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ABSTRACT

A deuwile. drivatiori and analysis of an implicit factored acteme tueam and
Warming 1976G) is Liven. A one dimensional shock tube problem is solved numerically
usin~g the factored scheme. The results and exact solution are presented for this
problem. An analysis of the features of the method is made and the limlitations of thAs
implicit factored scheme for more general applications to !ahoclc waves in sulids tire
discussed. An alternative approach which has been developed ty Boris and 110'mk (1976)
appears to have wider applicability than the method studied here.
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TABLE OF SYMBOLS

A the Jacobian matrix of the flux vector F
c the local speed of sound
E to energy per unit volume
Ei total energy per unit volume in region i
F(U) the flux vector for the conservaive form of the one-dimen.ional Euler equation.
i subscript denoting the regions in the exact solution of the Riemann problem
I the identity matrix
j subscript denoting the grid points in the x-direction
k ~subscript denoting the eigenvalues of A
L matrix operators
n superscript denoting time index
p the pressure
p, the pressure in region i
Q matrix of eigenvectors of A
t time
u the particle velocity
U. the particle velocity in rgion i

U the shock velocity
U the flow vector for the conservative form of the one-dimensional Euler equation
r the space variable
X., the region boundaries

constant used in finite difference expressions (m= 1,2,3)
-7 the ratio of specific heats
bN a backward difference opcrator
6/ a forward difference operator
At the time increment
A2. the space increment
A, the classical forward difference opcrator
C total energy per unit mass
0 parametet related to the chooce cf time difft Eencing
Ak cigervalues of the Jacobian matrix A
A the diagonal matrix of the eigenva.lues Ak

parameter related to the choice of time differencing
p the density
Pt the density in region i
V1  the classical backward differeace ope,ator
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In this report a detailed analysis of an implicit finite-difference algorithmn (Beam and
Warming 3976) for solving nonlinear hyperbolic systems in conservative form is giver.
This method is one of many finite-difference schemes used to solve systems of hyjperboiic
equations. Familiar schemes for solving these systems include the finite-difference ir -thods
of Godunov, Lax and W~enclroff, McCormack, the upwind schene, the hybrid sch,-re of
flarten and Zwas, and the flux corrected transport (FOT) method of Boris and Book. An
excellent review of these methods and others is given by Sod 1978. The cubic- Insecpolated
pseudo particle (CIP) method (Takewaki and Yabe 1987) and finite element flux corrected
transport (Loltser and others 1987) are just two of the more recent methods ;n use. All
cf these methods sre most commonly used to solve the Euler and Navier-Stokes equations.
This report looks at a one-dimensional shock tube problem using the Eulerian (inviscid)
gdsdyndMiC equations.

This arsaiysis was prompted by the need to find a suitsble numerical mnethod that
could efficiently and accurately model shock waves in two-dimensional solids Beam and
Warming 1976 i!rresentesl and solved problenms involving shock waves in Lwo-dimensional
imsviscid gases, suich Pis traiis nic aerodynamics and shock bou ndairy-l aver inlteractions. IF,~
this repOit ft UC -Uir.,einSVi11 firi of dip' slgorithni givcri in B"Cam and Wa~ncing 1976 wa2
used to miodel 5hock waves in an inviscid gas. Based on the performance in this problem
this numsriz al method was asscssed for its suitability to model the more difficult problemi of
shocks in two,-dimensional solids, whsere the solids arc assumed to hehave hydrodynamically.

There are nunmerouts difficulties that are encountered when trying to model shock waveS
numerically. Some are related to the specific piublein, cg. steep gradients and boundary
ccndlticns, others to the numnerical msethod that is being used, eg. damping, dislprsion and
noni-physical nscillatior- (Gbs err'r) While other,, effect the wholt- 6 ystem eg. accuratcyN
and stahihty. The main airn of choosing a particular numerical method is that it jouct
rniiimi~e these difficulties. lIi chioosing a sitable Finite-diticrence algorithm thwre 's a sf-t
,.f Uasc reqrfirmrs to he sauisfittd. A cosplire li~t is giveii by Boris and Bfok )9N6b

P- ri-irei-Ot. 4f ;arst importance are:

1. jA-.'c' u 'ervation propttj,-s of the pitYsical *tuatinu, shmild 1- izrorch in thn- vu-
rsrmI s~ciod used.

2 JTic numerical method inut be stable for A range uf ~rid spacings and tinec ~stps

1, Te IcO 1ity p )0 .6d rre pain positivte,
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4. The numerical method should provide at least second order accuracy in regions of the
problem, eg. the shock front.

5. The numerical method should be fast and efficient.

These requirements are listed in order of decreasing importance. The first three require-
ments must be satisfied by the finite-difference algorithm otherwise the results cannot be
considered to be realistic. As well as these requirements the more difficult problems will
require a finite-difference algorithm that is fairly robust and can cope with a wide range
of boundary conditions and equations of state, For modelling -( shock waves in solids,
elastic-plastic terms must also be included and tolerated by the algorithm.

An implici, finite difference scheme has been chosen here to solve the one-dimensional
form of the inviscid gsdynamic equations. Long computational limes have excluded the
possibility of using an explicit finite difference scheme since the stability bound of an
explicit tJgorthm forces a time step that can be orders of magnitude smaller ihan that
required for accuracy. There is a limited number of spatial difference approximations
that can be used for the conservative form of the inviscid 5asdynamic equations. Only
centered difference operators lead to difference methods that are simultaneously stable for
both positive and negative characteristic speeds (i.e. eigenvalues) that are associated with
spatial flux ierms. One-sided (or upwind) schemes can be used when the flux terms are split
into components corresponding to either their negative or positive caracteristic speeds.
One-sided schemes have superior dissipative and dispersive properties compared to those
of centered schemes (Steger and Warming 1981). Therefore a more robust and eflicicnt
algorithm can be obtained by splitting the flux terms and applyin3 one-sided differcnces.
The implicit factored scheme developed by Beam and Warming 1976 incorporater 'hrse
principles and is the more commonly used method of this type.

In the second section a brief deseription nf the iri.plicit factored scheme of Beam and
Warming 1976 is given. The Itiemann problem in one dimension is solved numerically with
this method. A discussion of this problem is given in Section 3 and the results are plesented
is the Section 4. Section 5 sums up the analysis -nd compares 'his method wit.F others
and conclusions are drawn concerning the s,,,ability of the Beam and Warming algorithm
for modelling shock waves in solids.

5
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2-AN IMPLICIT FACTORED CIIML

In this s-ction a brie! summary of the one-dimensional form of the method in De.m
and Warming 1976 is given. A full derivation is presented in Appendix A.

2.1 One Dimension

In one dimension the Euleri.,n invisrid gasd ynamic equations (Appendix A), namey
the continuity equation, conservation of mass and conservation of energy, c. be writter
in conservation (or vector) form as

aU OF(U)
-+ (1)

- F(U)P = I+ (2)U P )(E + p)u,

p is the density, u the particle velocity, E the total energy per unit volume and the pressure
p = - l)fE - Ipu2 , -r is the ratio of specific heats. An ideal gas equation of state is
assumed.

Equsation (I) is the funrtmenal system to solve. It is a form of the Eulh equation for
non-viscoiss fluids. The scheme divised by Beam and Warming 1976 uses a fact,,ricati,m ,f
the equation after time differencing. This approach ielies on the explicit form of cquatin
(1) including the use of an equation of state that can be expressed in the functional form

P = P() (3)

where r is the internal energy per unit mass and f is a function. Vhen the equat'... .
s*,te can be expressed in this functional form then the nonlinear flux vector F(U) is a
homogeneous Rfunction of degree oie Using this homogeneity property

F(U) A(U)U (4)

of the 'iEler equations, where A is the Jacobian matriv of F, a ;inear tirv--rffere)o!-'d f,,rlm
of equation (1) can be written (Appendix A) as

r A, +- At (8F\l±O - - , (,l)

+ A6

.. ........ ... -,,-,,i,,ial Ha t iI !• • i I Ila lll ilqaI i illilHI l li! RlIIHI~q~iI! -4-



where I is the identity itatrix, AU" U ' 4" - Us, At the discrete time increment and
U(t) = U(nAt) = Us. The parameters 9 and ( define the particular time-difference
approximation that can be used. Examples of some familiar implicit schemes are

I
0 = -, f = 0 trapezoidal formula;

0 = 1, = 0 backward Euler;

0 = 1, .1 three-point backward.
2

The Jacobian matrix A has the eigenvalues u an(' us ± c where c =[')t is the lu-
cal speed of sound. One-sided spatial differences have superior properties wfien compared
to centered rpatial differencc, (Section 1). For this reason Beam and Warming 1976 use
one-sided differences in their scheme. To be able to apply these oie-sided spatial ,!iffer-
erces the flux terms must be split according to the sign of their characterstic speds (i.e.
eigenvalues). The flux-vector F can be split into two parts, F + and F-, (see Appendix A)
F+ corresponds to the positive eigenva, es of A and F- to the negative eigenvalues of A.
The partial derivative 0 in equation (5) can be replaced with one-sided spatial difference
approcimations. To maintain the stability of the sy:tem a backward difference operator is
used f,,r positive eigenvalues of A and a forward difference operator for negative rigrnvalues
of A. By dropping the third order term O(AP ), splitting the flux vectors and appl,'ing
one-sided spa.ial differences to equation (5), a noniterative implicit finite-differencr c.-hem,
for ,artion (1), that is second order aceurate, can be written as,

(I V ),; 14 -( F + 61-:, )

-0* + n, a , 1 4

where x. jAr, V',7 is the cl .rsicl bakward difference operator defined in App,-nl.ix A
(eqamion (A26)) a-nd A 5 the lisi ;it f,)rvo-ard differcnce operator dfined ivi Appeod!x .A
('-quation (A27j); .5b and '5" ',firn-I in App-ndix A (aTter c'uation (.12Y) 11w !-,w
vector U in equatin (1) haq ,-,ii , ced Iy U, where tie qure-crpt n Iint, tine
tifn- icel andl the ubs cript j -'-!,s th,. .r ,! p,.int l.:.cat,n. T'h, -j,,at,,n 4 ' means
th, v.lue ,f A evaluet,'d at tim- ic%,-l n

.iatI-ns (C) c,:, he 1,nr l.r 0i~ rd- d

11... Iq AU ;  r . ...
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-u
+ = us + &u% (Tc)

wli-rezLjI + 1 ,.-4 (8)

=~"--I - otiA71'  9

and

At

01 -- At(1 )
02 2Az(I + ) (lob)

a3 = -. (i0c)

Equations (7) describe an algorithm that can be used to solve equation (1). To avoid
large-amplitude oscillations, especially in shock wave solutions, a fourth-order dissipation
term is added to the right hand side of equation ("a). A fourth-order dissipation term has
been chosen so that the formal order of the scheme is not disrupted. The dissipation term
is of the form

4U 6 U- - UU(1
-(,o/8) x'(0 U!0,4)t;'~~ ---8)UI 4;+ + U )_ -+ ,2) (1

The above scheme (equations (7) and (11)) is stable for values ofa in the range 0 < w < I
-t:.,qding to a linearised von Neumann stability analysis (Bleam and Warmirg 197t). This
iniplicit factored scheme is easy to implement when compared to an algorithm with centered
spatial differences, which usually involve the inversion of tridiagonal and pentadiagonal
matrices. This brief summary highlights the simplifications that can be made for nonlinear
•ysterus whose flux vectors are homigeneous functions (,f degree one). The most important
of these simplifications is the splitting of the flux vectors into subvectors which crrespon'
to their characteristic speeds.

2.2 Two Dimensions

[eam and Warming 1976 als, applied this implicit factored scheme to tie two-
dimensional Eiierian invisicid g.Aynamic eqiitio'is The value ,f this appios-h may
he seen from the large number of prol'vis in the literature to which it has e.-n applied.
"These include transonic aerodynamics, ie lifting and nonlifing of airfoils oscillating in a
free stream (Beamn and Warming 1976 and Stever and Warming 1 ,14), Couette fl,,w, shock
boundary-layer interactions (Bam and Warming 19781 and in one-dimensional shock tube
flow (Steger and ",7arming 191I), sfee S"ttion 3
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Beasm and Warming 1978 used the Couette flow problem (unsteady flow between two

infinite adiabatic parallel walls) as a test probh!m for their two-dimensional algorithm. The

spatial accuracy and stability of the numerical agorithm as well as its boundary conditions
were chosen as the init.%.i test. The numerical solution when compared to the analytical
solution exhibited a good degree of accuracy. No numerical dissipation wus added to the
numerical algorith:-s for this problem. The shock boundary-layer problem was used as a
more severe test for the two-dimensional algorithm. No analytical solution for this problem
was avaiiable for comparison but when compared to the numerical solution obtained by
other methods this method was in good agreement.

Steger dnd Warming 1981 developed new explicit and implicit dissipative finite-
differences for the one-dimensional and two-dimensional forms of the inviscid gasdynamic
equations. These different methods were used to solve the one-dimensional shock tube
problem (see Section 3) and the two-dimensional problem of trarsonic airfoils. Centered
spatial differences were also used and compared o upwind differences (used for the split
flux formulation), The implicit upwind scheme (the method used in this report) solved the
one-dimensional shock tube problem better than the other individual methods. Although
the combined algorithm of an explicit upwind scheme and explicit MacCormack scheme
(Steger and Warming 1981) was an improvement on the implicit upwind scheme. For the
two-dimensional problem, the conventionial implicit algorithm using centered differences
was compared to the implicit upwind algorithm. The results obtained for the airfoil prob-
lem using these two different algorithms were in good agreement although there were small
oscillations in the implicit upwind solution. These oscilla 'ns were due to the conserva-
tive flux vectors having discontinuous derivatives i.e, the eigenvalues changing sign. By
adding bl.nding term- to the eigenvalues (Steger and Warming 1981) the osc'lltj,,ns were
smoothed out. Bam and Varmin. 1976 used a hybrid scheme with a fourth order dissi-
pative term (sirnilar to (11)) to solve this airfoil problem. This solution agreed with that
of Steg-r and Warming 1981 and had no oscillations.

9
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#P

_SIMPLE ONE.DMENSIONAL PROBLEM

A stringent test for non-linear systems described by the equations (1) and (2) is the one
dimensional shock tube or Riemann problem. This is a simple problem where a dialhragm
separates two regions of different pressures and densities. The fluid on each side of the
diaphragm is an ideal gas which is at rest at time t = 0 The initirJ conditions fbr tns
problem are shown in Fig. I(a). The diaphragm is placed at z = 0 and pi > p6 I he
pressures are assumed to be such that p, > ps.

Equations (1) and (2) can be wived exactly for this problem (Tkewaki and Yabe 1987)
enabling a precise rssessment of the numerical method. This solution is presented in detail
in Appendix B and illustrated in Figure 1(b) for density, l(c) for pressure, l(d) for total
energy and 1(e) for particl, velcity. Because of the step changes in physical properties,
as shown in Figs 1, the Riemann problem is considered a severe test of the capability of
numerical methods to solve the Euler equations. When the diaphragm is ruptured (t :. 0.
see Fig. I(b)), %n expansion propagates into the high-presure gas and a shock wave
followed by a contact discontinuity, piopagates into the low-pressure gas. Region 2 in Fif
l(b) represents the area of adiabatic expansion, region 3 the contact discontinuity and
region 4 the shock wave. A paricular numerical method's accuracy and performance can he
determined when the exact solution and the numerical solution are compared, especially
at the contact discontinuity and the shock front.

The Beam and Warming met,,od was tested against this Riemann problm ising equa
tions (7) and thre,-p,int backward tjm'_.ditierencii.g (6 = I and - "). The thr.- exaczn-
pies of implicit tirnediflerencing giv-n in Sectin '- the tra--ioidai f,rinula, the L'ack ard
Euler rif,-rentcnk, and the .hree-piitt backward differencing, were all used t) 5,y, the

iemani pr,,hria. "[rere *.verc no bgigrficant differnces tetwen the lAutiorn giv,n 1y
these djerrn, tirre-drferencing s1henret, except that tile trapczro;J2j f..mrw ;i..;s
for ." Io rtJ1. lfeace only tLe tir,-- point backward tiinc-differencing was usc.I f.,r ths
S-,'tin 'lie - h, ,le in uncofdliti?.rnally stable for 6 = aI&d --- (Sttger anti ,"arrrirg

The dissipation term given in -,iation (II), was added to tile right hand 4:de ,f u
ti, n 17a), with u. = 0 5. Ove hundr,. p,mts were taker. tw-c ytd of the lhrarin wit!;
A r - 025, so that, z was in t6e ramo, -.-'2 5 - x -: 2.5. Th. st. ,f tpecilic Ih-s. y, was
1 4 and te initial coiditims w~. ' p: - P)i ii, Pt P. = 1 ,%nd u] 0 -u%

TIere va a fix,'d Lliund ry ;tt r - l2 at z . 2.5 i c. 1) .! L '; x
- 1' , wbr-e I, refcr, t', I'- 11,,,, step, 0 tire in; 4Io, t,. r _ . the birdrv

2. 2 !' .VI tihe I,,,unrlary r

If)
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Using the implicit fac'toed scheme and the parameters givent in Section 3, the Riemaun
problem was solved for different limie increments (At =0.101, At = (i.035, At = 0 001 alnd
At 0 .0001) but fo.r the same total time (t -- .0) Each of te .solutions Fig. 2-5 ca.,
be compared to the exact solution shown in Fig. l~)1e.The paramelurs arnd solution
values for the exact solution are giveni in Table !.

Tht de~isity profile after 100 tirie steps (At -- 0.01) is shown in Fig. 2(a). This
p.ofile follows the general form of the erxact soluitioni (Fig,.'.(b)) except for a non-physi cal

oscillation at the shock front z = z4 arnd the I'mearing of the contact di'continiiity and the
shock front. Although both the conitact surface and the shock front have both been smeared,
this niumerical1 scheme has resolved the shock front Letter i.e. there is less dispersion at

Z = X4 than at z = Z3. By adding more dissipation (i e. increasing the value of w in
equation (11)) the non-physical oscillation or the Gibbs type error effect can bt reduced.
To reduce the amplitude of the oscillation mare dissipation was added in ihis way, but this
was unsuccessful. The dissipation term is two orders of iegnitude smaller than the overall
scl.eme, hence by increasing w~ there should be no significant chi res in the solution as was
observed. Recall from Section 2, the addition of a dissipation .. -n should not effect 'he
overall stability of 'he scheme and therefore hres to be 'hab siaa. H-nce to imnprove the
overall accuracy of the solution, which w~ould also redi :e! the amplitudc: of the oscillation,
the timne step needs to be mnade- smaller i.e. increasM . number of time steps Before
considering a smaller time step it i. worthwhile to look at this non-physicni -sc,llation

in the correspondiug profile-s of presisure, entergy and velocity in Fig. 2(b), Fig 2(c) nd
Fig. 2(d). r,!qpectively -Note that (tie oscillations occu- at the sharp change in pr-silire, bu!
not %hen the dens~ity changes with constant pres.%ure. The ',sciljatioii is more or. noitunced
in the preAsire and energy prifilt-s %.nd is at it* extreim! in the velocity p)rofile where it i
producing negative selocitie.

The ime step his been reduced by it factor of a half (At = i 3)in Fig. 3. The
amplitude of the oscillation has beeti significantly reduceil with only a smnall und-rvlioot,
cnsisting of three grid points, rcrllaining. Also note Llat the boundaries z = r and r= X
have not ituffered any furcther disiiersion, 1;vedwcing the time step again (LI 0001), see

Fig. 4, reduces the remrplitude of the remaining unle-rihioot a. the shock fro't b';. the
colution hias become more diffuse with thte contact surfAce anl the- shock fro.nt furtherr
disperse-d. Trhis has caused the sliiton to Lecomne less ; crrate when comrl,arred to the!
exact solution. This situatioli worsens whe-n the time( ste-p is reduced again (AIt (10,
sa" Fig 5, whre' both the contact surfaice and the shock fr,,rl hav, ber severe'v disprrsrri
No) ovi!lationii (ecur, hit comnpiar-d to the exact srd iti',n in Pi-. WI ,) the ol lti, lias
bei-orie inaccurate. 'Ili.! brst baiance be, ' en the prbensof nri,.-pl.) sical rsri1.iti uns
and Levere diffusion appears to b~e in Fig .3 where At .. 1) 001.,. 'ul vili lu;!crent
iri~tial co~nditions and parameters as time step other than 0.0(j. s u, rovide the requi-cl
balance between ditlision said ,s-illittions. Vic best Nalive f,,r 4%! 1-.:t.ctv c',lr.rorr1ise
lhascd oni diffusionl vterses oscillatiovs And C. only be !i~rrln-v,Y ta) and r



The Courant- Fredrichs-Lcwy condition (CFL) was used to t, stability of the

scheme. Trhe CFL condition for this parti, ilar hyperbolic scheme i,

14 I < 1, k t1, 2, 3. (12)

where Ak are the rigenvaIaes of the Jacobian matrix A4(U). Expressing this condition

geonlvtricftlly the numerical domain of dep.!ndence. of the scheme (7 ) (with equation ( ItI)

added) must contain the drimain of dependence of the differential equittion (Peyrel and

Taylo~lr 1,83) The solutions discussed above easily satisfied this condition. This is because

the nulns-rical scheme is unconditionalily .table. The Courant number did become close to

Unity a t x n 4 (the shock front), however. This was the regiOn where the oscillations

occured, hene-teifing that the oscillations were non-physical i e. they were not part of

thte solutioin but an error of the scheme employed.

Mdeally ant infinite shock tube should be used for the one-dimensional shock tube prob.

lem and therefore any cud boundary effects could be eliminated. This is not possible in

Practice since the numerical scheme that has been u~sed here is an &;tcrnating direction

(Atli1) met h(,, (i~e equation (,a) is evaluated in the positive x direction and then equation

'7b) iii evaluatrd in tie negative x direction) Therefore the boundaries at x =- -2.5 and

r =2 5 Rre fixedl As can be seen from the results these boundaries tire fnir enough away

ftn the dinphrngni, hersce there, is no t1ounsdar.N effect on the solution. With boundarie.

door - to1 ill' Lil plrsinsi (he stability ,f the schemie roul the numerricAl soluution may haie

Icemi allvem,lv Atlected

i, Itujimit factrqed schriule that fisI -,ii dolr fictr c-fin t F- r' !:-n the flux

Vf*ctor F 1A i.ml'm>eocs. call that, if F shtssts the ho nutprperttv (ref-'r

t ' '1)) atilt 1 asll a complete set of Iticarir independcut e'mvcosthen-t the

t\n Ct,lf F cars be split into two subvectoiA, -ne sulksctor corrsoirdwg to the psitive

''lisof .1 %fidl the other the negative rigenvslrs Thic b-serl'ct,,s call thenI

ts-,ees tiolvisiuiall'v Nmith the appropriate. -!idI scheme. If tle q,,x vectorisn,.

ins -eecit !her% it ( iSnit be split iuto suimvrctors am1l thcrr- rni ltrnative'c~nti

-muA (lilt, I. I spatial diferen-ce has to he mssd. As zil inl ScnOini I zJgoitwis~ isitifg

N10,1 i~ep~s ic superror dissipative sansd iiii-crrsive 1 iropertir- as Aell as Icing)F
ire ro-s. anid rtlicicnt than silgnritlnm us~ing tenterrs-i fTrencef, 'llsrefore, to be

liIt, ~lv A sn nslstrmity nonl1inerar hv perbllit smien~ (it, cnm-sit..ltt,-a% finrn)v-0

011,~ wijicit Cvo', ~sssetm cinittmnif 4 t~t-,O it *snzlrr flux vectos in;t le

IZtf



A- CONCLUSIONS

Using the one-dlimensional shock tube or Riemann problem, the implicit factored
scheme developed by Beam and Warming 1976 has been tested for its capability to solve
the Euiler equations, The Riemann problem proved to be a severe test for this scheme. The
scheme performed well but it had a couple of drawbacks. Non-physical oscillations (Gibbs
error) and dispersion of the contact discontinuity and the shock front adversely affected the
solution. By removing the oscillations the solution became more dispersed and by minimiz-
ing the dispersion the amplitude of the oscillations increased. Therefore the best solution
for a problem (solved with this method) is a subjective compromise based on diffusion
versub oscillations and can only be delt.emined by trial and error. Besides these difficulties
this implicit factored scheme wast stable and efficient for a wide range of parameters.

The main motivation for this work was to examine a paricular numerical method to
see if it could successfully model shock waves and be adapted for studying shocks in thle
solid state. After finding a suitable numerical method, the simple one-dimensional shock
tube (Riemann) problem presented in Section 3 would be extended to model shock waves
in solids, eg. the shock waves tenerated when a flyer-plate impacts a solid material. This
requires different equations of state to the ideal gas equation used here. The ideal gas equa-
tioin is a special case of the functional form of the equation of state (given in equation (2)),
which this metho4 is suitable for, If the equations of state for solids can be constructed in
this functional form or if this functional form is used over restricted .ng .S Of Piesure aiid
density then the implicit factored scheme can 4e tised. If the equstions of state for sollis are
not in this form then anl &lternative numerical schemne must be !ound. Elastic-plastic con.
ditions must be- incorporated into the problem and usually the addition of suitable bource

or sink terms to c-'ustion (1). Esxtensuns to two dimengionst and the posslible incnrp,,rstti,,n
of initiation and detonation of explosives would fvllvw. Thcse problems would oh';iouuiY
require a faicly robust and versatile numeric-al scheme. The implicit factored scheme used
here performs well for the sample problem but the rest'ictions or. the boundary conditinsi
otnd the choices of equations of state are too restrici'e for our purposes.

Though not yet examined is' detail by uts other met h',ds, such as flux-corrected transport
(FCT) (Boris and Hook 1973, B~ook, Bor.* and )!ar~ 1975 and Doris and Book 1976a) and
Zalesak 1979 mnultidimensional 1'tT appear to provide the accuracy and versatility lie drd
for these problems. Re-ults iiublished elsewhere (11oris and Bouok 19M3, Flook, l1-in nrd
11amn 1975, Boris andi book 19764a, 1976b, ~lk1909, 19SI and Sod 19t') sugKgest that
they are highly accurate and reaonably n-ass to use. An extcellent example of this is in
Zalesak I 99). The onr~dirnist:,,nalt shock tal ( hicmatn) p, oblem is solv:-d using a Il Cl'

method with imilar parameters to thle probir m so) vcd hre. The FCT method 5o!ses thve
shock tube problr-m extremiely 'v All Trhe .soiutin is h~ghiv, accurate aind has superior results
when compared to the methodi o,c~l here at other methods elsewhere (Sod 1978). Further
investigations arc taking place ml, ng these lines,
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TABLE I

Exact solution values for the Riemann problem ( see Section 3 ). The shock velocity
U is 1.90, see Appendix B. Note that across the contact discontinuity z = z3, p3 = p4 and

U3 = U4. The initial conditions are pi = 10.0, ps = 1.0, pi -- 10.0, P6 1.0, while -y 1.4
throughout.

Density Pressure Total Particle Boundary
Energy Velocity

Region i Ps Pi Ei i i

I
1 10.00 10.00 25.00 0.00 .1.32
2 - - -0.02

3 4.08 2.85 9.05 0.97
4 2.04 2.85 8.09 0.97 1.90

5 100 1.OO 2.50 000 
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Riemann Problem

Region 1 Region 5

PS

x<0

(a) t = 0

Figure l(a) Initial density profile for the Riernann problem. Diaphragm is at z 0

1 i

Regton I' Regbn 2 Region 3 Region 4 Reg'on 5

I t

SX, X 2 0 X3 X,

(b) t > 0

Figure I(b) Density i,rofile after thr diiapb, rngm he.s b-" r, rtup'wred Ako is the frr-io

the exact solution, set appendix B.
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Rnw I ROOM 2 Reron 3 :Rog 4

X, X, 0 X, X,

(c) I > 0
Figure I(e) Same s Fig. [(b), except pressure prole.

I I I
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a I a

a 2 0 X, X

(d) t > 0
Figure 1(d) Same a Fig. l(b), except tot l eDergy per unit v,!ure profile.

A o, I ' 2
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U

X X I X X

(e) t > 0

Fikure I(e) Saune .& Fig. l(c), except parisle veo:y l roele
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8 APPEN DIX A

lb this itppendix, the concise form of the implicit factored schemie presented in Se :tion 2

is expanded.

The one-dimensional form of Euler's equations, namely, the LontinUity equation, C( fl

servatai ;f mass and conser vation of energy are represented in equations (.I 1 (2) a nd

(M3), respectively given! by

LP 0 (-()u=z0 (Al)

P(80 + ual + --P 0 (?
a~t or c~

a 'F- + -(Fu) = 0 (M3)

where e is the i;,ternal energy per unit mats, p (-y - 1),:c from the ideal gas equattion ,f

state ano -1 tile ratio of specific heats.

These equations carn be written in vector forip as

where

Fu~) F(U (2) +

and E - the to tal energy per uriti v'-lune, and p (I- I)IE pu"

:csequations ,f gnslynamics hnve t he propetty that tile nrinlinar fhin-tiii

F(U) is a h'rneo~funrlion ,lgr"e one ns U, see Beam arid Warmnlng 1 '7

Tili-ehore,

F(U) =.,ikU)U

here

A(U) =.iOF



is the Jacobian matrix. Hence equation (M4) can be written as

-+OA(UJ- 0. (M?)

sige-step temporalfferece fporrvning (the soluion 2).Subation (A-1)equatioandA4) ino
(.. 18) is

I. 1 (;_( (w

+ ( - E()At, + At) (.I)
+

HreU1 I" i~n Jt) =i .49) i the iscree ut ieinremet. ad C dvorefpin h

pazrticulati m in r~ rc u a pplouaio (se Seto-2.S bt6)eq ain(A )it

#A F 9.'(3' At U) F(t)(n

U%+ _:11 " G

,IF

In~ ~ ~ cqm i (AG

i~ A-



Reamieging equation (A13) gives

+~ t A-1,NU, = r F(A 1 )

where
&U. = UN+ - Un. (AIS)

This equation is a noniterative, second-order time-accurate solution for equati')n (A4).

The Jacobian matrix A casn be simply calculated to be

0 10

A , (3 - ) -1 (A1G)

The e.genvalues of A are

At -, A 
= 
u + c, 3 =u - c (A17)

where e (I?)) is the 16cal speed of sound.

Since F is a homogeneous function (see equation (AS) and Stegee and Warming 1981),
F rat Ie split into two parts

F = F" - F- (AtS)

where F ' correoponds to the p,.sitive eigernvt.'e of .4 and F- the negative eigenv,'!ucs f

A.

Any eigenvalue Al can be expressed as

where

2'

so if Al 0, then AI" > 0, A- 0 and if Al ,.0 thes AI- --1 0, AJ I .

For the cystem described by (.18) to be hyperboic thme must exist a similarity trans-

formation such that

Q-.AQ A m3.(A2 1)

0 A,

A- 3



where A is a diagoi-i matrix ad the eigenvaluea of A are real,

Hence tht di.,gonal matrix A can be expressed as

A = A+ + A- (A?2)

where A + and A- have diagonal elemicats At'and AI, respectively.

Therefore,

A+ = (,)A+Q -  A- = QA-Q-1 (A23)

F+ = A+U = A-U (.424)

and

A = A+ + A-. (A25)

If is replaLed by tbe backward difference operator

V"= U, - Vi- I (A26)

then (AS) is stable if and ,,nly if the eigenvalues of A are all positive.

Similarly, if 8 is replared by the forward dilfcrence operator

A, K U' 4 1 -" U (A-27)

then (.-!) is stablc if andl otly 4f Ow, rgenalwus 4' .4 are all tneq,,e.

A noniterative itiplicit finite-lfference &:herne (Beam and Warming 1976), f,)r R one-
dimensional system of cnser~sation laws, with tle use of split filu verl Iis (.423) arid one-

sided spatial difference approxntatirons is

! (I + - At VAi-, OA( A,.4'\ , f
+ At 1 4 A.V

- At b.'Fr)-A+ b (. In)

where ,F. IF, 4F, +F,_

and

By redefining ofle of tl,-, fi,'t, that is,

AO 44)

A-4



and

the schem! (A28) can be implemented as

+ nxA+I*) Au- -o(6'FL+ -ft IF;) + a3U(A29a)

(I + ctiAxA7i ')AU7"= AU; (A29b)

4 ~U.(A29c)

Further sz--plifing of (A29) gives

Ltl"AU; A+ a,(6,F 4" 11 J!F-:) + (.430a)

U"+ Uft + Al,(,130c)

T),e schr-jc LdegcribeI 1,.v (.110) -(.432) was us- o s.Iv, thr un' dimrrnsiiI prol'Irm

in Sertior 3.



9 AERPFDILX

In this appendix, thp exacit solution for the problem described in Section 3, also known
as the Riemann problem, is derived. The derivation follows that of Thkewniki and )'Abe

1987, except a relation was obtained to find the shock velocity U ins~ead of the Mach
number M. The initial conditions, namely a diaphragm placeu at r n 0 (between the
regions I and 5), are shown in Fig I(&). This profile is modified ipto that in Fig I(b), when
t>0.

The Rankine-Hug'niot conditions (Ilayes 1973) across the shock front z r, are

P4 U4

P4 -, =Pps lUU (82)

and
Et - Fs= I(ps + P4)(%,s - V4) 

(13)
2

where I

For a perfect gas
E = -I'

th-refore equation (bJ) becomes

P4 -
+

4 - (PS + Pj)(11- V4). (14)

From equ.tion (BI),
). (J)

U4

Substituting equation (15) irt, (P2) jves

a r (11)
P4,

From equation (B4),
P'4 (t * l)p4 - ( O -lPr

Ps (-7 I)PS -('- I)P4 (117)

S.

... . . . .. , , ,, ,, I I I I I I I I I I l [



By substituting this equation into (86), an eXPr"uaont (fo P4 in tefMI Of the know"i quan.
tities ini tegiofl 5 is obtaned,

psU'(y + 1)
-27p + pbUt(' -) (118

Substituting equation (BS) into (B7) gives,

P4=2psU3 - (,f - I)p's(1)
('T + I

and substituting equation (PA) into (17.9 E*Vrs,

U4=2(psU2_- -- p)()m

The ressure alid the velocity should he continit me at tile contact surface x - rs.
Hence,

U2 =u (f4l

and
P3 t-(1112)

The porticle velocity uis alsmed to be a siiigl#e-valuied functionn of-tthe 1iisi ty ) 111 tlle
AliliatIC C~panft1.vi rC910on (rfgionl 2) lhereforr cinliorter (1) itud' (2) rrduum t,;

O~P +~ [ ( C )] P .. (1113)

if tile function u(p) satitifies a relation

du 1p)(1114)

Froin equation (1113), O~e velorities of the rarefartiogi fro"'! t n lim e oa1c r

4t r X are -(?pi/pi )1 and u3 ip~~ rcapectively lntegratmks te, Inst rqluation
gives

UJ2

- ~~Since tile adiabjatic. rtc,ation ~ _ m

(9/16)

V'- 2



holds, ua 1 twatW to p u

I ["(s)1 (B17)

Finally by substit iting equations (119), (I0), (ll ) and (1112) inio (B27), gives the
relation which determine, the shock velocity

0- 1)(06u, - i'ps) g p 1 (2pa II (-y - I '

When equation (B18) was solved using the same parameters in Fig 5 (Table 1) of
Takewaki and Yabe 1987, the shock veiocIttee agreed. "The -iunwliical VaIues of the rxact
solutlnn for the problem in Section 3 are given in Table 1.

It- 3
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