECTS IN AN IMAGE

OI by

* •Sujata Kakarla
J. Wakeley
A. S. Maida

Snf

DTIC
SL7CTE0

;r'!•,,/)N ATMT~~c.N T" A

TICIINICAL REPORT
" SR 10 •: 1"R! _

IrIi)

The Pennsylvania State University
APPLIED RESEARCH LABORATORY

P. 0. Box 30
State College, PA 16804

USING COMPUTER VISION TECHNIQUES
TO LOCATE OBJECTS IN AN IMAGE

by

Sujata Kakarla
J. Wakeley
r. S. Maida

Technical Report No. TR 88-013

September 1988

Supported by: L. R. Hettche, Director
Naval Sea Systems Command Applied Research Laboratory

Approved for public release; distribution unlimited

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Applied Research Laboratory (If applicable) Naval Sea Systems Command

The Pennsylvania State Univers' v ARL Department of the Navy

6c ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

P. o. Box 30

State College, PA 16804 Washington, DC 20362

Ba NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Sea Systems Command NAVSEA

8c ADDRESS (City. State. and ZIPCode) 10 SOURCE OF FUNDING NUMBERS
Department of the Navw PROGRAM PROJECT TASK WORK UNIT
Washington, DC 20362 ELEMENT NO NO NO ACCESSION NO

T tITLE (Include Security Classification)

Using Computer Vision Techniques to Locate
Objects in an Image

12 PERSONAL AUTHOR(S)
Sujata Kakarla, J. Wakelev, A. S. Maida

'3a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Y ar, Month, Day) 5 PAGE COUNTMa>.S. Thesis FROM TO September 1988 45

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue en reverse if necessary and identify by block number)

ýIELD GROUP SUB-GROUP -- artificial intelligence, computer imaging, digitized images

I image filters, signal images

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

- The purpose of this research was to study and implement a computer vision

technique. Our goal was to have the ability to input a digitized image
containing objects in a noise background, and output an image that contains only
the objects. The results of applying the subsequent algorithms have been
encouraging. Objects have been isolated on several images. At this point we
have the capability to analyze the image at a higher level. Instead of
attempting to look at every cell in the image, we can look at groups of cells or
regions. This will allow us to give properties to each region that will
distinguish it from the other regions. -,

20 DISTRIBUTION/ AVAILA8ILITY OF ABSTRACT 21- ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIED/UNLIMITED 0• SAME AS RPT [3 DT!C , USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I22c. OFFICE SYMBOL

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All Other editions are obsolete.

Unclassified

ii

Unclassified
SECUNITY CLAUIFICATION OP TIOS PAGE

This work is the result of a joint effort by the Applied Research Laboratory
and the Computer Science Department of the Pennsylvania State University.
Through an Exploratory/Foundational Program, the University provides graduate
assistantships to University students.

Accession For

NTI -FA&I
D TiAB E

L):t utit n/

Av P, ubility C'~u•S

+•v• y+i lid or

Dht , ;rlI81V I t3, ,aI

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

- - - - - j . r - , - . -

LII

TABLE OF CONTENTS

Pa ~e

LIST O F FIG U RES ...

ACK NOW LED G EM ENTS .. .N

Chapter

I INTRO DU CTIO N ...

2 IM A G E REPRESENTATIO N ...

2.1 Grevscaic ...
2.2 Constructing Regmons

2.2.1 Detection of Intensity Changes ..
2.2.2 The Raw Prim al Sketch .. . 6
2.13 The Full Prim al Sketch ...

3 IM PLEM ENTATIO N ... 8

3.1 Representation of Im age .. S
3.2 G reyscale ... 9
3 .3 F ilteri g .. 10

3.3.1 Filter Construction ... 10
3.3.2 Convolution .. II

3.4 Zero-Crossings ... 14

3.4.1 Detection .. 14
3.4.2 Representation ... 16

3.5 Regions .. 18

3.5.1 Outside Border .. 18
3.5.2 Traversing Zero-Crossings to Create Border Paths 19
3.5.3 M arking Cells W ithin Borders .. 25

3.6 Com parison of Regions ... 28
3.7 Sum m ary.. 35

TABLE OF CONTENTS (continued)

Chaoter Pace

4 RESU LTS A ND C O N C LU SIO NS

B IB L IO G R A P H Y S.....................

LIST OF FIGURES

Pace

I. Cell numbers for 64 by 64 manx Q

2. Reduction of rf ter size ..

3. The Case of Zero ... ,5

4 Two types of zero-crossings ... 6

% CeLls with zero-crossings ... 7

6. Bits set for each cell of previous figure ..

Examnie of adjacent regons 20

S. Exam ple of nested resons 21

9. Region M aking Algorithm .. 23

10. M arking Cells .. 26

11. Aleorithlm to m ark all cells in a region ... -2

12. Filtered Im ages of Im age .. . 29

13. Thresholded Filtered Im ages ... 31

14. Com parison Num ber I

15. Com parison Num ber 2 .. 34

ACKNOWLEDGE.MENTS

There are a number of people that I wish to thank for thcir heip in compieting mis paper

First of all. I would like to thank Mr. Joseph Wakeley for his quidance and patience throualhout

these past two years. I also want to thank him for gving me the opportunity to work with him

on this project. I would like to thank Dr. Paolo Roberti for the use of his computer facilities.

and for his he!- in obtaining hardcopy piots of the figures in Chapter 3.

Dr. Anthony Maida has been both my advisor and my friend, and I cannot thank him

enouvh for all that he has done for me. Without his help I w,.ouid not have had the opponuratv

to do this proiect or to continue my education and obtain my Master s degree.

I would like to thank my friends. family, and fiance for their support and encouragement. I

could not have completed either the research or this paper without them.

Chapter I

INTRODUCTION

A picture is said to be worth a thousand words. It seems an appropriate saying when you

contemplate trying to describe a scene to someone. There is a vast amount of information that

can be extracted from just a single image, and to obtain a symbolic description of all this

information is virtually impossible. One possible way around this is to narrow our goals, and

attempt to locate and identify only particular features contained in the image. For instance we

may want to distinguish whether or not noise is present in the image. If the image contains

objects, we may wish to know where they are located, and their general configuration.

The purpose of this research was to study and implement a computer vision

technique. Our goal was to have the ability to input a digitized image containing objects in a

noise background. and output an image that contains onry the oijects. This goal was reached.

How we have reached this goal is the subject of this paper.

The following chapters discuss the methods used to isolate the objects in the image. Chapter

2 gives an overview of the ideas underlying the techniques that have b:en dc,,X, tc display the

imaRe, and to segrnent the image into regions. Instead of referring to the image in terms of the

intensity levels of the individual cells, we group cells together into regions, and then refer to the

regions in the image.

Chapter 3 focuses on the implementation of the techniques described in Chapter 2. A

detailed description is given of the stages of processing involved in obtaining an image that

contains only the objects that were in the original image. The processing involves fldtering the

image at different spatial scales, locating and representing the intensity changes, known as zero-

crossings, in the filtered image, and then forming regions from the zero-crossings. Smaller regions

are thresholded out. The remaining regions are compared across the different spatial scales. If

- -)

regions are found to be in the same location, then they are saved. lhese regions that have been

saved are most probably due to an object in the image.

The final chapter, Chapter 4, discusses the results of implementing the algorithms presented

in Chapter 3. and offers recommendations for further study.

Chapter 2

IMAGE REPRESENTATION

This chapter focuses on the methods used to represent an image. Initially, the image I,

represented by a two-dimensional matrix of intensity levels. It is very difficult to look at this ravk

data and understand what the image is and what it represents. Therefore. we need to obtain a

symbolic representation.

The first method discussed does not change the format of the image or encode informationl

symbolically. but it does allow a graphic representation of the image. The intensity levels arc

mapped into a greyscale. and then the greyscale corresponding to the intensity levcl is plotted

The second method processes the image and givcs a symbolic representation of the imarc

Instead of "seeing" the image in terms of individual cells (or pixels), as in the first method, we can

group the pixels together and look at the image in terms of regions

2.1 Grevscalc

I lie first method used to give a clearer representation ot the Image is a gcreyscaic, lIach

intensity level in the original image matrix is given a grey level. The grey levels start at (

indicating white, and go to however many levels are desired, or obtainable. The higlhcst le%-l

indicates black. Fach level in between \ill be an increasingly darker shade of grey The intensity

levels are scaled to fit the number of grey levels available. If any objects are located in the image,

they should be relatively easy to see, using the greyscale. unless the noise level is of such high

intensity that the object intensity gets lost.

2.2 (Constructing Regions

The greyscale representation is helpful in understanding what the image looks like. but it

does not help to output a description of thc image. The description of an image, that is a

description of the objects contained within the image, consists of three phases. The first phase o.

to construct the Primal Sketch. The peimal sketch consists of a symbolic representation of the

i
intensity changes in the image, and their location. The second phase is to develop the 2 7 -

Dimensional Sketch. This phase consists of a representation ot the properties of the Visiblc

surlaces in the image from the perspective of the viewer. The last phase. the 3-~)iinensional

Model Representation, gives a description of the shapes in tinc iinaec from the perspective ot the

object. This framework was derived by David Marr 1I3

We xill concentrate our efforts on the first of these phases, developing a method to secment

the image using the locations of the intensity changes as the partitioning agents. [here are three

stages to the construction of the Primal Sketch. T here is the detection of the intensity chan~ee

within the image, the formation of the Raw Primal Sketch. and the creation of the lull Primal

Sketch.

2.2.1 l)etcction of Intensity Changes

One method to locate the intensity changes in the image, is based on the followine tkwo

principles First, regularities in intensity changes occur at variouý spatial scales throughout the

image. Second, an intensity change will cause a peak or dip in the first derivative or. a Zero-

crossing in the second derivative. A zero-crossing is a place where the value of the functipo

changes sign. According to Marr and lijldreth (1Q80) 121. the operator that fits both these criteria

best is the filter VGC" , where V2 is the ! aplacian operator

2 (

2 (13

and G is the two-dimensional Gaussian distribution

G(xv) =
2ae

27irc

V2G is a circularly symmetric Mexican-hat shaped function whose distribution can be expressed as

follows:

2

"r 202V:G~r! -- [I -- •]

There are two reasons why the V2G filter is attractive. The (iaussian blurs. or smooths, the

image without introducing changes that were not present in the original image. The second

consideration is that V" saves in computation time. First-order or second-order directional

derivatives can be used rather than V2. For first-order we must search for the peaks or dips

indicating intensity changes, and for second-order we look for zero-crossings. The disadvantage to

using these methods is that they are directional. For first-order, there is a great deal of

computation that must he performed. and the computations needed for second-order aie worse

11sing an orientation-independent operator will allow us to avoid performing all these

computations. For reasons of parsimony, we choose the lowest-order operator we can find. We

also would like a circularly symmetric operator, making it directionally independent. ihe

I aplacian, V , fits these requirements, and it can be used to detect intensity changes.

We will first smooth the image using the Gaussian,

G "T

where, *, represents the convolution operation, and 1, represents the image. We then apply the

Ilaplacian to the smoothed image,

V"G I) (V'(3) - I.

.\ mathematical identity allows us to move the V2 inside the convolution allowing us to ccnvolve

the image with V2G.

2.2.2 The Raw Primal Sketch

Now that we have a method to detect the intensity changes in the image, we can proceed to

the next stage in developing the Primal Sketch. In this second stage, we need to combine the

information obtained by convolving the imace usinc vanous-stied filters. Accordin, to Marr.

there is a physical reason why the zero-crossine detected by usine one filter is related to the zero-

crossing obtained when using a different sized filter. It is due to the spatial coincidence

assumption 131:

If a zero-crossing segment is present in a set ot independent V2(channels over a
contiguous range of sizes, and the segment has the same position and orientation
in each channel, then the set of such zero-crossing senments indicates the
presence of an intensity change in the image that is due to a single physical
phenomenon (a change in reflectance, illumination, depth. or surface orientation)

According to this assumption, we can state that if a zero-crossing is rOresent across several

filtered images, then it is probably due to an object located in the image and not due to noise. If

it was due to noise, then there is high probability that it will not appear in several filtered images.

We will modify this assumption to include groups of zero-crossing segments. If a group of

zero-crossing segments appear on several filtered images, then we can assume that they are due to

an object in the image and not to noise. We want to do this because we would like to group

zero-crossings together to form regions, and then compare regions across several filtered images to

see if a particular region appears inside of a region from a filtered image that is tuned to a larger

scale. If we find that a region does have a corresponding region in a filtered image of a different

scale, then we can presume that the region is not due to noise and that it is due to an object

located in the image.

-7

We would like to form these regions, because it is easier to deal with the image at the level of

regions, or groups of pixels, rather than at the pixel level. The description of the image using the

primitives edges, bars, and blobs, and terminations having attributes of length. width and position.

is called thle Raw Primal Sketch IlI]. Since our representation of the image using regions does not

use those primitives, we cannot truly call it a Raw Primal Sketch. We can however give the

regions attributes of length, width, and position. if we desire. Each region is either made up of

edges, hars, or blobs, or combinations of these. Mhere are, however, no terminations. ISo. in

some sense, we can consider that after we compare reg-ions from several filtered images, and

choose fihe reizions that have been present in all. or most of. thle filtered images we have obtained

the Raw Primal Sketch.

2.2.3 -Me Full Primal Sketch

The last step according to Mart was to make tokens and find boundaries to obtain the Full

Primal Sketch. Since we have adapted 'lie Raw Primal Sketch for our purposes, we have

obtained the Full Primal Sketch already. lit e regions formed from the zero-crossings can be

thought of as tokens, and the borders of these regions can be thought of as their boundaries.

The next chapter gives a detailed description of the implementation of the filtering, detection

of the zero-crossings, and formation of regions.

Chapter 3

IMPLEMENTATION

The previous chapter discussed the various methods of representing the image, and

modifying it so that it can be easily analyzed. This chapter focuses on the implementation of the

techniques discussed. The techniques can be broken down into five main parts. First, we discuss

a way to represent the image in a different format. Then a greyscale representation of the image is

presented. The third part involves the construction and application of filters for the image. Once

the image is filtered, we can detect and represent the intensity changes within it. These intensity

changes, known as zero-cromings, can then be grouped together to form regions. Lastly, regions

from a filtered image of a particular a value are compared with regions from a a filtered image of

a smaller a value. Regions that correspond to each other are then placed in a resultant image.

These regions can then be compared with another filtered image of an even smaller a value. The

final image obtained after all comparisons have been done should contain only the objects of

interest within the image.

3.1 Representation of Image

Before we modify the image, we must represent it so that the various techniques can bc

implemented conveniently. The initial representation of the image is as a two-dimensional matrix

of intensity levels. Specifically, it is a 64 by 64 matrix. Fach cell in the image contains a value

that represents the intensity at that position in the image. Another way the image can be

represented is to give each of the cells a number to distintuish it from the others, and to allow

each cell to be given properties. The only property at the moment is the intensity level that it

contains. The numbers for the cells are shown in Figure I.

0 1 2 3 4 5 58 59 60 61 62 63
64 65 ... 126 127

128 129 130 ... 189 190 191
192 193 194 195 252 253 254 255
256 257 258 259 260 ... 315 316 317 318 319
320 321 322 323 324 325 ... 378 379 380 381 382 383

3712 3713 3714 3715 3716 3717 ... 3770 3771 3772 3773 3774 3775
3776 3777 3778 3779 3780 ... 3835 3836 3837 3838 3839
3840 3841 3842 3843 ... 3900 3901 3902 3903
3904 3905 3906 ... 3965 3966 3967
3968 3969 ... 4030 4031
4032 4033 4034 4035 4036 4037 ... 4090 4091 4092 4093 4094 4095

Figure 1: Cell numbers for 64 bv 64 matrix

3.2 (;revsale

The next stage in our representation is to plot the image using grey levels in place of the

intensity level. This representation is only useful in giving us a visual image of the intensity levels.

Each cell is represented by an 8 by 8 matrix of pixels. These 64 pixels are used to give 65 gr•c\

levels. For each level, the corresponding number of pixels is turned on. For instance, if the grey

level is 0, no pixels are turned on. If the grey level is 4, 4 of the 64 pixels are turned on. and so

on. The highest level is 64. where all the pixels in the 9 by 8 matrix are turned on.

To make a grey scale plot of the entire image, the maximum and minimum values of the

image are found, and the intensity values arc then scaled from 0) to 64 to plot the correct grey

scale for that intensity.

To make the plotting of these grey levels easier, the greyscale was made into a font. Each

character of the font represents a particular grey level. So. when a grey level needs to be plotted,

each individual pixel does not need to be turned on separately. The character in the font that

represents a particular grey level is plotted, and so all the pixels for that character are turned on at

once.

3.3 Filtering

There are two stages to the process of filtering an image. First we need to construct filtering

matrices, and then we convolve them with the image matrix.

3.3.1 Filter Construction

To construct the filters, we will use the V2 introduced in the previous chapter. We will

construct five different filters, each representing the ey values of .5, .75, 1.0. 1.5, and 2.0. t sing

these five different values will allow us to filter the image at five different spatial scales.

The process used to construct the filters can be thought of as a double summation within a

double loop. The outer loops go through every cell in the filtering matrix and calculate the value

for each cell using a double summation. The double summation computes 121 values within

each cell in increments of " in both the x direction and the v direction giving 121 values for tie

subcells contained within the cell. The sum of these values is divided by 121. and that number Js

used as the value for the cell.

Using this method of calculating the value for the cell will yield a better approximation of

the actual value for each cell. The value 121 was obtained through experimentation. Using the

average of 121 values gives a very ac;uratc value for the value of the cell. The number of value-

used for the average depends on how accurate the value for tile cell needs to be. If a more

accurate value is needed, then more than 121 values can be used. Iising less than 121 values will

II

yield a less accurate value for the cell. The increment is the reciprocal of the square root 121.

Once the values have been calculated for each cell, an appropriate scale value is determined.

and each value in the matrix is multiplied by the scale value. The scale value is determined by

evaluating what size matrix is needed that will represent the shape of the curve accurately enough.

with only integer values, for a particular a. Integer values are used rather than real values to

increase speed of computation. Once the matrix is constructed, it can be reduced in size if all the

values located in the outer rings are zero's. Arn illustration of this is given in Figure 2.

o 0 0 0 0

o I 1 1 0 1 ¶

o 1 -a a '- 1 -a•

o 1 1 1 0

0 0 a a 0

Fiure: Reduction of filter si7e

3.3.2 Convolution

After the filtering matrices are constructed, the next step is to convolve the image with each

of the them. There are two ways that the image matrix and the filtering matrix can be convolved.

The first method is to use Fourier Transforms. The method involves taking the Fourier

Transforms of the image matrix and filtering martix. and then doing an inverse Fourier Transform

of the product of the two transforms. This method is probably the most efficient and time saving

..L ...

12

computationally, but we chose to use the method of Digital Convolutions rather than the lourier

Transform method beLcause of its simplicity and because our primary interest lies in locating the

intensity changes in the image and not in how efficiently we can do convolutions.

Digital Convolution o, the image matrix and the filtering matrix can be represented by the

following equation:

U U

F I = FI(x,y)-= V Z F(m-u+i'm-u +j) l(x+i'y+j)

m--U
2

where m is the size of the filtering matrix. Let F be the 3 by 3 filtering matrix,

1 1 1

1 -8 1

1 1 1

and let I be the image matrix

X 0 3 -3 0 X
X 0 3 -3 0 X

X 0 3 -3 0 X
X 0 3 -3 0 X

X X X X X X

13

The "X" is used to indicate that Fl, the filtered matrix, does not have values mir those

positions. This problem is known as Start-up Artifact and Ending Artifact. There are four ways

that we can handle this. The first way is to just ignore it !nd accept the fact that we will lose an

outer border proportional to the size of the filtering matrix every time we convolve an image.

The second and third methods give values for the locations in the image matrix that are

needed for the calculation of the filtered image. For instance, to calculate FI(l,1), we need to

know the values of 1((0,0), l(0.,), and 1(1,0). The second method sets these values to zero, along

with all the other unknown values needed for the computation of the filtered matrix. The third

method sets the values equal to the closest known value. 1(0,0h . 1(0,1), and 1(1,)) would all be

set equal to I(1,l).

There are problems that we need to be aware of for both of these methods. For the second

method, giving a value of zero to those positions would cause a zero-crossing to be detected along

the border if the background noise is of sufficient intensity. This may not be desirable. (.sing the

cl•osest value, as in the third method, may not lead to a zero-crossing being detected, but if the

values ýn the cells being copied are due to some particular characteristic of the image that is

present at that location, then that characteristic will be evident in the outer cells as well. This also

may not be desirable. Another consideration for both of these methods is that setting thl

unknown values to the appropriate value will take time, especially if the filtering matrices are

large.

The fourth method is to set those cells equal to a value based on the previous two points.

For example, the value for 1(1,0) is equal to 1(1,1) + (1(1.1 - 1 (1,2ý), or equivalently, 2 1(1,•) -

4(1.2). This computation is done to get all the needed values. Although this method seems to

solve the problems associated with the previous two methods, the computation involved is verV

expensive, especially when large filters are used. It does not seem worthwhile to use it, unless it is

crucial to preserve the size of the image matrix.

14

It is important to realize that something can be done about the Start-up and Ending Artifact.

but for our purposes, it is not necessary to preserve the image sizc. Therefore, we will choose the

first option. and ignore the fact that the outer border is lost.

3.4 Zero-(rossings

The next phase in our implementation is to detect and represent zero-crossings. The zero-

crossings will be used to detect where the intensity changes are in an image, and then will be

grouped together to form regions. There are a number of ways to detect and represent zero-

crossings. The following sections outline the methods we used.

3.4.1 Detection

We know that a zero-crossing occurs when there is a change in sign between the numbers

contained in adjacent cells in the fdtered image. To detect where these intensity changes occur, all

we need to do is go across and down each filtered image matrix and cheek to see if there in a si2n

change between the values contained in adjacent cells. To make it easy to determine whether or

not there is a sign change, the values in the matrix are first converted to positive ones for all

positive numbers, and negative one's for all negative numbers. Then, if the sum of two adjacent

cells adds up to zero, then we can state that a zero-crossing exists between those two cells.

One problem with this method is if the value in a cell is zero. In our implementation, we

assume that zero is positive, and so, it becomes a positive one. Doing this causes the zero-

Mrns~iig to be shifted slightly, or an extra zero-crossing :a appear. Both these two cases are

illustrated in Figure 3.

15

z a ro--c ro a riga

1 0 1 1~-

S@shl Itedl

zsro--cro~lI ngs

--1 0 -1I --- , -- -- I

on both s1des

Figure 3: The Case of Zero

In the first case, there should only be one zero-crossing which appears through the middle of the

cell containing the value zero. Hlowever, the zero-crossine is shifted to the left so that it lies

between the first cell and the second cell. In the second case, two zero-crossings appear where

there should not have been a zero-crossirng, one between the first cell and the second cell, and the

other is between the second cell and the third.

We are allowin, this error to be introduced into our zero-crossing representation of the

image for two reasons. The first is because there will be vetrv few cells whose vaX`us Pre zero

The second is because the seanenting techniques used to group the 7ero-crossinps together io

form regions rely on the zero-crossings being between two cells, and not through cells. If a cell

has the value zero and its zero-crossing goes through the middle of the cell, and the cell ad'accn

to it has its zero-crossing at the edge of the cell, there is no way to connect them. The

segnenting techniques also rely on the zero-crossings being connected on both ends. Having a

zero-crossing that did not connect to anything will cause an error to be reported. and the

segmenting program will not continue to segment the image.

Once the zero-crossings are detected, we need to select a representation that will store what

zero-crossings are located around a particular cell. If we can store this information, we can access

it to traverse the zero-crossings to group them together to form regions.

16

3.4.2 Representation

The first way we will represent the zero-crossings is graphically. Its purpose is to

conveniently display zero-crossings. Recall that the image is represented as a 64 by 64 matrix of

cells. Each of these cells was then represented by an 8 by 8 matrix of pixels to plot the greyscale

of the image. We will again use the 8 by 8 matrix of pixels, but this time, we will plot lines to

indicate the presence of zero-crossings between two cells.

If there is a sign change between two adjacent cells, then a line is plotted down the last

column of pixels in the 8 by 8 matrix of pixels of the cell to the left, and a line is plotted down

the first column of the cell to the right. If the sign change occurs between cells sitting one on top

of the other, then the lines plotted are in the last row of the tcp cell and the first row of the

bottom cell. The two types of zero-crossings are illustrated in Figure 4

1 2

2

Figure 4: Two tyrpes of zero-crossings

Along with plotting the zero-crossings, we need to save them in some way. One method is

to make an array of 4096 elements, one for each cell. Each element of the array will contain 2

bits, one bit for each zero-crossing. A bit is set if a cell contains a particular zcro-crossing. The

first bit corresponds to the Right zero-crossing, and the second bit corresponds to the Bottom

Using bits will allow us to access the information very quickly, because bit operations can he

17

performed to determine whether or not the cell contains a particular zero-crossing. An example

of this representation is illustrated in Figure 5 and Figure 6.

1 2 3 4 5 6 7

a 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Figure 5: Cells with zero-crossings

1: 00 8 :10 15: 10 22: 10 29: 10 36: 10 43 :00
2 :01 9 :00 16 :00 23: 10 30: 00 37 :01 44 :00
3:01 10 00 17 :11 24:1 31 :10 38 :01 45 :00
4 : 01 11 : 0 S13 1.0 25 : 32 01 39 01 46 00
5 : 01 12 00 19 : 01 26 10 33 :11 40 01 47 00
6 01 13 : 10 20 10 27 : 10 34 : 10 41 11 48 : 00
7 :00 14 :00 21 :00 28 :00 35 :00 42 :00 49 :00

Fig= : Bits set for each cell of previous figure

Even though each cell only has 2 zero-crossings that are actually stored, to understand the

segmentation algorithm, we will think of each cell as having 4 possible zero-crossings. A cell

could also have zero-crossing above it. referred to as the Top zero-crossing, and a Left zero-

crossing, along with the Right and Bottom. To see if a cell has a Top zero-crossing, we check if

the cell above it has a Bottom zero-crossing. Similarly, to check if a cell has a Left zero-crossing,

we check if the previous cell has a Right zero-crossing.

3.5 Regions

Fhe final stage is to form the regions. This involves tXw major steps. We first find the

borders of the remons. and then we "fill in the borders" to form the regions. Before we can begmn

to do this, however, we need to take care of on. detail. Ihe outside border of the fdltered image

does not contain zero-crossings. If we attempt to implement a segmentation algorithm to group

zero-crossings together to form regions, many potential regions will not he considered because

they are not closed contours.

Ihe first section shows a way to handle this problem and the following sections discu- th,-

method used to seC, ment the image into region,.

3.5..1 Outside Border

To insure that potential regions are not lost, we will place zero-crossings around the outside,

of the filtered image. 'lie cells on the corners of the border can te determined ahead of timm.

based on the a value of the filtered image, and zero-crossings can be placed at the appropriate

places to create a border surrounding the filtered image. The point to remember here is that the

7.ero-crossings around the border are not due to intensity changes in the image They have

been placed there to avoid losing critical information about the image.

3.5.2 Traversing Zero-Crossings to Create Border Paths

This section explains the decision-making process that occurs when we follow the lines made

by zero-crossings to form regions. We first need to analyze the steps we go through when wc

traverse the zero-crossing lines on the plots. We will formulate rules that can be applied to the

representation of the zero-crossings that we developed in the previous section.

Before we can analyze what decisions we make when we traverse the lines to form zero-

crossings, we must define what a region is. A region is an area which is completely bordered b%

zero-crossings. If there are zero-crossings within the region, then no part of ,he those zero-

crossings can be a part of the border of zero-crossings of the outer region. Two or more region,

can be adjacent to each other, in which case, the outer borders of the regions are touching. In

Figure 7. cells 11, 17, 18, 1N, 25, and 26 form a region, while cells 24, 31, 32, 33, and 39 form a

second region adjacent to the first.

20

2 3 4 5 6 7

9 10 1 2 13 14

--- ~---- -------
15 16 17 1a 19 20 21

22 23 24 25 25 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Figure Example of adjacent regions

In Figure 8. cells 10. 11, 12, 17, 18, 19. 24. 25. 26, 31, 32. 33, 38. and 39 form a region, while cells

18 and 25 form a second region.

21

2 3 4 5 6 7

10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Figur Example of nested regions

Notice that cells 18 and 25 are located in both regions. It is possible to stipulate that these

cells are only in the second region and not the first, but for our purposes, we will allow them to

exist in both regions.

Now that we have a definition for what we consider a region to be, we need to make up a

set of rules that will tell us how to traverse the zero-crossings to form regions to fit that criterion.

We first need to think about how we mentally form the regions when we look at a map of zero-

crossings. Looking at Figure 7 on page 20, we could form a region by starting at the cell

numbered II and going in a clockwise direction along the lines until we reach cell II again. We

notice that at cell 26, we have to decide whether to make a right turn, or continue going past cell

33 and then make the right turn. To form the smallest region possible, we turn at cell 26. Then,

between cells 17 and 24. we have to make another decision. We need to decide whether to go

right or left. Again, to make the smallest region, we choose to turn right.

Before we can form a set of rules to traverse the zero-crossings, we need to realize that it was

not just at the intersections of cells 26 and 33 and cells 17 and 24 that we had to make decisions

about what direction to go. We were making decisions from the moment we began to follow the

zero-crossings.

To make a set of .ules about the method of traversal, we need to first specify three things.

We need to specify a starting place, a direction in which we will traverse, and a stopping place.

Once these things are set, we can form a set of rules to do the traversing.

We will always start at the top-left cell of a region. This will bc the starting cell. The

starting cell must have a Top zero-crossing, a L[ef zero-crossing, and must not be a part of an%

other region. If it does not have Top or Left zero-crossings, or is part of a region, then we

attempt to form a region using the next cell. If that cell does satisfy the starting conditions. then

we begin traversing with the Top zero-crossing, and travel in a clockwise direction. We know that

we have finished when we have reached a cell which has a Left zero-crossing, and it is the starting

cell. This will be our stopping condition. Then we attempt to form another region starting at the

next cell, and we start the whole process again until we have processed the last cell in the filtered

image.

The thing to keep in mind when we are forming the rules is that we always want to move in

a clockwise direction, and we want to form the smallest region possible. Figure Q presents an

algorithm which shows the steps taken to form a region from zero-crossing segments.

23

start = first cell on map
cell =first cell on map
end = last cell on map
region = 1
while start -= end do

Tpcell) noanda regionl thnd
pcell) ao nda r~egion ahnd

goto 1
ifborder-path (region) then
region =region + 1

endif
endif
start =start + 1
cell =start

endwhile

condition operation(s)

1 start > cell border-path(region) = nil;RETURN
Right(cell) goto 2
lop(cell + 1) cell = cell + l;goto 1
Left(cell - 63) cell =cell - 63;goto 4

2 start > cell border-path(region) = nil;RETURN
Bottom(cell) goto 3
Right(cell + 64) cell = cell + 64;goto 2
Top(cell + 65) cell = cell + 65;goto 1

3 start > cell border-path(region) = nil;RETURN
Left(cell) goto 4
Bottom(cell - 1) cell cell - l;goto 3
Right(cell + 63) cell =cell + 63;goto 2

4 start > cell border-path(region) = nil;RETURN
start =cell Done With Region RETURN
Top(cell) goto 1
Left(cell - 64) cell =cell -64;goto 4
Bottom(cell - 65) cell =cell -65;goto 3

Figure 9: Region Making Algorithm

In the algorithm, the notation "'op(ccll)" is a check to see if that particular cell has the zero-

crossing Top. The other zcro-crossings are checked in the same mnanner.

24

The first part of the algorithm is an initialization routine that sets up the start, end. cell, and

region variables accordingly. Then it calls the first function if all the conditions are satisfied. The

start cell must have both the Top and Left zero-crossings and must not be part of a region. A

goto statement is used in the algorithm to represent that a function is being called. At the label,

1, we begin traversing with the Top zero-crossing of cell. I lere, we first check to make sure that

we have not somehow started to traverse backwards, and reached a cell that is smaller than the

starting cell. If this condition is true, then we do not consider this as a possible region, and set it

to nil. We do this so that we can use the region number for a legitimate region. Before we

increment the region number to the next region, we check to make sure that it has nt beer, se! to

nil, indicating that there was a problem with the traversal.

If the cell is greater than the start cell, then we proceed to the other choices. We select the

first condition that is satisfied in the list, and perform the indicated operation or operations. If

none of the conditions are satisfied, then we have an open contour, and will have to signal an

error. Since we should not have open contours, we should never have the problem that none of

the conditions are satisfied.

Ihe other sections are basically the same as this first one, except the last section. Section 4.

which has an extra condition. If the cell is the same as the start-cell, then we have finished

forming a region, and can return.

The algorithm looks more complicated than it is. The easiest way to understand what thc

algorithm is doing, and if it is constructing regions. is to go through the algorithm using one of

the zero-crossing plots in the previous figures. Another way it can be viewed is to pretend that

the zero-crossings represent paths in a maze. Each zero-crossing will be opposite sides ot a wall

in the maze. The object is to place your finger on a side of the wall. and follow it around until

you come back to where vou started. The direction you move is unimportant. It can be either

clockwise or counter-clockwise. The algorithm arbitrarily uses a clockwise direction, and all the

"turns" are made accordingly.

25

The algorithm will find all regions located within one map of zero-crossings. We first set the

variables starting-cell and cell equal to the first cell in the map. The value of this depends on the

value of aT. If a is equal to .5, the value of the first cell would be 65. It is 130, 195, 260. and 325

for a values of .75, 1.0, 1.5, and 2.0, respectively. Similarly, the last cell on the map also depends

on the value of a. The last cells are 4030, 3965. 3900. 3835, and 3770 for a value, of .5, .75, 1.0.

1.5. and 2.0. respectively.

3.5.3 Marking Cells Within Borders

The algorithm assigns region numbers only to the cells located along the border of the

region. The cells that are contained within the region will not be given a region number. Tl'h

test used to start making a region is that a cell must have Top arid Left zero-crossings. and that 11

cannot be part of a region. Assume that a cell is part of a region and has Top and Left zero-

crossings. Since we have not given region numbers to cells located in the in erior of regions. we

can assume that the cell is part of the border of a region, and cannot be allowed to be part of

another region. If the cell has Top and Left zero-crossings, and has not been assigned a region

number, then we can start a new region using this cell as the starting cell We can do this because

this new regon will either be adjacent to another region or be in the internor of one. Both ot

these possibilities are acceptable according to our definition of a region.

Once all the regions are found on a map, we will know what cells are located along the

borders of these regions. We need to figure out a way to identify the cells contained within the

borders and mark them with the appropriate region numbers. We must analyze exactly what

intormation we use to decide what cells are contained within a region and what cells are not.

looking at Figure 10. we notice that there is one region that lakes up the entire 12 by 12

matrix, and there is a second region that is contained completely within the first, according to our

definition of region. lising our algorithm for traversing the lines allows us to mark the cells

26

around the border as we go along, but to mark the region number for the cells in the interior will

require information about the path of the traversal.

----------------- - -------------- -- -- -- -- -- - -77- -- -- -- ----------- - 7- -- -- 77- ---- -- ------- -
1 2 3 4 5 s 7 8 9 10 11 12

'13 1 4 1 5 16a 1 7 16 19 20 21 22 23 24~
I

25 20 2 7 26 29 30~ 31 32 33: 3 4 I35 36
.

37 30i 39 40 41 42 43 44 45, 46 47 48'

49 50 51: 52 53 54 55 56' 57 5 a 59' 60~

. . • , .
I.

I

6 21' 6 4 63 6 go aIa7 68 9 70 7 0712 12

...

73, 74 75, 76 77 7 79, &0 1 82' 53 4

I

,- -. _- - - _- -

.75 g5o g7 S1, 29 90 91 32, 9 D 24 5 9,0'

l g I a I I I112 113 114 11S 116 117 118 110 1 0

........... •. ...'.........

121 9 129 I124 :101 12 13214515 0 0 0

...............

412 , 1 252 12'14 25 126 12 5 .7 12 19 3 131 132i

- - - - - - - 7 7. . .- -- -.- - -

5133 :134 13 '136 '137 '138 '13 140 :14 :141 1 142 :1 144

- -- ------ ------

Figure 10: Marking Cells

W, .,eed to know what cells we went through and marked and which zero-crossing in the

cell we were following. One wav to keep track of the traversal path is to create a border-path as

we traverse the zero-crossings to form a region. The border-path is a list of cell numbers and

zero-crossings encountered while traversing the zero-crossings to form a region. It is represented

as a list of lists. The lists contained within the outer list will have two elements. The first

element is the cell number that we have come to in our traversal. The second element is the

position of the zero-crossing. For example. the very first list in the border-path list will be "(first-

cell Top)" indicating the first cell in the region and the first position of the zero-crossing we start

the traversal. We continue adding these lists to the outer list as we traverse along the zero-

crossings to form the region. Eventually, we reach the last element of the list. This will bc

"(first-cell ieft)". I ooking at our example, region I (the region that is tile entire 12 by 12 matrixw

has the following border-path:

(1 Top) (2 Top) ... (12 Top)
(12 Right) (24 Right) ... (144 Right)
(144 Bottom) (143 Bottom) ... (133 Bottom)
(133 Left) (121 Left) . . . (I Left))

[he cells contained in the border-path for region I have been circled with the fainter circles, and

the cells contained in the border-path for region 2 (contained within region 1) have been circled

with the more solid circle.

Now that this is set up. we can figure out what cells are within this border. Ihe followine

algorithm will mark the cells contained in the region.

borderpath copy border path
cell_list = (pop border pathcopy)
while cell_ list do

f(cadr cell-list) = Right then
cell = (car cell-list)
while (list cell Left)

not member of borderpath
and cell-l not in region do

mark cell-I with region
cell = cell - I

endwhile
endif
celllist (pop border_patt copy)

endwhile

li7(ure 11: Algorithm to mark all cells in a repion

The algorithm goes through the border-path of a region, locates the cell that has a Right zero-

crossing and marks the cells located to its left u;ntil it reaches a cell that has already been marked.

or one that contains a Left zero-crossing.

3.6 Comparison of Regions

Now that we have methods to locate and mark regions within a filtered image. we will appl\

them to various filtered images. In Fig,-ire 12. we can see the filtered images of an image for three

29

c-=2.0

L L

dK.O

Dbd

1r0.5

Figure I2 Filtered Images of Image

-,(I

different values of (7. The at values from top to bottom are 2.0. 1.0. and 0.5. The image that the

filtered images were obtained from contains three objects that were placed in a noise background.

There is a considerable amount of noise through the center of the image giving the effect ot a'

mountain range. We would like to be able to isolate tile three objects contained within the

image.

To do this we will first threshold the images using the area of the regons as the thresholding

factor. This will allow us to disregard many of the smaller regions formed when connecting the

zero-crossings. Figure 13 shows the images after they have been thresholded.

31

35 < Threshold

35 < Threshold < 100

35 < Threshold < 100 us

Figure 13: Thresholded Filtered Images

Once the images are thresholded, regions on two different images are compared to see if the,

match up. The comparison process involves placing a region contained in the image of the

smaller a on top of a recion contained in the image of the larger a, and matching up the ceil

numbers that make up the region. If there arc more than a predetermined number of cells in the

region of the smaller a that do not match up with the cell nutmbers of the larger 7. then the

regions do not correspond.

If. however, there are only a limited number of cells that do not match, then the regions dc,

correspond, and the region in the smaller aT image is placed in a tl,ird image. This third image will

contain all the regions that have matched up when the first two images were compared. lhi,

third image can then be compared with an image of an even smaller r value, and so on. until \e

decide to stop.

The next two tignres, Figure 14 and Figure 15. illustrate the comparison process.

33

cr=2.0 a .

Result 1

Fig=re 14: Comparison Number I

Figure 14 shows the result of comparing the thresholded images with er values of 2.0 and 1.0.

L lm~ul lnun m n lU- ~ au n n

34

Result 1

Result 2

Figure 15: Comparison Number 2

Then, Figure 15 shows the results of comparing the result of the previous comparison with the

thresholded image of a value of 0.5. The three objects placed in the noise background in the

image have been isolated.

3.7 Summar,

This chapter has described the implementation of the techniques discussed in Chapter 2. \Ve

now have a way to interp~ret a greyscale representation. We can detect and represent the intensity

chang~es in the image by finding and storing zero-crossings. And, lastly, we have the capability to

group these zero-crossings into regions, and comparing them across several spatial scales.

Chapter 4

RESULTS AND CONCLUSIONS

The application of the algorithms in the preceding chapter resulted in segmenting the initial

digitized image into regions, and then regions were compared across several spatial scales to select

particular regions that could represent objects contained in the image.

The results of applying the algorithms to images have been encouraging. The objects have

been isolated on several images. The regions obtained using an image of a greater amount of

noise tend to be distorted, and so make it difficult to isolate the objects completely. More testing

needs to be done to determine at what point the algorithm fails to locate the objects as we

increase the amount of noise.

"Now that we have these regions that exist across several spatial scales, we can look at what

we should do next. At this point we have the capability to analyze the image at a higher level.

Instead of attempting to look at every cell in the image, we can look at groups of cells. This will

allow us to give properties to each region that will distinguish it from the other regons. The

purpose of doing this is to use the properties to identify the object that caused the region. Ihe

properties that can be given to the revions include such things as area, length. width, center ot

mass, and so on. A combination of some of the properties may be enough to identify the object.

especially if we have an idea of what it could be.

This is only one of the possible ways to continue this project. Another possibility is to

automate the decision-making process involved throughout the application of the algorithms.

Decisions are made when selecting the threshold values for the region size, determining when to

halt the comparison of regions, which values of a will be more effective for a particular image.

and so on. Rules can be developed to make these types of decisions, and an Expert System can

be built.

37

Finally, a third possibility is to apply the algorithms to real images, and test whether or not

the algorithms are as effective on them as on the generated ones. Real images will introduce

several problems that need to be addressed if our vision system is to work properly. There are a

number of factors that affect the intensity levels, and each factor must be considered for the

results of the processing to be correct.

38

BIBLIOGRAPHY

I Charniak. Eugene, and Drew McDermott. Introduction to Artificial Intelligence.
Massachusetts: Addison-Wesley Publishing Company, Inc., 1985.

2. Grimson, William Eric Leifur. From Images to Surfaces. Massachusetts: The MIT
Press, 1981.

3. Marr, David. Vision. San Francisco: W. II. Freeman and Company, 1982.

