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DEVELOPMENT OF A NEW WALL SHEAR
STRESS GAUGE FOR FLUID FLOWS

by

Yuksel Gur and Patrick Lechey

ABSTRACT

A new technique has been developed to measure the wall shear
stress and its direction in the turbulent boundary layer. This technique
involves the measurement of torque upon a very small cylindrical body
placed above the wall deep in the viscous sublayer, so that the device is
operating in the creeping flow regime. The method of approach has
involved calibration tests on a gauge 8 mm. long by 0.8 mm. in diameter,
located in uniform shearing flow of glycerol created in a cone-and-plate
apparatus. Our theoretical, computational and experimental results show
that the torque has a linear relation with the wall shear stress. The gauge
response is reversed for reversing the flow. By directivity measurements
using this gauge, maximum wall shear stress direction and its magnitude
are obtained. Linecar response is obtained up to Reynolds number 3.2
which was the highest we could get in our apparatus. We have used a
spectral element code, Nekton, for determining the creeping flow about
the gauge. There is a very good agreement between the experimental and
computational results.
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NOMENCLATURE OF SYMBOLS

d Cylinder diameter

F Drag

h Distance between wall and cylinder

H Distance between stationary and moving walls
L Length scale

Ly Distance between stationary mirror and screen
N Number of interpolation points around cylinder
p Pressure

r Radial distance

Re Reynolds number, L2

T Temperature

u x component of velocity

74 Velocity vector

U. Free stream: velocity

U Constant shear rate

Uy Disturbance velocity

Uy max Maximum disturbance velocity

- oA , Tw
Use Friction velocity, -p~

ut -
U
v y component of velocity

y Distance from wall
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. . . YU
Distance from wall in viscous units, ~

Angle between flow direction and normal direction of
gauge

Cone angle

Rotation angle of the gauge
Absolute viscosity of fluid
Kinematic viscosity of fluid
Laser displacement

Fluid density

Angular velocity of cone

Aspect ratio, %

Aspect ratio, %

Vanance

Wall shear stress

Stress vector

Stress tensor

Normal viscous stress in radial direction

Normal viscous stress in tangential direction
Viscous shear stress

Stream function

Bipolar coordinates

Ratio of the computational drag to analytica: drag

Ratio of the computational torque to analytical torque
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1. INTRODUCTION :

The measurement of mean and fluctuating shear stresses created on the wall under a tur-

bulent boundary layer flow is very important in analyzing a flow field.

A variety of techniques such as the Stanton tube, the Preston tube, the surface fence, the
floating eiement and the thermal mewmods have been used for the measurement of wall shear
stress in a turbulent boundary layer. Stanton(1920) used a rectangular pitot tube, mounted on a
wall in a fully developed laminar flow, and used the difference between the pressure measured
with this pitot tube and the static pressure to determine the velocity at the center of the tube , and

established that if the center of the Stanton tube was located close enough to the wall, the wall

shear stress could be calculated as T, = . This is an indirect measurcment technique.

u
Preston, J.H.(1953) used a round pitot tube on a surface in the fully develope 1 turbulent pipe flow
and established a calibration curve for a round pitot tube. The surface fence that consists of a
wall obstruction was invented by Konstantinov and Dragnysh(1955) . The difference in pressure
before and behind this gauge is related to the wall shear stress. The advantages of this gauge over
the Stanton tube is that it gives a doubled pressure reading. Head and Rechenberg,(1962) cali-
brated a surface fence and a Preston tube in a turbulent flow and compared these two gauges.
Although there was an agreement in moderately unfavorable pressure gradients, the two gauges
indicated different values of the wall shear stress in strongly unfavorable pressure gradients.
Vagt, J.D. and Fernholtz, H.(1973) calibrated the surface fence versus the Preston tube and gave a
calibration curve of the surface fence for the flow direction. The floating element technique
bascd on the measurement of skin fricticn forces, acting on a floating element buried in the wall
inside a turbulent boundary layer. Frei, D. and Thomann, H.(1980) used the floating element
technique to investigate the error of Preston tube- in adverse pressure gradients. The gaps
between the floating element and the surrounding wall filled with a liquid in order to prevent dis-
turbing forces on the element. Petri, S.(1984) developed a 4 mm. by 4 mm. floating element to
measure the wall shear stress. Although that gauge was satisfactory in operation, it did not pro-

vide the desired frequency response. The main difficulty with this technique is the gap effects.
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The gap creates a disturbance field which affects the performance of the gauge. Another method
of measuring the wall shear stress is the use of flush mounted hot film probes. The operation prin-
ciple of thesc probes is that the fluid at the surface of the probe, which is mounted on a wall
inside a turbulent boundary layer, is controlled at a specific temperature, which is different from
that in the bulk fluid and the heat transfer rate between the fluid and the probe is measured. Using
a calibration curve given between the measured heat transfer rate and the velocity , the wall shear
stress can be determined. This technique measures the mean wall shear stress as well as fluctuat-

ing wall shear stress in a turbulent boundary layer.

Most of these techniques have limited applicability, and lack analytical and computational
fluid studics for the gauges. We have developed a new technique for the measurement of the wall
shear stress in a turbulent boundary layer. The measurement principle of this technique is to place
a cylindrical body inside the viscous sublayer and measure the torque acting on the body. The
gauge operates in the creeping flow regime by its inside the viscous sublayer. The torque acting
on the gauge due to the linear shear flow of the viscous sublayer has a linear response to the wall
shear stress. This is a direct measurement technique. Since the gauge has a linear response to the
wall shear stress, both mean and fluctuating components of the wall shear stress can be measured.
Another important feature of the gauge is that the gauge gives the maximum wall shear stress

dircction and its magnitude. This gauge could also be used to determine the flow direction.
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2. ANALYTICAL PART

2.1. Wall shear stress device for viscous sublayer :

Our measurement technique for the wall shear stress is put a cylindrical body very close to a
wall inside the viscous sublayer and measure the torque acting on the body due to the shearing
flow of the viscous sublayer.

The experimental results show that the viscous sublayer extends from the wall to y*=5. In
this region the mean velocity profile is linear ( #*=y* ). Although the mean velocity profile
within *he sublayer is a linear velocity profile, the flow within it is not laminar, but accompanied
by considerable irregular fluctuations. The Reynolds number based on the characteristic length

y™* and the velocity at y*, has the following relation to y* :
Re=(y*)?.

Were the gauge to extend to the edge of the viscous sublayer, the Reynolds number would
become 25. Stokes flow can not exist for this Reynolds number, therefore, the gauge

configuration should be such that the gauge stays below y*=1.

2.2. Behavior of Stokes Flows :

The Navier-Stokes equations for incompressible flow are

p(-@g+ﬁfVE’)=—Vp +uviz

where ve=0.

Consider a flow field with characteristic length , L , and velocity , U., . With the proper nondi-

X . u; . .
mensional distance x;* = —L'— , velocities u; = U—' and pressure p =—5—. the Navier-Stokes
W
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equations become
pw’ 0

Re—D’t—-=—Vp W,

where Re = . For Re — 0, these equations become the Stokes equations :

V'p' =V .

All properties of a Stokes flow are governed by linear equations for p, u;, the vorticity ®; , and
the stress tensor t;; . The linear property may be used in adding flow ficlds to produce new flows.
For two-dimensional flow with a symmetry plane or axisymmetric flow, the streamlines are sym-
metric and all the other properties , u; p , ®; , T;; , are antisymmetric with respect to the sym-

metry plane.

2.3. Description of the problem :

Our measurement principle for the wall shear stress is to put a cylindrical body very close to
a wall inside the viscous sublayer where the flow can be assumed to be a shearing flow and to
measure the torque acting on the body. Therefore, our analytical and numerical studies are aimed
at solving the creeping flow equations when there is a linear shear flow and a cylindrical gauge

which is very close to a wall.

We expect the following functional relations for the torque T and the drag F per span act-
ing on the cylindrical body with axis parallel to a plane wall due to a two-dimensional shearing
flow directed parallel to the wall and normal to the cylinder axis :

T=f(p,Ud.d,h),

F=g(n,Ud,d,h),
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where U ,d ,u ,h are the constant shear rate, the diameter of the cylinder, the absolute viscosity
and the distance between the wall and cylinder, respectively. Since we consider a Stokes flow ,
density does not appear as a variable in the above functional relations. Using the Buckingham =-

theorem, these functional relations become

T h
pUdz—fz(d)'
F o,k
pud 821

As can be seen, the torque and drag are linearly related to the wall shear stress 1, =uU . Fora
three-dimensional flow field , there is one more variable, the length scale of the cylinder L . For
this case, the functional relations become

T h L
F h L
Wd-gs(d'd)'

2.4. 2-D Solvtion of the Stokes equation for the cylindrical gauge :

Uy

T
TN
h_!

7 777 /77 AV AV AV AV SR S Sav A 4 4

Figure (1). Cylindrical gauge
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The solution of the Stokes equation, when there is a linear shear flow and a cylindrical
gauge which is very close to a wall, was obtained by Davis and O'Neill(1977) by using a stream
function formulation. Inflow velocity components were taken as ( Uy, 0, 0 ). The equation of

continuity is

ve

]
o

Using the stream function, y , velocities are given by
(v oY
74 (Uay. Uax .0).
The boundary conditions are

on the plane, w=§}[=0.
i oy
on the cylinder, y=M |, =0.

The constant M depends on the gap ratio, % , and can bc determined from the flux of fluid

through the gap. The boundary condition at infinity is wz%yz (y— e ). The equations of

motion for Stokes flow are
Vp =uViz .

Using the stream function, the equations of motion become a biharmonic equation for y :
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Véy=0.

2
The Reynolds number for the flow is %3— . The Stokes solution is the lowest order asymptote as

this Reynolds number approaches zero. Davis and O'Neill obtained the solution of this bihar-
monic equation in terms of bipolar coordinates. Their results show that the torque and drag force
due to a linear shear flow are linearly related to the wall shear stress. Their solutions give the

dimensional torque and drag on the body per unit length as

=X 2
T-21:.,d.

2 4
F-2ut,d(l+-§e-—4sez+ ),

where € = % . The drag equation agrees in terms of functional dependency with the result, found

in section (2.3) using a dimensional analysis. An interesting result is that the torque acting on the
body is independent of the gap. The pressure and shear stress are antisymmetric with respect to
symmetry axis. As can be seen from the following figure, y components of the pressure and shear
stress terms at © and — O cancel each other, therefore, the integration of the shear stress and pres-

sure on the cylinder gives zero lift force.

Pe | P

77 7 J 7 7/ 7z 7 7 7 7
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According to analytical results of Davis and O'Neill when the gap is approximately 0.685 times
the cylinder radius or less, the flow first separates symmetrically from the wall. As the gap is
further decreased to zero, symmetrical separations occur altemately on the body and the wall. The
flow path between the body and the wall becomes increasingly tortuous. Flow visualization of an
early stage of this process was done by Taneda(1979), see Figure 11 . In his experiment, the gap

was 0.57 times the cylinder radius and Reynolds number was 0.011 .

2.5. Maximum Disturbance Velocity :

We measure the wall shear stress using a cylindrical gauge. It is necessary to know the dis-
turbance velocity due to the cylindrical gauge to determine the proper size of the cylinder gauge
for the wall shear stress measurements in the turbulent boundary layer. Another reason for inves-
tigating the disturbance velocity is that we use a cone-and-plate apparatus for testing the gauge; it
consists of a stationary wall as well as a moving upper wall within which the gauge creates a
blockage effect. The blockage effect due to the upper wall is important since the presence of the
moving upper wall increases the velocity gradient on the cylinder, therefore, increasing the torque
acting on the body. Decreasing the distance between the walls increases the torque. The distur-
bance velocity u, is defined as the difference between the inflow velocity at y location (U y )
and the velocity in the presence of the cylindrical body at the same location. When there is no
body in the domain, the streamlines are straight lines. The streamlines take symmetrical curved
shapes in the presence of the cylindrical body and the maximum disturbance velocity g may.
occurs along the symmetry axis hecause of the presence of only x component of the velocity.
Finite span decreases this velocity, hence the two dimensional calculation yields a conservative
estimate of blockage. The maximum disturbance velocity is obtained using Davis and O’Neill’s
stream function formulation. The maximum disturbance velocity is derived in Appendix (A) and
it is plotted in Figure 2 . It can be seen from Figure 2 that the maximum disturbance velocity
decays almost exponentially in the y direction, and it is negligibly small when the distance from
the wall is about 12 times the diameter plus the gap. The original cone-and-plate experiments
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were done for four different values of =2.355, 3.548, 4.754, 7.167 . As can be seen in the

H
d+h
U4 max.

maximum disturbance velocity plot, the ratic of changes from 0.06 1o 0.003 in our

cxperiments. In the above cxperiments, there is almost no secondary flow effect since Reynolds
number is very small, but there is a blockage effect due to small gap heights H . In order to

prevent the blockage effect, the cone-and-plate experiments were done with an additional 12°

cone for values of d}-{ i 9.68 , 11.54 . In the 12° cone experiments, there is a significant

secondary flow effect because of having high Reynolds numbers. The Reynolds number

2 5 Q2
R = %E ranges from 0.19 to 043 . Increasing Reynolds number increases the centrifugal

force in the cone-and-plate apparatus ; therefore, the streamlines at the stationary plate suiface are
oriented more towards the center of the plate. The secondary flow effects in the experiments is
calculated according to H.P. Sdougos et al. (1984) and used to convert the experimental results to
actual calibration curves. The secondary flow effects will be discussed in details in section (3.1).
As can be seen in section (3.3), there is no blockage effects in the 12° cone-and-plate experiments
when the secondary flow correction is used. Therefore, we can conclude that the calibration curve
obtained with the 12° cone-and-plate experiments can be used as the calibration curve of the

gauge for boundary layer measurements.

Our experimental and theoretical flow calculations show that for the calibration of the

H . .. .
d+h is bigger than 12 in order to

prevent blockage effects. If secondary flow effect is significant, the secondary flow correction

gauge. the cone angle should be such that the value of

explained in section (3.3) should be made in order to get an actual calibration curve for boundary

layer measurements.

e e e o
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U4 max.

Ug max. — Maximum disturbance velocity
u Inflow velocity (Uy )

d+h
l Figure (2). Maximum disturbance velocity
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3. EXPERIMENTAL SET-UP AND RESULTS :

3.1. Cone-and-plate apparatus and flow behavior in the apparatus :

The cone-and-plate apparatus used for the calibration of the cylindrical gauge is shown in
Figure 9 . This apparatus was developed by Prof. C.F. Dewey, Jr. of M.I.T. The reason for using
this apparatus is that it creates a linear shear flow and gives a constant shear rate everywhere
inside the apparatus. The cone-and- plate apparatus consists of a shallow rotating cone and a sta-
tionary circular plate. The diameter of the apparatus used in the experiment is 206 mm.. Three
different cones ( 3%, 6% and 12° ) are used in the experiment to determine the blockage effect.
This apparatus is filled with glycerol or glycerol-water mixtures and driven by an electrical
motor.

For small Reynolds numbers ( Re « 1 ), flow streamlines inside the apparatus are concen-

tric circles and cone surface velocity, u(r), increases linearly with radius. The wall shear stress is

where f is the cone angle, j is the absolute viscosity , @ is thc angular velocity of the cone , and
H is the gap heigth. The wall shear stress is constant everywhere inside the cone for small Rey-

nolds numbers.

The flow behavior inside the cone-and-plate apparatus were investigated by H.P Sdougos,

S.R. Bussolari, and C.F.Dewey,Jr.(1984). They investigated the flow behavior inside the cone-
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and-plate apparatus using flow visualization, hot film heat-transfer probes and measurcments of
the torque required to rotate the cone against the retardation of the viscous fluid. They also
presented theoretical results to these experiments. According to their findings , flow regimes are
well characterized by the single dimensionless parameter:

g=rop

12v

where 1 is the radial distance from the axis of the cone. The parameter R is analogous to Rey-
nolds number. They found a good agreement between the theoretical results of the wall shear
stress values for B > 0.5 and observed turbulence due to secondary flow for R 24 . They did
not attempt to describe the flow near the outer rim of the cone, where edge effects and the boun-
dary conditions are important. The dimensionless parameter R is Iess than 0.02 in our 3° and 6°

cone-and-plate experiments.

Fewell, M.E. and Hellums, J.D.(1977) investigated the secondary flow in cone-and-plate
viscometers by numerical integration of the equations of motion for stcady incompressible flow
of Newtonian fluids. They assumed a spherical segment for the outer rim of the cone, and deter-

mined the effects of the Reynolds number and cone angle on secondary flow. They defined their
2

Reynolds number as , where Ry is the outer radius of the cone. According to their

results, there is no secondary flow effect in our experiments with 3% and 6° cone angles since the
2

maximum Reynolds number is 39.5 in these experiments. Fewell's analysis can not say

anything about the 12° cone experiments since the cone angle is not small enough for their
analysis to be valid. We do not expect edge flow effects in our probe locations since the probe

locations are not close to the edge of the cone. The probe locations are 0.49 Ry and 0.73 R .

In order not to have the blockage effect which we have in the 3% and 6° cone-and-plate
cxperiments, the cone-and-plate experiments have been done with an additional 12° cone. In the

129 cone-and-plate experiments, the secondary flow effect becomes very important since the
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Reynolds number R is proportional to B2 . In the presence of secondary flow, the fluid streamlines
are no longer concentric circles and fluid velocity vector forms an angle ¢, with the azimuthal

direction. This angle was calculated by H.P.Sdougos et al. (1984) by using an expansion of the
. 2 . Q2
Navier-Stokes equations for small values of the single parameter R = %\1& . They found the

angle ¢, at the plate surface as
05 =tan"% =[-08K +0(KY) .

This expression is used for the 12° cone results with the experimental directivity curve, shown in

Figure 20 , to obtain an actual calibration curve for boundary layer measurements. In the 12°

cone experiments, the Reynolds number R and ¢, are 0.19 , -8.6° for Ldl- =13.4 and 0.43 , —19°

for % = 16, respectively.

3.2. Construction of the gauge and measurement principle :

The cylindrical gauge is shown in Figure 4 . The diameter of the gauge is 0.8 mm. and the
length of the gauge is 8 mm.. The construction technique of this gauge was developed by Peter
M. Wagner, research engineer from the Technische Universtat, Berlin. The gauge is made of pla-
tinum. One of its ends is polished flat with special polishing materials up to the centerline for an
axial distance of 1.2 mm. in order to have a mirror surface for reflection of laser light used for
sensing rotation. A plexiglass plate 50.8 mm. in diameter and 3.17 mm. in thickness is used for
the mounting surface of the gauge. Four copper wires with a diameter of 0.4 mm. and a height of
0.6 mm. are mounted on the plexiglass as supports. Two platinum wires having a diameter of 25
micrometers are soldered to the supports after pretensioning. The gauge is also soldered at the
center to the pretensioned platinum wires at both ends. The stationary plate of the apparatus has a

diameter of 206 mm. and has a circular hole with a diameter of 50.8 mm. at a position 63 mm.
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from the axis of the cone. The gauge on the plexiglass plate is put in the circular hole of the sta-
tionary plate of the apparatus. Glycerol and glycerol-water mixtures are used as working fluids in

the apparatus in order to keep the Reynolds number small.

The measurement principle is basically shown in Figure 3 . A stationary helium-neon laser
sends a laser beam 1o a stationary mirror outside the apparatus. The reflected laser beam goes to
the mirror surface of the gauge from the stationary mirror, and is reflected back to the stationary
mirror. It then goes to a screen which is at a distance of 1 meter from the stationary mirror. When
the conc does not rotate, there is a reference spot on the screen. When it rotates, it creates a linear
shear flow. Due to that shearing flow the gauge rotates and the mirror surface of the gauge reflects
the laser beam back at an angle. The reflected laser beam gives a displaced spot on the screen.
We measure the displacement of the laser spot on the screen and measure the rotational speed @

of the cone at the same time using a digital counter. By measuring the rotational speed , we know

o
B

the laser displacement on the screen is

the wall shear stress since 1, = . The relation between the rotation angle of the gauge and

8L =291L,

where L is the laser displacement, O is the rotation angle of the gauge, and L, is the distance
between the stationary mirror and the screen. Basically, by measuring the rotational speed of the
cone and the laser displacement, we get a calibration curve for wall shear stress versus the rota-

tion angle of the gauge.
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q)w

)., gauge
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i plexiglass
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-—
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Figure (3). The cone-and-plate apparatus

Figure (4). Geometry of the shear stress gauge
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3.3. Experimental Results :

As explained in section (3.1), the wall shear stress has a constant value over the plate sur-
face of the cone-and-plate apparatus for small Reynolds numbers. In order to observe the block-
age effect of the gauge, the same gauge is used in two different positions from the rotational axis
of the cone for three different cones ( 3%, 6% and 12° ). A linear response is obtained in each

case.

The absolute viscosity of glycerol used in the experiment is 8§15 centipoise at the measure-
ment temperature, 24°C. The experimental result for the 3° cone and !:T =3.26 is shown in
Figure 12 . The average slope, the ratio of the laser displacement on the screen to the rotational

speed of the cone, is 15.83 [mm.secs] and the ratio of the variance to the average slope is 7 % .

The average slope in the measurement can be written as

laser displacement 8L
Average slope = - =—.
rotational speed (0]

By putting the values 6L and ® into above relation, we get the following relations

A ! 2 38 L_‘. er
verage siope = —
B
or
o 2pL, 1

or B Average slope

Using the above relation, we find the ratio of the wall shear stress to the rotation angle of the

Tw

,as 34.30 [ N/m%deg. |.
or

gauge ,
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The experimental result for the 3° cone and —1;— =4.91 is shown in Figure 13 . The average

T
slope, the ratio of the variance to the average slope, and the value of 51 are 13.09 [ mm. secs ],
T

3% ,and 41.49 [ N/m?deg. ] respectively.

The experimental result for the 12° cone and g— = 13.4 is shown in Figure 14 . The aver-

T\V
age slope is 1.81 [ mm.secs ] and the ratio of the variance to the slope is 4 % . The value of .
T

is 74.95 [ N/mZ*deg. ).
The experimental result for the same cone angle, 129, and the same viscosity , but the dif-

ferent gap, % =16 , is shown in Figure 15 . The average slope in this experiment is 1.63 [

Tw
mm.secs ] , and the ratio of the variance to the slope is 8 % , and the value of o is 83.50
T

[ N/mZdeg. ).

Since the Reynolds number R is high in the 12° cone-and-plate experiments, secondary
flow effects become very important. In the presence of secondary flow, the flow direction is no
longer perpendicular to the symmetry axis of the gauge, and it forms an angle ¢, with the sym-
metry axis of the gauge. This angle is calculated as explained in section (3.1). We can assume
that the torque acting on the gauge in the 12° cone experiments is only influenced by the wall

shear stress on the plate since the position of the cone surface is far a way from the gauge (

{11 > 13 ). By using this assumption, calculated values of ¢, , and the experimental directivity

Tw
curve, we can obtain an actual ( o ) for subsequent boundary layer measurements. Basically,
T

Tw

Or

obtained in the cone-and-plate experiments is multiplied by the experimental direction sensi-

T
tivity, shown in Figure 20, corresponding to ¢, in order to obtain an actual value of e—w As can
T

Tw . . . .
be seen from Table 2 , the values of B obtained for the 12° cone at two different positions differ
T
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by less than 2 % . The actual calibration result without blockage of the gauge is

%’ =69.30 ([N/m2.deg. 1.

The rotational stiffness of the gauge could not be measured, therefore, a constant rotational
stiffness is assumed. This is a good assumption since the maximum rotation of the gauge in our
experiments is around 2 [ degree ], and the response of the gauge is linear. Since we do not have
the stiffness of the gauge, we can not compare the experimental torque results with the theoretical

torque results.

Tw . .
As can be seen in Figure 16, the experimental values of o decrease with decreasing gap
T

height H hence the rotation angle 0 of the gauge increases for constant shear stress T, .
Decreasing the gap heigth increases the velocity gradient acting on the gauge thereby increasing
the torque which is linearly related to the rotation angle of the gauge through the rotational stiff-
ness of the gauge (T = kr 07 , where &, is the rotational stiffness of the gauge, and 87 is the rota-
tion angle of the gauge ).

In each experiment, the measurements are taken both for positive and negative rotational
speeds of the cone. As can be seen in Figures 12 through 15 , the gauge response is reversed upon
reversing the flow direction. Therefore, the gauge gives the magnitude and direction of the wall
shear stress. That is a very important feature of the gauge since most of the other techniques do

not give the direction of the shear stress.

In order to see the direction sensitivity of the gauge, the angle between the flow direction

and the normal to the symmetry axis of the gauge, o , is changed from 0° to 60° with 10° incre-
ments using the 3° cone for % =4.08 . The directivity measurements, shown in Figure 20, are

obtained. If the flow field were two-dimensional , we would expect that only the velocity com-
ponent normal to the gauge axis would generate a torque. In this case, the ratio of the wall shear
stress at =00 to the shear stress at o becomes cos (o) . The flow field can not be two-

dimensional for our aspect ratio, € = 10 . Increasing the angle, a , increases the three dimension
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effect in the flow field and gives more than a cosine effect. Up to a=40° the variance in the
measured directivity resulting from repeated steady flow experiments remains small. A peak
appears at o= S0° with a very large variance. In some sense it is an "unstable point " since small
changes from that angle give a very large difference in the response. It is likely that the gauge is
deflected spanwise by cross-flow torque at large o . This would produce a complicated deforma-
tion of the gauge structure and a comresponding peculiarity in the behavior of the laser light sens-
ing system. This behavior deserves more study. However, as it stands, the gauge should be capa-
ble of distinguishing moderate changes in flow direction as well as being able to determine a

complete flow reversal.

In order to see up to what Reynolds number the flow field might be assumed a Stokes flow,
glycerol-water mixtures with absolute viscosities ranging from 815 centipoise ( 100 % glycerol )
to 32 centipoise ( 60 % glycerol , 40 % water in volume ) are used. The maximum Reynolds
number, which we could obtain in our cone-and-plate apparatus, based on the diameter of the
gauge and shearing velocity at the gauge mid-section is 3.2 . Up to that Reynolds number, a
linear response is obtained. These results are shown in Figures 21 through 23 . This indicates
that the Stokes flow is a good engineering approximation up to a Reynolds number of at least
3.2 . This allows us to use that Reynolds number to determine the actual size of the gauge for

wind tunnel and turbulent oil channel measurements.
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Figure (5). Experimental result for B = 120, % =134
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4. COMPUTATIONAL PART :

4.1. Introduction to the spectral element code, NEKTON :

We use the spectral element code, NEKTON , developed by Prof. A.T. Patera at M.L.T. , for
computing the Stokes solution for the cylindrical gauge. NEKTON is a computer code for the
simulation of steady and unsteady incompressible fluid flow with forced and natural convection
heat transfer. The code has three parts: Prenek, Nekton and Posinek. Prenek is an interactive pro-
gram in which all the necessary information for the flow problem such as geometrical, physical,
and numerical parameter can be given. The Nekton part of the code performs the numerical
integration of the Navier-Stokes and energy equations for the flow problem which is specified in
Prenek. Postnek is an interactive graphic package , in which the results of a Nekton simulation

can be analyzed.

The spectral element technique is a high order finite element technique. In the spectral ele-
ment, the computational domain is broken up into macro elements as in the finite element tech-
nique and the velocity and pressure terms in each element are represented by high order Lagran-
gian interpolants. In each element, the velocity and pressure terms are expanded in terms of (N-1)
th order polynomial Lagrangian interpolants through Chebyshev collocation points. Inserting the
assumed forms of the dependent variables (@ , p, T ) in the goveming equations, and using
weighted residual techniques, discrete equations are generated. The solution for the dependent
variables, velocities, pressure, and temperature , are obtained at the collocation points of the
mesh. Convergence 10 the exact solution can be obtained either by increasing the number of ele-
ments or by increasing the order of the interpolants.

We used the Stokes version of Nekton to compute the cylindrical gauge problem. The
discretizations of steady and unsteady Stokes flows and their solution procedure are given by
Ronquist, EM. and Patera, A.T. (1988). In order to find the blockage effect of the gauge and

compare the analytical solution of the torque and drag acting on the cylinder with computational

results, the code is run for constant € = —g and different values of dlj— P The velocities and
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pressure computed at collocation points are used in the approach, as explained in the appendix
(B), to calculate the stress distribution around the cylinder. The torque and drag are then com-

puted by integrating the shear stress and pressure terms over the cylinder.

4.2. Nondimensionalization of the problem :

We used the Stokes version of NEKTON to solve the steady Stokes equation for the
cylindrical gauge.

The Stokes equation is
=-Vp +u V2@ .

X;

. crs . u; .
By using the nondimensional distance x," = — , velocities ;" = —— , and pressure p* = -2

Ud nu
, the nondimensional form of the Stokes equation becomes
0=-V'p*+V 22" .

With this nondimensionalization, the nondimensional stress is

. T

T =—

I

The torque and drag equations in terms of nondimensional quantities becomes

dzu .
T=pU [—2~] j[‘be lr=ar21d0 ,
0

2n
F=pU % I [(T 6 r=dr2)cos®+p° sin®]do .
0
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Figure (6). Computational domain

Figure 6 shows the boundary conditions for the problem. The inflow and outflow are taken as
u =Uy ,v =0. Wall boundary conditions ( 4 =v =0 are specified on the cylinder and on the
lower wall. On the upper wall the boundary conditions are u =UH ,v =0.

4.3. Computational results :

The computational domain, close to the cylinder, is broken up into circular elements in
order to get the collocation data in the radial direction. By using this approach, we could easily
convert the data, given in Cartesian coordinates by the code, to cylindrical coordinates, and com-
pute the shez. stress on the cylinder by using the approach given in Appendix (B). The other
parts of the domain are broken up into rectangular elements. The size of the elements are

decreased approaching the cylinder in order to increase the accuracy of the results. In the




-33-

computational calculation, the ratio € of the gap ( the distance between the cylinder and the lower
wall ) to the cylinder diameter is taken as a constant, € = 0.384. The value of € is chosen higher

than the critical value, given by Davis and O’Neill for symmetrical flow separation. The code is

run for constant € = 0.384 and seven different values of = 2.355, 3.58 4.754,4.98 ,7.167,

H
d+h
8.94 , 12.77 . Two different ordcrs of Lagrangian interpolants ( S th and 7 th order ) are used. In
cach case, the shear stress on the cylinder, the torque and the drag are computed using the

approach given in Appendix (B).

The velocity field for = 3.8 is given in Figure 25 . In this figure, the vectors show the

H
d+h
direction and magnitude of the velocities at the collocation points.

The spectral element mesh for € = 0.384 and d—’i; =2.355 is shown in Figure 26 . The

shear stress distribution and pressure distribution on the cylinder are shown in Figure 28 and 29,
respectively. From these figures, the antisymmetric behavior of the shear stress and pressure can
be scen. The maximum shear stress which appears at 8 = 0% is 9.68 times the wall shear stress 1,
and the minimum shear stress is —2.701,, at 6 =180°. The maximum pressure on the cylinder

is 7.8861, .

The spectral element mesh for dli A =894 and 7 th order Lagrangian interpolants is

shown in Figure 37 . Figures 38 and 39 show the shear stress and pressure distributions on the
cylinder. The maximum shear stress is 4.99 t,, and the minimum shear stressis —0.78 1,, . The

maximum pressure is 3.42 1, at9=57°.

As can be seen from Table 1, the maximum wall shear appears at © =0° . It decreases when
the distance H between the lower and upper walls increases. The reason for this is that increas-
ing H decreases the velocity gradient on the cylinder in order to maintain the constant flow rate.
The shear stress starts decreasing from 0 = 0° and becomes zero at 6 =90° . After 6=90° . the
shear stress changes its direction, and starts increasing , and approaches an another extreme value

at © = 180°. The reason for this increase is that the geometry between the lower wall and cylinder




from 0 =900 through 180" acts as a convergent channel, therefore, the velocity gradient has to
increase while 0 is increasing in order to maintain the constant flow rate. Parabolic velocity
profiles are obtained in the region between the iower wall and cylinder. Another interesting point
which should be mentioned is that the maximum pressure on the cylinder appears at 6 = 57° .

The torque parameter 1, the ratio of the computational torque to analytical torque, is 1.941

H
d+h

results for each case are given in Table 1 and plotted in Figure 7 . As can be seen from Figure 7,

for =2.355 and it is 1.044 for H e 12.77 . The computational torque and drag

the computational torque and drag results approach exponentially to the analytical results as the
distance H between the upper and lower walls is increased. This result validates the computa-

tional results since the analytical results are obtained ior H — oo .
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Figure (7). Computational torque and drag
)




5. CONCLUSIONS :

1. A new technique has been developed for the measurement of the wall shear stress in a tur-
bulent boundary layer. The measurement principle is to place a cylindrical body deep inside the
viscous sublayer and measure the torque acting on the body due to the shearing flow of the

viscous sublayer.
2. The torque and drag force are linearly related to the wall shear stress.
3. The gauge diameter should be such that the gauge stays below y*=1.
4. A gauge, 8 mm. long by 0.8 mm. in diameter, is calibrated and a linear response is observed.

5. By directivity measurements using this gauge, the maximum wall shear stress direction and
its magnitude are obtained. That is a very important feature of the gauge since most of the other

techniques do not give the direction of the shear stress.

6. A linear response is obtained up to the highest Reynolds number, 3.2, which we could get in
our cone-and-plate apparatus. This result allows us to use that Reynolds number in order to

determine the size of the gauge for wind tunnel and turbulent oil channel experiments.

7. The computational torque and drag results asymptote to the analytical results as the height

of the computational domain is increased. This corresponds to the experimental resuits.

8. For calibration of the gauge, the cone angle of the apparatus should be such that the value of

dli A is bigger than 12 in order to prevent blockage. If the secondary flow effect is significant,
the sccondary flow correction, explained in section (3.3) should be made in order to obtain the

actual calibration curve for subsequent boundary layer measurcments.

9. A three-dimensional solution of the creeping flow equations for the gauge is needed.
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APPENDIX (A):

DERIVATION OF MAXIMUM DISTURBANCE VELOCITY :

The solution of the biharmonic equation for a cylinder close to a wall was given given by
Davis and O’Neill (1977) in terms of bipolar coordinates. Bipolar coordinates can be obtained by
considering the complex function for obtaining the potential for two opposite line sources a dis-

tance 2c apart :

_ (C+z) _ _l_Z_
W—lnl:—-‘-—‘(c_z)] =2 tanh (c) (A.1)

Using W =n+if and z =x +iy =c tanh [%] , the Cartesian coordinates in terms of bipolar

coordinates are obtained as

¢ sinn _ __c sinhf (A2)

¥ = CoshE—cosn ' 7 Cosht —cosn

with ¢ = —g—sinha . The plane is given by &=0 and the cylinder is given by &=ct . The solution of

the biharmonic equation which satisfies the wall boundary conditions on the plane and on the

cylinder and free stream flow boundary condition at infinity were given by

1
v=2y -x+Mé (A3)

where x and ¢
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x= %(%) (coshg — cosn )™! 2‘, X (€) cos nm

¢ = (coshg - cosn )™ [ do(E) + ¢1(8) cosn ]

with

X0(5) = A oEsinh€ + B¢ (coshg — sinhE)
X1(8) = A (cosh2§ — 1) + B (sinh2t - 2£)
% (§) = Au [ cosh (n+1)E — cosh(n—=1)E | + B, [ (n~1)sinh (n+1)E
—(n+D)sinh(n-1§ ] (n22)
0o(8) = agsinhg + bo(§ccshg — sinhg)

$1(8) = a,(cosh 2§ — 1) + b, (sinh2§ - 2F) .

The coefficients in the above equations are

(A4)

(A.S)

(A.6a)

(A.6b)

(A.6¢)

(A.6d)

(A.6¢)
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sinh?o o + sinha cosho
Ao=———"—5 " bo= (A.7a
0= " o2 _ sinha. 0= T a2 —sinh?o, )
0.5 tanha 0.5
o b= ————— AT
% a—tanho 1= & - tanha (A-Tb)
o — coshot sinhat sinhZo
Ap= —————5 » Bo=——m7 (Alc
0 o — sinh?a. 07 o - sinh’o. )
o e-2% — ¢~* sinha + sinh’at - 0.5 tanho
A= . =— A7
! sinh2a. ( a — tanha ) !7 o -tanha (A79)
n( n— cotha) sinh?o + ¢ sinhn & -n sinh’a.
A, = B, = n22) .(ATe
sinh2n o ~ n? sinh®a sinh?n o ~ n2 sinh?a (n22) )
The x component of the velocity is
oy 3, ay 90
u= =U (y - +M =) (A.8)
ay 0 Ty
where
¥y _ Oy 88  9x I
= =+ = (A9a
y 3 dy o oy )




e PPy

g

% _ %
dy

X

+90 o
an dy
Par.ial derivatives of Cartesian coordinates with respect to bipolar coordinates are

dx _ ¢ sinm sinh§

o ( cosh§ — cosny )

9x _ c (cosn cosh€ - 1)
an  (coshE —cosn )?

§1= ¢ (—coshEcosn+1)
af ( coshE — cosny )?

oy _c ( —sinn sinhE)
on  (coshn-cosn)?

As can be seen from the above relations,

9 __ox 9
& o T 3%

-9
o

The Jacobian is

Joday) Yy wa_ HP
a&MN) o on of oan " on '

(A.9b)

(A.10a)

(A.10b)

(A.10c¢)

(A.10d)

(A.11)

(A.12)




By putting the derivatives in to the Jacobian and after some reduction,

c?

/= (coshE —cosn )?

Partial derivatives of bipolar coordinates with respect to Cartesian coordinates are

@_=_J—l QX

Toox o ’

_85__1]-1 i
dox om

i{?___j—léi a‘1=1—la_x

dy n ' dy & -

By putting equation (A.13) into equation (A.14),

o _om _1 .o
ax—ay-c( sinn sinh§ ) .

T v T e ——

(A.13)

(A.142)

(A.14b)

(A.153)

(A.15b)

The disturbance velocity u, is the difference between the inflow velocity at y location

( Uy ) and the velocity in the presence of the cylindrical body. The maximum disturbance velo-

city occurs along the symmetry axis because of the presence of only x component of the velocity.

In other words, the maximum displacement of each streamline due to the body occurs on the

symmetry axis.
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Bipolar coordinate M is zero on the y axis.

% g

P , 32—: at 1=0 . (A.16)

Using equation (A.16) in the velocity equation (A.8), we obtain the velocity on the symmetry

axis as

u0=U(y——XLE- 3%3:‘) at n=0 . (A17)
The maximum disturbance velocity is
Ug max. == U y . (A.18)
In terms of the stream function,
“dm.=U(-%+M%%)% (A.19)
where
%= 3 €2 (cosh — 12 sinkg z Xn®+ 5 2 (cosh — 1) éx;cé) (A.202)

- - — C -
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%b(coshé—l)'2sirm§[¢o(§)+¢l(§)1+(cosh§-1)-' [06E) +01) ]

ﬁlu—-

(1-cosh§)

M = — d? cosh’a

Xo(E) = Ao ( sinhE — & coshE ) + B € sinhE

Yo =An [(n +1)sinh(n +1)E—(n-1)sinh(n ~1)E]

+B, (n2=1)[cosh(n +1)~cosh(n -1)] (n22)

6o(&) = ag (sinhE + & coshE ) + bo & sinhE

$1(E)=a,2sinh2E +b, 2 (cosh2E ~1) .

(A.20b)

(A.20c)

(A.20d)

(A.20¢)

(A.20f)

(A.20g)

(A.20h)

The other functions o) , X1(€) . Xx €) . $o(E) , $1(E) and the coefficients in these functions are

given in equations (A.6) through (A.7) . The maximum disturbance velocity &y ., is computed

and plotted in Figure 2 .
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APPENDIX (B) :

COMPUTATION OF TORQUE AND DRAG :

In this section the computational approach for determining torque and drag is given. The
velocitics, computed with NEKTON in Gaussian collocation points, are converted to cylindrical
coordinates and then the closest three interpolation point velocities around the cylinder in radial
directions are used in second order polynomials to find their variations in radial directions on the
cylinder. The shear stress distribution on the cylinder is obtained by calculating the derivatives
of the velocitics. The torque and drag are calculated by integrating the shear stress and pressure

on the cylinder.

For a Newtonian fluid, the viscous stress vector at the surface of a body must lie on the sur-
face. Therefore, at the surface all the normal viscous stresses vanish. The only nonzero stress ,

T,g , on the cylinder is

aue
Telr=an=H| 3~ lr=arn - B.1)

The torque and drag acting on the cylinder are

p: 2
T=[(%el-anl 5] 0, ®.2)
0

2
F= I [ (t,0]r=as2 ) COSO +p sinO ] % 40 . (B?3)
0

-
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L= O‘.N
7 7 7 7 7 7/ 7 7 V4 / 7 7

Figure (8). Velocities at the collocation points

The velocities in cylindrical coordinates in terms of Cantesian coordinates are

ug(i.j)=u(i,j)cos®; +v(i,j)sin0; ,

u, ((,j)=-u(@,j)sin®; +v(.j)cosB; .

Taking a second order polynomial for the radial velocity ug, as

Ug, =C|r2+C2r +C;,

B.4)

(B.5)

(B.6)




Y

2

-49 -

and using the values of ug ({,0),ug(i,1), ug(i,2) to find the coefficients, C;,C,,C4 , and

Jug,
after some manipulation, we get -a—:' lr=dan as
aue- 1 2 . 2 .
——lymqn=-" [dn ke (i, 2)—(dry+dry) ug(l,l)] B.7)
ar Dl
where
Dl=—drldr2(dr1+dr2). (B.8)

The sucar stress on the cylinder i dimen<ionai form is

aue..
T, =H { ‘a_r} lr=ar 89

The shear stress equation (B.9) is evaluated by using equation (B.7) and (B.8) .

The torque and drag equations in discrete form are

N [ Tro; + Tra,.,

d 2
2 [E] (6,11 —-6,1] , (B.10)

N [ Tro + Tro,, cos [ 0;41 +6; I+ Pisi +Di i 0,110,

d
2 0S8 2 2 in [ > ]] 5[9.41‘9.'] .(B.11)
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Figure (9). The cone-and-plate apparatus
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Figure (10). The shear stress gauge and experimental set-up
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Figure (11). Shear flow over a cylinder near a wall, from Taneda(1979)
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Figure (24). Viscosities of glycerol-water mixtures at T = 24° C
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f H
2.355 3.58 4754 498 7.167 8.94 12.77
d+h
\f ~
- n, 1.941 1.505 1.259 1.238 1.i43 1.095 1.044
1
LY 2.651 1.673 1.318 1.293 1.162 1.106 1.048
'tmax
- 9.684 6.686 5.758 5.602 5.197 4985 4761
W
Trnin
. -2.698 -1.291 -1.041 -0.730 -0.847 -0.778 -0.726
1
b p:‘u 7.886 5.029 4.022 3.880 3.577 3418 3.246
]
TABLE {1). Computational Results
H
i i 3.26 491 6.58 9.92 134 16
Ri
H 2.355 3.548 4.754 7.167 9.68 11.54
d+h
[5 [deg. ] 3 3 6 6 12 12
Tw
— 34.30 4149 50.01 58.48 74.95 83.50
eT exp.
L
Tw
— - - - - 68.20 69.30
OT corrected
4 ]

TABLE (2). Expcerimental Results




