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A detailad derivation and enalysis of an implicit factored scheme tEcam and
Warming 1976) is given. A one dimensional shock tube problem is solved numerically
using the factored scheme. The results and exact solution are presented for this
protlem. An enalysis of the features of the method i3 made and the limitaticns of this
implicit factored scheme for more genersl applications to shock waves in sclids are
discussed. An alternative approach which has been developed by Boris and Bock (1976)
gppears to have wider applicability than the method studied here.
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TABLE OF SYMBOLS

the Jacebian matrix of the flux vector F

the local speed of sound

total energy per unit volume

total energy per unit volume in region 1

the flux vector for the conserva‘ive form of the one-dimendional Fuler equations
subscript denoting the regions in the exact solution of the Riemann problem
the identity matrix

subscript denoting the grid points in the z-direction
subscript denoting the eigenvalues of A

matrix operators

superscript denoting time index

the pressure

the pressure in region ¢

matrix of eigenvectors of A

time

the particle velocity

the particle velocity in region {

the shock velocity

the flow vector for the conservative form of the one-dimensional Fuler equation
the space variable

the region boundaries

constant used in finite difference expressions (m=1,2,3)
the ratio of specific heats

a backward diffesence operator

a forward difference operator

the time increment

the space increment

the classical forward ditference operator

total erergy per unit mass

parametet related to the choice of time diffecencing
eigervalues of the Jacobian matrix A

the diagonal matrix of the eigenvalues A,

parameter related to the choice of time differencing
the density

the density in region ¢

the classical Lackward difference ope.ator
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L _INTRODUCTION

In this report a detailed analysis of an implicit finite-difference algorithin (Beam and
Warming 1976) for solving nonlinear hyperbolic systems in conservative form is giver.
This method is one of many finite-difference schemes used to solve systems of hyperhaiic
equations. Familiar schemes for solving these aystems include the finite-difference n-~thods
of Godunov, Lax and Wendroff, McCormack, the upwind scheme, the hybrid scheme of
Harten and Zwas, and the flux corrected transport (FCT) method of Boris and Book. An
excellent review of these methods and others is given by Sod 1978. The cubic-inwerpolated
pseudo particle (CIP) method (Takewaki and Yabe 1987) and finite element flux corrected
transport (Lohner and others 1987) are just two of the more recent methods in use. All
of these methods are most commonly used to solve the Euler and Navier-Stokes equations.
This report looks at a one-dimensional shock tube problem using the Eulenian {inviscid)
gasdynamic equations.

This ana'ysis was prompted by the need to find a suitable numerical method that
could efficiently and accurately model shock waves in two-dimensional solids Beam and
Warming 1976 yresented and solved problems involving shock waves in (wo-dimensional
inviscid gases, such as transonic aerodynamics and shock boundarv-layer interartions. Fer
this report n one-diriensional form of the algerithm given in Beam snd Waeming 1076 was
used to model shock waves in an inviscid gas. Based on the performance in this problem
this numencal method was assessed for its suitability to model the more difficult problem of
shacks in two-dimensional solids, where the solids are nssumed to behave hydrodynamically.

There are nunmierons difficultios that are encountered when trying to model shock waves
numerically. Same are related to the specific problemn, cg. steep gradients and boundary
cenditions, others to the numerical method that is being used, eg. damping, dispersion and
non-physical cscillatiors (Gibhs errer) while others effect the whole system eg. accuracy
and stability. The main aim of cheosing a particular numerical method is that it must
minitnize these difficulties. In choosing a suitable fintte-diffcrence algerithm there is o set
of basic requitements to be saiisfied. A complete liet is givei by Boris and Bock 1676b
The requirernments of ;acst importance are:

1. Lxact convervation properties of the physical equations should bhe wricrored in the nu-
werical mictiod used.
<

2. Thr numenual methed must be statle for a range of grid spacings and tinie stope

1. The dendity p should remain positive.
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4. The numerical method should provide at least second order accuracy in regiona of the
problem, eg. the shock front.

5. The numerical method should be {ast and efficient.

These requirements are listed in order of decreasing importance. The first three require-
ments must be satisfied by the firite-difference algorithm otherwise the results carnot be
considered to be realistic. As well as these requirements the more dificult problems will
require a finite-difference algorithm that it fairly robust and can cope with a wide range
of boundary conditions and equations cf state. For modelling ~f shock waves in solids,
elastic-plastic terms must also be included and tolerated by the algorithm.

An implici. finite difference scheme has been chosen here to solve the one-dimensional
form of the inviscid gasdynamic equations. Long tomputational times have excinded the
possibility of using an explicit finite difference scheme since the stability bound of an
explicit algonthm forces a time step that can be orders of magnitude smaller ihan that
required for accuracy. There is a limited number of spatial difference approximations
that can be used for the conservative form of the inviscid gasdynamic equations. Only
centered difference operators lead to difference methods that are simultaneously stable for
both positive and negative characteristic speeds (i.e. eigenvalues) that are associated with
spatial flux {erms. Oune-sided (or upwind) schemes can be used when the flux terms are sphit
into compenents corresponding to either their negative or positive characteristic speeds.
One-sided schemes have superior dissipative and dispersive properties compared to those
of centered schemes (Steger and Warming 1981). Therefore & more robust and efficient
algorithm can be obtained by splitting the fux terms and applying one-sided diff=rences.
The implicit factored scheme developed by Beam and Warming 1976 incorporater these
orinciples and is the more commonly used method of this type.

In the second section a brief description of the inplicit factored scheme of Beam and
Warming 1476 is given. The Riemann problem in one dimension is solved numerically with
this method. A discussion of this problem is given in Section 3 and the resuits are prezented
in the Section 4. Section 5 sums up the analysis »nd compares this method witk others
and conclusions are drawn concerning the swilability of the Beam and Warming algorithm
for modelling shock waves in solids.
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2_ANIMPLICIT FACTORED SCHEME

In this s=cticn a brief summary of the one-dimensional form of the method in Beam
and Warming 1976 is given. A full derivation is presented in Appendix A.

2.1 One Dimeusion

In one dimension the Euleran inviscid gasdyramic equations (Appendix A), namely
the continuity equation, conservation of mass and conservation of energy, c. * be writter
in conservation (or vector) form as

du  8F(U)
ot " e 0 (1)
where
P pu
U= | pu F(U)=| pul+p (2)
E (E+phu

p is the density, u the particle velocity, E the total energy per unit volume and the pressure

p=(y- DE- ;puzl, v is the ratio of spacific heats. An ideal gas equation of state is
assumed.

Enquation (1) is the fundumental system to solve. It is a form of the Eule, equation for
nen-viscous fluids. The scheme divised by Beam and Warming 1976 uses a factorisation of
the equation after time differencing. This approach ielies on the explicit form of cquation
(1) including the use of an equation of state that can be cxpressed in the functional form

p=of{e) 13)

where £ is the inteenal energy per unit mass and f is a function. When the equation of
s*ate can be expressed in this functional form then the nonlinear flux vector F(U) is s
homogenesus function of degree one. Using this homogeneity property

F(U) = A(UJU {4)

of the Fuler equations, where A4 is the Jacobian matrix of F, a linear tinie-differenced funn
of equation (1) can Le written (Appendix A) as

r aae 8 n At (8F\" ne .
tl + ihwl:;b;/‘ }AU = —1-:“‘2(;7;/; + —f.'f—CAU Yioie -4 - {).312 + ALJ} (5)

6




B L |

ce e

where I is the identity matrix, AU™ = Ur*! — U®, At the discrete time increment and
U(t) = U(nAt) = U™ The parameters 8 and { define the particular time-difference
approximation that can be used. Examples of some familiar implicit schemes are

f = %, £E=0 trapezoidal formula;
6 =1, £=0 backward Euler;
8=1, £ = :l’ three-point backward.

The Jacobian matrix A has the eigenvalues u and' % + ¢ where ¢ = ("P)) is the lo-
cal speed of sound. One-sided spatial differences have superior properties wﬁcn compared
1o centered rpatial difference, (Section 1). For this reason Beam and Warming 1376 use
one-sided differences in their scheme. To be able to apply these cue-sided spatial liffer-
ences the flux terms must be split according to the sign of their characteristic sneeds (i.e.
cigenvalues). The flux-vector F can be split into two parts, F* and F~, (sce Appendix A)
F* corresponds to the positive eigenva,aes of 4 and F~ to the negative eigenvalues of A.
The partial denvative 58; in equation (5) can be replaced with one-sided spatial difference
appro amations. To maintain the stability of the system a backward difference operator is
used for positive eigenvalues of - and a forward difference operator for negative eigenvalues
of A. By dropping the third order term O(At?), splitting the flux vectors and applring
onc-sided spatial differences to equation {5), a noniterative implicit finite-difference <cheme
for equation (1), that is second order accurate, can be wnitten as,

8AL . At I ¢
USRI « St 4 s\ e et 19 A ‘/:7~1n P el
(L Girg T mas gy WE ) s a0
gAL o n \ .
(1+ SEH#Z}A‘A" Jaur - au; (65)
Ut = U AYp {5e)

where ¢ = jA=, Vi is the ¢! ssical backward difference cperator defined in Appendia A
(equation (A26)) and Ay the lassical forward difference operator defined in Appendix A

{(rquatian (A27}); 8 and & defined 1n Appendix A (aiter equation {A25)) ‘The ow
vector U in equation (1) has brea replaced by U, where the superseript nodenctes the

tima ievel and the subscript j denotes the gnd pant Location, The aoiation 4 1" neans
the value of 4 evalueted at tim=ievel n

Eqnatirns (€} can be fucther awphfi-d to
LICAUS oy A2 M0 8RS 8E ) ayat] ! ()
/4J'i"A[I;' - AU; - n,.A“;‘Hi".’.\U:‘: {(Th)
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Ut = U3 4+ AU} (Te)
where
LI = L+ oo gy (8)
Li|* =I- oy A7 " ®
and
oy = B%‘Téj (1Ca)
= ATD (1
as = Ti—e (i0c)

Equations (7) describe an algorithm that can be used ta solve equation (1). To avoid
large-amplitude oscillations, especially in shock wave solutions, a fourth-order dissipation
term is added to the right hand side of equation (7a). A fourth-order dissipation term has
been chosen so that the formal order of the scheme is not disrupted. The dissipation term
is of the form

~(w/&)AzY (O U/} = (w/B)(UT,, ~ 4US, | + 6U) - 4UT_, + U} ) (11)

The above scheme (equations {7) and (11)) is stable for values of win the range 0 < w < 1
»-zording to a linearised von Neumann stability analysis (Beam and Warmirg 1976). This
implicit factored scheme is easy to implement when compared to an algorithm with centered
spatial differences, which usually involve the inversion of tridiagonal and pentadiagonal
matrices. This brief summary highlights the simplifications that can be rade for nonlinear
~vsterus whoge flux vectors are homogeneous functions (of degree one). The most important
of these siraplifications is the splitting of the Hux vectors into subvectors which correspond
to their characteristic speeds.

2.2 Two Dimensions

Beam and Warming 1976 also applied this implicit factored aciteme to the two-
dimenstional Eulenan invisicid gasdynamic equations The value of this appios-h may
be scen from the large numbers of probleing in the literature to which it hias Lesn applied.
These include transonic aesodynamics, ie. lifting and nonliting of airfoils oscillating in a
free stream (Beam and Warming 1976 and Steger and Warming 1981), Couctte flow, shock
boundary-layer interactions (Beam and Warming 1978) and in one-dimensional shock tube
flow (Steger and Warming 1981), see Section 3.

8
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Beam and Warming 1978 used the Couette flow problem (unsteady flow beiween two
infinite adiabatic parallel walls) as a test prob'sm for their two-dimensional algorithm. The
spatial accuracy and stability of the numerical aigorithm as well as its boundary conditions
were chosen as the initis! iest. The numerical solution when compared to the analytical
solution exhibited a good degree of accuracy. No numerical dissipation was added to the
numerical algorith:1 for this problein. The shock boundary-layer problem was used as a
more severe test for the two-dimensional algorithm. No analytical solution for this problem
was avaiisble for comparison but when compared to the numerical solution obtained by
other methods this method was in good agreement.

Steger and Warming 1981 developed new explicit and imnplicit dissipative finite-
differences for the one-dimensional and two-dimensional forms of the inviscid gasdynamic
equations. These different methods were used to solve the one-dimensional shock tube
problem (see Section 3} and the two-dimensional prollem of trarsonic airfoils. Centered
spatial differences were also used and compared to upwiad differences {used for the split
flux formulation). The implicit upwind scheme (the method used in this report) soived the
one-dimensional shock tube problem better than the other individual methods. Although
the combined algorithm of an explicit upwind scheme and explicit MacCormack scheme
(Steger and Warming 1981) was an improvement on the implicit upwind scheme. For the
two-dimensional problem, the conventionial implicit algorithm using centered differences
was compared to the implicit upwind algorithm. The results obtained for the airfoil prob-
lem using these two different algorithms were in good agreement although there were small
oscillations in the implicit upwind solution. These oscilla ~ns were due to the conserva-
tive flux vectors having disconlinuous derivatives i.e. the cigenvalues changing sign. By
adding blsnding term- o the eigenvalues (Steger and Warming 1981) the oscilletions were
smoothed out. Beam and Warming 1976 used = hybrid scheme with a foutth-order dissi-
pative term (mimilar to (11)) to solve this airfoil problem. This solution agreed with that
of Steg=r and Warming 1981 and had no osallations.

e e—
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3 A SIMPLE ONE-DIMENSIONAL PROBLEM

A stringent test for non-linear systems described by the equations (1) and (2) is the one.
dimensional shock tube or Riemann problem. This is a simple problem where a diaphragm
separates two regions of different pressures and densiiies. The fluid on each side of the
diaphragm 15 an ideal gas which is at rest at time t = 0. The initicd conditions for thig
problem are shown in Fig. 1(a). The diaphragm is placed at z = 0 and py > p;. The
pressures are assumed (o be such that p« > ps.

Equations (1) and (2) can be solved exactly for this problem (‘Tukewaki and Yabe 1987)
enabling & precise zssessment of the numerical method. This solution is presented in detai}
in Appendix B and illustrated in Figure 1(b) for density, J(c) for pressure, 1(d) for total
energy and 1fe) for particle velccity, Because of the step changes in physical propesties,
as shown in Figs 1, the Riemann problem is considered a severe test of the capability of
numerical methods to solve the Euler equations. When the diaphragm is ruptured (¢ - 0,
see Fig. I(b)), 'n expansion propagates into the high-pressure gas and a shock wave
followed by s contact discontinuity, propagates into the low-pressure gas. Region 2 in Fig
1(b) reptesents the arca of adiabatic expansion, region 3 the contact discontinuity and
region 4 the shock wave. A paricular numerical method's accuracy and performance can be
dectermined when the exact solution and the numerical solation are compared, especially
at the contact discontinuity and the shock {ront.

The Beam and Warming metuod was tested against this Riemann problem ising equa-
tions (7) and three-peant backwatd tim--differencing (9 = L and £ = ;). The three exam.
ples of imphicst time-differencing given in Section 2, the trarezoidal forinula, the Lackward
Euler differencing, and the three-point backward differendng, were all used to solve the
Kiemann problern. Taere were no mgmificant differrnces tetween the solutions given by
these dilerens time-differencing schenies, except that the trapezaidal formula was unstable
far ¢ > 0601 Hence only the three point backward timedifferencing was used for thys
s=ction The ache ae s uncarditivnally stable for § = 1 aad ¢ = % {Steger and Warming
1981).

The dissipation term given in equation (11), was added o the right hand side of (qua.
tien (7a), with w = 05, One hundred points were taker endt scde of the diaphragin with
Az = 0025, so that, z was in the rames =25 < z -7 2.5, The mtis of specific heats, v, was
14 and thenitial conditions were py pr = 100, pg = pe= it and uy = ug - O

There vas a fixed boundary vty o <20 wmdat & . 25 1e. Udy = LY, e
et + ar
ULy — U, where norefers to the time step, 0 the tnatial tew step, Y2 the beund
£ =20 aud N1 the boundary -5 )

10



4. DISCUSSION OF RESULTS

Using the implicit factored scheme and tlie parameters given in Section 3, the Riemann
problem was solved for different time increments (At = 0.01, At = 0.005, At = 0.00] ard
At = 0.0001) but for the same tota! time (¢ = 1.0). Each of the sulutions Fig. 2.5 cau
be comnpared to the exact solution shown in Fig. 1(b)-1(e). The parame’crs and solution
values for the exact sclution are given in Table !.

The deusity profile after 100 tinic steps (At = 0.01) is shown in Fig. 2(a). This
profile follows the general form of the exact salutiou (Fig. i(b)) except for a non-physical
oscillation at the shock front t = z4 and the emearing of the contact divcontinuity and the
shock front. Although both the contact surface and the shock front have both Leen smeared,
this numerical scheme has resolved the shock front better ie. there is less dispersion at
z = z4 than at z = z3. By adding more dissipation (i.e. increasing the value of win
equation {11)) the non-physical oscillation or the Gibbs type ertor effect can be reduced.
To reduce the amplitude of the oscillation more dissipation was added in this way, but this
was unsuccessful. The dissipation term is two orders of megnitude smaller than the overall
scueme, hence by increasing w there should be no significant chi nqes in the solution as was
observed. Recail from Section 2, the addition of a dissipation .« m should not effect *he
overall stability of the scheme and therefore hes to be this sinali. H=nce to improve the
overall accuracy of the solution, which vould also ted :# the amplitude of the ascillation,
the time step nceds to be made samaller i.e. increas i.« number of time steps. Before
considering a sinaller time step it is worthwhile to look at this non-physicai oscillation
in the corresponding profiles of pressure, energy and vesocity in Fig. 2(b), Fig 2(c) and
Fig. 2(d}. respectively Note that the oscillations occur at the sharp change in pressure, but
not whern the density changes with constant pressure. The oeciliation is more o nounced
in the pressure and energy profiles and is at its extreme 1n the velocity profile where 1t s
praoducing negative velocities.

The time step has been reduced by a factor of a hall (At = 0.0.95) in Fig. 3. The
amplitude of the oscillation has been significantly reduced with only a small underchoant,
censisting of thiree gnd points, remaining. Also note that the boundaries z = zy and ¢ = z¢
have not suffered any further disnersion. Lizduzing the time step again {4t = 0.99]), see
Fig. 4, reduces the zmplitude of the remaining undershoot at the shock front byt the
solution hins become more diffuse with the contact surface and the shock front further
dispersed. This has caused the solution o Lecome less iccurate when compared to the
exact solution. This situation worsens when the time step is reduced again (At = 0.0001),
see Fig 5, where both the contact surface and the shock front have buen snvere'v dispersed
No ozeillations cccur, bat campared to the exact solution i Fiz. 115 the <olution has
become inaccurate. The brst balance betccen the preblrma of nan-physical rsestlations
and cevere ditfasion appears to be in Fig. J where Af .- 0005 Chsecidy vk diiferent
initial conditions and parameters a time step other than 0.005 v 2 ;rovide the required

balance between diffusion and vsmillations. The best value for At - o ubiective compromise

e
based on diffusion verses osullations and ¢o only be determmne= Ly o ta) and error




The Courant.Fredrichs-Lewy condition (CFL) was used to U + stability of the
scheme. The CFL condition for this particnlar hyperbulic scheme i<

MUNEE <1, keL23 -

where A, ate the cigenvalues of the Jacobian matrix A(U). Lxpressing this condition
geometrically: the numerical domain of dependence of the scheme (7) (with equation (11)
added) must contain the domain of dependence of the differeatial equation {Peyret and
Taylor 1083) The solutions discussed above earily satisfied this condition. This is because
the nummerical scheme is unconditionally .table. The Courant number did become close to
unity at r = 7 (the shock front), however. This was the region where the oscillations
occured, hence verifing that the oscillations were non-physical ic. they were not part of
the salution but an error of the scheme employed.

Meally an infinite shock tube should be used for the une-dimensional shock tube prob.
lem and therefore any end boundaty effects could be chminated. This 18 not possible in
practice since the numencal scheme that has been used here is an aitcrnating direction
(ADD method (ie equation (7a) is evaluated in the positive = ditection and then equation
(78) 1a evaluated in the negative r direction). Therefore the boundanes at z = ~2.5 and
T = 25 are fixed As can be seen {rom the results these boundaries are {ar enough away
from the diaphragm, hence there is no boundary etfect on the solution. With boundaries
closer (o the dinphrapm the stability of the scheme and the pumerical solution may have
been adversely atfected

Tive imphicit factored scheme that has tren employed bhere cranat be used when the flux
vevtor Foas nen-homegenoens. Recall that, if Fosatisties the homoegenzous property (refee
to enuation (1) and 4 has a complete set of hinearly independent enirnvectors then the
flix vector B oean be aplit into two subvectons, ene subnector corresponding to the positive
cicetabues of 4 and the other the negative eigenvalues  These subvectors can then be
Ailetenaced individually with the appropriate one-sided scheme. 1 the fux vector iy non.
heomegenecus then it cannot be sphit into suuvectors and therrfore an alternative algorithm
wang centerod spatial ditferences has Lo be used. Ax noted in Sectica I udgonthire using
upwind :Terepeing iave supenor dissipative and dispersive properiies as well as being
ot gobaet and efficient than algorithms using centered differences. Therefore, to be
able t4 yolve an arbitrsty nonlinear hyperbelic svetem (o conservateondaw form) vith
this ophent factored schrime Uie equation of state, the nonhinear flux vectars mast be

bt sgeneons Cancviens of degree one



Using the one-dimensional shock tube or Riemann problem, the implicit factored
scheme developed by Beam and Warming 1976 has been tested for ite capability to solve
the Euler equations. The Riemana problem proved to be a severe test for this scheme, The
scheme petformed well but it had a couple of drawbacks. Non-physical oscillations (Gibba
error) and dispersion of the contact discontinuity and the shock front adversely affected the
solution. By removing the oscillations the solution became mote dispersed and by minimie.
ing the dispersion the amplitude of the oscillatious increased. Therefore the best solution
for a problem (solved with this methnd) is a subjective compromise based on diffusion
versus oscillations and can only be devcemined by trial and error. Besides these difficulties
this implicit factored scheme was stable and efficient for a wide range of parameters.

The main motivation for this work was to examine a psricular numerical method to
see if it could successfully model shock waves and be adepted for studying shocks in the
solid state. After finding a suitable numerical method, the simple one-dimensional shock
tube (Riemann) problem presented in Section 3 would be extended to model shock waves
in solids, eg. the shock waves generated when a flyer-plate impacte & solid material. This
requires different equations of stale to the ideal gas equation used here. The 1deal gas equa-
tion is a special case of the functional form of the equation of state (given in equation (2}),
which this method is suitable for. If the equations of state {or solids can be constructed in
this functional form oe if this functional form is used over restricted i .nges of piessure and
density then the implicit factored scheme can be used. 1f the equations of state for solids are
not in this form then an alternative numerical schemne must be feund. Elastic.plastic cop.
ditions must Le incorporated into the problem and usually the addition ef suitable source
or sink terms to eguation (1). Extensiuns to two ditnensions and the pussible incorporation
of imitiation and detonation of explosives would {ollow. These problems would obviously
require a fairly robust and versatile numerical scheme. The implicit factored scheme used
here performs well for the sample problem but the restrictions on the boundary conditiong
and the choices of equations of state are Loo restricive for our purposes.

Though not yet examined ir detail by us other methods, such as flux-corrected tranaport
(FCT) (Boris and Book 1973, Bock, Boris and Har 1975 and Boris and Book 1976a) and
Zalesak 1979 wultidimensional FCT appear to provide the accuracy and versatility ne «ded
for these problems. Results published elsewhere (Bons and Book 1973, Book, Baris and
Hain 1975, Boris and Book 19764, 1976b, Zalcsak 1979, 1981 and Sod 1978} suggest that
they are highly accurate and reasonably easy to use. An excellent example of this is in
Zalesak 1981, The one-dimens:onal shock tul-« (Hiemann) pioblem is solvad using 2 } )T
method with sinilar parameters to the probicm solved here. The FCT methad soives the
shock tube problem extremely well The soiution s highly accurate and has supenior results
when compared ta the method vied hete and other methods elsewhere (Sod 1978). Further
investigations are taking place ni ng these fines.
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Exact solution values for the Riemann problem ( see Section 3 ). The shock velocity
U is 1.90, see Appendix B. Note that across the contact discontinuily z = zy, py = p¢ and
¥y = uq. The initial conditions are py = 10.0, ps = 1.0, p1 = 10.0, py = 1.0, while y = 1.4

throughout.
—- - T -
3
Density Pressure Total Particle Boundary
Energy | Veloaty
Region ¢ pi P E; u; z
1
1 10.00 10.00 25.00 0.00 i -1.32
2 - - . - -0.02
3 4.08 2.85 9.05 0.97 -
4 2.04 2.85 8.09 097 ! 1.90
5 1.00 1.00 2.50 000
L | 3
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Figure 1(a) Initial density profile for the Riemann problem. Diaphragm is at 2 = 0
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Figure 1(b) Density vrofile after the diaphragm has bren ruptuzed. Also is the form of
the exact solution, see sppendix B.
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density

Figure 4

Figure 4 Same as Fig. 2(s), except At = 0.001.
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In this »ppendix, the concise form of the implicit factored szheme presented in Se :tion 2
1s expanded.

The one-dimnensional form of Euler's equations, namely, the continuity equation, con-
servation «f mass and conservation of energy are represented in equations (A1), (A2) and
(A3), respectively given by

8 8 _
w tgalew) = (A1)
Ju du 8p
o +450) * 62 =" (42
“r 6( 8
g “a2) 5l =0 (4

where ¢ 15 the taternal cnergy per unit maes, p = (v — 1)g¢ from the ideal gas cquation of
state ana v the ratio of sprcific hests.

These equations can be wnitten in vector form as

o gF(U)
Al St QY 4
ot [°23 (44

whete
P [ pu
U=(/m . FU)=] e +p
E (E + p)u
and £ is the total energy per umt volume and p = (v ~ 1)[E ~ ;puz}

Tie Eotorisn equations of gasdynamice have the property that the nanlinear function
F(UY} is 8 homogenous function of degree one in U, see Beam and Warmng 1176

Thetefore,

F(U) = A(U)U (A5

where

aF
A(U) = b—l-j (£}
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is the Jacobian matrix. Hence equation (A4) can be written as

8U U
T AW =0 (A7)

Ae noted in Section 2 there are numerous examples of implicit time differencing. A
single-step temporal scheme for advancing the solution of equation (A1) (Beam and Warm-
ing 1978) is

. o, BAL[OUN BT AYITIUS
oo G G coebar)

14¢
i-ﬁ-{-(u' SUNH 4 O[E - ) - 0AM + AL (A8)
Here U(t) = U(ndt) = U™ and At is the discrete time increment. 8 and € define the

particular time-difference approximation (see Seccion 2). Substituting equation (A4) into
(A8) gives

At [ OF\" AR, "H} At OF\"
LE2 I . _ - . 5
U U 11{'{(02) * Or) ] )%{((?r)
i-é?(U" UMY 00 - - oA s a0 ()

This equation s nonlinear due to the terny mvolving FY Y - F{UMY) o order to solve
fae U™ in equation (A49) the nonhineanty must be removed. A local Taytor expansiom

about U® gives
fi] O

XS] n EILED] ) ; 1
= F? 4 u - U XAt -
F ((‘)U) { )+ O(ad) (1)
substituting in cquation {A6)
MU B an(unt LUty o) (A1)
Henee,
| AR Ul AR TRV {12

Therrlore, equation £ A9) becomes

A AV Y AT O
Ut e [\ AUy (S arunen| Y.
L &N v iir FEED BRI P
! e T -
lvj»,(U" U one L -0ar A0 an
- ) RS
T A-2

e -



Rearranging equation (A13) gives

0At B ). n_ At BF ¢
[x+ ﬁ-fét-A]AU =-17éa) + 1AV (A4}
where .
AU‘ = Umu - U-. (.415)

This equation is & noniterative, second-order time-accurate solution for equation (A4).

The Jacobian matrix A can be simply calculated to be

0 1 0
.- ?
A= (l,,zs)"l (3 - 7)\4 ¥y-1 {A16)

- -¥E E_Joont

The eigenvalues of A are
X,zu‘ A:=M+C, X;:u—c (AIT)

where ¢ = (7"’)l is the local speed of sound.

Since F is a homogencous function {sce equation (A5) and Steger and Wunning 1981},
F van be sphit into two parts
i F=F'4F (AL18)
where F* corresponds to the pusitive eigenvalues of A and F~ the negative cigenvalucs of
A

Any eigenvalue A; can be expressed as

A=A+ (A1v)

where A u‘ Y ll\l
+ -
A s -‘__2._‘_' Pt il (A20)

soif & 20, then A} 20, Af =0andif A < Vthen A -2 8, 4/ = 0.

For the system described by (A8) to be hyperbolic there must exist a similarity trans.
formation such that

by 0
A \
Q'AQ=A= (A21)

0 Am
A Y

A3 3
3
i |
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where A is a diago-ul matrix and the eigenvalues of A are real,
Hence the disgonal mateix A can be expressed ag

A=At 4+ A" {A22)

where A* and A~ have diagonal elements Afand A7, respectively.

Therefore,
At =QAYQ™Y AT =QAa Q™! {A23)
Ft = AYU F~ =AU (424)
and
A=A A (A25)

if b’; is replaced by the backward difference operator

Ve =V, - U, (A26)

then (A8) is stable if and vnly if the eigenvalues of A are all positive.
Similarly, if 603’ is replared by the forward ditference operator

B = Uy - U, (A7)

then (.18} is stable il and only il the cigenvaiues of A are all negative.

A roniterative implicit finite-ditference s-heme (Beam and Warming 1976), for a one.

h

dimensional system of conservation laws, with the use of split fux vertors (A23) and one
sided spatial difference approximations ts

8AL T AT @At Apd
it - | BTt S Ay®
(“H( Az )(*1‘( Af) Y

A
» -.(2_\:(-1"‘{"5)(6:}1;," + 5“‘;!") ;L AUkt ()

14E
where
aF. 3F, - 4F,_  +F,,
and
'(:'F; ) :!F) R FTRR F)n
By redefining come of these factore, that s,
CAY
a - S
Ar{l +¢§)
. - .
! H
!
A~q




At
T 28z(1 +¢)

a3

and

oy = S
YT r4¢

the scheme (A28) can be implemented as

(1 + a1V, AP AU; = o3 (6,FF [ + 6[F ") + asa U}~
(1+ amA4]")AU} = AU;

PR
;" =Ur+ AUy
Further siniplifing of (A29) gives

LIPAU; = ay A} " AU; ) ~ 03 (6EF] 1" + §[F; ") + ayaU;~!

L PAUT = AU; - a3 4),1"AU},,

] n
UMt =ut+ au;

where

L}

3 =T+ apdi®

3 !

and

L,‘l“ e I he 01.\;1"

{A29a)

(A29b)

{A29¢)

(A430a)

(A3ub)

(130¢)

(A31)

(432)

The scheme described by (A30) - (4432) was used 160 solve the one-dimensional problem

in Sectior 3.
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In this eppendix, the exact solution for the problem described in Section 3, alao known
as the Riemana problem, is derived. The derivation follows that of Tnkewaki and Yabe
1937, except a relation was obtained to find the shock velocity U insead of the Mach
number M. The initial conditions, namely a diaphragm placed at = = 0 (between the
regions 1 and 5), are shown in Fig 1{a). This profile is modified into that in Fig 1(b), when
t> 0.

R TR

The Rankine-Hugoniot conditions (Hayes 1973) across the shock front £ = r( are

C Py _ U
{ : 2o1-3 (51)
po—ps = psUuq (82)
and \
E¢-FEs= i(Ps + pe)(vs - vy) (B3)
where .
v= -,
P
For a perfect gas
. Py
=1
7-1

therefore equation (BJ) becomes

Pave = psts = 7"2 (Ps + po)(vs — vy). (14)

From equation (B1),

i we = UL = :::). (15)

Subatituting equation {55) into ([12) gives

! poo- s = U pa - ps)". (#16)
; ]
¢ From equation (B4},
‘: P (24 Dpa = (v~ 1)pe (97)
T - i

: ps (74 Dps = (7~ 1)pd Lo i

u‘;

i

B-1 g{
. B} %
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By substituting this equation into (86), an expression for py in terms of the known quan-
tities in tegion § is obtained,

UMCER))

=2 —— —, 18
PZ Ipy + Uiy ) ws)

Substituting equation (B8) into (B?) gives,

U =~ (v~ ;s

G+0 ()

Pe=

and substituling equation (R8) into (B5) gives,

A l? - 1py)

aliv+1) (110)

Uy =

The pressure and the velocity should be continu as at the contact surlace £ = zy,
Hence,
uy = uy (B11)

and
Py = pe (112)

The particle velocity u is arsumed to be a single.valued function of the denmity pin the
adiabatic expansion cegion (region 2) Therefore equations (1) and () teduce to

dp RN IRZ
o [.,_(P) 0 (1113)
if the function u(p) satisfies a relation
du L/ }
e ~p( ,,) ‘ (114)

From equation (H13), the velocities of the rarefaction fromt £ = - 2y ) and the boandary

at r = z3 are —~(7p1/p,)! and uy ~ (7])3,’,)3)4, teapectively. Integrating the Inst cquation

gives
iyt o2 [ ) (’:'i}
wy e (IPU) (22 . s
} (m)7~1 (PI) (13)
Since the ndinb.atic resation Ps Py
= s [of 016
Py (I’I) ( )
-2




¢ mereme = —-

hoide, ug is related to p3 s

m)' 2 [ p ’ﬁJ]
w= (Y 2 - (B ¥
' (m (-1 (m) (B11)

Finally by substitating equations (#19}), (810), (B11) and (B12) inte (B17), gives the
telation which determines the shock velocity

(=Dl - ap) o)y (200l Doy

al(r+1) P {1+ Up (018)

Whena equation (B18) was solved using the same parsmeters in Fig § (Table 1) of
Takewak{ and Yabe 1887, the shock veiocittes agreed. The sumerical values of the exaczt
wolution for the problem in Section 3 are given in Teble 1.
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