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~-» The compact range allows for the measurement of radar cross section and
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antenna patterns in a relatively small room. An offset-feed parabolic reflector is
normally used to approximnate a plane wave in the target zone; however, some of the
energy transmitted by the feed will strike the ceiling, walls, and floor of the room.
These stray signals then scatter in all directions. To reduce the level of scattered
cnergy, the room is typically lined with pyramidal-shaped radar absorbing material,
However, the behavior of this material is not well understood.

A diffraction formulation, based on the Uniform Geometrical Theory of Diffrac-
tion ﬁ;Zf,’ is developed for a lossy dielectric corner. Using this formulation, a
computer code is written that calculates the bistatic scattering from a pyrami-
dal absorber tip. Sample resulis display some features of scattering from a single
pyramid. Calculations are then compared with backscatter measurements of o

+ 4 . L) 13 Ll;
single pyramid, and with bistatic measurements {3] of un absorber wall. Next, o —.,

&

1 i




general purpose computer code is written which calculates the scattering into the
target zone of a compact range from the pyramidal absorber which lines the room.
(A focus-fed semi-circular parabolic reﬂgqtpr yit};_»yg_lled#edg&and«afkirt 14]1ﬂu/-
minates the room.f;’Sample calculations show the total power scattered into the
target zone, and how strongly various locations in the room contribute to this total

scattered power. Finally, calculations are compared with experimental data {5] in
P ~ "T'Les_eyg(qj\(jég«-— P [ ]

]

which a 6’ x 6' aluminum plate (mounted in the Ohio State University compact

range target zone) was used to measure bistatic scattering from the pyramidal

absorber on the ceiling.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Preblem

The measurement of radar cross section (RCS) or of an antenna pattern re-
quires that the target or antenna being tested be illuminated by a uniform plane
wave. This plane wave is approximated in a far-field test range simply by placing
the test object in the far zone of the transmitter, where the spherical wavefront of
the transmitted field can be considered approximately planar. Depending on the
size of the test object and the wavelength being used, this far zone requirement
typically leads to an outdoor facility. The compact range offers an alternative
to the far-field test range for the measurement of RCS or antenna patterns. A
compact range normally uses an offset-feed parabolic reflector to approximate a
plane wave in a relatively small chamber. The small size of a compact range makes
it practical as an indoor facility, thus free from adverse weather, interference, or
external monitoring. Of course, not all of the energy transmitted by the feed will
be directed into the desired plane wave, Rather, some will strike the ceiling, walls,
and floor of the room. These stray signals then scatter in all directions. They
degrade the nature of the incident plane wave in the target region, and they also
return directly to the receiver, corrupting the desired return from the target. Thus,
they affect the accuracy of the range and the size of its “sweet spot” (the region

where the illumination satisfactorily approximates a plane wave). One method to
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eliminate these stray signals might be to make the room large enough so that they
could all be time-gated out; however, this would be prohibitively expensive. In
a room of practical size, some of these unwanted signals can be time-gated out,
others cannot. To reduce the level of scattered energy, the room is typically lined
with pyramidal-shaped radar absorbing material. However, the behavior of this
pyramidal absorber is not well understood, especially for compact range a.pplicai-
tions.

In this study, a scattering formulation based on the uniform geometrical theory
of diffraction (UTD) is developed to describe the fields diffracted by a pyramidal
absorber tip. This is then used to generate a computer code for the calculation
of bistatic scattering from the tip of an absorber pyramid. With this code, and a
reflector analysis code that computes the fields incident on the pyramidal absorber
in the chamber, a general purpose computer code is developed which calculates the
energy scattered by the pyramidal absorber to the target region of the compact
range chamber. Finally, various scattering measurements are made to verify the
calculated results. These range from the backscatter of a single pyramid to the

absorber scatter directed into the compact range target zone from the ceiling.

1.2 Motivation

Pyramidal absorber material has been widely used for many years to reduce
the clutter level in anechoic chambers. However, as stated above, the behavior
of pyramidal absorber material is not well understood. The actual levels of stray
signals scattered from the absorber in a compact range chamber have not previously
been calculated. Such information would prove useful in the design of a compact

range chamber, and thus motivates this research effort.




1.3 Approach

The first goal in this study is the development of a scattering formulation for
a (lossy) dielectric pyramidal tip. The pyramidal tip is analyzed as a corner in a
three-dimensional wedge, which has four planar faces and four edges intersecting
at a common point. Thus, a dielectric corner diffraction formulation is needed.

In Chapter II, the expressions for diffraction from perfect conductors are re-
viewed. These include two and three-dimensional wedge diffraction [1,2,3,4], along
with corner diffraction [5). An understanding of these is necessary for one to ex-
tend the perfectly-conducting corner diffraction solution to the case of a dielectric
corner.

Chapter III begins by investigating dielectric modifications that have been
made to the UTD for simpler geometries. The first was developed by Burnside and
Burgener (6], who studied the problem of edge diffraction from a two-dimensional
dielectric slab. This was based on the effect of the dielectric on the discontinuities
at the shadow boundaries, and accounted for tke multiple interactions occurring
within the dielectric slab. Next, DeWitt (7] considered a similar modification
for the more general problem of a two-dimensional dielectric wedge. Owing to the
added complexity of the wedge problem, the method of solution was found through
a heuristic argument. However, comparisons with 8 Neumann series solution by
Rawlins {8] show good agreement.

Chapter III then proceeds to further these ~fforts. Sections 3.5 and 3.6 extend
the dielectric modification of [7] to the problems of three-dimensional dielectric
wedge and corner diffraction, respectively, The most significant complication here
involves the matier of field polarization inherent in the three-dimensional problem.

An interesting result is that the dielectric material causes a cross-coupling in the




polarizations of the incident and diffracted fields.

Chapter IV applies the UTD dielectric corner diffraction solution to the prob-
lem of the absorber pyramid. The interpretation and calculation of the variables in
the dielectric corner diffraction solution represents a significant task, and is thus
described in detail. The resulting code, referred to as the Absorber code, com-
putes the bistatic scattering from a pyramidal absorber tip. Sample calculations
for various monostatic and bistatic geometries are then presented.

Chapter V considers the absorber scattering that takes place in a compact
range chamber. The fields from the range reflector which illuminate the absorber
are calculated through a modified version of the Semi-Circular Compact Range
Reflector Code [9], while the fields subsequently scattered by the absorber to the
target region are calculated by means of the Absorber code. (This is done in a
general purpose computer code, program CHAMBER, which calls the reflector and
absorber codes as subroutines. CHAMBER allows many parameters to be varied,
and provides several output options.) The method of calculation is first described
in some detail. Sample calculations of absorber scattering in a compact range are
then presented.

Chapter VI provides experimental verification of absorber scatter calculations.
First, the backscatter of a single pyramidal tip is measured, and is seen to compare
well with calculations. The topic of addition of the scattered fields from several
pyramids is then discussed, since this is relevant to the remaining experiments.
Next, calculations are compared with measurements of bistatic scattering from a
wall of pyramidal absorber. The results are very encouraging, since the calculations
predict both the magnitude and the frequency behavior of the measured absorber
scatter. Finally, an experiment is described in which the reflected fields from a

large platc arc directed toward the ceiling absorber (of the Ohio State University

4




compact range chamber) and are then bistatically scattered by the absorber to the
reflector and received by the compact range. Again, calculations agree well with
measurements.

Chapter VII presents a summary and conclusions. In appendix A, the opera-

- tion of program CHAMBER is discussed.
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CHAPTER 11

DIFFRACTION FROM PERFECT CONDUCTORS

2.1 Introduction

This chapter begins by describing the UTD solution for scattering from a
perfectly-conducting two-dimensional wedge. Two ray-fixed coordinate systems
are then introduced and used to put the UTD solution for a perfectly-conducting
three-dimensional wedge into a compact form, Lastly, diffraction coeflicients for a

corner in a conducting flat plate and a three-dimensional wedge are presented.

2.2 Two-Dimensional Wedge Diifraction

Consider an electric or magnetic line source illuminating an infinite, perfectly-
conducting wedge formed by two plane surfeces, as shown in Figure 1. The total
UTD solution for this problem consists of an incident, reflected, and difiracted
field. The incident field is the source field in the absence of the wedge (although
one must take into account the shadowing of the wedge). The reflected field is
that field reflected from the surface of the wedge with the edge ignored. Region I
contains incident, reflected, and diffracted rays; region 1l contains incident and
diffracted rays; and region III contains only diffracted rays. The incident and
reflected fields constitute the classical geometrical optics (GO) solution. Alone,
this solution predicts zero fields in region 11l (the shadow region), aud disconti-

nuities exist at both the incident and reflected field shadow boundaries. It is the
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Figure 1: UTD ray paths of a line source radiating in the presence of a wedge.

diffracted field that exists in the shadow region, and it is the diff-acted field that
combines with the geometrical optics field to produce a total field which is contin-
uous across both shadow boundaries. Keller [1,2,3] first introduced the diflracted
field in his geometrical theory of diffraction (GTD), yielding a simple geometric
interpretation of the fields associated with the currents excited at the edge of the
wedge. However, one limitation of his solution was that it was singular at the
shadow boundaries, where the diffracted field is most significant. Kouyoumjian
and Pathak [4], using asymptotic methods and the exact eigenfunction solution
for the wedge, developed a uniform geometrical theory of diffraction ansatz within
the context of Keller's solution. Their solution eliminates Keller's singularity by

introducing a multiplicative factor that approaches zero at the shadow boundaries.




The total UTD solution for the wedge is given by
utotdl = yine p yref o o dif (2.)

where u represents an electric {(magnetic) scalar field for illumination by an electric
(magnetic) line source. The line source is located at (p’,¢') with respect to the

edge, while the receiver is located at (p,¢). The incident field is given by

—ikp:
ine K 9-713? in regions I and II, and

(2.2)
0 in region I1I

where p; is the distance from the source to the receiver, k is the wavenumber of

the medium surrounding the wedge, and K is a complex constant. The reflected -

field is given by
~Jjker .
Jef - K 5-7’,-'—- in region I, and | (23)

0 in regions II and III
where p, is the distance from the image of the line source to the receiver, and the
+(-) sign is used for the case of a magnetic (elcctric) line source. The diffracted -
ficld is given by {4]
e-Jkp

dif ., . ne ) e .
u u (Q,)DA 7 (2.4)

where u'™(Q,) is the field incident on the edge, and the diffraction coefficient, D;‘ ,

is written as
..e"'j'/4 '*_’. d— 1 R
= t——-(z—-ﬁ Flkllat(¢ ~ ¢’ 2.5
by 2n\/2xk[ {°°L mo | Flklia*(@ - &) + (25)

cot -'—'"(fﬂ,-‘:ﬂ FikL'a(¢ - ¢')] }

-

=;{ cot [ puremat (4 + )+
L

1

cot| 2= )| FlkLroa- (6 + ¢)] }] :
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The transition function is defined by [4]

F(z) = 2jy/z &/® /; =i dr (2.6)
where one takes the principal branch of the square root,

a*(8) = 2 cos? [gﬁﬂ;-—ﬂ] (2.7
where N* are the integers which most nearly satisfy the equations

2enNT — = 4= (2.8)
and

n=2-WA/xr (29)

where WA is the wedge angle. Note that the e/“* time convention is assumed and
suppressed throughout this study.

The subscripts s and k on the diifraction coeflicient, D'.‘ , correspond to the
cases of the clectric and magnetic line sources, respectively (these are the soft
and hard boundery conditions). The four terms in the diffraction coeflicient cor-
respond to the “n face” incident shadow boundary (ISB), the “o face” 1B, the
“n face” reflection shadow boundary (RSB), and the “o face” RSB; respectively.
(The o and n faces may be chosen arbitrarily, whereas the angles ¢ and ¢' must
be measured from the o face.) The transition function, as introduced by Kouy-
oumjian and Pathak (4], contains a Fresnel integral which is casily evaluated using
a computer algorithm. The magnitude and phase of the transition function are
shown in Figure 2. Note that when z > 10, F(z) = 1. The region ncar a shadow
boundary, where F(z) is not close 1o one, is called a transition region. In a tran-

sition region, the high-frequency diffracted ficld can not be considered ray-optical.




1.0 50
¢
of —4s
P, ok
o8|— HaSe op & —f40
£ D

W —{s
W
o 06— o —j30u
e ' @
2 F(KLo) » 2]y/KLo o/t [ T gy i ad
g 04— Jkio 10w
g
[+ %

02} —{i0

=15

ool vyl ol s i,

%o0i 0.0i 0. ) 100

KLo

Figure 2: Transition function.

The L parameters are known as the distance parameters, and are given by

U

L= -LP 10

pcP

L' = ;:—f:; ,and - (2.11)
4

Py (212

¢

Lro

where p{ and p2 are the caustic distances for the reflected wavefronts emanating
from the edge for the » and o faces, respectively. (For a wedge composed of two flat
faces, p?* = p2 = p'.) The functious a®(-) are a measure of the angular separation
beiween the field point and the shadow boundaries. Finally, note that the following
rules must be observed:

1. L' > A\/10 (necessary for asymptotic solution)

2. 0< ¢,¢ <nw,and

10
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3. If ¢' =0 or ¢' =nm, one has grazing incidence and must multiply the diffrac-

s
v

tion coefficient by 1/2.

2.3 Three-Dimensional Wedge Diffraction

In the previous section, the scalar fields associated with a cylindrical wave
incident on a perfectly-conducting two-dimensional wedge were considered. The
- problem of the three-dimensional wedge (formed by two plane surfaces) is similar
in that the total field again consists of incident, reflected, and diffracted fields.
However, the three-dimensional case deals with a point source, in general, and
thus illumination by an obliquely incident spherical wave. Also, the incident field
may be arbitrarily polarized. To simplify the expressions for the reflected and
diffracted fields, two ray-fixed coordinate systems will be introduced.

Consider an electric field E' incident on a perfectly-conducting planar surface,
as shown in Figure 3. Let # be the unit normal vector to the surface, ] be the
incident unit vector from the source to a reflection point Qg on the surface, and
R be the reflection unit vector. The vectors # and [ define the ordinary plane of

incidence. One may then define the following unit vectors:

g = x4 (2.13)
i x 1|
iy = Ixd; ,and (2.14)
) 4 = Rxiy (2.15)

where L and || indicate vectors perpendicular and parallel, respectively, to the
ordinary plane of incidence. These orthogonal unit vectors form a ray-fixed coor-
dinate system. The field of a ray traveling in the incident or reflecied directions is

completely specified by its components E; and E. Thus, the reflected field E7(s)

11
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Figure 3: Ray-fixed coordinate system for 3D reflection.

ai a distance s along the reflected ray from the reflection point Qp may be written
as
Eﬁ(“) - 1 0 Eﬁ(QR) g=iks
E}(s) 0 -1 EL(QRr)

where E¥(Qp) is the field incident at Q. The reflected field can also be written

(2.16)

as
E"(s) = E¥(Qg) - Re (2.17)
where R is the dyadic reflection coeflicient and is given by
R =Gl -6y . (2.18)

To examine the diffracted field in this problem, consider a source point and

observation point as shown in Figure 4. Let the distance from the source point to

12




the edge diffraction point (Qz) be denoted by &', and the distance from Qg to the
observation point be denoted by s. Let 8, be the angle of incidence; that is, the
angle formed by the incident ray and the diffracting edge. When an incident ray
strikes the edge, it produces a cone of diffracted rays. The axis of the cone is the
diffracting edge, while the cone half-angle (the angle of diffraction), B,, is equal to
the angle of incidence, 8). The equality of these two angles uniquely determines
the edge diffraction point, Q.

Let ¢ be the unit vector parallel to the diffracting edge, I be the incident unit
vector from the source to the diffraction point, Qg, and D be the diffraction unit
vector from Qf to the observation point. The plane defined by ¢ and I is the edge-
fixed plane of incidence, while the plane defined by € and D is the edge-fixed plane

of diffraction, as shown in Figure 5. One may define the following unit vectors:

"' ""é Xi
= - 2.19
¢ |é x I (219)
Bo = & xI (2:20)
X éxD
= - d 2.21
¢ lEx D’ - (221)
Bo = $xD . (2.22)

The unit vectors G and ¢' are parallel and perpendicular, respectively, to the edge-
fixed plane of incidence, and form the ray-fixed coordinate system fur the incident
ray; the unit vectors g, and ¢ are parallel and perpendicular, respectively, to the
edge-fixed plane of diffraction, and form the ray-fixed coordinate system for the
diffiracted ray. (Recall thal in the case of 2D wedge diffraction, the specification of
the o and n faces was arbitrary. In the current problem, one may arbitrarily assign
the direction of é. Once chosen, however, the o and n faces are also determined.
This results from the unit vector definitions above, and the conventions shown in

Figure 4.)
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Using these vector directions, the diffracted field at the observation point is

written as
ES -D, 0 : .
0(8) N f ﬂL(QE) ( l; )e—-Jks (2.23)
. Ey(s) 0 -Dy || Ey(Qg) | V*PT?
’ where
) _ _e_jw/4 x+(d— ! + ' |
« Dy = msinﬂo[ {cot [—-%—ﬂ] FlkLa*(¢ - ¢)] + (2.24)

cot [r:ign:ﬂ] FlkLa™(¢ - ¢')] }
;{ cot [ﬁ(g{f—ﬂ] FlkLat(¢ + ¢')]+
cot ["—_(g%*'ﬂ] FlkLa=(¢ + ¢')) } ] .

Sirce the wedge is formed by two plane surfaces, the distance parameters in all

four terms of the diffraction coefficient are given simply by

ss'

. sin? G, . (2.25)

The functions a*(-) and F(:) were defined earlier. The diffracted field may also

be written as

E%(s) ~E{(Qg) - D T p’; A eIk (2.26)

where D is the dyadic diffraction coefficient and is given by

*

D = —f5.D,s - §'6D;, . (2.27)

The geometrical optics and edge diffracted fields that have been presented are
high-frequency asymptotic solutions to Maxwell's equations. They are not valid
at or near field caustics (although one may allow the field point to cross a caustic

by introducing a proper phase shift). The large parameter in the asymptotic

16




approximation for the edge diffracted field is kL, which means that 8, s, and &'
cannot be arbitrarily small. The incident field is assumed to be slowly varying
at the edge diffraction point, except for its phase variation along the incident
ray. Also, one should note that this presentation has been limited to a wedge
formed by two plane surfaces, with a straight edge. Curvature of an edge primarily
modifies the spread factor, while surface curvature primarily modifies the distance
parameters. A much more detailed and general presentation of this subject can be

found in [4].

2.4 Corner Diffraction

The three-dimensional edge diffraction solution dealt with thus far has been
for an infinitely long edge. In an actual physical problem, the scattering object
must have finite length edges. Burnside, Wang and Pelton (5] have developed a
corner diffraction coefficient which compensates for the termination of the edge.
Their solution is based on the equivalent edge currents that would exist in the
absence of the corner. They employed these currents in the radiation integral,
and evaluated the integral asymptotically. This analysis was characterized by a
saddle point near an endpoint. The corner diffraction term was then found by
appropriately (but empirically) modifying the asymptotic result. Their solution
has proven to accurately predict the scattering from many plate geometries.

The corner diffraction geometry is illustrated in Figure 6, where a corner
exists in a perfectly-conducting flat plate. The corner diffracted fields are broken
down into components associated with each individual edge. In Figure 6, the
corner difiracted fields associated with the 2 directed edge are considered. For the
source and observation points indicated, there is an edge diffraction point indicated

by Q. As the observation point moves in the —Z direction, the diffraction point,
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Figure 6: Corner diffraction geometry.
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Q g, also moves in the —Z direction. Eventually it moves beyond the physical limits
of the edge, and the edge diffracted field stops abruptly. The corner diffracted
field compensates for this discontinuity, as the edge diffracted field compensated
for the discontinuities in the GO field. Whether Q g is on the edge itself, or on the
- imaginary extension of this edge, the corner diffracted field will exist.
The angles 8o, B¢, and S, and the distances s/, 8", s¢, and s are illustrated
in Figure 6. The vector directions used to express the incident and diffracted fields

are given by

»
|
433
X
by

¢ = x| (2.28)
Be = ¢ xI (2.29)
$ = é:gl , and (2.30)
Boc = ¢pxD . (2.31)

The corner diffracted fields associated with one corner and one edge of a perfectly-

conducting flat plate in the near field with spherical wave incidence are given by [5]

B | _ _ ER(Q) CuQs) | i Vamfromfe o)
Ey E}(Qc) Ch(Qk) V2rk (€os foc — cos fc)

—~jka

F [kLea(r + Boc — Be)) -

. where
—e~in/4 FleLa(g-¢')] | [ _ La(o-¢')/>
Cl.u(QE) - 2\/2—1fzainﬂo{ 003(9:#' ' [“““ (r+foc- @” (2:33)

F[kzowul [ La(g+4")/) ]I}
cool "z"') kLca(x+Boc—0c)
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Note that the transition function was defined earlier, while the distance parameters
are expressed as follows:

8'8"

L= sin® Bo (2.34)
_ 8¢c8
L= y (2.35)
and
!
a(¢ £ ¢') = 2cos? (d’ ﬂ; ¢ ) (2.36)

The corner diffraction coefficient, Cz(Q E ), is a modified version of the edge diffrac-

tion coefficient, Dz(Q g). The modification factor

La(g & ¢')/2
F [kLca(w T Boc - ﬂc)]

is a heuristic function which helps to avoid the abrupt sign changes in C,:(Q E) as

the observer passes through the geometrical optics shadow boundaries of the edge.

The corner diffracted fields associated with the other edge are treated similarly.
Thus, depending on the source and observer locations, there may be edge diffracted
fields from either or both edges, but there will always be a corner diffracted field
term associated with each edge. The total effect of the corner is found by su-
perimposing the contributions associated with each individual edge. This topic is
discussed further and applied to a number of plate geometries by Sikta et al [10].

Consider now the case of a corner formed out of a three-dimensional wedge.
The corner of a cube is an example of this type of geometry. The corner diffracted
fields assoniated with one corner and one edge of such a perfectly-conducting three-
dimensional wedge in the near field with spherical wave incidence are again given

by Equation (2.32), where the corner diffraction coeflicient is now written as
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C il 2.37
= —p=—X .

A 2n+/2xk sin S, (2:37)

“Lat

[ {cot Lﬁ%ﬁ_ﬂ] FlkLa*(¢ ~ ¢')] IF Lca(r+Boc—Pe
cot w—_%:—ﬂ] FlkLa~(¢ - ¢')] lF [klf;—(ii—ﬁi).{%j” }

+ cot[ L] Fletat (s + 91| [ 800 ]|+

cot '—_(&tﬁ] FlkLa=(¢ + ¢')] lF [bf;—w+-zo:—3c H } ] .

The corner diffraction solution works very well for computing backscattered

fields. In [10], the authors conclude that corner diffraction can be used to ob-
tain the echo area of rather general flat plate structures. Unfortunately, since the
corner diffraction solution was found heuristically, it does have its shortcomings.
The diffracted fields it predicts may become discontinuous, particularly for some
bistatic geometries. In some instances, the angles ¢ and ¢' trigger a discontinuity
that the modification factors cannot entirely eliminate. These values of ¢ and ¢'
correspond to shadow boundaries of the GO field. In terms of the corner diffrac-
tion solution, these are false shadow boundaries, since the corner diffracted field
arises to smooth the edge diffraction shadow boundary. Nonetheless, the corner
diffraction solution is very useful.

Figures 8 to 10 demonstrate both the validity of the corner diffraction solution
for bistatic scattering cases and the occurence of false shadow boundaries. Consider
a plane wave incident at 8° = 45°, ¢' = 0° on a 2 square plate, as shown in
Figure 7. Patterns are then computed for fixed ¢* and for 0° < 6° < 360°. Corner

diffraction results are shown versus moment method results, both are calculated
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Figure 7: Geometry for scattering from a square flat plate.
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in dB relative to a square wavelength. The actual computations were done by
Brinkley {11]. The subscripts on o refer to the source polarization and receiver
polarization, in that order.

In Figure 8, ¢* = 0.1°, which places the observer near the plane of incidence.
The nulls in the moment method results (for the §6 polarization) at 6 = 90°,270°
are from higher order effects not present in the corner diffraction solution. Agree-
ment between the two solutions is excellent. Note that there is a slight glitch in
the corner diffraction results at 6* = 225°,315° which is due to difficulties with the
modification factor, in both its mathematical expression and its numerical compu-
tation. This difficulty is most pronounced in the plane of incidence (¢° = 0°). The
value of 0.1° was chosen for ¢° to lessen the dependence of the displayed results
on the method of computation.

Figures 9 and 10 depict the cross-polarized and co-polarized results, respec-
tively, for ¢° = 122°, The discontinuities seen in the corner diffraction solution
arc due to false shadow boundaries. Agreement with moment method results has
weakened (in comparison with the case where the observer is near the plane of inci-
dence), yet the dominant scattering behavior is predicted by the corer diffraction
solution,

The diffraction mechanisms reviewed here serve as a foundation for scatiering

fromn dielectric objects, which is the subject of the next chapter.
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CHAPTER III

DIFFRACTION FROM DIELECTRIC WEDGES AND CORNERS

3.1 Introduction

The aim of this chapter is to develop a scattering formulation, based on the
UTD, for a dielectric corner. The reflection and transmission of plane waves at a
dielectric-dielectric interface are first reviewed. Next, two cases in which dielectric
modifications have previously been made to the UTD are discussed. These were
for the problems of edge diffraction from a two-dimensional dielectric slab [§] and
from a two-dimensional dielectric wedge {7). By extending the method arrived at
in {7}, a modified UTD solution is developed for three-dimensional dielectric edge

and corner'diffraction.

3.2 Reflection and Transmission at a Dielectric Interface

In this section, attention is given to & linearly polarized plane wave obliquely

- incident on a planar interface between two media. Medium 1 is a non-magnetic,

; lossless dielectric; medium 2 is & non-magnetic and, in general, lossy dielectric.

Consider firet the case of perpendicular polarization, where the electric ficld
direction is perpendicular to the plane of incidence (the plane formed by the inci-
d§bi£ ray and ﬂm interface normal). This is illustrated in Figure 11. The reflection
coefficient, R 1,16 defined as the ratio of the reflected electric field amplitude to the

incident electric field amplitude. The transmission coefficient, T' , is defined as the
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Figure 11: Reflection and transmission at a dielectric interface, perpendicular
polarization.

ratio of the transmitted electric field amplitude to the incident electric field ampli-
tude. These Fresnel coefficients can be found by applying the boundary conditions
at the interfece; that is, by enforcing the condition that the tangential electric and

magnetic fields be continuous at the interface. Doing so results in the following

cos ' 1{(62/61) - sinf_?: , and (3.1)

R, = . ‘
cos® + \/(ez/€)) —6in? @
i A
I, = -*“-7——-2-925-?-—-——. . (3.2)
cos 8 + \/{ea/€y) — sinZ 6%

Notethat T} =1+ R.
Consider next the case of parallel polarization, as shown in Figure 12, The
reflection coefficient, R, is defined as the ratio of the rcflected magnetic field

amplitude to the incident magnetic field amplitude. The transmission coefficient,
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Figure 12: Reflection and transmission at a dielectric interface, parallel
polarization.

Ij, is defined as the ratio of the transmitted magnetic field amplitude to the
incident magnetic field amplitude. Enforcing boundary conditions as before, one

finds that

(€2/€1) cos 6% — \/(eg/el) ~ sin? 61

By =  and 3.3
I (e2/€1) cos 0% + W an (3.3)
Ty = Aea/er)cos® 54

(ea/€1) cos 8 + y/(ea/ey) — sin® 6

Note that Tj = 1 + R). Since the incident and reflected fields are in the same
medium, the ratio of the reflected electric field amplitude to the incident electric
field amplitude is also given by K.

For both polarizations, one finds that 8" = 6 and sin ' = \/:‘-E sin 0, which

are known as Snell's laws of reflection and refraction, respectively.
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This study is concerned with the Fresnel reflection coeflicients, R| and R“,
for reasons that will become apparent later. Note that B; and R” are complex
for complex ey, Also, if €3 is real but less than ¢), R and Ry will be complex;
however, that situation will not arise here. Complex €y will also result in the angle
of refraction #* being complex. (In this instance, §° is clearly not the true angle
of refraction. The true angle of refraction can be found in a manner analogous
to that done by Stratton [12, pages 500-505] for the problem of refraction in a
conducting medium. This is not presently of interest.)

Using the ray-fixed coordinate system for three-dimensional reflection shown

in Figure 3 (Section 2.3), the reflected field E"(s) is written as

Ej(s) R Eﬁ(QR) e

Ei(s) 0 R, || EY(Qr)

where E(Qp) is the field incident at a reflection point, Q g, and s is the distance

(3.5)

along the reflected ray from Qp.

Figures 13 and 14 illustrate the behavior of |R"| and |R | versus angle of
incidence for three values of ¢3. Note that the complex permittivity ¢ can be
writien as ¢ = e — jej, where ¢j represents the lossy nature of the dielectric.
When the material is lossless, |R"| vanishes at the Brewster (or polarizing) angle.

Also, as grazing incidence is approached, both IRnl and |R, | approach unity.
3.3 Two-Dimensional Dielectric Slab

The first application of the UTD to a dielectric scatterer was developed by
Burnside and Burgener (6], who studied the case of a thin, lossless dielectric slab.

The geometry is illustrated in Figure 15. The dielectric slab they considered was
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Figure 15: Geometry for diffraction from a 2D semi-infinite dielectric slab.




of any thin uniform material, but subject to the following restrictions:
¢ The diffractions can be assumed to emanate from the edge point Q.

e Energy leaving Qg tangential to the slab, as a surface wave or a transmission

- through the endface, can be assumed negligible.
e Loss within the slab can be assumed negligible.

They first wrote expressions for the incident, reflected, and transmitted fields of a

semi-infinite dielectric slab (assuming unit magnitude excitation) as follows:

r e—jkpl . .

g | S5 inregions I and II, and (3.6)
k 0  inregionlll

tolal e‘jkpf . .

R R “Jp inregion I, and a7

‘ 0 in regions II and 111
and
0 in regions I and II, and

utran = . ( 3 8)

Ttotal PaLL .

T in region III.
Note that the transmitted (reflected) field is written as the product of a total
transmission (reflection) coefficient and the field that would have Leen incident
upon the observer from the source (image) in the absence of the dielectric slab.
v The coefficients Kt and Tt0tal aecount for the multiple interactions that take
place within the slab to produce the total reflection and transmission fields, each of
which is an infinite sum of waves. This is illustrated in Figure 16, Rtotal and Ttote!
are each expressed as an infinite series, with each term in the series representing
one component of the reflected or transmitted field, respectively. Rt¢tal and Toto!

are found by proper attention to the various phase delays and coefficients of single
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Figure 16: Multiple interactions within dielectric slab.

reflection and transmission involved, Note that plane wave propagation was as-
sumed for the field incident on the slab, the field within the slab, and the reflected
and transmitted fields. Thus, neither the source nor the observer must be too close
to the slab.

Now, an expression for the diffracted field is desired. Comparing the dielec-
tric semi-infinite slab to the perfectly-conducting case, one notes that the discon-
tinuities at the two shadow boundaries have changed. This is due to a different
reflected field, and to the presence of a transmitted field. Since the diffracted field
arises to smooth out the discontinuities at the GO shadow boundaries, and since
these discontinuities have been scaled by R!*% and 1 — T¢08! (a5 compared to
the perfectly-conducting case), one should scale the diffracted field in the same
manner. This was the approach proposed in [6). Recall that the solution for the
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two-dimensional perfectly-conducting half-plane is given by

: . —jkp

" dif _ . inc D € 3.9
E where .
- Dy =D(¢~#) ¥ D¢ +¢) (3.0)
:f%: IS B term RS B term
N . and

Y —e~i7/4 F (kLa(¢ + ¢')

r D+ 4= oo FlELel62 &) @1
5‘:«1 L CO8 (L!i)
";f
\"
"3 The diffraction coefficient is then scaled to [6]
X
:::E D, = [(1 ~ Tt D(¢ — ¢') + R D(p + ¢')] . (3.12)
2, [} I
2,
Note that the solution given above for the conducting half-plane is a special case
,si, of the wedge solution given in Section 2.2, found by setting the wedge angle to
stt.‘

' .::ﬁ zero. Also, note that for a perfect conductor one has Ti"w = 0, while R‘f‘"‘ = Fl.
% I [

_ l:;‘, Thus, the proposed dielectric solution reduces to the correct result for the perfectly-
;:Sf conducting case.
‘:;:% The validity of this solution was verified by comparison with Moment Method
3 “
i::‘ results, for the case of Figure 17. In [6), it was concluded that the results were
@
a accurate for p, greater than a wavelength (which stems from the plane wave ap-
S
ii:“_ proximation), and for angles of incidence ¢, up to 40° (and possibly 60°) from

W normal incidence (to avoid exciting a surface wave). Finally, the theory had made

‘y

% the assumption that the thickness D was less than 1/10 of a wavelength. How-
l(:

:“;‘ ever, based on comparison with measurements, accurate results were obtained for
Jg

: thicknesses up to 1/2 wavelength.
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Figure 17: Finite 2D dielectric slab with line source illumination.

3.4 Two-Dimensional Dielectric Wedge

In the previous section, a dielectric modification was made to the UTD en-
abling edge diffraction calculations for a two-dimensional dielectric slab. This
section considers the use of a similar modification for the more general problem
of a two-dimensional dielectric wedge. This problem has received considerable at-
tention by a number of authors. However, DeWitt[7] reports that many of the
.published solutions to this problem are either very limited or too complicated to
be of practical use. Alternatively, Rawlins (8] has developed an approximate solu-
tion which can be numerically evaluated fairly easily. He derives a general integral
equation for an infinite dielectric wedge with arbitrary wedge angle and permit-
tivity. A Neumann series solution of the integral equation is then found through
a perturbation technique. Rawlins takes the first term of this series and, using
asymptotic methods, finds explicit expressions for the difiracted field of a right

angle dielectric wedge under these constraints:

® The incident field is planar, with the electric field vector parallel to the edge
of the wedge.
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® One must have 1 < e < 2 for convergence of the Neumann series.
o The incident direction is in the quadrant opposite the wedge.

Rawlins’ solution will be used later for comparison with the solution to be presented
here.

The dielectric modification to the UTD discussed now was proposed by De-
Witt (7], as an extension of the work done in the previous section. Since it is in
the UTD format, it will be numerically efficient. Furthermore, as a simple modi-
fication to the UTD, it will not have the constraints mentioned above. The first
step in this modification is to consider the effect that the dielectric material has
on the discontinuities at the shadow boundaries. 1t is immediately apparent that
the wedge problem is much more complex than the slab. One cannot speak of
the reflected or transmitied fields alone in that the multiple interactions which
occur within the wedge are of a more complicated nature. However, it was found
in {7] that the following method works very well. First, due to the vanishing wedge
thickness at the edge, energy will pass through the tip and tend to smooth the
discontinuity at the ISB; thus, the ISB terms in the diffracted field are considered
negligible. Second, it was chosen to modify the RSB terms by multiplying them by
the Fresnel reflection coeflicient for the initial external reflection from the corre-
sponding wedge face. The final step is related to the principle of reciprocity. The
solution, as presented thus far, does not satisfy reciprocity. This is true since the
reflection coefficient depends on the angle of incidence, 8%, which changes when
source and observer are interchanged. Thus, in (7], tne R, were calculated by
replacing 6* with half the angle between the incident and sc:uer directions. The
resulting formulation for the field diffracted from the edge of a dielectric wedge is
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N/

where ui"(Qp) is the field incident on the edge, and the diffraction coeflicient,

udf ~ u™(Qp) D, (3.13)

Dz , is written as

. eI/ r+(p+¢' + . 0
Dy == \/iﬁ{ Ry cot [=HH)] Flesat (s + ¢) (3.14)

i +R ! cot [t‘%‘tﬁ] FikLa(¢ + ¢')]} .
The reflection coefficients, R, , are given by Equations (3.1) and (3.3), respectively.
There is no distinction betwe:an the reflection coefficient for the o and n face terms,
since the convention used for the angle of incidence depends only on the incident
and scattered directions.

The fcllowing plots compare the UTD calculations of [7] with the solution
of Rawlins for bistatic scattering from a two-dimensional dieleciric wedge. The
electric field vector of the incident field is parallel to the edge, the scattered field
is computed at a distance of 50 wavelengths from the edge, and the relative per-
mittivity of the wedge is equal to 1.1. This value of ¢, is chosen because Rawlins’

- solution is more accurale for ¢y close 1o one. The three figures correspond to theee
incident directions, as indicated. Overall, the agreement between the two solutions
is very good. They differ most significantly along the wedge faces. Here, one would

~ expect Rawlins' solution to be more sccurate since it uses the correct boundary

conditions. On the other hand, the modified UTD solution may be less accuraie

~ near the wedge faces since the presence of surface waves was not considered. (Note

" that later, when this method is extended to pyramidal absorber scallering, the

incident and scatter directions never lie along a pyramidal face.)
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) vs Rawlins' solution (6, = 45°).
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One should keep in mind that a good engineering approximation is being
sought for a very complex problem. The method proposed in [7] has proven to
work very well for the cases in which there is available a method to compare
against. This modified UTD approach will serve as the basis for the work in the

- remainder of this study.

3.5 Three-Dimensional Dielectric Wedge

In this section, the dielectric modification to the UTD solution proposed in (7]
for a two-dimensional wedge will be extended to the problem of an infinite dielec-
B tric wedge in three-dimensional space. The edge diffracted field of a perfectly-

conducting three-dimensional wedge, as depicted in Figure 4, may be written as

E%(s) ~ [AD(¢ - ¢') + BD(¢ + ¢')] - B Q) p (p’; 8)3“-7"’ (3.15)
where .

-"' N —e~ /4 { r+(g19' _ ny

‘ - D(¢ + ¢ ) = 2“\/5?76-63!130 cot [——%‘—tl] F[kL6+(¢;}; ¢ )) - (3.16)

+ cot [I;(%‘:Eﬂ] FlkLa=(¢ ¢')]}

and the dyadic coefficients A and B are given by

A = =fofly ~ ¢’ (3.17)
B = fbly-dd . | (3.18)

This may be expressed in matrix notation as

- . d | i ~
g (Bl [AD(¢ - ¢)+ BD(¢ + ¢ E‘?«':(QE ) 1/---—'-’—-——e‘f‘“ (3.19)
| Bde o Ey(@g)| Vol +9)
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where A and B are matrices given by

-1 0

0 -1

. » 1 0
B = o 1| (3.21)
0 -

" CE
oo AT ap omr >
P g ) L

The goal here is to determine the dyadic coefficients A and B that will properly

PRen’

scale the D(¢ F ¢') terms when the wedge is dielectric. The approach is again

b

similar to that of [6] for the two-dimensional dielectric slab. For the moment, as-
sume that R, and T, represent total reflection and transmission coeflicients for the
dielectric wefige, res:)ectively. The discontinuities at the reflection shadow bound-
aries will now be investigated to determine the coefficient B. The question of field
polarizations must be taken into consideration. Recall that the field reflected from
a planar interface is most conveniently written in terms of its ray-fixed compo-
‘nents 4, &ﬁ, as was done in Equation (3.5). On the other hand, the diffracted
field formulation deals with the 3!, ¢' components of the incident field, and the
Lo, ¢ components of the diffracted field. To find the discontinuities in the reflected
field relative to these field polarizations, consider an incident ray reflecting off a
(planar) wedge face. The point of reflection is infinitesimally close to the edge,
so that the reflected ray is virtually along the RSB, on the lit side (as shown in
Figure 21). The ordinary plane of incidence and edge-fixed planes of incidence
and reflection are indicated in Figure 22, Define a to be the angle between the
ordinary plane of incidence and the edge-fixed plane of incidence. One can then
take the incident field expressed in its ﬁ{,, ¢' components, transform them into 1
'&ﬁ components, use Equation (3.5) to find the reflected field in its 4, ﬁﬁ compo-

nents, and then transform this reflected field into its ﬁ,,. é components, Doing eo,
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Figure 21: Reflection and diffraction at a three-dimensional dielectric wedge.
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Figure 22: Pertinent field polarizations for reflection near wedge edge.
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one finds that the reflected field E"(s) can be written as

Z',o(a) Ry cos?a - R sina (R + Ry)sinacosa

L(s —(Ry + R )sinacosa —Rysina+ R) cos?a
¢ I I

(3.22)

EBL(QR) o—iks
E4(Qr)

where E*(QR) is the field incident at the reflection point Q g, and s is the distance
along the reflected ray from Qg. This result is valid for any incident direction
which illuminates the wedge face. Since the reflected field is zero on the dark
side of the RSB, the 2 x 2 matrix in Equation (3.22) represents the discontinuities
associated with the RSB of the wedge face being considered. Thus, the scaling
coefficient for the D(¢ + ¢') term of the diffracted field is written in matrix form
as

B = Ry cos?a — R, sina (R + R)sinacose (3.23)

—(Rj+ Ry)sinacosa -R) sinfa+ R, cos?a

where the subscript indicates that the values vary with the o and n faces. The
angle a depends on the o and n faces because the two faces have different normal
vectors and thus different ordinary planes of incidence. Note that the scaling for
the o(n) face term is found when the o(n) face is illuminated, but will be used for
all incident directions (regardless of whether or not the o(n) face is illuminated).
This is of no concern. The same was done in the canonical problem of the two-
dimensional perfectly-conducting wedge, where the reflection coefficients are +1.
When a certain boundary does not exist, the corresponding term in the diffraction
formulation is typically negligible.

Following a similar approach, the discontinuity in the incident shadow bound-

ary (ISB) terms is found to be the difference between the field on the lit side (the
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" incident field) and the field on the shadow side (the transmitted field), which is

expressed as
E;'a,,(’) _ Etp,,(’)
i t
B8} Joa L Z6(®) | shadou (324)
- 2 i 2 _ : i
1+ Tjcos’ a+ Ty sin’a (Tj - Ty)sinacosa EﬁL(QE) ks
(T - Ty)sinacosa -1+ T)sin’a + Ty cos®a E&,(QE)

where E(Qp) is the field incident at Qg and s is the distance from Qf to the
field point. Thus, the scaling coefficient for the D(¢ — ¢') term of the diffracted

field is written in matrix form as

A -1+ cosla + T, sina (T - T_L) sin & cos a (3.25)
(T) - T1)sinacosa -1 +T”sin2a+T_|_cosza 2
where the subscript again indicates that the values vary with the o and n faces.
This procedure was first used in (6] for the problem of a slab in three-dimensional
space.

Using these results, and rearranging Equation (3.19) somewhat, the edge

diffracted field of a three-dimensional dielectric wedge can be written as

Ego(") - Dy D, EBL(QE) P__o—iks (3.26)
EYs) | | Dc Da]| Ei@p) | VolPt?)
where
Dy = (Rycos? a ~ R sin? a)n Da(é + ') (3.27)

+ (R" cost a ~ Ry sin? a)o Do(¢ + ¢')
+ (-1+ T" cosla + T, sin? a)p Dn(d - ¢")
+ (=14 Tjcos?a + T sina)o Do(¢ ~ ¢')

Ao AR L A MU YL A A EATIAT YA AR R S W MR PV I AR A S A S AR AN AR USRS



Dy = [(Ry + Ry )sinacosaln Dn(¢ + ¢') (3.28)
+ ((Ry+ Ry)sinacose]o Do(¢ + ¢)
+ [(T” —~ T )sinacosaly, Dn{d — ¢')
. + [(Tj - T1)sinacosalo Do($ — ¢')
D = ~ [(Rj+Ry)sinacosalsDn(¢+ ¢ (3.29)
~ [(Ry+Ry)sinacosalo Do(¢ + ¢')
) + [(Tj) ~ T1)sinacosa)n Dn(¢ — ¢')
+ [(Ty -~ To) sinacosalo Do(¢ ~ ¢')
Dy = (R, cos® a — Ry sin® @)y Dn(9 + ¢') (3.30)
+ (Ry cost o — Ry sin @)o Do(¢ + ¢')

+ (147 sin? a + T cos? a)n Dn(¢ — ¢')
+ (-1+ I) sin? a + T} cos? a)o Do(¢ ~ ¢')
and
Dy(B) = -5_1*{4 cot [" L ﬁ] F(kLa¥(g)] . (331)
n' T any/2rksin B, 2n

Note that the parallel and perpendicular components of the incident and diffracted
field are cross-coupled. This is due to the dielectric nature of the wedge; this cross-
coupling does not exist for a perfectly-conducting wedge.

The preceding formulation is included for the sake of completeness; it aids in
visualizing the overall effect of the dielectric (more than the specialised form of
this solution that follows). Recall that R, and T', have as yet nol been defined.
Since reflection is a local phenomenon at .high fr:quencies, plane wave incidence
is assumed and Fresnel coefficients are used. The final step here will be to use
the dielectric modification of (7] discussed in the previous section. Thus, R ! will

consider only the initial external reflections off the wedge faces. Also, recall that
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the usual angle of incidence is replaced by half the angle between incident and
scattered directions in the computation of these reflection coefficients. Therefore
the distinction between the o and n faces for R no longer exists. (However, the
distinction between the o and n faces for a remair:s.) The T, are set to unity, which
is equivalent to considering the ISB terms negligible. With“ these conventions, the

edge diffracted fields of a three-dimensional dielectric wedge are given by

" E§ (s) | Da Dy gL(QE) P ks (3.32)
E}() De Dg 4(QE) s(p+e)
where
Dy = (R cos? an — R sin? an) Dn(¢ + ') (3.33)
+ (Rycostao— Ry sin? ao) Do(¢ + ¢)
Dy = (Rj + Ry)sinay cosan Dp(é + ¢') (3.34)
+ (R + Ry)sinaocosap Do(¢ + ¢')
D. = ~ (Rj+Ry)sinancosanDn(¢+¢') (3.35)
~ (Ry+ Ry)sinaocosao Do(¢ + ¢')
Dy = (RL cos?an - Rysin? an) Dn(4 + ¢') (3.36)

+ (R cos?ao - Ry sin® &) Do(é + ¢')

and Do(¢ + ¢') is given by Equation (3.31).
8.6 Dielectric Corner Diffraction

At this point, the extension to dielectric corner diffraction follows alinost
intuitively. The corner diffraction solution for the perfectly conducting three-
dimensional wedge, presented in Section 2.4, is modified here just as the edge

diffraction formulation was modified in the previous section. Again, the dielectric

49

B R D A O



conventions of [7] are used. The corner diffracted fields associated with one corner
and one edge of a finite three-dimensional dielectric wedge in the near field with

spherical wave incidence are given by

focl®) | | CaQE) Ch(Qr) Ej (Qc) | eiv/4

: (3.37)
5(9) C(@E) Cul@s) || Ey(@c) | Virk
/sin ¢ sin Boc e~ ks
(COSﬁoc - cosﬂc) F[kLﬁa(w + ﬂoc - ﬂc)] s
where
Ca(QE) = (B cos? an — R, sin? an) Cn(¢ + ¢') (3.38)
+ (Rjcos® ao — R sin® ao) Co(¢ + ¢')
Cy(QE) = (Ry + Ry)sinan cosan Cn(¢ + ¢') (3.39)
+ (R + Ry)sinagcosaoCo(d + ¢')
Ce(Qe) = - (Bj+ Ry)sinancosanCn(é+¢') (3.40)
- (R + Rp)sinagcos g Co(d + ¢')
Ca(QE) = (R cos? ap — Ry sin® o) Cn(¢ + ¢') (3.41)
+ (R cos?ap— R sin’ ap) Co(¢ + ¢')
and
_a~ix/4
< (3.42)

Cg(ﬂ) = v/ 2k sin Bo X

coz("-—:;-;fﬁl) F [kLa¥(B)|

»

F [ku«fﬂ%t ac)]

This form will be used to calculate the bistatic scattering from the tip of

an absorber pyramid. It is applied four times, once for each of the {our edges
associated with the tip. The modeling of the pyramid and specifics on how this

calculation is performed are the subject of the next chapter.
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CHAPTER IV

" TIP DIFFRACTION FROM PYRAMIDAL ABSORBER

4.1 Introduction

In this chapter, the modified UTD solution for dielectric corner diffraction will
be applied to an absorber pyramid. The modeling of the pyramid is considered
first, and the calculation of several variables in the solution is discussed. Results

are then shown for various monostatic and bistatic geometries.

4.2 Tip Diffraction Calculations

The pyramidal tip is treated as a corner in a three-dimensional wedge, which
has four planar surfaces and four edges intersecting at a common point. Recall
that the corner diffraction solution gives the fields associated with one corner and
one edge; thus, it must be applied to the pyramidal tip four times.

To begin, consider the conventions illustrated in Figure 23. The tip of the
pyramid is placed at the origin of a cartesian coordinate system. This will serve
as the primary coordinate system; all coordinate systems introduced later will be
defined in terms of this primary system. The pyramid is oriented so that a vector
norma! to face 1 or 3 would have no § component, and a vector normal to face 2
™ or 4 would have no & component. The pyramid’s shape is characterized by a

single angle, a, which is that angle between any two adjacent edges. (Note that

51

A W M AP O A A AR AR R AN IR



A O e S

Edge 1 O Face
Edge 4 N Face

(FACE 1)

Figure 23: Conventions used for pyramid geoinetry.
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Figure 24: Determination of the pyramidal wedge angle, WA.

considering the tip contribution only is equivalent to the pyramid being of infinite
extent.)

First, consider the wedge angle, WA, a variable that depends only on the
geometry of the pyramid. This angle is most easily found by means of the triangle
shown shaded in Figure 24. This triangle has two vertices at oppusite corners of
the pyramid base, while its third vertex lies along one edge of the pyramid. This
third vertex is located such that the triangle sides adjacent to it are perpendicular
to the pyramid edge, as shown. The wedge angle is the angle at this third vertex of
the triangle, as indicated. Applying the law of cosines to one face of the pyramid

yields
b = /2a%(1 - cosa) (4.1)
while the right triangle depicted along the pyramid face yields
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c=asina . (4.2)

Applying next the law of sines to the shaded triangle yields

V2b ¢
sin WA ~ siny °

(4.3)

Substituting Equations (4.1), (4.2), and siny = cos(WA/2) into Equation (4.3)
then yields

N 2a+/1 - cos asin o

sinWA  ~ cos(WA/2) °
Since sin WA = 2sin(WA /2) cos{WA /2), one finds the wedge angle to be given by
V1 = cos a)

sina

(4.4)

WA = 2sin~} ( (4.5)

This expression is of course valid for all four edges of tiie pyramid.

Next, an edge-fixed i:éotdinate system is needed for each pyramid edge. The
coordinate systems chosen are rectangular; each has an edge vector, é, directed
along the edge toward the pyramid tip, a normal vector, #, normal to the o face of
the corresponding edge, and a bi-normal vector, &', which lies along the o face and
is defined by €' = #t x é. The edge-fixed coordinate system for edge 1 is depicted
in Figure 25. Note that a new angle, 8, has been introduced, which is the angle
formed by opposite edges of the pyramid; it will be useful in determining the edge-
fixed coordinate systems. Applying the law of cosines to each of the two triangles

i - inset in Figure 25 and equating the results yields
cos§ = 2¢cosa—1 . (4.6)

Further manipulation reveals that

cos(8/2) = (feosa ,and (4.7)
sin(8/2) = v2sin(a/2) . (4.8)
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Figure 25: Edge-fixed coordinate system for pyramid edge 1.




It is then clear that

e, = co8(3/2)=+/cosa ,and (4.9)
1, .
e, =€), = -7 sin(8/2) = — sin(a/2) . (4.10)
: From the symmetry present, one can immediately see that the four edge vectors
are given by
. €1 = -—#&sin(a/2) - §sin(a/2)+ 2y/cosa (4.11)
é = &sin(a/2) - jsin(a/2) + Zy/cosa (4.12)
é3 = #sin(a/2) + ysin(a/2) + i4/cosa , and (4.13)
é4 = -isin(a/2)+ gsin(a/2)+ ivcosa . ’ (4.14)
Now, let us consider the normal vectors. Since #; is orthogonal to é; and to the
o face of edge 1, it may be found as
= I8 5448 | (4.15)
9 x é] '
where this computation is performed numerically. Note that A,B > 0. The
remaining normal vectors, due to the symmetry involved, are given in terms of 4
and B as
Ay = YA+:iB - (4.16)
ng = ~3A+3B ,and (4.17)
. A
iy = ~yA+:iB . : - : (4.18)
~ - Finally, consider the bi-normal vectors. The first is written as
&) =#y x & = 3C - §D - iE - o (419)
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where C, D, and E are also found numerically. Note that C,D,E > 0. Again,

from the symmetry present, the remaining bi-normal vectors may be written as

éy = #D+9C -3E (4.20)
. ¢ = -#C+§D-:E ,and | (4.21)
& = —-&D-§C-3E . (4.22)

These edge-fixed coordinate systems will be used later to determine various angles
and unit vectors.

Next, consider the illumination of the pyramid by a spherical wave emanat-
ing from a source point, S. Figure 26 illustrates the dielectric corner diffraction
geometry associated with the tip and one edge of the pyramid. The source and
observation points are in the far zone of the tip. Thus the field incident at the
tip is approximately planar. Note that source and observer are assumed to recede
into the far zone at an equal rate; that is, they are equidistant from the tip. Thus,
while the location of Qg is not known, there is no ambiguity in the value of 4.
The computation of 8., will be described shortly. Assume that the incident electric
field is known in terms of its é, ¢ components and its incidence angles 6, ¢'; as
shown in Figure 27. The aim is to find the scattered field in a direction specified
by the scattering angles 8%, ¢°. The &, ¥, and  components of E' are found by a
simple transformation, while J/ and D are given by

I = mi:sinO‘coaé‘-ﬁsinO‘ﬁxaoS‘-Scosai , and (4.23)

»

D = 26in6’cosd’ + Jsind’eing’ + 2cos 6! . (4.24)

Note that the incident and scattered directions are assuined to be in the upper

(z > 0) half-space.
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Figure 26: Tip diffraction geometry.




Figure 27: Geometry for incident and scattered fields of a pyramid tip.

To implement the corner diffraction solution, the angles ¢ and ¢' must be
found for each edge. Consider the unit vector [ directed toward a corner diffraction
point, @, as illustrated in Figure 28. From the lengths labeled, it is clear that |

is expressed in the edge-fixed coordinate system as

[ = —&sinfccosd’ - fisinfesing + écosfe . (4.25)
In a similar manner, one would find that

D = & sin foc cos ¢ + 1 sin foc sin @ + é cos foc . (4.26)

From the expression given for [, one can see that the angle ¢' of the m*® edge is

found as

-—i.ﬁm)

B = tan”! ( -— (4.27)
-1 &
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Figure 28: Determination of ¢ and ¢' at an arbitrary edge.

while the expression given for D is used to find ¢ of the mth edge as

ém = tan™! (f? 'ﬁ"‘)

-1}
D 'em

(4.28)

Note that the minus signs in the numerator and denominator of Equation (4.27)
are retained to allow & computer algorithm to return the angle ¢' in the proper
quadrant. By definition, 0 < ¢,¢' < 2x. If ¢!, or ¢y, is greater than nr, then
the diffracted ficlds associated with the m'® edge are ignored, since that edge
is shadowed (the incident or scattered field direction is inside the extension of
the wedge). Aithough regions of space do exist where there is no diffracted field
contribution from some edge, there is no region of space that sees no contribution
from any edge. For the case of backscatter, note that ¢y = ¢}y,

The reflection coefficients, R) and Ry, are found by Equations (3.1) and (3.3),
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respectively. Recall that the incidence angle used in these calculations is half the

angle between incident and scattered directions, and can be found by

, 1 .
Oro =3 cos~}(-f.D) . (4.29)

These reflection coefficients (R and R") apply to all four edges. For the backscat-
ter case, 0}'20 =0.
The unit vectors ¢', e, $, and foc, which were defined in Section 2.4, can

now be more conveniently defined (for the m*® edge) as

Py = Tim 08Py ~ éy sin Phy (4.30)
Bem = mxl (4.31)
$m = fomCOSPm ~ éhysingm ,and (4.32)
Bocwy, = dmxD . (4.33)

The angles 3. and f,; associated with the mth edge are found as

Bem = cos™Y([+ém) ,and (4.34)
Bocw = 08" YD ém) . (4.35)

For backscatter, Bocpy = 7 = Ocpy.

- A good deal more effort is involved in finding the angle 8. Consider the
geometry illustrated in Figure 29. Ry and R, are vectors originating at the tip
and terminating at the source and observation points, respectively. These vectors
inust be of equal length, although their actual length does not matter here. Thus
one can choose Ry = —f, and Ry = D. Line segments are drawn from the
source and observation points perpendicular to the edge extension; their lengths

are labeled Iy, and [y, and the points at which they intersect the edge exiension
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Source

Figure 29: Determination of §; at an arbitrary edge.
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are located by the vectors Rp, and Rp, , respectively. The vectors R P,,, and

Rp,, can be found as

Rp.m = (Rs'ém)ém (4-36)
RPOm = (B.a'ém)ém (4-37)

while the distances l,,, and I, can be found as

lsn = [Rs—Rp, | ,and (4.38)
low = [Ro—Rp, | . (4.39)

Now, consider the line segments drawn from the source and observation points
to the edge diffraction point Qg,,. A pair of similar triangles exists, though not

coplanar, as indicated in the inset of Figure 29. Since

Tm tm - Tm
—_— — 4.40
= e (440)

the distance &y, can be written as

= ttmtm -
Ty = l,m + ‘om (4-41)
where
tm = |Rp,  ~— R}',ml = (Ro - Ry) - ém . (4.42)

“The vector Rp, , directed from the tip to the edge diffraction point, is then clearly
given by -'

an = Rp‘m + Zmém (443)

and the unit vector iQEm is given by

RD “"R,

Em |an - ml : (4.49)

Iy
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With I B, KDOWD, B, for the m*P edge can be found as

Bom = cos™ (I +ém) (4.45)
and, of course, fo,, = B,- In the case of backscatter, this reduces simply to
Bom = Bs,, = 7/2, for all edges.

Looking back to the dielectric corner diffraction solution presented in Sec-
tion 3.6, one sees that the angle o (the angle formed by the ordinary and edge-
fixed planes of incidence, not to be confused with the angle a of the pyramid) is
used repeatedly in the definition of Ca(QEg), Cs(QE), Cc(QE), and Cy(QE). This
angle, although useful in visualizing the diffraction solution, will not be explicitly

used in the computation of the corner diffracted fields. Rather, the C(Qg) may

be expressed as

CalQE) = [V3VERL + UPUSR)|Ca(d + &) + [VSUSR. + VRUSRY|Col + ¢') (4.46)

Cy(@E) = [VVIRy - VEVSRy|Ca(@+ #) + [ViVERL - V3USR)|Col + #) (4.47)

ColQE) = [VgU3R1 - VVIR)|Cald + &) + [SUSR. - VRVSR)|Culé + &) (4.48)
and

CalQg) = [VIVSRL + VEVIRY|Cald + &) + [VEUSRL + U3USRY Col8 + #). (4.40)

The variables ¢'§,2 3,4 for the m*® edge are given by

o= at - dh (4.50)
W, = &, fom (4.51)
v o= "‘im-o‘»m , and (4.52)
v§, = il Poom - (4.53)
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(4
The unit vector 4% for the m'P edge is given by

] a

[ nt I
@ =rmr (4.54)

bk x Il

[
Note that 7, is the unit vector normal to the o or n face, respectively, of the mth
edge.

Next, consider the distance parameters. Recall from Section 2.4 that

8'8" 9
L = m&in Bo , and '(4.55)
L = a:f:a : (4.56)

Thus, L and L. increase without bound as source and observer move into the
far zone. For this reason, the transition functions F[kLca(x + foc — Bc)] and
F [kLa*(d’ + ¢')] can be set to unity. This is equivalent to saying that an ob-
server in the far zone will never be in the transition regions associated with the
edge diffraction shadow boundary or the GO reflection shadow boundaries, respec-
tively. (This is due to.the fact that the transition regions collapse to the shadow
boundaries in the far zone; an observer can only be in the transition region by be-
ing exactly on the shadow boundary.) On the other hand, the ratio L/L, remains
finite and the modification factor is significant in the solution. Upon considering

Figures 26 and 29, it can be seen that L/ L. depends not on the absolute values of

8, 3¢, 8', and 3", but on their relative values. Thus one can compute, for the mth
edge,
'
,m’ N 2
(;T":%ﬁ‘) sin” fom '
(L/Lc)m = —rm Tt (4.57)

%)
Jc+3
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Note that

sc=3 = |Rg| =Rl (4.58)
= flag,| =R -R| smd (459
$m = |[Dgg,.|=|Ro-Rp,| (4.60)

For the backscatter case, this reduces to {L/L¢)m = sinfcp,.
The only quantities not yet mentioned are Eii?c(QC) and E;,(QC)‘ These are
found simply by taking appropriate dot products.

4.3 Sample Calculations

The computations discussed in the previous section have been used to gencrate
the “Absorber code”. In this section, the Absorber code is used to calculate the
scattering from a sitaglé pyramidal tip in various mohostatic and bistatic scattering
‘ - cases, The conventions defined in Figures 23 and. 27 will be referred to here. The
following figures plot the x;atio of the amplitude of the scattered electric field to
~ that of the incident electric field. Since the observer is assumed to be in the far
gone, the 1/s term in the corner diffraction formulation is ignored,

First consider the backscatter case, depicted by the solid curve in Figure 30,
where ¢* = ¢ == 0° and 0° < §' = 67 < 90°. The incident electric field is 6 po-
larized, the frequency is 5 GHz, and the pyrumidal absorber is characterized by
a = 21° and & = 1.45 ~ jO.58. As 6 varics, the invident ray striking the tip
sweeps through the ¢ = 0° plane, which is perpendicular to face 1. As 8‘ increases
through 10°, a small discontinuity is seen; here face 3 drops into the shadow region,
and falsé shadow boundaries (see Section 2.4) exist for the o face of edge 2 and
the n face of edge 3. As 6 increases through 79°, the source is broadside to face

1, and a singularity is seen. Note that s singularily in these far-zone calculations
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indicates that the local field behavior is cylindrical or planar (as opposed to spher-
ical). (A singularity would not occur in a near-zone calculation, where all distance
variables are well-known, all transition functions are included in the calculation,
and the 1/s spread factor is not dropped.) In the solid curve of Figure 30, the
singularity occurs when the source (observer) is broadside to face 1. At broadside,
the observer is at the GO RSBs of face 1 and the edge diffraction SBs of edges 1
and 4. The incident field, assumed planar, produces a planar reflected field from
face 1. To smooth the discontinuity caused by the (planar) reflected field, the edge
diffracted field must behave as a planar field near the RSB, which lies along the
edge diffraction SB. Thus, the corner diffracted field must behave as a planar field
in this same (backscatter) direction in order to smooth the discontinuity in the
edge diffracted field.

The second (dashed) curve in Figure 30 is for the same case, except that
¢' = ¢° = 45°. At §* = 0°, both curves have the same value since both represent
nose-on incidence. This is also the lowest backscatter value on the plot, indicating
that the absorber performs best at nose-on incidence, as expected. In the second
case, as 0° varies, the incident ray striking the tip sweeps through the ¢ = 45°
plane, which contains edge 1. A discontinuity is seen at ' = 14°; here faces 3
and 4 drop into the shadow region, false shadow boundaries exist for the o face of
edge 2 and the n face of edge 4, and contributions from edge 3 are ignored since
¢3,#3 > nr. This case has a singularity at ' = 75°, where the source direction is
perpendicular to edge 1; this case has another singularity at 8* = 90°, where the
source direction is perpendicular to both edges 2 and 4. In these instances, the
source (observer) is along edge diffraction SBs only. Edge diffracted rays leaving
the edge move in parallel directions to the (far zone) observer. Thus, the edge and

corner diffracted fields again do not decay as a spherical wave, and a singularity
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results in the calculations.

Note that if one were to consider a finite pyramid (by including base diffrac-
tion), these singularities would not exist. Planar GO fields would emanate from
finite faces, and planar edge diffracted fields would emanate from finite edges; both
would radiate at one precise angle, neither are seen in the far zone. Of course, the
tip diffracted term dees not change, its singular component cancels with a like
component of the base diffracted field.

Figure 31 illustrates the effect of the pyramid angle a. The two values consid- -
ered for o are 10° and 21°; other parameters are indicated in the figure. Clearly
the tip diffracted fields decrease a few dB with decreasing . Of course, for con-
~ stant pyramid height, smaller values of & mean more pyramids per square foot.
Changing a also affects the geometry of reflected and transmitted fields.

Next the effect of absorber permittivity is illustrated in Figure 32; where the
two curves correspond to € = 1.45 — j0.58 and ¢, = 1.38 — j0.2. These valuss
correspond to medium and light doping, respectively [7]. Other parameters are
indicated in the figure, Again, the tip diffracted fields decrease a few dB with
decreasing permittivity (note that it is the imaginary part of the permittivity that
has decreased most significantly). Of course, attempting to use this lower doped
material throughout the pyramid to reduce the scattered fields would detract from
the nature of the absorbing material. However, tapered material could be used to
solve this problem.

The frequency under consideration has no effect upon the nature of any scat-
tering plot; varying frequency can only shift the plot up or down. This results
from the pyramid being effectively of infinite extent.

A bistatically scattered field case is depicted in Figure 33, where the inci-
dent direction is specified by §* = 45°, ¢* = 0° and the scattered direction by
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0° < 8° < 90°, ¢* = 180°. Again, the remaining parameters are indicated in the
figure. The first discontinuity, at about 6° = 45°, is due to false shadow bound-
aries associated with the o face of edge 2 and the n face of edge 3. The second
discontinuity, at about §° = 55°, is due to false shadow boundaries associated with
the o face of edge 4 and the n face of edge 1.

One more bistatic case is illustrated in Figure 34, where 6% = 45°, ¢* = 0°,
6° = 45°, and 0° < ¢* < 360°. Thus the incident direction is fixed, and the
scattered direction sweeps through a conical pattern centered on the z axis. There
are two causes for the various discontinuities, false shadow boundaries and edge
shadowing (¢ or ¢' not in the range from 0 to nm for some edge). These are
specified in the figure.

While the discontinuities see. in these plots may seem rather severe, one
must realize that the levels involved are extremely low, and that a very complex
phenomenon is being treated approximately. There is no desire, in the present
study, to attempt to eliminate these discontinuities. In chapter VI, comparisons
made between culculations and measurements for both a single pyramid and many

pyramids will build confidence in this scattering formulation,
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CHAPTER V

PYRAMIDAL ABSORBER SCATTERING IN A COMPACT
RANGE

5.1 Introduction

In chapter I1I, the formulation for dielectric corner diffraction was developed.
Chapter IV then described how to apply this formulation to a pyramidal tip,
thus generating the single pyramid bistatic scattering code (Absorber code). This
chapter investigates the scattering from the pyramidal absorber material in the
compact range chamber that occurs during normal operation of the range. The

method of calculation is discussed first, followed by sample calculations.

5.2 Method of Calculation

The scattering into the target zone of a compact range from the pyramidal
absorber which lines the ceiling, side walls, and floor of an anechoic chamber is
now considered. Figure 35 shows typical absorber scattering paths for ceiling and
floor absorber, Similar paths exist for absorber along the side walls. The analysis
is limited to tip diffraction, which is believed to be the dominant scatterer as
the incident or scatter direction moves away from nose-on incidence (7,13). This
has been demonstrated in bistatic measuremnents where scattering was measured at
various angles from a wall of pyramical absorber [7]. In any case, the Absorber code

computes only tip diffraction and will be used here to predict the total absorber
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Figure 35: Typical absorber scatiering paths calculated by CRAMBER.

scattering that takes place in a chamber.

A computer program, CHAMBER, has been written to calculate the absorber
scatterihg in a compact range chamber. CHAMBER considers a simple rectangular
room, as depicted in Figure 36. The ceiling, side walls, and floor are lined with
pyramidal absorber. The rear wall is neglected since it would be outside the range
gate in & well-designed room. A focus-fed semi-circular parabolic reflector with a
rolled edge and a skirt illuninates the room. This is also depicted in Figure 36.
Note that the origin of a cartesian coordinate system is placed at the reflector
.vertex. This is henceforth referred to as the “room coordinate system.” A few

variables used in CHAMBER are shown in Figure 36, they are defined as follows:

x.tips.ceil = Room 2’ coordinate of tips of ceiling pyramids.

x-tips.flor = Room 2' coordinate of tips of floor pyramids.
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y-tips =
z_refl.max =

z.room =

Room y' coordinate of tips of side wall pyramids.

Maximum 2’ coordinate of range reflector.

Maximum 2’ coordinate considered in the room.

It is through these variables that one specifies the room dimensions. The user

must also specify the intended location of the target zone center, along with ab-

sorber parameters, feed and reflector parameters, and timing parameters. This is
described {ully in Appendix A, which explains how to run CHAMBER.
~ CHAMBER begins by choosing patches along the ceiling, walls, and floor

that it will consider for its scattering calculations. The extent of tnese patches

roughly coincides with the variables described above. However, it is desirable to

have patch dimensions that are multiples of 0.5 ft. Thus, CHAMBER finds the

following variables:

x«mom-min_
%x.rooni.max
y-room.min
y-room.max
-z..room-min

s.rooimn.max

It Bl

=

Smallest multiple of -0.5 ft 2 x_tips.flor.

Largest multiple of 0.5 ft < x.tipsceil.

Zero.

Largest multiple of 0.5 ft < y.tips.
Smallest multiple of 0.5 it > z.refl.max.

Largest multiple of 0.5 ft < z.room.

The ceiling patch is then specified by

y-rtoommin <

z_roomanin

-

yl

!

bt
-~

zl

< y.room.tnax (5.1)

< z.oom.max, and (5.2)

= x.tips.ceil (5.3)
18




while the side wall patch is specified by

xroommin < g’ < x.room.max (5.4)
zroom-.min < 2 < zroom.max, and (5.5)
¥y = y.ips (5.6)

and the floor patch is specified by

yroom.min € 3y < y.room.max (5.7)
z.rcom-min € z' < z.room.max, and (5.8)
2’ = x-tipsdlor. (5.9)

Note that these patchies cover half of the ceiling, one side wall, and half of the floor.
However, CHAMBER dues effectively consider both sides of the room. This will
become clear ehorf.ly.

CHAMBER then divides each patch into “resolution” cells which measure
0.5 x 0.5'. linaginary grids are set up for each patch, with grid points at the center
of each cell, as depicted in Figure 37, CHAMBER assumes that a pyrui\idul tip is
present at each grid point, and all calculations will be made with this imaginary tip
in mind. These calculations are then assumed valid for each of the actual pyramids
within the corresponding cell. | |

CHAMBER now determines the illumination at each grid point. To do this,
the Semi-Circular Compact Range Reflector Code {9] has been taken and modified
for the current problem. The result, subroutine REFL.CODE, provides CHAM-
BER with the following information for each grid point:

e The (complex) 2', ', and 2’ components of the illuminating GO electric fizid.

(This is a reflected field from the compact range reflector.)
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Figure 37: Imaginary grid along ceiling patch.
¢ The corresponding point of reflection on the reflector.

Note that .thc Reflector code does not provide accurate phase information for
the ficlds outside the target zone, due to an Spproximate method used in finding
reflection points along the rolled edge of the reflector. (The only exception to
this is the portion of the floor illuminated by the skirt, where reflection points are
casily found.) However, phase information would not be used here anyway, due to
the random nature of the tip positions. (Pyramidal absorber typically comes in
2' x 2' blocks, which are not perfectly aligned when placed in the room. Also, the
height of individual pyramide varies, and pyramids tend to bend, twist, and sag.)

CHAMBER does, however, use the phase information provided to determine the

telative polarization of the field components, which is, of course, essential. Thus,

at this point, CHAMBER has the following information at each grid point:
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¢ The amplitude (and sign) of the 2, 3/, and z' components of the illuminating

electric field.

e The incident direction of the field illuminating the grid point (since the cor-

responding reflection point is known).

Next, CHAMBER must compute the scattering from each grid point to the
field test point. The choice of field test point will be addressed later when the
variots options available in CHAMBER are discussed. For the moment, assume
that the test point is fixed somewhere in the target region. The Absorber code will
be used to compute the scattering from each grid point. Recall that the Absorber
code considers a pyramidal tip located at the origin of a cariesian coordinate sys-
tem, as depicted in Figure 23. This is referred to here as the “pyramidﬂ coordinate
system”. The Absorber code requires the input vaﬁabl&s 8, ¢*, E3, ¢, 6°, and ¢°.
These pertain to the pyramidal coordinate system. Thus, a pyramidal coordinate
system must be located at each grid point. Note that the z axis df each pyramidal
coordinate system must be directed into tite room, since this corresponds to the
pyramid being directed into the room. Sample ceiling, wall, and floor pyramid co-

ordinate systems are shown in Figure 38, along with the room coordinate system.

onsxder a ceiling pyramid coordinate system whose origin is at some obser-

"';.—‘vatmn pomt {grid point) of the illuminating field. The coordinates of this origin

| ‘.“ lhe moxn cuprdma%e system may be expressed as

IR NP = (Zo\Yor5o) - (5.10)

. The transformation between room coordinates (z',y',z') and ceiling pyramid co-
. bl alcs Y Y

X
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Figure 38: Typical “pyramidal coordinate systems” used by the Absorber Code.

ordinates (2,y, z) is given by

T = zo—z' ‘ (5.11)
¥y = Y-y ,and (5.12)
s = mp-d' (319)

Let the reflection point (on the reflector) corresponding to this grid point be ex-

pressed in the room coordinate system as
(3'ay'3 5') = (2 Yri2r) . (5.14)

Then, this reflection point is expressed in the ceiling pyramid coordinate system

as

(zvy»:) = ("’0 = & VYo = YryTo 31‘) . (5.15)
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Similarly, if a grid point along the wall is specified by

(='y,#) = (39; Yos Zo) (5.16)

and its corresponding reflection point is specified by

(2',y',2') = (2r,Yr, 2r) (5.17)

then the reflection point is expressed in the wall pyramid coordinate system as

(z,9,2) = (20 -~ Try 20 = 2ry%0 ~ Yr) - (5.18)

The analogous result for a reflection point which corresponds to a floor grid point

is expressed in the floor pyramid coordinate system as
(2,9, 2) = (Yo~ Yry20 — 2ry~To + T1) . (5.19)

Thus, every grid point is the origin of a pyramidal coordinate system, and the
reflection point corresponding to each grid point is known in terms Jf its (z,y, 2)
coordinates in this coordinate system. These coordinates can be used to find the
angles of incidence required by the Absorber code (6%, ).

Next, the field illuminating each grid point must be expressed in the pyra-
midal coordinate systemn at that grid point. The amplitude (and sign) of the
illuminating electric field is known in room coordinates for every grid point; let
these (signed) amplitudes be denoted by E., Ey,and Ey. These can be expressed

in the pyramidal coordinate directions at a ceiling grid poit t through the following

transformation
E;z = -Ey (5.20)
Ey = —Eyp , and (5.21)
E;, = -E, . (5.22)
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For a wall grid point, the transformation is given by

Eg', = Tl (5.23)
Ey = - ‘zl , and (5.24)
Ez = - Eyl (5.25)

while the transformation for a floor grid point is given by

Ez = -Ey (5.26)
Ey = —-E, ,and (5.27)
E; = Ey . (5.28)

Thus, the incident field components (E},, E&) required by the Absorber code can
be found for all grid points as

E}; = Egzcos6cos¢’ + Eycos 6 sin d:‘ — E,sinf’ , and (5.29)

E;; = —Epsin¢' + Eycos¢' (5.30)

where Ez, Ey, E;, 6', and ¢' pertain to that grid point.

CHAMBER finds the scattering angles (8%, ¢*) from the room coordinates of
the grid point and field test point. CHAMBER then provides all of these variables
(0, ¢, 3, E;, 87, ¢°) along with the pyramid angle, a, the pyramid relative
permittivity, ¢p, and the frequency under consideration to the Absorber code (for
each grid point).

The Absorber code returns the complex 2, y, and z components of the field
scattered from every grid point to the test point (with ¢the 1/s spreading factor
being ignored). CHAMBER uses these results, along with the distance from each
grid point to the field test point (to account for spreading), to determine the

scattered power contribution from every grid point to the field test point. The
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contribution from each grid point is weighted by the number of pyramids in the
corresponding cell,

This explains how CHAMBER, computes the power scattered from each cell
of the ceiling, wall, and floor patches to the test point. Recall, however, that these
patches lie along one side of the room, and it was stated earlier that CHAMBER
considers both sides of the room. To understand the approach used to account
for the second side of the room (y' < 0), consider Figure 39. Point F represents
the feed, while point C is an arbitrary ceiling grid point, and R is the reflection
point on the rolled edge corresponding to C. Let T be the field test point under
consideration. The two diagrams in Figure 39 correspond to two locations of the
test point; the following discussion applies to both cases.

The absorber scattering discussed thus far corresponds to the path F~R-C-T.
However, for every ceiling grid point C, there is an image point Cpy from which
one must determine the power scattered to the test point. (Note that Cyy has

!, 2 coordinates as C, but the negative of the y' coordinate of C.

the same @
Rym and Tjy are imaged in the same manner.) This second scattering path of
interest is F-Rppq-Ciyq-T. Due to the symmetry present in this problem, the power
scatiered to Ty via path F-R-C-T}y is identical to the power scattered to T via
path F-Ryq-Cim-T. Computing the scatter via the latter path requires less of
a programming effort and less computer run time. Thus, CHAMBER computes
the scattered power contribution to test point T from ceiling point C via path
F-R-C-T, and computes the contribution to test point T from ceiling point Cyp
via path F-R-C-Typ. This is done with every ceiling grid point, so that the entire
image of the ceiling patch is considered. The wall and floor patches are treated

similarly. (Note that when the test point moves to the room centerline, the test

point and its image merge. The scatiered power from any grid point and its image
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Figure 39: Equivalent absorber scattering paths used by CHAMBER for the
(v' < 0) side of the room.
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is then the same, and need be computed only once.)

Thus, CHAMBER computes the scattered power contribution from the entire
ceiling, wall, and floor patches and their images. However, only scattered fields
arriving within a certain time window are considered. This is handled as follows.
It is assumed that the chamber operates with a narrow transmit pulse (in the
OSU range this is about 5 - 7 ns) and a relatively wide receive window (in the
OSU range this is variable, typically set to 20 ns). The target zone center, the
start and end times of the receive window, and the field test point have been
specified by the user. The time reference is the time at which a signal would
be received due to the incident plane wave scattering from a point target at the
target zone center. The signal scattered from some grid point to the specified
test point is considered only if that signal could then be scattered from a point
target at the test point and arrive at the feed (via the reflector) within the receive
window. This is illustrated in Figure 40. The reference time is the propagation time
along path F-Ro-TZC-Rg-F. Assume that the reference time is 70ns, and the
specified receive window start and end times are ~10ns and +10ns, respectively.
The scattered fields from the grid point are considered only if the propagation
time along path F-Rp-G-TP-Ry-F is between 60ns and 80ns. Other timing
approaches arc possible; this approach computes the scatiered power {rom the
absorber which could de scattered from some feature of an extended target (at
the specified test point) and arrive within the receive window, thus corrupting the
desired return.

Next, there is the question of addition of the scattered fields from the various
grid points. CHAMBER computes total scattered power simply by adding the
scattered power contributions from the individual pyramids. In the compact range

ceiling scatter experiment described in the next chapter, varioas assumptions of
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Figure 40: Timing considerations in CHAMBER.
field addition will be tested in the calculated curves.

Finally, note that all scattered power calculations are normalized to the power
of the incident plane wave in the target zone. Also, if one requests CHAMBER
to output the room illumination (from the range reflector), then this data is first
normalized in the same manner.

6.3 Sample Calculations
- In this section, CHAMBER is used to investigate the absorber performance
for a particular compact range chamnber configuration. As required by CHAM-
BER, a focus-fed semi-circular parabolic reflector with a rolled edge and a skirt

is considered. The focal length of the reflector is 12 feet, while the radius of its

parabolic section is 11.5 fect. The rolled edge is elliptical with a major axis of
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4 fect and a minor axis of 1 foot. The feed horn is tilted above the horizontal
by 25°. The tips of the ceiling pyramids are 16.25 feet above the vertex of the
reflector (at ' = 16.25 feet). The tips of the side wall pyramids are 20 feet to
each side of the vertex of the reflector (at y' = 120 feet). The tips of the floor
pyramids are 3.5 feet below the vertex of the reflector (at z' = 3.5 feet). The
ceiling and side wall pyramids are characterized by a = 24.5°, ¢, = 1.45 — j0.58,
and a density of 20.25 pyramids per square foot. The floor pyramids are character-
ized by a = 25.3°%, € = 1.45 — 50.58, and a density of 4 pyramids per square foot,
Note that the height of the skirt is not specified, but it is assumed to extend below
the tips of the floor pyramids. The target zone center is specified to be on the
room centerline, 6 feet above the reflector vertex, . - i 24 feet downrange from the
vertex. In the room coordinate system, this is (z',y',2') = (6,0, 24). The relative
start and end times of the receive window are -10 ns and +10 ns, respectively.
The chamber is assumed to operate with a vertically-polarized plane wave in the
target region. This is input to CHAMBER by specifying the appropriate electric
and magnetic dipoles to simulate the feed (see appendix A).

Now, consider a test point coincident with the target zone center; that is,
at (2',y'.2') = (6,0,24) ft. Figure 4i displays the total scattered power versus
frequency at this test point. Also shown is the scattered power from the ceiling
and floor (scatiered power from the side walls does not arrive during the specified
time window). Cleatly, the floor is the dominant scatterer for this situation.

Figures 42, 43, and 44 display the variation of scattered power versus test point
z', ¢/, and 2' coordinate, respectively. In all three figures, the frequency is fixed
at 10 GHz. In Figure 42, the test point moves upward from (z',y', 2') = (2,0,24)
to (10,0,24) ft. The floor scatter is duminant when the test point is close to the

floor, while the ceiling scatter dominates when the test point nears the ceiling.
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Owing to the nature of the Absorber code, some floor pyramids yield the sma’t
jumps present in the range 2 < ' < 4 ft. In Figure 43, the test point moves
across the room from (z',y',2') = (6,-5,24) to (6,5,24) ft. Clearly, the floor
dominates throughout this range. Finally, in Figure 44, the test point moves
downrange from (z',y, z') = (6,0,20) to (6,0,28) ft. Again, the ficor is the major
contributor to the absorber scattered power. Note that increased resolution is
provided in the range 20 < z' < 21 ft. The singularity at 20.3 feet results from
Absorber code calculations of some floor pyramids. Recall that the Absorber code
is designed for far-zone celculations, and thus sets the transition functions to unity

(see Section 4.2).

Now, let us fix the frequency at 10 GHz and the test point at the target
zone center; that is, at (2',y/,2") = (6,0,24) fi. Figures 45, 46, and 47 show the
absorber illumination as a function of position along the ceiling, side wall and floor,
respectively. Only hali of the ceiling, one side wall, and half of the floor is shown,
since the illumiﬁation is symmetric sbout the roomn centerline. To understand
the disconti;nuities present in these figures, one must realize that the compact
range reflector has four unique sections. O.b\-'iously. there is the parabolic seclfon
which produces the plane wave in the target region. The skirt is 8 cylindrical
region (independent of the ' coordinate) whose y', 2! behavior matches that of
the parabolic section at 2’ = 0. The rolled edge consists of two regions; a rolled
edge on the parabolic section (which is ¢'-independent, as is the parabolic section),
and a rolled edge on the skirt {which is 2’-independent). Figure 45 shows that the
ceiling illumination is most intense along the room centerline just in front of the
reflector. This portion of the ceiling is very .clusc to the reflector, so that not

much spreading occurs after reflection. There are no discontinuities in this plot
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since all reflection takes place on the rolled edge of the parabolic section. On
the other hand, Figure 46 does have a discontinuity at ' = 0. This results from
the reflection point having moved from the rolled edge of the skirt to the rolled
edge of the parabolic section, thus causing a sudden change in the spread factor
“of the illuminating field. In Figure 47, the discontinuity at y' = 11.5 feet is due to
the refleciion point having moved from the skirt to the skirt rolled edge. Clearly,
the floor is strongly illuminated by the skirt. The absorber scaitering to the test
point from the ceiling and floor is depicted ih Figures 48 and 49, respectively. The
absorber scatter is symmetric about the room centerline, because the test point is
: on the room centerline. Thus, only half of the floor and ceiling is considered. Now,
one can see that the receive window limits the portion of the ceiling-and floor that
contribute to the (6&&1 absorber scatter. In fact, a plot of absorber scatier from the
side wall is not included since none arrives during the specified time window. The
floor scatter shows a discontinuity at ij = 11.3 feet, due to the discontinuity in the
illumination there. These absorber scattver plots show both smooth trends in the
data and some abrupt changes. This is due largely to the Absorber code, which
predicts such behavior as pyramidal incident and scatter angles vary. Finally, note
that CHAMBER calculates the total absorber from the ceiling and floor to be
-67.8 and ~55.8 dB, respectively.




ident

-l
g
g -
e o ° g
w - - o
3 2
i)
S = -
H m 9
- o
o : o R
t @ = S
H S " . -
7 u -~ “
& . -
i 2T % : 2T 8
s 02 3%
-
. ~ 8 - . - M
s ¢ °e & Tn . = 2 ° £ o .
b ) - = ~o > ’ H : 'z -
- —
a 3 o z gy g °
M ] ° Mw = ] e o N o
7 s < v 3 - L)
5 ol *] ol °
o o 1y = ‘ v
. 2o Fg 3 v 3§
3 - W..m = - 0B
> N -1 M - » .u...m.
3 © 0 5
= 3 cE > S, ¢ og £
o ]  XHICK: 3 oss. - n = - ° n
Ry °
° -3 o 9
R x =
o= @ 2 « 9
4 n f - Ry 3
- m \.kenﬂ«.‘ m
= ey o =
e &= S ST e =
> + e
. w0 e —
=] IALSEEES =2
» oy w
ll -
. © m o- Lxd
. - (@) -
@ e L] - ° o
¢ - - - . s .o
L J - -

(23) s3vsulpiroo)y ,x Woowny {23) #s3"uiIplooed . X wooy

Figure 45
Figure 46




e
2
’

RAY LEGEND (dB)
-18,

-20.

LN X N1

(XM X

..&“. ..
x.)\
\a\\wﬁt{ s

(1)) aj3wulpioo) .4 uwwooy

Coordinate (f10)

Room 2°

ident

1nc

. floor ', 2' coordinates. (dB rel. to

T
2
3
©
2
=

o

>

g

2

b

®

=

E

=2

b

2

=

~

-

g

3

o

&=

97




; —
S -
o . 3
5 S > 2 3
: S ] k=)
- —
. R
3 -
- & m ; . ‘
: o -2 z e =
m ° = . I 3 -
-oy ;
[ ] .
: 8 37 m m
€ p NW MO p
e : |
-7 pad T =3 i lmuo. .
23 5 - . i e
Z. - @7 P £z e A
¥ 2T 3 v :3 12, v @
n ! . £ . ¥ TP §
»
; £ |5 &% 2 s R L.
g is « Buw o= 12 -
= : £
_ 24 ° = m..m 1 23 :: 52
H HE: 3 Sa =& i : 5=
: 2 -
_. 4 . 'zm = M 4 o 5= © %
W . 00 - @ ﬂu. » » > 2 ’w
- - » ? 0 - g [~% . ot 3 s
o i I'V oy y»m = a8 - yn
- " wg e .y
= 5 w 8= - . . m..o-
=] < 2 ° .
. . : E = -
- S ) o~ = : s 2
< - Qm o ., Py ; =
g ¥ To .8 E ° %
) ﬂ : “r -o .n rB
pod o & - 3 2 A-\u“m\
g o~ ed .-u &
T - bt =
- S -
| “ o »
© L ° ®
- ¢ 5
—
mw ° =
o ° &
2 o L &
© - - % :
) ) P (13) 23w ipsool .\ wwooy 8
(1J) #3vsUypIoO) ,A Wooy m e
[-T4]
- oy
<N




Now, consider a configuration identical to the previous one, except that the
y' coordinate of the test point is equal to 5 feet. The test point is thus given in
room coordinates as (z',y',z') = (6,5,24) ft. Figures 50 and 51 show the absorber
scatter to this test point from the two sides of the ceiling. Figures 52 and 53 show
the absorber scatter to this test point from the two sides of the floor. Again, the
side walls do not contribute due to the receive window. These plots do, in general,
appear as one would expect after having seen the results for the previous case.
However, the lower scatter level at roughly 4 < 2/ < 12 ft, 3 <y’ < 7 ft was not
expected. The cause was found to be due to the pyramidal scattering angle ¢°,
which slowly passes through 270° in this region. Edge shadowing and RSB effects
cause the Absorber code to predict a decreased scattering level near ¢* = 270°.
Finally, note that CHAMBER now calculates the total absorber scatter from the
ceiling and floor to be —67.2 and -56.0 dB, respectively.

Some conclusions may be drawn at this point. As mentioned earlier, the floor
proved to be the dominant scatterer for the chamber configuration considered
here. Also, it was scen that the walls were effectively time-gated out in all the
cases considered. In Figure 44, the absorber scatter is seen to be fairly constant
in the range 20 < z' < 28 feet. (Although not shown here, if one were to consider
lower values of 2, the absorber scatter would be seen to increase as z' decreases.)
Most importantly, note that the absorber scatter levels predicted here are much
lower than typical levels of diffraction from the range refiector itself, which are

about -30 dB for present designs [13].
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CHAPTER VI

. EXPERIMENTAL VERIFICATION OF PYRAMIDAL ABSORBER
SCATTERING CALCULATIONS

6.1 Introduction

In this chapter, absorber scattering calculations are verified through compar-

P A N

s { s

ison with experimental results. Calculations are first compared with backscatter
measurements of a single pyramid. Various assumptions on the addition of pyra-

midal fields are then discussed; these will apply to experiments in which many

-« o m
- A e e

pyramids contribute to the total scatter. Calculations are then compared against

measurements from an experiment in which a large number of pyramids were scat-

%

tering under the same bistatic situation. Finally, calculations are compared against

%
l‘
5t

¢
B

experimental data in which the bistatic scattering from pyramidal absorber on the

ceiling of the OSU compact range was measured.

6.2 DBackscatter from a Single Absorber Pyramid

Backscatter measurements of a single pyramid have been made with the OSU
compact range using the absorber sample depicted in Figure 54. The rear-facing
pyramid served as a second available target, and as a means of balance. Frequency

o scans were made from 2 to 18 GHz, in 10 MHz increments, for three orientations.
Two cases are presented here; these are ¢ = 0°, § = 0° and ¢ = 0°, 6 = 45°. The

bandlimited impulse response was calculated for the two cases, these are shown
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in Figures 55 and 56, respectively. The expected arrival time of the tip return
(-4.4 and -3.1 ns for 8 = 0° and 45°, respectively) is indicated, along with other
scattering centers. (Note that these measurements do not show the relative levels
of the tip and base return fiom a wall of pyramidal absorber, since the geometry
of a pyramid isolated in space is entirely different from that of a wall of pyramidal
absorber.) The tip return is larger at 8 == 45° than at 6 = 0°, which was predicted
in Figure 30.

While Figures 55 and 56 do show that the tip response begins at the expected
time, it is difficult to tell when it ends. For this reason, the impulse response
data was processed further. To emphasize signal and deemphasize noise, the data
was squared and then smoothed with a moving Hanning window. The results
are presented in Figures 57a and 58a, where the time scale is now from -5 to

-2 ns. The expected time of the tip response is again indicated in the figures.
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(Note that in Figure 58a, the tip response appears centered at -2.9 ns, which
corresponds to § = 48°, This deviation is assumed to be due to the method used
for target alignment, which was Lelieved accurate to within only a few degrees.
Of course, a small angular error would noticeably affect the tip response time for

= 45° , but not for § = 0°.) Now, one can visuslly isolate the tip return and
choose appropriate time gate parameters. This has been done using a Kaiser-Bessel

window; Figures 57b and 58b show the gated waveforms.

These piots of energy temporal densily were considered solely to find ap-
propriate time gate parameters. Going back to our calibrated frequency domain
measuremients, one can perform an inverse Fourier transforin (where, of course,
the frequency domain data is not windowed before the IFT), and apply the proper
time gate parameters to the two time domain signals. Finally, an FFT generates

the Lip response in the frequency domain which is plotted against calculations in

105




0.00002

-
-

ENERCY TEMPORAL DENSITY

e e W

- = f——

- _____,memmmql MILMII' lud I

TIME 4 NANOSECS

et e owe L

M

=3 K

”e

a) Total Response

T e~ -
v e uns

LE

(14

-
“
-

b

-
e %
-

ENERZY TgurlFe, O

-

sl -4 PAY ‘ " Y
e TIME 1N HANDSECS

b) Gated Response

®
’
2
»
)}
‘ o el . .-
o

R A

Figure 57: Encrgy temporal deasity of single pyramid; ¢ = 0°, 8 = 0°.

106

HORRTrece] @




0.000%

nw e
(0o 45%) (o= 47.8%)

ENERGY TEMPORAL CENSITY

Aﬂ_J“fﬂnlﬂ' “”

TIME IN NANOSE CS.

a) Total Response

1

1

¥

1
=4 1

9,004

ENERGY TEMPORAL DENSITY

o. o hih.....

-5, -, -3 -3
TIME N NANOSECS

b) Gated Response

Figure 58: Energy temporal density of single pyramid; ¢ = 0°, 8 = 45°.

107

-~ e o e M b Shodh oot B A8 A Shod



<:’2 O 40 6.0 80 1.0 120 140 1.0 18.0.
= 1 1 | 3 | | =]
—_ 1 : —I . : ; \
§ : | : —— Heasured '
2 : : : !
g o : I — — —— — Calculated o
g T S B T
o ; |
o ~ |
ol S S
e T M M S o
] t ; e —_—
° o
T .
s S- . | . =
| ! | |
| |
0 o S : : . o
9;‘ S l | T | l o
2.0 4.0 6.0 80 10.0 120 14.0 16.0 18.0!

Frequency (Gliz)

Figure §9: Calculated vs. measuredabackgca.tter from a single pyramid; ¢ = 0°,
=0°, ) A :

Figures 59 and 60 for 8 = 0° and 8 = 45°, respectively. In each figure, vertical
dashed lines indicate ihe range of valid experimental data, due to the processing

performed. The measurements show: that the scattered signal level of the tip is

roughly that predicted by theory. Better agreement can not be expected, since

the very narrow time gates used limit the frequency resolutiun; in addition, the -

tip return is a very weak sigual being measured in the presence of much stronger,

signals.

6.3 Comments on Addition of Py'ramidnl Fields and Effective RCS

Up to this point, the questions of how the ﬁélda from a large number of pyra-

mids add to produce a totel field, or of how an “effective RCS" should be defined

have not Aﬁsen. In Chapter V, it wus decided to treat the pyramidal absorber in the
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Figure 60: Calculated vs. mea.sutede bmzkacatter from a single pyramid; ¢ = 0°,

charhber as en incoherent scatterer. Thus, the values of power found from various
grid points were simply summed (and normalized) to prodice the total scattered” -
o power. In the previous section, the true RCS of a single absor:ber pyramid was
| mgsufed; ihus; the correisponding calculations were ,s.tm}ghtfor'ward. 'i;iowevexf,
" the bxpgririﬁnta described in the following two sections iAﬁvolvé :i‘he scattéyiﬂg frc};n

‘ 8 large humber-of absorber pyramids. Neither is a true'RCS m-:asurexhent.. Botk -

R iz-mvolvc the questmn pf how the fields of individual pyramids add to- produce the -

" total ﬁeld fer thase reasons, the topxes of pyrazmdal ﬁeld adtht;on and effeclive
RCS will be dlsruased now.. | _

Fsrst le\ us conander L3 few cases in which N pvrwuds are each lllunnnated by
the same :ﬁeld B, wd each scatters the same field B %4t (o gome observahr.m'

point. Let the total scattered field be denoted by E"’““ scat, An Yeffective R ‘S"
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Oeff, i8 then defined as

total scat

2
L ) (6.1)

El

Oeff = 10log (41r1‘2

where r is the distance from the tips to the observation point. If one assumes that

the N fields E¥P %8¢ 34d in phase to produce Etotal #cat hat i

Etotul scat _ NEtip scat (6,2)

then it follows that
tip scat

E!

2
Oefs = 10log (41rr2 ) +20log N . (6.3)

On the other hand, if one assumes that the N fields E!P %0 add in power to

produce Etotal scat 1}t i
2 : 2
lEtotol ccatl =N lEhp acatl (6.4)

then it follows that
tip scat

0

2
) +10log N . (6.5)

oeff = 101og (4m-2

‘ ~Note that the assumption of field addition affects only the log N term. One may

.. . want to base the assumption of field addition on an actual measurement of pyra-

mid tip position. In {7], the height of each pyramid on an absorber block of 36

pyramids was measured. Deviations as much as 1 cin were observed. Using these

' niéé%ﬁrements, ‘and assuming nose-on plane wave incidence, one can find the rel-

aij&é phase -of ‘the tip scattered fields. "I_-»‘ke. magnitude _of the sum field, S;, was
" then computed as follows [7] | o

| 5,;.%&-{2%#, \ k' (6.6)

.=l
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Figure 61: Magnitude (Sy) of sum of fields from an absorber block vs.
frequency (7).

where d; is the height of the i*h pyramid, ko is the wavenumber of free space, and
each pyramidal scattered field has a magnitude of unity. The results (from one
block) are shown in Figure 61, which plots the magnitude of the sum field, S;,
versus frequency. Phase addition corresponds to the total field being 36 times the
field of a single pyramid (S = 36), while power addition corresponds to the total
field being 6 times the field of a single pyramid (Sy = 6). At the lower frequencies,
the curve approaches a value of 36, as tip height deviation becomes a negligible
fraction of a wavelength. Now, this duta will be used to appropriately modify the
log N term of Equation (6.3). A normalization constant is needed, since the data
in Figure 61 was found for a block of 36 pyramids. The resulting expression for

effective scatiering is given by
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tip scat

E!

2 log S
r
) +20 (log36)logN . (6.7)

Oeff = 10log (41rr2

(This discussion simply serves as an example. If one were to take this approach,
tip position measurements of the material in question should be made.)

Now, let us consider several blocks of absorber. Again, assume that each
pyramid is illuminated by the same field E*, and that each scatters the same field,
EtPscat {4 some observation point. The total scattered field produced by these
pyramidal fields is again denoted by Etotal scat | gince absorber blocks tend to be
misaligned relative to each other, it is assumed that the total fields of the absorber
blocks add in power with each other. However, on the matter of the addition of

pyramidal fields within each biock, three assumptions are made:
1. Addition in power.
2. Addition in phase.
3. Addition according to tip height measurements.

Thus, consider M blocks of absorber, each with N pyramids. Under the first

assumption, one finds that

tip scat
B

2
l ) + 10log( M N) (6.8)

0esf = 10log (m’

while under the second assumption

/
0o f = 10l0g (4”3

tip scat

B

2
) + 10log( M N?) (6.9)

and under the third assumption

tip scat 2 log S¢
B - I ) +10log (MN{TftT}) . (6.10)

oepf = 10l0g (‘lm-2
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Note that Equations (6.8) and (6.9) are special cases of Equation (6.10).

Before leaving this topic, Equation (6.10) will be rewritten for the more general
case in which the number of pyramids may vary from block to block. Thus, for
M blocks of absorber, each with N; pyramids, the effective RCS (under our third
assumption) is written as

tip scat
Et

2 log Sy
) +10log (% Ni{T‘fsT}) . (6.11)

1=1

Oefs = 10log (41"-2

This equation applies to the experiment in the next section.

Note that a major restriction to all of the cases considered in this section was
that of the incident and scattered fields being the same for all pyramids. In an
experiment which measures the absorber scattering in a compact range chamber,
this will clearly not be the case, When one is interested in computing the absorber
scatter to a specific test point (as was done in CHAMBER), the IE“’W ’°“t|2 term
in Equation (6.1) can be taken to represent the total scattered power. However,
since each pyramid is illuminated differently, there is no obvious interpretation of
the lEi|2 term. Fortunately, one does not encounter this difficulty in CHAMBER,
since only the scattered power computations are examined. However, the calcula-
tions in Section 6.5 force one to consider again the notion of an effective RCS. This
results from the nature of the experiment considered in that section, however, and

is best explained there.
0.4 Bistatic Scattering from a Wall of Pyramidal Absorber

In {7], an experiment is described in which two 3' diameter parabolic dish
antennas were used to measure the bistatic scattering from a wall of pyramidal

absorber. The wall absorber consisted of 8" tall pyramids. The two antennas had
broadband TEM horn feeds at their focii. The transmitter produced a vertically-
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polarized electric field. The experimental setup is depicted in Figure 62. The
transmitting antenna was positioned at an angle of 45° relative to the wall, while
the receiver was positioned at a variety of angles. It was assumed that the wall
was in the near field of both antennas. Thus, an elliptical region (of about 10
sq ft) of the wall is assumed to be illuminated by a plane wave. The receiver
location specified by ¢* = 45° is of most interest. At this angle, all illuminated
pyramids have (ideally) identical incidence and scattering angles, and identical
phase paths from the transmitting horn to the receiving horn. Thus, depending on
how much variation exists in tip positions, one may expect the scattered fields of
the pyramids within each absorber block to add in power, in phase, or somewhere
in between. (Of course, the pyramid fields could interfere with one another and
produce a total field less than that predicted by an adding in power calculation.
This behavior would produce nulls at certain frequencies. However, the power
addition ie considered the lower limit in our calcﬁ!ations.)

Since each absorber block on the wall measures 2' x 2', a different number of
pyramids are illuminated on each of a few absorber blocks. The three assumptions
of field addition from Section 6.3 will be used for pyramid fields within each ab-
sorber block, while the total scattered fields of the various blocks are assumed to
add in power.

Figure 63 shows the bandlimited impulse response for the wall scatter. The
location of the expected time of the tip and base returns is indicated. Next,
Figure 64 shows the corresponding frequency domain data. The measured data is
taken from (7}, while the calculations were made using the Absorber code developed
here. Equation (6.11) is used to find the three calculated curves; this is done by
specifying Sy = 6 for power addition, Sy = 36 for phase addition, and using Sr(f)
from Figure 61 for addition according to tip height deviation (assumption 3). The
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Figure 62: Experimental setup of bistatic absorber wall scatter measurement |7].
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third assumption agrees best with the measured data. Note that the measurements
include both tip and base response. Although tip diffraction calculations are being
plotted against measurements of both tip and base return, recall that the tip return

is believed to be the dominant scatterer. Figure 63 supports this contention.

6.5 Ceiling Absorber Scattering in a Compact Range Chamber

The absorber scattering from a portion of the ceiling of the OSU compact
range has been measured by means of a large flat plate placed in the target zone.
This work was the effort of Young and Clerici and is described in [14]. The plate
measures 6' x 6' and can be rotated in azimuth and elevation. The experimental
selup is depicted in Figure 65. As indicated in the figure, the plate is assumed to
optically reflect the incident plane wave up toward the ceiling. (This represents

an extreme case of absorber illumination in that the ceiling absorber just above
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Figure 65: Experimental setup used for Plate measurements.

the reflector is illuminated by the incident plane wave.) The ceiling pyramids
then scatter in all directions. Some of the scattered energy will strike the rolled
edge and be reflected back to the feed. This is the absorber scatter signal under
consideration.

The experiment considered here used a plate azimuth angle of 0°, and a plate
elevation angle of 73°. This corresponds to a patch of ceiling 6 feet wide and 6.3
feet downrange. (The patch is actually 10.3 feet in extent downrange, but the last
4 feet are lined with wedge absorber material. The wedge material is not believed
to scatter significantly in the direction that would affect this experiment.)

Note that during calibration, the range normally computes the following

L
—

El

2
o = 10log (thw2 ) (6.12)

wk .re E' represents the incident plane wave and E’ is the scattered field from
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some target in the target zone. In this experiment, the range will receive and
process our ceiling absorber signal as though it had originated {rom a target in the
target zone. Thus, when the ceiling absorber signal is properly time-gated, the

range computes

cesl scat

— 2) (6.13)

/

Oceil = 10log (411-1-2 B
where E' again represents the incident plane wave, and |Ecedd scat|2 represents the
total scattered power of the ceiling absorber signal.

Figures 66a and 67a show the bandlimited impulse response for the cases of
vertical and horizontal polarization, respectively. The absorber response, based
on timing calculations, is indicated. A Kaiser-Bessel window was then applied
in each case, Figures 66b and 67b show the gated impulse response for the two
cases. Next, an FFT was performed. Figure 68 shows the resulting absorber
response in the frequency domain, along with three calculated curves. In these
three cases, 0 is calculated via Equation (6.13), where |ES¥ 300412 j5 found
under three assumptions of ﬁd& addition. The lowest of the calculated curves was
found assuming the fields from all tips added in power. The middle curve was
calculated assuming the fields from tips within one squate foot sections added in
phase, while fields among sections added in power. The upper curve was calculated
assuming the fields {rom tips within four square foot sections added in phase, while
fields among sections added in power. The results are very satisfying, since they
roughly predict the scattering level from the ceiling patch, and since they follow
the frequency behavior of the measurements as well. |

(Note that, by reciprocity, equivalent scattering paths exist which are the

reverse of those shown in Figure 65. These were the paths actually considered
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when the ceiling scatter calculations were made. This was done by a computer

code similar to CHAMBER.)

vas
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CHAPTER VII

SUMMARY AND CONCLUSIONS

A high frequency diffraction solution for the scattered fields from a pyramidal

absorber tip has been developed in this study. This solution is based on the

perfectly—conducting UTD corner diffraction solution, which was modified to treat
ihe case of a corner in a dielectric three-dimensional wedge. The modification
is modeled after that done in (7] for the two~dimensional dielectric wedge. The
resulting formulation was then used to generate a computer code for the calculation

of bistatic sca.itermg froman absorber pyrcumd The validity of this resuli has been

,venﬁed by comparisons thh backscatter meaaurements of an isolated pyramidal
'absorber tip.  Note that the tip term was extracted from the measured result -
by traneformirg the ijcqu§ncy domsin data o the Lime domain and gating out

~ the Va'pp'roprin}ﬁe ‘term. The calculated end mewufed results don't ‘overlay,"but

have similar lcvéls " One shou!d not expect pei‘fect egi;eamentiin that dielectric ’A
materials have many potentml error terme, such as variation of dmlectnc properues
with {requcncy and posmon "Also, the tip term is a very small mgn&l which was
measured in the presence of much larger exgmls. Nevertheless, the measured results
do tend to verify the theoretical aolntiﬁn. B _ ‘

The validity of the absotber scatlering code was also verified by comparisons
with bistatic measurements of an absorber wall. This displayed excellent agreement

between calculation and messurements. The calculations made under the assump-
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tions of power and phase addition (of fields from individual pyramids) bounded
the measured data well. The calculated curve which computed pyramidal field ad-
dition based on tip height measurements agreed with both the level and frequency

dependence of the measured data.

o

The pyramidal absorber tip solution was then used to develop an anechoic
- chamber analysis for compact range applications. This computer code, CHAM-
. BER, determines the total field scattered into the test zone by the absorber lining
 the chamber walls, ceiling, and floor. (Note that CHAMBER obtains the illumi-
nation of the absorber from a reflector ana.lysxs code which treats a semi-circular
reflector with a rolled edge a.nd a skirt.)
A specialized version of CHAMBER was used to compute absorbpr scatter
- from the ceiling of the Ohio State University compact fange chamber. -Compa.r-'
isons of these ca.léulations -against measureménts from the plaie expgrimentvoi
. Chapter VI illusirate the uccuracy of our predictions. | |
CHAMBER has been_used to walyae the Ohio State University compact
:x_-ange chamber. - The analysis. showed that 'Qhe'_ dominant scattering came from
the absorber on the ﬁoor;'which was étrbnglj iliuminat’éd -By the skirt. The wall
absorber scattering dnd not arrive thhm the specxﬁed rerewe window, for cases
where the test point was e.long the room centerline. One should note that the
: 'fall time and isolation of the: rccewe wmdow deserve caveful attenhon, since the
Yo ', . scattered power (mto the target zone) from the ﬁoox and ceiling absorber increases '» :
| as the scatter point nears the back of the i*ogm. (This can be seen by running .-
.  CHAMBER with the durstion of the receive wag.dow extended.) Most significantly,
though, the ahéorbcr scatter levci‘é ptedici*d.hem ave much lower than typical levels
of diffraction from the range reflector. stﬁelf wh:ch are ubont ~-30 dB (rei&&we to

the incident plane wave) Ior prescnl d\.ugna
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With this code, one can predict the pyramidal absorber performance of a
compact range chamber beiore it is constructed. In fact, the various hot spots

within the room can be identified so that appropriate action can be taken.
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APPENDIX A

B

PROGRAM CHAMBER

: A.1 Introduction

This appendix begins with a description of files required to compile, link, and
run program CHAMBER. The reader is then stepped through the operation of
CHAMBER, and the output generated is described. Finally, some possible error

messages will be discussed.

A.2 Software Requirements

The FORTRAN code {or program OCHAMBER is separated into two files,
CHAMBER.FOR and CH.DECL.FOR. The former contains the bulk of the code;
namely, the main program and subroutines. The latter simply maintains the
variable declaration statements and common blocks. CHAMBER.FOR inserts
CH.DECL.FOR wherever necessary with the “include” command. Thus, the file
CH.DECL.FOR must be present when compiling CHAMBER.FOR.

CHAMBER aleo uses the following subroutines: GEOMETRY, BISTATIC,
REFL.CODE, and PLOTTER. Subroutines GEOMETRY and BISTATIC make
up what has previously been referred to as the Absorber code. Given a specified

e pyramid angle, a, subroutine GEOMETRY computes the pyramid wedge angle,
edge-fixed coordinate systems, and go on. It passes this information to subroutine

BISTATIC, which can then make repeated scattering computations. Of course,
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this is transparent to the user of CHAMBER. These subroutines are both in file
TIPBIST.FOR. Next, subroutine REFL_CODE is the modified version of the Semi-
Circular Compact Range Reflector Code [J] that has been mentioned earlier. The
modifications primarily consist of conversion from a program to a subroutine, and
the elimination of all but the GO field. Also, the coordinates of every observa-
tion point and corresponding reflection point on the reflector have been added
to the output. Again, this is transparent to the user. File REF3DT.SUB con-
tains subroutine REFL_CODE. Subroutine PLOTTER creates the plots output

by CHAMBER, and is in a file by the same name.

Finally, when running CHAMBER, two data files must be present. These
are CH.INPUT.DAT and FOR017.DAT. The former holds the input data that
will be used in the run of CHAMBER. To specify the input, one must edit this
file. This is more convenient than entering the input interactively, especially for
multiple runs where only a few variables change. File FOR017.DAT contains the
cross-section information of the semi-circular reflector, which is used by subroutine
REFL.CODE. File FOR017.DAT is created by program SURFACE, which in
turn requires file FOR070.DAT as input. (Note that some data specified in file
FOR070.DAT must later be input directly to the reflector code; thus, one must be
careful to be consistent.) The reader is referred to (9] for a more complete discussion
of this material; however, the FOR070.DAT file that created the FOR017.DAT file
used in the sample calculations of Chapter V is as follows:

1.
12.
11.6
0.

1
10.0768
180.
4,1
0.08
0
16.
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Figure 69: Range reflector cross-section (y' = 0), skirt not shown.

179.5
0.,0,

Figure 69 is a plot of the data in FOR017.DAT; note that this represents a parabolic
reflector 11.5' high with a 4' x 1’ elliptic rolled edge attached at the top.
In summary, the following steps are required to execute program CHAMBER:

1. Compilation of CHAMBER

Files required: chamber.for, ch.decl.for

(VAX) Command : fortran chamber
2. Linking of CHAMBER

Files required: chamber.obj, tipbiat.obj, ref3dt_sub.obj, plotter.obj
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(VAX) Command : link chamber, tiphist, ref3dt_sub, plotter
3. Running of CHAMBER

Files required: chamber.exe, ch.input.dat, for017.dat

: (VAX) Command : run chamber
With the executable file, CHAMBER.EXE, one can begin with step 3.
* Note that some options of CHAMBER automatically call PLOTTER to plot

various output data. This output data is also saved in output files. One may not
wani CHAMBER to plot the results. Also, PLOTTER is likely to be incompatible
with systems other than that which it was written on. In either case, the calls
to subroutine PLOTTER can easily be removed from CHAMBER, and no results
will be lost.

A.3 Operation of CHAMBER

In this section, the reader is brought step-by-step through a run of CHAM-
BER. The CH.INPUT.DAT file that was used in this run, along with a description
of each input variable, is as follows (note that all linear dimensions are in feet):

18.256 x' coordinate of tips of ceiling pyramids.
-3,6 x' coordinate of tips of floor pyramids.

20 y' coordinate of tips of side wall pyramids.
40 Maximum 2’ coordinate of interest in the rooa.
6 x' coordinate of target zone center.

o 24 2! coordinste of target zone center.

24.5 Pyramidal angle (alpha) - ceiling pyranids.
20,25  Number of pyramids per squars foot (ceiling).

1.46 Real part of pyramid relative permittivity (ceiling).
2. ~0.68  Ysag part of pyramid relative permittivity (ceiling).

24.6 Pyramidal angle (alpha) - wall pyramids.

20.36 Nusmber of pyramids per square foot (wall).

1.48 Real part of pyramid relative permittivity (wall).

~0.68  Imag part of pyramid relative permittivity (wall).

26.3 Pyramidal angle (alpha) - floor pyramids.
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4 Number of pyramids per square foot (floor).

1.45 Real part of pyramid relative permittivity (floor).
-0.68 - Imag part of pyramid relative permittivity (floor).
12 Focal length of reflector.

11.5 Radius of parabolic section of reflector.

1 Simulated (1) or Measured (0) Feed

0 Magnetic dipole, Xt direction.

i Magnetic dipole, Y directiom.

1 Electric dipole, X{f direction.

0 Electric dipole, Y{ direction.

25 Tilt angle of feed horn (above horizontal).
~-10 Start of receive window (relative to time reference).
10 End of receive window (relative to time reference).

Most of these are self-explanatory, and have also been mentioned in Chapter V.
Note that the reflector is specified as having a simulated feed. The following four
parameters, described as magnetic and electric dipoles, are used to simulate the
feed. Details on this are provided in [9]. The dipoles chosen here (0,1, 1, 0) specify

vertical polarization, while (1,0,0, —1) specify horizontal polarization.

The run begins with the command “run chamber”. CHAMBER first reads
the reflector cross-section data from FOR017.DAT, and finds the maximum 2’ and
2! extent of the reflector. These two values are then displayed, along with resulting
limitations on tip position coordinates, as follows:

Physical limits of reflector:

7

16.68 (f¢)
3.8 (f¢)

Naximue x coordinate of reflector........ev..
Naximum z coordinate of raflector............

Ninimum allowable x coord of ceiling tips.... = 15.7 (f¢)
Niniwum allowable y coord of side wall tipa.. 15,7 (2£¢)

(4]

Continue (t/2) * T
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Once this has been read, and appears correct, the user types ‘t’ for the program to
continue. CHAMBER then begins reading from file CH.INPUT.DAT. The room
parameters are then displayed, along with information on the resulting ceiling,
wall, and floor patches, as follows:

Room parameters:

X coordinate of tips of ceiling pyramids.... = 16.25 (ft)
X coordinate of tips of floor pyramids.... = -3.60 (ft)
Y coordinate of tips of side wall pyramids.. = 20.00 (£ft)
Maximum Z coordinate of interest............ = 40,00 (£t)

The patch considered along the ceiling im specified by:
Y ranging from 0.00 to 20.00 (ft)
Z ranging from 4.00 to 40.00 (£t) and X = 16.25 (ft).

The patch considered along the wall is specified by:
X ranging from -3.80 to 16.00 (ft)
2 ranging from 4.00 to 40.00 (£t) and Y = 20.00 (2t).

The patch considered along the floor is specified by;

Y ranging trom 0.00 to 20.00 (ft)
2 ranging from 4.00 to 40,00 (2t) and X = -3.50 (f£¢).

Continue (¢/2) * T

Again the user may verify the data and type ‘t' for CHAMBER to continue. The
target gone center coordinates are then displayed:

Target Zone Center Coordinates:

x = 6.00 ()
y= 0.00 (ft)
z = 24.00 (f¢)

Continue (t/¢) ¥ ¥
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Next, the absorber pyramid parameters are displayed:

Pyramidal absorber parameters (ceiling):

Pyramid angle (alpha)............. = 24.50 (degrees)
Number of pyramids per sq ft..... .« % 20.26
Relative permittivity of pyramid.. = 1.456 - j 0,58

Pyramidal absorber paramsters (side wall):

Pyramid angle (alpha)..... Cheraaes 24.50 (degrees)
Bumber of pyramids per sq ft...... 20.25
Relative permittivity of pyramid.. = 1.456 - j 0.58

Pyramidal absorbesr parameters (floor):

Pyramid angle (alpha)............. = 25.30 (degrees)
Number of pyramide per aq ft...... = 4,00
Relative peraittivity of pyramid.. = 1.45 - j 0.58

Continue (t/2) * T

Note that pyramidal parameters may be specified separately for the ceiling, wall,
and floor pyramids. The input data ends with the reflector/feed and time gate
parameters, as shown below:

Reflector/Fesd paramsters:

Focul length of reflector........... = 12,00 (2¢t)
Radius of parsbolic section......... = 11,60 (fe)
Simuleted (1) or Newsured (0) feed.. = 1

Nagnetic dipole (X1)...... teriesaess 2 0.00

Nagnetic dipole (Yf)......cccvnvnnns = 1,00

Electric dipole (Xf)........ versaaes B 1,00

Electric dipole (Y2)..... ciessiseins 2 0,00

Tilt angle of feed......ocveenvannes e 25.00 (dGegress)
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Time gate parameters:

Beginning of time gate.... = -10.0 (as)
End of time gate.......... = 10.0 (ns)

Continue (¢/2£) ? T

Note that all of the above data has been written to an output file, CH.LOG.DAT,

which serves as a log of the entire run.

CHAMBER now computes the plane wave power incident at the target zone
center, which will later be used for normalization of all power computations. The
round-trip time from feed to target zone center (via reflector) is also computed.
As a small check, CHAMBER computes the plane wave power incident at a point
2 feet away from the target zone center, which should be close to the plane wave
power af the target gone center. At this time, CHAMBER displays the following:

Computing poser refersnce {plane wave power) and tims
reference (round trip time froa feed to target zone center).

Bote: Power at point 2 fest avay from specified targst zone center
is down by 0.11 dB.

CHAMBER is now ready to compute the illumination of the ceiling, walls, and
floor. An operating frequency has not been specified at this point, but is irrelevant
since we do not consider phase. As these computations are made, the following
essages are seen:

Computing illumination of ceiling...
Computing iliumination of side wall...

Computing illumination of floor...

Computing input varisbles for all runs of subroutine BISTATIC...
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The last message indicates that CHAMBER is converting the illumination data
for each grid point from the room coordinate system to the pyramidal coordinate

system at that grid point.
At this point, CHAMBER asks the user to specify one of three available output

options, as shown below:

AVAILABLE OPTIONS:

1) Input: - Frequency.
- Test point in target region.
Output: - Files of ceiling, wall and floor illumination.
- Files of ceiling, wall and floor scattering
TO the test point.
- Power (totals) scattered to test point,
2) Input: - Frequency range.
- Test point in target region.
Dutput - Pover (totals) scattered to test point
versus frequency.
3) Input: - Frequency.
- Range of test poirts in target region.
Output: - Power (totals) scattered to test point

versus position.

ENTER the desired option number: 1

For purposes of illustration, option 1 has been chosen. CHAMBER then requests
the user to specify the operating frequency and test point location (in the room

coordinaie system). These questions are shown (answered) below:
Enter the frequency of operation (GHz): 10
Enter the Test point X coordinate (It): 6

Enter the Test point Y coordinate (ft): O
Enter the Test point Z coordinate (ft): 24




Once the responses have been made, CHAMBER lists them and waits for verifi-

cation before continuing, as shown below:

"

Frequency of operation 10.00 (GHz)

Test point X ccordinate = 6.00 (ft)
Test point Y coordinate = 0.00 (ft)
J Test point Z coordinate = 24.00 (ft)

Input OK (t/2£) ? T

Note that the following is added to CH.LOG.DAT:

Option 1 was chosen, with these parameters:

Frequency of oparation = 10.00 (GHz)
Test point X coordinate = €.00 (ft)
Test point Y coordinate = ©.00 (f£t)
. Test point Z coordinate = 24.00 (ft)

CHAMBER next computes the timing data, which determines whether each
individual grid point is included in the scattered power calculations. The scattering
from the appropriate grid points is then computed, As this is done, the foliowing

messages appear:
Cosputing timing data...
Computing scatter from (antire) ceiling to test poinmt...
Computing scatter from (both) side walls to test point...

Computing scatter from (entirs) floor to test poinmt...

Since only option 1 provides the room illumination as outpus, the illumination
data is now normalized:

Normalizing roos illusminstion dats...




The results of the scattered power computations are now displayed (and written to
the log file). The contribution {rom the side walls is listed as —10,000 dB because
none arrived during the specified receive window. CHAMBER also asks the user

if data files of the illumination or scattering from ceiling, side wall, or floor are

desired:
}p Scattered power from entire ceiling.. = -687.80 dB
Scattered power from side walls...... = -100V0.00 dB
. Scattered power from entire floor.... = ~-55.76 dB
Total scattered power........cecoveeee = -55.49 dB
24
Enter 1 for data file of Ceiling Illumination... or
Enter 2 for data file of Ceiling Scatter........ or
Enter 3 for data file of Wall Illumination...... or
Enter 4 for data file of Wall Scatter..,......... or
Enter 5 for data file of Floor Illumination..,.. or
Enter 6 for data file of Floor Scatter.......... or
Enter 7 if no data file is desired.........vovevev 3 2
Another data file (t/2) * F
W
0 To illustrate the format of these data files, the ceiling scatter file has been written,
é and the beginning of this file is shown here:
CEIL
SCAT
T2 40
4.260000 39.75000
0.2600000 10.756000
-119.8878 -110.887¢
- -110.9283 -110.9283
’ -120.0026 -120.0028
-120.1166 -120.1168
~120.2526 -120.2826
. -119.3572 -110.3672
-110,3183 -119.3183
~120.5702 -120.5702
-110.8073 ~110.8073
~110.4019 -110.4040
~110.0508 -110.06008
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-118.6579 -118.6579

~119.8542 ~119.9542
~119.8166 -119.8166
~119.68785 -119.6786
~119.5663 ~119.5663
-119.4208 -119.4298
~110.3398 -119.3396
~119.2472 -119.2472
-118.1503 -118.15603
~119.0164 -118.0164
-10000.00 =10000.00
~10000,00 -10000.00

The labels CEIL and SCAT serve as identification of file type. The numbers 72
and 40 are the number of z' values and y' values considered, respectively. The
next four quantities indicate that the first and last values used for z' are 4.25
and 39.75, respectively, while the first and last values used for y' are 0.25 and
19.75, respectively. The scattered power from each grid point is then written. In
column 1, the scattered power {rom the grid point whose coordinates are specified
by the first z' and y' values is first, followed by the grid point specified by tie first
' value and the second y' value, and so on. When the last y' value ie reached,
the second 2’ value and first y' value is considered. The second column holds the
scattered power contribution from the image of the corresponding grid point in the
first column. In the case shown, the two columns are identical since the test point
was along the room centerline. Othei data files have the same format, except that
illusnination files will have only one column, since illumination is always symmetric.
Also, for wal! files, the coordinate y/' is replaced by z'. These data files can be used

to generate any type of plot desired. In Chapter V, a plotting program was written

to generate the gray-scale plots shown there.




CHAMBER ends the run with this reminder:

YOU SHOULD PRINT THE CE_LOG.DAT FILE !!!

Now, let us go back to the point at which the option was chosen, and select
option 2. Again, CHAMBER requests user input at this point. The qucstxons

w
o asked are shown (answered) below:
ﬁ»(
P&'
g ENTER the desired option number: 2
'.§ v
| . Enter the starting frequency (GHz): 2
Enter the ending frequency (GHz): 18
Enter the frequency step (GRz): 1
Enter the Test point X coordinate (ft): 6
Enter the Test point Y coordinate (ft): 0
Enter the Test point 2 coordinate (ft): 2¢
Once the responses have been made, CHAMBER lists them and waits for verifi-
cation before continuing:
The start frequency.......... = 2,00 (GHz)
The end  frequency.......... = 18,00 (GHz)
The frequency step........... = 1,00 (GHz)
The test point X coordinate.., = 6,00 (ft)
the test point Y coordinate.. = 0,00 (ft)
The test point Z coordinate.. = 24.00 (ft)
Iaput OK (t/2) * T
Note that the following is added to CH.LOG.DAT:
’ Option 2 was chossn, with these parametsrs:
A start freguency.......... @ 2.00 {GHz)
end  fraguency.......... = 18.00 (GHz)
frequency step........... = 1.00 (GHz)
test point X coordinate.. = 8,00 (2ft)
test point Y coordinate.. = 0.00 (ft)
test point 2 coordinate.. =  24.00 (2t)
139

sttt S BLL LR R DR BT T T TR TS T G T DTG T (R SR CEETRSPTeY



CHAMBER will first determine the frequency dependence of the absorber

3 . E : scatter of the ceiling, side walls, floor, and of the room as a whole. This is done

| - through consideration of a pyramid with parameters identical to those of pyramids
on the ceiling, on the wall, and on the floor. As it does so, this message is seen:

Sy

L { - : : ' Computing frequency dependence of room scatter...
- o
. A
q . Next, CHAMBER computes the timing data (which is valid for all frequencies)
K3 ’ : )
- - and the absorber scaiter at the starting frequency. As this is done, the following
¥ - messages are displayed:
B i B N
;,: Computing timing data...
i - : .
. ?g, B Computing scatter from (eutire) csiling to test poimt...
W . ) ‘
K ’ Computing scatter from (both) side walls to test point...
,(
Computing scatter from (entire) floor to test poinmt...
~“ )
. |
0 ' ' CHAMBER then uses the frequency dependence information to delermine the
t
3, R
. - ~ absorber scatter at each frequency specified. This is much more efficient than
s% . _ " computing the sbsorber scatter from every grid point at each frequency.
} o age .
B : : A plot of ceiling, wall, floor, and total absorber scatter versus frequency is
;i: , now made by PLOTTER. The results are also written to an output file, OP-
7 TION.2.DAT. This file is shown here:
i ,
Y ' 2.000000 -44.51463 ~63.82076  ~10000.00 -41.77782
"i; 3.000000 -45,03645 ~57.34268 -10000.00 -45.20084
® _ 4.000000 -47.535622 -59.8413¢ ~10000.00 -47.79840
5 - 5.000000 -40.47342 ~61.77068 -10000.00 =-40.73681
. 6.000000 -51.06706 -63.383190 -10000.00 -51.32024
:! 7.000000 -62.30607 -64.,70213 -10000.00 -652.05018
_;: 8.000000 ~63.66681 -65.86197 -10000.00 -63.81600
9.000000 -b4.57887 -66.88503 -10000.00 ~-54.84200
W
"
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i, o

10.00000 -55.49402 -67.80018 ~10000.00 -65.765718
11.00000 -56,32187 ~68.62801 -~10000.00 -56.58508
12.00000 -567.07764 -66.38380 -10000.00 -57.34083
13.00000 -b67.77288 -70.07903 -10000.00 -58.03607
14.00000 -58.416567 -70.72273 -10000.00 -5B8.67976
- 15.00000 -59.01686 -71.32198 -10000.00 -59.27904
w . 16.00000 -68.57642 -71.88266 ~10000.00 -59.83861
17.00000 -60.410300 -72.40914 -~10000.00 -60.36618
18,00000 -60.59847 -72.90661 ~10000.00 -60.88266

The first number in the file, 17, specifies the number of frequencies considered.
Each row then lists frequency (GHz), total scattered power (dB), scattered power
from the ceiling (dB), scattered power {rom the side walls (dB), and scattered
power from the floor (dB). Again, a value of -10,000 dB indicates that no absorber
scattered power arrived during the receive window. CHAMBER ends the run with

these reminders:
The option 2 data file has been writtem.

YOU SBOULD PRINT THE CH_LOG.DAT FILE t!!

Lastly, let us gelect option 3. Again, CHAMBER requests user input. The
questions asked are shown (answered) below:

ENTER the desired option number: 3
Enter the frequency of opexation (GHz): 10

Enter the test point coordinate to be varied (Xe=1,Y=2,2=3): 3
Enter the sturting Z value (ft): 20
Enter the ending 2 value (ft): 28
- Enter the step in 2 (ft): 0.5
Enter the Test point X coordinate (ft): 6
Enter the Test point Y coordinate (ft): ©

Once the responses have been made, CHAMBER lists them and waits for verifi-

cation before continuing:
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The frequency of operation = 10.0 (GHz)

Z ranges from 20.00 to 28.00 in steps of 0.50 (ft)
X = 6.00 (ft)

Y= 0.00 (£t)

Input OK (t/£) * T

Note that the following is added to CH_.LOG.DAT:

Option 3 was chosen, with these parameters:

The frequency of operation = 10.0 (GHz)

2 ranges from 20.00 to 28.00 in steps of 0.50 (ft)
X= 6.00 (£e)
Y= 0.00 (2t)

CHAMBER then computes the timing data and all absorber scattering for
each test point location. When working with each individual test point, a8 message

such as this is seen:

The current test point is: = 6.00 (1t)
Y= 0.00 (%)
2= 20,00 (f£t)

Computing timing data...

Coamputing scatter from (entire) celiling to test polnt...
Computing scatter from (both) side walls to test poiat...

Coaputing scatter from (entire) floor to test point...

A plot of ceiling, wall, floor, and total absorber scatter vetsus test point
location is now made by PLOTTER. The results are also written to an output file,
OPTION_3.DAT. This file is shown here:
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17
20.00000 -b53.85984 -66.50120 -86.54442 -54.10539
20.50000 -b55.78167 -@86.82680 -87.93372 -56.14011
21.00000 -5b.91900 -67.16277 -90.61380 -56.25862
21.50000 -b56.05048 -67.46210 -97.43762 -b56.37653
" 22.00000 -55.87511 -87.64201 -10000.00 -56.17431
22.50000 -~b55.78619 -67.80883 -10000.00 -56.06770
23.00000 -B55.73362 -67.92627 -10000.00 -56.00407
23.50000 ~b55.62069 -67.87183 -10000.00 -55.88097
* 24.00000 -b55.49404 -~67.80015 -10000,00 -55.75723
* 24.50000 -55.33838 -67.74608 -10000.00 -55.59525
26.00000 -55.37782 -67.80436 -10000,.00 -~55.63358
26.60000 -55.196563 -67.69741 -10000.00 -55.44088
26.00000 -b55.08461 ~67.58611 -10000.00 -55.33588
26.50000 -55.41229 -67.72816 -10000.00 -55.87487
27.00000 -58.20288 -71.97846 -10000,00 -56.41177
27.50000 -59.80308 -10000.00 <-10000.00 -59.80308
28.00000 -10000,00 -10000.00 <-10000.00 -10000.00

The first number in the file, 17, specifies the number of test point locations consid-
ered. Each row then lists the value (in feet) of the test point coordinate that was
varied, total scattered power (dB), scattered power from the ceiling (dB), scatiered
power from the side walls (dB), and scattered power from the floor (dB). Again, a
value of -10,000 dB indicates that no absorber scattered power arrived during the
receive window. CHAMBER ends the run with these reminders:

The option 3 data file has besn written.

YOU SHOULD PRINT TBE CB_LOG.DAT FILE t!1

v Before closing this section, it is noted that the views provided by the (option 1)

gray-scale plots of Chapter V are depicted in Figure 70.

&t A.4 Error Messages

Program CHAMBER makes some simple checks on its input data, but does

not attempt to detect all possible errors. However, with these few checks, and the
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Figure 70: Views provided by grey-scale plots of Chapter V.
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ample display of information provided by CHAMBER, it is unlikely that bad data

would go unnoticed.
Let us now consider error messages that may occur while running program
CHAMBER. If the z' coordinate of the tips of the ceiling pyramids is less than the

maximum 2’ value of the reflector, the following error message is displayed:

X coordinate of tips of pyramids on celling is too small!

If the ' coordinate of the tips of the side wall pyramids is less than the maximum
z' value of the reflector (which is also the maximum y' value of the reflector), then

this error message is displayed:

Y coordinate of tips of pyramids on side wall is too amall!

The z' coordinate of the tips of the floor pyramids should be less than zero. If this

is not the case, the following error message occurs:

X coordinste of tips of floor pyramids is > than zero!

In file CHINPUT.DAT, the user specifies the maximum 2’ coordinate of interest
in the room, and the z' coordinate of the target zone center. Naturally, the target
zone center should lie within the ' extent of the room. If not, the following error

message occurs:

Naximum T coordinate of intersst does not go beyond target
zons center!

CHAMBER also checks that the test point is in the target region of the range; that
is, that the reflection point corresponding to the test point lies along the parabelic
section of the reflector. If this is not the case, the following is displayed: -

Test point not in target regiont!

If any of these occurs, the user will be instructed to modify the data in file

CHUINPUT.DAT, or to input different data from the terminal, us appropriate.
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There are other error messagvs which will not occur during a run of CHAM-
BER. However, they exist in the routines discussed, and thus are mentioned for the
sake of completeness. Recall that subroutine REFL_CODE is a modified version
of the reflector code in [9]. This code computed the illumination on the y' > 0
side of the room only (since illumination is symmetric about the room centerline).
The y' coordinate of field points must be positive. Thus, the following error mes-

sage was included in the original reflector code, and carried over into subroutine

REFL.CODE:

Kegative valae of y is not allowed.

CHAMBER will not commit this errcr,

To understand the ne.t message, one must realize that the original reflector
code asked the user to choose one of four types of field cuts. Program CHAMBER
only requires two types of cuts. Thus, when subroutine REFL_CODE was written,
it was ensured that these two fisld cuts would work properly. The same was not
done for the other two cuts (1 aud 4). However, they were not eliminated from
the code, in the chance that someone may want to work with them in the future.
For this reason, if these cuts are chosen, the following warning presently‘appca_rs:

WARWING: Code has not baen modifisd for IFCUT = {.4.

Again, this will not occur while running CHAMBER.,

Finally, the original reflector code displays an error message and executes
a FORTRAN STOP if it comes across a field point for which it cannot find a
corresponding reflection point (on the reflector). When subroutine REFL.CODE
comes across a field point along some field cut for which no reflection point can
be fourd, it will end its calculations, but will return to the main program with
its partial results and with a flag set to indicate what has happened. The calling
program should check this flag after each call of subroutine REFL.CODE, and
take whatever action necessary. CHAMBER does check this flag, and if set will
display:

¥o reflection point found - somsthing is urdn;!
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The message indicates “something is wrong” since CHAMBER is specifically de-
signed to consider only field points that have corresponding reflection points. This
‘message should never appear.
& One last point must be made on subroutine REFL.CODE. While the mea-
sured feed pattern option was carried over from the original reflector code, and
. while CHAMBER will not object to one specifying a measured feed pattern in file
»  CHINPUT.DAT, this option has not been exercised by the author.
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