
CVLL ILL

0

MAVF Control Number: AVF-VSR-90502/35

Ada* Compiler
VALIDATION SUMMARY REPORT:

Certificate Number: #871210NI.09010
Alsys Ltd

AlsyCOMP_006, Version 3.2
IBM 370 3081K

Completion of On-Site Testing:
10 December 1987

Prepared By:
The National Computing Centre Limited

Oxford Road
Manchester M1 7ED

United Kingdom

?I%

Prepared For:
Ada Joint Program Office

United States Department of Defense O TIC
Washington, D.C. 20301-3081

ELECTE ...I

SEPOtw

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

_ - . - a,.a,.na .g,

UNCLASSIFIED A -R 03SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE R_.___:7.' T*,,--

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF R'IPORT & PER,09 COVERED

Ada Compiler Validation Summary Report: Als y 10 Dec 1987 to 10 De- 1988

Ltd., AlsyCOMP 006, Version 3.2, IBM 370 3081K
(Host and Target). 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(S)

National Computinq Centre Limited,
Manchester, United Kingdom.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEME',T. PROCECT, TASK
AREA & WORK UNIT NUMBERS

National Computing Centre Limited,
Manchester, United Kingdom.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 10 December 1987
United States Department of Defense 13. NUMBtR OF PAGES
Washington, DC 20301-3081 72 p.

14. MONITORING AGENCY NAME & ADORESS(Ifdifferent from ControllingOffice) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
National Computing Centre Limited, 15a. REWRFICATION/DOWNGRADING
Manchester, United Kingdom. N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEME;JTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number) %

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

AlsyCOMP 006, Version 3.2, Alsys Ltd., National Computing Centre Limited, IBM 370 3081K under VMSP
CMS Version 3.1 (Host and Target), ACVC 1.9.

nn URM I A7 -7 -----------

Ada* Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_006, Version 3.2

Certificate Number: #871210NI.09010

Host: Target:
IBM 370 3081K under Same as Host.
VM/SP CMS
Version 3.1

Testing Completed 10 December 1987 Using ACVC 1.9

This report has been reviewed and is approved.

The National Computing Centre Ltd
Jane Pink
Oxford Road
Manchester M1 7ED
United Kingdom

(2~4?~Accessionl For
Ada Validation Organization HIS GA&I
Dr. John F. Kramer DTIC TB

Institute for Defense Analyses Uuanounced
Alexandria VA 22311 justi2°all

Distrlbut ion,
Availability Codes

Ava anid/or,
~ Dist Special.

.Ada Jo~rnt Program Off ice
Virginia L. Castor

Director D201
Department of Defense / ,Washington DC 20301 t o.'

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the AlsyCOMP_006,
Version 3.2, using Version 1.9 of the Ada* Compiler Validation
Capability (ACVC). The AlsyCOMP 006 is hosted on an IBM 370 3081K
operating under VM/SP CMS, Version 3.1. Programs processed by this
compiler may be executed on an IBM 370 3081K operating under VM/SP
CMS, Version 3.1.

On-site testing was performed 7 December 1987 through 10 December 1987
Alsys Ltd, Partridge House, Newtown Road, Henley on Thames under the
direction of the NCC (AVF), according to Ada Validation Organisation
(AVO'1 policiez and prccedurcs. At the time of testing, vei.tiufi 1.9 uf'
the ACVC comprised 3122 tests of which 25 had been withdrawn. Of the
remaining tests, 207 were determined to be inapplicable to this
implementation. Not all of the inapplicable tests were processed
during testing: 145 executable tests that use floating-point precision
exceeding that supported by the implementation were not processed
Results for processed Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors.
Compilation and link results of Class L tests were analyzed for
correct detection of errors. There were 62 of the processed tests
determined to be inapplicable. The remaining 2890 tests were passed.
The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 193 516 564 245 166 98 141 327 135 36 234 3 232 2890

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 11 57 111 3 0 0 2 0 2 0 0 0 21 207

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

The AVF concludes that these results demonstrate acceptable conformity
to ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Executive Summary Page 1 of 1

Ile

. ... S ~ s

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES .. 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFOP.MATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

Table of Contents Page 1 of 1

• " "; "" "5. " ' %,". ",,,.",',/ ",." ,, ,.. .. ' " ". . ". . ' ...-. ,..- °. "-, - ," . . - -. -. .. "

CHAPTER 1

INTRODUCTION

This Validation Summary Report tzR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard,
ANSI/MIL STD 1815A. This report explains all technical terms used
within it and thoroughly reports the results of testing this compiler
using the Ada Compiler Validation Capability (ACVC). An Ada compiler
must be implemented according to the Ada Standard, and any
implementation-dependent features must conform to the requirements of
the Ada Standard. The Ada Standard must be implemented in its
entirety, and nothing can be implemented that is not in the Standard.

'Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the 7
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems, S
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is
to ensure conformity of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects illegal language constructs. The
testing also identifies behaviour that is implementation dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tes.s are designed to perform checks at compile time, at link time,
and during execution.

Chapter 1 Page 1 of 6

.. 11 N1%'r1.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:-

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behaviour is
allowed by the Ada Standard

Testing of this compiler was conducted by NCC under the direction of
the AVF according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was conducted from
December 1987 through December at Alsys Ltd, Partridge House, Newtown
Road, Henley-on-Thames.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO

my make full and free public disclosure of this report. In the
United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation
apply only to the computers, operating systems, and compiler versions
identified in this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:-

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:-
The National Computing Centre Ltd
Oxford Road
Manchester M1 7ED
United Kingdom

Chapter 1 Page 2 of 6

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:-

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983. 0

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986. 0

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada •
programs that tests the conformity of an Ada compiler
to the Ada programming language.

Ada An Ada Commentary contains all information relevant and
Commentary point addressed by a comment on the Ada Standard.

Standard. These comments are given a unique p
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting compiler
validations according to established procedures.

AVO The Ada Validation Organization. In the context of
this report, the AVO is responsible for establishing •
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Chapter 1 Page 3 of 6

I Ji l ' 1 11 -

S% N r

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An AVCV test that uses features of the language that a
compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend
Panel interpretations and possible changes to the

ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the
expected result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to
check conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
failz to meet its tcst objective, or contains illegal
or erroneous use of the language. 0

1.5 ACVC TEST CLASSES

Confcrmity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link
errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. However, no checks are performed during
execution to see if the test objective has been met. For example, a
Class A test checks that reserved words of another language (other ii
than those already reserved in the Ada language) are not treated asreserved words by an Ada compiler. A Class A test is passed if no

errors are detected at compile time and the program executes to
produce a PASSED message.

Chapter 1 Page of 6

INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada progrAms can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of
units in a library--a compiler may refuse to compile a Class D test
and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the
test is classified as inapplicable. If a Class D test compiles
successfully, it is self-checking and produces a PASSED or FAILED
message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, or
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests teport
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat some compiler optimizations allowed
by the Ada Standard that would circumvent a test objective. The
procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of these units is checked by a set of
executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Chapter 1 Page 5 of 6 1

A,.

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonable portable without modification.
For example, the tests make use of only the basic set of 55
char- cters, contain lines with a maximum length of 72 characters, use
s .ll numeric values, and place features that may not be supported by
all implementations in separate tests. However, some tests contain
values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and :

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is 4o

inapplicable to the implementation. The applicability of a test to an
implementation is considered each time the implementation is
validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that
was determined to contain for an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests wihdrawn at
the time of validation are given in Appendix D.

p 1-

Chapter 1 Page 6 of 6 .

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:-

Compiler: AlsyCOMP_006, Version 3.2

ACVC Version: 1.9

Certificate Number: #871210N1.09010

Host Computer:

Machine: IBM 370 3081K

Operating System: VM/SP CMS
Version 3.1

Memory Size: 6M VM

Target Computer:

Machine: IBM 370 3081K

Operating System: VM/SP CMS
Version 3.1

Memory Size: IM VM

Communications Network: Magnetic media

Chapter 2 Page 1 of 7

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to
65 levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G
(3 tests), and D29002K.)

Universal integer calculations

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4AO02A, D4AO02B, D4AO04A, and D4AO04B).

Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORTFLOAT, LONG FLO.T, in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals

An implementation is allowed to reject a based literal with
a value exceeding SYSTEM.MAXINT during compilation, or it
may raise NUMERIC ERROR or CONSTRAINT ERROR during
execution. This implementation raises NUMERICERROR during
execution. (See test E-4101A.)

Expression evaluation.

Apparently some default initialization expressions for
record components are evaluated before any value is checked

Chapter 2 Page 2 of 7

A V M VW

CONFIGURATION I14FORMATION

to belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range.
(See test C35903A.)

Apparently NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Sometimes NUMERIC ERROR is raised when a literal operand in
a fixed point comparison or membership test is outside the
range of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests
C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is
apparently round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal
real expressions is apparently round away from zero.
(See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERICERROR.(See test C36003A.) 0

No exception is raised when LENGTH is applied to an array
type with INTEGER'LAST + 2 components. NUMERIC ERROR is
raised when an array type with INTEGER'LAST + 2 components
is declared. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. NUMERICERROR is

Chapter 2 Page 3 of 7

CONFIGURATION INFORMATION

raised when an array type with SYSTEM.MAXINT + 2 components
is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when the array type is
declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC _ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERICERROR when the array type is declared. (See
test E52103Y.)

in assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. In assigning two-dimensional array types, the
expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that
is used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all
choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)

Chapter 2 Page 4 of 7

~ U~. U U~

CONFIGURATION INFORMATION

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised
if a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Representation clauses.

The Ada Standard does not require an implementation to
support representation clauses. If a representation clause
is not supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and
boolean types are supported. (See tests C35502I..J.
C35502M..N. and A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types
containing representational values other than (FALSE => 0,
TRUE => 1) are supported. (See tests C35508I..J and
C35508M..N.)

Length clauses with SIZE specifications for enumeration
types are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access
types are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task
types are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported.
(See tests A39005E and C87B62C.)

Record representation clauses are supported to the byte
level only. (See test A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedure and function
calls from within a body. The pragma INLINE for function

Chapter 2 Page 5 of 7

&JA -

CONFIGURATION INFORMATION

calls within a declaration is not supported. (See tests
LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,
EE240ID, and EE2401G.)

Modes IN FILE and OUT FILE) are supported for
SEQUENTIALIO. (See tests CE2102D and CE2102E.)

Modes INFILE, OUT FILE, and INOUT FILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and
DIRECTIO. (See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_10 and DIRECTIO. (See tests CE2106A and
CE2106B.)

Overwriting to a sequential file truncates the file to the
last element written. (See test CE2208B.)

An existing text file can be opened in OUTFILE mode, can be
created in OUTFILE mode, and can be created in INFILE
mode. (See test EE3102C.)

More than one internal file can be associated with each
external file for text I/O for reading only. (See tests
CE2110B, CE2111D, CE3111A..E (5 tests), CE3114B, and
CE3115A.)

More than one internal file can be associated with each
external file for sequential I/O for reading only. (See
tests CE2107A..D (4 tests) and CE2111D.)

More than one internal file can be associated with each
external file for direct I/O for reading only. (See tests
CE2107E..I (5 tests) and CE2111H.)

Chapter 2 Page 6 of 7

[I I

CONFIGURATION INFORMATION

An external file associated with more than one internal
file cannot be deleted for SEQUENTIALIO, DIRECTIO, and
TEXT_IO. (See test CE2110B.))

Temporary sequential files are given names. Temporary
direct files are given names. Temporary files given names
are deleted when they are closed. (See tests CE2108A and
CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in A

separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in S
separate compilations. (See test CA3011A.)

Chapter 2 Page 7 of 7 ,

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122
tests of which 25 had been withdrawn. Of the remaining tests,
207 were determined to be inapplicable to this implementation.
Not all of the inapplicable tests were processed during testing;
145 executable tests that use floating-point precision exceeding
that supported by the implementation were not processed
Modifications to the code, processing, or grading for
16 tests were required to successfully
demonstrate the test objective. (See section 3.6)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 108 1047 1657 17 15 46 2890

Failed 0 0 0 0 0 0 0

Inapplicable 2 4 198 0 3 0 207

Withdrawn 3 2 19 0 1 0 25

TOTAL 113 1053 1874 17 19 46 3122

Chapter 3 Page 1 of 6

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 13 14 TOTAL

Passed 193 516 564 245 166 98 141 327 135 36 234 3 232 2890

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 11 57 111 3 0 0 2 0 2 0 0 0 21 207

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 25 tests were withdrawn from ACVC Version 1.9 at
the time of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35A03E C35A03R C37213H C37213J C37215C C37215E
C37215G C37215H C38102C C41402A C45614C A74106C
C85018B C87B04B CC1311B BC3105A ADIA01A CE2401H
CE3208A

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
° features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this
validation attempt, 207 tests were inapplicable for the reasons
indicated:

Chapter 3 Page 2 of 6

TEST INFORMATION

A39005G uses a record representation clause at the bit level.
This compiler only supports such clauses to the byte level.

" The following tests use LONGINTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

• C45531M, C45531N, C45532M, and C45532N use fine 48 bit fixed
point base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48 bit fixed 0
point base types which are not supportted by this compiler.

" B86001D & C45231D require a predefined numeric type other than
those defined by the Ada language in package STANDARD. There is
no such type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

BA2001E requires that duplicate names of subunits with a common
ancestor be detected at compilation time. This compiler
correctly detects the error at link time, and the AVO rules that
such behaviour is acceptable.

EA3004D This compiler only obeys the INLINE pragma for calls
from an Ada statement within a body. This test calls
function within a declaration.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT0 with unconstrained array types and record types having
discriminants without defaults. These instantiations are
rejected by this compiler.

CE2108B and D attempt to open empty files created in CE2108A and
C respectively, but VM/SP CMS does not allow empty files, and so
these files do not exist after the latter two tests' completion.
The AVO ruled that this limitation is acceptable as per AI-00325.

CE2107B..E(4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,
CE2111H, CE3111B..E (4 tests), CE3114B, and CE3115A are
inapplicable because multiple internal files cannot be
associated with the same external file when one file is open for
writing. The proper exception is raised when multiple access is
attempted.

Chapter 3 Page 3 of 6

I

TEST INFORMATION

The following 159 tests require a floating-point accuracy that
exceeds the maximum of 18 digits supported by this
implementa.tion:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (11 tests) C455210..Z (12 tests) S
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of
code, processing, or evaluation in order to compensate for
legitimate implementation behaviour. Modification are made with
the approval of the AVO, and are made in cases where legitimate
implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications
include: adding a length clause to alter the default size of a
collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behaviour that wasn't
anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 16 Class B tests.

The following Class B tests were split because syntax errors at
one point resulted in the compiler not detecting other errors in
the test:

B24007A B24009A B32202A B32202E B32202C
B33001A B37004A B45102A B61012A B62001B
B62001C B62001D B91004A B95069A B95069B
BC3205C

Chapter 3 Page 4 of 6

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9
produced by the AlsyCOMP_006 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and
the compiler exhibited the expected behaviour on all inapplicable
tests.

3.7.2 Test Method

Testing of the AlsyCOMP 006 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration
consisted of an IBM 370 3081K operating under VM/SP CMS,
Version 3.1.

A magnetic tape containing all tests was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications
during the prevalidation testing were not included in their
modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto
the host computer.

The contents of the magnetic tape were loaded first onto a
DEC Vex 750 running VMS, upon which tests requiring to be
split were modified and then transferred onto a SUN 3/160
running UNIX BSD 4.2, via an Ethernet connection. A
magnetic tape was then produced in IBM compatible format
from the SUN 3/160 which was read onto a CMS mini disk on
the host computer.

After the test files were loaded to disk, the full set of
tests was compiled on the IBM 370 3081K and all listing were
written to magnetic tapes which were read onto the SUN 3/160
whilst run results were transferred to the SUN system via a
SUN file transfer program IBMFTP. All test output was then
transferred to a DEC VAX 750 via an Ethernet connection where
it was printed.

Chapter 3 Page 5 of 6

TEST INFORMATION

The compiler was tested using command scripts provided by
Alsys Limited and reviewed by the validation team. The compiler
was tested using all default option settings except for
the following:

Option I Switch Effect

PAGELENGTH=45 Control length of compiler
listing pages

PAGEWIDTH=132 Control width of compiler
listing pages

ERRORS=999 Control number of errors
detected before compiler aborts

TEXT Include full source code in listing

Tests were compiled, linked, and executed (as appropriate) using
a single host computer. Test output, compilation listings,
and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

The validation team arrived at Alsys Ltd, Partridge House,
Newtown Road, Henley on Thames on 7 December 1987 and departed
after testing was completed on 10 December 1987.

C

Chapter 3 Page 6 of 6

I

I

APPENDIX A

CONFORMANCE STATEMENT

Alsys Limited has submitted the following conformance
statement concerning the AlsyCOMP_006

Appendix A Page 1 of 3

CONFORMANCE STATEMENT

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys Limited
Ada Validation Facility: The National Computing Centre Ltd
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: AlsyCOMP_006 Version: 3.2

Host Architecture : IBM 370 50s1K OS&VER : VM/SP CMS V3.1

Target Architecture : IBM 370 3081K OS&VER : VM/SP CMS V3.1

Implementor's Declaration

I, the undersigned, representing Alsys Limited, have implemented no S
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that Alsys
Limited is the owner of record of the Ada language compiler(s) listed
above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations
for Ada language compiler(s) listed in this declaration shall be made 0
only in the owne corporate name.

^Jneis .Jt Date:_ __ _
ALSYS Limited
M L J Jordan, Marketing Director

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office)

Appendix A Page 2 Of 3

CONFORMANCE STATEMENT

Owner's Declaration

I, the undersigned, representing Alsys Ltd, take full responsibility
for implementation and maintenance of the kda compiler(s) listed
above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademar': policy, as defined by the Ada Joint Program Office. I 0
declare that all of the Ada language compilers listed, and their
host/target performance are in compliance with the Ada Language
ANSI/MIL-STD-1 81 \3A.

__ _ _I Date:

Alsys Limited
M L J Jordan, Magketing Director

Appendix A Page 3 Of 3

, " " W "-
"

,,' C " " - ' " • K

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP_006,
version 3.2 are described in the following sections which discuss
topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

Appendix B Page 1 of 1

or W '_ 'r 41 , 4

Alsys IBM 370 Ada * Compiler

Appendix F

Implementation - Dependent Characteristics

for VM/CMS

Version 3.2

Alsys S.A.
29. Avcnue dc Versailles

78170 La CelIc St. Cloud. Frap~ce

Alsys Inc.
1432 MWin Street

Walthami MfA 02154. U.S.A.

Alsys Ltd.
Partridge House. Newtowvn Road

Henleyv-on- Thames,
Oxfordshtire RG9 lEN, U.K.

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

0

Printed: November 1987

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine
whether such changes have been made.

PREFACE

0

This Alsys IBM 370 Ada Compiler Appendix F is for programmers, software
engineers, project managers, educators and students who want to develop an Ada
program for any IBM System/370 processor that runs VM/CMS.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, February 1983 (throughout this appendix,
citations in square brackets refer to this manual). It assumes that the user is already
familiar with the CMS operating system, and has access to the following IBM
documents:

CMS User Guide. Release 3, SC19-6210

CMS Command and Macro Reference, Release 3, SC19-6209 S

I,

Ail

Alsys [8M 370 Ada Compiler, Appendix F for VM/CMfS, I'ersion 3.2 i

0

TABLE OF CONTENTS

APPENDIX F

I Implementation-Dependent Pragmas
1.1 INTERFACE I

Calling Conventions 2
Parameter-Passing Conventions 3
Parameter Representations 3
Restrictions on Interfaced Subprograms 5

1.2 INTERFACE NAME 5
1.3 Other Pragmas 6 .,

2 Implementation-Dependent Attributes 6

3 Speci, ication of the Package SYSTEM 7

4 Restrictions on Representation Clauses 8

5 Conventions for Implementation-Generated Names 8

6 Address Clauses 10

7 Restrictions on Unchecked Conversions 10

8 Input-Output Packages 10
8.1 Specifying External Files 10

Files 10
FORM Parameter I I
STANDARD INPUT and STANDARD OUTPUT 14

8.2 USEERROR 15
8.3 Text Terminators 15
8.4 EBCDIC and ASCII 16
8.5 Characteristics of disk files 25

TEXT _O 25 0
SEQUENTIAL O 26
DIRECT_10 26

9 Characteristics of Numeric Types 26
9.1 Integer Types 26
9.2 Floating Point Type Attributes 27

SHORT FLOAT 27
FLOAT- 27
LONG FLOAT 28

9.3 Attributes of Type DURATION 28

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 i

~ w 9 -

10 Other Implementation-Dependeni Charactterisitzs 2 8
10.1 Character isti[cs of the Heap 28
10.2 Characteristics of Tasks 28
10.3 Definition of a Nlain Program 29
10.4 Ordering of Compilation Units 29
10.5 Package SYSTENI ENVIRONNMENT 219

11 Limitations 32
11.1 Compiler Limitations 32

0

Alsys IBM 370 Ada Compiler, Appendix F for VM/fCMVS, Version 3.2 iii

0

Appendix F

Implementation-Dependent Characteristics

This appendix summarises the implementation-dependent characteristics of the Alsys
IBM 370 Ada Compiler for VM/CMS.

The sections of this appendix are as follows:

1. The form, allowed places, and effect of every implementation-dependent _
pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYSTEM.

4. The list of all restrictions on representation clauses.

5. The conventions used for any implementation-generated names denoting
implementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including
those for interrupts.

7. Any restrictions on unchecked conversions.

8. Any implementation-depeident characteristics of the input-output
packages. r

9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

11. Compiler limitations.

The name Ada Run-Time Executive refers to the run-time library routines provided
for all Ada programs. These routines implement the Ada heap, exceptions, tasking,
10, and other utility functions.

1 Implementation-Dependent Pragmas

Ada programs can interface with subprograms written in assembler or other
languages through the use of the predefined pragma INTERFACE [13.9] and the
implementation-defined pragma INTERFACE-NAME.

1.1 INTERFACE

Pri-,ma INTERFACE specifies the name of an interfaced subprogram and the name
of he programming language for which calling and parameter passing conventions

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2

JP! 2t-E P- , , W" ,V- .\, *' " . , .__

"Una

will be generated. Pragma INTERFACE takes the form specified in the Reference
Man ual:

pragma INTERFACE (language name, subprogram name);

where

" language name is the name of the other language whose calling and
parameter passing conventions are to be used.

" subprogram name is the name used within the Ada program to refer to
the interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is
ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond
to the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use. ASSEMBLER is used to refer to the standard
IBM 370 calling and parameter passing conventions. The programmer can use the
language name ASSEMBLER to interface Ada subprograms with subroutines written
in any language that follows the standard IBM 370 calling conventions.

Calling Conventions

The contents of the general purpose registers 12 and 13 must be left unchanged by
the call. On entry to the subprogram, register 13 contains the address of a register
save area provided by the caller.

Registers 15 and 14 contain the entry point address and return address, respectively,
of the called subprogram.

The Ada Run-Time Executive treats any interruption occurring during the execution
of the body of the subprogram as an exception being raised at the point of call of
the subprogram. The exception raised following a program interruption in interfaced
code is a NUMERICERROR for the following cases:

Fixed-pt overflow *

Fixed-pt divide
Decimal overflow * S
Decimal divide
Exponent overflow
Exponent underflow *
Significance *
Floating-pt divide

In other cases, PROGRAMERROR is raised. The classes of interruptions marked
with an asterisk (*) may be masked by setting the program mask. Note that the
program mask should be restored to its original value before returning to Ada code.

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS. Version 3.2 2

le W

Parameter- Passing Con~entions

On entry to the subprogram, register I contains the address of a parameter address
list. Each word in this list is an address corresponding to a parameter. The last
word in the list has its bit 0 (sign bit) set.

For actual parameters which are literal values, the address is that of a copy of the
value of the parameter; for all other parameters it is the address of the parameter
object. Interfaced subprograms have no notion of parameter modes; hence
parameters whose addresses are passed are not protected from modification by the
interfaced subprogram, even though they may be formally declared to be of mode in.

If the subprogram is a function, on exit register 0 is used to return the result. Scalar
values are returned in register 0. Non-scalar values are returned by address in
register 0.

No consistency checking is performed between the subprogram parameters declared
in Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

An example of an interfaced subprogram is:

* 64-bit integer addition: use an array rather than a record to
* represent the integer so as not to rely on record ordering if the
* components are accessed in Ada.

* type DOUBLE is array (1..2) of INTEGER;
* procedure ADD (LEFT, RIGHT: in DOUBLE;

RESULT :out DOUBLE);
ADD CSECT

USING ADD,15
STM 2,6,12(13)
L 2,0(1) Address of LEFT
LM 3,4,0(2) Value of LEFT
L 2,4(1) Address of RIGHT
AL 4,4(2) Add low-order components (no interruption)
BC 12,S1 Branch if no carry
A 3,=F'I' Add carry (NUMERICERROR possible)

$1 A 3,0(2) Add high-order (NUMERICERROR possible)
L 2,8(1) Address of RESULT
STM 3,4,0(2) Value of result
LM 2,6,12(13)
BR 14
LTORG
DROP
END

Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram.

Alsys IBM 370 Ada Compiler. Appe,dix F for VM/CMS, Version 3.2 3

Integer Tynes. [3.5.41

Ada if,-C type.s ,,cupy 16 (SHORT INTEGER) or 32 (INTFGER) bits. An
iNTEGER subtype falling within the range of SHORTINTEGER is implemented as
a SHORTINTEGER in 16 bits.

Enumeration Tves [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The
first literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits, those with
more than 256 elements in 16 bits. The maximum number of values an enumeration
type can include is 65536 (2**16).

The Ada predefined type CHARACTER [3.5.2] is represented in 8 bits, using the 5,

standard ASCII codes [C].

Floating Point Types [3.5.7, 3.5.8]
0

Ada floating-point values occupy 32 (SHORT FLOAT), 64 (FLOAT) or 128
(LONG FLOAT) bits, and are held in IBM 370-(short, long or extended floating
point) format.

Fixed Point Types [3.5.9, 3.5.101

Ada fixed-point types are managed by the Compiler as the product of a signed
mantissa and a constant small. The mantissa is implemented as a 16 or 32 bit
integer value. Small is a compile-time quantity which is the power of two equal or
immediately inferior to the delta specified in the declaration of the type.

The attribute MANTISSA is defined as the smallest number such that:

2 ** MANTISSA >= max (abs (upperbound), abs (lowerbound)) / small

The size of a fixed point type is:
' -

MANTISSA Size)

.. 15 16 bits
16 .. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Types [3.8]

Values of access types are represented internally by the 31-bit address of the
designated object held in a 32 bit word. Users should not alter the bits of this word,

Alsj's IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 4

' -, . , , 'p

which are ignored by the architecture on which the program is running. The value
zero is used to represent null.

Array T'pes [3.6] 0

Ada arrays are passed by reference; the value passed is the address of the first
element of the array. When an array is p.ssed as a parameter to an interfaced
subprogram, the usual consistency checking between the array bounds declared in the
calling program and the subprogram is not enforced. It is the programmer's
responsibility to ensure that the subprogram does not violate the bounds of the array.

Values of the predefined type STRING [3.6.31 are arrays, and are passed in the same
way: the address of the first character in the string is passed. Elements of a string
are represented in 8 bits, using the standard ASCII codes.

Record Types [3.7]

Ada records are passed by reference, by passing the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a four-byte boundary). If a record contains discriminants or
components having a dynamic size, implicit components may be added to the record. S
Thus the exact internal structure of the record in memory may not be inferred
directly from its Ada declaration.

Restrictions on Interfaced Subprograms
S

The Ada Run-Time Executive uses the SPIE (SVC 14) macro. Interfaced
subprograms should avoid use of this facility, or else restore interruption processing
to its original state before returning to the Ada program. Failure to do so may lead
to unpredictable results.

Similarly, interfaced subprograms must not change the program mask in the Program S
Status Word (PSW) of the machine without restoring it before returning.

1.2 INTERFACE _NAME

Pragma INTERFACE NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACE NAME is not used, then the two names are assumed to be identical.
This pragma takes the form

pragma INTERFACE_ NAME (subprogram_name, string literal);

where

* subprogram name is the name used within the Ada program to refer to

the interfaced subprogram.

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 5

t

SN

r

a siring literal is the name by which the interfaced subprogram is referred
to at link-time.

The use of INTERFACENAME is optional, and is not needed if a subprogram has
the same name in Ada as in the language of origin. It is useful, for example, if the
name of the subprogram in its original language contains characters that are not
permitted in Ada identifiers. Ada identifiers can contain only letters, digits and
underscores, whereas the IBM 370 linkage editor/loader allows external names to
contain other characters, e.g. the plus or minus sign. These characters can be
specified in the string ieral argument of the pragma INTERFACE-NAME.

S
The pragma INTERFACE NAME is allowed at the same places of an Ada program
as the pragma INTERFACE [13.9]. However, the pragma INTERFACE NAME
must always occur after the pragma INTERFACE declaration for the interfaced
subprogram.

In order to conform to the naming conventions of the IBM 370 linkage editor/loader,
the link-time name of an interfaced subprogram will be truncated to 8 characters
and converted to upper case.

Example

package SAMPLEDATA is

function SAMPLEDEVICE (X INTEGER) return INTEGER;

function PROCESSSAMPLE (X : INTEGER) return INTEGER;

private

pragma INTERFACE (ASSEMBLER, SAMPLEDEVICE);

pragma INTERFACE (ASSEMBLER, PROCESSSAMPLE);

pragma INTERFACE-NAME (PROCESS_SAMPLE, "PSAMPLE");

end SAMPLEDATA;

1.3 Other Pragmas

No other implementation-dependent pragmas are supported in the current version of
this compiler.

2 Implementation-Dependent Attributes

In a addition to the Representation Attributes of [13.7.2] and [13.7.3], there are the
four attributes listed in section 5 (Conventions for Implementation-Generated
Names), for use in record representation clauses. There also exists the restrictions
given below on th, ise of the ADDRESS attribute.

Als's IBM 370 Ada Compiler, Appendix F for VM/CMS. Version 3.2 6

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful
addresses. The following entries do not have meaningful addresses and will therefore
cause a compilation error if used as prefix to address: 0

" A constant that is implemented as an immediate value i.e., does not have
any space allocated for it.

* A package specifiaction that is not a library unit.

" A package body that is not a library unit or subunit.

3 Specification of the Package SYSTEM

package SYSTEM is

type NAME is (IBM_370);

SYSTEMNAME: constant NAME:= NAME'FIRST;

MININT constant := -(2**31);
MAXINT :constant:= 2"'31-1;

MEMORYSIZE constant :=2"'24;

type ADDRESS is range MIN INT .. MAX_INT;

STORAGE-UNIT: constant 8;

MAXDIGITS constant:= 18;

MAXMANTISSA constant := 31;

FINEDELTA constant:= 2#1.0#e-31;

TICK constant := 0.01;

NULLADDRESS constant ADDRESS 0;

subtype PRIORITY is INTEGER range 1 .. 10;

-- These subprograms are provided to perform

-- READ/WRITE operations in memory.

,.

generic

type ELEMENTTYPE is private;

function FETCH (FROM :ADDRESS) return ELEMENTTYPE;

generic

type ELEMENTTYPE is private;

procedure STORE (INTO: ADDRESS; OBJECT: ELEMENTTYPE);

end SYSTEM; 0

The generic function FETCH may be used to read data objects from given addresses
in store. The generic procedure STORE may be used to write data objects to given
addresses in store.

Alsi's IBM 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 7

2_-

L k ,,A ~ h-~!~P~Eh~ ~ %~~- -~~%% %y..~%" 'Y~%"h. ~*

4 Restrictions on Representation Clauses

This version of the Alsys IBM 370 Ada Compiler supports representation clauses
[13.1] with the following exceptions:

" There is no bit level implementation for any of the representation
clauses.

" Address clauses are not supported.

" Change of representation for RECORD types are not implemented.

" Machine code insertions are not supported. 0

" For the length clause:

- Size specification: T'SIZE is not implemented for types declared
in a generic unit.

- Specification of small for a fixed point type: T"SMALL is
restricted to a power of 2, and the absolute value of the
exponent must be less than 31.

" The Enumeration Clause is not allowed if there is a range constraint on
the parent subtype.

" The Record Clause is not allowed for a derived record type.

" The pragma PACK [13.1] is also not supported. However, its presence in
a program does not in itself make the program illegal; the Compiler will
simply issue a warning message and ignore the pragma.

5 Conventions for Implementation-Generated Names

Special record components are introduced by the compiler for certain record type
definitions. Such record components are implementation-dependent: they are used
by the compiler to improve the quality of the generated code for certain operations 0
on the record types. The existence of these components is established by the -
compiler depending on implementation-dependent criteria. Attributes have been
defined for referring to them in record representation clauses. An error message is
issued by the compile- if the user refers to implementation-dependent attribute that
does not exist. If the implementation-dependent component exists, the compiler
checks that the storage location specified in the component clause is compatible with
the treatment of this component and the stoarge locations of other components. An
error message is issued if this check fails.

There are four such attributes:

AIss IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 8

T'RECORDSIZE For a prefix T that denotes a record type. This
attribute refers to the record component introduced by
the compiler in a record to store the size of the record
object. This component exists for objects of a record
type with defaulted discriminants when the sizes of the
record objects depend on the values of the
discriminants.

T'VARIENTINDEX For a prefix T that denotes a record type. This
attribute refers to the record component introduced by
the compiler in a record to assist in the efficient
implementation of discriminant checks. This
component exists for objects of a record type with
variant type.

C'ARRAYDESCRIPTOR For a prefix C that denotes a record component
of array type whose component subtype definition
depends on discriminants. This attribute refers to the
record component introduced by the compiler in a
record to store information on subtypes of components
that depend on discriminants.

C'RECORDDESCRIPTOR For a prefix C that denotes a record component
of record type whose component subtype definition
depends on discriminants. This attribute refers to the
record component introduced by the compiler in a
record to store information on subtypes of components
that depend on discriminants.

There are four implementation-generated names:

RECORDSIZE This is an implementation-specific record component.
The component is introduced by the compiler in a
record to store the size of the record object.

VARIANTINDEX This is an implementation-specific record component.
The component is introduced by the compiler in a
record to assist in the efficient implementation of
discriminant checks.

ARRAYDESCRIPTIOR and RECORDDESCRIPTOR Array and record
descriptors are internal components which are used by
the compiler to store information on subtypes or record
components that depend upon discriminants.

Array descriptors are used for record components of
array types, whereas record descriptors are used for
record components of record types

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, Version 3.2 9

6 Address Clauses

Address clauses [13.5] are not supported in this version of the Alsys IBM 370 Ada r
Compiler.

7 Restrictions on Unchecked Conversions

Unchecked conversions [13.10.2] are allowed only between types which have the
same value for their 'SIZE attribute.

8 Input-Output Packages

The predefined input-output packages SEQUENTIALIO [14.2.3], DIRECT_10
(14.2.51, and TEXT__10 (14.3.101 are implemented as described in the Language
Reference Manual, as is the package 10_EXCEPTIONS [14.5],.which specifies the
exceptions that can be raised by the predefined input-output packages.

The package LOW LEVEL_10 [14.6], which is concerned with low-level machine-
dependent input-output, has not been implemented.

8.1 Specifying External Files

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.1]
may represent a CMS file name or DDNAME specified using a FILEDEF command.

Files

The syntax of a CMS file name as specified in the Ada NAME parameter is as
follows:

filename ::= fn [ft [fm]] I %ddnanie

where

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, Version 3.2 10

?

fn is the CMS filename

ft is the CMS filetype r

fni is the CMS filemode

If the filenames or filetypes exceed 8 characters then they are truncated. As
indicated above, the filetype and filemode fields are not mandatory components of
the NAME parameter. If the filemode is omitted, it defaults to "Al" for Ada mode
OUT; for Ada mode IN and INOUT, all accessed minidisks are searched and the
CMS filemode is set to the first file with the appropriate filename and filetype. If
in addition the filetype is omitted it defaults to "FILE".

The file name parameter may also be a DDNAME. If the file name parameter starts
with a % character, the remainder of the string (excluding trailing blanks) is taken as
a DDNAME previously specified using the FILEDEF command. If the DDNAME
has not been specified using FILEDEF, NAMEERROR will be raised. If DELETE
is called for a file opened using a DDNAME, USEERROR will be raised, but the
file will be closed.

FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the
lexical rules of [2], separated by commas. The FORM parameter may be given as a
null string except when DIRECT_10 is instantiated with an unconstrained type: in
this case the RECORDSIZE attribute must be provided. Attributes are comma-
separated; blanks may be inserted between lexical elements as desired. In the
descriptions below the meanings of natural, positive, etc., are as in Ada; attribute
keywords (represented in upper case) are identifiers [2.3] and as such may be
specified without regard to case.

USEERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent
OPEN and CREATE calls which specify the same external file. If such rules are
violated or if a different file sharing attribute is specified in a later OPEN or
CREATE call, USEERROR will be raised. The syntax is as follows:

NOT SHARED I SHARED => access mode

where

access-mode::= READERS I SINGLEWRITER I ANY

A file sharing attribute of:

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, Version 3.2 I1

NOTSHARED

implies only one internal file may access the external file.

SHARED => READERS

imposes no restrictions on internal files of mode IN__FILE, but prevents
any internal files of mode OUTFILE or INOUTFILE being associated
with the external file.

SHARED => SINGLEWRITER

is as SHARED => READERS, but in addition allows a single internal file
of mode OUTFILE or INOUTFILE.

SHARED => ANY

places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is
taken from that file's sharing attribute, otherwise the default depends on the mode
of the file: for mode IN FILE the default is SHARED => READERS, for modes
INOUTFILE and OUTFILE the default is NOTSHARED.

Record size attribute

This attribute controls the record format (RECFM) and logical record length
(LRECL) of an external file. 0

By default, records are output according to the following rules (see section 8.5):

* for TEXT _10 and SEQUENTIAL_10, variable-length record files
(RECFM = V).

* for DIRECT_10, fixed-length record files (RECFM = F).

The user can specify the record size attribute to force the representation of the Ada
element in output records of a given byte size. If the record size attribute is
specified, fixed-length records (RECFM = F) will be generated, with a record length
(LRECL) as specified (see section 8.5).

In the case of DIRECT 10 and SEQUENTIAL _10 for constrained types the value
given which must not be smaller than ELEMENT TYPE'SIZE /
SYSTEM.STORAGEUNIT; USEERROR will be raised if this ruie is violated.

In the case of DIRECT 10 for unconstrained types the user is required to specifiy
the RECORD SIZE attribute (otherwise USE _ERROR will be raised by the OPEN
or CREATE procedures). The size specified must be large enough to accommodate
the largest record which is to be read or written plus 4 bytes for the descriptor (see
section 8.5). If a larger record is processed, DATAERROR will be raised by the
READ or WRITE.

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 12

In the case of TEXT 10, output lines will be padded to the requisite length with
spaces; this fact should be borne in mind when re-reading files generated using
TEXT_10 with the record size attribute set.

0
The syntax of the record size attribute is as follows:

RECORDSIZE => natural

where natural is a size in bytes.

The default is

RECORDSIZE => elementlength

where

element-length = ELEMENTTYPE'SIZE / SYSTEM.STORAGEUNIT 0

for input-output of constrained types, and

RECORDSIZE => 0

(meaning variable-length records) for input-output of unconstrained types other than
via DIRECT_10 in which case the RECORDSIZE attribute must be provided by
the user.

Carriage control

This attribute applies to TEXT__1O only, and is intended for files destined to be sent
to a printer.

For a file of mode OUT FILE, this attribute causes the output procedures of
TEXT _10 to place a carriage control character as the first character of every output
record; '1' (skip to channel 1) if the record follows a page terminator, or space (skip 0
to next line) otherwise. Subsequent characters are output as normal as the result of
calls of the output subprograms of TEXTIO.

For a file of mode IN _FILE, this attribute causes the input procedures of TEXT_10
to interpret the first character of each record as a carriage control character, as
described in the previous paragraph. Carriage control characters are not explicitly 5
returned as a result of an input subprogram, but will (for example) affect the result
of ENDOFPAGE.

The user should naturally be careful to ensure the carriage control attribute of a file

of mode IN-FILE has the same value as that specified when creating the file.

The syntax of the carriage control attribute is as follows:

CARRIAGECONTROL => boolean

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 13

C._I ' Xt k ,

The default is set according to the filetype of the file: if the filetype is LISTING,
the default is CARRIAGECONTROL => TRUE otherwise the default is
CARRIAGECONTROL => FALSE.

S

Truncate

This attribute applies to TEXT_10 files of mode INFILE, and causes the input
p,u.scdorcs of TEXT_I" to ren--,'vc lr:;ing blar,1s from records read.

The syntax of the TRUNCATE attribute is as follows:

TRUNCATE => boolean

The default is TRUNCATE => FALSE.

Eof_ string

This attribute applies only to files associated with the terminal opened using
TEXT 10, and controls the logical end of file string. If a line equal to the logical
endof file string is typed in, END__OF FILE will become TRUE. If an attempt
is made to read from a file for which END_OF_.FILE is TRUE, ENDERROR
will be raised.

The syntax of the EOFSTRING attribute is as follows:

EOFSTRING => sequence_of__characters

The default is EOFSTRING => /*

The EOFSTRING may not contain commas or spaces.

If, however, the END OF FILE function is called, a "look-ahead read" will be
required. This means that (for example) a question-and-answer session at the
terminal coded as follows

while not ENDOF FILE loop

PUTLINE ('Enter value:');

GETLINE(..;
end loop;

will cause the prompt to appear only after the first value has been input. If the
example is recorded without the explicit call to END _OF _FILE (but perphaps
within a handler for ENDERROR) the behaviour will be appropriate.

STANDARDINPUT and STANDARDOUTPUT

The Ada internal files STANDARDINPUT and STANDARDOUTPUT are
associated with the external files %SYSIN and %SYSOUT, respectively. By default,
the DDNAMEs SYSIN and SYSOUT are defined to be the display terminal, but you

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS. Version 3.2 14

may redefine their assignments using the FILEDEF command before running any
program.

8.2 USEERROR

The following conditions will cause USEERROR to be raised:

* Specifying a FORM parameter whose syntax does not conform to the
rules given above.

Specifying the EOF STRING FORM parameter attribute for files other
than TEXT_10 files of mode IN-FILE.

Specifying the CARRIAGECONTROL FORM parameter attribute for
files other than TEXT _O files.

" Specifying the BLOCKSIZE FORM parameter attribute to have a value
less than RECORDSIZE.

" Specifying the RECORD SIZE FORM parameter attribute to have a
value of zero (or failing to specify RECORDSIZE) for instantiations of
DIRECTIO for unconstrained types.

" Specifying a RECORDSIZE FORM parameter attribute to have a value
less than that required to hold the element for instantiations of
DIRECT 10 and SEQUENTIALIO of constrained types. R

" Violating the file sharing rules stated above.

" Attempting to delete a file opened by DDNAME.

* Attempting to write a zero length record to other than the terminal.

Errors detected whilst reading or writing (e.g. writing to a file on a read- 0

only disk).

8.3 Text Terminators

Line terminators [14.3] are not implemented using a character, but are implied by the
end of physical record.

Page terminators [14.3] are implemented using the EBCDIC character OC
(hexadecimal).

File terminators [14.3] are not implemented using a character, but are implied by the
end of physical file. Note that for terminal input a line consisting of the
EOF__STRING (see 8.1) is interpreted as a file terminator. Thus, entering such a
line to satisfy a read from the terminal will raise the ENDERROR exception.

The user should avoid the explicit output of the character ASCII.FF [C]. If the user
explicitly outputs the character ASCII.LF, this is treated as a call of NEWLINE
[14.3.4].

The following characters have special meaning for VM/SP; this should be borne in

mind when reading from the display terminal:

A/sys IBM 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 15

Character Default VM/SP meaning May be changed using

logical line end symbol CP TERMINAL LINEND
logical escape character CP TERMINAL ESCAPE

@ logical character delete symbol CP TERMINAL CHARDEL

8.4 EBCDIC and ASCII

All I/O using TEXT 10 is performed using ASCII/EBCDIC translation.
CHARACTER and STRING values are held internally in ASCII but represented in
external files in EBCDIC. For SEQUENTIAL _10 and DIRECTIO no translation
takes place, and the external file contains a binary image of- the internal
representation of the Ada element (see section 8.5).

It should be noted that the EBCDIC character set is larger than the (7 bit) ASCII and %
that the use of EBCDIC and ASCII control characters may not produce the desired
results when using TEXTIO (the input and output of control characters is in any
case not defined by the Ada language [14.31). Furthermore, the user is advised to
exercise caution in the use of BAR (I) and SHARP (#), which are part of the lexis of
Ada; if their use is prevented by translation between ASCII and EBCDIC, EXCLAM
(!) and COLON (:), respectively, should b,. used instead [2.10].

Various translation tables exist to translate between ASCII and EBCDIC. The
predefined package EBCDIC is provided to allow access to the translation facilities
used by TEXT_10 and SYSTEMENVIRONMENT (see User's Guide for VM/CMS,
Appendix E). 0

The specification of this package is as follows:

package EBCDIC is

type EBCDICCHARACTER is
nul, -- 0=Oh
soh, -- 1=lh
stx, -- 2 = 2h
etx, -- 3 = 3h
E_4,
ht, -- 5 = 5h

E-6, e

del, -- 7 = 7h

E_8,
E_9,
E_A,
vt, -- 11 = 0h

np, -- 12 = OCh
cr, -- 13 = ODh
s0, -- 14 = OEh

ii, -- 15 = OFh
dle, -- 16 = 10h

A!sys IBM 370 Ada Conpil,. ,4ppendix F for VM/CMS. Version 3.2 16

dc 1, -17 = Ih

dc2,- 18 =12h

dc3, -19 =13h

nl, -21 = 15h

bs, -- 22 = 16h

E_17,

can, -- 24 = 18h

E_lA,

E_IB,

-1. -- 29 = Dh

rs, -30O=1Eh

us, -31 =lFh

E_20,

E_2 1,
is, -- 4 = 22h

E_23,

E_24,

E_25,

etb, -38 =26h
eac, -39 =27h
E_28,
E_29,
E_2A,

E_2B,

E_2C,
enq, -45 =2Dh
ack, -46 =2Eh

bel, -47 =2Fh

E_30,
E_3 1,

syn, -50 =32h
E_33,

E_34,
E_35,

E_36,
eot, -55 =37h

E_38,
E_39,
E_3A,
E_3B,

dc4, -60O3Ch

nak, -61 3Dh

E_3E,

sub, -63 = Fh
1 1, -64 =40h

E_41.

E_4 2,

E_43,

E_44.

AlsYs IBM 370 Ada Compiler, Appendix F for VM/ICMS, Version 3.2 17

E_45,

E-46,

E 47,

E_48,

E-49,0

E4A,
-75 = 4Bh

-76 =4Ch

-77 -4)1

'.-'-78 =4Eh

-79 = 4Fh0

-80 =SOH

E_5 1,
E_52,
E_53,

E_54,

E_65 S.
E_56,
E_57,
E_58.

'4' -90 =SAh

'S -91 =SBh
-92 =SCh
-93 =5Dh

-94 =SEh

-95 =SFh '

-96 = 60h

97 = 61h

E_62.

E_63,

E_64,

E_65,

E_66,

E_67,

E_68,

E_69,

E_6A,
-17=6Bh

-18=6Ch

-- 0=6Dh
-- 1 6Eh

-- Ill 6Fh
E_70,

E_71,
E__72,

E_73,
E_74,

E_75.

E_76,
E_77,
E_78,

Alsj's 18.4 370 Ada Compiler, Appendix F for VM/ICMS. Version 3.2 J8 1

I

-. ~~ ~ M 4 ~ #. w*'''

--121 = 79h

--122 = 7Ah

--123 = 7Bh

--124 = 7Ch

--125 = 7Dh 0
* -, --126 = 7Eh

--127 = 7Fh
E_80,
,a, --129 = 81h

'b 1, --130 = 82h

'c 1. --131 = 83h

Wd, --132 = 84h
lel, --133 = 85h

'f, --134 = 86h
I g'. --135 = 87h

--136 = 88h

--137 = 89h

E_SA,

E_8B,

E_8C,

E_8D,

EBE,

E_8F, S
E-90,
T, --145 = 91h

W, --146 = 92h
'l1, --147 = 93h

'Im', --148 = 94h

In'. --149 =95h

.01, --150 = 96h
Ip", --151 = 97h

I q% --152 = 98h

Irl, --153 = 99h

E_9A,

E_9B,

E_9C,

E_9D,

E_9E,

E_9F,

E_AG,
1-', --161 = 0Alh

's, -- 162 = OA2h

T. -- 163 = OA3h

V', -- 164 = OA4h

-- 165 = 0ASh

w --166 = A6h

x' 1. --167 = OA7h
Iy", -- 168 = OASh

-- 169 = OA9h

E_A.A,

E AB,

E_AC,

Alsys IBM 370 Ada Compiler. Appendix F for VMI CMS, Version 3.2 19

~ 2'!.~ ~ ~ VV V~ ~ J - " ~ -V v

173 =OADh

EAE, i

EAF.
E,,j1,

E_82,

E_83,

E_84,

E_85,

E_BG,

E_B?,0

EB9,
EBA,
E BB,
E_BC,

"- - 189 =OBDhS

EBE,

111. -- 192 =OC-51

'A, -- 193 =OClb

'B', -- 194 = 00h
.C.' -- 195= 00Th

T I, --196 =OC4h

'E',--197 = 00h

'F' -- 198 = OC6h

'0' -- 199 = OC7h

'H',--200 =OC8h

'1' -- 201 = OC9b

ECA,
E_CB,
ECC,
E_CD,

ECE,
ECF,

9" -- 208 = ODOh

'3' -- 209 = OD~h

IC', -- 210 = 0D2h
-- 211 = OD3h
-- 212 = OP4h

'N',--213 =ODSh

'0' -- 214 = OD6h
-- 215 = OD~h
-- 216 = OP8h

'R', -- 217 = ODgh

EDA,

EPB,

EPF,

T,--224 =OEOh

Aiss IBM 370 Ada Compiler, Appendix F for I'M,/CMS. Version 3.2 20

IS"l -- 226 = OE2h

'T. --227 = OE3h

'U' --228 = 0E4h

' V. -- 229 = 0E5h
,w 1.--230 = OE6h
Ix., -j31 - OZ7h
ly" -- 232 = OE8h
IZI, -- 233 = CE~b

E_EA,

E_EB,
EEC,

E_ED,
EEE,
E_EF,
'0', -- 240 = OFOh

111, -- 241 = OFlh

'2'. -- 242 = OF2h

'3' -- 243 = 0F3h

'4'--244 = OF4h

'5'--245 = OFSh

'6' -- 246 = OF6h

'7', -- 247 = OFTh

'8.. = OF8h

'9', -- 249 = OFgh

E_FA,

EFB,

E_FC,
E_FD,

E_FE, h

E_FF);

SEL constant EBCDICCHARACTER :=E_4;

RNL constant EBCDICCHARACTER: E_6;

GE constant EBCDICCHARACTER: E_8;

SPS constant EBCDICCHARACTER: E_9;

RPT constant EBCDICCHARACTER: EA;

RES z constant EBCDICCHARACTER: E_4;

ENP constant EBCDICCHARACTER: E_4;

POC constant EBCDICCHARACTER := E_17;

UBS constant EBCDICCHARACTER :=E-lA;

CUt constant EBCDIC CHARACTER:= E 1B;

IFS constant EBCDICCHARACTER:=E IC;

DS constant EBCDICCHARACTER:=E_20;

SOS constant EBCDICCHARACTER: E_21;

WUS constant EBCDICCHARACTER := E_23;

BYP constant EBCDICCHARACTER := E_24;

IINP constant EBCDICCRARACTER: E_24;

LF constant EBCD[CCHARACTER := E_25;

SA constant EBCDICCHARACTER: E_28;

SFE constant EBCDICCHARACTER: E_29;

S m constant EBCDICCHARACTER: E_2A;

A/s vs IBM 370 Ada Compiler. Appendix F for II'M/CHS. Version 3.2 21

or W. IF

SW constant EBCDIC_CHARACTER E 2A,

CSP constant EDCDIC CHARACTER:= E_2B;

MFA constant EBCDICCHARACTER := E_2C;

IR constant EBCDICCHARACTER:= E_33;

Pp constant EBCDICCHARACTER:= E_34;

TRN constant LBCDICCHARACTER := E 35;

NBS constant EBCDICCHARACTER:= E_36;

SBS constant EBCDI CHARACTER:= E 38;

IT constant EBCDIC_CHARACTER:= E_39;

RFF constant EBCDICCHARACTER:= E_3A;

CU3 constant EBCDICCHARACTER:= E_3B;

SP constant EBCDIC CHARACTER:='';

RSP constant EBCDICCHARACTER:= E_41;

CENT constant EBCDICCHARACTER:= E_4A;

SHY constant EBCDICCHARACTER :=ECA;

HOOK constant EBCDICCHARACTER :=E_CC;

FORK constant EBCDICCHARACTER:= ECE;

NSP constant EBCDICCHARACTER:= EEl;

CHAIR constant EBCDICCHARACTER:= EEC;

EO constant EBCDICCHARACTER:= E FF;

E_0 constant EBCDICCHARACTER:= nul;

E_1 constant EBCDICCHARACTER:= soh;

E_2 constant EBCDICCHARACTER := stx;

E_3 corstant EBCDICCHARACTER:= etx;

E_5 constant EBCDICCHARACTER:= ht;

E_7 constant EBCDICCHARACTER:= del;

E_B constant EBCDICCHARACTER := vt;

E_C constant EBCDICCHAACTER:= np;

E_D constant EBCDICCHARACTER:= cr;

EE constant EBCDICCHARACTER so;

E_F constant EBCDICCHARACTER:= so;

E_10 constant EBCDICCHARACTER:= die;

E10 : constant EBCDICCHARACTER:= dcl;

E_12 constant EBCDICCHARACTER:= dc2;

E_13 constant EBCDICCHARACTER:= dc3;

E_15 constant EBCDICCHARACTER ni; "%

E_ 16 constant EBCDICCHARACTER bs;

E_18 constant EBCDICCHARACTER can;

E_19 constant EBCDIC_CHARACTER:= em;

E_ID constant EBCDICCHARACTER:= gs;

E_E constant EBCDICCHARACTER := rs;

E_IF constant EBCDICCHARACTER:= us;

E_22 constant EBCDICCHARACTER fs;

E_26 constant EBCDICCHARACTER etb;

E_27 constant EBCDICCHARACTER:= esc;

E_26 constant EBCDICCHARACTER enq;

E_27 constant EBCDICCHARACTER ack;

E_2F constant EBCDICCHARACTER bel;

E_32 constant EBCDICCHARACTER syn;

E_37 constant EBCDICCHARACTER cot;

Als vs IBM 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 22

% .

E_3C constant EBCDIC_CHARACTER dlc4;

E_3D constant EE3CDICCHARACTER nak;

ESF constant EBCDICCHARACTER: sub;

E_40 congtant EBCDLCCHARACTER

E_4B constant EBCDICCHARACTER
E_4C constant EBCDICCHIARACTER:

E_4D constant EBODICCHARACTER :

E_4 E constant EBODICCHARACTER:

E_4F constant EBCDICCHARACTER 'I'
E_50 constant EBCDICCHARACTER :
ESA constant EBCDICCHARACTER 'I';

E_5B constant EBCDICCHARACTER -=T;
vH_5C constant EBCDICCHARACTER :='';

ES1i constant EBCDICCHARACTER:=T

ESE constant EBCDIC_CHARACTER:

ESF constant EBODICCHARACTER :
E_60 constant EBCDICCHARACTER:=_'

E_61 constant EBCDICCHARACTER:=''

E_6B constant EBCDICCHARACTER:,;

E_6C constant EBCDICCHARACTER:%;
E_6D constant EBCDICCHARACTER :='_';

E_6E constant EBCDICCHARACTER :='>';

E_6F constant EBCDICCHARACTER:_

E_79 constant EBCDICCHARACTER:
E_7A constant EBCDICCHARACTER::;

E_7B constant EBCDICCHARACTER:=''

E_7C constant EBCDICCHARACTER:@'
E_7D constant EBCDICCHARACTER:..;

B_7E constant EBODICCHARACTER:=;

E_7F constant EBCDICCHARACTER:';

E_81 constant EBCDICCHARACTER :aW;
E_82 constant EBCDICCHARACTER:=W

E_83 constant EBCDICCHARACTER:c;

E_84 constant EBCDICCHARACTER: c;
E_85 constant EBCDICCHARACTER:e'

E_86 constant EBCDICCHARACTER:=T

E_87 constant EBCDICCHARACTER:g'
E_88 constant EBCDICCHARACTER:h;

E_89 constant EBCDICCHARACTER:=T
E_91 constant EBCDICCHARACTER:';

w

E_92 constant EBODICCHARACTER:=W

E_93 constant EBCDICCHARACTER: 'T'
E_94 constant EBCDICCHARACTER:m'

E_95 constant EBCDICCHARACTER:=W

E-B96 constant EBODICCHARACTER:='o';

EB_97 constant EBCDICCHARACTER: 'p';
E_98 constant EBCDICCHARACTER:';

E_99 constant EBCDICCHARACTER:=Y

BAl constant EBCDICCHARACTER:=''

EA2 constant EBCDICCHARACTER :='sV;

EA3 constant EBCDICCHARACTER:=Y

EA4 constant EBCDICCHARACTER:=V

A/s~is IBM 370 Ada Compiler, Appendix F for VUM/CAS, Version 3.2 23

EAS constant EBCDICCHARACTER 'v;

EA6 constant EBODICCHARACTER 'w';
EA7 constant EBCDJCCHARACTER:=''

EA8 constant EBCDICCHARACTER: 'y;
EA9 constant EBCDICCHAR.ACTER:=

EAD constant EBCDICCHARACTER :
EBD constant EBCDICCHARACTER:=
ECO constant EBCDICCHARACTER: T;

EClI constant EBCDICCHARACTER: A',

EC2 constant EBCDICCHARACTER:=B;
EC3 constant EBCDICCHARACTER:='C';

EC4 constant EBCDICCHARACTER:=''
EC5 constant EBCDICCHARACTER:=';

EC6 constant EBCDICCHARACTER:='F';

EC7 constant EBCDICCHARACTER:=''
EC8 constant EBCDICCHARACTER.: 'H';

EC9 constant EBCDICCHARACTER:='I';
EDO constant EBODICCHARACTER:=);1
EDl1 constant EBCDICCHARACTER:=J;

ED 2 constant EBCDICCHARACTER ='K';
EDS constant EBCDICCHARACTER:L;

ED4 constant EBCDICCHARACTER ''

ED5 constant EBCDICCHARACTER 'N';
ED6 constant EBCDIC_-CHARACTER: '0';
ED7 :constant EBCDICCHARACTER:='P';

ED8 constant EBCDICCHARACTER:';

ED9 constant EBCDICCHARACTER:=''

EEQ constant EBCDICCHARACTER:=\;

EE2 constant EBCDICCHARACTER:='S';

EE3 constant EBCDICCHARACTER: 'T';

EE4 constant EBODICCHARACTER:='U';

EES :constant EBCDICCHARACTER:=''

EE6 constant EBODICCHARACTER:='W';

EE7 constant EBCDICCHARACTER:X;

EE8 constant EBCDICCHARACTER:='Y';

EE9 constant EBCDICCHARACTER: W

EFO constant EBCDICCHARACTER: ''
EFi constant EBCDICCHARACTER:='1';

HF2 constant EBCDICCHARACTER: '2';

EF3 constant EBCDICCHARACTER: '3';
EP4 constant EBCDICCHARACTER =4 C

EPS constant EBCDICCHARACTER: S *;

EP6 constant EBCDICCHARACTER: 6;

EF7 constant EBCDICCHARACTER: '7;

EP8 constant EBCDICCHARACTER .=W

EP9 constant EBCDICCHARACTER:='9';

type EBCDICSTRING is array (POSITIVE range <c>) of EBODIC_CHARACTER; 5

function ASCII TO EBCDIC (S :STRING) return EBCDICSTRING;

Alsvs IBA'! 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 24 ~
Ae

w Ir r %lrr.

- CONSTRAINTERROR is raised if E STRING'LENGTH /= ASTRING'LENGTH;

procedure ASCIITO EBCDIC (ASTRING in STRING;

E_STRING out EBCDIC_STRING);

function EBCDIC TO ASCII (S : EBCDICSTRING) return STRING; 0

-- CONSTRAINTERROR is raised if ESTRING 'LENGTH /= ASTRING'LENGTH;

procedure EBCDICTO ASCII (E_STRING in EBCDICSTRING;

A_STRING out STRING);

end EBCDIC;

The subprograms ASCII TO EBCDIC and EBCDICTO-ASCII convert between
ASCII encoded STRINGs and EBCDICSTRINGs as appropriate.

The procedures ASCII TO EBCDIC and EBCDIC TO ASCII are much more
efficient than the corresponding functions, as they do not make use of the program S
heap. Note that if the in and out string parameters are of different lengths (i.e.
ASTRING'LENGTH /= ESTRING'LENGTH), the procedures will raise the
exception CONSTRAINTERROR.

Note that the user may alter the ASCII to EBCDIC and EBCDIC to ASCII mappings
used by the Alsys IBM 370 Ada compiler, as described in the installation guide. •

If SEQUENTIAL_10 is instantiated with the type EBCDIC STRING, 10 of arbitary
EBCDIC strings is possible. Note also that in many mays EBCDIC STRINGs may
be manipulated exactly as the predefined type STRING; in particular, string literals % .1
and catenations are available.

8.5 Characteristics of disk files

Disk files that are have already been created and are opened take on the
characteristics that are already associated with that file.

The characteristics of disk files that are created using the predefined input-output
packages are set up as described in the below.

TEXT_10

1 RECFM = V, unless the RECORD SIZE FORM parameter component is
specified in which case RECFM ='F and the LRECL is as specified.

* A carriage control character is placed in column I if the CARRIAGE control
component is specified.

" Data is translated between ASCII and EBCDIC so that the external file is
readable using other system 370 tools.

.

Alsys IBA1 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 25

SEQUENTIAL_10

n RECFM = V, unless the RECORD SIZE FORM parameter component is
specified in which case RECFM = F and the LRECL is as specified.

* No translation is performed between ASCII and EBCDIC; the data in the
external file is a memory image of the elements written, preceded by a 4-byte
length count in the case of unconstrained types for which a RECORDSIZE
component has been specified.

DIRECT_10

* RECFM=F and LRECL=ELEMENT TYPE'SIZE/SYSTEM.STORAGEUNIT
for unconstrained types (unlesss overriden by a RECORD SIZE FORM
parameter component), LRECL is defined by the mandatory RECORDSIZE 0
FORM parameter component for unconstrained types.

" No translation is performed between ASCII and EBCDIC; the data in the
external file is a memory image of the elements written, preceded by a 4-byte
length count in the case of unconstrained types.

" DIRECT_10 files may be read using SEQUENTIAL 10 (vice-versa if a

RECORDSIZE component is specified).

9 Characteristics of Numeric Types

9.1 Integer Types U,,
The ranges of values for integer types declared in package STANDARD are as
follows:

SHORTINTEGER -32768 .. 32767 -- 2"*15 - 1 -

INTEGER -2147483648 .. 2147483647 -- 2**31 - 1

For the packages DIRECT 10 and TEXT_10, the ranges of values for types
COUNT and POSITIVE COUNT are as follows:

COUNT 0 .. 2147483647 -- 2**31 - 1

POSITIVECOUNT 1 .. 2147483647 -- 2**31 - I

For the package TEXT_10, the range of values for the type FIELD is as follows:

FIELD 0 .. 255 -- 2**8- 1

Alsis IBM 370 Ada Compiler. Appendix F for VA/CMS. Version 3.2 26

%

TArxX ul r-R EA N T -4wu"WI-1IN 1

9.2 Floating Point Type Attributes

SHORTFLOAT
0

Approximate
value

DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 **-20 9.54E-07
SMALL 2.0 **-85 2.58E-26
LARGE 2.0 84 *(1.0 -2.0 **-21) 1.93E+25 r

SAFEEMAX 252
SAFESMALL 2.0 **-253 6.9 1 E-77
SAFELARGE 2.0 **127 * (1.0 - 2.0 ** -21) 1.70E+38

FIRST -2.0 **252 * (1.0 - 2.0 ** -24) -7.24E+75
LAST 2.0 ** 252 *(1.0 - 2.0 **-24) 7.24E+75
MACHINERADIX 16
MACHINEMANTISSA 6
MACHINEEMAX 63
MACHINE EMIN -64
MACHINEROUNDS FALSE
MACHINEOVERFLOWS TRUE
SIZE 32

FLOAT

Approximate
value

DIGITS 15
MANTISSA 51
EMAX 204
EPSILON 2.0 **-50 8.88E- 16
SMALL 2.0 **-205 1.94E-62
LARGE 2.0 **204 * (1.0 -2.0 **-51) 2.57E+61
SAFEEMAX 252
SAFESMALL 2.0 **-253 6.91E-77
SAFELARGE 2.0 **252 *(1.0 - 2.0 51 S) 7.24E+75
FIRST- -2.0 ** 252 * (1.0 - 2.0 **-56) -7.24E+75
LAST 2.0 **252 *(1.0 - 2.0 **-56) 7.24E+75
MACHINERADIX 16
MACHINE MANTISSA 14
MACHINEEMAX 63 I

MACHINE EMIN -64
MACHINE-ROUNDS FALSE
MACHINEOVER FLOWS TRUE J
SIZE 64

Als)'s IBM 370 Ada Compiler. Appendix F for 1'AI/CMfS, Version 3.2 27

LONGFLOAT

Approximate
value

DIGITS 18
MANTISSA 61
EMAX 244
EPSILON 2.0 ** -60 8.67E- 19
SMALL 2.0 ** -245 1.77E-74
LARGE 2.0 ** 244 * (1.0 - 2.0 ** -61) 2.83E+73
SAFE EMAX 252
SAFE SMALL 2.0"* -253 6.91E-77
SAFE LARGE 2.0"* 252 * (1.0 - 2.0"* -61) 7.24E+75
FIRST -2.0 ** 252 * (1.0 - 2.0 ** -I 12) -7.24E+75
LAST 2.0 ** 252 * (1.0 - 2.0 ** -112) 7.24E+75
MACHINE RADIX 16
MACHINE MANTISSA 28
MACHINE EMAX 63
MACHINE EMIN -64
MACHINEROUNDS FALSE
MACHINEOVERFLOWS TRUE
SIZE 128

9.3 Attributes of Type DURATION

DURATIGN'DELTA 2.0 * -14
DURATION'SMALL 2.0 ** -14
DURATION'LARGE 131072.0
DURATION'FIRST -86400.0
DURATION'LAST 86400.0

10 Other Implementation-Dependent Characteristics

10.1 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Ada Run-
Time Executive's representation of task objects, including the task stacks, are
allocated in the heap.

All objects whose visibility is linked -to a subprogram or block have their storage
reclaimed at exit.

10.2 Characteristics of Tasks

The default task stack size is 16 Kbytes, but by using the Binder option TASK the
size for all task stacks in a program may be set to any size from 4 Kbytes to 16
Mbytes.

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS. Version 3.2 28

,

Timeslicing is implemented for task scheduling. The dcfatit time slice is 1000
milliseconds, but by using the Binder option SLICE the time slice may be set to any
period of 10 milliseconds or more. It is also possible to use this option to specify no
timeslicing, i.e. tasks are scheduled only at explicit synchronisation points.
Timeslicing is started only upon activation of the first task in the program, so the P
SLICE option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in
the range I .. 10. All tasks with "undefined" priority (no pragma PRIORITY) are
considered to have a priority of 0.

The minimum timeable delay is 10 milliseconds.

The maximum number of active tasks is limited only by memory usage. Tasks
release their storage allocation as soon as they have terminated.

The acceptor of a rendezvous executes the accept body code in its own stack. A P
rendezvous with an empty accept body (e.g. for synchronisation) does not cause a
context switch.

The main program waits for completion of all tasks dependent on library packages
before terminating. Such tasks may select a terminate alternative only after
completion of the main program. P

Abnormal completion of an aborted task takes place immediately, except when the
abnormal task is the caller of an entry that is engaged in a rendezvous. Any such
task becomes abnormally completed as soon as the rendezvous is completed.

If a global deadlock situation arises because every task (including the main program)
is waiting for another task, the program is aborted and the state of all tasks is
displayed.

10.3 Definition of a Main Program

A main program must be a non-generic, parameterless, library procedure.

10.4 Ordering of Compilation Units

The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language. However, if a generic unit is
instantiated during a compilation, its body must be compiled prior to the completion ij
of that compilation [10.3].

,.,

10.5 Package SYSTEIMENVIRONMENT

The implementation-defined package SYSTEM ENVIRONMENT enables an Ada
program to communicate with the environment in which it is executed.

The specification of this package is as follows: ,,

Als),s IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 29

7a

.'f f .\ .\ ' % *

package SYSTEMENVIRONMENT is

subtype EXITSTATUS is INTEGER;

type STACKMODE is (LIFO, FIFO);

function ARC LINE return STRING;

function ARCLINELENGTH return NATURAL;

procedure ARC_LINE (LINE : out STRING;

LAST: out NATURAL);

function ARGSTART return NATURAL;

procedure SETEXIT STATUS (STATUS : in EXITSTATUS);

function EXECUTECOMMAND (COMMAND . in STRING) p

return EXITSTATUS;

procedure STACK (COMMAND in STRING; P?

MODE in STACKMODE:= LIFO);

procedure EXECUTECOMMAND (COMMAND: in STRING);

procedure ABORTPROGRAM (STATUS: in EXITSTATUS); N

function SYSTIME return DURATION;

J

function USRTIME return DURATION;

function EXISTS (FILE : in STRING) return BOOLEAN;

end SYSTEMENVIRONMENT;

The ARG LINE subprograms give access to the CMS command line. The procedure
ARGLINE is more efficient than the corresponding function, as it does not make
use of the program heap. The out parameter LAST specifies the character in LINE
which holds the last character of the command line. Note, if LINE is not long
enough to hold the command line given, CONSTRAINT _ERROR will be raised.
The command line returned includes the name of the program executed, but not any
run-time options specified.

The function ARG START returns the index in the command line of the first
parameter, i.e. ignoring the executed program name.

The exit status of the program (returned in register 15 on exit) can be set by a call
of SETEXITSTATUS. Subsequent calls of SET EXIT STATUS will overwrite
the exit status, which is by default 0. If SET _EXIT__STATUS is not called, a
positive e; it code may be set by the Ada Run-Time Executive if an unhandled
exception is propagated out of the main subprogram, or if a deadlock situation is
detected.

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS. Version 3.2 30

,"_19

1~Ir P
9 w

The following exit codes relate to unhandled exceptions:

Exception Code Cause of exception

NUNIERICERROR:
I divide by zero
2 numeric overflow

CONSTRAINTERROR:
3 discriminant error
4 lower bound index error
5 upper bound index error
6 length error
7 lower bound range error
8 upper bound range error
9 null access value

STORAGE ERROR:
10 frame overflow

(overflow on subprogram entry)
II stack overflow N

(overflow otherwise)
12 heap overflow

PROGRAMERROR: 0
13 access before elaboration
14 function left without return

SPURIOUS ERROR:
15-20 <an erroneous program>

NUMERIC ERROR 21 (other than for the above reasons)
CONSTRAINTERROR 22 (other than for the above reasons)

23 anonymously raised exception

(an exception re-raised using the raise
statement without an exception name)

24 <unused>
25 static exception

(an exception raised using the raise
statement with an exception name)

Code 100 is used if a deadlocking situation is detected and the program is aborted as
a result.

Codes 1000-1999 are used to indicate other anomalous conditions in the initialisation
of the program, messages concerning which are displayed on the terminal.

The EXECUTECOMMAND subprograms with a non-nifll parameter execute the

given CMS SUBSET command. The result of the EXECUTE COMMAND function
is the return code of the command.

If a null string is given as the parameter, the program exits to CMS subset level. Y

This allows CMS SUBSET commands to be executed directly. Issuing the command
RETURN from the CMS subset level will return to the Ada program. The return

code of the EXECUTECOMMAND function with a null COMMAND string is
always zero.

Alsi's IBM 370 Ada Compiler, Appendix F for VM/CMS, Version 3.2 31

The STACK procedure allows a command to be placed on the console stack: either
last-in-first-out (LIFO) or first-in-first-out (FIFO).

The SYSTIME and USRTIME functions allow access to the amount of system and
user time, respectively, used by the program since its execution. ,

The EXISTS functions returns a boolean to indicate whether the file specified by the
file name string exists or not.

S

11 Limitations

11.1 Compiler Limitations

" The maximum identifier length is 255 characters.i

" The maximum line length is 255 characters.

" The maximum number of unique identifiers per compilation unit is 1500.

" The maximum number of compilation units in a library is 1023.
" The maximum number of subunits per compilation unit is 100. •

" The maximum size of the generated code for a single program unit
(subprogram or task body) is 128 Kbytes.',.

" There is no limit (apart from machine addressing range) on the size of
the generated code for a single compilation unit. •

" There is no limit (apart from machine addressing range) on the size of a
single array or record object.

" The maximum size of a single stack frame is 64 Kbytes including the
data for inner package subunits which is "unnested" to the parent frame.

" The maximum amount of data in the global data area of a single
compilation unit is 64 Kbytes, including compiler-generated data.

X

%'-

Alsys IBM 370 Ada Compiler, Appendix F for "M/CMfS, Version 3.2 32 !'

-- -V.,..

0"

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIGIDI X23456789012345678901234567890123
Identifier the size of the 4567890123456789012345
maximum input line length with A Al S
varying last character. --. I 199 characters

$BIG_1D2 X23456789012345678901234567890123
Identifier the size of the 4567890123456789012345 .4

maximum input line length with A.... A2
varying last character. --. I 199 characters

$BIG ID3 X23456789012345678901234567890123
Identifier the size of the 4567890123456789012345 Q.
maximum input line length with A 3A A
varying middle character. 1-99-I 1-100-I characters

$BIGID4 X23456789012345678901234567890123
Identifier the size of the 4567890123456789012345 !o
maximum input line length with A.... A4A ... A
varying middle character. 1-99-I 1-100-I characters

$BIGINT LIT 0 0293 0
An integer literal of value j-..I
298 with enough leading zeroes 252 characters
so that it is the size of the
maximum length.

Appendix C Page 1 of 4

_22 Nj*

TEST PARAMETERS

Name and Meaning Value

$BIGREAL LIT 0 0690.0
A universal real literal of
value 690.0 with enough 250 characters
leading zeroes to be the
size of the maximum line
length.

$BIG STRING1 "X23456789012345678901234567890123
A string literal which when 4567890123456789012345
catenated with BIG STRING2 A A"
yields the image of BIGIDl. I ---- 1 72 characters

$BIGSTRING2 "A All'
A string literal which when I ----
catenated to the end of 127 characters
BIG STRING1 yields the image
of BIG IDl.

$BLANKS 235 blanks
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal
whose value is
TEXTIO.COUNT'LAST. A

$FIELDLAST 255 S
A universal integer literal
whose value is
TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS T??????? LISTING Al
An external file name that
either contains invalid
character or is too long.

$FILENAME WITH WILD CARD CHAR TOOLONGNAME TOOLONGTYPE TOOLONGMODE
An external file name that
either contains a wild card
character or is too long.

$GREATER THANDURATION 100000.0
A universa± real literal that
lies between
DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

Appendix C Page 2 of 4

- -.-. ° """ -" ' , - , %t -°,' %- - --V-' S. , * . - ., ,,.. P -

TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNAL FILE NAME1 T??????? LISTING Al
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 TOOLONGNAME TOOLONGTYPE TOOLONGMODE
An external file name which is
too long.

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 2147483648
A universal integer literal
whose value is INTEGER'LAST +

1 .

$LESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'
FIRST and DURATION'FIRST or
any value in the range of
DURATION.

$LESSTHANDURATIONBASEFIRST -10000000.0
A universal real literal that
is less than DURATION'BASE'
FIRST

$MAX-DIGITS 18
Maximum digits supported for
floating-point types.

$MAXINLEN 255
Maximum input line length
permitted by the
implementation.

$MAXINT 2147483647
A universal integer literalwhose value is SYSTEM.MAXINT.

$MAXINT PLUS 1 2147483648
A universal integer literal
whose value is
SYSTEM.MAXINT+I.

Appendix C Page 3 of 4

TEST PARAMETERS

Name and Meaning Value

$MAXLEN INT BASED LITERAL 2:0 011:
A universal integer based
literal whose value is 2#11# 250 characters
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX LEN REAL BASED LITERAL 16:0 OF.E:

A universal real based literal
whose value is 16:F.E: with 248 characters
enough leading zeroes in the
mantissa to be MAXINLEN
long.

SMAXSTRING LITERAL "X23456789012345678901234567890123
--A string literal of size 4567890123456789012345

MAX IN LEN, including the A.. A3"
quote characters. --...I 197 characters

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

* $NAME NOSUCHTYPE$ A name of a predefined numeric - -

type other than FLOAT,
INTEGER, SHORTFLOAT,
SHORTINTEGER, LONGFLOAT, or
LONGINTEGER.

$NEGBASED INT 8#20000000000#
A based integer literal whose

highest order nonzero bit A

falls in the sign bit position

of the representation for
SYSTEM.MAX INT.

SI

Appendix C 1-age 4 of 4 %

r.

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to ,
the Ada Standard. The following 25 tests had been withdrawn at the

time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary. i

B28003A: A basic declaration (line 36) wrongly follows a later <
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and
the matter will be reviewed by the ALMP. .

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERROR.

C35502P: The equality operators in lines 62 & 69 should be inequality i,
operators. '

A35902C: Line 17's assignment of the nominal upper bound of a fixed-
point type to an object of that type raises CONSTRAINT_-ERROR -
for that value lies outside of the actual range of the type. .

C35904A: The elaboration of the fixed-point subtype on line 28

wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when '
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption. ,

C35A03R These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada .
Standard doesn't support this assumption. '

Appendix D Page 1 of 3

- On

WITHDRAWN TESTS

C37213H The subtype declaration of SCONS in line 100 is wrongly

expected to raise an exception when elaborated.

C37213J The aggregate in line 451 wrongly raises CONSTRAINT ERROR.

C37215C Variouz discriminant constraints are wrongly expected to be
incompatible with type CONS.

C37215E Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

C37215G Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

C37215H Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

C38102C The fixed-point conversion on line 25 wrongly raises
CONSTRAINTERROR.

C41402A 'STORAGE-SIZE' is wrongly applied to an object of an access
type.

C45614C REPORT.IDENT INT has an argument of the wrong type
(LONGINTEGER).

A74016C A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAING ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

C85018B A bound specified in a fixed-point subtype declaration lies .
outside that calculated for the base type, raising
CONSTRAINGERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

C87B04B A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAING ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

CC1311B A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising

,F

CONSTRAING ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

BC3105A Lines 159..168 are wrongly expected to be incorrect; they
are correct.

Appendix D Page 2 of 3

-:~~f- \ .. ~% ~ f..v - ~ . *%- -SW 4

"0677777,7 17 -T V VY 07 W.

WITHDRAWN TESTS

ADIA01A The declaration of subtype INT3 raises CONSTRAINT ERROR forimplementations that select INT'SIZE to be 16 or greater.

CE2401H The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A This test expects that an attempt to open the default output
file (after it was closed) with mode IN FILE raises
NAME ERROR or USE ERROR; by Commentary AI-00048, MODE ERROR
should be raised.-

Appendix D Page 3 of 3

4.'

