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SECTION I

INTRODUCTION

Substantiating postulations through experimentation, or

using experimentation to draw new conclusions, is

fundamental to science and engineering. This service is

provided to theoretical mechanics by the field of

experimental mechanics. Before coming to any conclusions,

experimentalists demand confidence in their work; as a

result, many time consuming experiments are repeated just

to be sure. Experimental stress analysis is no different.

Repeating experimental procedures, often including more than

one technique, is the norm when searching for the solution

to engineering problems t1]. The tedious nature of manual

data extraction and reduction led researchers to explore

automated extraction and reduction schemes. Hence, hybrid

experimental-numerical stress analysis techniques evolved.

The shear difference method (2] is an early example of

an experimental-numerical hybrid method in stress analysis.

Since then, researchers have acknowledged the need for
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improved and more encompassing hybrid techniques r>. Prizr

to the development of digital image processing, most hybrid

stress analysis techniques suffered froin the need for manilal

data extraction. Seguci et al. [4J bridged the gap between

computer analysis and experimental data via a digitized

video picture. Their paper marks the beginning of the era

where researchers started using digital image processing

techniques with structural analysis codes to produce viable

stress analysis techniques (5-6]. During this same era,

researchers started to exploit a new numerical structural

analysis technique, the boundary element method.

The appearance of boundary element methods (BEM) was

coincident with the advent of digital computers [7], but

they did not become popular until Rizzo [8] introduced the

direct boundary element method. Still, BEM (sometimes

called boundary integral equation methods) have yet to

achieve the acceptance of finite element methods (FEM). The

reluctance of the technical community to embrace BEM is

largely attributable to its less familiar mathematical

foundations [9]. However, in the past ten years, the

popularity of BEM for hybrid and purely numerical studies

has greatly increased.

Moslehy and Ranson (10], Umeagukwu et al. [11], and

Balas et al. [12] introduced early BEM-experimental hybrid

techniques, but all require manual data extraction. Liu

(13] introduced a hybrid method using digital image
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processing and elastic BEM. In his method, digital image

correlation is used to find displacements interior to the

boundary. Liu then solves the inverse boundary element

problem to find the boundary conditions. Liu's work finally

relieved the experimenter of data extraction

responsibilities.

Hybrid elastic boundary element-experimental methods

are presently an important research area [14-15]. Equally

important are elastic-plastic boundary element-experimental

methods, but there seems to be an absence of research in

this topic. Elastic-plastic boundary element methods

(EPBEM) were first conceived by Swedlow and Cruse [16] in

1971 and then implemented by Riccardella [17] in 1973.

Since then, EPBEM have grown in popularity. Telles [18]

gives an excellent historical review of the development of

this numerical method. The rapid increase in the popularity

of elaitic-Dlastic boundary element is due to [18-19]:

1. The BEM solution reduces much of the domain
by one dimension. That is, in elastic
regions, only the boundary is discretized.

2. Only the plastic zone must Le dsma
discretized.

3. BEM produces a reduced set of equaticns
(compared with FEM).

4. The user preparation to run the codes is
greatly reduced.

5. Expertise requirements are greatly reduced
from techniques dependent on mesh generation.
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6. Infinite and semi-infinite prob]ems can be
accurately and efficiently modelled.

7. The displacements, stresses and strains can
be selectively calculated.

8. EPBEM affords a high degree of accuracy.

The EPBEM algorithm used here is conceptually

equivalent to the rate torm of elastic BEM with a body fcrce

[20J. The governing differential equation for displacements

can be arranged so that the homogeneous part is the Navier

equation for total displacement rates. The nonhomogeneous

part contains the nonlinear terms associated with spatial

derivatives of the plastic strain rate. These nonlinear

terms constitute a pseudo body force. The boundary element

solution approach leads to an equation for the unknown

boundary conditions in terms of the known boundar-

c-nditions (assuming the body forces are known). Since the

plastic strain rates introduce an additional set of

unknowns, the boundary element method requires an additicnal

set of equations. The constitutive model provides enough

information so that an initial strain L2 1] solution

procedure can be successful. This EPBEM algorithm uses the

isotropic hardening, von Mises yield criterion discussed by

Swedlow (22].
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In the natural progression of coupling boundary, element

methods a-- image processing techniques, this report

introuuces a two-dimensional experimental EPBEM tecnncue.

The experimental technique used here, displacement pattern

matching, is a spinoff of the pattern mapping technique,

first introduced by Fail [23]. Pattern mapping uses digital

image processing and syntactic pattern recognition

techniques to discern the motion of spots applied to a

specimen. The history of pattern mapping can be traced

through the photogrid method [24-257 and the fine-grid

method [26-27]. These predecessors measured strain by

measuring the local motion of large grids of dots applied to

a model. Typically, the measurements were made by the

experimenter and thus sabject to a large degree of error.

Kawasaki et al. L28] automated the fine grid method to

attain good accuracy, but the equipment is necessarily

complex and dedicated to the fine grid task.

* 0 01 0 0

@6 66 0

0 0 0 * * ICON

* 41 0 0 0

Figure 1. Five-by-five pattern mapping grid with an
icon.
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Pattern mapping has the advantage of using general

purpose image processing hardware. Additionally, a regular

grid need not cover the entire specimen. In pattern

mapping, one places an arbitrarily shaped matrix of spots

(for example a 5x5 square) at the locations ir which the

displacements and strains are required (Figure 1). Located

in this matrix, there is a special spot (termed an Icon)

that serves as a reference spot for determining the relative

locations of the individual spots and the matrix

orientation. The position of each spot in the matrix is

then recorded before and after motion. Differencing yields

the displacement, and a strain definition (small, large,

Lagrangian, etc.) provides a measure of strain [23]. In the

proposed hybrid stress analysis, only the displacement is

required, thus the name "displacement pattern matching"

(DPM). This requirement further relaxes the grid geometry

restrictions to only placing a spot at the locations where

one desires the displacements. In addition, DPM does not

use an Icon, resulting in the reduction of the syntactic

recognition language from context sensitive to context free.

The combination of displacement pattern matching for data

extraction and elastic-plastic boundary element methods for

structural analysis leads to a fully automated technique for

measuring plastic stress and strain.
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Three experiments explore the ability of the automated

hybrid technique as a nondestructive stress analysis tool.

All are plane stress tests of 1100-Hl4 aluminum, using an MTS

testing machine to apply controlled loads. The first is a

simple uniaxial stress test of a thin sheet. The second is

the investigation of a thin sheet with a central hole,

subject to uniform end loads (perforated strip tension

test); and the third is a thin V-notched sheet, subject to

uniform end loads (notched tension specimen test). All

three experiments serve to show the usefulness of this

hybrid DPM-EPBEM technique in elastic-plastic stress

analysis.
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SECTION II

THE ELASTIC-PLASTIC BOUNDARY ELEMENT METHOD

II.1 Linear Elastic BEM

The derivation of the two-dimensional integral

equations governing linear elasticity and their solutions

provide an entry point to the understanding of the

underlying concepts of boundary element methods. The

elasticity equations and solutions are first derived, and

then they are extended to include plastic flow. The basic

assumptions in the development are

1) The problem is well posed (proper
boundary conditions are specified).

2) The material is isotropic and linear
elastic.

3) Small displacement theory is
applicable.

Elastic boundary element methods are based on the

numerical solution of the integral equations governing the

deformation in an elastic solid. These integral equations

8
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can be derived by starting with the following form of the

virtual work statement:

ti(s)ui(s)dF+ bi(P)Ui(p)dn= ij(s,P),ij(p)d; (II-)

where ti, ui, and bi denote the traction, displacement and

body force vectors respectively. The stress tensor is gij

and the strain tensor is eij. The differential dr is an

element on the bounding curve and the differential do is an

interior surface element. Also, the *-superscript denotes

an arbitrary equilibrium set and no superscript denotes an

arbitrary compatible set (29]. The right hand side of

Equation (II-1) can be rewritten using an identical form of

virtual work but with the significance of the superscript

and no superscript interchanged. The resulting equation,

given below, is:

j ti(s)ui(s)dr+ bi (p)ui(p)do= ti(s) ui(s)dr

+ bi(P)uip) da (11-2)

This equation is known as Betti's Second Reciprocal Theorem

[18]. In these two equations, s represents a point on the

bounding curve and p represents a point in the interior.
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Since the choice is arbitrary, ui, ti , and bi are

chosen as the traction, displacement, and body force of the

true body. The choice of the *-superscript set is also

arbitrary; therefore, it is chosen as Kelvin's solution to

the response of an infinite, two-dimensional, elastic medium

which is subjected to arbitrarily located, mutually

orthogonal point loads. Kelvin's solution is found by using

the Green's function approach of letting bi be the two-

dimensional Dirac delta function 6ijPj(p) [30]; where Pj(p)

(for j=l,2) are two mutually orthogonal unit loads (i=1,2).

This designation is substituted into the adjoint form of the

Navier equation to yield the following forms of

displacement, traction, stress and strain:

ui(s) = Uij(s,p)Pj(p),

ti(s) = Tij (s,p)Pj (p) ,
. * (11-3)

cki(P) = Ejki(sP)Pj(P), and

a ki(P) = Sjki(s,P)Pj(P)

where

* -

Uij 8n(l-v)G ((3-4v)ln(r) 6 ij -r,ir,j),

*-i dr

T j (s,p) - 4f(l-()G - )(l-2 w)ij+21,ir,j]nd

- (l-2v)[r,inj-r,jni]),



EII* -1
Ijk i  (s,P)= 8?r(1-v)Gr- ( -2 (r k5ij+r, j 6ik)

- r,iSjk+ 2 r ir,jr,k),

(11-4)
* 1 - ((1Sjk i  (s"p)- 47(l-)r ((- w r k6ij+r,j6ki- i jk

2 r, ir, jr,k).

In Equations (11-4), r2 = (Xp-Xs)2 +(Y p-Ys)2, w is Poisson's

ratio, ni is the outward normial vector to the bounding

surface, dr/dn is the normal derivative, and G is the shear

modulus. The function U*ij(s,p) is known as Kelvin's

fundamental solution; where T*ij(s,p), E*jki(s,p), and

S *jki(s,p) are the traction, strain, and stress respectively

that are associated with the fundamental solution.

Sokolnikoff [31] provides a detailed development of Uij and

most boundary element texts include a derivation of Tij ,

Ejkit and Sjki (for example see Ref. [20]).

Somigliano's Identity for displacements (32] is the

basis for the boundary element method. This identity is

found by substituting the fundamental solution into Betti's

Second Reciprocal Theorem.

ui(P)= Uij (sp)tj (s)dF-{ Tij (sp)uj (s)dr

+ {Uin gj(s)bj(p)dn - (11-5)
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Equation (11-5) can be restated as, given all the boundary

conditions (the body force is always considered known),

information at any point inside the boundary is attainable

without finding the entire domain solution. In other words,

selective calculation of interior displacements is possible

by a line integral around the bounding curve. An

appropriate real estate analogy is that a buyer need never

see the property, he only needs to walk the perimeter to

know every detail of the lot and the house. This is a truly

remarkable statement. The solution to Navier's equation is

reduced in dimension (in the sense that only the boundary

must be examined). The reduced dimensionality (surface to

line integral) makes BEM a very attractive numerical

solution technique. But still, the unknown boundary

conditions remain unknown, so the solution is not yet

tractable.

The above dilemma is easily remedied by taking the

limit of Equation (11-5) as the field point, p, approaches

the surface (8]. Mathematically stated as

Lim ui(p), where I is a point on F. (11-6)
P-.2

Since somewhere on the boundary r=O (I=s), and since

T*ij(s,p) is proportional to 1/r and U*ij is proportional to

ln(r), the limit in Equation (11-6) produces a singular

integral. This singular integral exists [8] and is

interpreted in the principal value sense [33]. The
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existence proof of the limit in Equation (11-6) follows by

segmenting the integration path to isolate the singular

point, then taking the limit of the integral as the singular

integration path shrinks to zero.

The existence of the right hand side's second integral

in Equation (11-5) is verified by the apprcach described

above. Using the notation in Figure 2,

lira ij(s,2)uj (s)dF=lim ij(,)u sd

,o-O IlP0rO l~~~jsd

(11-7)

+*lim Tij(s,2)ujGdr'.

P- 0 Jr-F

The first integral on the right hand side of

Equation (11-7) exists in the ordinary sense but the

integral around the singular circuit must be viewed

carefully. The singular integral's existence is confirmed

by making the following two substitutions:

1) T*ij =g(9)/p; where g(9) is order one and 2) dr=pdo

r62 f62
lim g(8)do = g(9) do. (I-8)

P0Jo J 6
1 1

Generally, the limit in equation (11-7) is not

evaluated until assumptions about the interpolation of uj

over the boundary r are made (see section III. 4). Lachat

[34), following closely the arguments of
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e

SINGULAR POINT

Figure 2. Circuit around the singularity.

Muskhelishvili [33], showed that Equation (11-7) evaluates

to Cijuj regardless of the interpolation function. In the

strict sense Cij is a constant and is dependent on surface

smoothness; but in the numerical solution, Cij is also

dependent on the interpolation function.

The same arguments hold for the other two integrals on

the right hand side of Equation (11-5). In the first

integral U*ij is proportional to ln(p) and in the third

integral the area element is pdpd4. In both cases, the

limit evaluates to zero. Assembling the aforementioned

results yields the boundary element constraint equation.

Cij(s)uj(s)+f Tij(s,1)Uj(s)df=F Ui(s, )tj(s)dP

Jr
(11-9)

Jij (s,p)b j ( p ) d o .
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For a well posed problem, Equation (11-9) provides the

unknown boundary conditions. These boundary conditions, in

turn, can be used in Equation (11-5) to give the

displacement at any desired interior point. As an example,

if the surface traction is prescribed on the surface, then

Equation (11-9) yields the unknown surface displacements.

Then Equation (11-5) gives the displacement solution in the

domain. This procedure is valid for prescribed tractions,

prescribed displacements, or mixed boundary conditions.

11.2 Elastic-Plastic BEM

The governing equations in elastic-plastic boundary

element methods are developed along the same lines as

elastic BEM; the main difference is the idea of initial

strain. This section will describe the initial strain

concept and its effect on the BEM development.

Additionally, the need for a second equation is illustrated

and a plastic flow rule is introduced to meet that need.

Swedlow and Cruse (16] were first to formulate the

initial strain boundary element theory. Since then,

Riccardella (17], Mendelson and Albers (35], Mukherjee [36),

Telles (18] and others have developed initial strain

algorithms to solve engineering problems. Although initial

strain theory is not restricted to a particular flow rule,

it will be described in the context of isotropic work
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hardening and incremental plasticity. In accordance with

accepted terminology and notation, rate and increment -wilI

be used interchangeably and superior dots denote time

differentiation.

In an elastic-plastic body, strains can be categorized

as either elastic or plastic. In initial strain EPBEM, the

plastic strain is assumed to act as a residual strain; each

load increment is just a deviation from that residual

strain. The adjective "residual" refers to the idea that

the solid kro-s, by some internal mechanism, the plastic

strain increment before the application of the load

increment. When the increment is applied, the material only

deforms elastically. Loosely interpreted, the initial

strain concept states that plastic deformation occurs before

elastic deformation. This idea of initial strain is

analogous to Martin's discussion of convergence by the

superposition of elastic and residual stresses [373. As an

aside, initial strain has little meaning in finite strain

plasticity since numerically, this is a load and unload

process. Initial strain, however, is acceptable in

incremental plasticity.

The derivation of the integral equations governing

elastic-plastic BEM follow the same procedure outlined in

Section II.1. This time, however, the starting point is a

rate form of virtual work:
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i (s)ui(s)dr+ i (p)ui(p)d= aij(s,P)ij(p)do; (11-0)

The superior dot denotes time differentiation, the terms

designated by the *-superscript denote an arbitrary

equilibrium set, and the terms with no superscript denote an

arbitrary compatible set. The total strain tensor can be

decomposed into elastic and plastic parts; thereby,

rewriting Equation (II-10) as

Jti(s)i(s)dr+ bi(P)ui(P)do= aij(s,P);i 
(P)dn

. .e

+ Ij(s,P) ij(p)do.

During each load increment both elastic and plastic

deformation are present. Even though plastic deformation

occurs, the stress rate is still related to the elastic

strain rate by Hooke's law [38]. Accordingly, the stress

rate can be found by isolating the elastic part of the total

strain increment and using Hooke's Law:

bij = 2G(cij - j) + 2G( k) (11-12)

1-2L

Equation (11-12) allows the following substitution to be
* .e .

made in equation (II-11): aijcij = fijaij.

Equation (II-11) can then be written in a form similar to
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Equation (11-2) by applying the rate form of virtual work

(with the significance of the superscripts interchanged)

to the eijaij term;

ti(s)ui(s)d - fi(s)ui(s)dF + bi(P)ui(P)dQ

(11-13)

-f i(P)ui(P)d ij (s,p) ( ij (p)d.

The difference between this integral equation and

Equation (11-2) is the integral which includes the plastic

strain rate term. As in Section II.1, the terms with the

*-superscript are chosen as Kelvin's solution.

(Equation (11-3)) and the terms with no superscript are

chosen as the displacement rate, traction rate, body force

rate and strain rate of the true body. These designations

lead to Somligliano's Identity for inelastic materials;

uj(s) = JUij(sP)ti(s)dr - rTij(s,p)ui(s)dF 4

(11-14)

Uij (s,p)bi(P)dQ + Cij (s,p) iij (p)dQ.

The limiting process to find the elastic-plastic boundary

element constraint equation is identical to that described

in Section II.l. The plastic strain rate integral exists

and has no contribution to Cij.
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Cij(s) aj (S) + { Tij(s,2) 1i(2)dF = Uij(s,2) ti( )dF

Jr ~J r,

where a*ki(s,p) = S*jki(s,p)Pj(p) is used.

If the plastic strain is known apriori and if the

problem is well posed, then Equation (11-15) yields the

unknown boundary conditions. The boundary information could

then be used to find the displacements in an elastic-plastic

solid (Equation (11-14)). The problem here is that prior

knowledge of the plastic strain rate is just an idealization

of the initial strain solution approach. In reality, the

plastic strain rate is an unknown quantity; therefore, an

additional relation is needed.

II.3 Elastic-Plastic Flow Rule

An isotropic work hardening, von Mises flow rule is

introduced to satisfy the above requirement for an

additional relation. Although a multitude of flow rules

have been proposed [39], an isotropic work hardening flow

rule provides an easily understood constitutive model. It

also provides a reasonable approximation to material

response while loading takes place. However, one should be

aware that the von Mises yield criterion is limited in that

it does not provide for hysteresis [4Uj.
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Figure 3. Isotropic hardening yield surface.

The yield function of an isotropic hardening material

mathematically describes a yield surface that maintains its

shape but increases in size as a function of the plastic

deformation. As an example (Figure 3), f(q) defines the

yield surface, where g is some measure of plastic

deformation. The loading path AB is purely elastic, where B
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is an infinitesimal amount inside the yield surface. As -h

solid is loaded along BC, plastic deformation commences and

the yield surface expands. Now, unloading along CD is

purely elastic until D is reached. As a result, the elastic

domain is enlarged.

There are infinitely many forms of isotropic work

hardening to choose from; Koiter [41] presents a general

development of work hardening, Hill [42] presents a detailed

discussion of work hardening and its applications, and

Malvern [43] gives a concise review of the prevalent models.

The isotropic work hardening rule used here employs a von

Mises yield criterion; where the yield function is single

valued and independent of hydrostatic pressure. The yield

criterion may be stated as

f(aij) -F(J 2 ) >0; (11-16)

where f is the yield function and J 2 is the second invariant

of the stress deviator.

Stability in Drucker's sense leads to the statement of

normality [44] which, in turn, leads to a functional form of

the proposed constitutive model. Normality is expressed as

'8f ," (II-17)
, Ij A a o i j

where A' is a proportionality factor that depends on

J2 and dJ 2 [45]. Once on the yield surface,

f(aij) = F(J 2 ), additional plastic deformation requires
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f(aij)>F(J2). Therefore one may write

•p af afCj = A- mn (-18)
aaij aamn

where A is a different proportionality factor and is a

function of J 2 [45]. Normality produces a linear relation

between plastic strain rate and the stress rate. In order

to make Equation (11-18) useful for computations, specific

assumptions need to be made about the form of F(J 2 ). Under

the assumption of von Mises yielding, the yield function is

the von Mises equivalent stress (aeq) and is defined as [43]

aeq = J3 Sij Sij; (I1-19)

where Sij = aij - 6ijakk is the stress deviator. The 3/2

factor in Equation (11-19) ensures aeq equals the yield

strength when uniaxial load is applied. For a work

hardening, von Mises material, an equivalent plastic strain

rate can be defined;

eq = 4 P J ;PJ (11-20)

such that dWp aeqeeq where dWp is the plastic work

increment (40]. The multiplication of Equation (11-18) by

aij and substitution of dWp = oeqeeq [40] into the result,

leads to the following expression for A.

A ea ea (11-21)

a mn 8 ij30ron cijai
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3f 2
Then, by noting - domn = dJ 2 and 3J2 =ef the

proportionality factor is simplified to

9

4aA ET (11-22)
eq

where ET is the tangent modulus [46] of the equivalent

stress-equivalent strain curve. The definitions of

equivalent stress and strain are such that under uniaxial

loading ET is also the tangent modulus of the uniaxial

stress-strain curve.

Finally, substituting Equation (11-22) into (11-18)

leads to a specific form of the isotropic flow rule, which

gives a relation between the plastic strain rate, stress

deviator and the stress rate.

;p 9 Sij Sinn
3= 4 Et a2 mn (11-23)

Elastic deformation is included by combining

Equation (11-23), Hooke's law, and the total strain rate
e p

tensor (dcij + dij) to yield a relation for the total

strain rate

1ij [jij - (l )ij jkk I + 14 a2 Snmn;
42G 4qET I-
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and the stress rate

3G S.. Smn ;mn
aij = 2G[,ij + l-2v ij ] ; (II-25)

a 2eq (I+ET/3G)

where incompressibility (;kk=O ) is used. By substituting

Equation (11-25) into Equation (11-23) the final form of the

von Mises, isotropic, work hardening constitutive model is

obtained.

p 3 Sij Smn Imn
i 2 2 (1+ ET/3G) (11-26)

eq

II.4 Numerical Implementation of EPBEM

Simple domains, simple boundary conditions and

knowledge of the loading history are all needed if exact

solutions to the elastic-plastic boundary element equations

(Equations 11-14, 11-15 and 11-26) are to be found. Some

exact solutions are documented [47], but seldom are

researchers so fortunate.

This section will discuss an iterative solution to

the elastic-plastic boundary element problems. In doing so,

the surface and domain discretization, the interpolation

functions used to approximate the traction rate (ti),
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displacement (ui) rate, and the plastic strain rate (:Pi;)

are presented. The system matrix formulation is discussed

in detail. This discussion includes the calculation of

diagonal elements, the calculation of surface stresses, and

the handling of geometric discontinuities. Finally, the

iterative solution scheme for the elastic-plastic problem is

detailed. In order to simplify the following discussion,

body forces are neglected. Also, for convenient

referencing, Equations (11-14), (11-15), and (11-26) are

rewritten below.

uj(p) = U. (sP)ti(s)dr - f j(s P)i(s)d±

p
+ i Sjki(s,p)ki(p)d.

D (II-27 .A)

Cij(s) Ci(s) + Tj(s,)wCi(i)dr Uij(s,2 ) ti(2)dF

+ Sjki(S,2); i()d.

(II-27.B)

3 Sij Smn Emn
(II-27.C)

23 2 2 (1+ ET/3G)
eq
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The daily advances made in memory and speed of modern

computers amaze even the most avid computer enthusiasts.

However, today's computers have nowhere near the capacity to

exactly model the functions and domains commonly encountered

in many mechanics problems. For this reason, domain

discretization and function interpolation have become a

science unto themselves. Boundary element methods, just

like finite element methods (FEM) and finite difference

methods (FOM), need a certain amount of surface and domain

quantization. Fortunately, the integral approach

significantly reduces the amount of discretization

necessary. As seen in Equations (11-27), both surface and

domain integrals must be evaluated. But in BEM, the domain

integrals are only evaluated in the plastic zone and

therefore represent a significant advantage over FEM and

FDM. Another important difference is that the domain

discretization is used only to evaluate the domain integral.

A further difference between finite element methods (finite

difference) and boundary element methods lies in the

solution approach. FEM and FDM approximate the solution

over the domain, so the solution is 1ighly dependent on the

quantization and function interpolation. In contrast, the

boundary element governing equation is solved exactly and

all approximations are made in the boundary conditions.
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REENT

Figure 4. Boundary modelled with straight line
segments.

Some cases have been reported where BEM has afforded as

much as an order of magnitude improvement in accuracy

over FEM [48].

The boundary element method requires some way of

describing the bounding curve of a region; here, boundary

discretization is achieved with straight line segments

(Figure 4). Straight line segments can simply and

accurately approximate a boundary; in many cases (plates,

beams, etc.) the approximation is exact. If necessary, the

surface can be more closely modeled by increasing the number

of segments. It should be noted that there is a practical

limit to the size and number of these straight line

segments, but that limit is rarely encountered.
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Now assumptions must be made about the behavicr of the

traction and displacements over these straight line

segments. By definition, the tractions are derived from the

spatial derivatives of displacement. Although consistenc-y

in derivatives is often ignored, Brebbia and Walker [491

postulated and Liu et al. [6] later showed that a consistent

boundary element solution greatly exceeds

NOOE 2

Figure 5. Representative boundary element.

comparable inconsistent routines in both computational speed

and accuracy. In addition, when only displacement boundary

conditions are prescribed, upwards to a 50% increase in

speed can be achieved [6]. This last attribute is of

particular interest in hybrid experimental-numerical

methods.

The proposed EPBEM algorithm strives for a balance

between simplicity and accuracy. To this purpose, the

boundary displacements are assumed to vary linearly along

tie boundary segments. Correspondingly, the tractions are

assumed constant over each segment. In BEM jargon these are
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called constant (traction) and linear (displacement)

elements. Specifically, the boundary is broken up into N

elements, each element is joined to its neighboring elements

at nodes. The linear variations between nodes can be

described by (Figure 5)

ui(x)=ui(l+2s/L)+uT(l-2s/L) for -L/2 < s < L/2; (11-28)

where the superscripts 1 and 2 denote node 1 and 2

respectively, and the subscript i is 1 for x-displacement

and 2 for y-displacement. The form of Equation (11-28)

dictates that the displacement information is located at the

nodes, whereas the constant element traction information is

located at the mid points of each segment. As an aside,

more sophisticated discretization schemes are available

C13,54].

The plastic strain rate still must be quantized

before the numerical procedure can be described. The

plastic zone is discretized much like FEM. Triangular cells

are chosen with the plastic strains assumed to be constant

over each cell. This may seem identical to FEM but in

contrast to FEM, the cells are used only to evaluate the

domain integral. If the interpolating functions are given,

then the constraint equation (II-27.B) and interior

displacement equation (II-27.A) can be rewritten as
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uj(p) 7 ti(s ) U j(s,p)d'm -z Tij(S,P)ui(s)dr m +
m=l J I2A

(II-29 .A)
d . ,q= kPi Sjki(sp) dnq

q=l

+ Tij~,2)Ui2)d = N i (s f)drm -Cijuj (s) +m=lf mz

Pi  Sjk i dnq
a k i

(II-29.B)

Equation (II-29.A) represents a system of 2N equations

for 2N unknowns. Its implementation is best described

through Figure 6. Each set of two rows produced by Equation

(II-29.B) is a result of placing the source point (xs, Ys)

at the center of an element and then integrating its

influence around the surface. The source point is the,,

moved from element to element until the circuit is complete.

Two rows are produced because Equation (II-29.B) represents

both x and y directions. The above procedure leads to a

system of equations in the form of

[T] (u}=[U] {t)+[S] {*FP ); (I1-30)
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PLASTIC ZCNE

|0

Figure 6. Depiction of BEM solution methodology.

where CT] is the displacement coefficient matrix, [U] is the

traction coefficient matrix, (u) are the boundary

displacement rates (some of which are known), and [t) are

the boundary traction rates (some of which are also known).

The plastic strain coefficient matrix is [S], and (;P}

contains the plastic strain rates (all of which are

unknown). Grouping the known boundary conditions and

plastic strain rate information on the right hand side

reduces Equation (11-30) to

[A]{v}=(q)+[S](;p);( i- )
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where [A] is the system matrix, (v) contains the unknown

boundary conditions, and (q) cuntains the known boundary

conditions multiplied by the appropriate coefficients. As

will be discussed later, System (11-31) can now be solved

for the unknown boundary conditions.

There is little difficulty in using a Gaussian

numerical quadrature [50] to evaluate most of the line

integrals. However, care must be exercised when evaluating

the elements containing the singularity (diagonal elements),

as well as evaluating the domain integrals. The diagonal

elements exist but are singular; therefore, either

analytical or special numerical techniques are necessary.

The domain integral takes special care since there is a

certain amount of controversy over the derivative of

Equation (II-29.B).

The first alternative in evaluating the singular

diagonal elements is to surround the singular point with

many small sub-elements and then integrate numerically [51].

The second, and preferred, method is to integrate

analytically along each singular secment [17,35]. In any

case, the principal value coefficient matrix (Cij) is

calculated analytically [17] (shown below) and added to the

diagonal terms to form the system matrix.
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C1[ =s 2 r 4r ( 1- ,)

sin(2Y)sin(a) (II-36)C12 = C21 4 r (i!-L

C22 = i- cos(2- sin(a)
27 4K ( n1-w)

Figure 7 shows that is the corner angle and -y is the angle

between the bisector of c and the x-axis.

7~

Figure 7. Enlargement of a corner used to
calculate Cij.
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The domain integration scheme used in this algorithm is

chosen to avoid the current controversy over the correct

expression for the spatial derivative of Equation (II-27.A).

This derivative is a dominating aspect since it defines the

strain within the body. The ongoing debate revolves around

the existence and the proper definition of the derivative of

the plastic strain rate integral. Although well documented

by Telles [18] in his introductory chapter, the salient

features of the controversy are presented.

The strain at any point in the domain is defined by

2Eij = (ui,j + uj,i). Many early researchers failed to

recognize that the integration path around the domain

singularity changes with the load; this path change

prevents pulling the derivative directly under the plastic

strain rate integral [52-55]. Bui [56] was the first to

recognize this error and formulated the correct derivative;

Telles and Brebbia [57] expanded Bui's ideas and then later

carried them out [21]. The above techniques are both

elegant and independent of the plastic strain rate shape

function but they are sometimes difficult to use.

Specifically, high aspect ratio cells cause the integration

scheme to give erroneous results. Since the EPBEM algorithm

presented here is of the constant cell type, the general

approach championed by Telles and co-workers will be

foregone in lieu of an implementationally easier technique.
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Figure 8. Sch : e used in domain integration.

The assumption that plastic strain rate is constant

over each interior cell is not only computationally simple,

it also makes the above discussion inconsequential. The

constant cell approximation enables direct evaluation of the

plastic strain rate integral [17,36,37] by subdividing the

cell (Figure 8). The integrals over triangle 1 and triangle

2 are algebraically added to the integral over triangle 3 to

give the desired integral over the cell (triangle 4).
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The unit directions are defined so that the algebraic sians

are correct. Since the plastic strain rate kernal is

singular at the base point, a small region surrounding this

point is excluded in the kernal evaluation (Appendix). This

integration scheme is equally valid when the source point

coincides with the load point (Figure 9). No great

difficulty exists in evaluating the integrals; and the

question surrounding the existence of the derivatives is

moot since plastic strain rates are found via direct

differentiation.

NOOE A
nA+

EEMENT A+REMENT A-

Figure 9. Singularity inside the integration
cell.

Another point of computational interest is the

evaluation of stress rates along the boundary. Since Sjki

has a singularity O(r-2 ), the integral approach to calculate

stress rates near the boundary introduces large errors

(since r<<l near the boundary). Instead, the EPBEM employs
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the technique sketched by Hartmann [58]. Although

introduced in the context of elastostatics, the method Is

equally valid for elasto-plasticity. There are seven

unknown quantities on any smooth boundary point in a two-

dimensional body, three stress rates ij and four

derivatives ui,j. There are also seven equations available:

1) Hooke's Law

9ij = 2G~ij + 2G- bij ;kk (II-37.A)1-2V

2) The definition of traction rate

tij = aij nj (II-37.B)

3) The derivative of ui along the arclength.

du. . dx
1 = ui,x j  _ __ (!I-37.C)

ds2  iX ds2

Note that Equation (II-37.A) uses only the elastic portion

of the strain rates so as to keep the number of unknowns at

seven; Equation (II-37.C) uses only the elastic

displacements. Since displacements are approximated by

linear functions, the derivatives along the arc length

(Equation (II-37.C) are found directly. When constant

elements approximate displacements, finite difference
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methods are typically used to provide the arclength

derivatives [59]. The seven equations assembled in matrix

form appear as

1 0 0 a 0 0 -X F 0

fnI  0 n2 0 0 0 0 ;2 2 t

0 n2 nI 0 0 0 0 a 1 1  t2

0 1 0 -x 0 0 a ue 1,1  0 (11-3)

0 0 0 -n2 0 n, 0 ue 2 ,1  Lel1 s

0 0 1 0 -G -G 0 e1,2 0

0 0 0 0 -n2  0 nI  ue2, 2  Ie2,s

where the traction rates and the elastic tangential

displacement rate derivatives are a product of the boundary

element constraint equation, A - 2Gv/(l-2w), a - -A-2v, n i

are the normals and G is the shear modulus. The equations

for stress rates are calculated with Cramer's rule and

listed below:

tlA + G B B + Gn2 C C
ll 12 2 1 (II-39.A)

D

* -GB E + n2 Cl(t 2 n2 -G C2)

022 = (II-39.B)

D

• tI E + n2CIC + t B

;12 = Gnl( 1 2 1 C2 1 ; (II-39.C)
D
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where

2A = 2n2+nl-a2nln2 ,

2

B1 = anl
2 +\n 2

2 , B2 njtj-n 2t 2 ,

C 1 = 12 -a 2 , C 2 = U2,snl-u1,sl2,

D = Gan4+(2GA -a 2 - 2)n,2 n24Gan4
1 2 2'

E = \n,
2+an2.

With the preliminary numerical eccentricities taken

care of, it is now time to present the final part of the

iterative EPBEM solution puzzle. First the boundary

integral equation for the total strain rate is needed. By

substituting Equation (II-27.A) into strain-displacement

equation, the total strain rate looks generically like

Ui,k = tj(s) Uij,k(s,p)dr -fuj(s)Tijk(s,p)dr
(11-40)

+ ;Pjm Sijm(s,p)dQax k
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where

Uijk (6ij( 3 -4L/)r,k - 6jkr,i + 2r,ir,jr,k)

8irG (l-v) r

* 1
Tij,k = -(2[(2-l)6ijr

41m (l-v ) r
2

- 4r,ir,jr,k ] ( r) + (l-2v) [nk6ij
n

+ ni6jk -2nir,jr,k + 2njr,ir,k] + 2nkr,ir,j),

and -- Sijm (s,p)da is given in the Appendix.a x k

As previously mentioned, the singular nature of Sjki(S,p)

prevents bringing the derivative directly under the

integral; therefore Sjki(s,P) is analytically integrated and

then differentiated (Appendix).

The iterative elasto-plastic boundary element solution

technique is similar to the successive approximation scheme

used by Roberts and Mendelson for stress function solutions

[60). The iterative approach used here is less cumbersome

since the total strain rates are found directly. The

instructions below list the steps in the EPBEM solution

technique and Figure 10 provides a flow chart for quick

referencing.
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1) Apply an elastic load to bring the most
highly stressed cell to a stress state near
yield.

2) Find the total elastic stress and strain at
each cell. For each cell, use the elastic
strain as the initial guess for accumulated
ePij and use elastic stress as the initial
guess for the current total stress.

3) Apply a load increment large enough to cause
incipient yielding. Use the load increment
and the initial guess for the plastic strain
rate in the following form of Equation (II-
31) to find the unknown boundary conditions.

[AI(v)= (q) + S(q) + [LZJ{;p)

5(q) - load increment

4) Use (v) from step (3) to find the total
strain rates at each cell with
Equation (11-40).

5) Calculate the elastic strain rate at each
cell with ;eij = Lij - ;p ij.

6) Use Hooke's Law (11-12) to calculate the
stress rate at each cell.

7) Add the stress increment to the current total
stress in each cell and use it to find the
corresponding tangent modulus (Et) from the
uniaxial stress strain curve.

8) Check each cell to see if it is beyond yield;

aef >? Y;

where aef is the von Mises equivalent stress
(also the yield function) and Y is the
current uniaxial yield strength for the cell.

9Y) If the cell has yielded; then calculate the
new plastic strain rate of the cell with the
isotropic work hardening, von Mises flow rule
(II-33.C). Use the new total stress, Et from
step (7) and the current plastic strain rate
in Equation (II-33.C).
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9N) If the cell is still elastic, set ;Pij equal
to zero.

10) Check for ;Pij convergence against the
previous value.

11N) If the tolerance is not met, subtract the
stress rate found in step (6) from the
current total stress found in step (7). Then
go to step (5) and start again.

11Y) If the error tolerance is met, approximate
the new uniaxial yield stress for each
yielded cell by the current von Mises
equivalent stress.

12) If the problem is done, quit. If the problem
is not finished go to step (3) and start a
new increment cycle.

With possible exception of step (1IN), the instructions

listed above are self-explanatory. For step (11N), the

current guess for the stress rate must be subtracted from

the known previous total stress after each pass through an

unsuccessful iteration. It is improper to add each current

guess for the stress rate to the last increments total

stress plus the last iterations stress rate guess. The

current total stress would then be the sum of the previous

total stress and all the stress rate guesses.

The above iterative solution to elasto-plastic boundary

element problems is reasonably efficient and has acceptable

accuracy. The technique is sufficiently general so that it

is easily extended to other than boundary element methods.
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Guess

B. E.M.

(ij) =(x - (be
ij = ij - ;p"

Hooke's Law
• •*e

;iJ = Cijk2 ;k2

Constitutive Model

= f(Oij, Gij, ;ij)

Toerne Check
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no
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Figure 10. Flow Chart of the iterative elasto-plastic
boundary element solution technique.
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When large scale yielding occurs, there is a possibility

that the plastic zone will exceed the celled region. If

such a case arises, one expects a reduction in EPBFM

accuracy.
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SECTION III

DISPLACEMENT PATTERN MATCHING

The spread of image processing applications in

photomechanics is a consequence of the availability of

equipment at affordable costs. Hardware prices continue to

decline and the power of personal computers continues to

increasz Fconomical mass storage, networking, graphics,

and application specific software all have increased the

proliferation of image processing in the photomechanics

field [61]. For the most part, image processing te,.,niques

in photomechanics are grouped into two categories, fringe

analysis [62-65] and correlation techniques [6,66-68]. A

third category, pattern mapping [23,69], is emerging as

alternative with many attractive qualities. Pattern mapping

is a non-destructive technique measuring displacement and

strain and is based on image processing and syntactic

pattern recognition. It is a process by which "black" spots

on a "white" background are followed in a double exposure

type scheme. This technique offers
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1) Full field measurement.

2) Sub-pixel registration.

3) Greatly reduced CPU time.

4) A highly automated technique.

5) Relative ease of specimen preparation.

Pattern mapping was originally developed as a general

purpose strain measurement technique capable of discerning

large rigid body rotation and translations. It also

included a variety of strain definitions. Fail [23]

suggested that reductions in run time were achievable by

tailoring the pattern mapping to a specific class of

problems. Displacement pattern matching (DPM) is a result

of this suggestion. The displacement pattern matching

algorithm is developed by assuming that the experimenter can

prevent appreciable rigid body motion ar~d that displacements

are the only information of interest. As a result, a highly

autcmated, very fast displacement tracking scheme emerged.

The DPMI algorithm can be broken into three blocks:

image segmentation, feature extraction, and matching.

These three terms are common pattern recognition jargon but

may be new to the experimental mechanics community. To

clarify the transition into the new terminology, formal

definitions of image segmentation, feature extraction,

matching and a fourth term, registration, are provided.
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Image Segmentation is the separation of the image
into different regions, each having specific and
related properties. It is the first step in all
pattern recognition schemes and attempts to
describe or classify the image £70,711. An
example might be to describe a landscape; that is,
segmentation of a satellite photograph, where
classification might entail distinguishing rivers
from the background (72].

Feature Extraction is the quantification of
certain characteristics of an image which are
usable in further image information classification
[73]. This process discerns important foreground
features from the background. Examples might be
lengths, areas, edges or curves [74].

Matchina refers to a class of operations of
comparing to two or more images [75]. Matching is
typically used in time-varying imagery, where
motion detection is simply a matter of detecting
differences in successive images (76,77].

Registration is the comparison of two images of a
scene taken from different perspectives.
Registration is used as a measure of resolution
attainable with matching algorithms [78].

Capturing a digital image and the equipment required to do

so are briefly discussed in the next section. The ensuing

sections describe the segmentation, feature extraction, and

matching blocks of the DPM algorithm. The final section

verifies DPM through rigid body motion tests and will

attempt to assess the important characteristics that control

accuracy.
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III.1 Images and Digitizing Equipment

The human eye scans the analog intensity distributicn

which is created by light reflecting from a scene and sends

this information to the brain to be interpreted. Upon

receiving the signal, the brain processes the scene and

classifies the image. Ideally, computer vision should be

capable of emulating this process. A quantization of the

intensity distribution is necessary if a computer is to have

any hope of mimicking the recognition processes of the human

brain. The most primitive medium of communication for a

computer is numbers (digits). Therefore, it is logical that

an efficient quantization technique would be able to convert

the analog intensity distribution to a digital

approximation, hence the term digitize.

A digital image is a numerical approximation of a real

scene, with local intensity distributions approximated by

gray levels [79]. Gray levels are integers ranging from

zero to an upper limit set by the hardware. The eight bit

digitizing board used in these experiments affords 0-255

gray levels. These gray levels represent the darkness and

are ordered to form a matrix representation of the image.
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An example of the imaging procedure is given in Figure 11

where a black spot and its digital representation are

provided. Key traits to note include: black appears as

lower gray levels than white, the two pixel (picture

element) fuzzy transition region between black and white

[80], and the noise in the image. When looking at scenes

containing high contrast sub-regions, the human eye has

little difficulty locating boundaries between light and

dark. For computer vision hardware, this process is not so

simple. One would expect sharp contrast borders in the

scene to be represented by a jump in gray level, when in

fact, the imaging system sees a finite transition between

light and dark. This fuzzy transition is a product of

hardware limitations in the camera and in the digitizing

board. The camera sensing array is divided into a finite

number of sensing cells. Cell crosstalk, frequency

limitation characteristics, and cell overlap are typical

contributions of the camera to fuzzy regions [81-82]. In

addition, the mismatch between the camera array size and the

digitizing hardware array size increases the fuzziness. In

general these array sizes differ considerably. A typical

example would be four digitizing pixels representing three

camera pixels, i.e. a smearing effect. Although the

mismatch is not usually this dramatic, its effect is

noticeable.
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Figure 11. A black spot and its digital
representation.
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In Figure 11 the spot is uniformly black; unfortunately

noise degradation prevents the image from reflecting the

uniformity. Degradation is apparent in the fluctuating gray

level representation of black in the spot and results from

optical or electronic sources. Spherical aberration, coma,

astigmatism, non-uniform illumination, and dust are just a

few examples of optical noise [83]. Electronic noise may

come from thermal effects in the imaging array, the

digitizing process, electro-magnetic interference, or may

just be inherent to the imaging array [80-82]. Regardless

of the source, DPM regards noise as random and therefore

having a zero mean distribution.

Now that some of the ideas and important aspects of a

digital images have been illustrated, the equipment and

procedure for obtaining a digital image can be described.

Figure 12 depicts a typical personal computer based

digitizing system. The imaging device used here is a Sony

XC-38 CCD camera, a Datacube IVG128 Video Acquisition and

Display Board (384H x 512V) which quaiitizes the image with

its digital form displayed on a PVM-1271Q/1371QM Sony studio

monitor. All image processing is done on a PC's Limited

286-8 Personal computer equipped with a math co-processor

and EGA graphics.
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Figure 12. Typical personal computer based digitizing
system.

Digitizing is software controlled. On command, the

frame buffer stores the image as a matrix of signed bytes

representing the gray levels. This two-dimensional matrix

is also available to the user on software control. On

software control, the analog signal from the CCD (charge

couple device) camera is quantized with an analog-to-digital

converter and then mapped to the appropriated gray levels

by a software selectable look-up table. The image size

stored in the frame buffer is 384H x 485V to conform with

the RS-170A, 60Hz United States interlaced video standard.

The 384H x 512V image conforms to the CCIR, 50Hz. European
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interlaced video standard. The frame buffer is accessible

to the CPU (central processing unit) through the persona.

computers I/O page [84]. VNA Systems Incorporated's Digital

Correlation Metrology software package provides software

control of the digitizing process.

III. 2 Secmentation

A decided advantage of displacement pattern matching is

the limited prior knowledge required for success. Success

of the technique hinges on the placement of high contrast

spots (dark spots on a light background) at locations where

displacement is desired. Implicit in this knowledge is the

idea that the images are binary, that is, the gray levels

should be either black or white (85]. In keeping with the

automated methodology, DPM does not need prior knowledge

about the number of spots, spot area or any other

distinguishing feature. The primary function of

segmentation is to locate the important regions of an image.

Since DPM images are binary, segmentation consists of

identifying those individual regions defined as black (the

spots) since they contain the desired information [86].

Segmentation typically (as is done here) starts with

some form of characteristic feature thresholding (87]. In

essence, a value of some characteristic feature of the image
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is chosen as a basis on which to make decisions. This

pivotal value is known as the "threshold". In DPM, the

characteristic featuru is the gray level and the threshold

is the parameter used to discriminate between black and

white. All gray levels above the threshold are white and

all gray levels below are black. The transformation to a

true binary gray scale enables a border following scheme to

locate the spots. Discerning if each spot is a true spot or

if it should be discarded is segmentation's culminating

decision.

Once the threshold is chosen, raster scanning starts.

A raster scan is nothing more than a row by row or column by

column evaluation of each pixel for some prescribed

property; in this case to find the first spot (gray level <

IT ). When DPM locates a black pixel, the gray levels of

its eight nearest neighbors are checked. If at least one

neighbor is black then DPM has located a spot. If none of

its neighbors are black, then DPM considers the center pixel

as a false spot. Once a true spot is located, a general

border following scheme developed by Rosenfeld [88] and

specialized to only find outside edges (89,23] 'frames' the

.spot. Framing the spot is the process by which a complete

clockwise circuit around the border is traversed, storing

only the left most, right most, highest, and lowest pixel

locations (L, R, T, B respectively) for the feature

extraction. To account for the transition between black and
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white, the frame automatically expands by two pixels in al!

directions (Figure 11). With the first spot framed, the

raster scanning continues. This process is repeated until

the entire image is examined.

False spots larger than one pixel in diameter are

entirely possible, especially when the scene is

significantly magnified. An automated method of discerning

false from true spots is therefore required. Experience

indicates that the areas of false spots are much smaller

than their legitimate cousins (area is defined as

A - [R-L][B-T]). A spot area larger than one third the

average spot area (averaged over every framed spot) is a

true spot. This definition is completely arbitrary but it

proved to be 99% reliable for the spot size- used in this

research.

111.3 Feature Extraction

Features are selected measurements which are either

invariant or less sensitive to typical system distortions

(93); they tend to distinguish the object from its

background. Two types of features are present in the DPM

images, statistical and structural [90]. The statistical

features are the frame boundaries: L, R, T, B, and the spot

centroid. The structural features are the spots themselves.

Since segmentation simultaneously extracts the frame and the

spots, only the centroids need be extracted.
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The spot centroids are calculated using the true gray

levels in the frame and pixel locations (i,j) in the matrix

(80]. Mathematically stated the centroids are

B R
Z ZjI(i,j)
i=T j=L

B R
Z ZI(i,j)
i=T j=L

and

B R
7 ZiI(i,j)
i=T j=L

B R
Z ZI(i,j)
i=T j=L

where I(i,j) is the gray level at element (i,j) in the image

matrix. The influence of the zero mean noise on the

centroid calculations is presumed to average to zero.

III.4 Image Matching

Zero rigid body motion reduces the syntactic pattern

recognition language (91] of DPM from context sensitive to

context free [92]. Pattern mapping requires each spot to be

located at the same "address" before and after deformation

(23]. In computational space, this means each spot must
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always be surrounded by the same neighbors. If this is not

the case, that spot is out of context which means It makes

no syntactic sense. DPM makes no such requirement. The

spot locations are stored in the order in which they are

found. Pattern matching [93] is then used to find the spots

in all ensuing registered images. Ordering the spots by

their correct "addresses" is no longer crucial to finding

the next image's spots; therefore, the spots do not need to

be in context to make syntactical sense.

An instructive approach to describing pattern matching

is to take a figurative step back and simply look at the

physical nature of a typical solid mechanics problem. The

question is "what are the displacements at points a, b, and

c?" To answer this question correctly, each spot must be

examined after deformation and compared to its previous

location. Successive load increments produce a sequence of

comparisons. In elasticity and incremental plasticity,

assuming spot motion to be small relative to spot size is

restrictive but certainly reasonable. This indicates that

each sequential image should closeli resemble its

predecessor. The above description of events is not unique;

Rosenfeld and KaK [88] (pages 50-51) give an .Imost

identical description of events but their discussion

pertains to time-varying imagery.
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Time-varying imagery is a popular form of pattern

matching [75]. It is a sequential registration technique

used in motion detection, object tracking, and dynamic scene

analysis; therefore, it is well suited for discerning

displacements. Here, spot motion is measured by local

matching of the segmented spots. In essence, the location

of a spot in the image is assumed near its location in the

previous sequential image. Therefore, instead of raster

scanning the entire new image, only the previous framed area

is scanned.

If the displacement field carries the spot out of the

original frame area then the search region is expanded to

An =[L-R][B-T]n 2, n=2,3,4... (111-4)

where An is the area of the search region and n is the

number of search region expansions required to find the spot

(Figure 13). When the search region encompasses

more than one spot (Figure 14) or a wrong spot only

(Figure 15), a one-to-one match is not guaranteed and the

matching process fails. Therefore, over-expansion defines a

restriction on DPM, but at the same time somewhat relaxes

initial assumptions of the matching scheme. The spot

displacement must be smaller than or equal the distance from

the original spot to the closest spot in the current image
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Figure 13. Search region expansion.

(Figure 15). This critical distance is easily gaged. For

example, in a square array of spots, the maximum

displacement can never be greater than 0.7071 times the

smallest original spot spacing. Spot displacements are no

longer restricted to being small compared with the spot

diameter.
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Figure 15. Search region encompassing the wrong spot.
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A special search region expansion case occurs near the

image edge. When the displacement field carries a spot

close to the perimeter of the image, the expansion may try

to extend the search region beyond the image border, the

results of which are unpredictable. The search region is

therefore contoured to the image edge if the region

encounters the perimeter.

With a one-to-one correspondence established between

segments in successive images, statistical feature

extraction can proceed. The centroid of each spot is

calculated by Equations (111-2) and (111-3) and the x- and

y-coordinates of the centroids in sequential images are

subtracted to find the displacements

ux = Xn-Xn_ 1  (III-5A)

and

Uy = Ynyn-l. (III-5B)

In these displacement definitions, n refers to the current

image. The units of displacement are pixels but can be

converted to a units of length through calibration.

111.5 Rigid Body Motion Tests

In this closing section, the limitations of

displacement pattern mitching are explored. A series of

rigid body motion tests, each with different spot diameters,



62

evaluate the accuracy of DPM. in the process, general

accuracy characteristics, accuracy versus spot size, effect

of image averaging on accuracy and the consequences of

search region over-expansion are examined.

Each rigid body motion test consists of tracking the

5x5 array of spots shown in Figure 13 through four

horizontal 0.025 (±0.001) inch increments. Spot areas are

easily altered by magnification with a zoom lens.

These tests produce results that are difficult to

assimilate and make system evaluation unnecessarily hard. A

statistical approach reduces the information to a more

understandable form. For a given magnification, the 25

spots in the array are subjected to four equal in-ments,

yielding 100 displacement values which should be identical.

Unfortunately, the displacements returned by DPM are not all

equal. For the sake of comparison, the standard deviation

of the 100 displacement values is calculated and normalized

by the accompanying mean. This number is a measure of the

amount of deviation from the applied constant displacement

and serves as a vehicle to evaluate spot size.

The results in Table 1 show that there is a definite lower

limit on spot size. Although difficult to say precisely, a

spot diameter smaller that ten pixels is considered suspect.
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Table 1. DPM error as a function of spot size.

DIAMETER STANDARD DEVIATION
(PIXELS) DIVIDED BY THE MEAN

6 0.019872
9 0.003052

11: 0.003203
16 0.004553
18 0.004842
24 0.007174

Ideally, all spots in the array should give the same

displacement (for rigid body motion). System and

experimental error degrade this idealization and produce a

certain amount of variance from spot to spot. The effect of

system error can be seen by examining one increment of the

16 pixel diameter spots. The average displacement (over the

25 spots) is 5.183 pixels with a standard deviation of

0.0039 pixels. Averaging images from the same scene reduces

the influence cf random system noise (cell crosstalk,

thermal, electromagnetic, etc.). To show this, four images

of each 16 pixel diameter spot scene are averaged before

using DPM. The results show a significantly reduced

standard deviation (0.00255 pixels) which suggests a more

accurate measure cf displacerent (5.181 pixels).

Henceforth, all hybrid experiments use four image averages.

"False system displacement" is a result of the variance

in displacement between spots in the same image and can be

evaluated through self-i-eistration. If an image is

registered with itself, each spot should measure zero rigid
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body motion. But instead the system displacements are

returned. Table 2 reveals the displacement errors

introduced by the system and represents the lower accuracy

limit afforded by DPM and the hardware.

Table 2. DPM system displacement as a function of
spot size.

DIAMETER MEAN SYSTEM
(PIXELS) DISPLACEMENT

(PIXELS)

6 0.002251
9 0.001435
14 0.001063
16 0.001632
18 0.002117
24 0.001562

The above errors are inherent to feature extraction and

are somewhat abstract; that is, no definite values can be

used to discriminate good from bad. Search region over-

expansion is different in this respect; over-expansion

defines the limit to the displacement increment size. For

horizontal rigid body motion, one expects the matching to

fail when the displacement reaches one half the spot

spacing. This limit is easily verifiable through a simple

experiment. A 5x5 array of 0.05-inch diameter spots is

again tracked through 0.025-(±0.001) inch increments; but

this time the increments are continued until the mitching

fails. The results are shown in Table 3 for a spot spacing

of 0.2 inches and a spot diameter in pixels of 14. As
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predicted, the matching is precise until a displacement

greater than 0.1 inch is applied. The limit on displacement

increment will not be as easily identifiable when structural

distortions are encountered, but a safe rule of thumb is not

to exceed one fifth of the smallest spot spacing.

Table 3. DPM search region over expansion.

APPLIED MEASURED
DISPLACEMENT DISPLACEMENT
(inches) (inches)

0.0 0.00005
0.025 0.0249
0.05 0.0499
0.075 0.0751
0.1 0.0996
0.125 0.0286

Displacement pattern matching is an accurate, efficient

means of tra,'king displacements. All DPM calculations are

performed on an 80287-8 based personal computer with run

times averaging about 31 seconds per increment.

I

I



66

SECTION !V

HYBRID DPM-EPBEM TECHNIQUE

Both the elastic-plastic boundary element and

displacement pattern matching algorithms have been

individually verified, but the ultimate goal here is tc

construct a single successful stress analysis tool b.

meshing these two techniques. Accordingly, this chapter

presents a hybrid DPM-EPBEM and its experimental

verification. The following sections describe the

experimentation, specimen preparation, and verification

tests.

IV.l Working Environment

In general, combining two programs written in the same

language is a trivial matter. But, when the two programs

are written on two different computers and use two different
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languages the process is significantly more complicated.

Here, DPM is written on a PC's Limited 286-8 personal

computer and EPBEM is written on a Digital VAX 11/750.

These two computers have no direct means of communicating

with each other, so a third program, PROCOMM, is used as an

interpreter. To run DPM-EPBEM, the image of each increment

is digitized and the resulting digital representation is

stored in such a way that DPM can either access these files
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interactively or in batch mode. In any case, the user

controls the program through a graphical working

environment.

The working environment shown in Figure 16 provides

critical information for real time evaluation of the

program's progress. A binary pseudo-image shows the scene

currently being analyzed. Included in this picture is a

window encompassing the segmentable portion of the image.

The pseudo-image is produced by averaging each set of

sixteen nearest neighbors and then thresholding. The result

is a 94H x 121V matrix representation of a binary image.

This representation, as opposed to a 384H x 484V, is

necessitated by the limited dynamic memory afforded by

Microsoft's DOS. On the right of the pseudo-image is a

histogram of the true image with the location of the

threshold indicated by the vertical line. The correspondi-n.

value of the threshold is given below the histogram. Also

provided below the histogram is the percentage of pixels

with the most frequent gray level. All this information

aids in evaluating the performance of the DPM.

Above the pseudo image and histogram shown in

Figure 16, is a region of the screen reserved for any

necessary software commands. That portion of the screen is

called the editor zone. After each set of displacements is

determined by DPM, the communications program, PROCOMM, is

evoked through a batch file. The batch file logs onto the
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VAX, transfers the disolacement files, and starts EPBEM.

During this process, the editor zone displays each batch

command as it is executed. Once the VAX attains control,

all of the graphics are temporarily suppressed; and after

EPBEM has completed the necessary calculations, the VAX

maintains control. VAX control enables the user to transfer

the stress and strain information back to the host computer

(personal computer), to return to the host computer, or tD

log off. Regardless of which is chosen, all of the desired

stress information is stored on the VAX and can easily be

retrieved for further analysis.

IV.2 Experimental Setup and Specimen Preparation

This section provides a description of the equipment

and of the general experimental setup. Since EPBEM is a

two-dimensional code, only plane stress or plane strain

loading conditions can be examined. All specimens arc of

the plane stress type and are produced from a ductile

aluminum alloy (1100-H14). Loads are applied by a Material

Testing System (MTS) machine. A schematic of the setup is

given in Figure 17. The testing machine is manually

controlled to produce either constant load or constant

stroke.
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Pigure 17. SchematiJc of the experimental set up.



As described in Section I!, DPM depends on the

application of high contrast spots to the specimen. The

aluminum specimens are painted flat white in order to

produce the high contrast background for the black spots.

Initial painting attempts resulted in the paint

chipping and cracking under load. Since DPM perceives

chips or cracks as spots, one must undertake means to s-cn

this phenomenon from occurring. Each specimen is first

thoroughly sand blasted to remove gross deposits of alum n..

oxide. They are then cleansed in a bath of isopropyl

alcohol. Following air drying, each specimen is scrubbed

carefully with AIMCHEM's Alumiprep 33 (stock no. DX533) to

remove the remaining corrosive oxidation and to chemically

etch the surface. The final treatment is a generous scrub

and bath in AMCHEM's Alodine 1201 (stock no. DX503) . This

treatment chemically stabilizes the aluminum surface and

provides a long lasting paint adhesive. An additional

advantage of this procedure is that it leaves a distinctive

amber stain where the coating process is successful. The

specimens are then air dried and painted with flat white

KRYLON enamel. The entire process, from start to finish,

requires about ten minutes per specimen and provides a

painted surface which does not chip or crack until near

catastrophic failure loads are applied.

Spot application followed an iterative process until

finding a satisfactory procedure. The orlmarv concerns here
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are uniformity in spot diameter and darkness. Best results

are obtained by using typical "rub-ons" commonly found in

office supply stores; the grammatical periods are far more

consistent in area and darkness than any attempted painting

or staining procedures. The periods are simply rubbed on at

the locations where the displacement is desired.

Three plane stress experiments are presented in crder

of increasingly complex states of stress. The first test

examined is a thin sheet under uniaxial tension, the second-.

test is a thin rectangular sheet with a central hole,

subjected to tensile end loads (perforated strip tensile

test) and the final test is a thin rectangular sheet with

symmetric ninety degree V-notches. The 1100-H14 aluminum

used for all specimens has the following material

properties: E=10,713. kpsi, .=.33, and Y 0 =15,000 psi.

EPBEM requires the uniaxial stress strain curve in the

iterative solution. To accommodate EPBEM, the uniaxial true

stress-engineering strain curve is found experimentally by

applying known loads to a uniaxial test specimen with the

MTS machine and monitoring a one-inch gage length with the

MTS supplied extensometer. The stress-strain data is fitted

with two piecewise continuous curves. The elastic and knee

portion are fitted with the Ramberg-Osgood Law [94]; and the

work hardening portion is approximated with a linear fit.

The approximate and experimental stress-strain curves are

given in Figure 18.
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Prior to each experiment, the digitizing system is

calibrated carefully so that DPM results are accurately

converted from pixels to units of length. The calibration

constant is a function of magnification so that the first

step in calibrating the system is to set the desired

magnification and to keep it fixed for all load increments.

Next, a 5x5 array of black dots is placed in the focal plane

and given five equal vertical displacements; the array is



digitized after each step. Since all of the displacements

are equal, a linear relation exists between the

displacements returned by DPM (in pixels) and the measured

displacements; the slope of this curve is the calibration

constant. The steps to calculating the calibration constant

are as follows:

I) Apply each load increment.

2) Store the four image averages of each
scene.

3) Calculate the average rigid body
displacement of the 25 spots _n each
scene.

4) Plot the average displacement (in pixels)
versus the measured displacement (in units
of length).

5) Use a linear least squares fit to find the
slope.

The imaging array of the digitizing board used in these

experiments is rectangular; therefore, the y-calibration

constant differs from the x-calibration constant. To

accommodate the rectangular imaging array, the above

calibration procedure is repeated with horizontal

displacements. A typical experiment produced x- and y-

calibration constants of 369.5 and 523.3 pixels/inch,

respectively. With system resolution on the order of

.1 pixels, the displacement resolution is on the order of

.0001 inch.
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IV.4 Uniaxial Tension Test

Before describing the hybrid experiments, it should be

noted that no attempt is made tc relax machining induced

work hardening in the specimens. Although care is taken tz

use sharp tools and slow cutting speeds, no annealing is

performed. The specimens for all experiments are produced

from the same sample of aluminum; and the uniaxial stress

strain curve for each specimen is assumed 'to be the same.

From the least complex test of DPM-EPBEM, uniaxial

tension, one expects to uncover any limitations of the

hybrid technique. With this in mind, the hybrid analysis cf

a uniaxial tension specimen is described. The dimensions cf

this plane stress specimen are nine inches tall, one-inch

wide and .0625 inches thick (all specimens examined have

these nominal dimensions). The spots are applied to the

specimen as indicated in Figure 19 and as shown in

Figure 20. Two interior triangular cells are used to model

the region enclosed by the spots, with DPM providing

displacement boundary conditions at all but the free

surface. One should note that only the region encompassed

by DPM is modelled by the boundary element method and that

the size and location of this region are completely

arbitrary. Figure 12 shows a plot of the x-component of
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unlaxial tension spec:en.

splacement hich, Is calculated :, DPM at x=C.25 In.

0in.,. The results conform to the shape one ex>eccs

for a load-displacement curve of weakly work har :!enin

materials. A little more convincing is the clot shown in

Figure 22, which provides the stress-strain curve calculated

by DPM-EPBEM along with the experimental version. Two

interesting characteristics of note are the good correlation

between the MTS and DPM-EPBEM results and the linmited useful

range of DPM-EPBEM.
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initial loading steps and although it is less pronounced

than the rimid body rotation frt'm specimen miqa1ignment,

this slippage is certainly significant.

DPM is able to discern the rigid body motion from both

sources and passes this rigid body motion information t:

EPBEM. Unfortunately, EPBEM expects the constrained

displacements and has no means to separate out the rigid

body motion. Therefore, the boundary element routine

calculates erroneous stress and strain values.

Whereas DPM is responsible for the lower performance

limit, EPBEM is responsible for the upper performance

EPBEM expects a work hardening material and has difficulty

converging to a solution for a perfectly plastic material.

The upper limit results from the fact that 1100-Hl4 aluminum

behaves in an almost perfectly plastic manner. At high a

stress, the flat portion of the stress strain curve causes

the iterative solution procedure to become unstable;

essentially, the initial strain prccedure fails to converge

to a single value. It is believed that the load increments

in the flat portion of the stress-strain curve produce

strain increments too large for the initial strain solution

procedure to assimilate. An upper performance limit is

typical in all of the experiments performed but it varies

with loading conditions and geometry. Still, the DPM-EPBEEM

upper performance limit usually occurs at an equivalent

stress of 16,500 psi. Overall, the uniaxial tension test
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exhibits dependable results within a specific equivalent

stress range and, as anticipated, unmasks basic weaknesses

of the DPM-EPBEM hybrid technique.

17.5 Perforated Strin Tensile Test

The uniaxial tensile test prod-ces comfcrting results.

in addition, the results establish both the accuracy ans t-e

performance range of the hybrid technique. This next test

seeks the solution to a more realistic engineering prcblem

and, among other important details, the perforated strp

exposes DPM-EPBEM to a stress state containing high stress

gradients. The stresses calculated by the hybrid technique

are compared to both ANSYS finite element and Theocaris an-

Marketos' experimental results '95].

The spots are applied to the specimen at the iocaticns

specified in Figure 23 and shown in Figure 24, where the

domain enclosed by the spots is -A-lled as seen in Figure

25. A careful comparison between Figure 25 and Figure 23

reveals that not all of the DPM spots and EPBEM nodes are

found at the same locations. The finite size of the spots

establishes a practical limit to the spot spacing;

therefore, DPM-EPBEM uses quadratic interpolation to find

the displacements at nodes which do not coincide with spots.
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Figure 23. Schematic of the spot locations cn the
perforated strip.
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The horicgeneco,-s, i.rerzt'r vor:-Ses

yield conditicnj

4soparametL I zl~t- ~T~t w~w

used in the finite eleme-.t scu c t tns cclc N

follows an initi.al stre-ss D6 Scl''c rr'e're r c e n,~

the stress-stra In cu-;rve with fi1%e cIecevzz:-e I ine ar ec t

4One symmetric quartt~- of th!e spec ioen 's 7ocdelied

(Figure 26) and -'s Ioddvt s I n ,: re-ents,

added to the nca -ccTe1dsts

are applied unt.i .-).<:e cf *~Q ~ ece. TeI EPBEM, ANSYS, ad7Qrn' 3crsat
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Figure 25. Boundary element domain discretization of
the perforated strip.
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Fi~gure 26. 7inite element gr'-t fr thie perforated
strip.

(x=0.25 in., y=0.0 in.) as a funct-Jcn of load step are given

in Figure 27. From here on, the stress concentration factor

(SCF) is defined as the current y-component of stress

divided by the applied stress. Th e finite element and DPM-

EPBEM results compare well, wijth :-FE: exhibiting one

larger excursion at the sixth load step. No immediate



35

4.5

0 .o
0.3-

0

Figure _'. Plot ocf stress concentration f--c, :cr
versus load step for heperforat:ed
stri-p.

explanation for this anomaly is apparent. Since zhe nex:

increment's result- does not seem to be affected, one ih

presume that some grip slippage had occurred.

Perhaps even more comforting are the experim:ental

points produced by Theccaris and Marketcs 195. The

material they tested was also an aluminum alloy. it

exhibited a similar uniaxial stiess-strain curve to Figure

21 with a hi" ier yield strength (34,500 psi). Although the

SCF curves are not identical, which is not to be expected,

the purely experimental, hybrid and purely numerical

behaviors are remarkably similar.

• -.. m-=,,mm./ m mm ml ~ i U
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The difference in the response could be caused by one

of many reasons. Theocaris and Marketos use a bi-linear

approximation of the uniaxial stress-strain curve In their

analysis whereas the DPM-EPBEM uses a combination of

Ramberg-Osgood and linear fits. Theocaris and Marketcs ma 'e

no mention of whether they did or did not annea- their

specimens, nor do they discuss their loading apparatus n

any detail. Therefore, one would not necessarily expect

perfect agreement.

Other interesting information produced by the hyhr'i

technique is the load-displacement curve for (x=O.o in.,

y=.25 in.) which is given in Figure 2S. The load-

displacement results mimic (in shape) the load-maximum

strain curves reported by Zienkiewicz [97. Although nct

definitive, they certainly are supportive of DPM-EPBEM

reliability. In his study, Zienkiewicz used the materi i

properties reported by Theocaris and Marketos.

A final plot, Figure 29, demonstrates the extent of the

plastic zone by giving the SCF at various radial locations

from the root of the hole (for ty=6 0 0 0 psi). The slight

inflections at x=0.4 in. and x=0.275 in. are apparent in

all of the graphs provided by Theocaris and Marketos [95"

and are therefore reassuring.
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Figure 28. Load-displacement plcz fcr (xC. .
the perfcrated striz.
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Figure 29. Plot of stress concentration factor versus
x-position on the perforated strip.
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1V.6 V-notched Specimen Tensile Test

The correlation between DPM-EPBEM, finite element

analysis and the purely experimental results establish a

footing from which a more complex problem can be apprcached.

The concluding experiment attempts to subject the hybrid

technique to a stress state truly representative of ccnncn

engineering problems, a notched tensile specimen '987.

This geometry (Figure 30) produces high stress gradients

localized near the root of the notch with a Complex stress

field in the surrounding material [9911. it should be ncte-;

that there is a small machine-induced roundina of the nozch

root; therefore, the notch cannot be considered sharp in

the ideal sense. Once again, the ANSYS finite element code

and selected published results are compared to those

produced by the DPM-EPBEM hybrid technique.

As before, the spots are positioned according to

Figure 30 and displayed in Figure 31. A sketch of the

boundary element grid can be found in Figure 32 and one cf

the finite element grid in Figure 33. Again, the

homogeneous, isotropic hardening option and two-

dimensional, four point isoparametric elements are used in

the finite element solution of this problem.

Both the SCF vs load increment (Figure 34) and the Iead

-displacement curve for (x=0.0 in. ,y=.4 7 in.) (Figure 36)

are provided for evaluation of the performance of DPM-EPBEM.
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Figure 30. Schematic of the spot locations on the

V-notched tensile specimen.
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The finite element stress ccrceroration factor plct is

calculated by first appiyinn :7 end load of 2000 psl, and b',

then adding load incremencs a: psi until reaching a value

of 5400 psi. in FLIure 34, v-_e hybrid and FEM results

differ markedly. The first 7cin- of deviation is at first

yield. DPM-EPBE>Z predisrs onam one first yield will occur

at an applied traction of :?C psi, whereas ANSYS pretic-s

45

Figure 31. Photograph of the spots ippi-ed t he
V-notched tensile specimen
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* .

Figure 32. Boundary element domain dicretization of
the V-notched tensile specimen.

the first yield at 3100 psi. One cannot say which is a

better solution but domain discretization does have an

impact on the comparison. If the notch is perfectly sharp,

then plastic deformation initiates when the first load is

applied. The deformation field is so localized that many

internal cells placed near the notch tip would be needed to
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Figure 33. Finite element mesh for the arid for the
V-notched tensile specimen.

discern the motion. The stress calculated at each cell is

an average representation. Therefore, at the notch root,

the larger cells produce smaller average values. A

comparison shows that the finite element grid has three less

cells near the notch root than does the boundary element

grid; therefore, it is reasonable to expect that the first

yield predictions by BEM and FEM will be different.

Experimental error also contributes the different initial
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Figure 34. Plot cf stress concentration factor versus
load step for the V-notched tensile
specimen.

yield predictions of DPM-EPBEM and FEM. The erratic hybrid

SCF curve suggests that some of the DPM displacements may be

in error. If this is so, then the early increner c :eil

equally be in error. Regardless of the reasons for the

difference in the predictions, the qualitative similarit" is

apparent with the quantitative results differing at most by

14.9%.

Other important considerations deal primarily with the

difference between the ideal loadina conditions in the

numerical simulation and the actual loading conditions in

the hybrid technique. Examination of the post yield

specimen (Figure 35) indicates that yield did not occur
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Figure 395. Phctcqraph of the V-Notch-d Tcn-jI1
Specimen Before Loading and After Failure
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simultaneously at both notch roots. This, in turn, implies

that the specimen was not perfectly aligned in the MTS

grips, precipitating a non-symmetric stress state. In such

a case as this, one cannot expect the FEM solution to

duplicate the experimental results.

Although no comprehensive experimental investigation cf

the V-notched test specimen is available, inferences frcm

results presented by several previous experimental and

numerical studies lend credence to the results presented

here. The load displacement curve given in Figure 36

qualitatively compares well with a similar numerical curve

reported by Telles [18] (page 171) and with the experimental

curve reported by Findley and Drucker [100] (1/16 inch

specimens). In both cases, the material is an aluminum

alloy which is different trom the material used here.

Additionally, the aspect ratios and the net cross sectional

areas of their specimens differ from those used in the

present experiments. Taking these facts into consideration

and the fact that EPBEM reached its upper performance limit

before the plastic limit load, Figure 36 exhibits the

characteristic linear load-displacement curve in the pre-

limit load regime. Linear behavior from a plastically

deforming body may seem contradictory, but in this case it

is reasonable. During the early stages of plastic

deformation (as is the case with DPM-EPBEM) the plastic zone

.z localized in the region near the root of the notch. The
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Figure 36. Load-displacement plot for (x=O,y=.46) on

the V-notched tensile specimen.
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vi-re 37. Plot of stress concentration factor versus
x-position on the V-notched tensile
specimen.
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surrounding elasti. material confines the plastic zone and

effectively stems any large plastic deformation. The

regions away from the root are essentially unaware of the

plastic flow until the loads are high enough to produce

substantial redistribution of the internal stress state of

the specimen and, in turn, a larger plastic flow [1002.

Finally, the stress concentration factor along the y=0

axis (Figure 37) follows the expected course by increasing

as one moves closer to the root. The EPBEM upper

performance limit (5400 psi) prevents a fully developed

plastic zone and hence a flattening out of the SCF curve is

not present. The SCF versus position plot is taken for an

applied load of 4700 psi, a load at which the plastic zone

is still confined to the notch root.
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SECTION V

CONCLUSIONS

The two-dimensional numerical-experimental hybrid

technique described herein combines context-free syntactic

pattern recognition (DPM) and elastic-plastic boundary

element methods (EPBEM) to produce a useful, non-destructive

stress analysis tool. Within a certain load range, al! of

the presented DPM-EPBEM results compare well with finite

element and purely experimental (where available) solutions.

The DPM-EPBEM solution for the V-notched tensile specimen

exhibits a more erratic response than the responses of the

other two experiments. Since the V-notched tensile specimen

represents a state of stress that is as complex as one would

expect to encounter in engineering problems, an

understanding of the results of that test is paramount to

evaluating DPM-EPBEM's usefulness as a stress analysis tool.

DPM-EPBEM works well in load ranges where rigid body

motion is negligible when compared to the displacements

produced by distortion. Rigid body motion in the initial
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stages of loading (approximately 90% of the proportional

limit) degrades the accurary of the DPM-EPBEM hybrid

technique. This lower accuracy limit can be improved by

incorporating rigid body motion compensation in DPM or

EPBEM.

In instances when DPM-EPBEM returns questionable

results, a possible question might be raised about how to

guarantee that the applied spots are in the exact locations

as specified in Figures 49, 53 and 60. The accuracy of the

spot application technique described in Section IV is

limited by human error. In most cases, the accuracy of the

spot location technique is approximately ±.001 inch.

Surprising as it may seem, mirroring the schematics is not

that critical. The boundary element code does receive

displacement information from DPM, but it also receives and

stores the locations of the spot centroids in the undeformed

image. Using this information, DPM-EPBEM interpolates (or

extrapolates as the case may be) the displacement

information to the BEM node locations. This is not to say

that errors are not introduced by misalignment of the spots.

If the spots are to be located along a horizontal line, then

misalignment in the vertical direction can play a

significant role. However, DPM-EPBEM is very forgiving with

respect to spot placement errors.
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Given that the spots are perfectly aligned, the abilit:

of DPM to measure the displacements accurately is certainly

paramount to the success of the hybrid technique. In the

images used in this investigation, typical values for

signal-to-noise ratio, gray level difference and

displacement resolution are 200, 100 pixels and 0.0001 inch,

respectively. In many situations there are regions in the

tested specimens where this resolution is insufficient. As

an example, the stress concentration factors for the

perforated strip and the V-notched tensile specimens are

calculated at the boundary of the respective cutout roots.

Therefore, the DPM displacement error plays an important

role in the SCF results. Both cases include localized

plastic zones and the same nominal dimensions. Because of

these localized regions, one anticipates that the

displacement in the region near the cutout roots governs the

accuracy of the DPM displacements. Minor displacement

errors away from the cutout roots do not have the influence

of displacement errors in the plastic zone. The plots in

Figures 57 and 64 follow the above reasoning; if the

resolution for both experiments is the same, then only

regions of small displacements (on the order of the

resolution limit) can account for the difference in the

behavior of the SCF plots. This conclusion immediately

draws attention to the displacement in the regions

surrounding the cutout roots. The plastic flow in the
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perforated strip is not as confined as it is in the V-notch

specimen. Therefore, the displacement at the root of the

circular cutout experiences larger and more measurable

displacements. The displacements near the V-notch are much

more confined by the surrounding elastic region which holds

the displacements nearer to the resolution limit of DPM. As

a result, the SCF plot for the V-notch specimen is much more

erratic.

One should note that the specimens used in the

evaluation of DPM-F2BEM are smaller (nominal dimensions are

one inch wide, nine inches tall and .0625 inch thick) than

one would expect to encounter in many true engineering

problems. The displacements in larger specimens will be

bigger and more measurable than the displacements

encountered here. This argument holds for localized plastic

zones; they too will encompass larger areas, providing more

sizable displacements. Therefore, in larger structures, the

DPM-EPBEM is less likely to encounter the resolution limit

of DPM. Avenues for improving the DPM resolution are

available for problems dictating measurements on the order

of the resolution limit. The interpolation of the

displacement information from spot locations to node

locations has the effect of smoothing out the influence of

the poor data near the roots of the cutouts. This suggest

that smoothing techniques tailored to these types of

problems may be useful. The real solution, however, is to
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improve the resolution of DPM. This can be acccmols!e "

increasing the calibration constants through magnifica-_::

or with better hardware, or by compensation for system

errors.

Another area which needs improvement deals with e

elastic-plastic boundary element method. The convergence C:

the initial strain elastic-plastic boundary element soti :

is sensitive to load increment step size. As seen in

experiments presented in Section iV, it is not always

possible to apply the loads in such way as to stay wi'-

the realm of incremental plasticity and thereby guarantee

convergence. Therefore a solution procedure which is less

sensitive to increment size would be more desirable.

Fortunately, the initial stress solution approach has --is

this quality [101]. It is anticipated that an initial

stress solution procedure would greatly enhance the load

range in which this hybrid technique is applicable.

The evaluation of DPM-EPBEM is given in the above

paragraphs so that the limitations of this technique can be

understood and so areas of further research can be

pinpointed. But even in its present stage of development,

the hybrid experimental-numerical procedure described in

this report is a useful stress analysis tool. The goid

results presented in Section IV are one indication of the

promise that the DPM-EPBEM procedure holds. A second

indication of the promise of this technique is that it is



103

fully automated. Finally, the equipment required to prcduce

a hybrid method like the one described is standard at nost

engineering and research facilities. By incorpordting the

above suggestions, the displacement pattern matching,

elastic-plastic boundary element hybrid method can be shaped

to provide good solutions over an even wider load range.
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APPENDIX

The two volume integrals encountered in elasto-plastic

boundary element methods appear in the boundary constraint

equation (Equation 11-15) and the interior strain equation

(Equation 11-40). Here these integrals are identified and

their semi-numerical integration is described.

The constraint equation volume integral is written as

Aijk - Sijk(r)dV

where

* C1

Sijk(r) = [C2(6ijr k + 6ikrj -jkr, i) r, ir, jr,k] (A-1)

with

1C1 =
4f (l-v)

C 2  = (1-v) ,

r i = x i - Fi and

ar

ax i
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To change from plane strain to plane stress replace

v by . As described in Section II, the volume

integral is evaluated over each triangle (Figure 8 and 9)

and algebraically summed to find the integral over each

interior cell. It is instructive to show this integration

over a representative triangle so as to understand its

numerical attributes and shortcomings.

/

%2 r 2'2

a

/

Figure 38. Coordinate system for the integration over
an arbitrary triangular cell.
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A transformation to cylindrical coordinates simplifies

the integration.

AEijk (r) = lir Sijk (r,,rdrd (A-2

where r, ,. 6a, Pb, R(,) and 2 ijk are defined in Figure 38.

The integration is carried out with respect the line

segment, D, perpendicular to R(n) . This introduces the new

coordinate system 71, 2 By defining the derivatives of r

in cylindrical coordinates, :ijk is properly recast.

'3r Sr :3- I 2r LL

r, j - - L+-33xi 7 Sl 9xi 372 axi

r -r
As seen from Figure 38, = coso, - sine, eli

5'2 Sxi

and !Li2 = e2i; where eij are the direction cosines between
axi

the x and coordinate systems. Therefore,

r,i = coso eli + sin e2i ,  (A-4)

and combining Equations (A-i), (A-2) and (A-4) gives

6Zijk = CIC 2 J R(4)Sij(cos0elk + sinoe 2k)d6

+ C1 C2  R(k)Sik(cosoelj + sino eij do

(A-5)

b
- C1 C 2 R(O)6jk(cos9eli + sino e 2 i)d
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+ 2C1 j R(, )(cosoeji + sirioe 2i)(cos ej-; + sinoe2j'

+ (caoelk + sin6 e2k)]d .

From~ the geometry shown in Figure 38, o = 9+sa, dodo

and R( ) =D/cosz, and therefore the integral, 4jk is

*ijk =DClC2 ( CelkSij eljsik -eli~jk)

+ tan9(e2k-Sij + e2jsik -e2i6jk))

+ DC2(2cos
2 9ejejjelk

+ 2cososino(e 2 ieljelk ~-elie2jelk + elielje2 k)

+2sin 2 , (e2ielje2k + elie2je 2k ±+ e2je2jelk) A-6)

+ 2sin2 9tarIe 2ie2 je2k.-

Upon integration Equation (A-5) reduces the integral of Sij;-

ovpr an arbitrary triangle.

&Zijk = ClC2D((elk6ij + elj6ik - elj~jk)I1

4-(e2k~ij + e2j~ik - e2i6jk)I2) + DC2elieljelkl3

" DC2(e2ieljelk + elje2.jelk + ejiejje2k)I4

" DC2(e 2 ielje 2 k + elie 2je~k + e2ie2jelk)I5

+ DC2e 2ie2 je2kI 6 , (A-7)
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where

Ii = d=9 b  -0
9a

12 =  tan~dO = -ln(c---sb) = in(rb

9 a cosoa r2

f b 1

13 = 2cos2qdo = (Ob-6a) + (sin2gb-sin2 ga),
~a 2

14 =  2cos~sinodo = sin2 b-sin29a
Oa

15 = 2sin2odo = (Ob-9a) + 1(sin28b-sin2ga)

Oa 
2

16 = 2tan9Sin20d9 = 2 1n(b) + cos 2 4b-cos2 9a
a ra

The volume integral associated with the total strain

equation is simply the derivative of Equation (A-7) (see the

development of Equation 11-40), that is

aE2ijk = (AZijk) (A-8)

Here the derivative is taken with respect to the load point

If is perturbed then D and its associated angles change;

Cl, C2 and eij remain fixed. Evaluating Equation (A-8) is

now reduced to finding
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12_ - i.KDr ) where 1 1, 2, 6,

which by the chain rule expands to

11. - Di ,- i - (A-9)

The first termIL 3D - -e
Tm -e 2 and in the second term is

evaluated as follows:

0 tan-i (:2) ~

i- -_ 2 (A-10)
R

but 2 = Rsin(O+a), after expanding and substituting into

Equation (A-10)

a9 singcosa - cosgsina

R

similarly

_ = cosocosa - sinasing

a 2 R

By making use of the direction cosines

e 2 coso - e 2sing

R
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Now, by substituting the above results into Equation (A-9)

.AElijk can be written for a representative triangle

AE2ijk =C1C2(elk~ij + elj6ik - eli~jk)Ii

+ ClC2(e2k6ij + e2j 6 ik - e2i~jk)1 2

+ C2elieljelkdI; -~ C2(e2ieljelk

+ elie2jelk - elielje 2 k)1 4

+ C2(e2ielje2k + elie2je2k + e2ie2jelk)I;

+ C2e2ie2je2k 16

where

I!=-(9b-9a)ell + ('7b-7a)

12= ?7btangb - 77atanL~a - ln(!Zb)ej 2
ra

I;= 2naC OS2 a - 2v"bCOs2 9b

-((Ob-02) +~ sinebsinea -cOseasin~a)ej 2 ,

= 2"bsinObcOs~b -
2 7asinoacoSoa

- (sin2 Ob -sin2 a)ejj

I;=2?7bsin2 Ob - 2asin2 9a -( b-ga)ejj

+ (sin~bcos~b - sin~acOs~a)eji

and

I= 2vnbtanebsin2 Ob -2lqatan~asin2 a - 21n(Xra)ejj

- (cos2 Ob -os CO8a)el2; ra

where '7a and nb are D evaluated at points a and b,

respectively.
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