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Abstract

The Role of Ceiling Points in

General Integer Linear Programming

Robert M. Saltzman and Frederick S. Hillier

Stanford University, 1988

This report examines the role played by several kinds of ceiling points in solving the pure,

general integer linear programming problem (ILP). While no assumptions are made concerning

the structure or signs of the data of the problem, it is assumed that the feasible region for (ILP)

is non-empty and bounded. A ceiling point with respect to a single constraint may be thought of

as an integer solution on or close to the boundary of the feasible region defined by the constraint.

The definition of a ceiling point with respect to a single constraint is extended to take multiple

constraints into consideration simultaneously, defining what is called a feasible ceiling point. It is

shown that the set of all feasible ceiling points contains at least one optimal solution for (ILP). A

related class of solutions called feasible 1-ceiling points is also characterized and shown to contain

all optimal solutions for (ILP). Moreover, 1-ceiling points are computationally easier to identify

than ordinary ceiling points and may be sought with respect to one constaint at a time. It is also

demonstrated that solving (ILP) requires only enumerating feasible 1-ceiling points with respect

to a subset of all functional constraints. '"w> . . .
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. Introduction and Overview

1. Introduction and Overview

In this report we consider the role played by ceiling points in solving the pure, general

integer linear programming problem (ILP) in m constraints and n variables xj, j -

1,...n, whose form is

maximize cTx = z

subject to Ax < b (ILP)

x > 0, x integer,

where A E Rmn b E R" and c E R". All the data {A,b,c} are assumed to be rational

numbers, but they are unrestricted in sign. The problem is "pure" in that all of the

variables are required to take on nonnegative integer values. It is "general" in the sense

that the variables may take on any nonnegative integer values permitted by Ax < b, as

opposed to being restricted to 0 or 1 (the binary case). An important additional assumption

is that no implicit or explicit equality constraints are used to define the feasible region

FR ={x > 01 Ax < b}. This implies that any m' x n' subsystem of equality constraints,

where m' < n', has already been reexpressed by solving for m' of the variables in terms of

the other n' - m' variables and substituting for these m' variables in all of the remaining

inequality constraints, yielding a problem consisting only of inequality constraints.

Our goal is to develop a solid understanding of the nature and utility of ceiling points.

In the next section, ceiling points are defined and some of their properties explored. Section

3 extends these basic definitions to those of d-ceiling points, which are computationally

easier to identify than ordinary ceiling points. In Section 4, we consider what constraints

are most critical in the search for an optimal solution, while the rcstrictiveness of assump-

tions made in various theorems is examined in Section 5. Section 6 summarizes the key

concepts discussed in this report usiug aa example in tht plane.
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2. Characterizing Ceiling Points

Before formalizing the intuitive concept of a ceiling point as an integer solution on or

close to the surface of the feasible region for the linear programming relaxation (LPR) of

(ILP), a few conventions are noted. Throughout the report, constraint (i) may refer

to a functional or nonnegativity constraint of the form aTy bi. If it refers to the jth

nonnegativity constraint, all coefficients aij are 0, except for the j"' which is -1, and the

corresponding right hand side bi is 0. Also, the term "direction" will be used to mean a

direction in R" which is parallel to one of the n coordinate axes. The first ceiling point

definition considers an integer point satisfying a single constraint i with little or no slack.

Definition 1 An integer vector x is a ceiling point with respect to the ith constraint,

denoted x = CP(i), if

(1) aTx < b,, and

(2) aTx + Ija1 > b,, for each j = .

The first part of the definition simply means that x satisfies the it" constraint; the

second part of the definition, called the ceiling point condition, implies that taking a unit

step from x toward the it' constraining hyperplane in every direction results in an infeasible

point. Letting x+ = x + ei and x- - - - ej represent the points which are a unit step

away from x in the plus j and minus j directions, respectively, we can reexpress (2) from

our definition as follows. If aj > 0 then x+ violates constraint (i), whereas if aij < 0 then

x, violates constraint (i), for all j. If aij = 0 then changing the jt component of x does

not affect the feasiblility of x with respect to constraint (i). t

t It may be interesting to compare Definition 1 with that first given by J. Wilson [Wi,
Definition 1]. Assuming that al ? ai2 >_ ... > a,, > 0, bi > 0, and all data are integer,
he defines a nonnegative integer vector z to le a ceiling point with respect to a single
constraint aTy bi if

(1) aiz _ bi,
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Thus, according to the ceiling point condition (2) of the definition, no ceiling points

with respect to (i) alone exist when any a 1 = 0. This suggests the need for a second defi-

nition which considers not just one constraint, but all of the nonnegativity and functional

constraints of (ILP) simultaneously.

Definition 2 An integer vector x is a ceiling point with respect to the feasible region

FR - {x I Ax < b,x > 0}, denoted x = CP(FR), if

(1) x E FR, and

(2) 3i: aTx + ajI > bi, for each j = 1,...,n.

In this case, x = CP(FR) indicates that x is feasib!e and for every direction j either

xt or x- (or both) violate at least one functional or nonnegativity constraint. Notice that

x = CP(i) and x E FR imply that x = CP(FR). However, the converse is not true,

i.e., x = CP(FR) does not imply that x = CP(i), for some (i), as illustrated by point x

in Figure 1.

Ceiling points in an integer linear program play a role analogous to that of corner-point

feasible solutions in a linear program.

Lemma la Every extreme point of the convex hull of feasible integer solutions for (ILP) is

a CP(FR).

Proof: First note that all extreme points of the convex hull of feasible integer solutions

are themselves feasible integer solutions (since the vertices of the convex hull of a finite set

(2) aTx + aj > b, + 1, for j = 1,..., n, and
(3) xj+l >0=>aTx+a -- a +i >bi+ 1, 1 <j <n.

In contrast, Definition 1 maes no assumptions on the relative magnitudes, signs or inte-
grality of the coefficients, nor does it require the vector z to be nonnegative. Wilson's goal
is to first locate n ceiling points satisfying the Oh constraint with equality, and then use
these points to construct the minimal inequality corresponding to this constraint, i.e., to
strengthen this linear integer inequality by reducing its coefficients as much as possible.
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2 U iCP(FR); U CP(i),i 1,2,3

V '=CP( 1); V =CP(FR)

w =CP(2); wi CP(FR)

(3) X =CP(Fk); x CPMi, i 1,2,3

.Y CP(2); y CP(FR)

Figure 1. Examples of Ceiling Points.

of points are a subset of the points from which the convex hull is formed [PS, p. 37]). Now

suppose that x is such an extreme point which is not a CP(FR). Then there is a direction

j such that both xt and x- are feasible. Hence, x = (x + + x- )/2, contradicting the

extreme nature of x. I

Because they tend to be closer to the boundary of FR than non-ceiling points, ceiling

points in the "interesting" portion of FR are likely candidates for having the highest

objective function values. This idea has motivated our interest in ceiling points: they

seem to be the points on which we should focus our attention. Indeed, we can show that

if an optimal solution x* for (ILP) exists, either x* itself is a CP(FR) or there exists

another optimal solution which is a CP(FR).
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Theorem 1 Suppose the set of feasible solutions for (ILP) is non-empty and bounded.

Then there exists an optimal solution for (ILP) which is a CP(FR).

Proof: Since (ILP) possesses at least one feasible integer solution and is bounded, it

possesses an optimal solution. Furthermore, the convex hull of feasible integer solutions is

non-empty. By a well-known theorem (see [HlL, p. 54] or [Si, p. 91]) an optimal solution for

a linear programming problem occurs at one of the extreme points of its feasible region.

Similarly, in an integer linear program, an optimal solution occurs at an extreme point of

the convex hull of feasible integer solutions. Since all such extreme points are CP(FR)'s,

by Lemma la, it follows that at least one optimal solution for (ILP) is a feasible ceiling

point, a CP(FR). I

The analogy between ceiling points and extreme points, however, should not be car-

ried too far. First notice that not every ceiling point is an extreme point of the convex

hull of feasible integer solutions for (ILP) as evidenced by the ceiling point v in Figure 1.

Moreover, while only a finite number of extreme points in the feasible region of (LPR) may

exist, the feasible region of the associated (ILP) may possess an infinite number of ceiling

points if it is unbounded. Even if the feasible region is bounded, the number of CP(FR)'s

is likely to be much larger than the number of extreme points in the associated (LPR).

Nonetheless, the main implication of the theorem is that an (ILP) may be solved by enu-

merating and comparing the values of all CP(FR)'s: the ceiling point(s) with the largest

objective value optimally solve(s) the problem. Also, if a complete enumeration is not

possible, it might be useful to concentrate one's effort on locating ceiling points relatively

near _i, where any feasible solution found is apt to be a high-quality and sometimes even

optimal solution. Locating such ceiling points is the goal of the Heuristic Ceiling Point

Algorithm described in a subsequent report.

Corollary lb Suppose the set of feasible solutions to (ILP) is non-empty and bounded.

Further suppose all components of c differ from zero. Then every optimal solution for
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(ILP) is a CP(FR).

Proof: Since (ILP) possesses at least one feasible integer solution, it also possesses an

optimal solution. Let x* be an optimal solution for (ILP) which is not a CP(FR). Then,

since x* is feasible, there must exist at least one direction j such that both x*+ and x*-

are feasible. Consider any such direction j. Since ci : 0,Vj, either x*+ or x*- has a

strictly superior objective value to that of x*, (because either cTx!+ = cTx* + cej

cTx*+cj > cTx *, or cTx* - = c x* - cTej = c X* - ci > c x*), contradicting the

optimality of x*. I

A few more observations can be made about the utility of ceiling points, or lack thereof.

When some cj = 0, the proof of Corollary lb implies that there may exist non-ceiling

points which are optimal. On the other hand, if the optimal solution for (ILP) is unique,

it must be a CP(FR) by Theorem 1. However, we cannot assume a priori that the optimal

solution is unique nor is it realistic to assume that all cj differ from 0. For instance, in fixed-

charge problems, the fixed-charge (0-1) variables sometimes have a zero cost component.

Consequently, we have found it beneficial to relax the ceiling point definitions given above.

3. d-Ceiling Points and Their Properties

From a computational standpoint, identifying a CP(FR) is difficult: in order to

satisfy the ceiling point condition, (part (2) of the definition), a constraint must be violated

as a result of either increasing or decreasing every component by one unit. We now

describe two sets of points which are formed by relaxing the ceiling point conditions of

Definitions 1 and 2, respectively, so that a constraint violation does not have to occur in

every direction from the ceiling point. Consequently, these sets are easier to enumerate

than their respective ceiling point counterparts.
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Definition 3 For an integer d E [1, n], an integer vector x is a d-ceiling point with respect

to the ith constraint, denoted x = d-CP(i), if

(1) aTx < and

(2) aTx + jaii, > bi, for each of d distinct indices j = jl, ... ,jd.

In other words, x = d-CP(i) means x satisfies the ith crnstraint, and taking a unit

step from x toward the ith constraining hyperplane in directions j = ji, ... , jd (and perhaps

in some additional directions) results in an infeasible point. For example, if aij, > 0 then

xt violates constraint (i), whereas if aij, < 0 then x- violates constraint (i). As with

ordinary ceiling points, Definition 3 may be extended to cover a set of constraints which

comprise the feasible region FR of an (ILP).

Definition 4 For an integer d E [1, n], an integer vector x is a d-ceiling point with respect

to the feasible region FR, denoted x = d-CP(FR), if

(1) X E FR, and

(2) 3i : aTx + oij I > bi, for each of d distinct indices j = Jd, ... ,Jd.

In this case, x = d-CP(FR) indicates that x is feasible and in directions j = j',.., jid

either xj or x- (or both) violate at least one functional or nonnegativity constraint. It

should be clear that a point which is a d-CP(i) for a particular d is also a d-CP(i) for

every integer d E [1, d - 1]. The same is true for d-CP(FR)'s. The points in Figure 1

may be recast as d-CP(i)'s as follows: v = 2-CP(1), w = 2-CP(2), x = 1-CP(1) and

x = 1-CP(2), while y = 2-CP(2) and y = 1-CP(3). It is worth emphasizing that a single

point may be a d-CP(i) with respect to more than one constraint, especially if d is allowed

to vary. As with ceiling points, x = d-CP(i) and x E FR imply that x = d-CP(FR).

Again referring to Figure 1, the points v,x, and y all are d-CP(FR)'s, with d = 2.

We now wish to clarify the relationships between the various sets of ceiling points

introduced. The definitions indicate that an n-CP(i) is equivalent to a CP(i), as is an
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n-CP(FR) to a CP(FR). However, when d < n, the ceiling point condition for a d-

CP(i) is less restrictive than that for a CP(i), as it is for a d-CP(FR) in comparison to

that for a CP(FR). This implies that the cardinality of the set of ordinary ceiling points

with respect to a constraint (i) is no larger than the cardinality of the set of d-ceiling

points with respect to that same constraint, for any specific integer d C [1, n]. Just as the

set of CP(i)'s with respect to a particular (i) is a subset of the set of that constraint's

d-CP(i)'s, the set of CP(FR)'s is a subset of the set of all d-CP(FR)'s. The following

lemma summarizes some of the key relationships between the four types of ceiling points,

and is illustrated for d = 1 by Figure 2.

Lemma ic For any integer d E [1, n] the following relationships exist among the 4 sets of

ceiling points identified by Definitions 1 - 4:

(a) {xI x = CP(FR)} C {x I x = d-CP(FR)}

(b) U. {xl x = CP(i)} _ Uj {x[ x = d-CP(i)}

(c) {xI x = d-CP(FR)} _ Uj {xI x = l-CP(i)}

(d) Uj {xI x = feasible d-CP(i)} C {xf x = d-CP(FR)}

T -jof: (a) From the ceiling point conditions of Definitions 2 and 4, we have {xI = 1-

CP(FR)} ;_ {xl x = 2-CP(FR)} ; . .; {xl x = n-CP(FR)) = {xI x = CP(FR)}

Thus, every CP(FR) is a d-CP(FR). Figure 2 depicts this for the case where d = 1: the

set of CP(FR)'s, labelled as box 3, is competely contained within the set of 1-CP(FR)'s,

labelled as box 4.

(b) From the ceiling point conditions of Definitions 1 and 3, {xj x = 1-CP(i)} 

{xI x = 2-CP(i)} D_ ... ; {xI x = n-CP(i)) = {xI x = CP(i)). Since this holds foi all

constraints individually, it also holds for the union over all constraints. This is shown for

d = 1 in Figure 2 by the box labelled 2 being completely contained within box 1, the union

of the set of 1-CP(i)'s.
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(c) Let x be any d-CP(FR). Then there is at least one direction such that either

xt or x" violates some constraint. Thus, x is a 1-CP(i) for at least one (i). However,

equality in (c) does not hold since a 1-CP(i) may violate a constraint other than (i). With

d = 1, the box labelled 4 in Figure 2 is completely contained within box 1.

(d) Let x be any feasible d-CP(i). Then x satisfies the definition of d-CP(FR).

However, equality in (d) does not necessarily hold for d > 1 because a CP(FR) need not

be a d-CP(i) with respect to any particular constraint (as illustrated for d = 2 by the

point x in Figure 1). With d = n, the union over (i) of the set of all feasible n-CP(i)'s is

shown in Figure 2 as the intersection of boxes 2 and 3, labelled box 5. 1

Feasible Region

U (xI x = CP(i))

(xj x=CP(FR)) 5 2

3

(xl x = I-CP(FR))

Y {xlx= I-CP()

(xi all integer points in the unit hypersphere about x are feasible)
0

Figure 2. Relationships Between the 4 Types of Ceiling Points (Lemma 1c).

In general, the larger the magnitude of d in d-CP(i), the closer a d-ceiling point

is to the surface of the feasible region. However, an n-CP(i) is not necessarily a more
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desirable solution than a 1-CP(i). First, the n-CP(i) may be infeasible while the 1-

CP(i) is feasible. Second, assuming feasibility, the objective function value of these two

integer solutions depends more upon their location in the feasible region relative to the

objective function hyperplane than it does upon d. What is important to note is that even

a feasible 1-CP(i), i.e., a 1-CP(FR), may be an optimal solution, as demonstrated in the

next theorem.

Theorem 2 Suppose the set of feasible solutions for (ILP) is non-empty and bounded.

Let S, {Jl cj $ 0} be the support of c. Then every optimal solution for (ILP) is a

d-CP(FR), where d > ISj.

Proof: Since (ILP) possesses at least one feasible integer solution and is bounded, it

also possesses an optimal solution. Let x* be an optimal solution which is not a JSJ-

CP(FR). Then, for at least one j E Sc, both x*+ and x*- are feasible. However, since

cj 5 O,Vj E S,, either x*+ or x*- has a strictly superior objective value to that of x*,

contradicting the optimality of x*. I

In particular, if JSJ = 1, then all optimal solutions for (ILP) are 1-CP(FR)'s. This

fact should not be too surprising since {xJ x = 1-CP(FR)} excludes only those points

which are "interior" to the feasible region in the sense that all integer points within the unit

hypersphere about them are feasible. (These are the points in the box labelled 0 in Figure

2 which are not in any other box.) While the set of CP(FR)'s contains the set of vertices

of the convex hull of all feasible integer solutions to (ILP), the set of I-CP(FR)'s contains

all integer points on the surface of this convex hull, including its vertices. Consequently,

another way of solving (ILP) is to enumerate the feasible elements of Ui {xI x = 1-

CP(i)} because among them are all the 1-CP(FR)'s for (ILP). The advantage of taking

this route is that we can focus on finding 1-CP(i)'s with respect to one constraint at a

time, while checking simultuneously for feasibility. This is the central approach of the

algorithms presented in subsequent reports for solving an integer linear program.
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When ISI > 1, can we solve (ILP) by enumerating all feasible ISI-CP(i)'s with

respect to one constraint at a time? Unfortunately, if JScj > 1 and we search only for

feasible ISc-CP(i)'s, we may fail to find some ISc-CP(FR)'s, by Lemma lc(d). Moreover,

it is possible that the only optimal solution for an (ILP) is a feasible 1-CP(i) which is

not also a feasible d-ceiling point (d > 1) with respect to any single constraint. In this

case, enumerating only feasible ISI-CP(i)'s will fail to yield the optimal solution. For

example, consider the following simple (ILP):

max{x 1 + X2 + Xs1Xj < 4.5,j = 1,2,3;x > 0}.

The integer solution y = (4,4,4) is a 3-CP(FR), yet y is a 1-CP(i) with respect to each

upper bound constraint individually. In fact, no 2-CP(?)'s or 3-CP(i)'s exist. Here, y is

the unique optimal solution, and it would not be found by searching only for ISjI-CP(i)'s.

Thus, if we take the approach of seeking d-CP(i)'s with respect to one constraint at a

time, we must take d = 1.

4. Search Constraints

Suppose we have an algorithm G for finding 1-CP(i)'s with respect to a given con-

straint (i). Then Theorem 2 indicates that to solve (ILP) we need to apply our algorithm

G to each functional and nonnegativity constraint. 'I he purpose of this section is to

demonstrate that we only need to search for 1-CP(i)'s with respect to a subset of all the

constraints. Also, this set of "search constraints" is not difficult to identify. The next

theorem indicates that we may exclude from the set of search constraints all of the non-

negativity constraints because if there exists an optimal solution which is a 1-ceiling point

with respect to a nonnegativity constraint, there also exists an optimal solution which is

a 1-ceiling point with respect to a functional constraint.
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Theorem 3 Suppose the set of feasible solutions for (ILP) is non-empty and bounded.

Further suppose that (ILP) is not trivial to solve (by trivial we mean that if x = 0 is

feasible then it is optimal). Then (ILP) possesses an optimal solution which is a feasible

1. CP(i), where (i) is a functional constraint.

Proof: Let x* be any optimal solution for (ILP). Assume that neither x* nor any other

optimal solution is a 1-CP(i), where (i) is some functional constraint.

For all j =1, ... , n there are three possibilities:

Case 1. c2 > 0 : Neighboring solution x!+ violates no functional constraints since x* 5 1-

CP(FR), nor does it violate any nonnegativity constraints because x* > 0. Furthermore,

cTX* + > cTx*, contradicting the optimality of x*.

Case II. cj = 0: Solutions along a ray emanating from x* all have the same objective

value, i.e., cTx* = cT(X* + e3 ) = ... = cT(x * + Ke). Eventually, for some K large

enough, x* + Kej violates a functional constraint (i,) by the boundedness assumption.

Then x* + (K - 1)ej is a feasible, optimal 1-CP(i,), contradicting the hypothesis.

Case III. ci < 0 : If neighboring solution x*- is feasible, then cTx*- > cTx * , contra-

dicting the optimality of x*. Thus, the only remaining possibility is that x*- is infeasible,

implying that x = 0, which is considered next.

Since these cases hold for every direction j, we are left with x* = 0 for all j, i.e., x* =0

is the only optimal solution for an (ILP) with c < 0. But this is precisely the situ-

ation ruled out by the theorem's suppositions: If x = 0 is a feasible solution for the

(ILP) max{cT xl Ax < b, x > 0, c < 0}, then x = 0 must be optimal. Therefore, ei-

ther x* itself or another optimal solution is a 1-CP(i) with respect to some functional

constraint (2). 1

We now demonstrate that, at least in W2, we need not search for 1-CP(i)'s with

respect to any constraint that does not intersect the unit cube with all-integer vertices

containing i, an optimal solution for (LPR). To help show this, let A {iI aJ Ti = bi} be
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the set of constraints binding at i, and C1 - {xl ax < bi,Vi E A} be the cone formed

by the extreme rays of FR emanating from i. Also let K =_{IjI j = integer} be the set

of indices of integer-valued components of t, Kc - IKI and UHC[.]J be any of the 2' unit

hypercubes in R' with all-integer vertices which contain i. If 1C = 0, i.e., ii # integer,

Vj, then there is a unique UHC[i =_ {x E R"I [± J _< xj _< Fij],Vjj. If K = 1, i.e., ij =

integer, for some 1, then there are two corresponding UHC[.]'s: {x E RnW - 1 _< x _

il; [i :5 xj S [i,1,Vj 96 1} and Ix E R'l i xi xt + 1; L .] :5 Xj 5 rr1,Vi $ l}.
If K > 1, then there exist 2' UHC[i]'s defined in the obvious manner. Since it is assumed

that ;e is not all-integer, the scalar r- E {0, 1,...,n - 1}.

Theorem 4 Suppose an (ILP) with n = 2 is non-empty and bounded. Further suppose

that c j 0 and t is an optimal solution for (LPR). Then every optimal solution for

(ILP) is a feasible 1-CP(i), where constraint (i) intersects each of the 2K UHC[;]'s.

Proof: The proof will be by contradiction in a rather lengthy case analysis. In each

case, we first assume the existence of an optimal solution y E R2 for (ILP) which is not

a 1-CP(i) with respect to any (i) intersecting a UHC[.]. We then reach a contradiction

by specifying a nonnegative integer solution x* which is both feasible and strictly better

than y in any possible configuration of t, the binding constraints, y and c satisfying the

original assumptions. Note that if c = 0 then all feasible integer solutions are optimal, not

just 1-CP(FR)'s, so the theorem does not hold.

We first define a region which, under the assumptions about y, must contain only

feasible integer solutions. The general picture to keep in mind is shown in Figure 3(a). The

points {uI U2, u 3, u4} are the all-integer vertices of UHC[±t], while the points {v 1 , v2, v3 , 4}

are the all-integer vertices of what Balas, et al. [BBI would refer to as the "dual to the unit

hypercube centered at y," abbreviated here as DUHC[y]. Figure 3(a) shows a "feasibility

cone" C1 whose vertex is at iF and whose edges are formed by constraints binding at t. The

edges of C, that will be used in the proof and that are shown in Figure 3(a) are the tightest

possible "admissable binding constraints," i.e., constraints binding at i which satisfy the
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assumption that y is not a 1-CP(i) with respect to any constraint i E A. Note that the

edges of the cone C1 shown in Figure 3(a) pass through the vertices of DUHC[y] so that y

is almost - but not quite - a 1-ceiling point with respect to each of the constraints binding

at _.

To further define the region of only feasible integer solutions, a second "feasibility

cone" C2 is constructed whose vertex is at y and whose edges are formed by constraints

which do not intersect UHC[i]. The edges of C2 that will be used in the proof and that are

shown in Figure 3(a) represent a limiting case for "admissable non-binding constraints,"

i.e., constraints non-binding at i which neither chop off y nor intersect UHC[i]. The

tightest admissable non-binding constraints must actually form a cone strictly containing

the cone C2 pictured in Figure 3(a) because the edges of C2 shown in the figure pass through

the vertices of UHC[ ], i.e., they just barely intersect UHC[±]. Thus, integer points that

satisfy all of the constraints defining cones C1 and C2 are feasible for all configurations

of the feasible region in which y is not a 1-ceiling point with respect to any constraint

intersecting UHC[,t].

Now a third cone C3 is defined such that all points lying within this cone have at

least as good an objective function value as that of y for all "admissable c," i.e., for all c

such that t is optimal for (LPR). Cone C 3 comes from the Karush-Kuhn-Tucker necessary

conditions for optimality in a linear program: at an optimal solution, the gradient of the

objective function c can be expressed as a nonnegative combination of the gradients of

the constraints binding at this solution. In other words, the cost vector c lies in the cone

defined by the row vectors of A corresponding to the constraints binding at x [BJ, p. 215].

As a result, an "optimality cone" C3 can be constructed such that any solution lying in

this cone possesses an objective value greater than or equal to that of y for all admissable

c. One edge of C3 is formed by a constraint passing through y parallel to one edge of C,

and the other edge is formed by another constraint passing through y parallel to the other

edge of C 1, as illustrated in Figure 3(b).
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Let region R denote the set of points that satisfy all six of the constraints defining

cones C1 ,C 2 and C3 , i.e., R = (Cl nC 2 n C3). Since cones C2 and C3 share a common

vertex, two of the constraints defining these cones must be redundant, so that only four

constraints are really needed to define R. For example, in the arrangement shown in Figure

3(b), cone C3 appears to be completely redundant with respect to C2 (although this will

not always be the case). Thus, all integer points in R are feasible and as good as y for

all admissable c and cone constraints. We shall proceed to define a region R C R which

possesses only solutions strictly better than y.

First, we account for the fact that i may lie anywhere within UHC[fl. Consider the

csne C1 generated by locating t anywhere strictly interior to UHC[i] or on its northern or

eastern boundary. This cone is at least as large as another cone C"' generated by locating

t at some specific point along the southern or western boundary of UHC[.]. Thus, it is

sufficient to consider the case where i approaches some point along the southern or western

boundary of UHC(±l because the resultant cone is as small as possible. In the following

analysis, we will examine the southern and western boundaries of UHC[.z] separately.

In Cases LA and II.A, we consider locating ± simultaneously at each point along the

western edge of UHC[(.], giving rise to a sequence of cones as pictured in Figure 3(c). For

the moment, extend these cones only as far as vertices v, and v3 . Taking the intersection of

all these truncated cones yields another truncated cone C1 with extreme points v, ty, and Z).

For the case pictured in Figure 3(c), one edge of cone C1 passes through the points U2 and

v3 , while the other edge passes through the points ul and v1 . The sequence of C1 cones, in

turn, gives rise to a sequence of optimality cones. In the following figures, the cone labeled

C 3 is the intersection of all s'uch optimality cones and the region A= (C1 fn C2 n C3 ). Since

C2 shares a common vertex (y) with each optimality cone C3 , C2 also shares a common

vertex with C3 . Thus, only four constraints are needed to define region A.

Recall that cTX > cT Y, Vz E R, with equality holding only when x lies on the boundary

of cone C3 and the optimal objective function hyperplane i = c Tx coincides with an edge
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(a, +1muU (a+ b

(a.u I(a+ i )

Vu

v 2=(Ol

(0,- 1)= V 4

Figure 3(c). Cone C 1 with vertex v is the intersection of a sequence of truncated C1 cones

whose vertices range between ul and u2. Cone C3 with vertex y is the intersection of the

corresponding sequence of C3 optimality cones.
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of C3. An edge of C3 may coincide with 2 = cTx only if an edge of C, coincides with

= C £ because of the way C3's edges are constructed. However, the corresponding edges

of cones C1 and C3 cannot be parallel because for every pair of parallel edges (one from

C 1, one from C3 ) at least one of the two edges becomes redundant when the intersection

over all C1 cones is taken to form C 1 and the intersection over all C3 cones is taken to

form C,3 . Thus, no pair of parallel edges define 1. Consequently, cTx > c Ty, Vx E RB, even

if x E R lies on the boundary of the optimality cone C3 .

Cases I.B and II.B follow a plan similar to the above except that i is located simul-

taneotusly at each point along the southern edge of UHC[ ]. Taken together, these cases

will show that a feasible integer solution x* which is better than y can be identified in any

admissible configuration of the x, the binding constraints, y and c in 2 . To summarize,

we will contradict the optimality of y by identifying an integer solution .'* in each case

which lies in the region 1 defined by the following four constraints:

(la) and (lb) - define the edges of the truncated feasibility cone C 1,

(2) - defines one of the two edges of the feasibility cone C2, and

(3) -- defines one of the two edges of the optiniality cone C3 .

It is assumed that y < .i', but all the arguments could be appropriately rotated a1d a

suitable x* found, given any other relationship between y and .x (e.g,, y > X). Also. there

is no loss of generality in letting y and zi be defined as the all-integer vertices (0. 0) and

(a, b), respectively. Finally, in what follows the notation LIIS(j ) will mean the left hand

side of the jth constraint evaluated at x*.
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(a, + u 2 U 3 =(a+ h+ 1)
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(2 U U 4=(a+ Ib)

3)

lb

la)

1,0) v y v 3 =( 1,0)

(0,- 1 )--v 4

Figure 4(a). Case LA of Theorem 4: 1 < a < b; i on western edge of UHC[.f



4. Search Constraints 21

Case I.A. 1 < a < b; i on western edge of UHC[i]. See Figure 4(a).

(la) Feasibility cone C 1 constraint through (v 3 ,u 2 ): (b + 1)xj - (a - 1)x 2 < b + 1

(lb) Feasibility cone 0 1 constraint through (v, ul): -bxl + (a + 1)x 2 <5 b

(2) Feasibility cone C 2 constraint through (y, u2 ): (b + 1)xl - ax 2 > 0

(3) Optimality cone C 3 constraint through (y, u3 ): (b + 1)xl - (a + 1)x2 < 0

(i) a even: x" - 3, + S LI-T-J+

LHS(la) =(b + 1) -(a- 1)L- < (b + 1)1 - (a -I) ± -b < b < b + 1.
{_ ~b <~b1

f b + -! = < b, ( vn
LHS(lb) = -b! + (a + 1)UJ = 2 _ = _ (b even)

2.2 + -+1)(b+1)2 - 2 -
< b. (b odd)

LH S(2) = (b + 1) S - a L j  >'] (b + 1) a T)=0

Therefore, x* is feasible.
LHS(3) = (b + 1) E - (a + 1)L--J< (b + 1) 9 - (a + 1)L = I-b < 0.

Thus, x* is strictly better than y, contradicting the assumption that y is optimal.

(ii) a odd: ([=] [, r+ -I) = -, 1+-)

(_a-4-) ___+1________

LHS(la) = (b+ 1)(a2 -(a- 1)[1±11 < (b+ ) -(a- 1)() 2b-a+3 <b+1.
-nb--b (a-4-)(b-F2)-- T -n-a = ---- 2 + 2 a + 1 < b, (b even)

2 + (a+Ur2-bb-b +((a-+I(b-"'- S (= < b. (b odd)
2 2 -2 b. (od

LHS(2) =(b + 1)(a + -ar+I' > (b + 1) Ta+ -a(b+2) -'+ >0.
2 22 2 2 -

Therefore, x" is feasible.

LHS(3) = (b + 1)(a+) - (a + 1)-- =(a+){ - [+-I <0.

Thus, x* is strictly better than y, contradicting the assumption that y is optimal.
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0 2

(a,b+ 1)=u 2  u3 =(a b1)

(a,b) u UHC[ ] u =(1 +,b)

(3

(2)

R
( a

(0. 1)= 2

(0,1)=,44

Figure0) = ----- '--- 4b CT1n)

Figure 4(b). Case .B of Theorem 4: 1 < a < b; on southern edge of UHC[±].
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Case I.B. 1 < a < b; i on southern edge of UHC[i]. See Figure 4(b).

(la) Feasibility cone C1 constraint through (vI, u4): -bxl + (a + 2)x 2 !5 b

(lb) Feasibility cone ti1 constraint through (v3 ,ul) bx1 - (a - 1)x 2 < b

(2) Feasibility cone C2 constraint through (y, u4 ): -bxl + (a + 1)x 2 > 0

(3) Optimality cone C3 constraint through (y, ul): bxl - aX2 > 0

(i) a even, a < b: X" --- LID

LHS(la) = -b(s) + (a + 2)Lk] 5 -b(f) + (a + 2)i = b.

LHS(lb) = b(a) -(a - 1) [kj :5 - (a - 1)(b2- - - 1 = - < b.

- b -1 -a-- > o.
LHS(2)= -b(E.)+(a+1)LIJ >- +(a+1)L-j 2

Therefore, x* is feasible.
LHS(3) = b(E) - atj > a(k - LM] > 0.

Thus, x* is strictly better than y, contradicting the assumption that y is optimal.

(ii) a odd, a < b: X* q , [j]

( -b(a+l) (a+2)(b+1) . +b+2 < b, (b odd)
LHS(la) = -b(a+) +(a+ 2)[b1 2 + 22

(- -b(a+l) + il±L) = 1 < b. (b even)

LHS(Ib) = b +)-a I)fk] !5 a-b -(- I)k = b.

LHS(2) = -b1 -)1 + (a + 1)[1= +1)([ ) > 0.

Therefore, x* is feasible.

LHS(3) = b a - a(b+ - ) b-a > O.
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Thus, x* is strictly better than y, contradicting the assumption that y is optimal.

(iii) a =b: X" - (L121, L21J)

LHS(la) =-bLJ + (a +2)LJ = -b[kJ +(b+2)[b ] = 2[Lkj < b.

LHS(lb) = bL.j - (a - 1)LiJ= LJ < b.

LHS(2) = -bLJ + (a + 1)Lj = -bLkJ + (b + 1)L = J > 0.

Therefore, x" is feasible.

LHS(3) = bLJ - aL J =0.

Thus, x* is strictly better than y, contradicting the assumption that y is optimal.
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Case II.A. 1 < b < a; i on western edge of UHC[i]. See Figure 4(c).

(la) Feasibility cone C1 constraint through (v4, U2 ) : (b + 2)x, - ax 2 < a

(1b) Feasibility cone C1 constraint through (v2,ui) : -(i, - 1)xl + ax2 <_ a

(2) Feasibility cone C2 constraint through (y, u2): (b + 1)xl - ax2 >_ 0

(3) Optimality cone C3 constraint through (y, ui): bxl - ax 2 S 0

(i) b even: x* - ([12, LID = (L12 2

LHS(la) =(b+ 2) Lj - 11 <a ( b+ 2 ) )- lk = a.

LHS(lb)-"-(b - 1) LI] a(k) S<-(b - 1) l-j- + a&=j-- < L--a.-- ~bi2 .

LHS(2)=(b+ 1)LIJ - >(b+ 1)1+ = - 0.

Therefore, x* is feasible.
LHS(3) = b[] - -l = b([LJ - ) < 0.

Thus, x* is strictly better than y, contradicting the assumption that y is optimal.

(ii) bodd X* 21, [ J) = ([1] 2)

aH) = ( r= 2- (a even)LHS(la) =(b+2)[ ] -=b+ ([]-)+ ] _

2 [+b+2 <a. (aodd)

LHS(lb) = -(b- 1)[r] -a(!) -(b- 1)+ !-' <a.

LHS(2) = (b + 1)ri - > (b+ 1)- .
2 2 -- 2

Therefore, x* is feasible.

LHS(3) = b[fl - 12 +  < bi-U - 12±U_ -+ < 0.

Thus, X° is strictly better than y, contradicting the assumption that y is optimal.
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(a~b+ 1)-u2  U ix 0 irC,

Figure 4(d). Case II.B of Theorem 4: 1 b < a; 2 on southern edge of UHC[i].
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Case II.B. 1 <b < a; i on southern edge of UHC i]. See Figure 4(d).

(la) Feasibility cone C constraint through (v2 ,u 4 ): -(b 1)xI + (a + 1)X 2 < a + 1

(Ib) Feasibility cone C1 constraint through (v4,ul) : (b + 1)xl - aX2 <a

(2) Feasibility cone C2 constraint through (Y, u4): -bxl + (a + 1)X2 > 0

(3) Optimality cone C3 constraint through (Y,u 3 ): (b 4 I)xI - (a + 1)x2 0

(i) b even : - (L2 -1, rb1) = (L+-J/ , )

LHS(la) = -(b- 1 )L'2 J + 2! < -(b- 1)1 + 2l = ! < a +1.

_____ -ab = a+&+1 <a.LHS(lb)-- (b+ 1) L'2'J - a('2)_< (a + 1)± -' - T 2 -<

LHS(2) - -bLf--J + il: > -b('+ 1 ) + iI±IA - 0.

Therefore, x* is feasible.

LHS(3) =(b+1)L' -IJ(a+ )b> (b+1)1+- 2 A = = - > 0 .

Thus, x* is strictly better than y, contradicting the assumption that y is optimal.

(ii) bodd X* - = ([r .4k, = U -1!q)

LHS(la) = -(b- ) '2 + (4+1)(6+1) < -(b 1)(a1) + a +
1) (&1 __ __+__l

LHS(lb) = (b+ 1)r'' 1 - 2 < (b+ 1)(2+21- (2+)= b+ 1 < a.

S2 - 2 2

Therefore, z" is feasible.

LHS(3) = (b + 1) r-1 -. + +12_> (b + 1)(&+- (a+,)(b+1) = 0.

Thus, x" is strictly better than y, contradicting the assumption that y is optimal.
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The final case that needs to be considered is where either a = 0 or b = 0 (but not both).

If a = 0, the integer solution x* V2 = (0,1) is clearly feasible and better than y, while if

b = 0, the same can be said of x = v3 = (1,0). 1

Conjecture 4a (Theorem 4 with n > 3) Suppose an (ILP) is non-empty and bounded.

Further suppose that c 6 0 and i is an optimal solution for (LPR). Then every optimal

solution for (ILP) is a feasible 1-CP(i), where constraint (i) intersects each of the 2'

UIHC[ ]'s.

Rationale: The reasoning behind this is that it seems the "geometry" of the situation

in higher dimensions will reflect that of the two-dimensional case described in the proof of

Theorem 4. For instance, projecting the situation in 3 onto any of the two-dimensional

coordinate planes x-x 2, x 2-x 3, or XI-x 3 would reveal a feasible integer solution x* in this

projection with a value superior to that of y. Let p denote the midway point between

i and y and UHC[p] the unit hypercube containing p with all-integer vertices. For each

case of Theorem 4, the solution x* is the feasible integer solution closest to p, which is

where the region defined by the three cones is widest. In higher dimensions, it seems likely

that among the lattice points between y and UHC[i], one such integer solution which

is approximately halfway between t and y will satisfy all the requirements for a feasible

solution with an objective value greater than y for all admissable c, i.e., all c such that

- is optimal for (LPR). First note that for some vertex v of UHC[p], every component vi

of this vertex differs from pi by no more than L. Then observe that, by construction, the

width of the cone C when sliced through p parallel to each coordinate axis is at least 1.

Furthermore, the width of both cones C2 and C3 when sliced through p parallel to each

coordinate axis is at least . So, in the neighborhood of p, it appears possible to move

to an integer solution z* (a vertex of UHC[p]) which satisfies the constraints defining all

three cones. Thus, it seems plausible in higher dimensions that we will be able to find a

feasible integer solution z* better than y when we assume that y is not a l-CP(i) with
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respect to any constraint which intersects one the 2K UHC[.]'s. I

Consider the implications for developing an algorithm to find an optimal solution

for (ILP) if this conjecture is correct. The conjecture implies that the set of functional

constraints whose 1-CP(i)'s we must enumerate in order to solve (ILP) consists of just

those which intersect a unit hypercube with all-integer vertices containing i. Part of this

set of constraints, namely, the set A of constraints binding at t, may be identified by using

the simplex method to solve the (LPR). The next step would be to pivot from 2 to find

all extreme points adjacent to it and check whether or not each adjacent extreme point is

contained in UHC[2]; if it is, then any constraint binding at this extreme point intersects

UHC[i]. We still would need to test whether or not any of the remaining constraints

intersect UHC[i]. A sufficient condition for excluding a constraint from the set is if the

distance from the constraint to i at its closest point is more than v/. Such a constraint

cannot possibly intersect UHC[2]. Constraints less than a distance of Vr from i at

their closest point do not neccessarily intersect UHC[.], but to determine this precisely

takes more effort. However, computational experience has shown that it is unnecessary

to determine the complete set of constraints intersecting UHC[i] because the problem

is usually solved by the time we have enumerated the 1-ceiling points with respect to

just a few constraints binding at 2. Thus, while Theorem 4 and Conjecture 4a are of

theoretical interest, they have had little impact on the development of the Exact Ceiling

Point Algorithm described in a subsequent report.
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5. Underlying Assumptions

The theorems of the previous sections imply that to solve a non-trivial, non-empty,

bounded (ILP) with c 6 0, it is sufficient to enumerate its feasible 1-CP(i)'s. In this

section we consider the effect of placing these conditions on (ILP). First, assuming that

c 6 0 just means that we have an optimization problem. Second, to check that (ILP) is

not trivial to solve, we simply examine some of the data; if both c < 0 and b > 0, then x = 0

trivially solves the (ILP). Third, although we can conclude that (ILP) is empty if the

associated (LPR) is empty, the contrapositive is not true. So, when (LPR) is non-empty,

we can determine whether or not (ILP) is empty by seeking only 1-CP(FR)'s because an

(ILP) containing no 1-ceiling points does not contain any feasible integer solutions either,

and vice-versa, as Theorem 5 demonstrates. Theorem 5 follows directly from the next two

lemmas.

Lemma 5a The set of feasible integer solutions for (ILP) is empty if and only if the set

of CP(FR)'s is empty.

Proof: (=*) Assume no CP(FR)'s exist. Then, by Lemma la, no extreme points of

the convex hull of feasible integer solutions exist. Since the feasible region for (ILP) is

bounded below, the convex hull of feasible integer solutions must be empty (rather than

being unbounded). Therefore, no feasible integer solutions exist.

(.i=) Assume no feasible integer solutions exist. Then, since every CP(FR) is a special

kind of feasible integer solution, no CP(FR)'s may exist either. I

Lemma 5b The set of CP(FR)'s for (ILP) is empty if and only if the set of 1-CP(FR)'s

is empty.

Proof: (=;.) Assume no 1-CP(FR)'s exist. Since every CP(FR) is a special kind of

feasible 1-CP(FR) by Lemma 1c, part (a), no CP(FR)'s may exist either.
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(4-) Assume no CP(FR)'s exist. Then, by Lemma 5a, the set of feasible integer solutions

for (ILP) is empty and thus no 1-CP(FR)'s exist. I

Theorem 5 The set of feasible integer solutions for (ILP) is empty if and only if the set

of 1-CP(FR)*s is empty.

Proof: Immediate from Lemmas 5a and 5b. I

Finally, the boundedness condition can also be checked by solving the linear program-

ming relaxation of (ILP) and possibly enumerating 1-ceiling points.

Theorem 6 If the objective function of (LPR) is bounded above, then either the objective

function of (ILP) is also bounded above or (ILP) is infeasible.

Proof: Even if solutions exist for (LPR), infeasiblity of (ILP) is clearly a possibility.

For example, the region defined by {."I 1 < 3.r1 < 2,Vj} contains real but no integer

solutions. Because (LPR) is a relaxation of (ILP) the optimal objective function value of

(ILP) must be less than or equal to that of (LPR). Thus, if the former is bounded above,

the latter must also be bounded above. I

When the objective function of (LPR) is unbounded and all data are rational, we can

use the following result (see Iea, Lemma 3] or [BG, Theorem 1]).

Theorem 7 (Papadimitriou) Assume the data of (iHP) are rational. If the objective

function of (LPR) is unbounded above, then either the objective function of (ILP) is also

unbounded above or (ILP) is infeasible.

Whether (LPR) is bounded or not, we may use an algorithm which solves the linear

programming relaxation and searches only for 1-ceiling points of (ILP) to make a relevant

statement about the optimal value of (ILP). To summarize: (1) if (LPR) is infeasible.
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so is (ILP); (2) if the objective function of (LPR) is bounded above, then a 1-ceiling

point algorithm applied to (ILP) will determine either that (ILP) has no feasible integer

solutions or that it also has an objective function which is bounded above; (3) if the

objective function of (LPR) is unbounded, then a 1-ceiling point algorithm applied to

(ILP) will conclude either that (ILP) has no feasible solutions or, upon first identifying

a feasible integer solution, that (ILP)'s objective function is also unbounded above. In

this lattei case, the integer linear program has most likely been formulated incorrectly.

6. Summary of Concepts with an Example

We shall now briefly review the ideas presented in this report and try to illustrate their

effects graphically. The key theorems given above will be applied in turn to the simple

example of Figure 1 having two variables and three constraints. After each is applied, the

set of integer solutions on which we need to focus in order to solve the problem, shown as

the solid lattice points in Figures 5 and 6, is reduced. The first diagram below, Figure 5(a),

illustrates that initially all feasible integer solutions of our (ILP) are under consideration.

The significance of Theorem 2 is that to solve our problem, we need only to focus on the

feasible 1-CP(i)'s, as shown in Figure 5(b).

Considering Theorem 3, we need retain from the set of all feasible 1-CP(i)'s only those

which are 1-ceiling points with respect to afunctional constraint. Therefore, we can ignore

those integer points which lie along either of the axes but which are either infeasible or

are not 1-ceiling points with respect to a functional constraint. The effect of this is shown

in Figure 6(a), where the set of 1-ceiling points {(x1,0),xi = 0,1, ...,4} are dropped from

consideration.

Finally, if we solve the linear programming relaxation associated with (rLP), we may

take one more step based on its optimal solution, i. FRom the remaining set of points,
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x x
2 2

0 
0 2) 0 0 

0 
0 0 0

(3) (3)
9 a a 0

X x

Figure 5.(a) All feasible solutions. (b) Feasible 1-CP(i)'s (Theorem 2).

Theorem 4 allows us to just concentrate on those which are 1-ceiling points with respect to

a functional constraint that intersects a unit cube containing x and possessing all-integer

vertices. If we assume that t occurs at the intersection of constraints (1) and (2), then we

no longer need to examine most of the feasible 1-CP(3)'s, namely, {(4, x2), X2 = 0, 1, 2},

because they are not 1-CP(i)'s with respect to either constraint (1) or constraint (2). The

remaining integer points which are still sufficient to solve (ILP) are shown in Figure 6(b).

Thus, the net effect of the theorems is to significantly reduce the set of feasible integer

solutions on which we need to focus our attention in order to solve (ILP), assuming that

feasible solutions exist. Subsequent reports will describe a. heuristic algorithm and an exact

algorithm, respectively, which are designed to take advantage of these ideas.
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SOL 88-11: The Role of Ceiling Points in General Integer Linear Progiunniing. Robert Nt
Saltzman and Frederick S. Hillie (July 1988, 35 pp.)

TIUs report examines the rule played by several kinds of ceiling points in solving dhe pure,
geneal intger linear programmning; problem (ILP). While no astmptions are made
concerning t structure or signs of the data of the problem, it is asumed that the feasible
region for (ILP) is non-emipty and bounded. A ceiling point with respect to a single
constraint may be thought of as an integer solution on or close to the boundary of the
feusible region defined by the constraint. The definition of a ceiling point with respect to a
single constaint is extended to take multiple constraints into consideration simultaneously,
defining what is called a feasible ceiling point. It is shown that the set of all feasible ceiling
points contains at least one optimal solution for (ILP). A related class of solutions called
feasible 1-ceiling points is als characterized and shown to contain all optimal solutions for
(ILP). Moreover, 1-ceiling points are comrputationally easier to identify than ordinary ceiling
points and mnay be sought with respect to one constaint at a time. It is also demonstrated
that solving (ILP) requires only enumerating feasible 1-ceiling points with respect to a
subset of ail functional constrants.

eCUOUTT CL AWImPCAlTON OF 'w ae~e Pb~qag&WM


