Non-Kekulé Molecules - Theory, Practice and Uses

INDO-CI and AMI-CI semiempirical computations both give results in good agreement with qualitative theoretical expectations for organic polyradicals, as well as diradicaloid species related to tetramethylene ethane. Phenoxyradicals linked through conjugation should be experimentally accessible models for organic superparamagnetic species. Peroxyxalate esters are useful photo and thermal precursors which are fairly stable at room temperature, but photo-chemically and thermally (>70°C) labile.
NON-KEKULE MOLECULES -- THEORY, PRACTICE, AND USES

by
Paul M. Lahti, Andrew Ichimura, David Modarelli, Mark Kearley

Prepared for Presentation to
The Twenty-Second Reaction Mechanisms Conference
at
Pittsburgh, Pennsylvania
University of Pittsburgh
14 June, 1988

University of Massachusetts
Department of Chemistry
Amherst, MA 01003

Submitted June 22, 1988

Reproduction in whole or in part is permitted for
any purpose of the United States Government

* This document has been approved for public release and
sale; its distribution is unlimited.
INTRODUCTION

Magnetic materials are of great importance in magnet technology, especially in computers. To date, practical applications of magnetism generally require use of strong ferromagnetic transition metals, especially iron. Qualitative theoretical predictions have indicated that certain types of organic materials will exhibit high-spin magnetic effects (super-paramagnetism), and may in principle allow creation of domains of purely organic ferromagnetism. Although there have been isolated reports of organic polymeric ferromagnets, materials\(^1\)\(^-\)\(^2\), much work is needed to clarify common structural features and potential synthetic paths to putative organic ferromagnets. We are engaged in both theoretical and experimental efforts to understand and create superparamagnetic\(^3\) and ferromagnetic materials, using polyradical systems.

PROPOSED AND ONGOING INVESTIGATIONS

THEORETICAL WORK

Use molecular mechanics and semiempirical AM1 (AMPAC) to predict geometries of model polyradical systems.

Use AMPAC and INDO-CI to obtain related energies for states of different multiplicity -- is high spin preferred, and for what type of pi-system connectivities? How great is the gap from ground to excited state?

Use ab initio theory for select small diradicals that are potential models for monomeric units of polymers.

Theory can serve as the guide for experiment.

EXPERIMENTAL WORK

Develop a convenient method to generate polyradicals (esp. phenoxy) thermally and photochemically

Synthesize polyradical models to polymeric super-paramagnets

Study methods to generate and study polyradical models in matrix and in solid solution with an inert polymer

Eventually, use lessons learned from model studies to aim at synthesis of polymeric polyradical ferromagnets

Experiment is the crucial test of theory
BACKGROUND -- THEORETICAL STRUCTURAL REQUIREMENTS

CONNECTIVITY in conjugated pi-radical polymers

\[S_N = (N_\alpha - N_\beta)_n \rightarrow \infty \]

monomer \(N_\alpha - N_\beta = 1 \)
so \(S_N \rightarrow \infty \)

Thus, a polymer chain of odd alternant radical units in pi-conjugation is qualitatively predicted to be superparamagnetic (high-spin).

3-D STACKING in conjugated pi-radicals

McConnell has predicted the qualitative effect of various geometries on coupling between alternant radicals, and which types of coupling should lead to high-spin (ferromagnetic) spin states. The important criterion is to allow coupling of sites with opposite (alpha vs. beta) spin-density.
THEORETICAL FINDINGS

CONNECTIVITY EFFECTS ON POLYRADICAL GROUND STATES

Oligomeric models

INDO T-S gap kcal/mol 2.5 0.4 -2.0

Monomeric models

INDO T-S gap 18.6 11.9 -0.6 4.0 -11.3
ab initio T T S In progress In progress
expt. - 10.1 -1.7 In progress at UMass In progress at Yale

These are examples among a large number of INDO-CI calculations supported by ab initio work and confirmed by experiment.

RESULT -- The INDO-CI model seems sufficient for semi-quantitative predictions of ground state multiplicity.
Computations qualitatively confirm the McConnell model for the dioxoy p-cyclophanes.

\[
\text{AM1-CISD TS}
\]

for \(X = \text{O} \cdot \) \(0.2 \text{ kcal/mol} \) 0.1 0.5

for \(X = \text{Cl}_2 \cdot \) 0.1 0.0 0.3

Synthesis of these molecules is in progress.

Synthesis of other potentially high-spin phenoxy-type radicals is also in progress.
Use of semiempirical MNDO-UHF geometries and INDO-CISD spectral energies yields useful, interesting generalization of trends, even among diradicaloid (rather than diradical) species.
DEVELOPMENT OF RADICAL GENERATION CHEMISTRY

STRATEGY:

It would be useful to produce phenoxy radicals thermally or photochemically. In principle, one might thereby produce a magnetic record in a polymer containing polyradical precursors by irradiation or heating. A fairly active moiety is needed to produce radicals, yet with sufficient stability to allow subsequent chemistry in preparing a polymer.

PRESENT SOLUTION:

\[
\text{tBu-OOH} + \text{Cl-C-C-Cl} \xrightarrow{\text{cc1}_4} \text{tBu-OO-C-C-Cl} \rightarrow \\
\text{ArOH} \xrightarrow{\text{cc1}_4} \text{tBuO-O-C-C-O-Ar} \xrightarrow{85\%} \text{BuO}^- \cdot \text{CO}_2 \cdot \text{CO} \cdot \text{ArO}^-
\]

RESULT:

Decomposition of peroxyoxalates yield typical radical products.

AFTER PYROLYSIS AT 70°C

BEFORE
Arrhenius Plot of the Decomposition of p-Stilbenoxyl at 60, 70, 80, 85 and 90°C
INDO/CI indicates small T-S gap for II (~1 kcal/mol)

GOALS:

1) Final bis-methylenation to give diradical precursor I. INDO-CI predicts triplet ground state, supported by ab initio theory.
2) Low temperature matrix photolysis of I, looking for triplet EPR signal and UV-vis absorption attributable to II.
3) Determine stability of triplet II, as a potential monomer in an organic magnetic material.
PENTAMETHYLENEPROPANES ARE AN INTERESTING CLASS OF DIRADICALS WHICH WE ARE STUDYING THEORETICALLY AND EXPERIMENTALLY.

INDO-CISD indicates a modest (1-3 kcal/mol) favoring of the triplet state for PMP's, in agreement with ab initio computations by ourselves and others.
FUTURE PROSPECTS

SYNTHESIS OF POLYRADICAL MODELS

DEVELOPMENT OF OTHER RADICAL PRODUCING MOIETIES

\[
\begin{align*}
\text{Ar-O-C-O-O-C(R)₂-N=N-R'} & \\
\downarrow & \\
\text{Ar-O·} + (\text{CO}_2 \ R_2\text{C=O} \ R'·) & \text{cf. J. Warkentin et al., J. Am. Chem. Soc., 103, 7189 (1981).}
\end{align*}
\]

BUILDING RADICALS INTO POLYRADICAL POLYMERS

\[
\text{=CH-CH=} \quad ? \quad \text{=CH-CH=}
\]
TECHNICAL REPORT DISTRIBUTION LIST, GEN

Office of Naval Research
Attn: Code 1113
800 N. Quincy Street
Arlington, Virginia 22217-5000

Dr. Bernard Daoud
Naval Weapons Support Center
Code 50C
Crane, Indiana 47522-5050

Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko, Code L52
Port Hueneme, California 93401

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314

DTNSRDC
Attn: Dr. H. Singerman
Applied Chemistry Division
Annapolis, Maryland 21401

Dr. William Tolles
Superintendent
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. David Young
Code 334
NORDA
NSTL, Mississippi 39529

Naval Weapons Center
Attn: Dr. Ron Atkins
Chemistry Division
China Lake, California 93555

Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380

U.S. Army Research Office
Attn: CRD-AA-IP
P.O. Box 12211
Research Triangle Park, NC 27709

Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112

Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232
ABSTRACTS DISTRIBUTION LIST, 356A

Professor C. H. Wang
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Professor J. H. Magill
Department of Metallurgical and Materials Engineering
University of Pittsburgh
Pittsburgh, Pennsylvania 15261

Professor R. Stein
Department of Polymer Science and Engineering
University of Massachusetts
Amherst, Massachusetts 01002

Professor C. P. S. Sung
Institute of Materials Science
University of Connecticut
Storrs, Connecticut 06268

Professor M. Pomerantz
Department of Chemistry
University of Texas
Arlington, Texas 76019

Dr. L. Buckley
Naval Air Development
Code 6063
Warminster, Pennsylvania 18974

Dr. Thomas J. McCarthy
Polymer Science and Engineering Department
University of Massachusetts
Amherst, MA 01003

Professor David S. Soong
Department of Chemical Engineering
University of California
Berkeley, CA 94720-9989

Professor Leo Mandelkern
Institute of Molecular Biophysics
Florida State University
Tallahassee, Fl. 32306-3015

Professor Scott E. Rickert
Department of Macromolecular Science
Case Western Reserve University
10900 Euclid Avenue
Cleveland, OH 44106

Professor Bruce Hudson
Department of Chemistry
University of Oregon
Eugene, OR 97403

Professor E. Samulski
Department of Chemical Engineering
University of Connecticut
Storrs, Connecticut 06268

Professor J. W. Doane
Liquid Crystal Institute
Kent State University
Kent, Ohio 44242

Professor A. Argon
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. P. J. Hendra
University of Southampton
Southampton S09 5NH
United Kingdom

Professor A. Heeger
Department of Physics
University of California
Santa Barbara, CA 93106

Professor Curtis W. Frank
Department of Chemical Engineering
Stanford University
Stanford, CA 94305

Professor John F. Rabolt
IBM K91 8801
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

Dr. William B. Moniz
Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000
ABSTRACTS DISTRIBUTION LIST, 356A

Naval Surface Weapons Center
Attn: Dr. J. M. Augl, Dr. B. Hartman
White Oak
Silver Spring, Maryland 20910

Dr. Robert E. Cohen
Chemical Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. T. J. Reinhart, Jr., Chief
Nonmetallic Materials Division
Department of the Air Force
Air Force Materials Laboratory (AFSC)
Wright-Patterson AFB, Ohio 45433

Professor J. Lando
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Professor J. Scheinbeim
Department of Materials Science and Mechanics
Rutgers University
Piscataway, New Jersey 08854

PLASTEC
DRSMC-SCM-O(D), Bldg 351 N
Armament Research & Development Center
Dover, New Jersey 07801

Dr. Ivan Caplan
DTNSRDC
Code 0125
Annapolis, MD 21401

Professor H. Ishida
Department of Macromolecular Science
Case Western Reserve University
Cleveland, OH 44106

Professor F. Rodriguez
Department of Chemical Engineering
Cornell University
123 Day Hall
Ithaca, New York 14853

Dr. W. R. Krigbaum
Department of Chemistry
Duke University
Durham, North Carolina 27706

Professor J. T. Koberstein
Department of Chemical Engineering
University of Connecticut
Storrs, Connecticut 06268

Professor J. K. Gillham
Department of Chemical and Engineering
Princeton University
Princeton, New Jersey 08540

Professor L. H. Sperling
Department of Chemical Engineering
Lehigh University
Bethlehem, Pennsylvania 18015

Professor Brian Newman
Department of Mechanics and Materials Science
Rutgers University
Piscataway, New Jersey 08854

Dr. C. E. Hoyle
Department of Polymer Science
University of Southern Mississippi
Hattiesburg, Mississippi 39406

Dr. Stuart L. Cooper
Department of Chemical Engineering
University of Wisconsin
Madison, Wisconsin 53706

Professor Sukant K. Tripathy
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. B. Gordon III
Department of Materials Science
Pennsylvania State University
University Park, PA 16802

Dr. I. M. Brown
McDonnell Douglas Research Laboratories
P.O. Box 516
St. Louis, Missouri 63166

Dr. L. E. Sloter
Code Air 931-A
Naval Air Systems Command
Washington, D.C. 20361-9310