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Abstract

The kinetics of structural relaxation in a two-dimensional model atomic glass

quenched infinitely rapidly from the melt to 0.55 of the glass transition tempera-

ture was simulated by the molecular dynamics method to study the chronological

ordering of the atomic kinematics associated with such relaxations. Over the

very short periods of aging (c.a. 200 atomic fluctuations) accessible to the MD.S

method, a Williams- Watts form of relaxation with a fractional exponent of 0.5

was found to hold for excess enthalpy, free volume, and site distortion parame-

ter. The distribution of free energy barriers associated with this relaxation that _

resulted from the analysis could be scaled up to describe processes occuring on

macroscopic time scales, and agrees well with experimental results in Cu2 Zrl_, "

glasses. Results on the clustering of relaxations and other topological features of

the relaxation process are also reported. ' '' . , 1" .
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I. INTRODUCTION

..
The atomic details of structural alterations of amorphous solids during aging

below their glass transition temperatures and the consequences of this on sub-

sequent inelastic behavior has been of considerable interest. Simulation of such

complex atomic processes by computer molecular dynamics (MD) has been very
informative in the past. Among the many such simulations, those of Takeuchi

and coworkers 11,21 on two componer.c atomic glasses of the CuZrl-, type,

carried out in three dimensions have resulted in considerable insight on struc-

tural relaxations. In spite of this, however, both the kinematics and the ki-

netics of such relaxations remain inadequately understood. We have carried

out a detailed MD simulation using the same truncated CuZr pair potentials

used by Kobayashi, et al [3], but in two dimensions for the specific purpose of a ot
S

more thorough understanding of the atomic mechanisms of plastic flow in simple

atomic amorphous media. In three related communications, we have reported

results of a simulation: on the melting and glass transition process in a Lwo-

dimensional idealized material [4] (referred to here as (I)); on the topological

features of structural relaxations in such a medium, both in subcooled melts

and in solids below their T. [51 (referred to here at II); and on the details of

large strain plastic shear [6] (referred to here as IV). Here, in this same series of

studies, we report on the kinetics of structural relaxations below Tg in the same

two-component amorphous medium modeled in two dimensions. We also give

additional details of some of the topological features in the material, which is

more prone to undergo structural relaxation than the average.
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II. DETAILS OF THE SIMULATION J

2.1 The Simulation Cell

The details of the MD simulation, the choice of the interatomic pair poten-

tial of interaction, its truncation, the two- dimensional simulation cell with its

periodic boundary conditions, and the normalization of parameters were given

in (I). Additional details on the intensive state parameters, such as atomic level

stresses, moduli, enthalpy, site distortion, and local free volume were given in

(II), together with many results on the topological details of structural relax-

ations. The results of the simulation we present here were on the same rect- S

angular cell containing 144 atoms of two types representing Cu and Zr, placed

initially randomly, and melted and quenched, as described in (I). The simula- .

tions reported here were at a temperature of T* = 0.1(= 0.4T*,) and under a S

constant external normalized pressure of p = 1.0. This temperature is well below

the glass transition temperature of T% = 0.18. The starting state of the mate-

rial was one which had seen an essentially infinite quenching rate (path EF in

Fig. 1 of II) from the melhing temperature of 0.25, i.e., the starting material had

a fictive temperature equal to the equilibrium melting temperature. Many topo-

logical details of structural relaxation of this quenched glass were reported in II. S

The magnitude of the so-called boundary mass used in the present simulation to

maintain the external pressure constant was 4. The concept of a boundary mass

z_.!oated with the volume of the simulation cell as an extra degree of freedom

to maintain the external pressure constant was introduced by Andersen 17]. It

has been widely used in MD simulations where only equilibrium structural prop-

3
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erties are of interest, and the kinetics of reaching the equilibrium is not. In this

simulation, however, where the kinetics of structural relaxation were of equal

interest as the topological details of the atom exchanges, the proper choice of

the boundary mass was an important consideration.

2.2 Choice of Boundary Mass in the Simulation

In the method of Andersen [71, simulation under constant external pressure
S

is accomplished by the introduction of a new dynamic variable Q that represents

the changes in the overall volume of the simulation cell. Then, the equations of S

motion of all n atoms in the system and the cell volume are derivable from a .-

modified Lagrangian L given by 1

= MQ2/3)jj Ai 4'Q 3 p,2(, i,,Q, / (Q=/3p,,) + _MQ - aQ, (1)

ftI

r,/QI/3) CI
where pi (r1 /Q'/3 ) are dimensionless position coordinates of the n atoms, ,

their velocities, piy, the dimensionless relative separations of atoms i and j, € -

the pair potential, m the mass of an atom, Q the coordinate representing the

volume viewed as a one dimensional entity, such as the length of a cylinder

capped by a piston, a a constant to be interpreted as the external force result-

ing from the external pressure acting across the boundaries of the simulation i For

cell in a work conjugate sense with the volume coordinate Q, and finally M, the ' * "

'All symbols not specifically defined here are the same that have been used in (1) [41, where
a tull list of symbols can be found. .,
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so-called boundary mass. In Eqn. (1), the first two terms on the RHS repre-

sent the normal Lagrangian of the system of n particles if Q is interpreted as

the volume. The third and fourth terms relate to the Lagrangian of the total

volume of the cell in the interpretation of Q as the added dynamic variable rep-

resenting the volume. The generalized velocities and momenta that result from

this scaled Lagrangian, and how they can be related to the real system has been

discussed in detail by Andersen [7J and need not be repeated here. It should

suffice, however, to observe that the introduction into the system of a pseudo

coordinate to represent the volume and a pseudo mass associated with it permits

maintaining the external pressure constant by permitting the volume to change

as necessary. Clearly, however, this introduces into the simulation system a new

normal mode and a new momentum with an added normal mode frequency that

can interact with the other physically meaningful modes of atoms, and may re-

suit in unwanted resonances. It can be shown, and is also readily clear that the

introduction of this pseudo coordinate does not affect the equilibrium properties

of the system and its topological features in equilibrium. It will, however, influ-

ence the kinetics of reaching equilibrium, and the topological features of non-

equilibrium states that are of interest in the simulation. Andersen has proposed ,*

that unwanted artifacts in the kinetics can be reduced if the boundary mass

M is chosen, so that the period of the fluctuation of Q in the scaled system is

approximately equal to Q1/ divided by the speed of sound in the simulation

medium, when Q is equated to the volume. For a simulation cell containing

144 atoms, this rule results in a boundary mass M = 3.65m of individual atom

masses. We have taken 4 as the nearest integer value to be used in the simula- % %

5
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tion. In addition, however, we have tried simulations of structural relaxations

with boundary masses of 400 and 4 X 10-2 to determine the sensitivity of the

results on this choice. Thus, as presented in Appendix I, while a choice of 400 m

for the boundary mass produced overdamped conditions, very markedly slowing

down the structural relaxation, a choice of 4 x 10 - 2 produced erratic results.

III. RESULTS

S

3.1 Time Dependent Changes in Structural Properties

The time dependent changes in several ensemble average intensive structural P

properties for a period of 200 atomic fluctuations (4000 time steps) are shown in

Figs. la-lg. Here, the period of an atomic fluctuation is taken as 5.4xlO13sec.

(see (I), [4]). The figures show both the level of fluctuations in overall average

properties, as well as their monotonic changes over this period, first, for the en-

tire ensemble of 144 atoms, but also for the subensembles of Zr and Cu atoms,

as marked. Among these, Fig. la shows the changes in the average Voronoi N

A

polygon volume per atom (Ho times area per atom). Clearly, the regular fluctu-

ations due to the boundary mass are apparent - not only in the fluctuations of

the volume, but to some extent in all other properties, as can be seen by inspec- -"

tion of Figs. lb-lg. Figures lb and 1c, e.g., show the corresponding changes

in the ensemble average values of the enthalpy and site distortion parameter 2,

while Figs. id-Ig give the related changes in the atomic site pressure, maximum

shear stress (in the plane regardless of orientation), the zy shear stress, and the

'For definitions of these intensive parameters describing structural properties of the glassy

state, refer to (II)[5j.

%S
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atomic site bulk modulus - all averaged over the entire ensemble as well as over

only the Zr atoms and the Cu atoms, as indicated in the figures. The averaging

has been done for every fluctuation, i.e., after every 20 time steps without any

smoothing. Clearly, as stated above, the major and regular fluctuations with a

period of about 18 atomic fluctuations is due to the border mass and must be

ignored. When these are discounted, there is a clear trend of decrease in the

volume, enthalpy, and site distortion. Large local fluctuations, however, remain

particularly in the atomic level stresses and local bulk moduli. Additionally, it is

evident that the atomic site pressures, maximum shear stresses, and bulk mod-

uli for the Zr atoms, are much larger than the average, while the reverse is true

for the Cu atoms. As already noted in (II), this is a direct result of the stiffer

environment of the Zr atom than that of the Cu atom. The effect of this on the

enthalpy fluctuations is in the reverse order, where as must be the case, more

energy is stored, on the average, in the more compliant surroundings of the Cu

atoms. Furthermore, it can also be observed that in the regular oscillations of

the boundary mass, the fluctuations of the Voronoi volume and the atomic pres-

sure are out of phase, i.e., as the atomic site pressure increases, the local volume

decreases, and the atomic site bulk modulus increases. This direct response of I
the local site properties under the action of the boundary mass, however, does

affect the kinetics of structural relaxation by speeding it up to some extent (see

Appendix I). We note from Figs. la-lg that there are substantial reductions

in excess properties (over and above those of an ordered hexagonal crystal) in

enthalpy, local volume per atom (Voronoi volume), and site distortion over the

total relaxation span of 200 fluctuations. There is a corresponding increase in

7
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the local bulk moduli from 17 to about 18 (in units of dimensionless pressure)

or by an amount of 6%. In comparison, there are no important relaxations in

the atomic level pressures and maximum shear stresses. Since the changes in

enthalpy must come from the reduction in root mean square elastic strain en-

ergies, however, it must be concluded that the observed changes come about

primarily from the increases in bulk modulus and a corresponding increase in

atomic level shear moduli. Although all ensemble average properties fluctuate

considerably, the ratio of the average fluctuation amplitude to the current av-
erage level of the property shows large differences between different properties.

These ratios are listed in Table I and indicate that initially, the ratios are largest

for the atomic pressure and shear stress, while they are comparatively low for

the atomic volume. Over the simulation span, however, the fractional changes

in the atomic volume exceed those in the stresses. It is also interesting to note

that although the change in the average levels of the atomic stresses are quite

small, they are very substantial in the amplitudes of fluctuation. The source

of these differences are clear. Thus, while the fluctuations and changes in the

atomic volume are quite small on the absolute scale, being limited by the overall . %

level of free volume that can be squeezed out, the stresses can fluctuate between

large negative to large positive values about an equilibrium level in response to

only small displacement amplitudes. To concentrate attention more specifically

on the actual fluctuations, unaffected by the superimposed large fluctuations

produced by the boundary masses, the root mean square deviations from the

current ensemble average values in the structural parameters were determined

after each atomic fluctuation (for every 20 time steps) according to the formula

8
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. =< (x i)- < x (i) >,- . (2)

In Eqn. (2), the brackets mean ensemble averages either over the entire pop-

ulation or over only the Zr and Cu atoms, and t indicates that the information is

evaluated at a given time (after every 20 time steps). The results of this type of

evaluation are given in Figs. 2a-2g, paralleling the results given in Fig. 1. These

results show some of the same effects shown in Fig. 1. The fluctuations now do

not show the overwhelming pulsation resulting from the boundary mass. There

is a clear and perceptible decrease in the fluctuations in the atomic volume and

the site distortion parameter over the simulation span. Since the average levels

for the fluctuations of the Zr atoms differs markedly from that of the Cu atoms,

the root mean square fluctuations in either of these atoms is less than that over

the entire ensemble for most of the properties, by virtue of the mode of the

overall ensemble averaging procedure.

3.2 The Kinetics of Structural Relaxation

Much experimental research on structural relaxation in amorphous media,

in common with stress relaxation and internal friction, has established that

such relaxations are not simple mono-energetic processes characterizable by a

single relaxation time. It has instead been proposed by many researchers that

the relaxations in an amorphous solid are distributed in relaxation time, or in

a somewhat more fundamental variant, that they are distributed in activation

9
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energy and frequency factor. In this point of view, which we have taken earlier

[8,9], in a narrow range of observation, the relaxation of any property can be

characterized by a simple exponential given by: 5.%

2((t) Xi() =X() exp Tt (3)

,?.-.

where tkb(t) is the level of the normalized property at time t of an element i "-..'j

and X,(t), X,(o), and X,(oo) are the actual values of the property at time t,

at the beginning of relaxation and at the end of relaxation, respectively, when

equilibrium is reached. Since the relaxation is a thermally activated process, it

is expected to have a characteristic relaxation time ri, given by:

AH.
r, rio exp ,(4) : .

where AH is an activation enthalpy over the key barrier holding back the local

relaxation and 1/rio is a fundamental frequency factor. It is then stated further 0

that if the observation is not in a narrow range, but spans over many decades in

time, or alternatively is accomplished over a span in temperature, other, both

easier and more difficult relaxation processes with shorter or longer relaxation .

times become also observable. This requires a superposition of many processes -

that are continuously distributed in relaxation time r, according to a charac-

10
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teristic and structure dependent normalized distribution function p(r), to result

in

¢(t) :- p~r) exp(-t/,r)dr, (5)

and obeying the normalization condition

fp(r) dr = .(6)

Many procedures of operational inversion have been advanced [10-13] for the

determination of such distribution functions from experimental data collected

over long periods of time or over different temperatures. On the other hand,

based on quite successful empirical procedures dating back to Kohlrausch [141,

more than a century ago, a different approach has been suggested to the ac-

counting for the non-exponential form of the long term relaxation behavior of

amorphous media. In this approach, recently revived by Williams and Watts

[151, it is observed that the relaxation in the normalized property can be fitted

quite well over a relatively wide range of time to a modified relaxation function U
with a fractional exponent given as:

exp (7)

11
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where r, is a new relaxation time and / is usually in the range of 0.5. While

many recent investigators have adopted this form of presentation on the basis of

its simplicity, and have asserted that it reflects a more complex non-Arrhenian

relaxation, others have searched for a common denominator between the physi-

cally more appealing, but operationally more complex form given above in Eqn.

(5) and the simpler form given by Eqn. (7) [16,17]. Thus, the stretched ex-

ponential form of Kohlrausch has been found consistent with a random walk

of thermally activated diffusion of some impotent configurations to a central

site, where upon arrival, a measurable unit relaxation event takes place. The

fractional exponent then arises from a distribution of free energy barriers in the

preparatory diffusion process of the key impotent configurations to the central

site where they trigger the unit relaxation process. To obtain the fractional

power /f in the exponent of the exponential, it has been necessary to assume

special distributions of barrier energies with exponential tails. Operational pro-

cedures have been developed further to obtain distribution functions of barrier

heights in the diffusion problems from experimental data directly [18].

We consider these two different points of view as alternative operational

approaches to represent the same physical phenomenon, in which the relaxation

process is distributed in relaxation time or in activation energy and frequency

factor. Whether the actual unit relaxation process is a sudden transformation

of a local configuration from a more open one to a more compact one in one

thermal fluctuation, or is composed of a series of prior impotent diffusive steps

12
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approaching a central site without any observable effect, finally triggering the

observable unit relaxation process upon arrival at this site is difficult to decide.

The topological details of the simulation described in some detail in (II) [5]

indicate that in reality, the processes may be a combination of both pictures,

where the central unit process is noted to be the dissolution of 5 and 7 sided

polygon dipoles. Noting difficulties in relating the Williams-Watts relaxation

function uniquely to distribution functions of energies in preparatory diffusive

processes [181, or performing an operational inversion to calculate p(r) from

equations of the type given by Eqn. (5), we will merely adopt the Williams-Watts

function and obtain the best fit of the results of our simulation to it. We justify

this less than complete analysis by noting that the simulation covers only a very

small portion of real time extending over only 200 atomic fluctuations, making

it virtually impossible to obta~n any relaxation times that are comparable with -.

experimental information.

The results of fitting the ensemble averages of the evolving structure pa- J.

rameters presented in Fig. la-ig to the Williams-Watts function are given in

Figs. 3a-3g. In these figures, the overall ensemble averages are shown by the

fluctuating form. The best fit to the Williams-Watts function is given by the

smooth solid curve to determine the exponent 3 and time constant r. Finally,

the dotted curves, also shown on many of the plots, represent the best fit to the

simple relaxation function with 3 = 1 (Eqn. 3). The resulting best fit constants

for the Williams-Watts relaxation function are given in Table II. We note from

here that the relaxation of atomic volume, enthalpy, and site distortion are all

characterizable with nearly the same function having a relaxation time r. in the

13
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vicinity of 7 fluctuations (=140 time steps) and an exponent of 13=0.5. The re-
I

laxation of the shear modulus obeys nearly the same form of the equation with,
however, a relaxation time of more than twice the length. In comparison, the

relaxation of atomic site pressures and maximum shear stress are much slower,

as is apparent from Fig. 1, and is characterizable by a very much longer time

constant of around 53 fluctuations (= 1060 time steps) and a considerably larger

exponent of = 0.85 coming close to the simple relaxation process of Eqn. (3).

Examination of Figs. 3a-3g show that all ensemble properties decrease from

quenched-in initial excess values to lower values during the simulation span of 200

fluctuations. The decreases are more dramatic and substantial for volume per

atom, site distortion parameter, and enthalpy than they are for the individual

stresses. The ensemble averages of atomic site shear moduli actually increase,

as they should. The decrease in the atomic site pressure is 3%, while that in

atomic site maximum shear stress is 5%. The related rise in the atomic site

shear modulus is 5%, while the rise in the atomic site bulk modulus could be

determined to be 6% from the information given in Fig. 1g. The corresponding

decreases in the ensemble average enthalpy is 14%, that for the volume per atom

is 10%, and for the site distortion parameter only 2%. Considering that the

ensemble average fractional change of enthalpy must be predominantly coming
- ..e

from the change in internal strain energy stored partly in shear strain energy
%" .

and partly in bulk compression strain energy, we estimate the fractional enthalpy

change from

14
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1%,
Atn + max)(8)

where K is the bulk modulus and u the shear modulus. Evaluations of Eqn.

(8) gives for Ah/h exactly 14 % from the changes in pressure, maximum shear

stress, bulk modulus, shear modulus, and atomic volume. We consider this as a a

good check on internal consistency in the simulation.

We note further, in passing, that the ratio of the ensemble average max-

imum shear stress to shear modulus is 0.21, while the corresponding ratio of

average pressure to bulk modulus is 0.085. These are both somewhat higher "S,

than the ratios reported by Egami and Vitek [191 for a three-dimensional amor- ,

phous medium. We attribute the difference to the two-dimensional nature of

our material.

Since the relaxation of most of the properties, except the atomic site stresses, ,

can be characterized by a Williams-Watts function with a fractional exponent

of 0.5 and a characteristic time constant r, = 7 atomic fluctuations (= 240 time

steps), it is possible to give a distribution function p(r) of relaxation times of

simple Arrhenian processes on the basis of an analytical solution of the integral

equation obtained by equating Eqns. (5) and (7). This solution, obtained by

Lindsay and Patterson [181, gives:

_() _ exp (9)
2r, ir 4r,

15U
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For comparison with experimental results obtained by Deng and Argon [8],

we convert this distribution into one of activation free energies AGO by noting

that

p(AG'dAG' p~r~r -- \ E( f d lA '!m

p(AG) dAG p(r)d p G d (G (10)

giving

p U = Eop(AG) = Ep(dr (11)

~E,, E(TdA C,,

Upon introduction of the relations,-.
.'."

(-) -- exp y- -- "'" r 1/2'rva. (12a, b)

into Eqns. (9)-(11) it is found that:

1'
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P exp

\ Eo ) E, 2UV\Vk,,, XPEo /

Mu

a,-

where vC is a fundamental atomic cluster frequency related to the clusters which

undergo structural relaxations. Noting that for the simulation kT/E, = 0.1, and 5

taking vG as the atomic frequency, rG/l, = 1/147r for r,, = 7Tr, as obtained from

Table II, it is possible to evaluate the distribution function of Eqn. (13) as a V

function of AG*/Eo. The result of this is given in Fig. 4. While the shape of

this figure compares favorably with that obtained by Deng and Argon [9] from

internal friction measurements in a Cus9Zr4 j alloy (their Fig. 8), the energy

scale of the latter is a factor of 26.8 larger than the simulation results. This is

not surprising, since the frequencies in the internal friction results were in the

range of 0.25 H,, while those in the simulation were no smaller than 10"H,.

1i
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3.3 Inhomogeneities and Clustering of Atomic Motions

Figures 5a and 5b show the total atom motions in two separate time periods
-.

of 10 fluctuations each (5a from 70-80; 5b from 100-110). The displacements, at V

a magnification of 10, are shown as bars emanating from the initial positions of %

the atoms at the beginning of the time period. The motions shown in these two

frames are typical of many such frames that have been examined. In Fig. 5a,

the motions are relatively random over most of the field, except in the central

upper portion, where group-like displacements toward the left are evident. In

Fig. 5b, on the other hand, very large group-like motions of atoms toward the

left are visible in the entire right half of the simulation cell. Such large to and fro

motions of blocks of atoms often reversed in the following 10 fluctuations. They

are attributed to the resonances resulting from the boundary mass that show

up clearly in the pulsations of the volume shown in Fig. la and were therefore,

largely ignored.

More importance was attached to the clustering of the atomic structure pa-

rameters, which were considered to be more genuine and were followed in some

detail. Figures 6a-6c show the clustering of enthalpy, volume per atom, and site

distortion parameter averaged over the entire simulation span of 200 fluctua-

tions. The length of the solid horizontal bars reflect the relative magnitudes of

the respective properties. All the atomic site properties that have been encir-

cled, are larger than the ensemble average, except those in circles 3 and 5, which

are smaller than the ensemble average. The bars emanate from the centers of

atoms. The atoms bearing numbers are thus either in the upper or lower 10

18



percentile of the population with largest and smallest properti -. Clustering in

atomic level pressure, maximum shear stress, xy shear stress, and shear modu-

lus, or bulk modulus was less prominent. For these, the excess properties which

were also large were, however more uniformly mixed. These clusters in enthalpy,

volume per atom, and site distortion indicate that excess properties in the field

have often long life times and persist through even relatively long simulation

spans. If they are to represent actual Ftructural relaxations in real time, they

must, of course, have life times that must be larger by orders of magnitude than

the period of 200 fluctuations considered here. The evolution of properties in

clusters and their random changes in size and shape was followed in more de-

tail over smaller increments of the simulation span, but maps of these changes

will not be presented here. From examination of these changes, however, the

following important observations have been made:

a. Prominent clustering occurs only in excess enthalpy, volume per atom (free

volume), and site distortion. These are also the properties that, as shown

in Figs. 1 and 2 show the more prominent relaxation effects.

b. Clustering of atomic level stress is slight. The largest clusters of atoms

with excess pressure or excess maximum shear stress were only 2-3 atoms

across. Generally, it was found that atoms under large stress of all types,

i.e., pressure, or maximum shear stress were the Zr atoms, while those

under the lowest pressure or shear stress were the Cu atoms. Since these

were initially randomly spaced, and since the simulation time spans were

too short to produce much chemical short range ordering, the lack of clus-

tering is not surprising. As already noted, the clustering correlates with
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V.

more prominent relaxation strength. Somewhat similar observations were

made also by Maede and Takeuchi [201 in their study of radial correlation

functions of the atomistic structure parameters, but they did not give a

cause.

c. Comparison of the clustering in Figs. 6a-6c shows that the clusters with

high excess enthalpy tend to overlap with clusters having high excesses of

free volume, and those showing excesses of site distortior. Parenthetically, a

it must be observed that clustering of excess enthalpy requires clustering

of a combination of dilatational and shear strain energy, which, however,

does not require clustering of either pressure or maximum shear stress.

d. Relief of site distortion in clusters of this property resulted in clustering

of shear strains of random sign shown in Fig. 6d, which showed spatial

correlation with the clusters of site distortion. A similar correlation was

found between the relief of excess free volume and volumetric compaction.

e. Some spatial correlation was found between local shear strain production

during relaxation and increments in positive dilatation. Such dilatancy

is known to be a prominent effect during imposed shear strains. The '
importance of this effect is more clearly demonstrated in the comparison

study (IV) of simulation of plastic shear deformation [16].

f. It was found generally that regions with excesses of free volume coincided

with regions with reduced bulk modulus, or shear modulus, or both, while

the opposite was true for regions of deficiency of free volume. This is

considered to be an important source of distribution in frequency factor
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found by Deng and Argon [9] in internal friction experiments in CusqZrU1

d

glasses.

9. Comparison of the clustering of site distortion with distributions of Voronoi

|

polygons with sides other than six reported in the companion study (11)

151, showed a necessary correlation between large distortions and non-

hexagonal polygons.

In summary of the above observations, we note that three types of clusters

were observed: an excess volume cluster (free volume), called an n cluster by,:

Egami and Vitek 1191, has a lower local pressure and a lower local modulus; a .

cluster of deficiency of volume, called a p cluster by Egami and Vitek, which

possesses a higher local pressure and a higher local modulus; and finally, a site -

distortion cluster, which possesses a higher level of maximum shear stress and•

also an excess of volume. Only the first and third types of cluster undergo','

important evolution during structural relaxation, while the first contracts the .. '

third undergoes a combined shear and dilatation. The changes in the p type

cluster are far less consequential or apparent.

The evolution of propth e erin o stes were studied in more detail as a

function of time during the simulation. These, marked 1-5 in Figs. 6a and 6c,

q-. ".%

each contain roughly equal numbers of Zr and Cu atoms. Cluster possessed

substantial excess of volume per atom in the initial state. Clusters 2 and 4

posessed a large excess in site distortion, while clsters 3 and 5 had quite low

levels of excess volume per atom. The changes in volume per atom, enthalpy,

site distortion, atomic site pressure, maximum shear stress, atomic site shear

%%



modulus, are shown as a function of time of simulation in Figs. 7a-7f. We note

from examination of these traces that cluster 1, which has the most extreme

excesses in volume shows the most dramatic relaxations in volume, in enthalpy,

in site distortion, in rise in pressure, and in rise in shear modulus, mostly by

undergoing a decrease in dilatation. Clusters 3 and 5 with the minimum excesses

in properties, show no important changes, but exhibit only flutter. Clusters 2

and 4, which had large initial site distortions, show larger variations in enthalpy,

site distortion, pressure, and shear stress, but no systematic changes.
KA

IV. DISCUSSION

Isothermal structural relaxations in real amorphous media at about half the

glass transition temperature would be comparatively very slow processes. In

metallic glasses such as the CuZr_, glasses that have been simulated here,

structural relaxations have characteristic time constants that are closely compa-

rable to those found in anelastic relaxations 19) and have activation energies that

span between 1-2 eV and frequency factors that are in the range of 1010_1012S1.

This gives ranges in relaxation time from 10s - 1013s. Processes with such very

long relaxation time can, of course, not be simulated by MD. Therefore, in the

simulation reported here, rather artificial initial conditions were taken, in which -

an alloy at its melting point was quenched at infinite rate to a low temperature,

where it had an extremely large excess of properties that could be relaxed. The

time span in the relaxation that could be reasonably simulated consisted of only

200 thermal fluctuations at a temperature equal to 0.556 of T., i.e., over a period w ,

differing from the required real times by 10-11 decades. Consequently, the results
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presented here cannot be compared directly with those of metallic glasses under

any realistic conditions. Therefore, these results must be examined primarily for

the qualitative information that they convey, for the chronological ordering of

processes, and the time independent kinematics of structural relaxation. This is
also apparent from the distribution function of activation energies for relaxation

of excess enthalpy, volume per atom, and distortion that were calculated by

matching a Williams-Watts relaxation function to the results of the simulation.

The distribution function has a peak at AG*/Eo = 0.45. Since the scaling factor

Eo = 0.15eV. for this simulation [4], the observed characteristic activation energy

is 0.068 eV. and not 1.5 eV., as is the case for the real Cu.Zri alloy. Clearly,

the only processes that can be relaxed over such short periods of time are those

that appear in the simulation. Indeed, if this activation energy and its associated

relaxation period of 7 fluctuations are taken as accurate, and a formal upward

scaling of relaxation times to r2 = 4 seconds (a 0.25 Hz internal friction experi- P

ment) at T = 0.556T. of a CusqZr4 glass having a T. of 741K is done, according

to direct scaling relation of AG* = AG* + kTen(r2/rT) an activation energy of

AG; = 1.05 eV is obtained, where AG* = 0.068eV, r, = 7x5.4x10-13 sec.

and T = 412K have been used from the simulation. This is almost exactly the I.
lowest energy in the spectrum of energies measured in internal friction experi-

ments by (at 0.25 Hz) by Deng and Argon [9], that can produce relaxation at

such a low homologous temperature. Thus, when properly scaled up, the results

of the simulation are consistent also with experimental results. This however,

implies a similarity *:A the shapes of the energy spectra at the atomic fluctuation

scale with energies in the macroscopic scale for which no clear justification can
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be furnished..

Considering the results of the simulation as a whole, we have shown that.
structural relaxations are complex and cooperative processes. The excess struc-

tural properties in the form of excess enthalpy, volume per atom (free volume),

site distortion, atomic level stresses, and moduli are not uniformly spread out

in the structure. The excess enthalpy, free volume, and site distortion show the

greatest degree of clustering, while the atomic level stresses cluster less, since

they are associated more directly with the Zr and Cu atoms, which were ran-

domly distributed in the initial state of the structure. At the temperature of

simulation (0.556T,), the relaxation is to a large extent a local and immobile

one, i.e., the clusters with large excesses in properties show a decay in these .4

by local atom motions. There were no important displacements of regions with -S-U

large free volume toward regions with deficiencies in free volume, i.e., so-called

n type clusters were not observed in any meaningful way to migrate to p type V

clusters, as described by Egami and Vitek [19] in their simulations. While such

"interdiffussion" of defect clusters is very appealing, and may probably occur

in more realistic situations in real time, they must require much longer periods

of time, in excess of the simulation period studied here. We recall from the

associated study (II [5]), that the topological features of the relaxation involve

a reduction in the volume fraction of atom sites with 5 and 7 near neighbors, ' .

i.e., reduction of liquid-like boundary material by gradual dismemberment and U,

dissipation of such regions, as they are replaced by a growth of quasi-ordered

material consisting of atoms with 6 near neighbors. Our last associated study

(IV) 161 demonstrated that it is this liquid-like boundary material, which seeds
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.dt.

shear transformations that are the principal modes of strain production in aged

amorphous material before the ordered domains become large enough to permit

plasticity by dislocation glide.
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TABLE I. Ratios of Fluctuation Amplitudes to Average Levels in

Structural Parameters over the Simulation Span

Parameter (AX/),,,_ (AX/Y)fi, % change
Atomic pressure 1.07 0.6 44
Atomic Max. Shear Stress 0.8 0.5 38
Atomic Bulk Modulus 0.57 0.45 21
Atomic Volume 0.07 0.03 57
Enthalpy/atom 0.2
Distortion parameter _0.1 1-, .,,_

P??%
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,- °
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TABLE 11. Best Fit Values of Williams-Watts Distribution Parame- S

ters Determined from Relaxation Simulation

Structure Parameter i , X X.
Atomic Volume 0.55 130 1.668 1.504
Enthalpy 0.5 140 -1.344 1.565
Distortion parameter 0.55 150 1.082 1.060 S
Atomic Pressure 0.85 i060 1.486 1.454
At. Max. Shear Stress 0.85 1020 0.968 0.916 0.o
Shear Modulun 0.5 1 320 4.232 4.396

(*) in time steps (=0.05 fluctuations)

N
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APPENDIX I

Boundary Masses

To maintain the ext-arnal pressure constant in MD simulations, Andersen 171

introduced another dynamic coordinate into the basic Lagrangian representing

the equations of motion of the atoms in the simulation. Th new coordinate

Q representing the volume of the simulation cell then gives the modified La-

grangian:

L(p, ,Q,Q = !m2/si3i*p 5 
- + !MQ2 - aQ (A - 1)

2 2

where all quantities have been defined earlier in Section 2.2 of the text.

To minimize artifacts of unwanted resonances of the fictitions boundary

masses and the atoms in the simulation cell, it is necessary to choose the bound-

ary mass carefully, not to affect the kinetics of any process that is being simu-

lated. The recommended procedure is to chose M in such a way that the period

of the fluctuations of Q is approximately equal to Q1/3 divided by the speed

of sound in the simulation cell. As discussed in Section 2.2, this criterion gave

a boundary mass of 4 atom masses. Nevertheless, to explore the effect of the

boundary mass on the results of the simulation, other values one hundredth of

the chosen value and hundred times the chosen value were also used to determine

the effect of the choice.
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Figures A-la - A-ic show the results of a relaxation simulation of the volume,

enthalpy, and internal pressure for the three different boundary masses. Clearly,

the responses to boundary masses of 0.04 and 400 give insufficient damping

and erratic behavior or supercritical damping respectively during the period

of simulation lasting 1000 time steps (50 fluctuations). The results for the

boundary mass of 4 show rather regular oscillations in properties that were

presented already above. These could be readily isolated and discounted when
S

necessary.

S
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FIGURE CAPTIONS

Fig. 1 Time dependent changes in ensemble averages over 200 fluctuations (=

4000 time steps): (a) volume per atom, (b) enthalpy, (c) site distortion

parameter, (d) atomic level pressure, (e) atomic level maximum shear

stress, (f) xy shear stress, (g) atomic site bulk modulus. Ensemble

averages are given both for the entire population as well as for the Zr

and Cu atoms separately.

Fig. 2 Time dependent changes in root mean square deviations from the

ensemble mean values over 200 fluctuations: (a) volume per atom, (b)

enthalpy, (c) site distortion parameter, (d) atomic level pressure, (e)

atomic level maximum shear stress, (f) xy shear stress, (g) atomic site
bulk modulus.

Fig. 3 Best Williams-Watts function fits to the changes in ensemble averages

for the same seven structure parameters given in Figs. 1 and 2.

Fig. 4 The free energy barrier distribution function for the structural relax- N.

ations, obtained from the Williams-Watts distribution function by an %

operational inversion.

Fig. 5 Two different states of incremental atom displacements during the

simulation: (a) for the period between 70-80 fluctuations, (b) for the

period between 100-110 fluctuations.

Fig. 6 Field of excess properties averaged over the entire simulation period:

(a) volume per atom, (b) enthalpy, (c) site distortion parameter, (d)

32 9
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relaxation shear strains.

Fig. 7 Time dependent changes of the structure parameters in five selected

clusters: (a) volume per atom, (b) enthalpy, (c) site distortion, (d)

atomic site pressure, (e) atomic site maximum shear stress, (f) atomic

site shear modulus.

Fig. Al Effect of choice of boundary mass on the relaxation of excess properties:

(a) volume per atom, (b) enthalpy, (c) atomic site pressure.
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