BRSO

N

AD-A199 039

(RS

g <

.

SaP iRV A RrR Ve Bha Ve Al Rl P gt Wit Uy F pU ha® 00 BEINY 2t e e % 258 BURS 2 0 e .0 Vak Va0 af Yot AY 2B taV 20a" R e h o BOa AV B R R e &’

ONC e Vg

AVF Control Number: AVF-VSR-90502/35

Ada* Compiler
VALIDATION SUMMARY REPORT:
Certificate Number: #871210N1.09010
Alsys Ltd
AlsyCOMP 006, Version 3.2
IBM 370 3081K

Completion of On-Site Testing:
10 December 1987

Prepared By:
The National Computing Centre Limited
Oxford Road
Manchester M1l 7ED
United Kingdom

Prepared For:
Ada Joint Program Office

United States Department of Defense c
Washinogton, D.C. 20301-3081 ‘:)

ELECTE

SEP O 1 088

TE

*Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

...............

@

o~ -
R P

ﬁ'\
ol A

-

s 55]

FAVANRE RN R

% RAAR A AN AR

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

NN e R A NN AN L R KR ER Ry

a0 80 82 B e $70 8 Bad 20D, 4 R 0 18 RV TR

[ADAMRT039

REPORT DOCUMENTATION PAGE

REAT INSTAD TIONS
BEFORE TOMILITEIN 5 FOKM

1. REPORT NUMBER

|2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitie)

Ada Compiler Validation Summarg Regort: Alsys
Ltd., AlsyCOMP 006, Version 3.2, IBM 370 BOKIK
(Host and Targ®&t).

5. TYPE OF RIPORT & PERIJD COVERED
10 Dec 1927 to 10 Dez :988

6. PERFORMING ORG. REPORT NUMBIR

7. AUTHOR(s)

National Comgu;in Centre Limited,
Manchester, United Kingdom.

3. CONTRACT QR GRANT NUMEER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

Centre Limited,
Kingdom,

National Computin
Manchester, Unite

10. PROGRAM ELEMENT. PRCJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081

12. REPORT DATE
10 December 1987

13 NUMBER OF PAGES
12 p.

14, MONITORING AGENCY NAME & ADORESS(/f different from Controlling Office)

National Computing Centre Limited,
Manchester, United Kingdom.

15. SECURITY CLASS (ofthisreport)
UNCLASSIFIED

15a. gEﬁkeaEEFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

TJNCLASSIFIED

17. DISTRIBUTION STATEMENT (ofthe abstract entered in Block 20. if different from Report)

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Qffice, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

CMS Version 3.1 (Host and Target), ACVC 1.9,

AlsyCOMP__006, Version 3.2, Alsys Ltd., National Computing Centre Limited, IBM 370 3081K under VM/SP

nn tUKM 1477

B IR AN TR T ar e A e

[} N - -
R A A R N D O OO OD DO OGBSI AON OGO SOBOODANN A X

@

—&
S

r)
2
- -,

h = (X
PIADRCEXOCIO R X O RO IO OO Do X M X

N & (AR TRKARNA AR R S VR Cad val Wag Gnf 18 V28 849 25 2\ RJ Mol Wal o, S 4 h Nl val Vol Yol tah sad buy-t A e Ve v walh Vol Saf dud Sob ugh Sl L S L g0

s Ada* Compiler Validation Summary Report:

Compiler Name: AlsyCOMP 006, Version 3.2

e Certificate Number: #871210N1.09010
Tt
a& Host: Target:
s IBM 370 3081K under Same as Host.
. VM/SP CMS
yg Version 3.1
§
)
ny Testing Completed 10 December 1987 Using ACVC 1.9
()
)
o This report has been reviewed and is approved.
e
e
N\
! - —
o AET . P\l
_ The National Computing Centre Ltd
S Jane Pink
G Oxford Road
‘ﬁ Manchester M1 7ED
) United Kingdom
m
"nﬁv
aﬁ
.
& - - - - RA
'.'nf; Ada Validation Organization NTIS Tﬁg‘“ E
"y Dr. John F. Kramer DTIC
Institute for Defense Analyses m:‘;“”‘: a
. - on
o Alexandria VA 22311 Justifieat
ol
4 By
s Distribution/
1Y
& Availability Codes
y . Avall and/or
—Mm' ; . st S ial
4 - Ada Jodnt Program Office - pee T
) Virginia L. cCastor T :
Director _/ .
¢ " Department of Defense
> Washington DC 20301
5'::
t’g‘
"5'.
b
a9
i‘.'
-ﬁ' *Ada is a registered trademark of the United States Government
) (Ada Joint Program Office).

1

R A e K R A
* N - On \ O M W Ny WA T I ™ - pn * W " WL, Y
2100 00 AT T AN ARG TR i it e R SR N v i e e OO . M Y

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the AlsyCOMP 006,
Version 3.2, wusing Version 1.9 of the Ada* Compiler Validation
Capability (ACVC). The AlsyCOMP 006 is hosted on an IBM 370 3081K
operating under VM/SP CMS, Version 3.1. Programs processed by this
compiler may be executed on an IBM 370 3081K operating under VM/SP
CMS, Version 3.1.

On-site testing was performed 7 December 1987 through 10 December 1987
Alsys Ltd, Partridge House, Newtown Road, Henley on Thames under the
direction of the NCC (AVF), according to Ada Validation Organisation
(AVO) policiec and precedures. At the time of testing, version 1.9 of

the ACVC comprised 3122 tests of which 25 had been withdrawn. Of the
remaining tests, 207 were determined to be inapplicable to this
implementation. Not all of the inapplicable tests were processed

during testing: 145 executable tests that use floating-point precision
exceeding that supported by the implementation were not processed
Results for processed Class A, C, D, and E tests were examined for
correct execution. Compilation 1listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors.
Compilation and 1link results of Class L tests were analyzed for
correct detection of errors. There were 62 of the processed tests
determined to be inapplicable. The remaining 2890 tests were passed.
The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 193 516 564 245 166 98 141 327 135 36 234 3 232 2890
Failed 0 0 0 0 0 0 0 0 0 0] 0 0 4] 0
Inapplicable 11 57 111 3 0 0 2 0 2 0 0 0 21 207
Withdrawn 2 13 2 0 0 l' 2 0 0 0] 2 1 2 25
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

The AVF concludes that these results demonstrate acceptable conformity
to ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Executive Summary Page 1 of 1

SN L 4

- RN Ve g0 R IGT I R L T -y L P Xa¥ N, ; -y " LS
Wby o ity L ARARAR AL ARN A, \ o ,l- .hl} Mttty \.\'vo, .. W o‘t‘a.l“ ity e Ty e " b

L) Ay

W0,

-~

-

210 £54

e T 1o S 3
o’

A,

e

227

(_..

‘=
l‘.\

--*,'*‘ " .‘ {

CHAPTER 2

CHAPTER

(]

NNNNOUT e W

WWWwLwwwwwww
.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

W=

RSP R B RTOR AT W WL W

WV IO YOUAN R RO RN U AR U U P N U T N T WY Oy T Ow Y

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCEScittteentnvnnenns e e ea e
DEFINITION OF TERMSvtenteeccconnsan e s
ACVC TEST CLASSES .ttt vienncsoesennssscennenaonass

CONFIGURATION INFCPMATION

CONFIGURATION TESTED ... iveinineetiotsnnssnnasans
IMPLEMENTATION CHARACTERISTICS ..v.icevecnne covnn

TEST INFORMATION

TEST RESULTS 4ttt ceeeeesoccseseaocnososenssscsssas
SUMMARY OF TEST RESULTS BY CLASS v v cveenvesococns
SUMMARY OF TEST RESULTS BY CHAPTER ce e
WITHDRAWN TESTS &t eoetetnesososcsencsessnsnssssscssss
INAPPLICABLE TESTS tvcoeeececenaosennasnannonenss
TEST, PROCESSING, AND EVALUATION MODIFICATIONS ..
ADDITIONAL TESTING INFORMATION .t teeteenoconensaes

Prevalidation ...ieeuieerieeeeeeeneonocaseonsnnns

Test Method ...t ettt eneneceesncocnenonnscnses

TesSt Site 1.ttt neeeneoeoannsossnsonsnseas

CONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

Table of Contents Page 1 of 1

- . L LY MR
ISP A TARAT RN V)
Anadatnlad s

.-3-1
.e3-1
«e3-2
e e3-2
.32
«e3-4
..3=5
«+«3-5
««3-5
«+3-6

-!")‘_“%‘i -4*.-'. _,\"

[}

U I WP W R WO U U R U T W U R WG WU R W ST RGP N R M R RN A W Ru W R Ry

CHAPTER 1
{ INTRODUCTION
R // ~)
This Validation Summary Report #VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard,

ANSI/MIL STD 181%x. This report explains all technical terms used
within it and thoroughly reports the results of testing this compiler
using the Ada Compiler Validation Capability (ACVC). An Ada compiler
must be implemented according to the Ada Standard, and any
implementation-dependent features must conform to the requirements of
the Ada Standard. The Ada Standard must be implemented in its
ent%zsszl’and nothing can be implemented that is not in the Standard.

“Even though all validated Ada compilers conform to the Ada Standard,

it must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

‘The information in this report is derived from the test results

produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is
to ensure conformity of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects illegal language constructs. The
testing also identifies behavicur that is implementation dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tescs are designed to perform checks at compile time, at link time,
and during execution.

Chapter 1 Page 1 of 6

) Y B Tt 0f O -] - AT AT AT M W N g I g W N AT N T Y TR Y Y LA g " ¥
'.‘.ll‘,l'..l '.A".b ,l“,. ,l Q.l.t'. .'...l DN M M J'L. K\ '. W . Iy J N N ,,, > iy .}3,7 "‘-‘ \)‘ \-'\'""W-

AT 0.8 R o N g B A

X v v 5 4
eSS

"l]
-

22 @
L.

x_J)

L

oo

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT ’
o
This VSR documents the results of the validation testing performed on 4
an Ada compiler. Testing was carried out for the following purposes:- zi
To attempt to identify any language constructs supported by o
the compiler that do not conform to the Ada Standard

To

! . To

. . Y
.attempt to identify any unsupported language constructs Y

required by the Ada Standard

r
determine that the implementation-dependent behaviour is 3

allowed by the Ada Standard

, Testing of this compiler was conducted by NCC under the direction of
X the AVF according to policies and procedures established by the BAda 3
! Validation Organization (AVO). On-site testing was conducted from N
December 1987 through December at Alsys Ltd, Partridge House, Newtown)
Road, Henley-on-Thames. A
v
1.2 USE OF THIS VALIDATION SUMMARY REPORT ﬁf
(8
‘:
Consistent with the national laws of the originating country, the AVO)
i may make full and free public disclosure of this report. In tae 4
! United States, this is provided in accordance with the "Freedom of o
Information Act" (5 U.S.C. #552). The results of this wvalidation 1.
apply only to the computers, operating systems, and compiler versions)
identified in this report. 3
)
i The organizations represented on the signature page of this report do Ny
: not represent or warrant that all statements set forth in this report ¢
are accurate and complete, or that the subject compiler has no -4
nonconformities to the Ada Standard other than those presented. d
Copies of this report are available to the public from:- '
)
j Ada Information Clearinghouse L
) Ada Joint Program Office iy
: OUSDRE &
: The Pentagon, Rm 3D-139 (Fern Street))
¥ Washington DC 20301-3081
)
; or from:- i
! The National Computing Centre Ltd)
Oxford Road R
Manchester M1 7ED A
United Kingdom \
)
o
Chapter 1 Page 2 of 6 {s
0
N
L.
: Y

s -l'."'!.o. H 1’?‘\‘,‘|'!‘\”‘;‘!‘|'hi‘?‘\‘

MR b M \ -"’ {4 c'?'.’. nl"s\ i q‘..'ﬁ.".‘a‘\‘!.n“.l'. AR - W, ‘1'4 . (\ l' ‘ l.n ‘- . ‘.a %0 ..0- l.-Albn,!’ LS g 'y :.0‘

i

PR TR PR 7 R IR TN TR R O R R eaer s TN I R R R R TR T TS e 0§ ant’

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:-

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler
to the Ada programming language.

Ada An Ada Commentary contains all information relevant and
Commentary point addressed by a comment on the Ada Standard.
Standard. These comments are given a unique

identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting compiler
validations according to established procedures.

AVO The Ada Validation Organization. In the context of

this report, the AVO is responsible for establishing
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any 1language processor,
including cross-compilers, translators, and
interpreters.

Chapter 1 Page 3 of 6

Ly , ’ - oy - T -
RN -."u.l'o"'w.l't} vty .|.l.'.i'|,l'l.l.mi9',|'o‘l'nJ -?A‘, i’-‘l'u‘t n’l"»‘.l.‘.! ‘.w-‘.o,‘.o.l..!"o,i'v"'v.‘.' by ‘»‘l’.’l‘n_l’ul‘n."‘ W) L \ 'o"‘-.l .

- - oh
SOOI QO

‘." 1 _A' " [4 l‘
PO AP

L
- R W oW &

?;ﬁ

A J
>
S

Y

ST

b g8 aF Wak naf Eah Yok #50 ¥} ¥, TWag Ca rul Kol Cal wal dap Sl 1ol Tap $49] N ¢, (RN & AL R 423 Sl Sah Sud Gl . ol o "y -~,$_'

[
B
WX
INTRODUCTION vl
o
X3
Failed test An ACVC test for which the compiler generates a result ®
that demonstrates nonconformity to the Ada Standard. ' q
. . : WAy
Host The computer on which the compiler resides. \‘
Inapplicable An AVCV test that uses features of the language that a ﬁ{
compiler is not required to support or may legitimately
support in a way other than the one expected by the ol
test. }w
]
Language The Language Maintenance Panel (LMP) is a committee &f
Maintenance established by the Ada Board to recommend I
Panel interpretations and possible changes to the °
ANSI/MIL-STD for Ada. Q%:
Passed test An ACVC test for which a compiler generates the p j
expected result. Nk
o
Target The computer for which a compiler generates code.)
ul"‘ QA
Test An Ada program that checks a compiler's conformity 3;
regarding a particular feature or a combination of !
features to the Ada Standard. In the context of this u
report, the term is used to designate a single test, Rﬁ
which may comprise one or more files. °
"'.
Withdrawn An ACVC test found to be incorrect and not used to ﬁh
check conformity to the Ada Standard. A test may be X
incorrect because it has an invalid test objective, Nﬂ

faills to meet its tcst cobjective, or contains illegal {
or erroneous use of the language.

1.5 ACVC TEST CLASSES

Confcrmity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada rrograms structured into six test
classes: A, B, ¢, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce 1link
errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. However, no checks are performed during
execution to see if the test objective has been met. For example, a
Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no
errors are detected at compile time and the program executes to
produce a PASSED message.

Chapter 1 Page 4 of 6

O LN W W - o, € W W g W oY - A A LY, RS - YRS,
D o e B R e 2l it s S PR ST ST A N S A S 0N S, AL oy Rttty

INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of
units in a library--a compiler may refuse to compile a Class D test

and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the
test 1s classified as inapplicable. If a Class D test compiles

successfully, it is self-checking and produces a PASSED or FAILED
message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, oOr
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

- Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat some compiler optimizations allowed
by the Ada Standard that would circumvent a test objective. The
procedure CHECK FILE is wused to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Stardard. The operation of these units is checked by a set of
executable tests, These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Chapter 1 Page 5 of 6

B V. N U U L -, R SN L QU RV LY RN TR RV IRV LT R L L L R L Bl RN BN T ey ™
YA .- o.... T !l. "F oo i ~.t. h AW 'b.. .t‘h ! o. {'. f .\., vf‘-’ .l‘\.,‘u, " '.“

U R TATTR URT TR OUT AT AT R YN
1

l."

-
Lo

Cof " O o
-.‘_4}

XLt

=3
7T T
it s

A

N U U T LT TN R R A A A A TV o, S W T M T T T T R N O R R S R R R R T T T O " 1o 8%y
i]

n
t
_.
]
INTRODUCTION i
L) %I.
o
The text of the tests in the ACVC follow conventions that are intended E;
to ensure that the tests are reasonable portable without modification. ®
For e'.ample, the tests make use of only the basic set of 55 LA
char~cters, contain lines with a maximum length of 72 characters, use uﬁ-
su” 1l numeric values, and place features that may not be supported by ék‘
all implementations in separate tests. However, some tests contain AR
values that require the test to be customized according to ?ﬁ‘
implementation-specific values--for example, an illegal file name. A °®
list of the values used for this validation is provided in Appendix C. =R
A compiler must correctly process each of the tests in the suite and ﬁﬁzi
demonstrate conformity to the Ada Standard by either meeting the pass yig
criteria given for the test or by showing that the test is S

inapplicable to the implementation. The applicability of a test to an °
implementation is considered each time the implementation is ¥
validated. A test that is inapplicable for one validation 1is not
necessarily inapplicable for a subsequent validation. Any test that
was determined to contain for an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and,
therefore, 1is not used in testing a compiler. The tests withdrawn at
the time of validation are given in Appendix D.

@ ey

s
oA

o ”.'f;"’.: g
et

pa:

7 oy

e

240

‘y "n
e

h .)"'
7.7
S

A A

\S

‘.ﬁﬁlﬁﬁﬁ?o
. &Y »

P AS A A,
o ,;,J'{#’.;

Chapter 1 Page 6 of 6

O T T N T T e I R

A P T

S TS SR TR TLIN PO TR I ol TR TR VO L PR Ty A TOIR PR TG T T P T

R TSR PR T Y Ty
W W W4

A o Bat ol et
- w AN - LRl) - W

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:-

Compiler: AlsyCOMP_ 006, Version 3.2
ACVC Version: 1.9
Certificate Number: #871210N1.09010
Host Computer:
Machine: IBM 370 3081K

Operating System: VM/SP CMS
Version 3.1

Memory Size: 6M VM

Target Computer:

Machine: IBM 370 3081K
Operating System: VM/SP CMS
Version 3.1
Memory Size: 1M VM
Communications Network: Magnetic media

Chapter 2 Page 1 of 7

O y P T T N
NN AN -, ~ ,. .

N A AT N T --,‘-.-...- LR v..g M Ya T a R TL
‘.\,q,'*k.'_ LSS - T LTRSSy A S SN

)

* AT 00" SEv e JaT BAY Gat gavop

0
- M W W

RN RN AN AN AN NI L R LN AR WA TR IR A VT U R U N UM UNLY Iy WU LW VW LA U RA AR 1028 Shal Fal -t d o Nl MM W W V0 N el o84 S%E.

CONFIGURATION INFORMATION I,

Y
2.2 IMPLEMENTATION CHARACTERISTICS Y,

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Standard that permit "

implementations to differ. Class D and E tests specifically check for ®
such implementation differences. However, tests in other classes also 2
characterize an implementation. The tests demonstrate the following ?ﬁ,
characteristics: &:3
)
e
. Capacities. :
o
The compiler correctly processes tests containing 1loop jﬂ
statements nested to 65 levels, block statements nested to ﬁg
65 levels, and recursive procedures separately compiled as ﬁi
subunits nested to 17 levels. It correctly processes a gy
compilation containing 723 variables in the same declarative °
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G Dot
(3 tests), and D29002K.) . !
3
0
Pt
. Universal integer calculations sy
An implementation is allowed to reject universal integer iﬂ
calculations having values that exceed SYSTEM.MAX_ INT. This '
implementation processes 64 bit integer calculations. (See ot
tests D4A0O2A, D4A002B, D4A004A, and D4AOO4B). jﬂé
@
. Predefined types. '&

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT FLOAT, LONG_FLO..T, in the package
STANDARD. (See tests B86001C and B86001D.)

®

e
. Based literals :3
An implementation is allowed to reject a based literal with fl
a value exceeding SYSTEM.MAX INT during compilation, or it LY
may raise NUMERIC_ERROR or CONSTRAINT ERROR during ®
execution. This implementation raises NUMERIC_ERROR during 3
execution. (See test E"4101A.) :&'
o
::l
oYy
. Expression evaluation. R
®
Apparently some default initialization expressions for o
record components are evaluated before any value is checked By
x
~
Chapter 2 Page 2 of 7 i

ORI ("X L 1 N0 0L S G L LRI L AL R S LT LA L PR (™ Y 0 U R » W L 3 » ot ’ g
TR R R O e e R R R AT Tt e TN o o R s T o WS TRGAN TN A e SN) OO A W

ST PN N VR TV VAR WIN KW KR X T PO R R W A WNO A P L W ORI L Va2l af 0t el abe fhaata P 16078 T86s 4

CONFIGURATION INFORMATION
to belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range.
(See test C35903A.)

Apparently NUMERIC_ERROR is raised when an integer 1literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Sometimes NUMERIC ERROR is raised when a literal operand in
a fixed point comparison or membership test is outside the
range of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests
C45524A..2.)

Rounding.

The method wused for rounding to integer 1is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to 1longest integer is
apparently round away from zero. (See tests C46012A..2.)

The method used for rounding to integer in static universal
real expressions is apparently round away from zero.
(See test C4A01l4A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation: '

Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises NUMERIC_ERROR.
(See test C36003A.)

No exception is raised when LENGTH is applied to an array
type with INTEGER'LAST + 2 components. NUMERIC_ERROR is
raised when an array type with INTEGER'LAST + 2 components
is declared. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components. NUMERIC_ERROR is

Chapter 2 Page 3 of 7

240

-

oy
»

Y

»
D

'y

D
- x

oo
s i

t 4 L B]
A2

w
» ..‘:

- . . . 5 - AN PR .. - T T e T R Q
A A A I Y A N e G A N U S DRI Ot DN D AT O O L M SN SO M e o AN ARSI, 0::5

R I R R AN A AR R RN ¥ 0a3 €. 9"9, et Vgl valh ¥o) val & 10,428, Yah 99 eap N C (X RA N B R bal Yol Vol VoR Vb vad $08 8

..
-

K
-

-
~

CONFIGURATION INFORMATION

"'-‘l' : .‘. <~

-
e e

2o

raised when an array type with SYSTEM.MAX INT + 2 components
is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC _ERROR when the array type is
declared. (See test C52103X.)

I oK ol

-
-
-~ -

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array
type is declared. (See test C52104Y.)

- an
0 N]
Ly

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC _ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths j
N must match in array slice assignments. This implementation
; raises NUMERIC ERROR when the array type is declared. (See)
§ test E52103Y.) H

%)

o
Bl

In assigning one-dimensional array types, the expression
S appears to be evaluated in its entirety before n
KT CONSTRAINT_ERROR is raised when checking whether the 9
N expression's subtype is compatible with the target's 3

subtype. In assigning two-dimensional array types, the }
(o expression does not appear to be evaluated in its entirety

before CONSTRAINT ERROR is raised when checking whether the
W expression's subtype 1is compatible with the target's 0,
» subtype. (See test C52013A.)

D . Discriminated types. e

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that g

N

b is wused in an access type definition with a compatible)
W discriminant constraint. This implementation accepts such ¥
i subtype indications. (See test E38104A.) N
e In assigning record types with discriminants, the expression Y
- appears to be evaluated in its entirety before !
iy CONSTRAINT ERROR is raised when checking whether the !
' expression's subtype 1is compatible with the target's ht
K subtype. (See test C52013A.) !
:; .
K) Aggregates. 3
? .
1] L
ﬂ: In the evaluation of a multi-dimensional aggregate, all)
A choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)
g /
P Chapter 2 Page 4 of 7]
.
1]

- A IAAIAT

n -
A OSORGAN0 NG00

y . .- LWV [¥ w . W W g Ty WY W g ., R o™ R W™ n R N
U O UL S R R N A .h. W, W P SO AN ! "“ IS A

(Al ot ;NO »

Y R U WU WO WU UK IR TUR) AR N AR RN RL ‘B 0'g. 4 % 8% 878 8%. 472 %2 4% 8% 22’ aVa 2o AV,

CONFIGURATION INFORMATION

In the evaluation of an aggregate containing subaggregates, §
not all choices are evaluated before being checked for »
identical bounds. (See test E43212B.) A

All choices are evaluated before CONSTRAINT ERROR is raised ﬁ
if a bound in a non-null range of a non-null aggregate does é
not belong to an index subtype. (See test E43211B.) b

Representation clauses.

The Ada Standard does not require an implementation to J
support representation clauses. If a representation clause s,
is not supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and)
boolean types are supported. (See tests (€35502I..0. ik
C35502M..N. and A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests 0
C35507I..J, C35507M..N, and C55B16A.) :

Enumeration representation clauses for boolean types K]
containing representational values other than (FALSE => 0,

TRUE => 1) are supported. (See tests €35508I..J and "
C35508M..N.) %

Length clauses with SIZE specifications for enumeration "
types are supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access X
types are supported. (See tests A39005C and C87B62B.) &

e

Length clauses with STORAGE _SIZE specifications for task ﬁ
types are supported. (See tests A39005D and C87B62D.) N

Length clauses with SMALL specifications are supported. ")
(See tests A39005E and C87B62C.)

Record representation clauses are supported to the byte
level only. (See test A39005G.) v

Length clauses with SIZE specifications for derived integer 0
types are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedure and function
calls from within a body. The pragma INLINE for function

Chapter 2 Page 5 of 7

I‘,l HONIAC ' ‘.l‘a‘t‘..\‘.l'u \X |.l o.i!n.l!h Az !o.l.'..l"..l " . ' v'a. ‘c!) .ﬂ 1-" i.‘i. W\ '. .‘ .h‘o ‘!. \ . V‘ .I‘o‘. "“ t‘n h l.v-,"n.l'at “ () i‘\. '-:

AT R TR T TP NIV UR TN L W RN T R TR PO R P T U U VU U NLU NN Y Y SAARY AR X IR N 800 Vol S0 a8 vt el gt At 0a v ab) o YTINUY T

R CONFIGURATION INFORMATION

b calls within a declaration is not supported. (See tests
LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

o . Input/output.

0:(‘

o The package SEQUENTIAL IO can be instantiated with
unconstrained array types and record types with

ﬁg discriminants without defaults. (See tests AE2101C,

%5- EE2201D, and EE2201E.)

P

k? The package DIRECT IO cannot be instantiated with

‘o unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,

' EE2401D, and EE2401G.)

g Modes IN_FILE and OUT_FILE}) are supported for
0 SEQUENTIAL IO. (See tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for

qg DIRECT IO. (See tests CE2102F, CE2102I, and CE2102J.)

:I"

ﬂﬁ RESET and DELETE are supported for SEQUENTIAL IO and
~%; DIRECT IO. (See tests CE2102G and CE2102K.)

a4

_ Dynamic creation and deletion of files are supported for
_.2 SEQUENTIAL IO and DIRECT_IO. (See tests CE2106A and
3% CE2106B.)

g

f?‘ Overwriting to a sequential file truncates the file to the

?h last element written. (See test CE2208B.)

it An existing text file can be opened in OUT_FILE mode, can be
&g created in OUT_FILE mode, and can be created in IN_FILE
${ mode. (See test EE3102C.)

W

!rg More than one internal file can be associated with each
_ external file for text I/0 for reading only. (See tests
s CE2110B, CE2111D, CE3111A..E (5 +tests), CE3114B, and
O B CE3115A.) :

t]

?f More than one internal file can be associated with each
N : external file for sequential I/0 for reading only. (See
i tests CE2107A..D (4 tests) and CE2111D.)

o

ﬁﬁ More than one internal file can be associated with each
ﬂ’ external file for direct I/0 for reading only. (See tests
o CE2107E..I (5 tests) and CE2111H.)

sy

o

¥

o.::

o Chapter 2 Page 6 of 7

A . -
h . E () 2 L N o oy) - - h i . % N . \ - . - N - - -)
s W 0, P VY G A e 0 O ..l'.". 0O A A ko)._.'\l Yoy ™ X '.‘ % \p‘. ‘ Y 's.

X

A T T WU W W T S T W WU N T T R NG G N I O U U WU RO T U,

Y

0E at) ol at oty gwa-alh

CONFIGURATION INFORMATION

. An external file associated with more than

one 1internal

file cannot be deleted for SEQUENTIAL IO, DIRECT IO, and
TEXT IO. (See test CE2110B.))
Temporary sequential files are given names. Temporary
direct files are given names. Temporary files given names
are deleted when they are closed. (See tests CE2108A and
CE2108C.)

. Generics.
Generic subprogram declarations and bodies can be compiled

in separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be

separate compilations. (See tests CA2009C,

BC3205D.)

Generic unit bodies and their subunits can be

separate compilations. (See test CA3011A.)

Chapter 2 Page 7 of 7

0 \) G 3 \ s s g OO A \
B e o A S S RN R M M M NN N

LR
I 0 2t)

BC3204C,

o W'y l.n'iv.l.i o

compiled

LT N
N el X X

compiled in
and

in

LA,

2 Y

o oe. <

e R eI W ¥ d a0 0t R R s R R Rl A0 0 0. 8'8 A2 88 A2 V0 aVa 8Va AL Na Al a8 ‘atatab o aboval cat vap eat vad

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122
tests of which 25 had been withdrawn. Of the remaining tests,
207 were determined to be inapplicable to this implementation.
Not all of the inapplicable tests were processed during testing;
145 executable tests that use floating-point precision exceeding
that supported by the implementation were not processed
Modifications to the code, processing, or grading for
16 tests were required to successfully

demonstrate the test objective. (See section 3.6)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

SUMMARY OF TEST RESULTS BY CLASS
RESULT TEST CLASS TOTAL
A B c D E L

Passed 108 1047 1657 ° 17 15 46 2890
Failed 0 0 0 0 0 0 0
Inapplicable 2 4 198 0 3 0 207
Withdrawn 3 2 19 0 1 0 25
TOTAL 113 1053 1874 17 19 46 3122

Chapter 3 Page 1 of 6

™

L

ol

iy
o’

s

~ .
) ®
22

N A AT » \ T 4 T AT e U K ; 4 Tt = 7o OO
LA STOCDATA X « X X A T TOOT LR PN M s NI ROURR L MO A MO M) oo M NS ML S O M X XM M W URR N OV AN .‘l‘:\‘

CR TR PR R o T T L O T VS VA VR TR % el §at Yat $AT Vet $atavi-aig ats ok Y ate o'W 2 0.4 0.8" MEN AN RS ARV 2og 4’y

TEST INFORMATION iy
Wik
o
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ‘%‘
ity
H
RESULT CHAPTER X
Q;’!
et
2 3 4 5 6 7 8 9 10 11 12 13 14 TOTAL '
Passed 193 516 564 245 166 98 141 327 135 36 234 3 232 2890 gﬁ»
e
Failed o o0 o o o0 o0 o o0 O o O o o o '?.;;
v
Inapplicable 11 57111 3 0 ¢ 2 0 2 0 O0 0 21 207 ry
.
Withdrawn 2 13 2 o o 1 2 o 0 o0 2 1 2 25 :g?
W
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122 h#
bR
o
7
3.4 WITHDRAWN TESTS gt
o
The following 25 tests were withdrawn from ACVC Version 1.9 at ’f@
the time of this validation: e
®
B28003A E28005C C34004A C35502P A35902C C35904A Ny
C35A03E C35A03R C37213H C37213J C37215¢C C37215E ﬁﬁ
C37215G C37215H c38102C C41402A C45614C A74106C ﬁﬁ
C85018B C87B04B CC1l311B BC3105A AD1AOQ1A CE2401H }Q
CE3208A e
See Appendix D for the reason that each of these tests was qa
withdrawn. &%
D
sy
OO
3.5 INAPPLICABLE TESTS My
)
Some tests do not apply to all compilers because they make use of '$
features that a compiler is not required by the Ada Standard to Qe
support. Others may depend on the result of another test that is Rty
either inapplicable or withdrawn. The applicability of a test to an e
implementation is considered each time a validation is attempted. A 4
test that is inapplicable for one validation attempt is hot ®
necessarily inapplicable for a subsequent attempt. For this 5?
validation attempt, 207 tests were inapplicable for the reasons ﬂq
indicated: ey
ot
i
4
b
st
Chapter 3 Page 2 of 6 ﬁ%

h
i
1 OO) i i i (- - A
At 0w e i i et _hl?g,",t.-“t."l.‘ ¥t h"o.'.M!O.’!!."l;".i."b"o@'_c,‘ s"‘-ﬁ‘.f-'.fn'.f\‘.3-'.94'-%'.,4'.‘-'.@'.?:'.‘.'.?«'. B0 l'.‘l’a‘b'n"’.'l‘Jl‘c’l‘a!:':' i

it O N ((A W W ‘ 0y 1 o N o WD
R O e e D G e I e o e e M R ORI S i O T K Ly s T i

PO RN N A i) § 18" tag 194 AR R N ‘ral bald g vt v, el taR 2a¥ ¢al sl O I N O R A R O T R O T R T e TR LY

TEST INFORMATION

A39005G uses a record representation clause at the bit level.
This compiler only supports such clauses to the byte level.

The following tests use LONG INTEGER, which is not supported by
this compiler.

C45231cC C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

C4E531M, C45531N, C45532M, and C45532N use fine 48 bit fixed
point base types which are not supported by this compiler.

C455310, C45531P, C€455320, and C45532P use coarse 48 bit fixed
point base types which are not supported by this compiler.

B86001D & C45231D require a predefined numeric type other than
those defined by the Ada language in package STANDARD. There is
no such type for this implementation.

C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

BA2001E requires that duplicate names of subunits with a common
ancestor be detected at compilation time. This compiler
correctly detects the error at link time, and the AVO rules that
such behaviour is acceptable.

EA3004D This compiler only obeys the INLINE pragma for calls
from an Ada statement within a body. This test calls
function within a declaration.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are
rejected by this compiler.

CE2108B and D attempt to open empty files created in CE2108A and
C respectively, but VM/SP CMS does not allow empty files, and so
these files do not exist after the latter two tests' completion.
The AVO ruled that this limitation is acceptable as per AI-00325.

CE2107B..E(4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,
CE2111H, CE3111B..E (4 tests), CE3114B, and CE3115A are
inapplicable because multiple internal files cannot be
associated with the same external file when one file is open for
writing. The proper exception is raised when multiple access is
attempted.

Chapter 3 Page 3 of 6

T R W aPd afgalll” ot tn e Tabac Ve ta® (RY Hav Gat Pat 0u8 fa¥ Bab Rt b gat g 83 8% N Y

OSSO

TEST INFORMATION

The following 159 tests require a floating-point accuracy that

exceeds the maximum of 18 digits supported by this
implementation:

C241130..Y (11 tests) C357050..Y (11 tests)

C357060..Y (11 tests) C357070..Y (11 tests)

C357080..Y (11 tests) C358020..2 (12 tests)

C452410..Y (11 tests) C453210..Y (11 tests)

C454210..Y (11 tests) C455210..Z (12 tests)

C455240..Z (12 tests)
C456410..Y (11 tests)

C456210..2 (12 tests)
C460120..2 (12 tests)

TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of
code, processing, or evaluation in order to compensate fcr
legitimate implementation behaviour. Modification are made with
the approval of the AVO, and are made in cases where legitimate
implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications
include: adding a length clause to alter the default size of a
collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behaviour that wasn't
anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 16 Class B tests.
The following Class B tests were split because syntax errors at

one point resulted in the compiler not detecting other errors in
the test:

B24007A B24009A B32202A B32202F B32202C
B33001A B37004A B45102A B61012A B62001B
B62001C B62001D B91004A B95069A B95069B
BC3205C

Chapter 3 Page 4 of 6

R A W Y W 3 P W) o7 WL W A O X o A A R A -a
"' A "7‘.'0, b l-‘?ﬁ S0 0,00 l.“\ﬁt.’\.';. ,,!'i.!...q. T ’.‘h ..h.|,. A A.C-. ‘l“|~ »n.&‘h“""k

U

K
o

=

3.7

TEST INFORMATION

ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9
produced by the AlsyCOMP_006 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and
the compiler exhibited the expected behaviour on all inapplicable
tests.

3.7.2 Test Method

DOOCON Al

Testing of the AlsyCOMP_006 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration
consisted of an IBM 370 3081K operating under VM/SP CMS,
Version 3.1.

A magnetic tape containing all tests was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications
during the prevalidation testing were not included in their
modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto
the host computer.

The contents of the magnetic tape were loaded first onto a
DEC Vex 750 running VMS, upon which tests requiring to be
split were modified and then transferred onto a SUN 3/160
running UNIX BSD 4.2, via an Ethernet connection. A
magnetic tape was then produced in IBM compatible format
from the SUN 3/160 which was read onto a CMS mini disk on
the host computer.

After the test files were loaded to disk, the full set of
tests was compiled on the IBM 370 3081K and all listing were
written to magnetic tapes which were read onto the SUN 3/160
whilst run results were transferred to the SUN system via a
SUN file transfer program IBMFTP. All test output was then
trarsferred to a DEC VAX 750 via an Ethernet connection where
it was printed.

Chapter 3 Page 5 of 6

e R T oy \ A% NPy " g A N AL Ay L b A S N W
0 O e s S TAT AT AT T Tt T 5 .u,.a A R e e e e e o

- aw
A ?
)

TEST INFORMATION

The compiler was tested wusing command scripts provided by
Alsys Limited and reviewed by the validation team. The compiler
was tested using all default option settings except for

the following:

Option | Switch Effect
PAGE_LENGTH=45 Control length of compiler
, listing pages
PAGE_WIDTH=132 Control width of compiler
listing pages
ERRORS=999 Contrcl number of errors
detected before compiler aborts
TEXT Include full source code in listing

Tests were compiled, 1linked, and executed (as appropriate) using
a single host computer. Test output, compilation listings,

and job logs were captured on magnetic tape and archived at

the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

D 10) ~
' AJC M A

The validation team arrived at Alsys Ltd, Partridge House,

Newtown Road, Henley on Thames on 7 December 1987 and departed

after testing was completed on 10 December 1987.

Chapter 3 Page 6 of 6

N PP P N T Y 10 Y] p ~ 2 N Y i LN LSRR LY ST Vet
»t-l.l‘!‘t'--,,l ¥ -!'.‘l-- WA f'-. ,r'h»l-..q.. ‘.C!‘u‘. .0"-.:""“‘!-'. 4\‘.' "'\"" 0 .l AR,

Y5

s

x4 2

4@ TS,

R AN T TAR AU R R TR T A T G R R R R R TR Ry ' "2 a2 0n'0haGia AVa Ve AVa ate- a¥o el caiy AN AL SOR AL Tl L Vb san cat v

Lol a.l‘\. i U “.I...\'u.\‘. W%,

......

APPENDIX A

CONFORMANCE STATEMENT

Alsys Limited has submitted the following conformance
statement concerning the AlsyCOMP_006

Appendix A Page 1 of 3

™

p A e M e A N A B LA

‘v
SR - {

¥
PREAT i

5 O e

-

)

r
4

ST
x,

AW
LA e,

B oo™

e

AT SN

T
v
A A KA

~ 1"

T’y

i'n

:*"j\\ﬂ-lzlf ‘$§'jg

L o=
o

CONFORMANCE STATEMENT

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys Limited

Ada Validation Facility: The National Computing Centre Ltd

Ada Compiler Validation Capability (ACVC) Version: 1.9
Base Configuration

Base Compiler Name: AlsyCOMP_006 Version: 3.2

Host Architecture : IBM 370 501K OS&VER : VM/SP CMS V3.1

Target Architecture : IBM 370 3081K OS&VER : VM/SP CMS V3.1

Implementor's Declaration

I, the undersigned, representing Alsys Limited, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that Alsys
Limited is the owner of record of the Ada language compiler(s) 1listed
above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations
for Ada language compiler(s) listed in this declaration shall be made
only in the owneﬁis.corpgrate name, /

- IS
Vb Date: L!‘/L
ALSYS Limited N YN
M L J Jordan, Marketing Director

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office)

Appendix A Page 2 0f 3

.y . L Ny v W 4 ’
LA A OCA0 Y = o E R ."‘e'c ..l’\'v‘!.l.. iy W

o WA N & W X W
2000 ®

X,

' N
2

- e i e gt PR]
“¢;¢v._1;f?ﬁf Shd

.n’r;ﬁ‘
44

S@ TaT
Eﬁ"ﬁ&

Y

ARt LS
.‘

_‘{ :‘
.

Wt JORY L)
< B X X

0
ot r &

o

o N\ SO0 N O A o P S ;
SO S M rad e 0 LN AR AT On D OO0

R R S TR P O YW W o8 (WX IRTR e SR ol ol ’,"'»'-ﬂ S Vah ok ol Pok Meh fai 9 a0 aat ¥, 9, o $_Ved. * .,,".

CONFORMANCE STATEMENT

S e v g
Pyl e
- ’

5%
L&

Owner's Declaration

e

%?

I, the undersigned, representing Alsys Ltd, take full responsibility
for implementation and maintenance of the Ada compiler(s) listed
above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademari: policy, as defined by the Ada Joint Program Office. I
declare that all of the Ada language compilers 1listed, and their
host/target pexformance are in compliance with the Ada Language
ANSI/MIL-STD-1815A.

e yhfe
oV Date: /

Alsys Limited
M L J Jordan, Marketing Director

- ey o .‘P “x o
BRI

LA
3 .!:?'4«‘
e e N

Tse

R

[
e

oSt

‘s

Appendix A Page 3 0f 3

' L W M W 0 W P W N AT W Y M 7 o e ¥l R ¥ = M U ¥ et ™ WY
B O O A A N S L AN Y A I X O S O 5 \' NSO N N "‘ TR N

..... Ll M aS 1]

SO0

W

Il

X/

e ha 0808 Y N R e R R TU T T ER E S R R IIR S

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation~dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP 006,
version 3.2 are described in the following sections which discuss
topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-18154). Implementation-specific portions of the
package STANDARD are also included in this appendix.

Appendix B Page 1 of 1

AR RTETT I R Vg _-*.r‘- _'rq.' ¥\‘-:,‘-",h.‘_\,.&<~ ‘.“.“"'\‘\-'\(%, T4 \\«‘. n‘,\-‘.._‘-\r. AR .\\(r\-‘\:r\."\n“ »
4 £ b - - » L4 el b b . L .

g i a8 Sl hi .

O

.
RN !

SaRi 0t Na¥ bat VAT GV G2t Gav gat Bt 0.3 gab Bk l“.

Alsys IBM 370 Ada® Compiler

Appendix F 0
Implementation - Dependent Characteristics v,
for VM/CMS w

Version 3.2 g

Alsys S.A. -'\-
29, Avenue de Versailles
78170 La Celle St. Cloud. Fravce

Alsys Inc. Y.
. 1432 Main Strecet
Waltham, MA 02154, U.S.A. .'0

Alsys Ltd. ‘::1

Partridge House, Newtown Road 4
Henley-on-Thames, Y
Oxfordshire RG9 1EN, UK.

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office ‘ ;
’)
.

’
I Y T TR I LI e T - PRF AT X" , P) Y ¥ aTa Tu™aTa € LN v ur oA ORIy © -y . -—E
SRR SN ol‘-t’s.l’;.l.l..'... AR I &.'-. A, A A AR ‘\' "' \.‘ ¥ $ o, u".a v o -.".‘

TR AN R T LTI U TRt Pt TSI T A TRt T W7 S WAL S W2 WPU WLF LU SR S U 0 a5 292 a0 8 a¥8 at c¥8 2% 2% a'h a'a At A8 atl st 2% 2% 2’ 20 2*1.0%8 2. 8%) A8 .48 22 '8 88 870

) Printed: November 1987 ‘
Alsys reserves the right to make changes in specifications and other information r

contained in this publication without prior notice. Consult Alsys to determine il
whether such changes have been made. ::'o‘

! W
L P

/
A T e e A e S A T e e T OO Ot A e O & MG N WH A e ot

> 23780k

PREFACE

This Alsys IBM 370 Ada Compiler Appendix F is for programmers, software
engineers, project managers, educators and students who want to develop an Ada
program for any IBM System/370 processor that runs VM/CMS.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, February 1983 (throughout this appendix,
citations in square brackets refer to this manual). It assumes that the user is already
familiar with the CMS operating system, and has access to the following IBM
documents:

CMS User Guide, Release 3, SC19-6210
CMS Command and Macro Reference, Release 3, SC19-6209

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 i

MM O M D D O W T A DA IR IR ORICA N o D X U O RO OO D ORTRTITM at, he Wl M RO

AR I U U AP R MR T AR R T A WA W R AR A R U AR R P AN AR R AR YUY MO N NUX W AN XY N

AR R N R S0 N AW TN W SV UWIAT UM OO UK IO N X WKW N G ARR W VW WL TR R L R T R TN TN T R O o X R PSR

i
t'q.:
';:g‘
@
o
Q..:l
NRY
$
TABLE OF CONTENTS :::;::
h'h
®
v
)
)
APPENDIX F 1 e
0
)| Implementation-Dependent Pragmas 1 e
1.1 INTERFACE 1 .;;
Calling Conventions 2 .og(
Parameter-Passing Conventions 3 ::'i‘
Parameter Representations 3 ;:"
Restrictions on Interfaced Subprograms 5 by
1.2 INTERFACE_NAME 5 o
1.3 Other Pragmas 6 -.
i
2 Implementation-Dependent Attributes 6 o':i‘,:'
"‘..
3 Speciication of the Package SYSTEM 7 Ay
(J
4 Restrictions on Representation Clauses 8 E‘*’s,.
5 Conventions for Implementation-Generated Names 8 .:::!:
l.l;.lt
6 Address Clauses 10 oy
@
7 Restrictions on Unchecked Conversions 10 ,.R"g
8 Input-Output Packages 10 l::
8.1 Specifying External Files 10 :}‘:\:
Files 10 St
FORM Parameter 11
STANDARD_INPUT and STANDARD_OUTPUT 14 ;:;
8.2 USE_ERROR 5 s
8.3 Text Terminators 15 ‘%:,
8.4 EBCDIC and ASCII 16 e
8.5 Characteristics of disk files 25 RERd
TEXT_IO 25 7.
SEQUENTIAL_IO 2 =
DIRECT_IO ' 26 ’
at
9 Characteristics of Numeric Types 26 :E
9.1 Integer Types 26 3
9.2 Floating Point Type Attributes 27 _
SHORT_FLOAT 27 =0
FLOAT 27) .::.
LONG_FLOAT 28 -.;‘,
9.3 Attributes of Type DURATION 28 '1
Il 'y
[]
W]
¥
[l l'.':
0
L
Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS. Version 3.2 it .
| :
] e
X o;:::‘
DS
.i‘.'t

: n . ' : " : - X
‘*Q!"t‘lﬁ"\?u\ «“. DOSAT GO -’l'.) !‘a,"! i'o."o."b. ?l,‘.h OU RN YN IR XN 0,504,80, b LK N) O AU MO N Ry Q.!.' A ’n‘l’!‘l‘! -ﬁ‘..!q‘!h.!.a ,'.'."-“.OJ.Q.“.'J'I."-

R R RA K S at fae ba’ 0a 2t n"xts ath aVi n' s a¥h 0 % et Vi ath 2t Y A Y A A A Sk BT B L8 6 h 0l Yl Val dad

10 Other Implementation-Dependent Characteristics
10.1 Characteristics of the Heap
10.2 Characteristics of Tasks
10.3 Definition of a Main Program
10.4 Ordering of Compilation Units
10.5 Package SYSTEM_ ENVIRONMENT

11 Limitations
11.1 Compiler Limitations

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2

e DA ” - R - - W " D AW oW R
¥ oY »‘c‘..\‘..l.z'l.!‘!‘-’l‘ a‘li;‘l‘l_.“o l‘.‘,“ch .‘J"?'..!“l“.."..... '\.'!‘.‘ l."l&"h ..l 9q.“, ...‘q) ’L ', \ !.l LN !‘. .'-.!.a ..-.. DAt oM AN K ! N A

wab ¥oh dal v

28
"
~

-
<

29
29

-
L

32
32

I

®/
L)
!
[

Jeka

Ol R
%)

-

-
-
-

L T ALY X N U O)

T e O) P
‘?'u‘. o X RN S

0,000 50 .20 00,0 0.0 v8 00 B R A0 8.8 R N0 4 A 0 3 8%, 80 %R 2" 8% Rth 242" n%R 0t h A% 't %R 2'% o'’

Appendix F
Implementation-Dependent Characteristics

This appendix summarises the implementation-dependent characteristics of the Alsys
IBM 370 Ada Compiler for VM/CMS.
The sections of this appendix are as follows:

I. The form, allowed places, and effect of every implementation-dependent
pragma.

The name and type of every implementation-dependent attribute.
The specification of the package SYSTEM.

The list of all restrictions on representation clauses.

voR W

The conventions used for any implementation-generated names denoting
implementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including
those for interrupts.

7. Any restrictions on unchecked conversions.

8. Any implementation-dependent characteristics of the input-output
packages.

9. Characteristics of numeric types.
10. Other implementation-dependent characteristics.
11. Compiler limitations.
The name Ada Run-Time Executive refers to the run-time library routines provided

for all Ada programs. These routines implement the Ada heap, exceptions, tasking,
10, and other utility functions.

1 Implementation-Dependent Pragmas
Ada programs can interface with subprograms written in assembler or other

languages through the use of the predefined pragma INTERFACE [13.9] and the
implementation-defined pragma INTERFACE_NAME.

1.1 INTERFACE

Pragma INTERFACE specifies the name of an interfaced subprogram and the name
of ‘he programming language for which calling and parameter passing conventions

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 1

. " TR » ORI 0 M A L T G LT L G R o R N ey g o) LR VL
OIS ST INE AT SN WA AT AT A, 550 T8 DA A S S AT, T s s s >

\."!l‘" J

.
AN

'

UV

A TN LU VO VWU U I A IR AR TS (X YN Yo &7 », agia . ey e 418 8°8.8°.0" &b

will be generated. Pragma INTERFACE takes the form specified in the Reference
Manual:

pragma INTERFACE (language_name, subprogram_name);

where

= language name is the name of the other language whose calling and
parameter passing conventions are to be used.

= subprogram_name is the name used within the Ada program to refer to
the interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is
ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond
to the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use. ASSEMBLER is used to refer to the standard
IBM 370 calling and parameter passing conventions. The programmer can use the
language name ASSEMBLER to interface Ada subprograms with subroutines written
in any language that follows the standard IBM 370 calling conventions.

Calling Counventions

The contents of the general purpose registers 12 and 13 must be left unchanged by
the call. On entry to the subprogram, register 13 contains the address of a register
save area provided by the caller.

Registers 15 and 14 contain the entry point address and return address respectively,
of the called subprogram.

The Ada Run-Time Executive treatc any interruption occurring during the execution
of the body of the subprogram as an exception being raised at the point of call of
the subprogram. The exception raised following a program interruption in interfaced
code is a NUMERIC__ERROR for the following cases:

Fixed-pt overflow *
Fixed-pt divide
Decimal overflow *
Decimal divide
Exponent overflow
Exponent underflow *
Significance *
Floating-pt divide

In other cases, PROGRAM__ERROR is raised. The classes of interruptions marked
with an asterisk (*) may be masked by setting the program mask. Note that the
program mask should be restored to its original value before returning to Ada code.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 2
3 ’Q’l.]f)-\r!\ .l‘» oG‘r A l‘l.“l) “.""\f g n"'t. p " \ ra'l" -0*3""0 ,.

NPT
DA NN T

o 3%

7o

oz

RVAONAR RN F OO

Ve gt e Ky & e Vg 0y 4y

G R e T A T N N AT Y T T T T T T I T T O I O N T O T R O o0 190

Paramecter-Passing Conventions

On entry to the subprogram, register | contains the address of a parameter address
jiist. Each word in this list is an address corresponding to a parameter. The last
word in the list has its bit 0 (sign bit) set.

For actual parameters which are literal values, the address is that of a copy of the
value of the parameter; for all other parameters it is the address of the parameter
object. Interfaced subprograms have no notion of parameter modes; hence
parameters whose addresses are passed are not protected from modification by the
interfaced subprogram, even though they may be formally declared to be of mode in.

If the subprogram is a function, on exit register 0 is used to return the result. Scalar
values are returned in register 0. Non-scalar values are returned by address in
register 0.

No consistency checking is performed between the subprogram parameters declared
in Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer’s responsibility to ensure correct access to the parameters.

An example of an interfaced subprogram is;

* 64-bit integer addition: use an array rather than a record to
* represent the integer so as not to rely on record ordering if the
* components are accessed in Ada. -
Y
* type DOUBLE is array (1..2) of INTEGER;
* procedure ADD (LEFT, RIGHT : in DOUBLE;
* RESULT : out DOUBLE);
ADD CSECT
USING ADD,I5
ST™M 2,6,12(13)

L 2,0(1) Address of LEFT
LM 3,4,002) Value of LEFT
L 2,4(1) Address of RIGHT
AL 4,4(2) Add low-order components (no interruption)
BC 12,51 Branch if no carry
A 3=F'I’ Add carry (NUMERIC__ERROR possible)
$l A 3,0(2) Add high-order (NUMERIC_ERROR possible)
L 2,8(1) Address of RESULT

ST™M 3,4,002) Value of result
LM 2,6,12(13)

BR 14

LTORG

DROP

END

Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram.

Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS, Version 3.2 3

s

)

YUY 1 I PRt o N W MR AP A A N AR TR P * R T A e,
B A R D Ao et T T T T B T s R B o Dot e S S M W A

- T e 4
. ,.-"»...

2 ASY®

w
RSN

A W R WU RO NG NG W W SR S R e by ATk ¥aatat VR (an 0t lat dnt gas Ao * ...;'...'.'.,.,.....

Integer Tvpes [3.5.4]

Ada inlcger types cccupy 16 (SHORT_INTEGER} or 32 (INTFGER) bits. An
INTEGER subtype falling within the range of SHORT INTEGER is implemented as
a SHORT_INTEGER in 16 bits.

Enumeration Types {3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The
first literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits, those with
more than 256 elements in 16 bits. The maximum number of values an enumeration
type can include is 65536 (2**16).

The Ada predefined type CHARACTER [3.5.2] is represented in 8 bits, using the
standard ASCII codes [C].

Floating Point Tvpes [3.5.7, 3.5.8]

Ada floating-point values occupy 32 (SHORT_FLOAT), 64 (FLOAT) or 128
(LONG_FLOAT) bits, and are held in IBM 370 (short, long or extended floating
point) format.

Fixed Point Tvpes [3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed
mantissa and a constant small. The mantissa is implemented as a 16 or 32 bit
integer value. Small is a compile-time quantity which is the power of two equal or
immediately inferior to the delta specified in the declaration of the type.
The attribute MANTISSA is defined as the smallest number such that

2 ** MANTISSA >= max (abs (upper_bound), abs (lower__bound)) / small

The size of a fixed point type is:

MANTISSA ~ Size
1..15 16 bits
16 .. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Types [3.8]

Values of access types are represented internally by the 31-bit address of the
designated object held in a 32 bit word. Users should not alter the bits of this word,

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 4

G2

-
..

)

Pl B
-3‘&']

7
)

7Ll
o i3

B TR R VR A LT AT RS AT TR R LRI M ol g tal ol PR T PP v 4™ AQLavE a0 atioaVASUA aTA" Ui o3 0 aba- o Ba-piiave Guda et St fan Bat ® Q2% b % B Rl 'l‘..

gy
o
»
Yy
which are ignored by the architecture on which the program is running. The value t_
zero is used to represent null .
gt
o,
Arrav Tvpes [3.6] »
)
Ada arrays are passed by reference; the value passed is the address of the first !
element of the array. When an array is passed as a parameter to an interfaced .:o:
subprogram, the usual consistency checking between the array bounds declared in the 5.:.
calling program and the subprogram is not enforced. It is the programmer’s Wt
responsibility to ensure that the subprogram does not violate the bounds of the array.
Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same '_,'.-
way: the address of the first character in the string is passed. Elements of a string ot
are represented in 8 bits, using the standard ASCII codes. X
)
[
Record Types [3.7] Sy
P-

Ada records are passed by reference, by passing the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.

FRIF,

INTEGER on a four-byte boundary). If a record contains discriminants or]
components having a dynamic size, implicit components may be added to the record. L}
Thus the exact internal structure of the record in memory may not be inferred r
directly from its Ada declaration. 0
]
'.:
Restrictions on Interfaced Subprograms ,
1 4
The Ada Run-Time Executive uses the SPIE (SVC 14) macro. Interfaced 'f
subprograms should avoid use of this facility, or else restore interruption processing '
to its original state before returning to the Ada program. Failure to do so may lead by
to unpredictable results. R
Mot
Similarly, interfaced subprograms must not change the program mask in the Program »
Status Word (PSW) of the machine without restoring it before returning. Y
¥ !
'-"'
1.2 INTERFACE_NAME)
Fal
it
Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as »
declared in Ada, with its name in the language of origin. If pragma iy
INTERFACE_NAME is not used, then the two names are assumed to be identical. o
This pragma takes the form : o
&)
[N
. . W,
pragma INTERFACE__NAME (subprogram_name, string _literal), oF
where Q?‘
s subprogram_name is the name used within the Ada program to refer to RN
the interfaced subprogram. .%..
Ty
: b
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 5 l . :
! ()
‘l
'!
: -
P
! "
;
"\'“.»‘*30"@"&";!“.5’%0 AX .0«*"4‘!‘.!’“!.'“.‘1‘. J\'nl.‘!‘s‘k ;'!‘n‘!.'". Wbl ‘* LA 2 F ' '.l‘ F' L LYY ‘ Wy, ' A A .l‘,'i b 'T >

TR R PR SR A T T NP U TR R T [N AN O R A R O N W v NUN R IR PR U U RN R kN oUW ™ Do " O wF? 3

e string_literal is the name by which the interfaced subprogram is referred "n".
to at link-time. 0 %

The use of INTERFACE_NAME is optional, and is not needed if a subprogram has fogtY
the same name in Ada as in the language of origin. It is useful, for example, if the ®
name of the subprogram in its original language contains characters that are not i
permitted in Ada identifiers. Ada identifiers can contain only letters, digits and :J'
underscores, whereas the IBM 370 linkage editor/loader allows external names to L¥
contain other characters, e.g. the plus or minus sign. These characters can be

specified in the string _literal argument of the pragma INTERFACE_NAME. A
: []
The pragma INTERFACE_NAME is allowed at the same places of an Ada program K]
as the pragma INTERFACE [13.9}. However, the pragma INTERFACE_NAME N
must always occur after the pragma INTERFACE declaration for the interfaced o
subprogram. A
»/
In order to conform to the naming conventions of the IBM 370 linkage editor/loader, '.'
the link-time name of an interfaced subprogram will be truncated to 8 characters 3
and converted to upper case. :"
bt
A
(3
e
Ryt
Example |~
||‘
u‘:'u:
package SAMPLE_DATA is DO
function SAMPLE DEVICE (X : INTEGER) return INTEGER; ; '
function PROCESS_SAMPLE (X : INTEGER) return INTEGER; g
private N3
pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE); \, f
pragma INTERFACE (ASSEMBLER, PROCESS_SAMPLE);)
pragma INTERFACE_NAME (PROCESS_SAMPLE, "PSAMPLE"); 'i“
end SAMPLE_DATA; [d '
s
it
1.3 Other Pragmas u:,'
o
No other implementation-dependent pragmas are supported in the current version of ;Z{
this compiler. ®
ol
; N
. . [
2 Implementation-Dependent Attributes a:-_"'
&
2
In a addition to the Representation Attributes of [13.7.2] and [13.7.3], there are the %
four attributes listed in section 5 (Conventions for Implementation-Generated .
Names), for use in record representation clauses. There also exists the restrictions "
given below on th- use of the ADDRESS attribute. e
.Q
3
)
- 1'
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 6 g
o
&
ph'Y
[]
Y,
o

' ' . . ' ' . . ‘ . i ™ ' Y e v € OV M - P a " | - “'- L "] h WM AW ™ L - » - » n L] - e - - - H
A e e i T N e L Y B T N Y R O RN R N LT L N o Ot {ar i)

AP K/

RN RO R R RO I N A R R U Y e O o N o ey

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful
addresses. The following entries do not have reaningful addresses and will therefore
cause a compilation error if used as prefix tc address:

e A constant that is implemented as an immediate value i.e., does not have
any space allocated for it.

» A package specifiaction that is not a library unit.

s A package body that is not a library unit or subunit.
3 Specification of the Package SYSTEM

package SYSTEM is
type NAME is (IBM_370);

SYSTEM_NAME : constant NAME := NAME'FIRST;
MIN_INT : constant := -{2**31);

MAX_INT : constant := 2°*31-1;
MEMORY_SIZE : constant := 2**24;

type ADDRESS is range MIN_INT .. MAX _INT;

STORAGE_UNIT : constant := §;
MAX_DIGITS : constant := 18;
MAX_MANTISSA : constant := 31,
FINE_DELTA : constant := 2#1.0#e-31;
TICK : constant := 0.0];
NULL_ADDRESS : constant ADDRESS := 0;

subtype PRIORITY is INTEGER range 1 .. 10;

-- These subprograms are provided to perform
-- READ/WRITE operations in memory.

generic
type ELEMENT_TYPE is private;
function FETCH (FROM : ADDRESS) return ELEMENT _TYPE;

ganeric
type ELEMENT_TYPE is private;
procedure STORE (INTO : ADDRESS; OBJECT : ELEMENT_TYPE);
end SYSTEM;
The generic function FETCH may be used to read data objects from given addresses

in store. The generic procedure STORE may be used to write data objects to given
addresses in store.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 7

R A AN T N R S T Y s T T T R T Y S L I T R Y L T e Y
o] A N O N X LAl Ealk ! Lol ¥ ;

L a2 adl S

£

% R S 4
2w ye'
o

w
b

Ml Bt
22 X2 L

o ':S-; ff}

;',- 'x'. l-';): _:!:;; ;

"'If-- [)
- -

<

,
5 8o

ool P S i
fsf&"‘ X [

Y oy v .
Pl s
I{\'h'l

5777 ®

W 3

A TR PR AR TR TS TSP A AR TR O O O O O O IO OO ia @Y @V ‘4% aVa 8% LAY LR R RY 4 val Vat Ty “ap sy Sof q,

l'o) n \‘l. 'Q,l X

s

4 Restrictions on Representation Clauses

This version of the Alsys IBM 370 Ada Compiler supports representation clauses
[13.1] with the following exceptions:

« There is no bit level implementation for any of the representation
clauses.

w Address clauses are not supported.

a Change of representation for RECORD types are not implemented.
s Machine code insertions are not supported.

s For the length clause:

- Size specification: T'SIZE is not implemented for types declared
in a generic unit.

- Specification of small for a fixed point type: T'SMALL 1is
restricted to a power of 2, and the absolute value of the
exponent must be less than 31.

s The Enumeration Clause is not allowed if there is a range constraint on
the parent subtype.

s The Record Clause is not allowed for a derived record type.

s The pragma PACK [13.1] is also not supported. However, its presence in
a program does not in itself make the program illegal, the Compiler will
simply issue a warning message and ignore the pragma.

5 Conventions for Implementation-Generated Names

Special record components are introduced by the compiler for certain record type
definitions. Such record components are implementation-dependent: they are used
by the compiler to improve the quality of the generated code for certain operations
on the record types. The existence of these components is established by the
compiler depending on implementation-dependent criteria. Attributes have been
defined for referring to them in record representation clauses. An error message is
issued by the compile: if the user refers to implementation-dependent attribute that
does not exist. If the implementation-dependent component exists, the compiler
checks that the storage location specified in the component clause is compatible with
the treatment of this component and the stoarge locations of other components. An
error message is issued if this check fails.

There are four such attributes:

Alsys IBM 370 Ada Compiler, Appendix F for VM ,/CMS, Version 3.2 8

Y

R T A R e N Rt N TR R R RO,

.....

I -".
"

; éﬁz '

-

2@ &

-
-

L]

S S

o

r.¥

[
»
)
")

3
(
N \Y
|i

-

o
S

-
.)"Q

RV b It |

P

-

-

-

AP

¥

)
L]

o
Ly

)

i

-

D

5 .8 Hat 8a¥ute” it ale",

R

e e e g e s e e e

e oty 108" ot o8 o*h a7 .87 4.0 V0" 00 40" R T R R R R R O T R O R DY Y Y IV I Y U DY PN IR Y DN YO

T RECORD_SIZE For a prefix T that denotes a record type. This \
attribute refers to the record component introduced by)
the compiler in a record to store the size of the record
object. This component exists for objects of a record
type with defaulted discriminants when the sizes of the
record objects depend on the values of the
discriminants.

T'VARIENT _INDEX For a prefix T that denotes a record type. This
attribute refers to the record component introduced by ;
the compiler in a record to assist in the efficient
implementation of discriminant checks. This
component exists for objects of a record type with
variant type.

C'ARRAY_DESCRIPTOR For a prefix C that denotes a record component 3
of array type whose component subtype definition]
depends on discriminants. This attribute refers to the
record component introduced by the compiler in a p
record to store information on subtypes of components
that depend on discriminants.

C'RECORD__DESCRIPTOR For a prefix C that denotes a record component '
of record type whose component subtype definition
depends on discriminants. This attribute refers to the ‘
record component introduced by the compiler in a !
record to store information on subtypes of components]
that depend on discriminants. '

There are four implementation-generated names:;

RECORD_SIZE This is an implementation-specific record component.
The component is introduced by the compiler in a
record to store the size of the record object.

VARIANT INDEX This is an implementation-specific record component.
The component is introduced by the compiler in a
record to assist in the efficient implementation of
discriminant checks.

ARRAY_DESCRIPTIOR and RECORD_DESCRIPTOR Array and record
descriptors are internal components which are used by :
the compiler to store information on subtypes or record
components that depend upon discriminants.

Array descriptors are used for record components of
array types, whereas record descriptors are used for
record components of record types

Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS, Version 3.2 9

T N P N L N N
LR . 's WO, > L] od - Ad

6 Address Clauses

Address clauses [13.5] are not supported in this version of the Alsys IBM 370 Ada
Compiler.
7 Restrictions on Unchecked Conversions

Unchecked conversions [13.10.2] are allowed only between types which have the
same value for their 'SIZE attribute.

8 Input-QOutput Packages
The predefined input-output packages SEQUENTIAL_IO [14.2.3], DIRECT_IO
(14.2.5], and TEXT_IO [14.3.10] are implemented as described in the Language

Reference Manual, as is the package 10__EXCEPTIONS [14.5], .which specifies the
exceptions that can be raised by the predefined input-output packages.

The package LOW_LEVEL_IO {14.6], which is concerned with low-level machine-
dependent input-output, has not been implemented.

8.1 Specifying External Files

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.1]
may represent a CMS file name or DDNAME specified using a FILEDEF command.

Files

The syntax of a CMS file name as specified in the Ada NAME parameter is as
follows: ‘

filename == fn [ft { fm 1] | %ddname

where

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 10

A %
e
AKX

-

xS

ey

- -

ACEIE UK TN A TN

O ot S M o“ PO LM AL IR I ".'.‘.1 ey d X X M O a“‘l‘ PR KO, u‘;‘a‘. IalLe

e e Ry YA e AV 0% 4% 80 ¢ty A S AT AVt A aVa Ata 8 Ve A A e A Va2 N e) Lo Sa8 Nl Vol b ab el dath Vel 5.8 ¢.0 0. 8"

fnis the CMS filename
St 1s the CMS filetype
Sm 1s the CMS filemode

If the filenames or filetypes exceed 8 characters then they are truncated. As
indicated above, the filetype and filemode fields are not mandatory components of
the NAME parameter. If the filemode is omitted, it defaults to "A1" for Ada mode
OUT; for Ada mode IN and INOUT, all accessed minidisks are searched and the
CMS filemode is set to the first file with the appropriate filename and filetype. If
in addition the filetype is omitted it defaults to "FILE".

The file name parameter may also be a DDNAME. If the file name parameter starts
with a % character, the remainder of the string (excluding trailing blanks) is taken as
a DDNAME previously specified using the FILEDEF command. If the DDNAME
has not been specified using FILEDEF, NAME__ERROR will be raised. If DELETE
is called for a file opened using a DDNAME, USE_ERROR will be raised, but the
file will be closed.

FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the
lexical rules of [2], separated by commas. The FORM parameter may be given as a
null string except when DIRECT_IO is instantiated with an unconstrained type: in
this case the RECORD_SIZE attribute must be provided. Attributes are comma-
separated; blanks may be inserted between lexical elements as desired. In the
descriptions below the meanings of natural, positive, etc., are as in Ada; attribute
keywords (represented in upper case) are identifiers [2.3] and as such may be
specified without regard to case.

USE_ERROR s raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent
OPEN and CREATE calls which specify the same external file. If such rules are
violated or if a different file sharing attribute is specified in a later OPEN or
CREATE call, USE_ERROR will be raised. The syntax is as follows:
NOT_SHARED | SHARED => access__mode
where
access_mode ::= READERS | SINGLE__WRITER | ANY

A file sharing attribute of:

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 11

PRA LN

NOT_SHARED
implies only one internal file may access the external file.
SHARED => READERS

imposes no restrictions on internal files of mode IN_FILE, but prevents
any internal files of mode OUT_FILE or INOUT_FILE being associated
with the external file.

SHARED => SINGLE_ WRITER

is as SHARED => READERS, but in addition allows a single internal file
of mode OUT_FILE or INOUT_FILE.

SHARED => ANY

places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is
taken from that file's sharing attribute, otherwise the default depends on the mode
of the file: for mode IN_FILE the default is SHARED => READERS, for modes
INOUT_FILE and OUT_FILE the default is NOT_SHARED.

Record size attribute

This attribute controls the record format (RECFM) and logical record length
(LRECL) of an external file.

By default, records are output according to the following rules (see sectior 8.5):

» for TEXT_IO and SEQUENTIAL_IO, variable-length record files
(RECFM = V).

=« for DIRECT_IO, fixed-length record files (RECFM = F).

The user can specify the record size attribute to force the representation of the Ada
element in output records of a given byte size. If the record size attribute is
specified, fixed-length records (RECFM = F) will be generated, with a record length
(LRECL) as specified (see section 8.5).

In the case of DIRECT_IO and SEQUENTIAL_IO for constrained types the value
given which must not be 'smaller than ELEMENT_TYPE'SIZE /

SYSTEM.STORAGE_UNIT; USE_ERROR will be raised if this rule is violated.

In the case of DIRECT_IO for unconstrained types the user is required to specifiy
the RECORD_SIZE attribute (otherwise USE_ERROR will be raised by the OPEN
or CREATE procedures). The size specified must be large enough to accommodate
the largest record which is to be read or written plus 4 bytes for the descriptor (see
section 8.5). If a larger record is processed, DATA _ERROR will be raised by the
READ or WRITE.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 12

00N
CNINOVUROUDADRGOGS ISRDROUISOSIND

RO N W

R AI TTT T LA AN AN T MR I N AR TPV AR LA AT VRS AR UUT AR RO N LR AN KA ANASN UG AN

In the case of TEXT_IO, output lines will be padded to the requisite length with
spaces; this fact should be borne in mind when re-reading files generated using
TEXT__10 with the record size attribute set.
The syntax of the record size attribute is as follows:
RECORD_SIZE => natural
where natural is a size in bytes.
The default is
RECORD_SIZE => element_length
where
element_length = ELEMENT__TYPE'SIZE / SYSTEM.STORAGE_UNIT
for input-output of constrained types, and
RECORD_SIZE => 0
(meaning variable-length records) for input-output of unconstrained types other than

via DIRECT_IO in which case the RECORD_SIZE attribute must be provided by
the user.

Carriage control

This attribute applies to TEXT_IO only, and is intended for files destined to be sent
to a printer.

For a file of mode OUT_FILE, this attribute causes the output procedures of
TEXT _10 to place a carriage control character as the first character of every output
record; 1" (skip to channel 1) if the record follows a page terminator, or space (skip
to next line) otherwise. Subsequent characters are output as normal as the result of
calls of the output subprograms of TEXT_IO.

For a file of mode IN__FILE, this attribute causes the input procedures of TEXT_IO
to interpret the first “character of each record as a carriage control character, as
described in the previous paragraph. Carriage control characters are not explicitly

returned as a result of an input subprogram, but will (for example) affect the result
of END_OF_PAGE.

The user should naturally be careful to ensure the carriage control attribute of a file
of mode IN_FILE has the same value as that specified when creating the file.

The syntax of the carriage control attribute is as follows:

CARRIAGE_CONTROL => boolean

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 13

VIR U LU UA

h O e = 4 R
‘!"'-""‘."’3‘."-".? "‘!‘."'.' ."s""-"l\.'- "‘" “"' k‘.'c'.h . ..l'..l (XN 't.. f a'l RoASA N .i.l‘l . '.‘!o.h‘.ll.lt".- 9.0, 4% .! .98,

avh gt

BN

- I e ALY A
1, B AR RS RO T T

The default is set according to the filetype of the file: if the filetype is LISTING,
the default is CARRIAGE_CONTROL => TRUE otherwise the default is
CARRIAGE _CONTROL => FALSE.

Truncate

This attribute applies to TEXT_IO files of mode IN_FILE, and causes the input
prczedures of TEXT 1M to remsve trailing blanks from records read.

The syntax of the TRUNCATE attribute is as follows:
TRUNCATE => boolean

The default is TRUNCATE => FALSE.

Eof_string

This attribute applies only to files associated with the terminal opened using
TEXT_IO, and controls the logical end_of _file string. If a line equal to the logical
end_of_file string is typed in, END_OF_FILE will become TRUE. If an attempt
is made to read from a file for which END_OF_FILE is TRUE, END_ERROR
will be raised.

The syntax of the EOF_STRING attribute is as follows:
EOF_STRING => sequence_of_characters
The default is EOF_STRING => /*
The EOF_STRING may not contain commas or spaces.
If, however, the END_OF_FILE function is called, a "look-ahead read" will be
required. This means that (for example) a question-and-answer session at the
terminal coded as follows
while not END_OF_FILE loop
PUT_LINE ("Enter value:");
GET_LINE (...);
end loop;
will cause the prompt to appear only after the first value has been input. If the

example is recorded without the explicit call to END_OF_FILE (but perphaps
within a handler for END__ERROR) the behaviour will be appropriate.

STANDARD_INPUT and STANDARD_OUTPUT
The Ada internal files STANDARD_INPUT and STANDARD_OUTPUT are

associated with the external files %SYSIN and %SYSOUT, respectively. By default,
the DDNAMEs SYSIN and SYSOUT are defined to be the display terminal, but you

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 14

- T Y I

»,.' ‘. .'0‘.‘.‘ “."n_ b', '.‘0'0- «.l‘\l‘o I.ul \ .to| “F l‘\ Loy A ‘-'(‘

e

LY W ‘9 a’¢ 8%8 28 871 a'h”, ‘a8 23 a'd 2% et a4 aVh" 2t at2 a2 12 % 02" - -.m' RO R AR R AN AN M N] ‘a §ta ¢ Ve B¥g 898 Qeg aVa AU AV aBa pl. - "‘!'

:::;
4

N BN NN

A | g LGP W W W R N - L L om L - . B A e e R LR
DR S OOOONG AN ,.Q’C. 9, .q.a OO N.\ PP ﬁ o, “"‘,""‘" """‘"’ "‘ " T KPR (v \

Wil NN VT U UR Y NI RN AR R R A A R U WU NG WAy FU T "o BV e B N A0 N Hal o %eF ol val Vab al el “a¥.‘a¥ ¢

may redefine their assignments using the FILEDEF command before running any
program.

8.2 USE_ERROR

The following conditions will cause USE_ERROR to be raised:

s Specifying a FORM parameter whose syntax does not conform to the
rules given above.

= Specifying the EOF_STRING FORM parameter attribute for files other
than TEXT_IO files of mode IN_FILE.

= Specifying the CARRIAGE_CONTROL FORM parameter attribute for
files other than TEXT_IO files.

» Specifying the BLOCK_SIZE FORM parameter attribute to have a value
less than RECORD_SIZE.

» Specifying the RECORD_SIZE FORM parameter attribute to have a
value of zero (or failing to specify RECORD_SIZE) for instantiations of
DIRECT_IO for unconstrained types.

= Specifying a RECORD_SIZE FORM parameter attribute to have a value
less than that required to hold the element for instantiations of
DIRECT_IO and SEQUENTIAL__IO of constrained types.

« Violating the file sharing rules stated above.
s Attempting to delete a file opened by DDNAME.
= Attempting to write a zero length record to other than the terminal.

w Errors detected whilst reading or writing (e.g. writing to a file on a read-
only disk).

8.3 Text Terminators

Line terminators [14.3] are not implemented using a character, but are implied by the
end of physical record.

Page terminators [l4.3] are implemented using the EBCDIC character 0C
(hexadecimal).

File terminators [14.3] are not implemented using a character, but are implied by the
end of physical file. Note that for terminal input a line consisting of the
EOF_STRING (see 8.1) is interpreted as a file terminator. Thus, entering such a
line to satisfy a read from the terminal will raise the END_ERROR exception.

The user should avoid the explicit output of the character ASCILFF [C). If the user
explicitly outputs the character ASCILLF, this is treated as a call of NEW_LINE
[14.3.4].

The following characters have special meaning for VM/SP; this should be borne in
mind when reading from the display terminal:

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 15

AthBd) 4

r

WA WAL Y]

Character Default VM/SP meaning May be changed using
logical line end symbol CP TERMINAL LINEND
" logical escape character CP TERMINAL EGCAPE
@ logical character delete symbol CP TERMINAL CHARDEL

8.4 EBCDIC and ASCII

All I/O wusing TEXT_IO is performed using ASCII/EBCDIC translation.
CHARACTER 2and STRING values are held internally in ASCII but represented in
external files in EBCDIC. For SEQUENTIAL_IO and DIRECT_IO no translation
takes place, and the external file contains a binary image of- the internal
repiresentation of the Ada element (sece section 8.5).

It should be noted that the EBCDIC character set is larger than the (7 bit) ASCII and
that the use of EBCDIC and ASCII control characters may not produce the desired
results when using TEXT_IO (the input and output of control characters is in any
case not defined by the Ada language [14.3]). Furthermore, the user is advised to
exercise caution in the use of BAR (J) and SHARP (#), which are part of the lexis of
Ada; if their use is prevented by translation between ASCII and EBCDIC, EXCLAM
(!) and COLON (:), respectively, should b2 used instead [2.10).

Various translation tables exist to translate between ASCII and EBCDIC. The
predefined package EBCDIC is provided to allow access to the translation facilities
used by TEXT_IO and SYSTEM_ENVIRONMENT (see User's Guide for VYM/CMS,
Appendix E).

The specification of this package is as follows:

package EBCDIC is

type EBCDIC_CHARACTER is (

nul, -« 0 =0h

soh, -- 1=1h

stx, -- 2=2h

etx, -- 3=3h

E_«,

ht, -- 5§=5h

E_s, _,

det, ' -- 7=7h

E_s,

E_9,

E_A,

vt, --11=0Bh

np, -- 12 =0Ch

er, -- 13 =0Dh

s0, -- 14 = 0Eh

i, -- 15 = 0Fh

dle, -- 16 = 10h
Alcys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 16

B e A A e D o A Mo 2t o A NG N R TR I TRt e Faa ¥

L M, U WU P Y A L WL MU U U U NG N M R A N R R R VR R MU T T N T T o¢|..
+
'

NN
()

i

A,
0

LA R AR I

2.

rs,

us,
E_20,
E_21,
fs,
E_23,
E_24,
E_2s,
etb,
esc,
E_28,
E_29,
E 2A,
E_2B,
E_2C,
enq,
ack,
bel,
E_30,
E_31,
syn,
E_3s,
E_34,
E_3s,
E_3s,
eot,
E_38,
E_39,
E_3A,

K . E 3B,

dcd,
nak,
E_3E,
sub,

E_41,
E_42,
E_43,
E_44,

s 0"‘ ‘!.\Q.,.n"‘l"

--29 = 1Dh

--30 = 1Eh
--31=1Fh
-- 34 =22h
-- 88 = 26h
--39=27h
-- 45 = 2Dh
-- 46 = 2Eh
-- 47 = 2Fh
-- 50 = 32h
-- §5 = 37h
-- 60 = 3Ch
-- 61 =3Dh
-- 63 = 8Fh
-- 64 = 40h

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2

DO '!‘"'.‘\"‘ﬂ‘.‘d!’"!\' .!f'.t.i«!'.‘)‘, n'tO. & ' LA X l.t‘l" 'a"’l“-"!‘t‘-‘l{‘l ANNH l. ‘n‘l‘h N - (\ " o '0“; ..0.. o

ST
WY

i

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2

DA {) \
NI A OGN

3
[}

,
E_51,
E_52,
E_53,
E_54,
E_55,
E_56,
E_57,
E_58,
E_59,

" Q O
XG0

QA

L A

"h".h :f"u!“'fl'o..t'c...l'

-- 75 = 4Bh
-- 76 = 4Ch
-- 77 — 4Dh
-- 78 = 4Eh
-- 79 = 4Fh
-- 80 = SOH
-- 90 = §Ah
-- 91 =5Bh
--92 =5Ch
-- 93 = 5Dh
-~ 94 = 5Eh
-- 95 = SFh
-- 96 = 60¢h
-- 97 = 61h
--107 = 6Bh
--108 = 6Ch
--109 = 6Dh
--110 = 6Eh
--111 = 6Fh

18

» y KK T A0V TS 0
B o e e B R D By ‘* Wi

oty
&

.
[} ",(),
o ()
(3
% % & ‘l
At

W - -~ T . .
R IS I A S N SO AN S

--121 = 7%h
4N --122 = TAh
#, --123 = 7Bh
‘@', --124 = 7Ch
--125 = 7Dh
=", --126 = 7Eh
--127 = TFh
E_8o0,

‘a’, --129 = 81h
b, --130 = 82h
e’ --131 = 83h
'd’, --132 = 84h
‘e’ --133 = 85h
', --134 = 86h
‘g’ --135 = 87h
*h’, --136 = 88h
i, --137 = 8%h
E_BA,

E_8B,

E_8C,

E_8D,

E_BE,

E_SF,

E_90,

3 --145 = 91h
k', --146 = 92h
", --147 = 93h
'm’, --148 = 94h
'n’, --149 = §5h
‘o', --150 = 96h
'p', --151 = 97h
'q’, --152 = 98h
', --153 = 9%9h
E_09A,

E_9B,

E_oC,

E_9D,

E_OE,

E_OF,

E_A0,

N --161 = OAlh
s’ ‘ --162 = 0A2h
't ‘ --163 = 0A3h
u', --164 = 0A4h
v, --165 = 0AS5h
‘w' ~--166 = 0A6h
x', --167 = 0A7h
'y, --168 = 0ASh
g’ --169 = 0A%h
E_AA,
E_AB,
E_AC,

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2

A ToX B Mo P LM

ia% oa®

19

W W ¥ W W W W W - W T Ca T P H Mo P Mn? o % M ™ W R s
Nt TN D e e T e el

e *.y_rrf(

-
- - -

s

.%E_:‘

R JE W o

...iJ_' [,

5
%

cof @ 5
P P‘s.

S B
!

v

Ll

A
el

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2

PR T AN W

o

P
NN
[
P
: §
5
r}
*
2

1 --173 = 0ADh

--189 = 0BDh

| --192 = NCGL
‘A, --193 = 0Clh
‘B, --194 = 0C2h
'c', --195 = 0C3h
D', --196 = 0C4h
'E’, . --197 = 0CSh
', --198 = 0C6h
'G’, --1989 = 0C7h
‘H', --200 = 0C8h
T, --201 = 0CSh

'}, --208 = 0DGh
J, --209 = 0D1h
'K, --210 = 0D2h
'L, --211 = 0D3h
M, --212 = 0D4h
N, --213 = 0D5h
'0’, --214 = 0D6h
P, ' --215 = 0D7h
'Q’, --216 = 0D8h
'R, --217 = 0D%h

', --224 = OECh

.. m . I

e e T W T T T O ‘

20

r e 98" a0l aly e 0" ;3 ; n
ALY * R0 et ReP Bae fad ot gt

--226 = 0E2h
--227 = 0E3h
--228 = OE4b
--229 = OESh
--230 = OE6h

-231 = 0Z7h
--232 = OE8h
--233 = CE%h

--240 = OFOh

--241 = OF1h

--242 = OF2h

--243 = OF3h

--244 = OF4h

--245 = OFSh

--246 = OF6h

--247 = OF7h

{+s = 0F8h

--249 = 0F9h
E_FA,
E_FB,
E_FC,
E_FD,
E_FE,
E_FF);

: constant EBCDIC__CHARACTER :=

: constant EBCDIC_CHARACTER :

: constant EBCDIC_CHARACTER :

: constant EBCDIC__CHARACTER :=

: constant EBCDIC__CHARACTER :=

: constant EBCDIC__CHARACTER :

: constant EBCDIC_CHARACTER :

: constant EBCDIC__CHARACTER := E_17;

: constant EBCDIC_CHARACTER := E_1A;
: constant EBCD[C_'CHARACTER = E_1B;
: constant EBCDIC_CHARACTER := E_1C;
: constant EBCDIC__CHARACTER := E_20;

: constant EBCDIC_CHARACTER := E_21;

: constant EBCOIC_CHARACTER := E_23;

: constant EBCDIC_CHARACTER := E_24;

: constant EBCDIC_CHARACTER := E_24;

: constant EBCDIC_CHARACTER := E_25;

: constant EBCDIC_CHARACTER := E_28;

: constant EBCDIC_CHARACTER = E_29;
: constant EBCDIC_CHARACTER := E_2A;

Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS. Version 3.2

,.' I'\p"“f L .. - Wy v'..v ~v- W' g WY

AW !

W,

SW
csp
MFA
IR
PP
TRN
NBS
SBS

RFF
cus
sp
RSP
CENT
SHY
HOOK
FORK
NSP
CHAIR

™

{

™M

MEH OO 9N Ww e =~ O

|l‘1t'll‘1

[P oI]
[

l

—
o

—
=~

—
w

[
o

mmEMmMiammmm
-
—

—
o

—
oo

—
0

—
o]

—
m

-
o)

*»
~

~
~3

»
©

)
o]

(X
m

Ly
~

IR GV VI VIR OB v B o BN O]
w
o

w
~

: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant £BCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER :=
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_ CHARACTER
: constant EBCDIC_CHARACTER :

: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: corstant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_ CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER

= E_2A;
= E_2B;
= E_2C;
= E_33;
;= E_34;
= E_35;
= E_36;
= E_38;
= E_39;
= E_8A;
:= E_3B;

.,
.

= E_41L

= E_4A;
= E_CA;
:=E_CC;
:= E_CE;
= E_EI
= E_EC;

= E_FF;

:= nul;
:= soh;
1= otX;
= etX;
;= ht;

= del;

vt,

= np;

= cr;

80;

1= 8i;
1= dle;
= del;
1= de2;
= de3;
:= nl;
1= bs;
1= can;
:= em;
= g%
= rs,
:= us;
:= fs;
:= etb;
1= esc;
1= engq;
1= ack;
:= bel;
1= syn;

1= eot,;

Alsys [BM 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2

g e A N e et e a-mn e e o . . .
N I A S AN IO f‘:’”.-";.r}.r"w"‘.r"‘r - ',r"'.r“ Pl
. ’ o A | ! . . L) - () .

W

’*.

N
L)

NN

W v

-a -

PRt

22

_'i’-'. (\?- -

«
)
.

LY

a)

V<

]
*
-

)
%

q;l
'

y =3

-
-

)

p {‘;.; ®\~ "f" R

o ol

Ty

St S

5]®

WA Bs

5 XA A
St el

A i

oo

. . -
1 " Ce et

‘,-.
2

by

..
il
s

& K \

A

ALK

B

-~ f{’ff: . .

P
2Pl
J,,

RTRCCCOTITY

=

[Y

el St Tt A
- W 8§
[St S S A

-
|

&2
5%

E_3C : constant EBCDIC_CHARACTER := de4;
E 3D . constant EBCDIC_CHARACTER := nak;
E_3F : constant EBCDIC_CHARACTER := sub;
E 40 : constant EBCDIC_CHARACTER := ',
E 4B : constant EBCDIC_CHARACTER := ',
E_4C : constant EBCDIC_CHARACTER := '<;
E_4D : constant EBCDIC_CHARACTER :='(’;
E_4E : constant EBCDIC_CHARACTER := '+';
E 4F : constant EBCDIC_CHARACTER :='[;
E 50 : constant EBCDIC_CHARACTER := '&';
E_SA : constant EBCDIC__CHARACTER :="'1';
E_S5B : constant EBCDIC_CHARACTER :='§";
€ 5C : constant EBCDIC_CHARACTER := '*";
E_Sb : constant EBCDIC_CHARACTER :=')’;
E_SE : constant EBCDIC_CHARACTER :='};
E_SF : constant EBCDIC_CHARACTER :='"';
E_60 : constant EBCDIC_ CHARACTER :='-';
E_61 : constant EBCDIC_ CHARACTER :='/";
E 6B : constant EBCDIC_CHARACTER :=')';
E_6C : constant EBCDIC_CHARACTER := '%’;
E_6D : constant EBCDIC_ CHARACTER :='_";
E_6E : constant EBCDIC_CHARACTER := '>';
E_6F : constant EBCDIC_ CHARACTER :='?';
E_79 : constant EBCDIC_CHARACTER :=';
E_7A : constant EBCDIC_ CHARACTER := ':";
E 7B : constant EBCDIC_CHARACTER := '#';
E_7C : constant EBCDIC_CHARACTER :='@";
E_7D : constant EBCDIC_CHARACTER :="";
E_7E : constant EBCDIC_CHARACTER :='=";
E_7F : constant EBCDIC_CHARACTER :=
E_81 : constant EBCDIC_CHARACTER :=
E_82 : constant EBCDIC_ CHARACTER :
E_83 : constant EBCDIC_CHARACTER := '¢’;
E_84 : constant EBCDIC__CHARACTER := 'd’;
E_85 : constant EBCDIC__CHARACTER :='e’;
E_86 : constant EBCDIC_CHARACTER :='f';
E_87 : constant EBCDIC_ CHARACTER := 'g’;
E 88 : constant EBCDIC__CHARACTER :="'h';
E_89 : constant EBCDIC_CHARACTER := 'i";
E_91 : constant EBCDIC__ CHARACTER :='j';
E_92 : constant EBCDIC__CHARACTER := 'k’;
E_93 : constant EBCDIC_CHARACTER := 'I";
E_94 : constant EBCDIC__CHARACTER := 'm’;
E_95 : constant EBCDIC__CHARACTER := 'n;
E 96 : constant EBCDIC__ CHARACTER := 'o;
E_97 : constant EBCDIC__CHARACTER := 'p’;
E 98 : constant EBCDIC_ CHARACTER := 'q';
E 99 : constant EBCDIC_CHARACTER := 'r';
E_A1 : constant EBCDIC_CHARACTER := '-%;
E_A2 : constant EBCDIC_CHARACTER :='s';
E_A3 : constant EBCDIC_CHARACTER := 't';
E_A4 : constant EBCDIC_CHARACTER := 'u’;
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 23
D D AR e e oo e St e e e S o

D Ra® Dt Rl B0 BB A0 R Ats B's Bin 70 8"s &

VAL

N WU YO VA O AN RO A A A A T N NI I N AR T T v Qb 0a0 1 a0 A e et Tt adt
E_AS : constant EBCDIC_CHARACTER := v’}
E_Aé6 : constant EBCDIC_CHARACTER := 'w';
E_A7 : constant EBCDIC_CHARACTER := 'x';
E_As8 : constant EBCDIC_CHARACTER :="y";
E_A9 : constant EBCDIC_ CHARACTER :="¢';
E_AD : constant EBCDIC_CHARACTER :='[;

- E_BD : constant EBCDIC_CHARACTER :="|';
E_Co : constant EBCDIC_CHARACTER :='{";
E_Ci1 : constant EBCDIC_ CHARACTER :='A’;
E_C2 : constant EBCDIC_CHARACTER :="B’;
E_C3 : constant EBCDIC_CHARACTER :='C;
E_C4 : constant EBCDIC_CHARACTER := "D’
E_Cs : constant EBCDIC_ CHARACTER := 'E%;
E_Ceé : constant EBCDIC_CHARACTER :='F;
E_C7 : constant EBCDIC_ CHARACTER :='G';
E _Cs : constant EBCDIC_CHARACTER :='H';
E _Co : constant EBCDIC_ CHARACTER :="I';
E_Do : constant EBCDIC_CHARACTER :='}";
E_Di1 : constant EBCDIC_CHARACTER :='J’;
E_D2 : constant EBCDIC_CHARACTER := 'K';
E_D3 : constant EBCDIC_ CHARACTER :='L';
E_D4 : constant EBCDIC_CHARACTER := 'M";
E_ DS : constant EBCDIC__CHARACTER :='N;
E_Dé6 : constant EBCDIC__CHARACTER :='0";
E_D7 : constant EBCDIC_CHARACTER :='P’;
E_Ds8 : constant EBCDIC_CHARACTER :='Q’;
E_D9 : constant EBCDIC_CHARACTER := 'R}
E_EO : constant EBCDIC_CHARACTER :="\";
E_E2 : constant EBCDIC_CHARACTER :='§";
E_E3 : constant EBCDIC__CHARACTER :='T";
E_E4 : constant EBCDIC_CHARACTER :='U%
E_ES : constant EBCDIC__CHARACTER := 'V
E_Eé6 : constant EBCDIC__CHARACTER ='W,
E_E7 : constant EBCDIC__CHARACTER := 'X";
E_E8 : constant EBCDIC__CHARACTER :="Y";
E_E9 : constant EBCDIC__ CHARACTER :=: '2";
E_Fo : constant EBCDIC__CHARACTER :='0";
E_Fi1 : constant EBCDIC__CHARACTER :="1";
E_F2 : constant EBCDIC_ CHARACTER := '2";
E_F3 : conatant EBCDIC__CHARACTER := '3";
E_F4 : constant EBCDIC_CHARACTER :='4’;
E_Fs : constant EBCDIC__CHARACTER :='5";
E_Fe : constant EBCDIC__CHARACTER :='6’;

) E_F7 : constant EBCDIC__CHARACTER :='7";
E_F8 : constant EBCDIC__CHARACTER .= '8';
E Fg : constant EBCDIC_CHARACTER :='9";

type EBCDIC_STRING is array (POSITIVE range <>) of EBCDIC_CHARACTER,;

function ASCII_TO_EBCDIC (S : STRING) return EBCDIC_STRING;

Alsys [BM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2

AR T L PP € W ? "t & -, . ‘
ARG SRS 2 e 5 h s Sl s A i I e S SO AR At

24

DEE AN U R TSR R A TR R P WU W ¥ LN W W TV U WU U WV VY AN NG N AV P R AN AN R AR P S A NN LR KN KN RN P K R KR RS AR

"
J
7
&
@
503
-- CONSTRAINT_ERROR is raised if E_STRING'LENGTH /= A_STRING'LENGTH; ::c':
procedure ASCII_TO_EBCDIC (A_STRING : in STRING; "osj
E_STRING : out EBCDIC_STRING); , :::
ey
. 'a &
function EBCDIC_TO_ASCII (S : EBCDIC_STRING) return STRING; ®
"'.
¢
-- CONSTRAINT_ERROR is raised if E_STRING'LENGTH /= A_STRING'LENGTH; :e::;
procedure EBCDIC_TO_ASCII (E_STRING : in EBCDIC_STRING; N "c
A_STRING : out STRING); ;:;.
"
Al
end EBCDIC;)
i
f
The subprograms ASCII_TO_EBCDIC and EBCDIC_TO__ASCII convert between]
ASCII encoded STRINGs and EBCDIC_STRINGs as appropriate.)
0
t
The procedures ASCII_TO_EBCDIC and EBCDIC_TO_ASCII are much more !
efficient than the corresponding functions, as they do not make use of the program ®
heap. Note that if the in and out string parameters are of different lengths (i.e. W,
A_STRING'LENGTH /= E_STRING'LENGTH), the procedures will raise the |'»:a
exception CONSTRAINT ERROR. "sg
.. oyt
Note that the user may alter the ASCII to EBCDIC and EBCDIC to ASCII mappings A
used by the Alsys IBM 370 Ada compiler, as described in the installation guide. o
If SEQUENTIAL _IO is instantiated with the type EBCDIC_STRING, IO of arbitary _'::
EBCDIC strings is possible. Note also that in many mays EBCDIC STRINGs may N
be manipulated exactly as the predefined type STRING; in particular, string literals .':w
and catenations are available. e
.!I
8.5 Characteristics of disk files "-,
| o~
Disk files that are have already been created and are opened take on the .'_: :
characteristics that are already associated with that file. "o
®
The characteristics of disk files that are created using the predefined input-output b N
packages are set up as described in the below. o
i
#¥s 4
] “
¢
TEXT_IO ,
. ®
= RECFM = V., unless the RECORD_SIZE FORM parameter component 1s "\J:
specified in which case RECFM =F and the LRECL is as specified. NN
1"'(-
= A carriage control character is placed in column 1 if the CARRIAGE control %
component is specified. o
o 9
« Data is translated between ASCII and EBCDIC so that the external file is -
readable using other system 370 tools. "_':
N
-f\
-
2N
®
. 5
Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS. Version 3.2 25 :
l':i;
“l
At
...:-
N

B 4an

AR KARI IR XA R RN KA AR I A TR e T80T 8. 0 40 P 0 40 LU RLICRY S odava e

SEQUENTIAL 10

= RECFM = V, unless the RECORD_SIZE FORM parameter component is
specified in which case RECFM = F and the LRECL is as specified.

« No translation is performed between ASCIl and EBCDIC; the data in the
external file is a memory image of the elements written, preceded by a 4-byte
length count in the case of unconstrained types for which a RECORD_SIZE
component has been specified.

DIRECT_I10

s RECFM=F and LRECL=ELEMENT_TYPE'SIZE/SYSTEM.STORAGE__UNIT
for unconstrained types (unlesss overriden by a RECORD_SIZE FORM
parameter component), LRECL is defined by the mandatory RECORD_SIZE
FORM parameter component for unconstrained types.

= No translation is performed between ASCII and EBCDIC; the data in the
external file is a memory image of the elements written, preceded by a 4-byte
length count in the case of unconstrained types.

s DIRECT_IO files may be read using SEQUENTIAL_ 10 (vice-versa if a
RECORD_SIZE component is specified). .

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as
follows:

SHORT _INTEGER -32768 .. 32767 -- 2%*%15 -1
INTEGER -2147483648 .. 2147483647 -- 2%%3] - |

For the packages DIRECT_1O and TEXT_IO, the ranges of values for types
COUNT and POSITIVE_COUNT are as follows:

COUNT 0 ..2147483647 -~ 2*%3] - 1

POSITIVE_ COUNT 1 ..2147483647 -- 2%*3] - |

For the package TEXT_IO, the range of values for the type FIELD is as follows:

FIELD 0 ..255 -~ 2%*8 -1

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 26

AN KM BN ER AN i X

9.2

SHORT_FLOAT

DIGITS"
MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST

MACHINE_ RADIX
MACHINE_ MANTISSA
MACHINE_EMAX
MACHINE__EMIN
MACHINE__ROUNDS
MACHINE_OVERFLOWS
SIZE

FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

TN AT IO

Floating Point Type Attributes

6

21

84
2.0 **
2.0 **
2.0 **
252
2.0 ** -253

2.0 ** 127 * (1.0 - 2.0 ** -21)
-2.0 ** 252 * (1.0 - 2.0 ** -24)
2.0 ** 252 * (1.0 - 2.0 ** -24)
16

6

63

-64

FALSE

TRUE

32

-20
-85
84 * (1.0 - 2.0 ** -21)

15

51
204
2.0 **
2.0 ¥+
2.0 **
252
2.0 ** -253

2.0 ** 252 * (1.0 - 2.0 ** 51)
22.0 ** 252 * (1.0 - 2.0 ** -56)
2.0 ** 252 * (1.0 - 2.0 ** -56)
16

14

63

-64

FALSE

TRUE

64

-50
-205
204 * (1.0 - 2.0 ** -51)

Approximate
value

9.54E-07
2.58E-26
1.93E425

6.91E-77
1.70E+38
-7.24E+75
7.24E+75

Approximate
value

8.88E-16
1.94E-62
2.57E+61

6.91E-77
7.24E+75
-7.24E+75
7.24E+75

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2

TRl Lt s ST AT e O S AT AT AT AT S

BN AN
%0

27

R SN BN
i".ll

et |

N,

'.'-.r.v R s"- he S
'_."' o »z‘.r';,' A

e

=

- -, -

&
o %’

Cp €% 52 0% 090 BV8 0% (% 8% 'R 850 88 070 B 540 6 gt b g ¥ 00t @t g b 0b 0.F §a¥ 0204, ¥ g2V 02" 0% 027 02t gat 0g"

LONG _FLOAT

Approximate

value y
DIGITS 18)
! MANTISSA 61 b
k. EMAX 244 %
; EPSILON 2.0 ** -60 8.67E-19 |:
SMALL 2.0 ** -245 1.77E-74 y
' LARGE 2.0 ** 244 * (1.0 - 2.0 ** -61) 2.83E+73 : y
SAFE_EMAX 252
SAFE_SMALL 2.0 ** -253 6.91E-77 Y
SAFE_LARGE 2.0 ** 252 % (1.0 - 2.0 ** -61) 7.24E+75 d
FIRST -2.0 ** 252 % (1.0 - 2.0 ** -112) -7.24E+75 &
LAST 2.0 ** 252 % (1.0 - 2.0 ** -112) 7.24E+75 ;
MACHINE_RADIX 16 l
MACHINE_MANTISSA 28)
' MACHINE_EMAX 63 e,
v MACHINE_EMIN -64 y
_ MACHINE_ROUNDS FALSE \
| MACHINE_OVERFLOWS TRUE ¢
SIZE 128 ¢

A

10 Other Implementation-Dependent Characteristics

: 9.3 Attributes of Type DURATION a
X DURATION'DELTA 2.0 ** -14 et
K DURATION'SMALL 2.0 ** -14 e
DURATION'LARGE 131072.0 y
| DURATION’FIRST -86400.0 o
| DURATION'LAST 86400.0 ~
o
4
~$

10.1 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Ada Run-
| Time Executive's representation of task objects, including the task stacks, are
allocated in the heap.

S

All objects whose visibility is linked ‘to a subprogram or block have their storage
reclaimed at exit.

A S

10.2 Characteristics of Tasks

The default task stack size is 16 Kbytes, but by using the Binder option TASK the
size for all task stacks in a program may be set to any size from 4 Kbytes to 16
y Mbytes.

PR EAT NPT RISl

P

Sy vt
e

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2

n
W% O Y Y NS T A I e e I I U 0 T T TR T LTS
Jel R S s L AP e S N R S AN YA T 2 ot W

s PP 3 35 A A
8 V.8 ! S ...i‘-- I-.o

S aerh VR e R A L O At a1 TR e at At fad Fat 02 43 ata% e 0t o 0s", ' T a8 Ha® 0g® 00 ¥t Ga o 0a¥ a® 0av ta ¢V da¥ 4at tgt Rt Hat 0 Y 820 AT Bat BB gav gav $2% _Sab fat Bev ".Q

- W

"
X
’
I'.‘
Timeslicing is implemented for task scheduling. The dcfauit time slice i1s 1000 :i‘
milliseconds, but by using the Binder option SLICE the time slice may be set 10 any .|:|
period of 10 milliseconds or more. It is also possible to use this option to specify no 9
timeslicing, i.e. tasks are scheduled only at explicit synchronisation points. K\
Timeslicing is started only upon activation of the first task in the program, so the l,
SLICE option has no effect for sequential programs. :,
[il
Normal priority rules are followed for preemption, where PRIORITY values run in \
the range 1 .. 10. All tasks with "undefined" priority (no pragma PRIORITY) are A
considered to have a priority of 0. il
The minimum timeable delay is 10 milliseconds. >
{
o
The maximum number of active tasks is limited only by memory usage. Tasks hy!
release their storage allocation as soon as they have terminated. 'h
X
w0
The acceptor of a rendezvous executes the accept body code in its own stack. A)
rendezvous with an empty accept body (e.g. for synchronisation) does not cause a ’f
context switch. i
{
The main program waits for completion of all tasks dependent on library packages Yy
before terminating. Such tasks may select a terminate alternative only after 4
completion of the main program. »
5
Abnormal completion of an aborted task takes place immediately, except when the "
abnormal task is the caller of an entry that i1s engaged in a rendezvous. Any such o
task becomes abnormally completed as soon as the rendezvous is completed. K
If a global deadlock situation arises because every task (including the main program) N
is waiting for another task, the program is aborted and the state of all tasks is '
displayed. ;’. A
"~
10.3 Definition of a Main Program '
A main program must be a non-generic, parameterless, library procedure. "3
.
"2
10.4 Ordering of Compilation Units o
19
1
The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on)
compilations beyond those required by the language. However, if a generic unit is .:‘
instantiated during a compilation, its body must be compiled prior to the completion)
of that compilation [10.3]. -
'
;
10.5 Package SYSTEM_ENVIRONMENT L-
hY
‘-
The implementation-defined package SYSTEM__ENVIRONMENT enables an Ada :
program to communicate with the environment in which it is executed. : ,
A
The specification of this package is as follows: D
)

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 29

L) AT Y e
J¥ ‘I‘.. 3 V’ v. o3 Y

[N R

e

‘ W
RO

Y

AR N

‘.-'l-."y -‘, e W N "'.‘.\‘ :\.“""u‘v 3 MY BN

OOCN X AT TN M K M R L RN . P R U W T I O O O O I N R TR TR O TS OV O O O

package SYSTEM_ENVIRONMENT is
subtype EXIT STATUS is INTEGER;
type STACK_MODE is (LIFO, FIFO);
function ARG _LINE return STRING;
function ARG_LINE_LENGTH return NATURAL;

procedure ARG _LINE (LINE : out STRING;
LAST : out NATURAL);

function ARG_START return NATURAL;
procedure SET_EXIT_STATUS (STATUS : in EXIT_STATUS);

function EXECUTE_COMMAND (COMMAND : in STRING)
return EXIT_STATUS;

procedure STACK (COMMAND : in STRING;
MODE :in STACK_MODE := LIFO);

procedure EXECUTE_COMMAND (COMMAND : in STRING);

procedure ABORT_PROGRAM (STATUS : in EXIT_STATUS);

function SYSTIME return DURATION;

function USRTIME return DURATION;

function EXISTS (FILE : in STRING) return BOOLEAN;
end SYSTEM_ENVIRONMENT;

The ARG__LINE subprograms give access to the CMS command line. The procedure
ARG_LINE is more efficient than the corresponding function, as it does not make
use of the program heap. The out parameter LAST specifies the character in LINE
which holds the last character of the command line. Note, if LINE is not long
enough to hold the command line given, CONSTRAINT_ERROR will be raised.
The command line returned includes the name of the program executed, but not any
run-time options specified.

The function ARG_START returns the index in the command line of the first
parameter, i.e. ignoring the executed program name,

The exit status of the program (returned in register 15 on exit) can be set by a call
of SET_EXIT STATUS. Subsequent calls of SET_EXIT_STATUS will overwrite
the exit status, which is by default 0. If SET_EXIT_STATUS is not called, a
positive e; it code may be set by the Ada Run-Time Executive if an unhandled
exception is propagated out of the main subprogram, or if a deadlock situation is
detected.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 30

) ¥ W A " n T A
LS R RELIPAY AU S e T L Y A OOCRY ~ ™ e .' K 0‘!'.‘ [

T w s

-

fatarn

ANy

n—.”\' -

e VT

2T FLE T EL A

RS,
- -

RN

L 2 i ' 3

’
L K A4

IR

e

x, g

A)
' e

I ok

e

< v.a a3 Lkt

L 3"8.] "R - ™ P L
DRSO PO X KON M P MU e i e Lo A AKX O D AR A

R R T R AT U A HE e 8% h 6 ek R L B et Bt a0 G20 eV 028 R 1 EaV (At AV 0® Gat e * davgat dg' datatar op’

The following exit codes relate to unhandled exceptions:
Exception Code Cause of exception

NUMERIC_ERROR:
] divide by zero
) 2 numeric overflow
CONSTRAINT ERROR:
3 discriminant error
4 lower bound index error
5 upper bound index error
6 length error
7 lower bound range error
8 upper bound range error
9 null access value
STORAGE_ERROR:

10 frame overflow
(overflow on subprogram entry)
11 stack overflow
(overflow otherwise)
12 heap overflow
PROGRAM__ERROR:
13 access before elaboration
14 function left without return
SPURIOUS_ERROR:
15-20 <an erroneous program>
NUMERIC ERROR 21 (other than for the above reasons)

CONSTRAINT_ERROR 22 (other than for the above reasons)

23 anonymously raised exception
(an exception re-raised using the raise
statement without an exception name)

24 <unused>

25 static exception
(an exception raised using the raise
statement with an exception name)

Code 100 is used if a deadlocking situation is detected and the program is aborted as
a result.

Codes 1000-1999 are used to indicate other anomalous conditions in the initialisation
of the program, messages concerning which are displayed on the terminal.

The EXECUTE_COMMAND subprograms with a non-null parameter execute the
given CMS SUBSET command. The result of the EXECUTE _COMMAND function
is the return code of the command.

If a null string is given as the pararaeter, the program exits to CMS subset level.
This allows CMS SUBSET commands to be executed directly. Issuing the command
RETURN from the CMS subset level will return to the Ada program. The return
code of the EXECUTE_COMMAND function with a null COMMAND string is
always zero.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 31

e e e

AU A A R A KN K RN R RN R R R R RN IR Y Moy s Ful bl 0ot ad ol ek ol B B R L 8 8 Yy BB a0 80 0 00 S0 8a0 0. | SO LY

TGt

‘.'5’:.

The STACK procedure allows a command to be placed on the console stack: either
last-in-first-out (LIFO) or first-in-first-out (FIFO).

-

® |55

The SYSTIME and USRTIME functions allow access to the amount of system and

user time, respectively, used by the program since its execution. b4
e
Ny
The EXISTS functions returns a boolean to indicate whether the file specified by the S -
file name string exists or not. .:",:’
[]
11 Limitations R,
)
o
11.1 Compiler Limitations .
Y
a The maximum identifier length is 255 characters. -s;;
s The maximum line length is 255 characters. .&‘
= The maximum number of unique identifiers per compilation unit is 1500. ‘;

« The maximum number of compilation units in a library is 1023.

» The maximum number of subunits per compilation unit is 100,

« The maximum size of the generated code for a single program unit
(subprogram or task body) is 128 Kbytes.

2]

A L

ey

a There is no limit (apart from machine addressing range) on the size of
the generated code for a single compilation unit.

*y !.

P AN

[}

» There is no limit (apart from machine addressing range) on the size of a
single array or record object.

-

w The maximum size of a single stack frame is 64 Kbytes including the
data for inner package subunits which is "unnested" to the parent frame.

b 2 ote S Tia Wa

» The maximum amount of data in the global data area of a single
compilation unit is 64 Kbytes, including compiler-generated data.

N e

1..,'\)

11 I Y R
-“:.":_.;'

1@ 2

«
n

<

[Iy i
> ¥ 7

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 32

AR K AN A T AN R AU A P R U U a X R U U ISUY

Sha

“ala?,

ot vay vald et Yay.

Bag Y Sah ¥al W0 ¥ N R ‘028 0,0 080,075 808" v)

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST

in its file name.

Actual values to

names that begin with a dollar sign.

each of these names before the test is run.

validation are given below.

Name and Meaning

be substituted are represented by
A value must be substituted for
The values used for this

Value

$BIG ID1

“Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2
Identifier the size of the
maximum input line length with
varying last character.
$BIG ID3
Identifier the size of the
maximum input line length with
varying middle character.
$BIG_ID4
Identifier the size of the’
maximum input line length with
varying middle character.
$BIG_INT LIT
An integer 1literal of value

-
)

298 with enough leading zeroes
so that it is the size of the
maximum length.

X23456789012345678901234567890123
4567890123456789012345
A....Al

199 characters

X23456789012345678901234567830123
4567890123456789012345
A....A2

199 characters

X23456789012345678901234567890123
4567890123456789012345
A....A3A....A
|-99-] |~-100-| characters
X23456789012345678901234567890123
4567890123456789012345
A....A4A....A

| -99-| |-100-| characters
0....0298

|====1

252 characters

Appendix C Page 1 of 4

N N N RN O AR NI

2L,

-
o

K .'J'/d}éf' -’ilifﬁfﬂ,\r"i\’GINf\r\f\f\ﬁ?

u,

AN

“wn
]
]

&
¥
v

'l
Kn

. T
Sah

=
L

. ,,x:'(,ﬂ'{-,': @
22

s
x
A X

A v, v
A'.{'v, »

>
[1

4

ysle

s
AR

R WA

3 - v 9 5
t{),‘l{'k} r" ', -
‘ "'7‘\!". AR

4w aw
s

)

o
L3

Name and Meaning

SBIG_REAL_LIT
A universal real literal of

value 690.0 with enough
leading zeroes to be the
size of the maximum line
length.

$BIG_STRING1
A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2

A string literal which when

catenated to the end of
BIG_STRING1 yields the image
of BIG ID1.

$BLANKS

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST
A universal integer 1literal
whose value is
TEXT_IO.COUNT'LAST.

SFIELD LAST
A universal integer 1literal
whose value is
TEXT IO.FIELD'LAST.

$SFILE_NAME WITH BAD CHARS
An external file
either contains
character or is too long.

name that

SFILE_NAME WITH WILD CARD_ CHAR
An external file name
either contains a wild
character or is too long.

that
card

$GREATER_THAN_DURATION
A universali real literal that
lies between
DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

invalid

TEST PARAMETERS

Value

0....0690.0

250 characters

"X23456789012345678901234567890123
4567890123456789012345
A....A"

===

72 characters

"A....ALl"

127 characters

235 blanks

2147483647

255

T?2?2?2222?2 LISTING Al

TOOLONGNAME TOOLONGTYPE TOOLONGMODE

100000.0

Appendix C Page 2 of 4

M P e N O T SV W N SR L ST N « =, - - . A " e .
e P P T B AT T) e g i o T T R N 0 Y N
A - 5 . o 5 3 o v A o o - N 'y - 2 - 0 » '” H . *

. » .

;
;
;
:

ST

A

s

AN R L%

iy

.‘}.'.. -

AR

AeauCl SR

e

%

<o V- e
.-“({“ '. & J|."

o~
T

v
L i I

il)

. ‘-‘.‘-v.!'.'
A
:

WAl)

" -
[N

al N

P I@ s,

e
x,'. {*r‘:"v’ﬁ

2

1@

?{‘
-5~y

g

%,
[
[N

0

~r

TEST FPARAMETERS

Name and Meaning Value

$ILLEGALLEXTERNAL_FILE_NAMEl T??2?2727?27? LISTING Al
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAMEZ TOOLONGNAME TOOLONGTYPE TOOLONGMODE

An external file name which is

too long. ,
$INTEGER_FIRST ~2147483648

A universal integer 1literal
whose value is INTEGER'FIRST.

- n S$INTEGER LAST 2147483647 ¢
. A universal integer 1literal]
iﬁ whose value is INTEGER'LAST.
~_~:
,ﬁ SINTEGER_LAST PLUS 1 2147483648
A universal integer 1literal
K whose value is INTEGER'LAST +]
ol 1.
) iy 4
B SLESS_THAN_DURATION -100000.0 3
W A universal real literal that
lies between DURATION'BASE'
s FIRST and DURATION'FIRST or
o any value in the range of f
. DURATION. :
2l
s $LESS_THAN DURATION BASE_ FIRST -10000000.0
A universal real literal that
- is less than DURATION'BASE' g
b FIRST "
A $MAX-DIGITS 18 \
il Maximum digits supported for :
floating-point types.
2
5 $MAX_ IN LEN ' 255
N Maximum input 1line length
N permitted by the
T implementation.
b3 $MAX_INT 2147483647 4
' A universal integer 1literal ;
Sﬁ whose value is SYSTEM.MAX INT.
2
. $MAX_INT PLUS 1 2147483648
A universal integer 1literal
s whose value is 4
;# SYSTEM.MAX INT+1. {
' ()
h 9
.ﬁ Appendix C Page 3 of 4 !
ts}
Y.

v
J
t
i

AT AN AT T e A A e A A A T e G L A e G A R LA Y
X X 3 ; N o . n v » "y 5 ! -

’I'l,‘ N ¥ e N

\’\" t}vﬁ*\ oy '\ ‘) ¥

S T T L R T T T W VIV W\ v

TEST PARAMETERS

Nare and Meaning Value

SMAX LEN_INT BASED LITERAL 2:0....011:

"A universal integer based | =~=-
literal whose value is 2#11# 250 characters
with enough leading zeroes in
the mantissa to be MAX_ IN LEN
long.
$MAX LEN REAL BASED LITERAL 16:0....0F.E:
A universal real based literal j=—===]
whose value is 16:F.E: with 248 characters
enough leading zeroes in the
mantissa to be MAX IN_LEN
long.

SMAX STRING_LITERAL "X23456789012345678901234567890123
A string 1literal of size 4567890123456789012345
MAX IN_LEN, including the A.. .A3"
quote characters. |==-=-=-| 197 characters

$MIN INT —-2147483648
A universal integer literal
whose value is SYSTEM.MIN_INT.

SNAME NO_SUCH_TYPE
A name of a predefined numeric
type other than FLOAT,

INTEGER, SHORT FLOAT,
SHORT_INTEGER, LONG_FLOAT, or
LONG_INTEGER.
S$NEG_BASED_INT 84200000000004#

A based integer literal whose

highest order nonzero bit
falls in the sign bit position
of the representation for

SYSTEM.MAX INT.

Appendix C ldage 4 of 4

'\._,a-\.'. wa,’-\. VA
v A A .c-

ul'.‘ 3] f‘)

CY ™)

LUl o in W v YA,

-y -¢\f- SRR SRS S T PR
i
2 . ;

B e T SR SRS Ry o 0

A T g B
¥ T g

v
P LA =

(AT L o g

R 1o o> s S R gl »”

[gl S)

Pt

P)

b

LA

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 25 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and
the matter will be reviewed by the ALMP.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT_ERROR.

C35502P: The equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the nominal upper bound of a fixed-
noint type to an object of that type raises CONSTRAINT ERROR
for that value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on 1line 28
wrongly raises CONSTRAINT ERROR, because its upper bound
exceeds that of the type.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

C35A03R These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

Appendix D Page 1 of 3

ol ' ! - BV Bl -y LY 8 L - -an - - T N c M """ - o U " MR “HMN" M
AN A X Mo A Mo MO i I A N T R Y »,,) ,‘ AN elAg ,,, o .. e

-~

[P .
Ly :1",1
&L

r e roes
(LY
K

- i@

St

..-l-l"
L
‘. e %y %

' .
4

3

|':.l‘ \

C37213H

C372133

c37215cC

C37215E

C37215G

C37215H

€38102C

C41402A

C45614C

A74016C

Cc85018B

C87B04B

CC1311B

BC3105A

HY

(O A o e

WITHDRAWN TESTS

The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises CONSTRAINT ERROR.

Variouz discriminant constraints are wrongly expected to be
incompatible with type CONS.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

The fixed-point conversion on 1line 25 wrongly raises
CONSTRAINT ERROR.

'STORAGE~SIZE' is wrongly applied to an object of an access
type.

REPORT.IDENT_INT has an argument of the wrong type
(LONG_INTEGER).

A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAING_ ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

A bound specified in a fixed-point subtype declaration 1lies
outside that calculated for the base type, raising
CONSTRAING ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAING_ ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAING_ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

Lines 159..168 are wrongly expected to be incorrect; they
are correct.

Appendix D Page 2 of 3

n . (=

A T A e M e T T AT P RS R RN A A SR S AN N N Y
- o - Al . » » » B . . ! " . a! - » - .) L) » 0 .

vey

?

s
v’'a
a9
e

s
.

-'/'_l
LS

[4
b
L3
Y

“I.l
y

Y{"'ll

+

R Te o T
Pl ol R |
C A

[T P
el ®
r L

I""

A

. R
'?ﬁf;’

.

T

.
L]

(>
v

~

o

AD1AO1A

CE2401H

CE3208A

)

(3

> cav .
g "a0y “aRa*s ta' L0 "a ' ta "o ha KV ka" LHR¥ g0 Dot da o dav gy Wi WL WU WU WV WM WA R W Ba® B e ¥ - bal *ha 0 8 8208 .

WITHDRAWN TESTS

The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values.

This test expects that an attempt to open the default output
file (after it was closed) with mode 1IN FILE raises
NAME _ERROR or USE_ERROR; by Commentary AI-00048, MODE ERROR
should be raised.

Appendix D Page 3 of 3

o,

3 LA g B

.....

T Yy Vv m e '
PRSP M {
\f-;'-t:-.'-‘.'-s«'. e

“,-.'4,-::;:'{. L%

v &£ 5
Y

5 S)

AT WA
AL

- ro.
e
it

-

¥

5%
N’ e

"

® s

2z

L4

227

\b

IR

- - . - - - - - ‘ .-
O S S T T R AL (Y SRR A O A S W W N TR AP TN P AT S "_\\ .
. LY. NP &) AT, Bv. EaN, Uy v At A MM Lo s Lo M & h \ N e ot N

