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1. INTRODUCTION _;
Ny
Computational fluid dynamics (CFD) is a tool which A
predicts the gas dynamics of blast problems of interest to the !
Army by solving a set of mathematical equations with a =
high-speed digital computer. The governing equations for the R
blast problem presented here are the two-dimensional unsteady iy
Euler equations. The computations were performed on a Cray =N
XMP/48 supercomputer by discretizing the Euler equations with -
an upwind, Total Variation Diminishing (TVD), finite-volume, A
implicit scheme. In a paper by Molvik,(1)* the scheme was ;:
presented in detail and proved to be well suited for blast i
vave calculations. The scheme is discussed in the o
computational algorithm section. The algorithm is used here '.
to provide gas dynamic information for a candidate Large-Scale N
Blast and Thermal Simulator (LB/TS) concept. .“'5
The Army has a growing need for nuclear blast and thermal v
survivability testing of tactical equipment. In order to meet ’
this need, the Army is conducting research into the design and &
operation of a Large-Scale Blast and Thermal Simulator (LB/TS), 3;
essentially a large multi-driver shock tube with thermal "
capabilities. The LB/TS design(2) currently consists of a i
number of driver tubes releasing compressed gas through a !_
series of converging-diverging nozzles into a large expansion gl
tunnel, Figure 1. The compressed gas forms a shock which f;
travels down the expansion tunnel and produces the blast &
simulation. The thermal simulation is accomplished by igniting o
a Thermal Radiation Source (TRS) based on aluminum/oxygen 21
combustion just before the arrival of the blast wave at the ﬂp
test section. The expansion tunnel is physically large enough "
to accommodate the testing of full-sized tactical vehicles such 2
as tanks and helicopters at low blockage of the test section. :I
The LB/TS can be modeled in a 2-D axisymmetric sense by ﬁ,
combining the drivers and nozzles to form one equivalent driver ?v
as shown in Figure 3. This simplified model of the LB/TS was ﬁf
actually built for experimental testing at Aberdeen Proving t
* The numbers inside ( ) denote the reference number. f
li'&
i
1 N
o
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Ground. The thermal radiation source was not experimentally or ﬂ
computationally modeled. This shock tube is 1/57th of the scale S;
of the proposed LB/TS. The experimental data obtained in this ChY
tube was used for LB/TS design studies and BLAST2D code »
validation. All of the experimental and computational data Rﬁ
presented in this paper was from this shock tube ;
configuration. Blast waveforms were produced with peak ﬂ:
overpressures ranging from approximately 5 psi to 35 psi. o
Heating of the driver gas was performed for some of the high X
pressure cases to reduce the driver pressure required to obtain Co
a given shock overpressure, and to alleviate the temperature ﬁﬁ
(density) discontinuity at the contact surface between the %.
expanded driver gas and shocked expansion section gas. :N
3
Currently, one-dimensional calculations have been $
performed for the 1/57 scale LBS with useful results.(3,4) ﬁﬁ
However, the one-dimensional calculations have had limited g?
success for accurately predicting the flow through the A
diverging portion of the LBS design because the flow in this ?z
region is multi-dimensional. The flow is multi-dimensional o
due to the rapid and large area change that exists in the ;§'
diverging nozzle. The remainder of this paper presents the ﬁl
upwind, TVD, finite-volume, implicit scheme in the BRL BLAST2D ;
code and results vhich capture and reveal the nature of the B
flow physics in the 1/57 scale LBS. ;:‘
4
2. GOVERNING EQUATIONS ';"
The governlng equation is the Euler equation written in ﬁj
integral form: T
d o
Effv QdV + ./; n.FdS =0 (1) N
o
The integral form of the Euler equation can be rewritten -
for a two-dimensional generalized cell volume (Figure 3) as 3§
o
i+ s 2
0= 5 fv e +./ (Eimy = Eioy )00 +f. L(FJ“& S Fia )% @) ]
3.4 - h)
j-% 1-* ;:
o
e
S~
2 o
A
N
sV

A2 Tk A A S N NS A AT W o o T Tt ot A T T TS S e R
Matn N . . . N . ! . . N v v N ) N - A 4 3
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where;
p oU pV
Q=fpou} £ =fplu+ an F=[foVu - ygp
pv -
. olUv X.P pVv + X P (3)
(e+p)U (e+p)V

This set of four integral equations represents the
conservation of mass, momentum in x and y directions, and
energy, per unit volume where p is the density, p is the
pressure, u and v are the velocities in the x
(longitudinal) and y (height) directions respectively,
and e is the total lnternal energy per unit volume:

e = Py + Wz ol + P (2)

The volume fluxes are deflned as:

e
]

Y u =XV (5)

<7
]

y.utx_v
2 & (6)

For the two dimensional cell shown in Figure 3, the
integration of flux over the surface in Equation 1 has been
replaced in Equation 2 by an integral over each face of the
cell. The n-direction is taken as the body normal and the
¢-direction is tangential to the surface of the body. The cell
volume and walls are assumed to be fixed in time. The metrics

Xeo Y o x +y, are the vector elements of the cell walls andV

is the volume of the grid cell.

The physical, independent variables (x,y,t) were
transformed into a uniformly spaced computational grid (¢,n,t)
by a general transformation of the form:

N S AT A A A A AT A :_\.' A S S S
LoV oW PV oW, 2 A 'k Lasa KCaN 'a o
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>
T = t 1:'-‘
( ) Jle
= t.x,Y N
€=t (7) 4
n = alt,x,y) 3
=
%
o
The transformations were chosen so that the grid spacing in ;&:
‘ the computational space is uniform and of unit length, 4¢ = 1, e
| An= 1. Thus, the uniform equi-spaced mesh in psi and eta
allows the use of unweighted differencing schemes. As a j:
result, the computational code can be applied to a variety of o
physical geometries and grids. N
- a4
- g
If an average flux is defined on the cell faces, and a¢ )
and An are taken as unity, the integral form of the Euler ;
equation, Equation 2 can be rewritten in finite volume form fﬁ
as: s
™
shtl  =n “m _gm cm _em S
G m W, By T B e T P ¥
V. . + + 0 (8) .
N4
i
n ‘:!
K,
L.
\:’-.
=
where the indices 1 and J correspond to the £ and n directions Sﬁ;
respectively in the computational mesh as shown in Figure 3. :j
N The vectors E and F are the convective numerical fluxes in 7
computational space (¢,n,t) consistent with the physical o
fluxes E and F in (x,y,t). The vector Q consists of the cell o
averaged dependent variables. The integration scheme is fully j?
implicit if m=n+1 and is explicit if m=n. The variables have N
been nondimensionalized as follows; -
°
THL
o
o
A
=3
9,
.::\‘
2
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~ .0 T _1
0 94 t L

where L=1, c=sound speed, and subscripts 1 and 4 represent
conditions in the driven and driver sections respectively.

3. THE COMPUTATIONAL ALGORITHM

3.1 Introductilon. Discretization of the governing
equations into an upwind, TVD, finite-volume, implicit scheme
produces an algorithm that is well suited for blast wave
calculations. (1) Upwind flux difference splitting with TVD
achieves second-order accuracy without introducing spurious
oscillations near discontinuities. Strong gradients and
complex flow fields are resolved accurately. Older techniques
used central differencing schemes with arbitrary smoothing
parameters which could not be relied on to capture strong
gradients (i.e., pressure ratio across the shock > 10.0)
accurately.(5) The advantages of the central differencing
techniques were programming simplicity and adequate resolution
for weak gradient problems. However, for the complex flow
fields and strong gradients typical of blast problems upwind
differencing with TVD provides better resolution. The
disadvantages of upwind differencing with TVD are long
computing times caused by an increase in the number of
arithmetic operations per integration step and loss of
programming simplicity. The BLAST2D code results shown in this
paper were generated on a Cray XMP/48 and typically took six
to seven hours of cpu time.

Conservative schemes capture shocks and other
discontinuities automatically. The finite volume philosophy
ensures conservation at interior and boundary points. The
scheme is made implicit by linearizing only the first-order
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A contribution and by employing a Newton iteration of the type ‘
4 described by Rai(5) to eliminate any approximations made. The N,
implicit version of the scheme requires more computations per

integration step than the explicit version, but permits larger By
time steps which overall reduces computational expense. ‘

The next section presents the first-order accurate upwind
scheme(1l) which is the basic building block of the ‘
3 computational algorithm. Subsequently, the first-order scheme ]
R is expanded to second order accuracy with the addition of 5
o second-order terms and TVD concepts. Development of the X
" implicit version of the algorithm and the Newton iterative "

procedure used is presented. Finally, boundary conditions are
> discussed briefly. W

o 3.2 First-Order Scheme. The first-order scheme is !
) based upon Roe’'s approximate Riemann solver (6,7) coupled with
upwind flux difference splitting. First, approximate Riemann
solvers are discussed. Then, the information supplied by the
Riemann solver is used with upwind flux difference splitting
concepts to provide the first-order convective fluxes E and F
in the finite volume form of the Euler equation, Equation 8.

R v s

Riemann problems are incorporated into the numerical
solution by considering the dependent variables at cell
centers for each cell in turn, as pailrs of states defining a K
) sequence of Riemann problems, Figure 4. The Riemann problem a

for the ¢ direction in Figure 4 is : given two states ’
(pl,ul,pl) and (p4,u4,ps4) determine the combination of shocks, ;
contact discontinuities, and expansions which result in these $,
end states, that is, determine (p2,ul,p2) and (p3,u3,p3). To
. obtain a solution, exact Riemann solvers require an iterative
procedure which is computationally expensive when performed =
for a large number of cells and time steps. The expense of ﬁ
| producing an exact solution to the Riemann problem is
justified only if the information made available could be put i
! to some sophisticated use. The approximate Riemann solvers are Wl
' considerably less expensive because the Riemann problem is :
solved with a direct non-iterative method which is about as
time consuming as one cycle of the iterative procedures.
\ Comparisons of the solutions from the exact vs. approximate ;
Riemann solvers reveal slight differences. Other approximate 3t
Riemann solvers could have been used, but Roe’'s method is [
X the approach recommended by Chakravarthy when computational .

D (3] 1
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efficiency is important.(6)

References 6 and 7 outline in detail Roe’'s method
for determining the intermediate states of the Riemann
problem. In general, the solution comsists of four
constant property states separated by three waves, Figure
4. Once the dependent variables are obtained at the
intermediate states, the flux at the cell interface 1is
calculated by determining the flux change across the
waves. The flux change assoclated with the waves
traveling in the positive £ direction is given the
symbol aE*and that in the negative direction is
represented by sE-. The waves carry information from
the "upwind" direction to the cell center, thus the notion
of upwind differencing. The flux remaining at the inter-
face for all time assocliated with this Riemann problem must
then be represented by either of the following equatlons:

- - 1
i, E, + AE1.+1/2 (10)
2 _ +
Eiag = B - 0Ey, (11)
or, by averaging the two equations above,
- - +
Ewé =1/2 (Ei tEiq Y AE“J/Z - AEH%) (12)

Let A, R, and R~ denote the eigenvalue matrix, and the
right and left eigenvector matrices respectively, evaluated at
the cell interface.(7) The flux difference across the positive
and negative velocity waves can be calculated. They are:

+ -1\ Q Q Q
AE‘H‘% = (R].+1/2 (A + ]Al)-i+l/2 Ri+l/z>(o1'+] - Q]) A+(Q'i+1 ) Q]) (13)

- -1 \/- — - _
i+ (R“‘/z AL R1'+‘/z)(0-1'+1 | Qi) = A (Qm - 01> (12)

However, the dependent variables are not defined at the cell
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interfaces where these matrices must be evaluated. Roe(7) has
developed a special averaging process to calculate the
dependent variables on the cell interface and satisfy the
following relation.

- S Roe (= .7
B~ &y [Adiss, ( i+] Qi)

R —
[A + A7) 12? ( i+l Qi)

a . e o wp
i

The superscript Roe denotes a Roe averaged quantity. By
satisfying the relations above, the shock capturing
capabilities of the algorithm are retained and correct wave
speeds are assured. Roe’'s averaging of the dependent
variables proceeds as follows:

\for U )
Ui VP T Y NP v _Vive Vial

T A

Vei *Vein s v/_i VPid

Chivey b Veing

\/E; VPi+

I4 ‘a". id .-"‘

Z

X2

XL
C 4

2 2 s
{(“w/, - e (“w/z v m)) (Y-U}

where the total enthalpy per unit mass is

’n.ﬂ’

h=1(e+p)lo (17)

IO LA Py

‘1'

The first-order flux on the j+1/2 interface can be obtained in
a similar manner by replacing X with - X, and Ve with Y,

]

3.3 Second-Order Scheme. A second-order convective

flux can be produced by adding a correction term to the
first-order flux. However, in order to avoid spurious
oscillations, the correction term must fulfill the criteria
for the algorithm to be TVD. TVD schemes achieve second-order
accuracy without introducing spurious oscillations near
discontinuities by employing a feedback mechanism -"smart
numerical dissipation"- wherein fluxes are compared at
neighboring control volumes. In regions of little change no
numerical dissipation is added to the second order correction
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terms, while in regions of large change, numerical dissipation
is added to ensure stability.

During this process no new extrema are created by the
numerical dissipation. TVD data preserve monotonicity; a) no
new extrema must be created and b) the absolute value of any
extrema must not increase. TVD schemes yileld oscillation-free
solutions by modifying flux differences to meet the above
criteria. Reference 7 outlines a class of explicit flux
limiting schemes that fulfill thls criteria. The second-order
flux for the fully upwind scheme can be written as(l):

2nd _ Flst o == 18
Ei+% - Ei+g 12 [AE:-% ) AEi+3'/2] (18
If the following definitions are made,

;+% <(A ¥ m)iwz R;lg><ﬁi+] } 6,-) (19)

8934, <(A + II\I)HL2 R11g)(6i+1 - Q‘i) (20)

Ac

then the limited wvalues of the flux can be written as

—~— - ~ o _ = +
AE1+% R1.+,/2 Aoi+Lz . A?% =R.,, Acg (21)

Note that the characteristic fluxes are limited, not the
fluxes given in Equation 3. The symbols ~ and = shown over
the 60 denote flux-limited values of 040 and are computed as
follows:

~

Ao‘iﬂa 5

(22)

= minmod [A01+% s BAUi_L]

~ + . + ot
bo 4y = minmod [A01+% , LA01+3/2] (23)

2

Where the "minmod" is defined as

minmod [x,y] = sign (x) * max [0, min{EXI, ysign (x)}] (24)

and beta is a compression parameter that is restricted to fall
in the range
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1<g<?2 (25)

Equation 8 can be rewritten with the first-order
convective fluxes, E and F, replaced with the second-order
fluxes:

sn+l  on =2nd ~2nd ~2nd 2ond  |"

LIS Tl Y IO O Bl T R IS T IR I

1, AT Ag An

=0 (26)

The above discussion describes the explicit second-order
accurate in space scheme. Second-order accuracy in time is
achieved by simply replacing the first-order, backward
derivative of the time-dependent variables with a second-order
backward difference.

3.4 Implicit Scheme. For a fully implicit scheme,

the fluxes must be evaluated at the n+l time level. In order
to calculate a flux at the n+l time level the flux must be
linearized with respect to time, t. The first-order numerical
flux on the i+1/2 cell interface evaluated at the n+l time
level is represented as:

cn+l L1 n+1 n+l - +.n+1,=n+1 4]
e —[2 g P E A A Qg - T ’] (27)

An approximate linearization of this interface flux may be
achieved by freezing the coefficient matrix (A™ - A*) at time
level n and linearizing the remaining terms. Numerical
experiments have shown that such an approximation is

M~

acceptable. The linearized numerical flux is then written as: °
W~

.
n+l _ 1 .n - +\n - 141.,n - +.n = “n phi
Rl Z[A”‘ FA-A )i%] Qiq ¥ Z[Ai - (A - A )im}mi "B (28) ]
o

_ Ryn = Lin = n $b

= (AT 0054y * (A5, 005 + Efy :
where, _ +1 e
80 = 0 - Q) oS

Using a similar type of linearization for the body normal flux. o
F, as for the streamwise flux, E, the first-order, implicit ;p
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numerical algorithm is written as:

= At R.n = L\n Ryn = T TUS L
?AQi,j A (A i g (DT - ] 000 5 - (DT, 4]
At Rin = Lyn Ryn = _(pbyn R
gt (BR300, 4 + 180, - BN a0, | - (8 )i-%AQf’i-‘]s (29)
_ At n _ g \ n _gn
A [(E1+%J Eoai? (R Fi,j-%i]

To avoid the expense of inverting a large sparse matrix, an
approximate factorization i1s done to break the banded matrix

into two tridiagonal matrices. This 1is written in two steps
with the asterisked * variables denoting an intermediate step
as:
= at Ryn = L,n
st V}‘}'[(A Vahlin, gt Uy,
Ryn = L =, _ (30)
- (AT a 5 - (D] el ] = mes(az)
= At Ry\n = Lin . R\n =
A [ESeut gur + (8D = B0 00,
Lyn = o AT (31)
+ (81508, 5y ] = o0y

3.5 JIterative Scheme. In order to eliminate the

linearization and approximate factorization errors that might
occur, a Newton iteration technique is employed. The
iteration takes the form:

= ot Ryp = Ly (aRyp ax  _ (abyP g
3&0?,J " [fA a2 5 * UA - (A5 080% 5 - (AT)F, 0054
At ~2nd ~2nd ~2nd ~2nd P
= = -p - an - - 3 : - . .
(Q1 sj Q1,J) V] J [(Ei‘p/l’bj E]'%!J> * (F1 ,J+l/2 F‘aJ‘l/z)] (32)
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Q0 At RyP ) Lp _ Rp -
%AQi’j + A [(B )j+gAQi,j+1 + {(B )j+% (B )j_%}AQi’j

- (895,80, ,j-‘J 2 Bt o

where AQ is now defined as the iterative change in the
cell averaged dependent variables,( P*! - 6?- Jrather
than the time change and p denotes the“lterdglon number.
Ideally, all linearization errors are completely
eliminated when the residual of equation 31 is driven to
zero. However, in practice, convergence is defined short
of this with minimal loss in accuracy, in order to reduce
the number of iterations and hence the expense of the

calculation.

3.6 Axisymmetric Source Term. The governing equations

and numerical algorithm described so far are appropriate for
2-D planar problems. It is a simple matter to include
axisymmetric effects by adding the source terms denoted by H
and I to equation 32 whers:

3"
'] puv
H = F pV2 (34)
(e+p)v
(35)
[ = 2H
3Q

Thus, equations 32 and 33 become:

+X}AQ;’J - (A )i-‘/zAQ:'1 .J]%

-5

st Rip & LyP _ (4RyP
T [(A LR (OO LR T

1,) v'l J i&bj- i'Z’J i’J‘Hi

p
_ (6? i - an ) - At [(Ean éan )+ “‘.an _ %ng-%)m] (36)
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%Aﬁi.j * Vitj [(BR)§+%°Qi.J‘+1 * B~ (P 00 %
3 ‘ ..
— " }
- = *
- (BL)g-%AQi ,J‘-T]%' 805, (37) s
=N
3.7 Boundary Conditions. The inviscid boundary N
conditions are obtalned by specifying an appropriate flux on Y
the walls of the shock tube and at the symmetry boundary. Only g;
half of the symmetrical shock tube is actually modeled to save "
computational expense. Then, the results are graphically gﬁ
reflected. At the walls and symmetry boundary, the normal kﬂ
component of velocity 1s zero, the tangential component of ‘ﬁ
velocity is nonzero. The flux on these surfaces can then :&
be represented as: 0 °
o
F = -ygp p
XeP (38) ;
b
0
Only a value of pressure need be evaluated at the g&
surface. As a first approximation, one might consider using é&
the pressure of the cell directly above the surface. This us
translates into a zero-order approximation. However a ®
first-order approximation of the surface flux can be made if a f
Riemann problem is set up on the surface. This is consistent N
with the interior scheme and would seem like the reasonable ~]
approach. The first-order Riemann solver is used between ?\
the first cell off the surface and a reflected cell. If »
the subscripts 1 and -1 denote the first cell off the NG
surface and the reflected cell respectively, the surface flux ﬂ”
can then be written as: Yo
N
]
- N (39) oy
e[ (0 (1)
NG
. .
N
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The dependent variables of the reflected cell are calculated
using the following relations.

D_] L p] p_] = p.l
= 2 _,2 2 2
u_ (xg Ye )u] + ZXEyEV]]/[xg Y, J (40)

2 _ 2 2, .2
v -
-1 (yﬁ xg )v] + szyEul]/[xg + yg ]

The metrics in the above equations are those of the cell
interface on the surface. A second order flux can be obtained
by reflecting even another set of dependent variables with a
subscript of -2.

]

4. GEOMETRY, GRID, AND INITIAL CONDITIONS FOR LBS COMPUTATION

The geometry of the single-driver, 1/57 scale model LBS
design concept is shown in Figure 2. The corners and sharp
edges were smoothed out in the computational shock tube to
simplify grid generation and to facilitate the use of an
elliptic grid gemerator for the driver and converging-
diverging nozzle portion of the tube. The elliptic
grid gemerator produced grid cells that varied smoothly in
regions of rapid change such as the converging-diverging
nozzle. The grid generated for this configuration was 488
cells axially and 30 cells radially. The computational and
experimental diaphragm and test station locations were the
same as shown in Figure 2.

Five computations were performed for the LBS configuration
with initial conditions that duplicated experimental runs.
The initial conditions are summarized in the following table:

TABLE 1. 1/5%7 Scale Model LBS Initial Conditions

Shot # P4/P1 Heated Driver T4/T1 Overpressure
kPa (psi)
2 16.0 no 1.0 34 ( B)
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12 136.0 no 1.0 1756 (25) N
A
85-11 68.6 yes 1.58 175 (25) o
X i
b
85-21 224 .4 no 1.0 241 (35) ay

[

85-23 132.1 yes 1.84 241 (35) ey

'(!
5. RESULTS AND DISCUSSION 3
R et
Computational results are presented in this section for 'f.:,

the five initial conditions listed in Table 1. The five )
conditions represent possible lower and upper limits of blast a&
simulation under consideration for the LB/TS. The 175 kPa and %{
241 kPa pressure levels are more difficult to computationally ma
simulate than the 34 kPa level because of the increased -ﬁk
complexity of the resulting flow gradients. Comparisons with ®
experimental data are made where possible. “J
W

Data is presented in the form of overpressure and dynamic ﬁ%
pressure versus time plots at station 7. Station 7 1s located el
seven diameters downstream from the end of the diverging e
nozzle and is the primary test location. Also, density and gr
pressure contour plots are presented. The density and pressure %{
contour plots reveal the nature of the flow physics in the hu‘
shock tube. 1In this study, efforts are concentrated on LY
understanding two flow phenomena; one is the nozzle flow that )
results in the large blast thermal simulator, the second is §};
the flow differences that result when the driver gas 1s heated ﬁ:‘
versus when the driver gas is not heated. $:?
et

The pressure versus time plots for the 34 kPa (5 psi) .w
run are presented in Figure 5. An experimental dynamic 5&
pressure record was not available for this case, therefore, R
the stagnation pressure record was substituted. The gh
experimental probe was positioned at one half the radius of O
the tube. The computational data sampled at one half the L 2
radius reveals excellent agreement while the computational %g
data sampled at the centerline is in poor agreement. This k:.
implies that the stagnation pressure in the radial direction ~3
is nonuniform. The stagnation pressure versus time plot shows e
the importance of computationally sampling at the same ®
spanwise position in the tube as the experiment. : g
3
16 i
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The static overpressure plot shows a discrepancy
between the experimental and computational data on the
end of the positive phase duration (time when static
overpressure goes negative). The experimental and
computational data indicates the end of the positive
phase duration at 26 and 18 ms respectively. The volume
of the computational driver after grid generation was
slightly smaller than the volume of the experimental
driver, which could cause this discrepancy. Otherwise,
the computational and experimental data on the prassure
versus time plots are in excellent agreement. Note the
computational data is taken at 1/4 diameter and at the
centerline. The experimental data was taken by probes
flush with the tube wall. This excellent comparison
indicates that the static overpressure is radially
uniform in the tube. In this paper, the computational
and experimental comparison of static overpressure
produced very good agreement at all shock overpressures.

The contour data for the 34 kPa (5 psi) run, Figures
6 through 8, reveal the formation of a complex shock
system in the diverging nozzle. The contour data shows
the primary shock, contact surface, and backward-facing
shock developing in the diverging nozzle. The
backward-facing shock is not a normal shock, but consists
of two oblique shocks which terminate in a normal shock
at the center of the tube. The intersection of the
oblique and normal shock produces a reflected or an
oblique transmitted shock which can also be seen in the
contour plots, Figure 7. The complex structure of the
backward-facing shock has been verified experimentally,
as shown in a shadowgraph photograph by Amann(8), Figure
9.

The primary shock moves quickly through the diverging
nozzle and proceeds downstream as a normal shock. The contact
surface which separates the driver gas from driven gas can be
distinguished as the clustered gradient present in the density
plot and not present in the pressure plot. The contact
surface moves downstream, maintaining a curved surface.

Behind it, the driver gas resembles core flow. In Figure 8,
the contact surface takes on a jetting appearance at the
centerline boundary that may be an artifice of the code.
Behind the contact surface, a complex system of oblique
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shocks, rotational motion and slip surfaces develops in the :ﬂ
core flow. v
The oblique shocks are a result of the backward >
facing shock, which remains in the diverging nozzle, pl
reflecting at the solid walls and symmetry boundary as A
oblique shocks. These reflections set up a shock dlamond ?ﬂ
pattern that stretches downstream. This shock diamond :ﬁo

pattern was discussed by Gottlieb(9), “If the conical

expansion is too rapid, however, or boundary-layer ‘
effects are significant this upstream-facing shock wave Y
would be a series of cells consisting of oblique shock A
waves. The spatial extent or length of such pseudo-shock Y
patterns is very large compared to the thickness of a L
typical normal shock wave, and they can cover a duct A
length of many tube diameters". The computations W
presented here were inviscid, which implies the rapid ey
expansion alone can produce the shock diamond pattern !
shown in the contour plots. 3
“u

Even though this is an inviscid code, rotational motion can E;
occur, as visible in Figure 8. Gradients in total enthalpy N
are caused by the unsteady nature of the shock. These 'fi
gradients in entropy occur when some streamlines experience a L
higher entropy increase by going through the normal part of )
the recompression shock while other streamlines experience a 3
lower entropy increase by going through the oblique part of t:
the recompression shock. From Crocco’'s theorem we know that I
whenever gradients in total entalpy or gradients in entropy &
exist in the flow field, rotational motion occurs. <
w

Figures 10 through 13 present pressure versus time :5

results for the 175 kPa (25 psi) and 241 kPa (35 psi) unheated
] and heated runs. As stated before, the computational and
experimental comparison of static pressure produced good
agreement at all shock overpressures. However, 1t is very 2
important for blast simulation to model not only static Xf
pressure but dynamic pressures as well. -4

Experimental dynamic pressure is not measured directly Y
in the shock tube but is calculated from static and stagnation ‘

"%

pressure records. The static pressure data was measured at Fi

: the wall and the stagnation pressure data was measured at 1/4 T
diameter. To be rigorous, the static and stagnation probes f
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should be at the same location in order to calculate true
local Mach number and thus true dynamic pressure. However, if
the static pressure is radially uniform, then there is no need
to have the probes at the same exact radlal location. The
code indicates static pressure is radially uniform, although
this has not been confirmed experimentally by placing probes
at different radial locations.

For the 175 kPa heated driver case, the experimental and
computational comparison of dynamic pressure are in excellent
agreement until the contact surface goes by at .008 seconds.
After the contact surface, the computation at 1/4 diameter
and the experimental record, based on a stagnation probe at
1/4 diameter are very similar except for omne anomaly. The
motivation for heating the driver gas can be seen in the
experimental records for the 175 kPa unheated driver case.

For the 175 kPa unheated driver case, a much noisier
experimental dynamic pressure record is indicated after the
arrival of the contact surface. 1In the previous case, heating
smoothed this region and produced a simulation closer to that
of a decaying free field wave. Computationally, the comparison
is good until the arrival of the contact surface, After the
contact surface, the experiment shows a higher Mach number
flow at the centerline.

The purpose of heating is to reduce the jump in dynamic
pressure (Figures 10 and 12) which occurs across the contact
surface for unheated cases. The jump in dynamic pressure
increases with the shock overpressure.(2) When the diaphragm
is opened, the driver gas is cooled by the passage of the
rarefaction wave into the driver section. The driven gas is
heated by the passage of the primary shock. At the contact
surface, where the driver gas meets the driven gas, the
difference in temperature of the driver and driven gas results
in a difference in density which in turn is demonstrated as a
Jump in the dynamic pressure plots. By khcating the driver
gas to the proper level, the temperature on each side of the
contact surface can be matched.

Furthermore, heating of the driver gas reduces the driver
pressure required to ohtain a givem shock overpressure as
shown by the initial conditions in Table 1. Heating also
significantly reduces the spike activity in the stagnation and
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dynamic pressure versus time records (Figures 11 and 13) and iﬁ
produces overpressure versus time records that more closely ;v
resemble a smoothly decaying blast overpressure wave shape. ;
Figures 14 through 19 present contour plots for the 175 ey
kPa (25 psi) and 241 kPa (35 psi) unheated and heated runs. o
Another effect of heating, as shown in the last contour plots 540
(Figures 16 and 19) availlable for the time simulated, is the Xy
backward-facing shock is eventually swallowed in the nozzle “d:
for the heated case, but remains outside the nozzle for the ﬂa
unheated case. ‘\
M,
.
VI. Conclusions fff
o
One-dimensional calculations(3,4) have had limited :ﬁ*
success for accurately predicting the flow through the f“
rapid expansion of the LB/TS design because the flow in o
this region is multi-dimensional. Two-dimensional ?;
calculations with the upwind, TVD, finite-volume, >
implicit scheme in the BRL BLAST2D code were presented bk
here which captured and revealed the nature of the flow !‘
physics in the 1/57 scale LBS. A complex system of N
shocks, vortices, and slip surfaces were revealed in R:
contour plots. ’;
Nozzle flow produces a complex recompression shock ;
system which influences the flow behind the contact ~3
surface. The static pressure is uniform radially, ;2¥
however, the stagnation pressure and thus both the Mach N
number and dynamic pressure vary greatly. Because of ;f
this radial variation in flow it is very important to ;'
compare dynamic pressure computational and experimental ;ﬁ
records at the same radial location. Heating reduces the Nt
required driver pressure for a given shock overpressure :E_
and smooths the flow behind the contact surface, N
producing a dynamic pressure record closer to that of a s
free field wave. i
n\"
The BLAST2D code provides excellent modeling capability P:.
at low shock overpressures and good modeling capabilities at 8$
higher shock overpressures. The code simulates heated driver »
cases better than unheated driver cases for high shock N
overpressures. Future efforts will be concentrated on :‘
v
o~
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including viscous effects in the simulations and better
modeling and understanding of dynamic pressure at high shock
overpressures.
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