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The DelPhi program - We have developed our package of programs, known
as DelPhi, to the point where it can be distributed to other
researchers. It will be marketed commercially by BIOSYM and we will be
giving it out ourselves to non-profit institutions. DelPhi calculates
the electrical potential of molecules through a numerical solution to
the Poisson-Boltzmann equation. A description of its capabilities was
published in Protein Structure, Folding and Design 2, (the second UCLA
symposium volume edited by Dale Oxender). Its first application was to
superoxide dismutase as described in last year’s annual report.

pK changes in subtilisin - We published in NATURE that we had
succeeded in reproducing the pK changes (including their ionic
strength dependence) induced in the active site of subtilisin
resulting from site-directed-mutagenesis of residues about 15 8 away.
The close agreement between theory and experiment at a range of ionic
strengths lends confidence both to our theoretical model and to the
precision of the numerical solution to the Poisson-Bolztmann equation.
It should be pointed out that in applying the DelPhi program to
problems of this type one need not consider the electrical potential
of the entire protein but rather the effect of only a single source
charge. The protein is treated as a low dielectric region and as such
influences the electrical potential of the isolated charge. One of the
general conclusions from this study is that electrical interactions
tend to proceed though the high dielectric solvent rather than through
the low dielectric protein. A useful analogy which makes this behavior
understandable is that the protein acts as an insulator while the
solvent acts as a conductor.

Charge~solvent interactions with continuum methods - In our previous
work we had considered only the electrostatic interactions between
pairs of charges. However, in order to calculate the binding energies
of charged species or the total conformational energy of a molecule it
is necessary to account for the interactions of individual charges
with the solvent. For example the loss of solvation energy of charged




substrates upon binding to a macromolecule is approximately
energetically equivalent to the gain in Coulombic energy that may
drive the association. In a recent paper we showed how it is possible
to use the DelPhi program to calculate electrostatic contributions to
solvation and binding energies with at least comparable accuracy and
orders of magnitude greater computational efficiency than free energy
simulations. The work is in press in PROTEINS. It was found that
charge-solvent interactions, which are frequently neglected in
conformational analysis or in calculating binding energies can make
extremely large contributions to the total energy of a macromolecular
system.

The electrostatic potential of B-DNA - In order to treat nucleic acids
as well as proteins, we extended our numerical method so that it could
solve the non-lnear Poisson-Boltzmann equation. The high charge
density of nucleic acids renders invalid the standard assumption that
electrical potentials are much less than kT. Electrical potentials
around DNA were obtained by solving the non-linear Poisson-Boltzmann
equation. The detailed charge distribution and the shape of the
dielectric boundary between macromolecule and solvent were explicitly
taken into account. Electrical potentials and ion concentrations were
compared to those obtained with simpler models. It was found that the
shape of the dielectric boundary between the macromolecule and the
solvent has significant effects on the calculated potentials,
particularly in the grooves. Sequence specific patterns are found, the
the most surprising result being the existence of positive regions of
potential near the bases in both the major and minor grooves. The
effect of solvent and ionic atmosphere screening of phosphate-
phosphate repulsions was studied and an effective dielectric constant
appropriate for molecular mechanics simulations was derived.
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