AVF Control Number: NBS88VMAS530_2

Ada Compiler
VALIDATION SUMMARY REPORT:
Certificate Number: 880520S1.09110
MASSCOMP
MASSCOMP Ada, Version 1.1
MASSCOMP MC6600 with M68030 CPU and
M68882 floating point accelerator (FPA)

Completion of On-Site Testing:
20 May 1988

Prepared By:
Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Title: Ada Compiler Validation Summary Report: MASSCOMP, MASSCOMP Ada, Version 1.1, MASSCOMP MC6600 with M68030 CPU and M68882 floating point accelerator (FPA) (Host and Target).

Author(s): National Bureau of Standards, Gaithersburg, MD, U.S.A.

PERFORMING ORGANIZATION AND ADDRESS:
National Bureau of Standards, Gaithersburg, MD, U.S.A.

REPORT DATE: 20 May 1988

NUMBER OF PAGES: 43 p.

DISTRIBUTION STATEMENT (of this report): Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report): UNCLASSIFIED

KEYWORDS:

ABSTRACT:
MASSCOMP Ada, Version 1.1, MASSCOMP, National Bureau of Standards, MASSCOMP MC6600 with M68030 CPU and M68882 floating point accelerator (FPA) (Host and Target), ACVC 1.9.
Ada Compiler Validation Summary Report:

Compiler Name: MASSCOMP Ada, Version 1.1
Certificate Number: 880520S1.09110

Host: MASSCOMP MC6600 with M68030 CPU, M68882 FPA under MASSCOMP RTU, Version 4.0

Target: MASSCOMP MC6600 with M68030 CPU, M68882 FPA under MASSCOMP RTU, Version 4.0

Testing Completed 20 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

[Signature]
Ada Validation Facility
Dr. David K. Jeiferson
Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

[Signature]
Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

[Signature]
Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .. 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT .. 1-2
1.3 REFERENCES .. 1-3
1.4 DEFINITION OF TERMS .. 1-3
1.5 ACVC TEST CLASSES .. 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED ... 2-1
2.2 IMPLEMENTATION CHARACTERISTICS ... 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ... 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS ... 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER .. 3-2
3.4 WITHDRAWN TESTS ... 3-2
3.5 INAPPLICABLE TESTS .. 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-3
3.7 ADDITIONAL TESTING INFORMATION .. 3-4
3.7.1 Prevalidation .. 3-4
3.7.2 Test Method ... 3-4
3.7.3 Test Site ... 3-5

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS
CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms used within it and thoroughly reports the results of testing this compiler using the Ada Compiler Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada Standard, and any implementation-dependent features must conform to the requirements of the Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that some differences do exist between implementations. The Ada Standard permits some implementation dependencies—for example, the maximum length of identifiers or the maximum values of integer types. Other differences between compilers result from the characteristics of particular operating systems, hardware, or implementation strategies. All the dependencies observed during the process of testing this compiler are given in this report.

This information in this report is derived from the test results produced during validation testing. The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the compiler to the Ada Standard by testing that the compiler properly implements legal language constructs and that it identifies and rejects illegal language constructs. The testing also identifies behavior that is implementation dependent but permitted by the Ada Standard. Six classes of test are used. These tests are designed to perform checks at compile time, at link time, and during execution.

1-1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs required by the Ada Standard

To determine that the implementation-dependent behavior is allowed by the Ada Standard

On-site testing was completed 20 May 1988 at Westford, Massachusetts.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free public disclosure of this report. In the United States, this is provided in accordance with the "Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that all statements set forth in this report are accurate and complete, or that the subject compiler has no nonconformities to the Ada Standard other than those presented. Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be directed to the AVF listed above or to:
1.3 REFERENCES

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs that tests the conformity of an Ada compiler to the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point addressed by a comment on the Ada Standard. These comments are given a unique identification number having the form AI-ddddd.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for conducting compiler validations according to procedures contained in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight authority over all AVF practices for the purpose of maintaining a uniform process for validation of Ada compilers. The AVO provides administrative and technical support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report, a compiler is any language processor,
including cross-compilers, translators, and interpreters.

Failed test
An ACVC test for which the compiler generates a result that demonstrates nonconformity to the Ada Standard.

Host
The computer on which the compiler resides.

Inapplicable test
An ACVC test that uses features of the language that a compiler is not required to support or may legitimately support in a way other than the one expected by the test.

Language Maintenance
The Language Maintenance Panel (LMP) is a committee established by the Ada Board to recommend interpretations and Panel possible changes to the ANSI/MIL-STD for Ada.

Passed test
An ACVC test for which a compiler generates the expected result.

Target
The computer for which a compiler generates code.

Test
An Ada program that checks a compiler's conformity regarding a particular feature or a combination of features to the Ada Standard. In the context of this report, the term is used to designate a single test, which may comprise one or more files.

Withdrawn test
An ACVC test found to be incorrect and not used to check conformity to the Ada Standard. A test may be incorrect because it has an invalid test objective, fails to meet its test objective, or contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and illegal Ada programs structured into six test classes: A, B, C, D, E, and L. The first letter of a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and special program units are used to report their results during execution. Class B tests are expected to produce compilation errors. Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled and executed. There are no explicit program components in a Class A test to check semantics. For example, a Class A test checks that reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable. Each test in this class is compiled and the resulting compilation listing is examined to verify that every syntax or semantic error in the test is detected. A Class B test is passed if every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no capacity requirements placed on a compiler by the Ada Standard for some parameters—for example, the number of identifiers permitted in a compilation or the number of units in a library—a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore, if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed. However, the Ada Standard permits an implementation to reject programs containing some features addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled units are detected and not allowed to execute. Class L tests are compiled separately and execution is attempted. A Class L test passes if it is rejected at link time—that is, an attempt to execute the main program must generate an error message before any declarations in the main program or any units referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support the self-checking features of the executable tests. The package REPORT provides the mechanism by which executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that would circumvent a test objective. The procedure CHECK FILE is used to check the contents of text files written by some of the Class C tests for chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is checked by a set of executable tests. These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to ensure that the tests are reasonably portable without modification. For example, the tests make use of only the basic set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric values, and place features that may not be supported by all implementations in separate tests. However, some tests contain values that require the test to be customized according to implementation-specific values—for example, an illegal file name. A list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the Ada Standard by either meeting the pass criteria given for the test or by showing that the test is inapplicable to the implementation. The applicability of a test to an implementation is considered each time the implementation is validated. A test that is inapplicable for one validation is not necessarily inapplicable for a subsequent validation. Any test that was determined to contain an illegal language construct or an erroneous language construct is withdrawn from the ACVC and, therefore, is not used in testing a compiler. The tests withdrawn at the time of validation are given in Appendix D.
CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: MASSCOMP Ada, Version 1.1

ACVC Version: 1.9

Certificate Number: 880520S1.09110

Host Computer:

Machine: MASSCOMP MC6600 with M68030 CPU and M68882 FPA

Operating System: MASSCOMP RTU Version 4.0

Memory Size: 8 MBytes

Target Computer:

Machine: MASSCOMP MC6600 with M68030 CPU and M68882 FPA

Operating System: MASSCOMP RTU Version 4.0

Memory Size: 8 MBytes

Communications Network: floppy disks
2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically check for such implementation differences. However, tests in other classes also characterize an implementation. The tests demonstrate the following characteristics:

- Capacities.

 The compiler correctly processes tests containing loop statements nested to 65 levels, block statements nested to 65 levels, and recursive procedures separately compiled as subunits nested to 17 levels. It correctly processes a compilation containing 723 variables in the same declarative part. (See test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and D29002K.)

- Universal integer calculations.

 An implementation is allowed to reject universal integer calculations having values that exceed \textsc{system}.\textsc{max}.\textsc{int}. This implementation processes 64 bit integer calculations. (See tests D4AO02A, D4AO02B, D4A004A, and D4A004B.)

- Predefined types.

 This implementation supports the additional predefined types \textsc{short}.\textsc{integer}, \textsc{short}.\textsc{float}, and \textsc{tiny}.\textsc{integer} in the package \textsc{standard}. (See tests B86001BC and B86001D.)

- Based literals.

 An implementation is allowed to reject a based literal with a value exceeding \textsc{system}.\textsc{max}.\textsc{int} during compilation, or it may raise \textsc{numeric}.\textsc{error} or \textsc{constraint}.\textsc{error} during execution. This implementation raises \textsc{numeric}.\textsc{error} during execution. (See test E24101A.)

- Expression evaluation.

 Apparently all default initialization expressions or record components are evaluated before any value is checked to belong to a component's subtype. (See test C32117A.)
Assignments for subtypes are performed with the same precision as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision. This implementation uses all extra bits for extra range. (See test C35903A.)

Sometimes NUMERIC_ERROR is raised when an integer literal operand in a comparison or membership test is outside the range of the base type. (See test C45232A.)

Apparently NUMERIC_ERROR is raised when a literal operand in a fixed-point comparison or membership test is outside the range of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round to even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real expressions is apparently round to even. (See test C4A014A.)

- Array types.

An implementation is allowed to raise NUMERIC_ERROR or CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this implementation:

Declaration of an array type or subtype declaration with more than SYSTEM.MAX_INT components raises no exception. (See test C36003A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array type with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array type with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises NUMERIC_ERROR when the array type is declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array type is declared. (See test C52104Y.)

A null array with one dimension of length greater than INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either when declared or assigned. Alternatively, an implementation may accept the declaration. However, lengths must match in array slice assignments. This implementation raises NUMERIC_ERROR when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears to be evaluated in its entirety before CONSTRAINT_ERROR is raised when checking whether the expression's subtype is compatible with the target's subtype. In assigning two-dimensional array types, the expression does not appear to be evaluated in its entirety before CONSTRAINT_ERROR is raised when checking whether the expression's subtype is compatible with the target's subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either accept or reject an incomplete type with discriminants that is used in an access type definition with a compatible discriminant constraint. This implementation accepts such subtype indications rejects such subtype indications during compilation. (See test E38104A.)

In assigning record types with discriminants, the expression appears to be evaluated in its entirety before CONSTRAINT_ERROR is raised when checking whether the expression's subtype is compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices appear to be evaluated before checking against the index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all choices are evaluated before being checked for identical bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT_ERROR is raised if a bound in a nonnull range of a nonnull aggregate does not belong to an index subtype. (See test E43211B.)

- Representation clauses.
An implementation might legitimately place restrictions on representation clauses used by some of the tests. If a representation clause is not supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values for enumeration types other than character and boolean types are supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values for character types are supported. (See tests C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing representational values other than (FALSE => 0, TRUE => 1) are supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types are supported. (See tests A39005C and C87B.2B.)

Length clauses with STORAGE_SIZE specifications for task types are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE is supported for functions. (See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained array types and record types with discriminants without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO can be instantiated with unconstrained
array types and record types with discriminants without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

There are no strings which are illegal external file names for SEQUENTIAL_IO and DIRECT_IO. (See tests CE2102C and CE2102H.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO. (See tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for DIRECT_IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for (SEQUENTIAL_IO and DIRECT_IO. (See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for SEQUENTIAL_IO and DIRECT_IO. (See tests CE2102A and CE2106B.)

Overwriting to a sequential file truncates the file to last element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be created in OUT_FILE mode, and can be created in IN_FILE mode. (See test EE3102C.)

More than one internal file can be associated with each external file for text I/O for both reading and writing. (See tests CE3111A..E (5 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external file for sequential I/O for both reading and writing. (See tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external file for direct I/O for both reading and writing. (See tests CE2107F..I (4 tests), CE2110B, and CE2111H.)

An external file associated with more than one internal file can be deleted for SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO. (See test CE2110B.)

Temporary sequential files are given names. Temporary direct files are given names. Temporary files given names are deleted when they are closed. (See tests CE2108A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in separate compilations. (See tests CA1012A and CA2009F.)
Generic package declarations and bodies cannot be compiled in separate compilations. (See tests BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate compilations. (See test CA3011A.)
3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was tests, 27 tests had been withdrawn because of test errors. The AVF determined that 228 tests were inapplicable to this implementation. All inapplicable tests were processed during validation testing. Modifications to the code, processing, or grading for 26 tests were required to successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

<table>
<thead>
<tr>
<th>RESULT</th>
<th>TEST CLASS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Passed</td>
<td>109</td>
<td>1047</td>
</tr>
<tr>
<td>Inapplicable</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Withdrawn</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>113</td>
<td>1053</td>
</tr>
</tbody>
</table>
3.3 SUMMARY OF TEST RESULTS BY CHAPTER

<table>
<thead>
<tr>
<th>RESULT</th>
<th>CHAPTER</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td></td>
<td>190</td>
<td>499</td>
<td>540</td>
<td>245</td>
<td>166</td>
<td>98</td>
<td>142</td>
<td>326</td>
<td>137)</td>
<td>36</td>
<td>232</td>
<td>3</td>
<td>253</td>
</tr>
<tr>
<td>Inapplicable</td>
<td></td>
<td>14</td>
<td>73</td>
<td>134</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawn</td>
<td></td>
<td>2</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>206</td>
<td>586</td>
<td>677</td>
<td>248</td>
<td>166</td>
<td>99</td>
<td>145</td>
<td>327</td>
<td>137</td>
<td>36</td>
<td>236</td>
<td>4</td>
<td>255</td>
</tr>
</tbody>
</table>

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of this validation:

- B28003A
- E28005C
- C34004A
- C35502P
- A35902C
- C35904A
- C35904B
- C35AO3E
- C35AO3R
- C37213H
- C37213J
- C37215C
- C37215E
- C37215G
- C37215H
- C38102C
- C41402A
- C45332A
- C45614C
- A74106C
- C85018B
- C87B04B
- CC1311B
- BC3105A
- ADlA01A
- CE2401H
- CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not required by the Ada Standard to support. Others may depend on the result of another test that is either inapplicable or withdrawn. The applicability of a test to an implementation is considered each time a validation is attempted. A test that is inapplicable for one validation attempt is not necessarily inapplicable for a subsequent attempt. For this validation attempt, 228 test were inapplicable for the reasons indicated:

- C35702B uses LONG_FLOAT which is not supported by this implementation.
- A39005G uses a record representation clause which is not supported by this compiler.
The following (13) tests use LONG_INTEGER, which is not supported by this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point base types which are not supported by this compiler.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by this new definition in this implementation and the test cannot be executed since the package REPORT is dependent on the package TEXT_IO.

C96005B requires the range of type DURATION to be different from those of its base type; in this implementation they are the same.

BC204C and BC3204D compile generic package specifications and bodies in separate compilations. This compiler requires that generic package specifications and bodies be in a single compilation.

The following 201 tests require a floating-point accuracy that exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order to compensate for legitimate implementation behavior. Modifications are made by the AVF in cases where legitimate implementation behavior prevents the successful completion of an (otherwise) applicable test. Examples of such modifications include: adding a length clause to alter the default size of a collection; splitting a Class B test into sub-tests so that all errors are detected; and confirming that messages produced by an executable test demonstrate conforming behavior that was anticipated by the test (such as raising one exception instead of another).

Modifications were required for 26 Class B tests.
The following Class B test files were split because syntax errors at one point resulted in the compiler not detecting other errors in the test:

- B24009A B24204A B24204B B24204C B2A003A B2A003B
- B2A003C B33301A B37201A B38003A B38003B B38009A
- B38009B B41202A B44001A B64001A B67001A B67001B
- B67001C B67001D B91001H B91003B B95001A B97102A
- BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by the MASSCOMP Ada was submitted to the AVF by the applicant for review. Analysis of these results demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the MASSCOMP Ada using ACVC Version 1.9 was conducted on-site by a validation team from the AVF. The configuration consisted of a MASSCOMP MC6600 with M68030 CPU, M68882 FPA operating under MASSCOMP RTU, Version 4.0. The host and target computers were the same hardware.

A magnetic tape containing all tests except for withdrawn tests was taken on-site by the validation team for processing. Tests that make use of implementation-specific values were customized before being written to the magnetic tape. Tests requiring modifications during the prevalidation testing were not included in their modified form on the magnetic tape. The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and linked on the MASSCOMP MC6600 with M68030 CPU, M68882 FPA, and all executable tests were linked and run. Results were printed from the host/target computer.

The compiler was tested using command scripts provided by MASSCOMP and reviewed by the validation team. The compiler was tested using all default option | switch settings except for the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Switch</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-M</td>
<td></td>
<td>Produce an executable program using the named unit or source root name as the main program.</td>
</tr>
</tbody>
</table>

Tests were compiled, linked, and executed using a single host computer and a single target computer (host and target being the same).
output, compilation listings, and job logs were captured on magnetic tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Westford, Massachusetts and was completed on 20 May 1988.
APPENDIX A

CONFORMANCE STATEMENT

MASSCOMP has submitted the following Declaration of Conformance statement concerning MASSCOMP Ada Version 1.1.
DECLARATION OF CONFORMANCE

Compiler Implementor: MASSCOMP

Ada Validation Facility:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

Base Configuration

Base Compiler Name: MASSCOMP Ada, Version 1.1
Host Architecture: MASSCOMP MC6600 with M68030 CPU, M68882, running RTU 4.0
Target Architecture: MASSCOMP MC6600 with M68030 CPU, M68882, running RTU 4.0

Derived Compiler Registration

Derived Compiler Name: MASSCOMP Ada, Version 1.1
Host Architecture: MASSCOMP MC5400/MC5450 with M68020 CPU, M68881, running RTU 4.0
Target Architecture: MASSCOMP MC5400/MC5450 with M68020 CPU, M68881, running RTU 4.0

Derived Compiler Name: MASSCOMP Ada, Version 1.1
Host Architecture: MASSCOMP MC5520/MC5550 with M68020 CPU, M68881, running RTU 4.0
<table>
<thead>
<tr>
<th>Target Architecture:</th>
<th>Derived Compiler Name:</th>
<th>Host Architecture:</th>
<th>Target Architecture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASSCOMP MC5520/MC5550 with M68020 CPU, M68881, running RTU 4.0</td>
<td>MASSCOMP Ada, Version 1.1</td>
<td>MASSCOMP MC5600 with M68020 CPU, M68881, running RTU 4.0</td>
<td>MASSCOMP MC5600 with M68020 CPU, M68881, running RTU 4.0</td>
</tr>
<tr>
<td>Derived Compiler Name:</td>
<td>Host Architecture:</td>
<td>Target Architecture:</td>
<td></td>
</tr>
<tr>
<td>MASSCOMP Ada, Version 1.1</td>
<td>MASSCOMP MC5700 with M68020 CPU, M68881, running RTU 4.0</td>
<td>MASSCOMP MC5700 with M68020 CPU, M68881, running RTU 4.0</td>
<td></td>
</tr>
<tr>
<td>Derived Compiler Name:</td>
<td>Host Architecture:</td>
<td>Target Architecture:</td>
<td></td>
</tr>
<tr>
<td>MASSCOMP Ada, Version 1.1</td>
<td>MASSCOMP MC6300 with M68030 CPU, M68882, running RTU 4.0</td>
<td>MASSCOMP MC6300 with M68030 CPU, M68882, running RTU 4.0</td>
<td></td>
</tr>
<tr>
<td>Derived Compiler Name:</td>
<td>Host Architecture:</td>
<td>Target Architecture:</td>
<td></td>
</tr>
<tr>
<td>MASSCOMP Ada, Version 1.1</td>
<td>MASSCOMP MC6400 with M68030 CPU, M68882, running RTU 4.0</td>
<td>MASSCOMP MC6400 with M68030 CPU, M68882, running RTU 4.0</td>
<td></td>
</tr>
<tr>
<td>Derived Compiler Name:</td>
<td>Host Architecture:</td>
<td>Target Architecture:</td>
<td></td>
</tr>
<tr>
<td>MASSCOMP Ada, Version 1.1</td>
<td>MASSCOMP MC6700 with M68030 CPU, M68882, running RTU 4.0</td>
<td>MASSCOMP MC6700 with M68030 CPU, M68882, running RTU 4.0</td>
<td></td>
</tr>
</tbody>
</table>
Implementor's Declaration

We, the undersigned, representing MASSCOMP, have implemented no deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compilers listed in this declaration. We declare that MASSCOMP is the owner of record of the Ada language compilers listed above and, as such, is responsible for maintaining said compilers in conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language compilers listed in this declaration shall be made only in the owner's name.

Clark D'Elia
MASSCOMP
Software Development Manager

Bruce Lutz
MASSCOMP
Software Engineer

Date: 5/19/88

Owner's Declaration

We, the undersigned, representing MASSCOMP, take full responsibility for implementation and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of the final Validation Summary Report. We further agree to continue to comply with the Ada trademark policy, as defined by the Ada Joint Program Office. We declare that all of the Ada language compilers listed, and their host/target performance are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

Clark D'Elia
MASSCOMP
Software Development Manager

Bruce Lutz
MASSCOMP
Software Engineer

Date: 5/19/88
APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas, to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and to certain allowed restrictions on representation clauses. The implementation-dependent characteristics of the MASSCOMP Ada, Version 1.1, are described in the following sections which discuss topics in Appendix F of the Ada Standard. Implementation-specific portions of the package STANDARD are also included in this appendix.

package STANDARD is

 type INTEGER is range -2147483648 .. 2147483647;
 type SHORTINTEGER is range -32768 .. 32767;
 type TINYINTEGER is range -128..127;

 type FLOAT is digits 15 range
 -1.79769313486231E+308 .. 1.79769313486231E+308;
 type SHORTFLOAT is digits 6 range
 -3.40282E+38 .. 3.40282E+38;
 type DURATION is delta 1.000000000000000E-03 range
 9.765625000000000E-04 .. 4.194309902343E+06;

end STANDARD;
ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINE_ONLY Pragma

The INLINE_ONLY pragma, when used in the same way as pragma INLINE, indicates to the compiler that the subprogram must always be inlined. This pragma also suppresses the generation of a callable version of the routine which save code space.

1.2. BUILTIN Pragma

The BUILTIN pragma is used in the implementation of some predefined Ada packages, but provides no user access. It is used only to implement code bodies for which no actual Ada body can be provided, for example the MACHINE_CODE package.

1.3. SHARE_CODE Pragma

The SHARE_CODE pragma takes the name of a generic instantiation or a generic unit as the first argument and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed immediately at the place of a declarative item in a declarative part or package specification, or after a library unit in a compilation, but before any subsequent compilation unit.

When the first argument is a generic unit, the pragma applies to all instantiations of that generic. When the first argument is the name of a generic instantiation, the pragma applies only to the specified instantiation, or overloaded instantiations.

If the second argument is TRUE, the compiler will try to share code generated for a generic instantiation with code generated for other instantiations of the same generic. When the second argument is FALSE, each instantiation will get a unique copy of the generated code. The extent to which code is shared between instantiations depends on this pragma and the kind of generic formal parameters declared for the generic unit.

The name pragma SHARE_BODY is also recognized by the implementation and has the same effect as SHARE_CODE. It is included for compatibility with earlier versions of VADS.

1.4. NO_IMAGE Pragma

The pragma suppresses the generation of the image array used for the IMAGE attribute of enumeration types. This eliminates the overhead required to store the array in the executable image.

1.5. EXTERNAL_NAME Pragma

The EXTERNAL_NAME pragma takes the name of a subprogram or variable defined in Ada and allows the user to specify a different external name that may be used to reference the entity from other languages. The pragma is allowed at the place of a declarative item in a package specification and must apply to an object declared earlier in the same package specification.
1.6. INTERFACE-OBJECT Pragma

The INTERFACE-OBJECT pragma takes the name of a variable defined in another language and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the variable name with an external reference to the second, link_argument. The pragma is allowed at the place of a declarative item in a package specification and must apply to an object declared earlier in the same package specification. The object must be declared as a scalar or an access type. The object cannot be any of the following:

- a loop variable,
- a constant,
- an initialized variable,
- an array, or
- a record.

1.7. IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a machine code procedure. It specifies that implicit code generated by the compiler be allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is ON.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either functions or procedures. The types of parameters and the result type for functions must be scalar, access or the predefined type ADDRESS in SYSTEM. An optional third argument overrides the default link name. All parameters must have mode IN. Record and array objects can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY_SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be modified by means of pragmas; the SYSTEM package must be recompiled.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.8. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. It will not cause objects to be packed at the bit level.
2.9. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY
This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED
This pragma is recognized by the implementation but has no effect.

2.12. STORAGE_UNIT
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be modified by means of pragmas; the SYSTEM package must be recompiled.

2.13. SUPPRESS
This pragma is implemented as described, except that RANGE_CHECK and DIVISION_CHECK cannot be suppressed.

2.14. SYSTEM_NAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be modified by means of pragmas; the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF
For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage units allocated to P. For a subprogram, package, task unit, or label, it refers to the address of the machine code associated with the corresponding body or statement. For an entry for which an address clause has been given, it refers to the corresponding hardware interrupt. The attribute is of the type OPERAND defined in the package MACHINE_CODE. The attribute is only allowed within a machine code procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)
4. Specification Of Package SYSTEM

package SYSTEM is
 type NAME is (masscomp_unis);
 PACKAGE : constant NAME := masscomp_unis;
 STORAGE_UNIT : constant := 8;
 MODS_SIZE : constant := 10.777218;

 -- System-Dependent Named Numbers
 MIN_INT : constant := -2.147-1038;
 MAX_INT : constant := 2.147-1038;
 MAX_DIGITS : constant := 31;
 FLIN_CEITA : constant := 2.0**(-31);
 TIO : constant := 0.01;

 -- Other System-dependent Declarations
 subtype PRIOITY is INTEGER range 0 .. 99;
 KRELSIZE : integer := 441024;
 type ADDRESS is private;
 WLADDR : constant ADDRESS;
 function PHYSICAL_ADDRESS(A: INTEGER) return ADDRESS;
 function ADDLUT(A, B: ADDRESS) return BOOLEAN;
 function ADDLUTA(A, B: ADDRESS) return BOOLEAN;
 function ADDLUTC(A, B: ADDRESS) return BOOLEAN;
 function ADDLUTC(A, B: ADDRESS) return INTEGER;
 function INCLUDER(A: ADDRESS, INC: INTEGER) return ADDRESS;
 function INCLUDER(A: ADDRESS, DEC: INTEGER) return ADDRESS;
 function "-"(A, B: ADDRESS) return BOOLEAN return ADDLUT;
 function "-"(A, B: ADDRESS) return BOOLEAN return ADDLUT;
 function "-"(A, B: ADDRESS) return BOOLEAN return ADDLUT;
 function "-"(A: ADDRESS, INC: INTEGER) return ADDRESS return ADDLUT;
 function "-"(A: ADDRESS, DEC: INTEGER) return ADDRESS return ADDLUT;

 package is (PHYSICAL_ADDRESS);
 package is (ADDLUT);
 package is (ADDLUTA);
 package is (ADDLUTC);
 package is (ADDLUTC);
 package is (ADDLUTC);
 package is (INCLUDER);
 package is (INCLUDER);
 package is (INCLUDER);
 package is (INCLUDER);

 private
 type ADDRESS is new integer;
 WLADDR: constant ADDRESS := 0;
end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

Array components less than STORAGE_UNIT bits are packed to the next highest power of 2 bits. Objects and larger components are packed to the nearest whole STORAGE_UNIT. In the absence of pragma PACK, record components are padded so as to provide for efficient access by the target hardware. Pragma PACK applied to a record eliminates the padding where possible. Pragma PACK has no other effect on the storage allocated for record components unless a record representation clause is specified.

5.2. Record Representation Clauses

For scalar types a representation clause will pack to the number of bits required to represent the range of the subtype. A record representation applied to a composite type will not cause the
object to be packed to fit in the space required. An explicit representation clause must be given for the component type. An error will be issued if there is insufficient space allocated.

5.3 . Address Clauses
Address clauses are supported for variables and constants.

5.4 . Interrupts
Interrupt entries are not supported.

5.5 . Representation Attributes
The ADDRESS attribute is not supported for the following entities:
 - Packages
 - Tasks
 - Labels
 - Entries

5.6 . Machine Code Insertions
Machine code insertions are supported.

The general definition of the package MACHINE_CODE provides an assembly language interface for the target machine. It provides the necessary record type(s) needed in the code statement, an enumeration type of all the opcode mnemonics, a set of register definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

```
CODE_n'( opcode, operand {, operand} );
```

where \(n \) indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate. The format is as follows:

```
CODE_N'( opcode, (operand {, operand}) );
```

For those opcodes that require no operands, named notation must be used (cf. RM 4.5(1)).

```
CODE_0'( op => opcode );
```

The \(opcode \) must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An \(operand \) can only be an entity defined in MACHINE_CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINE_CODE must be static expressions, string literals, or the functions defined in MACHINE_CODE. The 'REF attribute may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.
6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions
None.

9. Restrictions on Unchecked Deallocation
None.

10. Implementation Characteristics of I/O Packages
Instantiations of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for unconstrained arrays such as string where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used instead. MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before instantiating DIRECT_IO to provide an upper limit on the record size. In any case the maximum size supported is 1024 x 1024 x STORAGE_UNIT bits. DIRECT.IO will raise USE_ERROR if MAX_REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the record size (expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for unconstrained arrays such as string where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used instead. MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before instantiating INTEGER_IO to provide an upper limit on the record size. SEQUENTIAL_IO imposes no limit on MAX_REC_SIZE.

11. Implementation Limits
The following limits are actually enforced by the implementation. It is not intended to imply that resources up to or even near these limits are available to every program.

11.1. Line Length
The implementation supports a maximum line length of 500 characters including the end of line character.

11.2. Record and Array Sizes
The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The maximum size of a statically sized record type is 4,000,000 x STORAGE_UNITS. A record type or array type declaration that exceeds these limits will generate a warning message.

11.3. Default Stack Size for Tasks
In the absence of an explicit STORAGE_SIZE length specification, every task except the main program is allocated a fixed size stack of 10,210 STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for a task type T.
11.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length attribute, the default collection size for an access type is 100,000 STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically within a compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a FATAL error message.
ATTACHMENT III
Attributes of types in STANDARD

Attributes of the pre-defined type DURATION:
(a fixed-point type)

first is -2,147,483,648
last is 2,147,483,647
size is 32
delta is 1,000,000,000,000,000E-03
mantissa is 32
small is 7.05625000000000E-04
large is 4.1943099999843E+06
fore is 8
aft is 3
safe_small is 9.70562500000000E-04
safe_large is 4.1943099999843E+06
machine_rounds is TRUE
machine_overflows is TRUE

Attributes of type FLOAT:

size 84
first -1.79769313486231E+308
last 1.79769313486231E+308
digits 15
mantissa 51
epsilon 8.88178419700125E-16
e max 204
small 1.04902274884446E-32
large 2.57811067081438E+38
safe_small 2.22507385850720E-308
safe_large 2.24711641857789E+307
machine_radix 2
machine_mantissa 53
machine_emax 1024
machine_emin -1021
machine_rounds TRUE
machine_overflows TRUE

Attributes of type SHORT_FLOAT:

size 32
first -3.10282E+38
last 3.10282E+38
digits 6
mantissa 21
epsilon 0.53074196006250E-07
e max 84
small 2.5840394422821E-20
large 1.03128038001020E+25
safe_emax 122
safe_small 1.17549435088222E-38
safe_large 4.2535275827077E+37
machine_radix 2
machine_mantissa 24
machine_emax 128
machine_emin -125
machine_rounds TRUE
machine_overflows TRUE

Ranges of predefined integer types:

TINY_INTEGER
-128 .. 127
SHORT_INTEGER
-32768 .. 32767
INTEGER
-2147483648 .. 2147483647

Default STORAGE_SIZE (collection size) for an access type:
100000

Priority range is 0 .. 99

Default Storage Size for Tasks is:
10240

If tasks need larger stack sizes, the STORAGE_SIZE attribute may be used with the task type declaration.

Attributes and time-related numbers:

Duration small 9.7582500000000E-04
System.tick 1.0000000000000E-02
Certain tests in the ACVC make use of implementation-dependent values, such as the maximum length of an input line and invalid file names. A test that makes use of such values is identified by the extension .TST in its file name. Actual values to be substituted are represented by names that begin with a dollar sign. A value must be substituted for each of these names before the test is run. The values used for this validation are given below.

<table>
<thead>
<tr>
<th>Name and Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BIG_ID1</td>
<td>498 A's before by 1</td>
</tr>
<tr>
<td>Identifier the size of the maximum input line length with varying last character.</td>
<td></td>
</tr>
<tr>
<td>$BIG_ID2</td>
<td>498 A's before 2</td>
</tr>
<tr>
<td>Identifier the size of the maximum input line length with varying last character.</td>
<td></td>
</tr>
<tr>
<td>$BIG_ID3</td>
<td>249 A's before 3 before 249 A's</td>
</tr>
<tr>
<td>Identifier the size of the maximum input line length with varying middle character.</td>
<td></td>
</tr>
<tr>
<td>$BIG_ID4</td>
<td>249 A's before 4 before 249 A's</td>
</tr>
<tr>
<td>Identifier the size of the maximum input line length with varying middle character.</td>
<td></td>
</tr>
<tr>
<td>$BIG_INT_LIT</td>
<td>497 zeros before 298</td>
</tr>
<tr>
<td>An integer literal of value 298 with enough leading zeroes so that it is the size of the maximum line length.</td>
<td></td>
</tr>
<tr>
<td>$BIG_REAL_LIT</td>
<td>498 zeros before 69.0E1</td>
</tr>
<tr>
<td>A universal real literal of value 690.0 with enough leading zeroes to be the size of the maximum line length.</td>
<td></td>
</tr>
</tbody>
</table>
$BIG_STRING1
A string literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2
A string literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer literal
whose value is TEXT_IO.COUNT'LAST.

$FIELD_LAST
A universal integer literal
whose value is TEXT_IO.FIELD'LAST.

$FILENAME_WITH_BAD_CHARS
"/illegal/file_name/2|$%2102C.DAT"
An external file name that
either contains invalid
characters or is too long.

$FILENAME_WITH_WILD_CARD_CHAR
"/illegal/file_name/CE2102*.DAT"
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_NAME1
"/no/such/directory/ILLEGAL_EXTERNAL_FILE_NAME1"
An external file name which
contains invalid characters.
$ILLEGALEXTERNALFILENAME2
"/no/such/directory/ILLEGAL_EXTERNAL_FILENAME1"

An external file name which is too long.

$INTEGER_FIRST -2147483648
A universal integer literal whose value is INTEGER'FIRST.

$INTEGER_LAST 2147483647
A universal integer literal whose value is INTEGER'LAST.

$INTEGER_LAST_PLUS_1 2147483648
A universal integer literal whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION -100_000.0
A universal real literal that lies between DURATION'BASE'FIRST and DURATION'FIRST or any value in the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST -10_000_000.0
A universal real literal that is less than DURATION'BASE'FIRST.

$MAX_DIGITS 15
Maximum digits supported for floating-point types.

$MAX_IN_LEN 499
Maximum input line length permitted by the implementation.

$MAX_INT 2_147_483_647
A universal integer literal whose value is SYSTEM.MAX_INT.

$MAX_INT_PLUS_1 2_147_483_648
A universal integer literal whose value is SYSTEM.MAX_INT+1.

$MAX_LEN_INT_BASED_LITERAL 2: (then 495 zeros) 11
A universal integer based literal whose value is 2#11# with enough leading zeroes in the mantissa to be MAX_IN_LEN long.
A universal real based literal whose value is 16:F.E: with enough leading zeroes in the mantissa to be MAX_IN_LEN long.

A string literal of size MAX_IN_LEN, including the quote characters.

A universal integer literal whose value is SYSTEM.MIN_INT.

A name of a predefined numeric type other than FLOAT, INTEGER, SHORT_FLOAT, SHORT_INTEGER, LONG_FLOAT, or LONG_INTEGER.

A based integer literal whose highest order nonzero bit falls in the sign bit position of the representation for SYSTEM.MAX_INT.
APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard. The following 27 tests had been withdrawn at the time of validation testing for the reasons indicated. A reference of the form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a listing that has been suspended by a previous "pragma LIST (OFF);"; the Ada Standard is not clear on this point, and the matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of the range of the target type T, raising CONSTRAINT_ERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality operators.

A35902C: Line 17's assignment of the nominal upper bound of a fixed-point type to an object of that type raises CONSTRAINT_ERROR, for that value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly raises CONSTRAINT_ERROR, because its upper bound exceeds that of the type.

C35904B: The subtype declaration that is expected to raise CONSTRAINT_ERROR when its compatibility is checked against that of various types passed as actual generic parameters, may in fact raise NUMERIC_ERROR or CONSTRAINT_ERROR for reasons not anticipated by the test.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when & R: applied to a fixed-point type with a null range, but the Ada Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINT_ERROR.
Various discriminant constraints are wrongly expected E, G, H: to be incompatible with type CONS.

The fixed-point conversion on line 23 wrongly raises CONSTRAINT_ERROR.

'STOORAGE_SIZE is wrongly applied to an object of an access type.

The test expects that either an expression in line 52 will raise an exception or else MACHINE_OVERFLOWS is FALSE. However, an implementation may evaluate the expression correctly using a type with a wider range than the base type of the operands, and MACHINE_OVERFLOWS may still be TRUE.

REPORT.IDENT_INT has an argument of the wrong type (LONG_INTEGER).

A bound specified in a fixed-point subtype declaration lies outside of that calculated for the base type, raising CONSTRAINT_ERROR. Errors of this sort occur re lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the four tests, respectively (and possibly elsewhere).

Lines 159..168 are wrongly expected to be illegal; they are legal.

The declaration of subtype INT3 raises CONSTRAINT_ERROR for implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong values.

This test expects that an attempt to open the default output file (after it was closed) with mode IN_FILE raises NAME_ERROR or USE_ERROR; by Commentary AI-00048, MODE_ERROR should be raised.