-------

A
g Y

Technical Report 1231
July 1988

AD-A192 973

Smoothed Regression
Estimates with
Pearson Noise

Roger W. Johnson

_DpTiC

-CTE
. SEP 011388

;_-;’ =%
=

'k

Approved for public reiease; distribution Is unlimited.

88 9 1 013

. P e B IR e e RN T I AN I T T S S JPe iyl Y 4 RIS T I I AT LT ALK
N N PN RN LI .r\r\ .& " \.r g -f._d\l‘ - oy AR

Ladaladillied Salelallial B al) AN Y.V, X A Al ufMe N KgXulal el

L Tor T 2 St R T e g o g ol

Aot WS

N N

2EEF>LL

X
’
“
?
¥
T
l
?
25
",
b2 .
n’



TWY CuBat @At aat gaw $aU Pl (.8 a.e

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN R. M. HILLYER
Commander Technlcal Director

ADMINISTRATIVE INFORMATION

This report summarizes work performed during fiscal year 1988 in the Architecture
and Applied Research Branch, Naval Ocean Systems Center (INOSC), Code 421.

a

o Released by Under authority of
ND M. C. Mudurian, Acting Head J. A. Salzmann, Head
- Architecture and Applied Information Systems
-';" Research Branch : Division

NS
LA AL

[

The author a
NOSC independent
The IR program is fu
Monteleon and John

¥don, who directed the
leading to this report.
or also thanks Vic

% of this work.

L@
I. "L

s

4

5

<

L'"'
aFaNSy

Wt AT N TN T T e -.--~..----- SN CH - A m
,,«,._-_-kx. - . o

.- --.~|
-
'-.nx.\-

N . ~ \
- >
A _- N .

e o Y e e o V‘- AN )L'f = Y




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ta REPOR]T SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a SEZURITY CLASSIFICATION AUTHORITY

2o DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTIONAVAILABILITY OF REPORT

Approved for public release, distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NOSC TR 1231

5. MONITORING ORGANIZATION REPORT NUMBER(S)

* 6a MAME CF PERFORMING ORGANIZATION

Naval Ocean Systems Center

6b. OFFICE SYMBOY
(f applcadle)

7a NAME OF MONITORING ORGANIZATION

6c. ADDRESS (Ciy. State and ZIP Code)

San Diego, CA 92152-5000

7b. ADDRESS (Cay. State and P Code)

8a NAME OF FUNDING /'SPONSORING CRGANIZATION
Office of Chief of Naval Research
Independent Research Program

(f appixcabie)

OCNR-10P

8b. OFFICE SYMBOY 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

3c. ACDORESS (Cay. State arg 2IP Code) 10. SQURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO .| PROJECT NO TASK NO AGLNCY
ACCESSICN 1O
Arlington, VA 22217-3000 61152N RROONOO NN308 052

TITLE {inciude Securty Classiicaton)

SMOOTHED REGRESSION ESTIMATES WITH PEARSON NOISE
2 PERSONAL AUTHOR(S)

R. W. Johnson
13a. TYPE OF REPORT

13b, TIME COVERED 14. DATE OF REPORT (Year. Month. Day) 15. PAGE CCUNT

Final FROM 1987 TO 1988 July 1988 55
16. SUPPLEMENTARY NOTATION
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and xdenty by block number)
FELD GROUP

SuB-GROULP .Bayes estimate

Dominant estimate
Pearson variate

Regression
Simultancous estimation
Squared crror loss

-

|

13 ABSTRACT (Continue on reverse ff necessary and sentrfy by block number)

[.i and Hwang (1984) examined estimates for a regression problem which are a compromise between the naive, raw
da‘a estimate and a nonparametric estimate. They developed such compromise, or *smoothed, ™ estimates assuming Gaussian
noise. It this report, wé develop'smoothed regression estimates in the more gencral casc in which Dcarson noise is present.
Estimates are established having good Bavyes risk and ordinary risk. ’

2

A
. ll.

. ')
N
(3 )
a

K
.
e

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b. TELEPHONE (mclude Arsa Code)

(619) 553-4005

20 DISTRBUTION/AVAILABILITY OF ABSTRACT
[(J MCLASSIFIED/UNLIMITED SAME AS RPT

NAME OF RESPONSIBLE PERSON

[J ovic usens

22a 22c. OFFICE SYMBOL

Code 421

R. W. Johnson

DD FORM 1473, 84 JAN

83 APR EDITION MAY BE USED UNTIL EXHALISTFD
2ot 0 ER BEDHTIIONS ARE OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

AN T
3

AN I NN -".-'.‘,\-.

:}f:ﬁb{..:f WMA;&M A




UNCLASSIFIED

L
po @ A

(When Data Enforad)

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

DD FORM 1473, 84 JAN

5oy S S RN~ -:J..-n-r.

BTN

S M Rl S A
NN
R I AP

SECURITY CLASSIFICATION OF THIS PAGE (When Dala Entered)

@ e

.’-‘

PO

o

SN AN A 2
- :_‘_ ._,,:-'_\J, -'_‘-P"."'

-
-
-
./

v



* :,vl'ivl
NIAARAFS

Ty

[ o N s
i

S @ et et
AN B Tl e S

SR B A
s .
/ Y

« v . [y =y 8 4

'.-'l/ "

14

[}
.

ui)
»
M
R

Y

" l'. l...ll'.l‘. l.')s

1] 1 *‘l .
CRASANLG

3
[

('a.

i)
PR “
LI . \ -

Pl

P A
;':-‘t.ﬁ - L

CONTENTS

1. Introduction . . . 1
2. Pearson Random Variables . . . 5

3. Bayes Estimates . . . 13

4. Dominant Estimates . . . 27

5. Summary and Conclusions . . . 39
Biblioqgraphy . . . 41
Appendixes:
A. Errata for Li and Hwang (1984) . . . aA-1
B. Decislion Theory Termlinology . . . B-1

C. A One-S5ided Chebyshev Inequality
when the Flrst Four Moments are Known . . . C-1

D. Bounds for the varlance of a
Function of a Pearson Random Variable . . . D-1

Aqggsaion For
NIIS GRA%I
DTIC TAB

Unanncuncaeq
Justificaty

O

By
Distribution/

M‘—ﬁ
AYE}}ability Codes
Avall and/op
Dist Special

-/

111

Py » e
- \ - .S o S
L VRV QUF SR O PP Sav N Jx.n‘_.l‘iEI;(_Ldﬁl.KL. <‘1¢‘5‘J(.‘c“{_Jt“.tnIndl, - Jllnu A _HZAJZA; -' " RO O N ‘i\:nﬂinﬁsﬁ .nf\;. ]

il ot 2

I N T I I I T . [N o .
e S O R O e T N R VR P S LR LN “.-"”-.'-'x‘-_‘v-' TN T AT T T T ‘-”-'-'i
‘.‘ .4.- - 3 - T -._ ,\ n‘ 4~ ¢ 'r- - -f\.“ J- - '- ‘- .- w ..} -. hd ‘ ‘ A '- ‘h\ -\ 'v - - hd .- ‘ " \ r - J\ T -\' PEATILARY '.- . .:' I.\ n twm "'--‘)




ok
LAY

%
Dl

vy,
» » B

MSTRLAN

l' .
v -“ l" l‘.

a
~% x
v or -

NSAARN
Ratd

{'A . .."'-" .l' P ) “

Py
2 X r

-

N
\‘-'l".“

.............

1. INTRODUCTION

In this report, we examine the 1regression problem
considered by Li and Hwang {(1984). A number of important
Navy problems may be cast in the form of regression
problems. Villalobos and Wahba (1987), for 1instance, note
that this 1s the case with the task of estimating posterior
probablilitles in classification problems. Whereas Li and
Hwang (1984) consider the errors iIn thelr regression problem
to be normally distributed, however, we will allow for a
more general class of error distributions to accommodate

problems 1in which this normality assumption is not

satisfied.
Suppose that observations Yo Yo « + 4 Y are made at
levels X0 X0 o o oy X with

yj = s(xj) T ej (1.1)

wvhere the function s is unknown and the £, are independent
random errors having mean zero. Using vector notation, we

may write (1.1) as

Yy = u + € (1.1'""
t
where y = (yi,. . .,yn) s M = (u‘,. . .,un)t=(s(x‘),. . .
s(xn))t, and 5:(51,. . .,en)t. Note that the observed

vector y 1s a simple estimate of the unknown vector u.

.z‘.z:a\_.':,f.r.f\'w.r.r
~p
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L1 and Hwang (1984) conslider estimates wu of u of the

>

(1-c)y + cM y (1.2)

r
1]

Yy - c(I—Mn)y

wvhere c=c(y) ls a real-valued function of vy, Mn is a
specified nxn matrix, and I is the nxn identity matrix.
Such an estimate may be viewed as a compromise between the
estimate y of 4 and the estimate My of wn. 1f c=0, then
;=y. 1f c-1, then ;thy. For each value of c¢ the estimate
; lies upon the 1line passing through the points y and Mny
(see Fig. 1.1). 1If O < c =<1, then ; lies on the 1line
segment between y and M Y. The matrix M in the estimate
My will usually result as a consequence of adopting some
nonparametric .proach to the estimation of u. See section

3 of L1 and Hwang (1984) for examples of the choice of M.

(Errata for L1 and Hwang (1984) are glven in Appendix a.)

M= (l-cly + cMy < ¢

Fiqure 1.1. Geometry of the L1 and Hwang (1984) estimate.
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Relying on a result of sStein (1981), L1 and Hwang

(1984) exhibited good cholices of c when the -errors have
identical normal distributions. Specifically, choices of ¢
are given so that the estimate L dominates y as an estimate
of 4 with respect to squared error 1loss. (See Appendix B
for a short review of standard declision theory terms.)

The main purpose of this document is to present good
estimates of the form given in (1.2) which allow the errors

to have distributions which are not necessarily normal.
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2. PEARSON RANDOM VARIABLES

A2 mentioned in the |introductlion, LI and Hwvang
(1984) relied on a result of Stein (1981) to establish
cholces of ¢ in (1.2) so that ; dominates y as an estimator
of t when the errors are independent, identically
distributed normals. Steln (1981) established his result
with the ald of an identity which is satisfied for normal
random variables. Specifically, 1f X 1s a normal random
variable with mean & and varliance oz, then for any sultable

function h

E (X-8)h(X) = o> E h'(X) (2.1)

where E denotes the expectatlon operator. Since an identity
of this sort holds for random variables having distributions
in the Pearson (1895) class (see Hudson (1978), Johnson
(1984), or Haff and Johnson (1986a)), which 1includes the
normal, we suppose that the errors iIn our regression problem
have Pearson distributions.

Specifically, ve assume that the errors are
independent, with £, having probability density function

f (w), where

fj(w) = > f)(v).

We say that ejhas a Pearson density with parameters 6,
J

[%o, B”, ﬁn’ respectively. For future reterence, let
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Bjo + BJ‘w + szw
aj(w) = (2.2)
1l - 23,2
and v )
b (w) = j — dt. (2.3)
1 aj(t)

Note that the bjare only specified to within some arbitrary
constant of integration. Estimates of u, yet ¢to Dbe
presented, will involve the functions aJ and by

Examples of random variables having Pearson densitles
are listed in Table 2.1. For these densities, the Pearson
parameterization and the functions a(-) and b(:') are listed
in Table 2.2.

We now state an extension of (2.1) to the Pearson

family.

Theorem 2.1: Let X be a Pearson random varlable with
density £ on the interval (r,s) and af(-) defined by (2.2).

If h(') is a differentiable function such that
lim a(x)h(x)f(x) = 1lim a(x)h(x)f(x) = 0, (2.4)
X - r X + s
then
E (X-v;n(X) = E a(X)h'(X) (2.5)

where v=(9+ﬂi)/(l-282) provided these expectations exist.

Proof: See Hudson (1978), Johnson (1984), or Haff and

Johnson (1986a) for a proof using integration b, parts. =




\,‘1‘.’1 *

X )

ESHNSY

Table 2.1. Examples of Pearson densities.
Name Density
Notation Mean varlance
N 1 1 2 2
ormaz > o2 ©Xp (-(x-8)" /2071, -0 < X <
N(8,0) (2r0™)
E XY =¢8 var X = o°
C{a+3) _ B
Beta T <& 1 (1_x)ﬁ 1, 0 ¢x <1l (a,8>0)
B(a,3)
a af3
E X = var X = >
(a+/3) (a+3) " (a+3+1)
A* x*1 exp(-px)
Gamma Xp , X >0 (a,3 > 0)
r(a,3) (o)
E X = o/ var X = o/f3°
(s}
Reciprocal 3 exp(-f3/x) X > 0 (a,3 > 0)
IM (o, 3) TSR /
2
E X = r ;. o 1 Var X = r ’ a > 2
(a-1) (a-1)%(a-2)
2 -(a+l)/2
T MrN(a+l)/2) (x-8)
2 2. 12 1+ 2 ’ X <@
t(a,8,0) (arno ) MNa/2) ao (o > 0)
2
(o (04
EX =868, a>1l var X = ’ a > 2
(x-2)
(contd)




4N %
P I

u g
® )“r ‘o",{ I«’

Table 2.1. Continued.

Name Density
Notation Mean Variance
/2 /2
F F((etp)/2) o2 _ _
e (o) x01/2 1 (B+ax) (a+f?)/2’ x> 0
F(a/2) TH(R/2) {(a,3 > 0)
1 268° (a+(3-2)
E X = ;s 3> 2 Var X = - , 3> 4
(r-2) a(3-2)7(r3-4)
Power 8 k_8 xe_l, 0 « x < k (& » 0)
ke k’e
E X = var X = >
(6+1) (6+2)(6+1)
Pareto e ke x—(9+1), Xx >k >0 (e > 0)
ke kfe
E X = r 8> 1 Var X = > ;s 6 > 2
(6-1) (6-1)"(6-2)
Pearson Q'(8) Q'(x) _
Type o exp arctan [ - ] Q(x) (1/2ﬁ}) ’
1V 7 k k
2
-0 < X < 00
2
wvhere Q(x)-ﬁodax+ﬁzx

r4 2
and k =4ﬁoﬁz—ﬁ’ > 0
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:j Table 2.2. Some Pearson parameterizations.

A

E; Density (e'ﬁo’ﬁg’ﬁz) a(w) b(w)

- N(8,0%) (6,0°,0,0) o v/t
.r’-

o (a-1) o 1 -1

D B(a,3) (— 7/ ! )

N (a+3-2) (a+f3-2) (a+3-2)

(s w(l-w) v
i —_— (atp) 1n | ———
AN (a+3) (1-w)
%

-

e Mo, R) ((a-1)/£,0,1/13,0) v/B R ln v
T

SN

Nl

:& IM(a,B) (3/(a+1),0,0,1/(at+l)) w2/ (a-1) -(a-1) /v
3 ] wo?+6% 26 1

:: t(a,86,0) (e, ’ ’ )

,-“_:- (a+l) (ax+l) (o+l)

-.',. ao” + (w-8) (a-1) arctan (w-6)

: . (a—l) (aaz)x/z (aaz)x/z
S Bla-2) 203 2

~: F(a,3) ( rol ’ )

e a(f3+2) a(f3+2) (3+2)

o (w+3/ ) - ——— 1n (1+2/(aw))
(n-2) 4

-1 -v?

Power (0,0,0, ) not useful
o (6-1) (6+1)

(contd)




Table 2.2. Continued.

Density (9,60,31,82) a(w) b(w)

1l W
Pareto (0,0,0,—/m)

not useful

(€+1) (6-1)
% Pearscn z_ P
= Type (8,8,.,8,,8,) with k*=43_p_ -0 > 0
4 £
~, 2
7 B +3 w3 W 2(1-2p3.) Q' (w)
[ o+ 2 2 arctan
:; (1—2ﬁ2) k k
N
g

Note that Theorem 2.1 reduces correctly in the event X
is a normal random variable. For, from Table 2.2, wvu=
(9+B1)/(1—Zﬁz)=9 and a(x)=x. Substituting into (2.5) we
obtaln (2.1) provided h satisfles the conditions of Theoren
2.1.

An understanding of v and a(*) in Theorem 2.1 1s given

by the following result:

Corollary 2.1: 1f Theorem 2.1 is satisfied with h(x)=1 and
O h(x)=x, then
e EX = v = (6+3)/(1-23,) and

var X = E a(X) = (ﬁ°+ﬁiv+ﬁzuz)/(1-3ﬁz).

- Hence, in this case, v is the mean of X and a(X) 1is an

unblased estimate of the varlance of X.
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Proof: Set h(X)zl1 and (X-v), respectively. =

»

s

¥

r.
.
L)

- Higher order moments of Pearson varlables may be found with

L,
'I e
AR A
L

the aid of a recurrence formula derived from (2.5) by

<
3
’
.

Fﬂ setting h(x)=(x-v)". The first four moments, for example,
.:_\
‘}} may be used to determine bounds on tall probabilities. See
Bt
&}: Appendix C for details.

l-

-
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Throughout this report, we use the fact that if sjis a

ﬁ; Pearson random variable having mean zero, then Yf“fej
\ _-I“l

'ﬁ& is a Pearson random variable having mean “f This 1is a

.’

R

® consequence of the following result:

{ :.-:;:

.}i

:i- Theorem 2.2: If U 1is a Pearson random variable with
‘. parameters m,r,s,t, then V=eU+f 1is a Pearson random
.ﬁi variable with parameters em+f, ezr—efs+fzt, es-2ft, ¢t.
>,

oy Furthermore

9 .

) z

:ﬁ: av(v) = e aU(u) and

= by(v) = by(u)/e.

o

s Proof: See Kaskey, Krishnaiah, Kolman, and Stelnberg (1980)
?35 tor the proof that vV is a Pearson random variable with the
r?: glven parameters. The expressions for av(v) and bv(v)
o

‘ﬁ{ follow by direct calculation from (2.2) and (2.3). =

Wy
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3. Bayes Estimates

Our problem is to choose c so that ;=y—c(I—Mn)y (recall
(1.2)) is a good estimate of u when y 1is a vector of
independent Pearson random variables having mean x. In this
sect’ 'n we approach this problem from a Bayesian
perspective. In particular, we suppose that w has a prior
distribution n(u). As the optimal ¢ is best understood in
terms of the Bayes estimate, call it éB, of u, we begin by

stating &°.

Theorem 3.1: Suppose that Y 1s a nxl vector of 1independent
Pearson random variables for whlich al(yi),. . .,an(yn),
given by (2.2), are completely specifled. Then the Bayes
estimate of u with respect to squared exrror 1loss, provided

it exists, is glven componentwise by

B d 1n £(y)
Sy = y +ally) +aly) — (3.1)
dyL
wvhere
f(y) = J n £ (y |u) dn(u) (3.2)
v=4

is the marginal density of y.

Proof: See Johnson (1984), p. 31, or Haff and Johnson

(1986a), p. 46. =

............
...................
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Example 3.1: Suppose that Y, 1=1,. . .,n, are 1ndependent
N(ui,oz) random variables with o° known. Then, from Table
2.2, aL(yJ=az. Assume that uoy 1=1,. . .,n, are 1independent
N(yL,Tz) random variables with the Y, and 7> known. A stan-
dard calculation (see, for example, Berger (1985), pp.
127-128) shows that f(y), the marginal distribution of y, is
the multivariate normal density with mean p = (r.,. - .,yn)t
and covariance matrix (o“+t’)I. Substituting aL(yt) and f(y)
into (3.1) we obtain

(YL‘YL)

ST (y) =y + 0 - 02

(02+T2)

(l—r)yL + rry,

vhere r=o°/(o°+1%). Note that 0 < r < 1, so that the Bayes
estimate of # lles between v and Y Also note 1n this
example that 6? depends on y only through y. In general,

6? may depend upon all of the components of y.

Example 3.2: Suppose that Y»’ i=1,. . .,n, are 1ndependent
Ir(adfa) random variables with the a known. So, from

Table 2.2, at(yﬁzyf/(a;dj. Also assume the improper prior

r

n(3) () t

i
Il: >

for 3. Some calculatlion (c.f. Example 3.4 of Haff and

Johnson (1986a)) reveals

14




so that the formal Bayes estimate is

(at+ri+1)

(ai-l)

. , L LY,
A
.“ ! *
. PR

)
P4

& 4
e

In Theorem 3.2, which follows, we present the Bayes

gyt

estimate of u among the class of estimates u:y—c(I-Mn)y

5
YL

wvith respect to squared error loss. Such a Bayes estimate

may be referred to as a "restricted Bayes" estimate for we

")";'.?1‘{

restrict ourselves to looking at estimates of a given form.

»

In contrast, &° given by (3.1), may be thought of as the

A

"unrestricted Bayes" estimate of u.

td 4“'}5!\;' &L

Yy Ay

Before stating Theorem 3.2, we provide a heuristic
derivation of the restricted Bayes estimate of the form
(1.2). Consider Figure 3.1. Plctured are the estimates vy,
Mny, and 6B (given by (3.1)) of u. If we are going ¢to
restrict our attention to those estimates of u which 1lie
along the line ¢ through y and MY, then our Bayesian
perspective leads us to say the best estimate of u will be
that point on ¢ nearest 6B. So we desire 68-; to Dbe

orthogonal to ¢ This orthogonality implies

(68 - 'y - My) =0

15
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Figure 3.1. Geometry of the restricted Bayes estimate.

which, writing out u and simplifying, gives

(y—éB)t(I—Hn)Y
c = C = z (3-3)
n(I-M_)y!

L
where I-1% denotes the Euclidean norm, i = w'w.

To summarize, the cholice c = c‘ ylelds an estimate ; of
(4 along the line connecting y and MYy, which minimizes the
Euclidean distance of ; from the Bayes estimate 6B.
Sufficlent conditions under which ; with c = c' i1s the Bayes

estimator with respect to the class of estimators u are now

given In Theorem 3.2:

16
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Theorem 3.2: Suppose Y is an nxl vector of 1independent
Pearson random variables having finite second moments. Let
Ay) = (A (¥),. « A (y))' =c"(I-M )y, where " 1s gliven
by (3.3). If (2.4) holds componentwlise for h(y):ki(y), and

(3.4) holds, then the Bayes estimator of the form
o=y - c(I—Mh)y
is given with c=c" in (3.3).

Proof: As the conditions of Theorem 2.5 of Haff and Johnson
(1986a) are satisfied, ve may apply this result to obtain

R(;,u) = R(Y,u) + E (-2a'"x + a'x )

where a = an(y) = (ai(y‘),. . .,ah(yn))t and I =

(axi/ay1,. . .,axp/ayp). Therefore

r(pu) = r(y) + J [ I (-2a'wx + AN f(y|u) dy | dn(p),
M Y
vhere f(y]|u) denotes the 1integrand 1in (3.2). Now,
supposing
I (|2a‘vx| + A f(y|#) dy < o (3.4)
Y

ve may apply Fubini's Theorem (see, for example, Rudin
(1974), p. 150) to obtain
17
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r(;) = r(Yy) + I (-2a'vn + A f(y) dy
Y

vhere f(y) is given by (3.2). Integrating by parts, we find

J a'vma f(y) dy = J (y—éBf?x f(y) dy , (3.5)
Y )4

the boundary terms vanishing as a consequence of the

assumption that (2.4) holds for each ki. There:ore

r(;) = r(Y) + J [-2(y—6B)tx + A}K] f(y) dy.
b4

Up until now the computations have been performed for
any A wvhich satisfies the necessary assumptions. Taking A=

cDy where D = (I-M ), we find

r(p) = r(Y) + I [-2c(y-8B)'Dy + c®ipyn?]l £(y) dy. (3.6)
'

Denoting the dependence of ; on ¢ by writing r(p)=r(;(c)),

wve find

r(p(c+y)) - r(u(c)) = J w [2(c-c')+w] llDy!lz f(y) ady
Y

for w=w(y). Consequently
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r(a(c+¥)) r(u(c®)) + J ¥® IDyd? £(y) d(y) (3.7)
Y

v

~ »*
r(:s:(c ))

so that c=c* is the choice of c minimizing the Bayes risk.
In order for c=c* to be the unique choice of ¢ (up to an
egquivalence class of functions wvhose members are equal
a.e.), ve implicitly assume that ﬂDynzf(y) > 0 a.e. with
respect to Lebesque measure over the region of integration.

Theorem 2.5 of Haff and Johnson (1986a), wused 1in the

proof of Theorem 3.2, is an easy extension of Theorem 2.1.

~

In the sequel, we will let u‘ denote the estimate u

B

with c=c”. Substitution of & into u‘ in the previous

Examples 3.1 and 3.2 is easily accomplished.

Example 3.1 (continued): 1In this case, we have

2 (y-r) ' (1-M )y

M = y - (I"M )Y
(o +7?) N(I-M_)yn* "

Example 3.2 (continued): Here

t
Yy Q(I-Mn)y

M4 o=y + 2 (I-M )y
W(I-M )yl

19
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where Q is the diagonal matrix, Q=diag((rt+2)/(a1—1),. . ey

(rn+2)/(an~l)).

Note that 1€ 65= y - g(y)(I-M )y, then u"=6°. In other
words, iIf the Bayes estimate llies on the 1line ¢ (recall
Figure 3.1), then the restricted Bayes estimate is equal to
the Bayes estimate.

Using (3.7) of Theorem 3.2, we may state the amount of
improvement in Bayes risk of the estimate u‘ over any other
estimate on ¢{. As an example, we state the improvement over

the estimate y of u in the following corollary:

Corollary 3.1: The improvement 1in Bayes 1risk of the

estimate u' over the estimate y of u is
J [c™1* w(r-M )y* £(y) ay.
Y

Proof: VLet y = -c‘ in (3.7) so that the left-hand slide of

this equation is the Bayes risk of y. =

In Theorem 3.2, wve presented the optimal Bayes estimate
of the form u:y-c(I—Mn)y vhere c is a function, c=c(y):
R"+R'. In Theorem 3.3, ve present the optimal Bayes

estimate in the event that we restrict ¢ to being a

constant.
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Theorem 3.3: Given the setting and assumptions of Theorenm

3.2, the Bayes estimate of the form
Moo= Y - C(I"Hn)y’

wvhere ¢ is a constant, is given with

B,.t
_ EY(Y—éa)‘(I-nn)y I (y-67) (I-M )y £(y) dy
c=¢c= = Y (3.8)
Y 2
E N(I-M )Y I “(I_Mn)y"z £(y) dy
y
EY trlA(I-M_ )] | tria-M £ly) dy
N = Y ,  (3.9)
EXn(I-M )Yn? i 2
n J N(I-M_)yt* f£(y) dy
Y

where A:dlag(a‘(Y‘),. . .,an(Yn)) is a diagonal matrix and

tr denotes the trace operator.
Proof: Differentiating (3.6) with respect to ¢, we obtain

dz(;(c)) B.t 2
—_— = =2 J (y-6") by f(y)dy + 2c J IDyk” f(y)dy
dc Y Y

wvhere D=(I—Hn). Noting that this derivative is zero for c=c

as given in the integral expression of (3.8), and

a%r (u(c)) ,
— 2 I tDy!” f(y)dy > O,
Y

dc

21
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wve see that (3.8) holds. That (3.9) holds is a consequence
of rewriting the numerator integral of (3.8) by using (3.5)
with A=(I-M Jy. =

Comparing (3.3) with the flrst expression for c in
(3.8) we see that c may be viewed as an approximation to c*
In particular, taking the expected value of the numerator of \
(3.3) and dividing by the expected value of the denominator
of (3.3) we obtain c. The expectations here are with
respect to the marginal density of Y as glven in (3.2).

In the sequel, we will let u denote the estimate ; vith

c=c. Note from (3.8) that L=6B when 5B=Y—C(I-Mn)Y for some

constant c.

Example 3.1 (continued): Using (3.9) we find c= EY tr(aDl/

EY HDyHZ, vhere D=(I-M_) and A=diag(a‘(Y1),. . .,ah(Yh))=azI.
It follows that

o tr D

(o®+7%) tr D'D + WDpI?

the denominator expectation evaluated by using Theorem 4.6.1

on p. 139 of Graybill (1976). Finally

o° tr D

(o°+7%) tr D'D + IDp0?
where D:(I—Mn).

22
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restrictions. The estimate u‘ resulted in having placed

Exaaple 3.2 (continued): In this example c is undefined as
the expectations involved do not e-lst. This is a result of

having placed an improper prior on f3.

As done in Corollary 3.1 for u., wve may compute the

improvement in Bayes risk with p.

Corollary 3.2: The Iimprovement 1in Bayes risk of the

estimate L over the estimate y of u is

(c1? J H(I-M 3y1® £(y) dy.
Y
Proof: Substitute c for c in (3.6). =

Because the class of estimates ;=y—c(I—Mn)Y, where c=
c(y) 1s a function of y contains that 1in which ¢ s a
constant, u. will outperform u 1in terms of Bayes risk.
Also, by design, both u‘ and u outperform “he estimates Y
and MY in terms of Bayes risk. To summarize:

r(u') < r(a) £ wmin {r(Y), r(M Y) } )

We can, of course, look at estimates of the form (1.2)
for restrictions on c=c(y) other than those already chosen.

So far we have taken a look at ¢the twvo extremes of such

23
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f.ﬁ no restrictions on ¢, and the estimate u resulted in having
@ restricted ¢ to being a constant. In the theorem which
\_,.:
|:: follows, we look at estimates of the form (1.2) with c(y)=
N
e
S. d/u(I—M“)yﬂz, wvhere 4@ is a constant. The resulting Bayes
?: estimate restricted to this class of choices of (1.2) will
-:\
f?j be useful later in understanding estimates which have good
7 (ordinary) risk.
ﬁ; Theorem 3.4: Given the setting and assumptions of Theorem
..-_:. _
= 3.2 with X = I(I-M )yl “(I-M )y, the Bayes estimate of the
:: form
o
- - d
e - D
NN M o=y - (I-M )y
W N(I-M )yh> n
N
o
f:. wvhere d is a constant, ls given with
~ Y ( tr AD 2Y' D' DADY
-3 E - —_—
o . Ipy? WDy
AN da = 4d = (3.10)
oo Y upyn 2
.
- Y [ (Y-6°)'DY
: :. E —_————
Ay Ipyn?
. = (3.11)
o5 Y npyn 2
o
e vhere A=diag(a (Y ),. . .,a (Y )) is a dlagonal matrix, D=
° 1 1 n n

{: (I—Mn), and tr denotes the trace operator.
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Proof: Similiar to the proofs of Theorems 3.2 and 3.3,

and thus is omitted. =
Comment: Note that if we remove the expectations in (3.11)

the estimate « becomes that of Theorem 3.2.

In the speclal case that Y is a vector of Independent
N(pa,oz) random variables, we have A=o°I and (3.10) becomes
Y v'p'ppY
E <
DYl
d = tr D - 2 . (3.12)

Y upyn?

Since

~

A (D) < (DY)'D(DY)/IDYI? < xmax(B),

myn
wvhere D=(D+Dt)/2, we may write upper and 1lower bounds for

(3.12). Namely,

Fler b - 2x (D)) = a” < ofltr D - 22 (D)1, (3.13)

By Theorem 4.2 of the next section pu dominates Y with a*

equal to the lower bound of (3.13).

Note that i1f D is an idempotent matrix (i.e., Dz=D),

then (3.12) becomes
» 2
d =o'ltr D - 2] (3.14)
wvhich, by Theorem 9.1.5 of Graybill (1983), p. 300, is also

- o°lrank D - 2]. (3.14")
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4. DOMINANT ESTIMATES

In this section, we digress from our main discussion
reqgarding estimates of the form of (1.2) to present two
dominance results. Both of these dominance results
generalize work done by Stein (1973, 1981) wunder the
assumption of normality. The first domlnance result states
sufficlent conditions on the marginal density (3.2) under
vhich the Bayes estimate, 68, dominates the estimate Y of u.
This result was proved 1In Haff and Johnson (1986a). The
second dominance result also 1looks at estimates which
improve upon the estimate Y of u. It was derived
independently by Johnson (in an unpublished work), and Chou
(1988). Actually, the result of Johnson 1is somewhat more
general; compare Theorem 3.1 of Chou (1988) with Theorem 4.2
below.

Before stating the first dominance result, we present
some notation to be used throughout this sectlion. For a

vector Y=(Y1,. I § )t of independent Pearson random

n

variables, let
n

£(x) [ oaly) (4.1)

L=1

gly)

wvhere £(Y) is given by (3.2) and the a‘(yt) are glven by
(2.2). Also let

Va

( a/8b, a/0b, . . ., o/abn)ﬂ

and

27




MaAY ath oMl il ol ol oFh old abd il bl ofl o

B = B(Y) = (b(Y¥), . . ., b (Y )N,

where the b,t =t%(yt) are given by 2.3. With this notation,

ve may write the Bayes estimate of u more simply. In

particular, we may rewvrite (3.1) as &8 - Y + VB log g(Y).

Finally, let

Theorem 4.1: Suppose that Y is an nxl vectoxr uf independent
Pearson random variables satisfying the conditions of
Theorem 3.1. Let A(y)=(X,(y),. - -,A (¥))' = 95 1log g(y),
where g i3 defined by (4.1). 1If (2.4) holds componentwise

for h(y):xt(y) and Ez AN < «©, then

Y 9% q0)*%1/ 1g(n)*?1. (4.2)

B
R(& ,u) = R(Y,u) + 4 EN B

Consequently, when dealing with squared error 1loss, &

dominates Y as an estimate of u if

72 19(v)*"*) < o. (4.3)

o

B

Proof: Noting that & Y + V_ log g(Y) =Y + A(Y), apply

B
Theorem 2.5 of Haff and Johnson (1986a) to obtain

R(62,u) = R(Y,u) + E [2a'Wn + A'A]

(c.f. the proof of Theorem 3.2). Rewrliting the expression

28
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in square brackets, we have
2

a
exp [ 1/2 Xx. db. ]
n o’ Faoae,
R(éBpM) = R(Y,u) + 4 E E
v=1 exp [ 1/2 { A db, ]

This reduces to (4.2) wvwith xfa log g/abv Finally, when

(4.3} holdes, the above expectation 13 negative so0 that

R(&2, 1) < R(Y,u). =

We nowv state our second dominance result.

Theorem 4.2: Suppose Y is an nxl vector of 1independent
Pearson random variables having finite second moments. Let
A(y)=c(y)DB(y), where D 1is a specified nxn matrix of

constants and c(y):[R"+IR1 remalns to be specifled. If (2.4)

Y

t
“)\)\ < o, then

holds componentwise for h(y)=x (y) and E

Y - c(Y)DB(Y) dominates Y

u

as an estimate of u with respect to squared error 1loss

for

(1) Symmetric D when
cly) = (B'l(tr D)I - 201 'D°B} 7"

and the largest elgenvalue of D, kmax(D), is 1less than

(tr D)/2.
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(11) Arbiltrary D when

(tr D) - 22"

c(y)
IDBHZ

and 2" = A"(D)

it

A___((D+D")/2) 1is less than (tr D)/2.

Comment: It should be noted that the dominant estimates ;
in the above theorem are not of the form (1.2) wunless B(Y)
is a scalar multiple of Y. This only happens when Y 1is a
vector of normal variates. When Y is a vector of normal
varlates, note that L with ¢ in case (ii) is of the form ;,
the restricted Bayes estimate, given 1in Theorem 3.4 with

D=(I—Mn) .

Proof: Note that c(y)=UfNB)ﬂ'w1th a symmetric N for each
of the two cholces of ¢ iIn the Theorem. Applying Theorem

2.5 of Haff and Johnson (1986a) and using the symmetry of N,

wve find
AR = R(Y,n) - R(p,n)
=E IY-ul® - E #(Y - c(Y)DB(Y)) - uh?
t _t 2
. g | "4BD'NB _ 2(tzx D) _ IDBH ' (4.4)
(e'nB)? B'NB (B'NR)?

We desire to show AR>0 for cases (i) and (ii) above.
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Case (1): Suppose D:Dt. Simple algebra glves

T
I'q

X,

L5\

B'( 2((tr D)I - 2DIN - D? )B

=

(B'nB) 2

N Taking N = [(tr D)I - 2p1 'D®/y, we obtain
g AR = »(2-7) E WDBI%/(B'NB)® > 0
for 0 < y < 2, with the greatest improvement in AR coincid-

ing with »=1. This completes the proof of case (1).

. Case (i11): Taking N = D'D/», (4.4) becomes

e _ totnt _
ol AR = E 4y B D' D DB + vy [2(txr D) 7]
WpBr? npB 2 WpB 2

But
B'D'D'DB

t
max 2z Dz
Hzll=1

1A

npBIZ

.
LSS

[NENEN - EAEREAER

BRI L - e

= max zt((D+Dt)/2)z
Hzli=1

kY
.

oy

>

IIA‘Il‘
LR NN

X___((D+D")/2)

0

! .‘l.".,'l‘..('

)1l]
>

*

RQ So, assuming »>0

o8 -4y, y [2(tr D) - 7]
e AR E PN +

. @
\"

KDB I 2 tDBIZ

T
a

BNETANAR
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Z': = » (2[(txr D) - 2x"} - ») E WDBI

r > 0

,'f

¥

“

i~ for 0 < » < 2[{(tr D)-Zx*l. The right-hand side is maximized
e

. vith r=(tr D)-2A". This completes the proof of case (ii). m
o

-y
:’ﬁ Under the assumption of normality, case (i) of Theorem
h 4.2 was established by Stein (1981; p. 1142) and case (11i)
'E: was established by L1 and Hwang (1984; proposition 1, p.
B~
A .I'\
R 892).

:, One of the assumptions of Theorem 4.1 is that E AN be
o
‘23 finite. We give sufficient conditions for this to be the
1A
gl

case in the following result:

)
,

%

o
L
)
::: Theorem 4.3: The quantity E A\ = E c(Y)lIDBIIz is finite in
o~
Q; case (1) if D is positive definite. It is finite 1In case
o~
;l (ii) if D is of full rank.
- Proof: With c(y)=(B'NB)™
b
3 IDBIZ
‘“' EX\A = E Y 2 .
- (B NB)
o
‘i? Case (1): Note that the matrices [(tr D)I-2D] ' and D?
:j commute and are symmetric. Applying Theorem 10.6.8, p. 322,
;' of Mirsky (1972), there exists an orthogonal matrix P such
o that

Lo

S
A AN
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»

P'l(tr D)I - 2D)7*P = @
and

p'p’p = R
where Q and R are diagonal matrices. Hence

(P'B)'R(P'B)

EXA = E
((p'B)'QrR(P'B)1?

(max rt)

E HBI™?

IA

2
(min qtrt)

In the previous expression, the r are the diagonal entries
of R, and the q, are the diagonal entries of Q.
Since D is positive definite, the r. are positive. Also,
Aqu(D) < (tr D)/2 implies that the g are positive. Since
Amcx(D) < (tx D)/2 implies n =2 3 (use the fact that the
trace of a matrix is equal to the sum of 1ts elgenvalues),
it suffices to show that E IBN > is finite for n 2= 3 to

complete the proof of case (1).

Case (i1): There exists a matrix P, by Theorem 10.3.4 of
Mirsky (1972), such that P'D'DP = R, where R is a diagonal
matrix. Consequently

Ex" = 1((tr D)-22%1* E wpBN72

((tr D)-22"1%2 E ((p'B)'R(P'B)1?

((tr p)-22")? .
- E 1BI°",
(min r )
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By Theorem 12.22 of Grayblll (1983), D of full rank Iinsures

that none of the non-negative eigenvalues r of D'D are
zero. Again, since A" < (tr D)/2 implies n = 3, it suffices
to show that E BW 2 is finite for n = 3 to complete the

proof of case (il).

So, to prove the theorem in its entirety, it remains to

2

shov that E IBI'° is finite for n > 3. From (1.2) of Haff

and Johnson (1986a) we obtain

2

ENBITC = [---f0BI7% f(y|w) ay_- - - dy

vhere f(y|m) is

n

M e (u) at(yt)"‘ exp(u, J ai(yi)"’dyi - f yiat(yi)_’dyi).
L=4
Noting that |dyk/db‘|= a _(y ) the change of variables X =
bt(yi) glives
2

E BN = [ f ux0™® pexplu x -w (2 )k (x ) dx - - - dx_.

v=4
Since this integral is bounded over the region hxth? > & (by
1/6), it remains to show that the above integral 1is finite

over the region hxh? < & when n = 3. Now revrite the

integral in terms of the polar coordinates

X
n

r cos 6‘

*
1]

r sin & cos @&
1 2
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X =r sln 8 s8in 86 cos 8
8 1 2 8
X = r siln & sin @8 - -+ s8in € cos @
n-2 1 2 n-8 n-2
X = r sln & sin @ * + -« s8in 6 sin @ cos 6
n-1 1 2 n- n- n—1
X =rsin & sin 6, - - - sin 6 _ sin 8 __  sin 8
wvhere 0 < ei< n for 1-=-1,2,. . .,n, and 0 < en_ < 2m, The
Jacobian, J, in this case |is
1 " n-i—-1
e —i-
J = n (sin &) .
V=14
Noting that Ixi?-r® the transformed integrand becomes
"*,r® - r"? times a function bounded in the sphere r? < &

(the k.t are bounded in the sphere 1f we assume a continuous
density and (2.4) holds componentwise with h(x)=1).
Consequently, E NBR Z is finite for n > 3. This completes

the proof. =

We 1llustrate Theorem 4.2 with two examples. For ease
of presentation, we choose D=I in each. With this selection
of D, we have c(y):(n-—2)/llBllz in both case (i) and case

(i1), giving

4 =Y - —B (4.5)
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For L to dominate Y, we require 1 = A__ (I) < (tr 1)/2 = n/2
(i.e., n > 3). As a third example, the interested reader
may wish to consult section 5 of Stein (1981). Here, in the
normal case, Stein conslders the choice of the weight {n a

three-term symmetric moving average.

Example 4.1 (James and Stein (1961)): Suppose Y 18 an nxl
vector of independent N(ui,oz) random variables. From Table

2.2, B=B(Y)=Y/0". Hence, for n = 3,

~ (n—2)oz (n-2)az
=Yy - —YX = 1 - Y

nyu? nyn?

dominates Y as an estimate of u with respect t. squared
error loss. Recalling that the components of B are
determined only up to a constant (see (2.3) and the
discussion which follows), we may generalize the above by

taking B=B(Y)=(Y—v)/az, vhere v 1is any specified nixl

vector of constants. In particular, for n = 3,
~ (n—?)oz
=Y - ——— — (Y-v) (4.6)

hY-vii2

dominates Y. From (4.6) we see that the estimate L corrects
the estimate Y by an amount —[(n-2)az/HY—vuz]°(Y—v). For n2
3, the ith component of this correction term is negative |if
Y3vt, is zero |if vai, and is positive if vat.

Consequently, we may view the estimate (4.6) componentwise

as modifying the estimate 3{_L by moving it toward (and, in
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some cases, beyond) v.. 1In practice, this estimate performs

best when v 1is close to u, i=1,. . .,n.
L v

Example 4.2 (Johnson (1384)): Suppose Y is an nxl vector of
independent random variables whose 11th component has a
BU&,ﬁJ distribution with Sfa{ﬂﬂ known, but a and ﬁ’.L
unknown. From Table 2.2, we may take b/(y), the ith
component of B, to be s (ln [Y}/(I_YL)] - 1n [vt/(l-vi)]),
vhere v, is any constant, 0 < v o< 1. wWith this cholce of
B, (4.5) dominates Y as an estimate of u=(a‘/st,. . .,an/sn)

for n 2 3. As in the previous example, ; may be thought of

as modifying the estimate Y by moving it toward v .
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5. SUMMARY AND CONCLUSIONS

In this report, we have presented estimates of the mean
u of a vector Y of independent Pearson random variables.

The Pearson class of random variables, which 1includes
several well-known variates such as the normal, vas
introduced in Section 2. With the notation defined in (2.2)
and (2.3), Tables 2.1 and 2.2 summarized the salient
features of particular Pearson varlates, Throughout the
repcrt, theoretical results were 1llustrated by a varlety of
different Pearson rardom varlables.

In Section 3, we examined estimates of i of the form
M =y - cDy (5.1)

wvhere D=(I—Mh)y. These estimates may be thought of as a
compromise between a raw data estimate y of u, and a
nonparametric estimate Mny of . We deteimined the choice
of ¢, a real-valued function of y, ylelding the smallest
Bayes risk for ;. Specifically, this cholce of ¢ was found

to be
(y-62) Dy

c = ¢ = —F (5.2)
1Dy

wvhere 6B is the Bayes estimate of n. This was derived by

both geometric and analytic arquments. We also determined
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the optimal choice of ¢ when ¢ was assumed to be of a

particular functional form. 1If c(y):d/HDynz, for instance,
then d=d. given by (3.10), or the equivalent (3.11), yields
the best performance in terms of Bayes risk.

Unfortunately, we were unable to determine c for which
; dominates Y in our Pearson setting except in the normal
case. We hope that the two dominance results for estimates
not of the form (5.1) (recall Theorem 4.1 and Theorem 4.2)
will aid in finding such a c¢. 1In particular, the sufficient

condition (4.3) given for &B to dominate Y may help

establish simple conditions on éB in (5.2) so that u

dominates Y. Also, perhaps, c = c* might be approximated to

yleld a dominant estimate u.
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Appendix A

ERRATA FOR LI AND HWANG (1984)

In this appendix, we 1list some minor errors 1in L1 and
Hwang (1984). The suvbstance of their results are unaffected

by these corrections.

Under their Theorem 1 (all references to theorems and
equations in this appendlix refer to L1 and Hwang (1984)),

the right~hand side of the equality (2.9) should read

(1 +o(1))n"IMy - £ 1> 4+ o (En'iMy - £ 1%).
P n n P n n

On the second line following (2.13)
(14x)™" < 1-x for x > 0
should be replaced by

(14x)™' 2 1-x for x » 0.

In the line followling (2.14), replace

+2(2n" + 3(nT'tr M_ )‘/z)n“uanynz
vith

2.1/2

43T M )T A yi®.

+ 2(2n”

The line below (2.20), we read "Finally (2.17) follows
from (2.16},(2.6) and (2.20)." We also need the fourth

moment of the s,t to exist here.

A-1
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On the right-hand side of the equality (2.21), replace
o(ntr M + n a1 + ntiMy - £ )2
P n n n n n
with
2

o (n*tr M> + n'ia £ 1% + ntiM y - £ 17,
P n nnNn n n

Four lines below (2.25), the lnequality
< (nT'tr M)® + mnTtr M

is not necessari{ly true. It suffices to have
< (n'tr Mh)z + 2mn “tr Mi

instead.

Two lines above (2.26), replace

o(En“uMny - fnuz)=op(n“unny - fnllz)

with

-1 z -1 F]
op(En My - th )=op(n My - £ 17).

On the second liue from the end of the proof of Theorem

1, on page 891, replace

= 2(m + 2)A(M2) (tr M) H(EIM y - £ I1F)F

with

= 2(m + 2)A(M) (txr M) (ERTIM y - £ 155,
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Appendix B
Lol DECISION THEORY TERMINOLOGY
‘i; In this appendix, ve review some standard terminology
‘C
:53 used in decision theory.
o
“~¢ Let Y = (Y,. . .,Yn)t be a vector of independent
v
i random variables with the ith coordinate having a density of
- f(Yt“ﬂ)' We understand f(Ythﬂ) to denote a family of
-’-‘:»:
-ﬁq densitles Indexed by the parameter u. Also, let EY =
SR i
° (BY,, . . .,Eyn)‘ = u. To estimate u by & = oY) =
h-
~
:ﬁ: (¢1(Y),. . .,¢»n(Y))t we will use the squared error loss
‘ﬁj function L where

(o-1) ' (@p-p1)

i L(e¢,1)

.r_:;
\-I
2 - g (e (Y) = p)”
(—.-l
) 1=1
-ﬁﬁ The expected 1loss or risk, R(e¢,u), incurred in
;f- estimating u by ¢ is then given by
°
-
i R(¢,u) = E L(d,u)
® = I L(¢,u)E(y|u) Ay
[ -4' Rn
o=
; o n n
o vhere f(y|u) = [f(y |n) and dy = qdy.
o =1 =1
N
Ay
AN B-1
o

NEARN

5
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The superscripts of the expectation 3ymbol E denote the

random varlables with respect to which we are taking the
expectation. The subscripts of E denote fixed parameters.
Such superscripts and subscripts are suppressed when these
are clear from the context.

We will say that ¢1(Y) dominates ¢Z(Y) In estimating W
with respect to squared error loss provided

R(e ,u) = R(¢>z,u)

for all u, with strict Inequality for some u. The phrase
with respect to squared error loss, slince it is wunderstood,
will generally be suppressed (we use parentheses to enclose
such phrases in what followvs) Loss functions other than
squared error loss, of course, could be used.

In the event there does not exist an estimator ¢ = @(Y)

which dominates a particular estimator ¢* = ¢*(Y), we call

¢‘ an admissible estimator. An estimator which 1s not
admissible is inadmissible.
-
:§ One basis of comparison between two estimators ¢‘ =
-
E- ¢1(Y) and ¢z = ¢2(Y) can be made by examining how 1large
L: thelr risks may become as we vary u. In particular, we may
o
g. prefer ®, to ¢2 1f
P
o sup R(¢,u) < sup R(¢,,u)
; M M
;f and call an estimator minimax if it minimizes this supremum.
o~
;; That is, ¢‘ is minimax if
< .
o sup R(¢ ,u) = 1Inf sup R(¢,u).
e M ¢ u
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If we have prior information about # in the form of a
probability distribution n(u) for u, then estimators may be
compared on the basis of their Bayes risk. The Bayes risk,
r = r(¢) = r(¢,n), of an estimator ¢ is given by a veighted

average of the risk. 1In particular
r(e¢) = r(e,n) = J%n R(@,u) dr(u).

Note that the case of the letter r distinguishes whether we

are dealing with the (ordinary) risk or Bayes risk. We say

»

¢ = ¢.(Y) is a Bayes estimate of u (with respect to the

prior distribution n) if

r(¢*,n) = min r(e¢,n). (B.1)
@

In the above discussion on Bayes estlimates, we assume
that n(u) is a probability distribution. That is, we assume
S dn(u) = 1. Yet, even when S dn(u) = ©® we may still find
a solution to (B.1). The prior in this case 1is called an
improper prior and the resulting estimate in called a formal
Bayes estimate.

We will, at times, restrict our attention to a
particular class, 8, of estimates, ¢, over which wve will
take the above minimum. In this event, ¢. is a Bayes
estimate wvith respect to the class € (and prior distribution
n). Such a Bayes estimate may be spoken of as a restricted

Bayes estimate.
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Appendix C

-

;ﬁ A ONE-SIDED CHEBYSHEV INEQUALITY
N WHEN THE FIRST FOUR MOMENTS ARE KNOWN
o

"

)

.5? Below, we recall a Theorem of Bhattacharyya (1987)
o

[}

vhich gives a bound for the tall probability of a random

2 2
J\) Pd

"
o’ .

P Ay AR AR
r
.‘i_l"n'_.“r’ L f

variable whose first four moments are known.

Theorem C.1 (Bhattacharyya (1987)): Let X be a random

variable with mean u, and let o>, u

0

u be the second,

a’ 4
o
25 third, and fourth central moments, respectively. Also let
=
fi s=p3/o3 and k=u‘/a‘. For every non-negative t satisfying
-~ t>-st-150
g k-s®-1
o P( X-u =z to) < . (C.1)
2 (k-s2-1)(1+t%) + (t%-st-1)2
ap
;)
51 For a Pearson random variable with parameters 6, Bo,
;.' B‘, and Bz, wve have
;2 u = EX = (843 )/(1-2p3 )
s o = E(x-u)* = Q(u)/(1-38 )
xS Hy = E(X-0)7 = 20" (M)Q(K)/1(1-38,) (1-48,) ]
s
b < 2
- H, = E(X-u) " = 3Q(n)[2Q' (1) +(1-4BZ)Q(H)]/[(1—3ﬁ;)(1—4ﬁ;)(1—5ﬁz)]
jﬁ: where Q(u) = Bo + ﬁn“ + ﬁzuz, provided these moments exist
L

-] and Theorem 2.1 holds for h(x)=x", n=0,1,2,3.




Example C.1: 1I1f X is N(9,az), then we find, by using Table

2.2 and the above moment relations that u9:0 and p‘:3o‘.

Hence, lnequality (C.1) holds for t » 1, with s=0 and k=3.

Example C.2: If X 1s I'(a,3), then we f£ind, by using Table
2.2 and the above moment relations, that m=a/f3, o'z=on/ﬁz,
u8=2a/ﬁa, and p‘=3o~(a+2)/f?‘. Consequently, the inequality

12

(C.1) holds for t > [1 + (a+l) ]/a“q' with S=2/a”q and

k=3+6/c.




Appendix D

BOUNDS FOR THE VARIANCE OF A
FUNCTION OF A PEARSON RANDOM VARIABLE

Klaassen (1985) presents upper and lover bounds for the

variance of a function, G, of an arbitrary random variable.

For continuous random variables, the bounds involve
derivatives of G, while for discrete random variables, the

bounds involve differences of G. Klaassen's result

generalizes the result established by Chernoff (1981) in the

case where the random variable is normally distributed.

In this appendix, we apply the work o Klaassen

to the Pearson class of denslitlies.

Theorem D.1: Let X be a Pearson random varlable on (r,s)
vith finite variance o° satisfying (2.4) with h(x)=1. Then
[E a(X)g(X)1%/06° < var G(X) < E [a(X)g(X)?] (D.1)

where g(X)=G'(X).

S Proof: Apply Theorems 2.1 and 3.1 of Klaassen (1985), with

H=Lebesgue measure, x(x,y)= 1, (y) - 1, .,(Y), vhere b=
o EX=(6+(,)/(1-23,), h(x)=(1-26,), and  H(x)=(1-20,)x-(8+8,).
N »
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o
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a Example D.1: 1If X ls normal with mean ~ and varlance oz,
‘ then a(x):oz (see Table 2.2), and (D.l) becomes

o,

. o> E (g(X)1%> < var G(X) = o° E [g(X)7].

s~ NN

Example D.2: If X is a beta variate, B(a,3), then o=

of3/L(a+p3) (a+3+1)) (see Table 2.1) and a(x)=x(1-x)/(a+p3)

(see Table 2.2) so that (D.l) becomes

Ll L RENEN

(a+3+1) 2 1 »
—— E[X(1-X)g(X)] < var G(X) = E [X(1-X)g(Xx)"1.
o3 (a+(3)
We now apply Klaassen's result to dliscrete Pearson
; random varliables. These random variables are defined on p.
i 83 of Johnson (1984). Some examples appear in Table D.1.

o Theorem D.2: Let X be a discrete Pearson random varlable on

{N ,. . .,N 1 with finite variance o°. Then

[E d(X)g(X)1%/0° < vVar G(X) < E [d(X)g(x)?)

wvhere
d(x) = a(x) - (x-u),
2
a(x) = (Bo + le + Béx )/(1—282),
u = EX = (9*3‘-1)/(1-232),

" g(x) = G(x+1) - G(x)
: provided

lim a(x)f(x) = 0,

x N

1
for 1=0 when No= -0 and for i=1 when N1= 0o,
D-2
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Proof: Apply Theorems 2.1 and 3.1 of Klaassen (1985) with pu

=counting measure, x({x,y) = IHVLm(y) - luJDD(y) -

(v-{r]) 1 (y) where [v] denotes the integer part of v

<«
and U:EX:(8+Bl—l)/(l-232), h(X):(l—Zﬁz), and k(x)=(l—2ﬁz)x—
(9+f?1—l ). a

Table D.1. Some discrete Pearson random variables.
Name Probability Distribution (e,ﬁo,ﬁ*,ﬁz)
e NN
Poisson -, y=0,2,2, . . . (©\,0,1,0)
y!
Binomial [ ; ] p’q""”, y=0,1, . . ., n (p(n+1),0,q,0)

wvhere g=(1-p)

negative [ el ] p’q", y=...,-1,0,1,... ((r-1)p/q,0,1/3,0)
Binomial Y
wvhere g=(1-p)
k 2
Discrete t « m [(y+a+1)® + b*17%, y= . . .,-1,0,1,.
(Oord (1968)) =0

0<a<1l, 0«bcoa

k a non-negative integer

( (1-k-2a)/2, [(a+k)z+bz]/2(k+1), (2(a+k)+11/2(k+1), 1/2(k+1l) )

--------

. A M AN b W
J'_“;‘.r:.-:.-:f_\_a-_:.-\.




