r-

¢ e, e 0.0 0 0 0 e ® et et VPt 5. gl Pt)a? (RN R LR SN > g
mm. 0 C h L W W LW R W R W WL ML X Sa" n"oAatufa o B o la i S G M A Gy o

0TI Fut Lur

«r @
f?s

o
s A

f

L]
5
,

x> ET,
*r
.q ’
*-.‘-

Sy
P
Lol

AVF Control Number: AVF-VSR-90502/36

v
4 .'1!
*I

3

"y 'l"n{’l ,"‘l D
WA e
[

AD-A198 3886
4

h s
>
'
24

Phly
* a
hid

“¥
e
:'.J

Ada* Compiler [:) I l‘ :
VALIDATION SUMMARY REPORT: r -
Certificate Number: #871210N1.09011 @«LECTE

Alsys Ltd o ;
AlsyCOMP-013, Version 3.2)\, SEF 011968

IBM PC/AT x IBM 370 3081K KPS

It

2
x
.. ‘. =

o

]
Ay

4 5
"..41.

b

L4
4

Tl,ﬁ T
..f '

w)
4

4) ..“‘
Completion of On-Site Testing: ﬁ::
10 December 1987 RO
- ",-'
o
v 3
s
Prepared By: AL
The National Computing Centre Limited 0
oxford Road :;‘_.:
Manchester M1 7ED e
United Kingdocm)
RO
L] .\.I
S
Prepared For: :L;'
Ada Joint Program Office RAEG)
United States Department of Defense o
Washington, D.C. 20301-3081 N
' e
:'*.':;
-._?
RS
[*DISTREUTINT STATEMENT K]
G oo punlic releasel ::-" y
Uit uween Uriiaited ! bRy
e e e v e b o mv e e me—— - %
_‘n':.f
.' -I}
L
xAda is a registered trademark of the United Statos Government oy
(Ada Joint Program Office). NN
W,
RN
.- N
veon S
R
;. '.I
*

‘l
A
CRH

Q1 B e Lot Gt B D LSS d A0 Nt I A Ha SO0 e A0 SALSSICI L aAY S0 e A eciie Sk ik Sl Ark A Al Al A g At At ad e a e

" .'-‘
2
®
N

UNCLASSIFIED .)
SECURITY CLASSIFICATION OF THIS PAGE (W-enDataéntered) 7 o - o o ._;
. a4 [N 1 S ’
REPORT DOCUMENTATION PAGE e | A
1. REPORT NUMBER T2 GONT AlOrsaiun e s @iTeten s (kTa o Aowes s] ®
| .;.r
_ ——— e — » - : - ~
4, TITLE (and Subtitle) LAt b RERORD O Pielol R 1 ,_:
Ada Compiler Validation $ummary Repors: Alsys PO Des GSET te nbones ont ‘ o
Ltd., AlsyCOMP 013, Version 3.2, IBM 2C/AT - X e
(Host) and IBM™370 308lK (Target). TOFLHIGRMAL CHL o REPUR N Mo | e
. - !
7. AUTHOR(s) 2 LUNTRALT OB LRENY N owp ooy ‘
National Computing Centre Limited,
Manchester, United Kingdom.
9. PERFORMING ORGANIZATION AND ADDRESS e RROcHRM T EwENT BeLiiot tAne
AREA B wlin _N]T NOWBD WS
National Computing Centre Limited,
Manchester, United Kingdom. 1
. _ A
11. CONTROLLING OFFICE NAME AND ADORESS 22 REPCRI DAY .
Ada ngnt Program Office c] 10 December 1957 {
United States Department of Defense b~y —wwETT GrvLLIy T e
Washington, DC 20301-3081 R
14. MONITORING AGENCY NAME & ADDRESS(/fdifferent from Controlling Office) 15 SECURITY (LASS (of th repart) !
UNCLASSIFIED 4
National Computing Centre Limited, 15a. QECLASSIFICATION DOMNGRADING
Manchester, United Kingdom.

16. DISTRIBUTION STATEMENT (of this Report) {

Approved for public release; distribution unlimited. !

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. If different from Report)

UNCLASSIFIED -

Ll

‘e s

2 oS

"18. SUPPLEMENTARY NOTES

AN

.{‘- %5

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Py LA 4

£ J

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, BAJPO

20. ABSTRALT (Continue on reverse side if necessary and identify by block number)

AlsyCOMP_ 013, Version 3.2, Alsys Ltd., Nationu! Computing Centre Limited, IBM PC/AT (HostVunder
PC/DOS Version 3.1 and [BM 370 3081K underVIM/SP CMS Version 3.1 (Target), ACVC 1.9.

o o T R T R e e e T e et e e e e
et L T T T U W A T S T T Tt e T
o o Ca St AN L

-

Ada* Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_013, Version 3.2

Certificate Number: #871210N1.09011

Host: Target:

IBM PC/AT under IBM 370 3081K under
PC/DOS VM/SP CMS

Version 3.1 Version 3.1

Testing Completed 10 December 1587 Using ACVC 1.9

This report has been reviewed and is approved.

RET- P
The National Computing Centre Ltd
Jane Pink '
Oxford Road
Manchester M1 7ED R
United Kingdom ; feteai For

4M/\// : ;:' \':{H“ : L:I
’_j‘i e e e

$da validation Organization L T
Dr. John F. Kramer i e
Institute for Defense Analyses S f
Alexandria VA 22311 o

DL i i o
Ada JoZnt Program Office ‘ e

Virginia L. Castor
Director

Department of Defense
Washington DC 20301

w

*Ada is a reaicetered trademark cf the United States Government
(Ada Joint frogram Office).

------ [P TN

WA AN

e W e
L R SR

LY AP .
et e lans 2t o a e a R e

- S
L]
dad e

rmw‘-"“"ﬁﬂ"ﬂ' S AR LS gt A AN M Chatae vt i A A M A e i b e A N R R T L W TV W W TV S Yo w gy
PatAY - P

S v N
VRS, R AP Wy

)
- . PR RN

ARARN JOFM
[I g [l."

............. RN L AP LAt L g s ' 2o gl Ay

’

% 8§ *

A

AT

EXECUTIVE SUMMARY

;ﬁg?}

»

A

[X

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the AlsyCOMP 013,
Version 3.2, using Version 1.9 of the Ada* Compiler Validation
Capability (ACVC). The AlsyCOMP 013 1is hosted on an IBM PC/AT
operating under PC/DOS, Version 3.1. Programs processed by this
compiler may be execnted on an IBM 370 3081K operating under VM/SP
CMS, Version 3.1.

On-site testing was performed 7 December 1987 through 10 December 1987
at Alsys Ltd, Partridge House, Newtown Road, Henley on Thames under the

direction of the NCC (AVF), according to Ada Validation Organisation
(AVO) policies and procedures. At the time of testing, version 1.9 of
the ACVC comprised 3122 tests of which 25 had been withdrawn. O0f the

remaining tests, 207 were determined to be 1inapplicable to this
implementation. Not all of the inapplicable tests were processed during
testing: 145 executable tests that use floating-point precision

exceeding that supported by the implementation were not processed
Results for processed Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and
link results of Class L tests were analyzed for correct detection of
errors. There were 62 of the processed tests determined to be
inapplicable. The remaining 2890 tests were passed. The results of
validation are summarized in the following table:

o

AR R
s Q' l',l. ~ |. I.‘l
ORRANA

P

.'7.

o
5

RESULT CHAPTER TOTAL

Y
s

C mgm -

2 3 4 5 6 7 8 9 10 11 12 13 14

-

Passed 193 516 564 245 166 98 141 327 135 36 234 3 232 2890

e T o 1)
FL L
Nh L @

Failed 0) 0 0 0 0 0 0 0] 0 0 0 0 0

£

‘S

Inapplicable 11 57 111 3 0 0 2 0 2 0 0 0 21 207 o)
Withdrawn 2 13 2 o o0 1 2 o0 0 o0 2 1 2 25 N
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122 ';
The AVr concludes that these results demonstrate acceptable conformity &“

to ANSI/MIL-STD-1815A Ada.

IN l'.

-" v" * '

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Executive Summary Page 1 of 1

A A A e e e

1*1 - 1’- -..\d"ﬁ‘-\.". AN \-.,'-'.\' ._-..‘ ’.) . ,.. ".. - ',.',.‘J- - _"J‘ - ‘, N P I N R A] -
PALALY

~ oyt A as gau Sao AL -

LN N BN CA R KRR s St T T P T ey AL " PRANT R AN oa- o 0e de~ it shnt ghe e A ‘ale' At oAt lg'
N

NS

)

."

ot

R
TABLE OF CONTENTS D

)
CHAPTER 1 INTRODUCTION ;:'

”
BN

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2 I

1.2 USE OF THIS VALIDATION SUMMARY REPORTc... 1-2 ~
1.3 REFERENCES +..vvevrvenoncenneenanennns e 1-3 =3

1.4 DEFINITION OF TERMS «vevevernennnenncacenennes o0al=3

1.5 ACVC TEST CLASSES .evverrenennnnnnn. e e, 14 W
e
..‘l-
CHAPTER 2 CONFIGURAT10ON INFORMATION 200
2

2.1 CONFIGURATION TESTED v tvvvvevnennnnnnnennnennenens 2-1 °

2.2 IMPLEMENTATION CHARACTERISTICS vvveeverennnnnnnnnn. 2-2 KA

" %

.,:"\
CHAPTER 3 TEST INFORMATION N
3.1 TEST RESULTS +vvvevnn.. e e 3-1 ‘o

3.2 SUMMARY OF TEST RESULTS BY CLASS ...vvvnnennnn c..3-1 N

3.3 SUMMARY OF TEST RESULTS BY CHAPTERceouvevunnen.. 3-2 I
3.4 WITHDRAWN TESTS v vevennnnnenennnneneeneoonnnnnnansd=2 NN
3.5 INAPPLICABLE TESTS v evovverreneennnnnnnnnneanneess 32 oy
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS3-4 Ny

3.7 ADDITIONAL TESTING INFORMATION .o veeeneneennn. c...3-5 K

3.7.1 Prevalidation c..ieieeineeeenneneoeeneenenonnensas 3-5 o

3.7.2 Test Method ...t ietiineitneeecnnesccnsoncnonnssald=5 o~

3.7.3 B == o T o - 3-6 o

....I.

,‘;x'

APPENDIX A CONFORMANCE STATEMENT)
~

APPENDIX B APPENDIX F OF THE Ada STANDARD T
OA

3

APPENDIX C TEST PARAMETERS o
34

APPENDIX D WITHDRAWN TESTS o
-‘_‘a'

S

L

RS

N

234

.

‘.:-‘.:l

'.:'\1

'1

e >

Table of Contents Page 1 of 1 N ::

'

9

-F'

R

A% w "] . . . L2l) - - ’ . - LV Y T ST T S - . ‘\.\.
B R A S N N N N N A T T R o Sy

rlﬁlﬂlﬁ“KKﬂXXKP1R2!2FKWR7YYYYTvY?Tvm5?FJE5!3xx!WxxngyjﬁiiﬂtyTiTFVE‘ﬁﬁAﬁﬁﬁ??rfrcﬁfrjﬁf,ﬁ'v*“,-j,xv'xﬂq-quvuyuvynﬁl-
>
[

CHAPTER 1

INTRODUCTION

This Validation Summary Report %HSR}'describes the extent to which a

specific Ada compiler conforms to the Ada Standard,
ANSI/MIL STD 1815A. This report explains all technical terms used
within it and thoroughly reports the results of testing this compiler
using the Ada Compiler Validation Capability (ACVC). An Ada compiler
must be implemented according to the Ada Standard, and any
implementation~dependent features must conform to the requirements of
the Ada Standard. The Ada Standard must be implemented in its
entirety, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers

result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information 1in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validatirg is
to ensure conformity of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects illegal 1language constructs. The
testing also identifies behaviour that is implementation dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tests are designed to perform checks at compile time, at link time,
and during execution.

Chapter 1 Page 1 of 6

C I AR AT P A

P Wy

e A e W A A

- . st R N R A O N R R R R L
e At P g e Y N e W .r}.'\'i:'ﬂ't.ﬂ\.:'.r}e\.;:')\."“\ AR AV A IS RIS A SR S LAY

3

S

D
" e

.\ 1‘:‘)‘1 5 z ,ﬂ,

R
L] l- . &
"/‘: ,.7. Y

[
"«

’
.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:-

. T» attemp* to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

. To attempt'to identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behaviour 1is
allowed by the Ada Standard

AT

)

Testing of this compiler was conducted by NCC under the direction of
the AVF according to policies and procedures established by the Ada
Validation Organization (AVO). On-site testing was conducted from I
December 1987 through December at Alsys Ltd, Partridge House, Newtown
Road, Henley-on-Thames.

« € r
]

s

L LS.
(ﬁ'b\'.'-

'
h)
[

1.2 USE OF THIS VALIDATION SUMMARY REPORT

h)

h)

Consistent with the national laws of the originating country, the AVO ®
may make full and free public disclosure of this report. In the A
United States, this is provided in accordance with the "Freedom of NN
Information Act" (5 U.S.C. #552). The results of this validation o
apply only to the computers, operating systems, and compiler versions &ﬁ&
identified in this report. SANG
L

The organizations represented on the signature page of this report do ;j}}
not repr.sent or warrant that all statements set forth in this report }H?
are accurate and complete, or that the subject compiler has no j%}p
nonconformities to the Ada Standard other than those pres~-nted. O
Copies of this report are available to the public from:- AN
e

Ada Information Clearinghouse B
Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

] nE
or irom:- .-?.-:.l-}
The National Conputing Centre Ltd -

~
Oxford Road ._\:::j
Manchester M1 7ED A
United Kingdom I
o
':t::?i-
ST
s__\J,
Chapter 1 Page 2 of 6 N
.:.'-"\

P TR T TR A - o av . i ataaet .
LA P NS -.-‘_-.:-’_)_:‘ AR . -‘._.f"f."’N'.."I.'\Ic"_\

INTRODUCTION

Questions regarding this report or the validation test results srould
be directed to the AVF listed above or to:-

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986.

i.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler
to the Ada programming language.

Ada An Ada Commentary contains all information relevant and
Commentary point addressed by a comment on the Ada Standard.
Standard. These comments are given a unique

identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting compiler
validations according to established procedures.

AVO The Ada Validation Organization. In the context of

this report, the AVO is responsible for establishing
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Chapter 1 Page 3 of 6

S LI g S I N S I . - . . .
A R S e St e i e s o R e e e T T A T
: : et i v e

--------------- T TR T " AT Tm T m T a T N

't

’
b
Y

SRR

LR}

7

g G4

o

Pl ol 4% g ¢
nnﬁﬁhﬁk;

,
[

@]

e 2 T T
o
3

55N
7’

[

G

52

Y £ % PR L
'.vv 1 I. ‘.
S @y

2o,
P

T

- .« u
I8 4 N 0
PN

* . .
« ',J.'f{_f -,' o LN

s

e

G
hi

Y

4

LS

%

iy

Jo

(.
7

Y,
o
kY

1

x

L

~ PR AN
BB ®

7

> "k ¥ e N

QL
»

LA

PR
1

x

I

g
e s

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.
Inapplicable An AVCV test that uses features of the language that a

compiler is not required to support or may legitimately
support in a way other than the one expected by the

test.
Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend
Panel interpretations and possible changes to the

ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the
expected result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity

regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to
check conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal
or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their

results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce 1link
errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. However, no checks are performed during
execution to see if the test objective has been met. For exanmple, a
Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no
errors are detected at compile time and the program executes to
produce a PASSED message.

Chapter 1 Page 4 of 6

o ,"., '_-."n.‘ "} Y
- ;".:' - '.'.:

ol iy

03
-":',u', ‘

PN
1

2
res .l

54

PR R RN WO ke TRy L y ~ - - AU -‘n L B)‘ JJ T, “ - d - LA e

INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilaticn listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly conpiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capacities of a
conmpiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of
units in a library--a compiler may refuse to compile a Class D test

and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the
test 1is <classified as inapplicable. If a Class D test compiles

successfully, it 1is self-checking and produces a PASSED or FAILED
message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, or
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled s~parately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat some compiler optimizations allowed
by the Ada Standard that would circumvent a test objective. The
procedure CHECK_FILE 1is wused to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of these units is checked by a set of
executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Chapter 1 Page 5 of 6

IO.

RN AT
r..

- r e F
’\. . l. l'

[
!

" n-",\

¥ PLILION
’ 5-':" :.I ':"-": L ”_-".» '/:','

[

A R

‘.""-.
*»

v e
L
.

v e

LA I
DAERENEY

€ .
’

. N
o N .
. st
A

l.l..'x A
A A AL SO A .,
. R T y

LSS
[Ph)

€ (v
el
u'/r_'

.’"f"f.'f' <
I. - - :

‘21 @

RN A R AR AT R AN AL R B L S T
B A N B AT S MR S iy

U T T

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonable portable without modification.
For example, the tests make wuse of only the basic set of 55
characters, contain lines with a maximum length of 72 characters, use
small numeric values, and place features that may not be sugported by
all implementations in separate tests. However, some tests contain
values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an
implementution is considered each time the implementation is
validated. A test that is inapp.icable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that
was determined to «contain for an illegal language construct or an
erroneous language construct 1is withdrawn from the ACVC and,
therefore, 1is not used in testing a compiler. The tests withdrawn at
the time of validation are given in Appendix D.

Chapter 1 Page 6 of 6

I i T T T o T S T S R N PRI P e e e e e e e e e
Pala P h Lo S ,_I_:_ l\-’..-_.lf_ A , 7 e e e e . .- . e T

A Y T N S Y P NV LV T T T T EIPN

SN A B R R T e e R o e "
AR PP A A A R, Y A P VI VRS, Ty o _a .‘L‘.":.‘_\A‘L...n.-'z. ..L...L.. ‘L.f:_..'n

Yoy oy :
PR
Teta e

v Y
P AU AN
e e et
LN

VAN @)
A .

BOANN
V'Y
l. " -. ’

¥
A
3y

}4..‘

h)
LA XA

P4 .\:’('\' v v)
YN

vl

ARAD

»-. -t
e

L' o

<’
A
h 3

»

y 5
Ay

¥
5

p -.-|' "{

-.:",
OIS]
KRR ¥

R A

a'e
v
2o

el
L

A
o

AR
ettt
LA
s 3

I\I
1]
[N NN

:

.\
o)
Cal
.,\
-~

.
o=
X N

'p's
'."'

n * :l .'o *
..,." :.‘ W

A
c LSS

NENEAS
e
. :'-‘l
.‘f'.'.ld

.A.
B A
)
B
P

G W 28 St A e 4 SR AR Tl Syl A 2 il e A S REALAIL AN AL 0 A N W Y W W d Wy e T A’ ALA NP g0 "
Gesd
WY
0
%
o
CN N
ENCN
o
N
CHAPTER 2 °
ey
e
CONFIGURATION INFORMATION TN
NS
A
2.1 CONFIGURATION TESTED A
N ce
-.':\
The candidate compilation system for this validation was tested under k;g
the following configuration:- o
Compiler: AlsyCOMP 013, Version 3.2 '..
LA
. . PN
ACVC Version: 1.9 N
l.’\
. . N \I
Certificate Number: £871210N1.09011 NN
DA
:h\.-
s Host Computer: KJ
Y,
Machine: IBM PC/AT NN
.\:5.
Operating System: PC/DOS N
Version 3.1 :%hl
L J
Memory Size: 640K (main) 4M (RAM disk) N
N,
Ry
Target Computer: N
Machine: IBM 370 3081K vy
o
Operating System: VM/SP CMS A
Version 3.1 N2
\'{-::
Memory Size: 1M VM e}
o>
'\'.r »”
Communications Network: Magnetic media R
_in
T
Ky
NS
Yo
'.":\:
SRS
o
Y45
L)

I

o

Chapter 2 Page 1 of 7

r,
-

Pl oV
[B

.’.l{.l

L
LA

R

o«

CONFIGURATION I1NFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specitically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

. Capacities.

The compiler <correctly processes tests containing 1loop
statements nested to 65 levels, block statements nested to
65 levels, and recursive procedures separately compiled as

subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests DS55A03A..H (8 tests), D56001B, D6400SE..G

(3 tests), and D29002K.)

. Universal integer calculations

An implementation is allowed to reject wuniversal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4AOO02A, D4A002B, D4AOCO4A, and D4AQ04B).

. Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, ©LONG FLOAT, in the package
STANDARD. (See tests B86001C and B86001D.)

. Based literals

An implementation is allowed to reject a based literal with
a value exceeding SYSTEM.MAX INT during compilation, or it
may raise NUMERIC_ERROR or CONSTRAINT ERROR during
execution. This implementation raises NUMERIC_ERROR during
execution. (See test E24101A.)

. Expression evaluation.
Apparently some default initialization enpressions for
record components are evaluated before any value is checked
to belong to a component's subtype. (See test C32117A.)

Chapter 2 Page 2 of 7

N T e L e T

o

~ LR N Y - - » « AT N P P |
S ST AR A,y N AN ‘z_:.-_*.r_‘. AL MO

LN BN]

‘..f

LY
22

il S
SN
LR

r

v

X

:‘;‘;‘;’J‘l

OO S,

P o gUIR)

)
 "»
.

e

<
PR NNXD.

)
A

PR}
.,

P s
DA
YATAYEY

o
L

5
el
A

-

iley
4

2es

7,5
Pd

l"‘l
“aas

YIS S
-'5{')"1{':1
TS

£
pod

v

o

o0
e
. ~u...
LSS,
MASRS
CONFIGURATION INFORMATION e
.':-,\
A
I’.->. “
Assignments for subtypes are performed with the same ®
precision as the base type. (See test C35712B.) s
A
S
This implementation uses no extra bits for extra precision. :ﬁx
This implementation uses all extra bits for extra range. :ﬂ?
(See Lest C35903A.) AY
Apparently NUMERIC ERROR is raised when an integer literal o
operand in a comparison or membership test is outside the e
range of the base type. (See test C45232A.) ?i;
Sometimes NUMERIC _ERROR 1is raised when a literal operand in fjﬁ
a fixed point comparison or membership test is outside the ®
range of the base type. (See test C45252A.) :g}\
SN
Apparently underflow is not gradual. (See tests jxgg
C45524A..Z.) e d
o0
I-':’f:~
L J
. Rounding. T
e
The method wused for rounding to 1integer 1is apparently {iﬁ
round away from zero. (See tests C46012A..Z.) ‘r{
A
The method used for rounding to 1longest integer is ®
apparently round away from zero. (See tests C46012A..Z.) x?k
SN
The method used for rounding to integer in static universal g;:‘
real expressions is apparently round away from zero. AN
(See test C4A014A.) i
.
. Array types. AN
e
I‘-. 'r
An implementation is allowed to raise NUMERIC_ERROR or ggi
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds NS
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this)
implementation: IR
. .._:.._:.
Declaration of an array type or subtype declaration with By
more than SYSTEM.MAX INT components raises NUMERIC_ERROR. O,
(See test C36003A.) ROt
_e.
No exception is raised when LENGTH is applied to an array SRS
type with INTEGER'LAST + 2 components. NUMERIC_ERROR 1is Rty
raised when an array tpe with INTEGER'LAST + 2 components AR
is declared. (See test .76202Aa.) RN
."_\':\
No exception is raised when 'LENGTH is applied to an array)
type with SYSTEM.MAX INT + 2 components. NUMERIC_ERROR is ﬁf;
s
Chapter 2 Page 3 of 7 O
\'.\':

< ot oy W Ay Py W ' . B I R N N A T T SR SN Sy)
N N EN TN, ARV '."\. ' %‘.'."- '\-'(-."'.\"-.- A A N N R A R TR RSN
N 8 Ll » L] v . L) £y -l 4 L) » A » » g

Y > - ey Py C Oy - et n
Y LY - - - e .. - R e N I PHEF SR R) . LS N Y . - e V. - - - % .

|
|
| N
LY.
| .
%
CONFIGURATION INFORMATION R
&‘.'l:_‘
raised when an array type with SYSTEM.MAX_TINT + 2 components ;&,
is declared. (See test C36202B.) P
. o
A packed BOOLEAN array havirg a ' LENGTH exceeding :hf
INTEGER'LAST raises NUMERTC ERROR when the array type is N
declared. (See test C52103X.) e
ot
A packed two-dimensicnal BOOLEAN array with more than g
INTEGER'LAST components raises NUMERIC_ERROR when the array A
type is declared. (See test C52104Y.) o
A null array with one dimension ¢f 1length greater than ?f;
INTEGER'LAST may raise NUMERIC _ERROR or CONSTRAINT_ ERROR
eitner when declared or assigned. Alternatively, an ®
implementation may accept the declaration. However, lengths A
must match in array slice assignments. This jimplementation 5ﬁ;
raises NUMERIC ERROR when the array type is declared. (See }g:
test E52103Y.) A
A
In assigning one-dimensional array types, the expression "m
appears to be evaluated in its entirety before }40
CONSTRAINT_ERROR is raised when checking whether the :@Q'
expression's subtype is compatible with the target's Ny
subtype. In assigning two-dimensional array types, the iﬁﬁ
expression does not appear to be evaluated in its entirety ~ad
before CONSTRAINT ERROR is raised when checking whether the o
expression's subtype is compatible with the target's hhel
subtype. (See test C52013A.) S
S
. Discriminated types. :i?
®
During compilation, an implementation is allowed to either e
accept or reject an incomplete type with discriminants that }au
is used in an access type definition with a compatible o
discriminant constraint. This implementation accepts such };'
subtype indications. (See test E38104A.) BN
o
In assigning record types with discriminants, the expression 7
appears to be evaluated in its entirety before H}h
CONSTRAINT ERROR is raised when checking whether the 7o)
expression's subtype is compatible with the target's IR
subtype. (See test C52013A.) e
. Aggregates. YR
X
P
In the evaluation of a multi-dimensional aggregate, all ?{
choices appear to be evaluated before checking against the e
index type. (See tests C43207A and C43207B.) I
In the evaluation of an aggregate containing subaggregates, LAY
not all choices are evaluated before being checked for O
identical bounds. (See test E43212B.) §$K
"
Chapter 2 Page 4 of 7 N

e e o P T

0P NN

AT S S

: .t ra kot AV AN Al 41 I . TSR TS v . ia ek o
NN VWY A R a0 2 0a A oigd Rl R Jigt e - Fa Wy OO LI OO W RS oVl ot oh, - WM WL W N T LN,

* %
[
A, Y

2%
o~
L]
LS
:'.'r."
CONFIGURATION INFORMATION X
0
All choices are evaluated before CONSTRAINT ERROR is raised ®
if a bound in a non-null range of a non-null aggregate does ro
not belong to an index subtype. (See test E43211B.) ity
fﬂ'_:.r
0
. Representation clauses. o
The Ada Standard does not require an implemern‘ation to iﬂ‘
support representation clauses. If a representati~n clause {5
is not supported, then the implementation must reject it. t}
o
Enumeration representation clauses containing noncontiguous e
values for enumeration types other than character and
boolean types are supported. (See tests C35502I..J. ~
C35502M..N. and A39005F.) g
Enumeration representation clauses containing noncontiguous g'ﬁ
values for character types are supported. (See tests N e
C355071..J, C35507M..N, and C55B16A.) ®
5.
Enumeration representation clauses for boolean types Hj
containing representational values other than (FALSE => O, ﬁi
TRUE => 1) are supported. (See tests (€35508I..J and Q;
C35508M..N.) '
Length clauses with SIZE specifications for enumeration %&
types are supported. (See test A39005B.) ¢R1
OO
Length clauses with STORAGE_SIZE specifications for access ;“
types are supported. (See tests A39005C and C87B62B.) ol
Length clauses with STORAGE SIZE specifications for task o
types are supported. (See tests A39005D and C87B62D.) %k
. . o . NN
Length clauses with SMALL specifications are supported. -~
(See tests A39005E and C87B62C.) NGO
L 3
Record representation clauses are supported to the byte A
level only. (See test A39005G.) oy
ol
Length clauses with SIZE specifications for derived integer EA,
types are supported. (See test C87B62A.) o
-
. Pragmas. i&ﬁ
.‘:-\
The pragma INLINE is supported for procedure and function o
calls from within a body. The pragma INLINE for function o
calls within a declaration is not supported. (See tests ®
LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.) A

Chapter 2 Page 5 of 7

e T L e, M, e S
LR PR s
ST AR ST AN I,

CONFIGURATION INFORMATION

Input/output.

The package SEQUENTIAL IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,

EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,
EE2401D, and EE2401G.)

Modes IN_FILE and OUT _FILE) are supported for
SEQUENTIAL IO. (See tests CE2102D and CE2102E.)

Modes IN_FILE, OUT _FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and
DIRECT_IO. (See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL IO and DIRECT_ IO. (See tests CE2106A and
CE2106B.)

Overwriting to a sequential file truncates the file to the
last element written. (See test CE2208B.)

An existing text file can be opened in OUT _FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE
node. (See test EE3102C.)

More than one internal file can be associated with each

external file for text I/0 for reading only. (See tests
CE2110B, CE2111D, CE3111A..E (5 tests), CE3114B, and
CE3115A.)

More than one internal file can be associated with each
external file for sequential I/0 for reading only. (See
tests CE2107A..D (4 tests) and CE2111D.)

More than one internal file can be associated with each
external file for direct I/0O for reading only. (See tests
CE2107E..I (5 tests) and CE2111H.)

Chapter 2 Page 6 of 7

o
-

1@y

Y LK

T
1]

~ " ¥
f)l|.¢gp

~
¢

"y
S ®

SN
5

EE i s |
SONNVTe

PR
5%

RO

RASAS
a_e

a
L]

(Al 4 Yy
A & & ¢

AL A

P

.
L4

A M

.
s

R 'l.".l‘, 'y .

ﬁ'i?“

B
e)

S A

-
.
.
-~
n
.
.
>
.

[
.

)
A

Ty g
»

*_Sav Sat ot ot e ¢a' . 4t Aat fat AL M) “$4% dat W N - i » -, .
L") W iy gt - \ ™\) J

CONFIGURATION INFORMATION

An external file associated with more than one internal
file cannot be deleted for SEQUENTIAL IO, DIRECT_IO, and
TEXT_IO. (See test CE2110B.))

Temporary sequential files are given names. Temporary
direct files are given names. Temporary files given names
are deleted when they are closed. (See tests CE2108A and
CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA20009C, BC3204C, and
BC3205D.)

Generic wunit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Chapter 2 Page 7 of 7

At R SN AT A G ‘-:,\.'N:,'\' TR G R N A S SR O AR L AR O
'\ & & - - n . v - s . N . (3 » s’ »! e/ » vl . . s N

O

-\\

Lo s
LARE
*

4

»

L
r
.D

‘o
LA ®

bﬁﬁé&?}
(NIl o

N
»
ﬁ"\,'

50

)
‘&

-

[y S AN
s
1":[.;".-

MR AL S S
&
[l d

'(.‘ﬂ.. ':{z

L A A A <

Y
PR
oty

e

S e .
L_BANIN

al

P XA

PAY

A
A
AL

4

v
fRX

'l
by

‘l I"“
@ L

4

- cu
H
¥

L " ".
{ﬂ"t, l{.l'

N .s—'x Yt e
.
A L'

'/

RN
: LA
oI 5{1.

3
\?.‘,'\ o
% N

pd

f‘f‘_'/'f PN
1@ s
s 5, -'A

KRR

«
[}

o7
P4

SRR
L3

3.1 TEST RESULTS

Modifications

objective.

RESULT

Passed
Failed
Inapplicable
Withdrawn

TOTAL

At the time of testing,
tests of which 25 had been withdrawn.
207 were determined to be
Not all of the inapplicable

CHAPTER 3

TEST INFORMATION

to the code,

TEST CLASS
A B C

108 1047 1657

0 0 0
2 4 198
3 2 19

113 1053 1874

3.2 SUMMARY OF TEST RESULTS BY CLASS

implementation were not
processing,
19 tests were required to successfully
(See section 3.6)

D E
17 15
0 0
0 3
0 1
17 19

Chapter 3 Page 1 of 6

N P S L

»

: \(\J“q“)"

Of the

inapplicable to this
tests were processed during testing;
145 executable tests that use floating-point precision exceeding
that supported by the

T e A P W W O W T W NI R O KT TR R,

version 1.9 of the ACVC comprised
remaining tests,
implementation.

demonstrate

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

TOTAL

L
46 2890
0 0]
0 207
0 25
46 3122

processed
or grading

IR P
ﬁﬂﬁﬁ#s'.

i)

Gt e w
LI
S

,:'-':\

«
., " S, .

'-',‘ /4@ \'.

N I)

%54
it

WL
S e _v’v.-_.\) '.\"‘,“f".\-'.I'_\.';'.'-'.’\J‘.‘J"‘)“}V‘f \-F‘-}

R P e TR 8

AU AL TR N T St UG X TR T RPN Y B O W X (¥ U ot fa?

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 13 14 TOTAL
Passed 193 516 564 245 166 98 141 327 135 36 234 3 232 2890
Failed 0 0 4] 0 0 0 0 0 0 0 0 0 0 0
Inapplicable 11 57 111 3 0 0 2 0 2 0 0] 0 21 207
Withdrawn 2 13 2 0 0 1 2 0] 0 0 2 1 2 25
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 25 tests were withdrawn from ACVC Version 1.9 at
the time of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35A03E C35A03R C37213H C37213J C37215C C37215E
C37215G C37215H c38102C C41402A C45614C A74106C
C85018B C87B04B CC1311B BC3105A AD1AO1A CE2401H
CE3208A

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an

implementation is considered each time a validation is attempted. A

test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subseguent attempt. For this
validation attempt, 207 tests were inapplicable for the reasons
indicated:

. A39005G. uses a record representation clause at the bit level.

This compiler only supports such clauses to the byte level.

Chapter 3 Page 2 of 6

) -.""(‘..-'i',;‘ ‘;. ~.'."'/ v’ .f -, -{;’lﬂf r 7 l'.‘ﬂ"."'i.l",\“' - ,\-1 $' ‘l v"d ‘{N' N .‘1 "" [y \‘ '\- r-'f

...........

N‘\'\Fﬁ s’x'\ N’.

Y

3 A

‘f l.—‘\-‘\).‘I"- ,r‘

-

AT

AOVLRAN

¥
»

R

‘.ﬁ's‘\.‘:ﬁ ‘.1' a l{

a£
.

<5

. s

.;‘-"'f’ii o

AR NN NN T

PR RN AP
2,
Mgty \

~

/{{(

“Ba® §y0 Be® B2t D2t Ba® gat Pad g 8i At Rt Rt e s ., - 1y

- A ls e Sl Bl Ak ks g o,
P et Sae R) AERT T atata T At e Y e Y

TEST INFORMATION

The following tests use LONG_INTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48 bit fixed
point base types which are not supported by this compiler.

C455310, C45531P, C(€455320, and C45532P use coarse 48 bit fixed
point base types which are not supported by this compiler.

B86001D & C45231D require a predefined numeric type other than
those defined by the Ada language in package STANDARD. There is
no such type for this implementation.

C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

BA2001E requires that duplicate names of subunits with a common
ancestor be detected at compilation time. This compiler
correctly detects the error at link time, and the AVO rules that
such behaviour is acceptable.

EA3004D This compiler only obeys the INLINE pragma from an Ada
statement within a body. This tests calls an INLINE function
within a declaration.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT IO with unconstrained array types and record types having
discriminants withcut defaults. These instantiations are
rejected by this compiler.

CE2108B and D attempt to open empty files created in CE2108A and
C respectively, but VM/SP CMS does not allow empty files, and so
these files do not exist after the latter two tests' completion.
The AVO ruled that this limitation is acceptable as per AI-00325.

CE2107B..E(4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,

CE2111H, CE3111B..E (4 tests), CE3114B, and CE3115A are
inapplicable because multiple internal files cannot be
associated with the same external file when one file is open for
writing. The proper exception is raised when multiple access is

attempted.

Chapter 3 Page 3 of 6

.............

ARER
P
RS
EAA A0

w
I.I‘
> -.

BRAL TIPS
YR
"% A

"‘ff
-ﬁf¢?€s¢ .
XA |
, H 55 "

T,
PN

*

ey b
P L%
Cygﬁ,.':'

L
!

"
v,
x5

ra

. RPN
e oo
. .

S

Y A
'.| II

PRI
AP

.
1

': .'; .'r'.'). ‘: ;
¢ 4@
_{245??

2
a2
o 30

t':;.;:
0

Y
l.{l /' ."

":‘ f‘ v
o

» l'll
-
Ve

4

5

Y

K3
N %
b
e

it

il
s’
e

» 4

Y

ey s TR ey o ey . a'e PIPCrEPY y " vy
Al e U T N L L ¥ v S N UV RO OV ROV W T Y N Y T R W N N WAV Y

-_,‘
‘.::
A
h"-
%
TEST INFORMATION :‘ﬂ_
. The following 159 tests require a floating-point accuracy that ol
exceeds the maximum of 18 digits supported by this v
implementation: e
‘, .\..:'
: C241130..Y (11 tests) C357050..Y (11 tests) g;-
} C357060..Y (11 tests) C357070..Y (11 tests) 5
C357080..Y (11 tests) €358020..Z (12 tests) Al
C452410..Y (11 tests) C453210..Y (11 tests) -8
C454210..Y (11 tests) C455210..2Z (12 tests) ‘,,::
C455240..Z (12 tests) C456210..2Z (12 tests) C:-..
C456410..Y (11 tests) C460120..2 (12 tests) *‘.;'_"_
oS
L
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS \:"
LY
It 1is expected that some tests will require modifications of ‘j,',
code, processing, or evaluation in order to compensate for N
legitimate implementation behaviour. Modification are made with K
the approval of the AVO, and are made in cases where legitimate 7T
implementation behaviour prevents the successful completion of an o
(otherwise) applicable test. Examples of such modifications o)y
include: adding a length clause to alter the default size of a ;ﬂi
collection; splitting a Class B test into sub-tests so that all o
errors are detected; and confirming that messages produced by an ®
executable test demonstrate conforming behaviour that wasn't RN
anticipated by the test (such as raising one exception instead of PO
another) . N
RS
Modification were required for 19 Class B tests. o
The following Class B tests were split because syntax errors at :_'\-:
one point resulted in the compiler not detecting other errors in '.-',\'}
the test: Ny
5
B24007A B24009A B25002A B26005A B27005A hANS
B32202A B32202B B32202C B33001A B37004A
B45102A B61012A B62001B B62001C B62001D :-
B91004A B95069A B95069B BC3205C ENX
3
Nt
O
o
BT
e
L)
.
e
Chapter 3 Page 4 0f 6 '.;2::
- R
T T AT T

. " N W
. N ORI I I IR
P V. P VRV DR I Y A PR S SRS SR IS

LR X3

3.7

; - BV e ety e gea gha §* 4 . . gy
e e S PR F KA AT RN R N W R m TN : WA A W L Call tab g gt S AR g AR A i L e g4

TEST INFORMATION

ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9
produced by the AlsyCOMP 013 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and
the compiler exhibited the expected behaviour on all inapplicable
tests.

3.7.2 Test Method

16 o R A T

Testing of the AlsyCOMP 013 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration
consisted of an IBM PC/AT operating under PC/DOS Version 3.1 host
and an IBM 370 3081K target operating under VM/SP CMS,
Version 3.1. The host and target computers were linked via
magnetic media.

A magnetic tape containing all tests was taken on-site by the

validation team for processing. Tests that make use of
implementation-specific values were customized before being written
to the magnetic tape. Tests requiring modifications during the

prevalidation testing were not included in their modified form
on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto
the host computer.

The magnetic tape was loaded onto a DEC VAX 750 running VMS wupon
which tests requiring to be split were modified. The test files
were then transferred, one chapter at a time, to the IBM PC/AT via
an ethernet connectiocn.

After the test files were loaded to disk, the full set of tests
was compiled and bound on the IBM PC/AT.

All object files and compilation output were transferred via
ethernet to the DEC VAX 750 where a magnetic tape in IBM compatible
format was produced which contained all the object files. The tape
was read onto a CMS mini disk on the target computer where the
object files were 1linked and executed. Run results were
transferred to a SUN 3/160 running UNIX BSD 4.2 via a SUN file
transfer program IBMFTP and then transferred to a DEC VAX 750 via
an ethernet connection. All test ouptut was printed from the VAX
750.

M A mar D Damen € ~& r

e Pl T T e AT T T A AT AT e
PRI EY TS N N NI ST N I

et
0

YA

NENCALY
.'-_S'h

rer

"
A

N

N
»

e e,

.
o, ".

v
e

A
LY

-:‘
<

b

bk
a
2L

n. 1‘

l.'t‘.l
[S NN

e
'l"'t)"'n v,
W)

AR APt
AN ’-_.\:- -"1"
P o l\l".l.'l:

S %

N)

T %

LI S Y I
rL el
LAl

.
@

s
«
«

8
s
AN

N
L 3

R

s
o

i,
'l"
LS

e N N
'i"r
a

veny
L W
RN,

M A

"

[}
LN
s

'-' ‘I"'. ol

L)

KT o]
A

(Y

YRR AR
Y

SR ALY

Ay e et R A e e e e e
!t{' RIS .f,.:"-‘.l’.f

i AN d TR A AR e b il e ek e ml ~o g - gn. < ga’ pac et " . . © Et ast At fat gt poc
fu Y LSl Wl G A Vol WL AP A N TR Tl W AP LT AP A TR L BTN AL SO I L o SNl oS SN S A 6" 2 N N R e A o NP~ oA i

TEST INFORMATION

The compiler was tested using command scripts provided by

Alsys Limited and reviewed by the validation team. The compiler
was tested using all default option settings except for the
following:
Option | Switch Effect
PAGE_LENGTH=45 Control length of compiler listing
pages.
PAGE_WIDTH=132 Control width of compiler listing
pages.
ERRORS=999 Control number of errors dctected

before compiler aborts

TEXT Include full source code in listing.

Tests were compiled, 1linked, and executed (as appropriate) using

three host computers and a single target computer. Test output,
compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the

validation team were also archived.

3.7.3 Test Site

The validation team arrived at Alsys Ltd, Partridre House,
Newtown Road, Henley on Thames on 7 December 1987 and departed
after testing was completed on 10 December 1987.

Chapter 3 Page 6 of 6

- -, P O T P S Sy T Pyt W TR LN LT T e e e e ™ N e L

S SRS YRGS

\\\\\

R Ce e IR K "..'f-’ . _.-., ,'.-'. - ’-‘_:" “ .,- .-,‘,. L)a® TR IR RN R LI R s I“.’*." ',’{
ST SRR TR S ST SN N, Sy S Sy I S S A A A M, S, oA GV L A, YV WSS A A SR

.*-, -

[

NN
o,
:sf_

Fele
[

v 'l’ﬁ"‘\eilw ;\"
NSO

N

LY

P A
'&)5‘.\'_'. o

L4
h S
PAEA

&

\{N

D

L Y
'y Y % .i.:i‘.

SR

LINS

oy

e .
L
AR A

A

..l

P XA
Mt
P X4

Ll

Y
227207,

)

LI A AL
h)

',l
~

Ta *s Wb
PP
7e @

.
]

NN N 2 T e Jul I
I N A RIS A
'7,~’5 ‘r’.' e .] "1 "l"’l :\

7’
a

o
.

A
AR

PV SN L
'

s

'-'4"

. (.
'.’
2

, A, 0.
-

T,
LSS

” s
o
4 SN N

P
e

5
)

PRV
"
T

racyrcer il o . e o s
-.-. P X A o0 LA : \A‘--%-u\
s O @Sy,

APPENDIX A

CONFORMANCE STATEMENT

-

P

2 T s
A [N NS w\ »\V\ 2 PA AP A (A A g g g s,
II Il A o\‘\h \‘\h lil\..v\.. s .5 f 0. .. ’*' N‘fll"%"~“- \l&’p .. -‘.‘--.\-...* ‘* V .‘. . " , { ‘et I . " - ’ a . " X

conformance

the AlsyCOMP 013

Limited has submitted the following
concerning

Alsys
statement

A4

X A A A AP AN R KX A A A

LN

NS LA S LR RN (Nl

nl

RGNS

[\"‘

»

Appendix A Page 1 of 3

CONFORMANCE STATEMENT
DECLARATION OF CONFORMANCE
Compiler Implementor: Alsys Limited
Ada Validation Facility: The National Computing Centre Ltd

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: AlsyCOMP_013 Version: 3.2
Host Architecture : IBM PC/AT OS&VER : PC/DOS 3.1
Target Architecture : IBM 370 3081K OS&VER : VM/SP CMS 3.1

Implementor's Declaration

I, the undersigned, representing Alsys Limited, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that Alsys
Limited is the owner of record of the Ada language compiler(s) listed
above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations
for Ada language compiler(s) listed in this declaration shall be made
only in the owner's corporate name. '
s

‘ K z
L N |
\kC*AS\\ Date:
ALSYS Limitad °
M L J Jordan, Marketing Director

*Ada 1is a registered trademark of the United States Government
(Ada Joint Program Office)

Appendix A Page 2 0f 3

A LAV RN AY

| S0t 00 SV LR R 1St et 1 Sgt S gk ot Sal Satetad Suk Sl bas it WA SRS ul ALt 0 byt sp gy tok Seteipil ol ke gt pd e ate Aoty b g e st diie phe gie sl st Mu St sra b s Tt e e bt e

o e e e e e e A Y o B A AT e P e S e e T e e e e e e e S A A o
I o 3) A N o R oy X Aa R l' » LR BT e % 2 ." a \.\-

g

L 'y
:.,.f n"

1550 S5

- 3w 8 =
L LSS
SRR

AL e R

~

o ’;‘:}"

AN NN
Tt
Q%lesm

ALSNCALALN
PP

y\

S

he '3
3

., -

e B l,
,\‘, '..]

L'

J\f\-\v'-] Lo A S
FATNIRRL R M
LA tasi%w(

}‘.f

h e -
W e, @

CONFORMANCE STATEMENT

—

Owner's Declaration

I, the undersigned, representing Alsys Ltd, take full responsibility
for implemertation and maintenance of the Ada compiler(s) 1listed
above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I
declare that all of the Ada language compilers 1listed, and their
host/target performance are in compliance with the Ada Language
ANSI/MIL—STP—1815A.

\\\\~\\~{;. ff/r”
N S Date: A

Alsys Limited
M L J Jordan, Marketing Director

Ny

.
1

'
5

Lol@

f}fﬁ?;

Iy

“sTr"a # A
S

P AN
s v

4
H%%Y

et
T

',“',",-;f.
i

s

cgy a4
:'n'-l ’
2

LS

ey

R
P
s e

v
. a

o,

[
a_t

ENENT
l‘l

LA R
Sl

Y

e ™)

vy
'b‘-‘.%'s\l\ 8,

Appendix A Page 3 0f 3

SN | -“."‘
A

SR A AT N
Pl i Al

P T T S i At e e L I e
T L A 2 A N

-

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation~dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP_013,
version 3.2 are described in the following sections which discuss
topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A4). Implementation-specific portions of the
package STANDARD are also included in this appendix.

Appendix B Page 1 of 1

e amm T aT e AR a s At A Aa Tt n g N A m e s o e e e v e - L N
S s VL N P P RN SR A AT AT T w’__(.‘-r\‘r\
A o .. - w' -) L) ! L . 3 . B . '» .

A

T R e T T a T a At et
A o -_‘.‘ -‘_- "h..\-. R

Ll Nall

r‘“&-f-"f-"’.‘i'.\'.‘-'f"-"l'\ LS ERL L REAAALADASAIACIE AL LA A SN =7 aUEa NSNS AR A A At e it RStiet RA SA LA AR AK A e TR LTS o T8
\)

‘f!’?‘('x":f":'
2

Y\

oN

L 4

1]
-

»
X
[y

v B _E_» v w
LN
e @

.
£

b

L W
A

T,

PR ot R e
& \""\“
44 N e

2l s

g e o

.
hY
v

:{"
e .

)
Yy " e
’ .

soa
r
-' " I'
£y L

W R

e

3

’

4
LI

A,
\
RN
5

I‘:'l
7

_.
@
e

“r %
.t'ftJ
PAPLL

1‘5‘.‘7

ﬁ..
YL,

[d

r
13

 ATN 14,000,010 6.0 9,000 000 ¥ 8 ualt o 4 o ’ -31s Boa-Nou- i Die B Bae hia-ga =

Alsys IBM 370 Ada" Compiler

Appendix F
Implementation - Dependent Characteristics
for VM/CMS

) L& LAEAR

.

Version 3.2

Alsys S.A.
29. Avenue de Versailles
78170 La Celle St. Cloud, France

Alsys Inc.
1432 Main Street
Waltham, MA 02154, U.S.A.

o
kY
)
-
Ky
-

L7
~

Y

~

\
t

Alsys Ltd.
Partridge House, Newtown Road
Henley-on-Thames,
Oxfordshire RG9 IEN, UK.

.’1 (1 {1“—',

vy
Ad [

&

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

=)

R e T L At R Y LT L S I N R e N I I I Ll T LA T, ¢
L N T T S N AT AR o T \._.'J'.‘ '\. \‘\" SRS AN

L2t A M A e AN AN 0TS RS M 1 S A A A L MC AR A B Ba b) R A bR L B ¢

o

b N

Printed: November 1987

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine
whether such changes have been made.

e e e D e o 1 e Pt e P T e S S e e e

A o hlin-hilt 14} »

X
Wls

“
v

[%Y ,5 N Y
.
e T v
['s

7

1
1
[]

<

s

o = '-.-.v.-,*.-.&l
P AR

A . ':"-‘.';'1'35 ‘

IR

v,
RN

PPN

-)
AP’
AN

.

.'ﬂ"'i"
” 'l o
L) s,

o

..,,
LY ‘. i
7

ey

)
’y

)
.‘I‘:‘

'l
<2

e

L4

N
KA
5 e,
LA

4 ¢

7

AN
IR

“t
@

R
o, 4, 4,
R

Lt ¢ s LA
)

."‘. .
* lA ¥

{"II ‘S"nl'v
(LA s

)

4

. - .
AP

- ~ LR e - - - - - - - - - - - - L 53 - ~ g - - - - - - hd - - - - LAY -
"..-."',I'I'f ','r"a'.-’z;".-"‘.r".r.r}w f-' " . ' -r\d" 3“"" \ 5.!"' N "‘\ T

PREFACE

This Alsys IBM 370 Ada Compiler Appendix F is for programmers, software
engineers, project managers, educators and students who want to develop an Ada
program for any IBM System/370 processor that runs VM/CMS.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, February 1983 (throughout this appendix,
citations in square brackets refer to this manual). It assumes that the user is already
familiar with the CMS operating system, and has access to the following IBM
documents:

CMS User Guide, Release 3, SC19-6210
CMS Command and Macro Reference, Release 3, SC19-6209

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 i

IR
. PN

'3

SO

~

-
r.
L

L
hY
oy

L
z'.'ﬂ ~
A

I‘
A

o, Ll
X 5%
i
ﬂ-'--

o
i

WALy
Wi
S

R .(""
%

o [

e e s .
,l Jl..':,l::}‘ 4" o e
1_x ', ", ". "

ay
vt

L
v

s .
Wl s
L -

l'-‘qv.j.‘..'.
T

Al
.

y) e
,.' »

1 %y
.

PR
.l.ll
P
i 2

" ‘l

.

P4
’

e

SRS
o~ ’,fl.(‘.{l:'st‘: '

o

)
- ’1_

’S
. < .,
L4

>

ClrlL S
e
LRt
- o

0

AANN
Ny
x

)

4

%3

> e gae yav

Bl s A e L i e et

TABLE OF CONTENTS

APPENDIX F

1 Implementation-Dependent Pragmas
1.1 INTERFACE
Calling Conventions
Parameter-Passing Conventions
Parameter Representations
Restrictions on Interfaced Subprograms
1.2 INTERFACE_NAME
1.3 Other Pragmas
2 Implementation-Dependent Attributes
3 Specification of the Package SYSTEM
4 Restrictions on Representatinn Clauses
5 Conventions for Implementation-Generated Names
6 Address Clauses
7 Restrictions on Unchecked Conversions

8 Input-Output Packages

8.1 Specifying External Files
Files
FORM Parameter
STANDARD_INPUT and STANDARD_QOUTPUT

8.2 USE_ERROR

8.3 Text Terminators

8.4 EBCDIC and ASCII

8.5 Characteristics of disk files
TEXT_10
SEQUENTIAL 10O
DIRECT_IO

9 Characteristics of Numeric Types
9.1 Integer Types
9.2 Floating Point Type Attributes
SHORT_FLOAT
FLOAT
LONG_FLOAT
9.3 Attributes of Type DURATION

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2

SRS AN s

» gR]

AL

b

NN W WN ——

10

10

10
10
10
11
14
15
15
16

-
&

25
26
26

-
<

26
27
27
27
28
28

i

NN
A0

"l\
' .

C Y w e e
« 1t
y

(3
]

(s
Al
>~

Pt
-
- roie

X

2
» “1 [}
V'@ n

e,
MY
A

(KN :;':.;’. ?‘.f"-’.
,...ll :" [y - Ly

IR A i

D
)

fa
& A A

o 4

S
¥ a i
N

2

¥,
»

7,

'v‘,'- “
8%
2pte

lg.
13

¥
‘

ras
.",v'..

. aw v
l.\..l‘.l

'y "
' 1'.0’

L Y
e
Pt

‘p0

PN
L] £]
'1‘..‘ l.. l\'l' N

e

,'-\.".(' '
LA
Y '_-’,',

oA

I.’

.(.]‘-.

{
RLAX
- '\",
e

S

>'(-. . ~J“q"‘)'--,“-)"“"..;-'" _v*-'_:.’ A ,.-'-_-.':“..-'_ -,-'.-J.\).t)..-*:._-'\.\“-"\)'-..(- -’-*:f NN,
59,850 N% §% N | .49 8% .| A A 2 AmlataNhl alilel) Ak Ba X alala,

.
>
-
*
.
.
.
X
(3
-
(3
L3
-
-
4
»
L3
L]
-
%
€
Y
R s
| MAAR
PN

- %
> g
335_*!

10 Other Implementation-Depcndent Characteristics 2S
10.1 Characteristics of the Heap 2
10.2 Characteristics of Tasks 28
10.3 Definition of a Main Program 29
10.4 Ordering of Compilation Units 29

10.5 Package SYSTEM_ENVIRONMENT 29

=
A

»

%:j&; . .‘-_

~
x
X %

11 Limitations 32
11.1 Compiler Limitations 32

Yo

»

V¢
b

?, ’L:.lll" ’
PR

He

331.
P
® LN

YN

PR A
[s

.= 8 .
r %
LAY
.W"
l{'

CEYSEN
I'd
if'k'-.'v‘;- ‘\-}'x *

AR
Pt
7

XY NEL
[NS
ey

s
L'
4
LK)

5

GnAl ALY
"’I. &
Ih ﬂ{f’

a1

el
o T
> bb <

hS
&L

-"'T

1
.

iﬁ'y

o,
>y

o~

5
‘

%

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, Version 3.2 i

it
’

50
:‘{ I,l ,-
X0

P2

Y YT " " e YRTTYCTRY PTRPTTI e o Ty — .
RO A POV R AR IO AP N O e R RN ® NV PRV X Y W WV W W™ L W VL WV S el S AN Sl eh el A ek Sl S AP ..

PPN

Y
LAY
D)
L N
G
l"$ "
&
ALY
[
;-C'" J
Appendix F Qv-r’l.
i;‘l'
. - o A
Implementation-Dependent Characteristics 5
This appendix summarises the implementation-dependent characteristics of the Alsys ‘..:';:_
IBM 370 Ada Compiler for VM/CMS. oo
i
)
. . . o, "
The sections of this appendix are as follows: LIS
1. The form, allowed places, and effect of every implementation-dependent A
pragma. f::". .
S
2. The name and type of every implementation-dependent attribute. ‘;_“;. }
3. The specification of the package SYSTEM. .-‘\'.-]
4. The list of all restrictions on representation clauses. o
5. The conventions used for any implementation-generated names denoting ::_‘:-‘,:
implementation-dependent components. B
R EA
6. The interpretation of expressions that appear in address clauses, including NN
those for interrupts. SN
.. . ®
7. Any restrictions on unchecked conversions. NGy
g
8. Any implementation-dependent characteristics of the input-output ‘\
packages. _sj.'\-j.
9. Characteristics of numeric types. };
10. Other implementation~dependent characteristics. V\.\
o
11. Compiler limitations. :-l._f
LN
>
The name Ada Run-Time Executive refers to the run-time library routines provided ?Q-"\ '
for all Ada programs. These routines implement the Ada heap, exceptions, tasking, ;}\

10, and other utility functions.

1 Implementation-Dependent Pragmas

Ada programs can interface with subprograms written in assembler or other
languages through the use of the predefined pragma INTERFACE [13.9] and the
implementation-defined pragma INTERFACE_NAME.

1.1 INTERFACE

Pragma INTERFACE specifies the name of an interfaced subprogram and the name
of the programming language for which calling and parameter passing conventions

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 !
B e i T R A N T A T TPy AP ST St e e A R

@

B

- e

o gl S

(N Y N

u

L]

L]

A e i A R T R R R S R
= ! B e’ & w’ Ad ha! o &) d ! ! 2 ! -) 5 & »

ad®

R R R RO LS “atath a\a'yta afat it v

v TNy - . AN e L
A SR T W Sab Ml el Fubat gl i Rie (Ve)¥a) Py

will be generated. Pragma INTERFACE takes the form specified in the Reference
Manual:

pragma INTERFACE (language name, subprogram _name);,

where

s language name is the name of the other language whose calling and
parameter passing conventions are to be used.

s subprogram_name is the name used within the Ada program to refer to
the interfaced subprogram.

The only language name currently accepted by pragma INTERFACE s
ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond
to the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use. ASSEMBLER is used to refer to the standard
IBM 370 caliing and parameter passing conventions. The programmer can use the
language name ASSEMBLER to interface Ada subprograms with subroutines written
in any language that follows the standard IBM 370 calling conventions.

Calling Conventions

The contents of the general purpose registers 12 and 13 must be left unchanged by
the call. On entry to the subprogram, register 13 contains the address of a register
save area provided by the caller.

Registers 15 and 14 contain the entry point address and return address respectively,
of the called subprogram.

The Ada Run-Time Executive treats any interruption occurring during the execution
of the body of the subprogram as an exception being raised at the point of call of
the subprogram. The exception raised following a program interruption in interfaced
code is a NUMERIC _ERROR for the following cases:

Fixed-pt overflow *
Fixed-pt divide
Decimal overflow *
Decimal divide
Exponent overfiow
Exponent underflow *
Significance *
Floating-pt divide

In other cases, PROGRAM__ERROR is raised. The classes of interruptions marked
with an asterisk (*) may be masked by setting the program mask. Note that the
program mask should be restored to its original value before returning to Ada code.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 2

LI I U I N e ey T, e, [S Y . . -

Cy XMWV

>

- -.'r“‘ -y

. .
Te¥s®

>N

T S w e

LSNP

3 R PR

R >

3 AP N ANy

T T o o To o T J¥ g

ywy paly? ey 0 e P - avak gl - g\ § .
1000 A AN U oTh oV N S LT KWy ¥ iAW T T T a T (T LR R S A

Parameter-Passing Conventions

On entry to the subprogram, register | contains the address of a parameter address
list. Each word in this list is an address corresponding to a parameter. The last
word in the list has its bit 0 (sign bit) set.

For actual parameters which are literal values, the address is that of a copy of the
value of the parameter; for all other parameters it is the address of the parameter
object. Interfaced subprograms have no notion of parameter modes: hence
parameters whose addresses are passed are not protected from modification by the
interfaced subprogram, even though they may be formaily declared to be of mode in.

If the subprogram is a function, on exit register 0 is used to return the result. Scalar
values are returned in register 0. Non-scalar values are returned by address in
register 0.

No consistency checking is performed between the subprogram parameters declared
in Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer’s responsibility to ensure correct access to the parameters.

An example of an interfaced subprogram is:

* 64-bit integer addition: use an array rather than a record to
* represent the integer so as not to rely on record ordering if the
* components are accessed in Ada.
*
* type DOUBLE is array (1..2) of INTEGER;
* procedure ADD (LEFT, RIGHT : in DOUBLE;
* RESULT : out DOUBLE);
ADD CSECT
USING ADD,I15
STM 2,6,12(13)
L 2,0(1) Address of LEFT
LM 3,4,0(2) Value of LEFT
L 2,4(1) Address of RIGHT
AL 4,4(2) Add low-order components (no interruption)
BC 12,81 Branch if no carry
A 3,=FI" Add carry (NUMERIC_ERROR possible)
S A 3,0(2) Add high-order (NUMERIC__ERROR possible)
L 2,8(1) Address of RESULT

STM 3,4,002) Value of result
LM 2,6,12(13)

BR 14

LTORG

DROP

END

Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram.

Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS, Version 3.2 3

4
[}
RS
h)

Sy,
o

LR

a:_{.'

LY
s I

s
b

=
A2

'l‘
’

P X R
NN Y A
Pl ety

.

Vil

e

.M,
s
LSRN

A

LA
..-.
s
s
Integer Types [3.5.4) -:-:';.:
Ada integer types occupy 16 (SHORT_INTEGER) or 32 (INTEGER) bits. An :_’-;:‘:
INTEGER subtype falling within the range of SHORT INTEGER is implemented as A
a SHORT_INTEGER in 16 bits. P
e
)
o3
Enumeration Tvpes [3.5.1] y
Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The
first literal in the list corresponds to a value of zero.
Enumeration types with 256 elements or fewer are represented in 8 bits, those with
more than 256 elements in 16 bits. The maximum number of values an enumeration N
type can include is 65536 (2**16). @
bty
The Ada predefined type CHARACTER [3.5.2] is represented in 8 bits, using the f-l't.-
standard ASCII codes [C]. ,f}f.
Y
s
Fioating Point Tvypes [3.5.7, 3.5.8]
Ada floating-point values occupy 32 (SHORT_FLOAT), 64 (FLOAT) or 128
(LONG_FLOAT) bits, and are held in IBM 370 (short, long or extended floating
point) format.
Fixed Point Tvypes {3.5.9, 3.5.10]
Ada fixed-point types are managed by the Compiler as the product of a signed
mantissa and a constant small. The mantissa is implemented as a 16 or 32 bit
integer value. Small is a compile-time quantity which is the power of two equal or
immediately inferior to the delta specified in the declaration of the type.
The attribute MANTISSA is defined as the smallest number such that:
2 ** MANTISSA >= max (abs (upper_bound), abs (lower__bound)) / small
The size of a fixed point type is:
MANTISSA Size
1..15 16 bits
16 .. 31 32 bits
Fixed point types requiring a MANTISSA greater than 31 are not supported.
Access Types [3.8]
Values of access types are represented internally by the 31-bit address of the .
designated object held in a 32 bit word. Users should not alter the bits of this word, e

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 4 N
Y

[RJYA

L e e e M Y W R R P H T N 108 A R A A AN AR M R R A ol Sa T AR

which are ignored by the architecture on which the program is running. The value
sero s used to represent noll

Arrav_Tvypes [3.6]

Ada arravs are passed by reference; the value passed is the address of the first
element of the array. When an array 1s passed as a parameter to an interfaced
subprogram, the usual consistency checking betwecen the array bounds declared in the
calling program and the subprogram is not enforced. It is the programmer's
responsibility to ensure that the subprogram does not violate the bounds of the array.

Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same
way: the address of the [irst character in the string is passed. Elements of a string
are represented in 8 bits, using the standard ASCII codes.

Record Tvpes [3.7])

Ada records are passed by reference, by passing the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a four-byte boundary). If a record contains discriminants or
components having a dynamic size, implicit components may be added to the record.
Thus the exact internal structure of the record in memory may not be inferred
directly from its Ada declaration.

Restrictions on Interfaced Subprograms

The Ada Run-Time Executive uses the SPIE (SVC 14) macro. Interfaced
subprograms should avoid use of this facility, or else restore interruption processing
to its original state before returning to the Ada program. Failure to do so may lead
to unpredictable results.

Similarly, interfaced subprograms must not change the program mask in the Program
Status Word (PSW) of the machine without restoring it before returning.

1.2 INTERFACE NAME

Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACE_NAME is not used, then the two names are assumed to be identical.

This pragma takes the form

pragma INTERFACE NAME (subprogram_name, string _literal),

where
« subprogram_name is the name used within the Ada program to refer to
the interfaced subprogram.
Alsvs IBM 370 Ada Compiler. Appendix F for VM /CMS. Version 3.2 S

N IR R N A P L - . - N o

-- 3 e “y Tats e - - LR S N I -_--.- " ‘_.-A"-‘_.'{: ‘.'(\‘«.“ -‘_’-
M R N AT S S I e 1oy .e:.-".r}‘\.\b;\;m:\t}z‘.n“g:ﬂk}e\ﬂ‘ ‘A‘S&A&l}ﬂ“i‘rkl N

R
i AP

e
A

A
s

oy

-

e

-

.
. .
'\

-
N

x

Y
\" 'i‘ ':
)

Sy

Ve
.

>

TSN
v 1‘,-/ v, *,
'y s

0§ 5a0 Sl et Asd ML TR tag ta Y ek ta Eat T B AT glet §0a g ta gl gt RUa R o So At mdt et y rah oy "Rt Bl it gat gt g ¥ ot gat bt et Ao . ggt

o N

N
(3

O
]

e

-

X;

o string _lieral is the name by which the interlaced subprogram is referred
to at link-time.

ey
E‘.'t)"n{
Y55

[

o,

The use of INTERFACE NAME 1s optional, and is not needed if a subprogram has
the same name in Ada as in the language of origin. It is useful, for example, if the
name of the subprogram in its original language contains characters that are not
permitted in Ada identifiers. Ada identifiers can contain only letters, digits and
underscores, whereas the IBM 370 linkage editor/loader allows external names to
contain other characters, e.g. the plus or minus sign. These characters can be
specified in the string_literal argument of the pracma INTERFACE_NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program
as the pragma INTERFACE [13.9]. However, the pragma INTERFACE_NAME
must always occur after the pragma INTERFACE declaration for the interfaced

» -._‘n
subprogram. ron
. . . . [
In order to conform to the naming conventions of the IBM 370 linkage editor/loader, 3
the link-time name of an interfaced subprogram will be truncated to 8 characters ;-.""_,-.
and converted to upper case. T
.r,;.»"
oy
ey
.
AP
e
~
Example ,'.:,-::
NN
27
package SAMPLE_DATA is ® '
function SAMPLE_DEVICE (X : INTEGER) return INTEGER,; e
function PROCESS_ _SAMPLE (X : INTEGER) return INTEGER; G
ptivate :’.::-’:_ :
pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE}; :.: .
pragma INTERFACE (ASSEMBLER, PROCESS_SAMPLE); I
pragma INTERFACE_NAME (PROCESS_SAMPLE, "PSAMPLE"}; -
end SAMPLE_DATA; .“r'. 9
.__:.-_,)
."_?.}
1.3 Other Pragmas IR
AN
,_-‘\J'-

No other implementation-dependent pragmas are supported in the current version of
this compiler.

2 Implementation-Dependent Attribi es
In a addition to the Representation Attributes of [13.7.2] and [13.7.3], there are the
four attributes listed in section 5 (Conventions for Implementation-Generated

Names), for use in record representation clauses. There also exists the restrictions
given below on the use of the ADDRESS attribute.

Alsys 1BM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 6

P P o tama" P I U P
) .‘..‘/\f\-’~f.‘f..fﬂ “" A ‘;\'.n.'l, [e ‘.’\ :'\ .‘--_-}'\:::'- LAY '-L‘.L

L)

Sy Aaioe t et oied it st it gt St gt s S0 0yt gt RSt A 08 0 1808 0404 My 020 A v ASaA SRR AN A e

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all pretixes that have meaningful
addresses. The following entries do not have meaningful addresses and will therefore
cause a compilation error if used as prefix to address:

=« A constant that is implemented as an immediate value i.c., does not have
any space allocated for it.

= A package specifiaction that is not a library unit.

a A package body that is not a library unit or subunit.
3 Specification of the Package SYSTEM

package SYSTEM is
type NAME is (IBM_370);

SYSTEM__NAME : constant NAME := NAME'FIRST;,
MIN_INT : constant := -(2**31);

MAX_INT : constant .= 2**31-1;
MEMORY_SIZE : constant := 2**24;

type ADDRESS is range MIN_INT .. MAX_INT;

STORAGE_UNIT : constant := 8;
MAX_DIGITS : constant := 18;
MAX_MANTISSA : constant := 381;
FINE_DELTA : constant := 2#1.0#e-31;
TICK : constant := 0.01;
NULL_ADDRESS : constant ADDRESS := 0,

subtype PRIORITY is INTEGER range 1 .. 10;

-- These subprograms are provided to perform
-- READ/WRITE operations 1. memory.

generic
type ELEMENT _TYPE is private;
function FETCH (FROM : ADDRESS) return ELEMENT _TYPE;

generic
type ELEMENT_TYPE is private;
procedure STORE (INTO : ADDRESS; OBJECT : ELEMENT_TYPE);

end SYSTEM;
The generic function FETCH may be used to read data objects from given addresses

in store. The generic procedure STORE may be used to write data objects to given
addresses in store.

Alsys I1BM 370 Ada Compiler. Appendix F for VM /CAMS. Version 3.2 7

e

e e o T s e T e e L i e ol TR e

T Y. . Ly a0 afS

VN
PP ER
* .l.l -

iy

R T TR
PR B
N SR
IR I I

t

oY

O s
<
)s:-

e X e
Hﬁ?ﬁ*

.
LAL LA
S e A
NN SN

[\
‘24

o
.
[

“ele

Lt}

s
"I‘l

l.l’

i 3 e]
BT
L
P A AR

i

P LR

.
'v’!II/l{“
PR LE

{'.l 'l
vrlel
vele

«

4 Restrictions on Representation Clauses
This version of the Alsyvs IBM 370 Ada Compiler supporls rep entation clauses
[13.1] with the following excepliuns:

a There is no bit lesel implementation for any of the representation
clauses.

s Address clauses are not supported.
s Change of representation for RECORD types are not implemented.

s Machine code insertions are not supported.

s« For the length clause:

~ Size specification: T'SIZE is not implemented for types declared
in a generic unit,.

N - Specification of small for a fixed point type: T'SMALL is
> restricted to a power of 2, and the absolute value of the
. exponent must be less than 3].

« The Enumeration Clause is not allowed if there is a range constraint on
the parent subtype.

:_ s The Record Clause is not allowed for a derived record type.

» The pragma PACK [13.1] is also not supported. However, its presence in
- a program does not in itself make the program illegal; the Compiler will
simply issue a warning message and ignore the pragma.

: 5 Conventions for Implementation-Generated Names
h Special record components are introduced by the compiler for certain record type
) definitions. Such record components are implementation-dependent: they are used
" by the compiler to improve the quality of the generated code for certain operations

on the record types. The existence of these components is established by the
compiler depending on implementation-dependent criteria. Attributes have been
defined for referring to them in record representation clauses. An error message 1s
1ssued by the compiler if the user refers tc implementation-dependent attribute that
does not exist. If the implementation-dependent component exists, the compiler
checks that the storage location specified in the component clause is compatible with
. the treatment of this component and the stoarge locations of other components. An
: error message is issued if this check fails.

There are four such attributes:

Alsys IBM 370 Ada Compiler. Appendix F for VA /CMS. Version 3.2 8

NP . T .
A A RO NS -“\'r - Lo
A ;

SR
2t e 2t e S

T g L

e .

4 °

% %3

1

14

. v
8

"" [ik i]

P SASS

. .-
L)
% S

AN

-
o

(LR
r

"

VST CAASEALMT N NS NSNS N

)

5

LAAAR

.

. e im ate Al o P Y —ava: ey " adh
"'."\'" w - -.““)-f.'.ﬁl. al o Lol B

T'RECORD_SIZE For a prefix T that denotes a record type. This
attribute refers to the record component introduced by
the compiler in a record to store the size of the record
object. This component exists for objects of a record
type with defaulted discriminants when the sizes of the
record objects depend on the values of the
discriminants.

T'VARIENT _INDEX For a prefix T that denotes a record type. This
attribute refers to the record component introduced by
the compiler in a record to assist in the efficient
implementation of discriminant checks. This
component exists for objects of a record type with
variant type.

C'ARRAY_DESCRIPTOR For a prefix C that denotes a record component
of array type whose component subtype definition
depends on discriminants. This attribute refers to the
record component introduced by the compiler in a
record to store information on subtypes of components
that depend on discriminants.

C’'RECORD_DESCRIPTOR For a prefix C that denotes a record component
of record type whose component subtype definiticn
depends on discriminants. This attribute refers to the
record component introduced by the compiler in a
record to store information on subtypes of components
that depend on discriminants.

There are four implementation-generated names:

RECORD_SIZE This is an implementation-specific record component.
The component is introduced by the compiler in a
record to store the size of the record object.

VARIANT INDEX This is an implementation-specific record component.
The component is introduced by the compiler in a
record to assist in the efficient implementation of
discriminant checks.

ARRAY_ DESCRIPTIOR and RECORD__DESCRIPTOR Array and record
descriptors are internal components which are used by
the compiler to store information on subtypes or record
components that depend upon discriminants.

Array descriptors are used for record components of
array types, whereas record descriptors are used for
record components of record types

Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS, Version 3.2 9

Y
y
h)

"c” 4 % Y

] .'-l")\
AN >

.
(A

[] ~"~
AR

"G Y

«
s v e

v e

LR
LIF ARV AR
LAY

2 e

4 ®

Y N Y
e YA
YA

.
'@ 7

.l'\n'\::'.""-:";"".1’
LS T
PN

.

.
.

N

AN

3

T TSN
".‘-f.‘lb };’ r'("""r'- [
A
- -

LRSI

-
L3
']

A r VT t.“ 3
- A SRR e il T)
NIANINN,

N
o e

’.
»

R LA AN A A S O A AR NI A A A o I

6

Address Clauses

Address clauses [13.5] are not supported in this version of the Alsys IBM 370 Ada
Compiler.

7 Restrictions on Unchecked Conversions

Unchecked conversions [13.10.2] are allowed only between types which have the
same value for their 'SIZE attribute.

8

The predefined input-output packages SEQUENTIAL 10 [14.2.3], DIRECT_IO
{14.2.5], and TEXT_IO [14.3.10] are implemented as described in the Language
Reference Manual, as is the package 10 _EXCEPTIONS [14.5],. which specifies the
exceptions that can be raised by the predefined input-output packages.

Input-Output Packages

The package LOW_LEVEL IO [14.6], which is concerned with low-level machine-
dependent input-output, has not been implemented.

8.1 Specifying External Files

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.1]
may represent a CMS file name or DDNAME specified using a FILEDEF command.

Files

The syntax of a CMS file name as specified in the Ada NAME parameter is as
follows:

filename == fn [ft [fm]] |

%ddname

where

Alsys IBM 370 Ada Compiler. Appendix F for VM /CMS, Version 3.2 10

N N
RGEN TS VRN

v U te T LR Sl IR AL 2 Rt S I R S, Y
- T e e e P e e e e e e e

SRR R R I T
P U RS s W W "W P VAP VO R RN, VD I St TR YO U, R 00 W TR W W R 1,

’ ~{.- .--’.-
A NS AP LS A .

e 'f)

e

o

\
.:v'

AN
L

ie

s

5

AL
AN

ay

= ‘.(‘ fl.f'.f [&
YR
L ISR

4

g .‘." ,
A8

Vavyy
o)

va'y
o
XA

“r '1}'1""'

* " ¢ -
sy
7/ A
» T

g

N 5
340

5

e

LTI

-
7

1

E ']

»
l"v'

N4t
)

XA

54 N

S AN
'}"l
D

hRLLL Y

-

.

!
)

~e

5

’

ST
RN

hAR AR
4 _ 8 n_n_ 7 &

r
i 14
e
-

f"l"f'l’

‘ . %
"

Pl it)

W F s

)

' e S By

o
2 e

.
s

2
£
a 4
A

'

LY

“’l

PO AL

l’) |
77,
AN

F
5

X P

‘.,,'_
A
v

A

| BN

T T e L T 1 gt et gt tatoad et g T T T T

fn is the CMS filename
ft is the CMS filetype
St is the CMS filemode

If the filenames or filetypes exceed 8 characters then they are truncated. As
indicated above, the filetype and filemode fields are not mandatory components of
the NAME parameter. If the filemode is omitted, it defaults to "A 1" for Ada mode
OUT; for Ada mode IN and INOUT, all accessed minidisks are searched »nd the
CMS filemode is set to the first file with the appropriate filename and filetype. If
in addition the filetype is omitted it defaults to "FILE".

The file name parameter may also be a DDNAME. If the file name parameter starts
with a % character, the remainder of the string (excluding trailing blanks) is taken as
a DDNAME previously specified using the FILEDEF command. If the DDNAME
has not been specified using FILEDEF, NAME_ERROR will be raised. If DELETE
is called for a file opened using a DDNAME, USE_ERROR will be raised, but the
file will be closed.

FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the
lexical rules of (2], separated by commas. The FORM parameter may be given as a
null string except when DIRECT_IO is instantiated with an unconstrained type: in
this case the RECORD_SIZE attribute must be provided. Autributes are comma-
separated; blanks may be inserted between lexical elements as desired. In the
descriptions below the meanings of natural, positive, etc., are as in Ada; attribuie
keywords (represented in upper case) are identifiers [2.3] and as such may be
specified without regard to case. .

USE_ERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several

internal files within a single program. In effect it establishes rules for subsequent

OPEN and CREATE calls which specify the same external file. If such rules are

violated or if a different file sharing attribute is specified in a later OPEN or

CREATE call, USE_ERROR will be raised. The syntax is as follows:
NOT_SHARED | SHARED => access_mode

where

access_mode = READERS | SINGLE_WRITER | ANY

A file sharing attribute of:

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 11

L% -w.'\>“-~~-,‘,\--.0’.4\, Ny N PO T T PA RY '\"-"v_'-‘\‘-_\-.-'_- “u '.‘.-.'-.’.._'.". .) ‘.-‘_- 'd.',""""
B R A S A R S A A A S o S N T L Ll el

(i
4]

B X

Ml T Y XK AL A

B

o ln gl

{
.

A& Y

PR R A
,l“l"

S ® v

&2, 2

-

PP

:}_

ISR,

*
»
-

Lo w
-ll' g

1 v .
LYt .
oL}

-

7,7 -‘.. l.'.‘

[y

)

.

A NI o d

>
.

SIS RN

* ':l L 4 o
‘v v

a2

0 0at BeP 82V . 0a% Pa® B2 Gat 92 00Y. 02" o 2oV ga¥ UM - “ e e <. Y TN YW YYD
g 9 \ o ML MV fas ey W S’ et 00" 100" 1 0g ol Lint gt dae ot At Bat et et 0a" Ant Gutinfoget Jig® Aed o’ be® L) gt liah 0gt 4 W

NOT_SHARED
implies only one internal file may access the external file.

SHARED => READERS
imposes no restrictions ~n internal files of mode IN_FILE, but prevents
any internal files of mode OUT_FILE or INOUT_FILE being associated
with the external file.

SHARED => SINGLE _WRITER

is as SHARED => READERS, but in addition allows a single internal file
of mode OUT_FILE or INOUT_FILE.

SHARED => ANY
places no restrictions on external file sharing.
If a file of the same name has previously been opened or created, the default is
taken from that file’s sharing attribute, otherwise the default depends on the mode

of the file: for mode IN_FILE the default is SHARED => READERS, for modes
INOUT_FILE and OUT_FILE the default is NOT_SHARED.

Record size attribute

This attribute controls the record format (RECFM) and logical record length
(LRECL) of an external file.

By default, records are output according to the following rules (see section 8.5):

« for TEXT_I10 and SEQUENTIAL_IO, variable-length record files
(RECFM = V).

« for DIRECT_IO, fixed-length record files (RECFM = F).

The user can specify the record size attribute to force the representation of the Ada
element in output records of a given byte size. If the record size attribute is
specified, fixed-length records (RECFM = F) will be generated, with a record length
(LRECL) as specified (see section 8.5).

In the case of DIRECT_IO and SEQUENTIAL_IO for constrained types the value
given which must not be smaller than ELEMENT_TYPE'SIZE /
SYSTEM.STORAGE_UNIT; USE_ERROR will be raised if this rule is violated.

In the case of DIRECT_IO for unconstrained types the user is required to specifiy
the RECORD_SIZE attribute (otherwise USE_ERROR will be raised by the OPEN
or CREATE procedures). The size specified must be large enough to accommodate
the largest record which is to be read or written plus 4 bytes for the descriptor (see
section 8.5). If a larger record is processed, DATA_ERROR will be raised by the
READ or WRITE.

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 12

- (PR R A T g g ’.".1\'.’4','.' " " .-'~.~_\\,- ---------- .-.-‘h-."--- -",‘.-'r-,- AR A PSR TRI T)
mymmummhuhmwxm; RV T S (R M T Sl et oy

s
® i

C,

p.*r
2

x

€«
S
ﬁ"".{j

‘1:"

P
‘J’

X

>

>

\j

ey

(L

l“n"l A N
5.

s wr
LI]
b A%

&

L3EN
4
® Lrxs

23]

PP L:}f{;,\f
2, "l"ll: [k

e ot
-4 '/v‘..-""_
\ O
LA PO ‘-}‘.
L r ll'l"""

UL S R F
PR AR R R

P]
"'.{\t‘.‘-'.‘.

e)
e
Z’\ﬁ

&
(]

'.'.’

1y 6 % % e e w0
-.l '-'. '-"‘-f."‘N
'.-’rl’ P

v %5 %y
AL n.
a8
Ay

g,
4

g
’

.
- &
»

N 1.

LT

FYEEE
-\‘,'t'r\lﬂl“'
YV
PRI

y 1.‘ n"'. ‘
l' (.' 13 ‘

lk'(
h
o L

L4

%
s

In the case of TEXT IO, output lines will be padded to the requisite length with
spaces; this fact should be borne in mind when re-reading files generated using
TEXT_ 10 with the record size attribute set.

The svntax of the record size attribute is as follows:

RECORD_SIZE => natural

where natural is a size in bytes.

The default is ;:._
F:'
RECORD_SIZE => element_length :.'
f:}a
where oL
element_length = ELEMENT_TYPE'SIZE / SYSTEM.STORAGE_UNIT
for input-output of constrained tyvpes, and
RECORD_SIZE => 0
(meaning variable-length records) for input-output of unconstrained types other than
via. DIRECT_IO in which case the RECORD_SIZE attribute must be provided by
the user.
Carriage control
This attribute applies to TEXT__IO only, and is intended for files destined to be sent
to a printer.
For a file of mode OUT_FILE, this attribute causes the output procedures of '__
TEXT_IO to place a carriage control character as the first character of every output ®
record; 1" (skip to channel 1) if the record follows a page terminator, or space (skip ,‘:.‘,ﬁ
to next line) otherwise. Subsequent characters are output as normal as the result of .:‘
calls of the output subprograms of TEXT_10. o
e
For a file of mode IN__FILE, this attribute causes the input procedures of TEXT_IO ::-::-
to interpret the first character of each record as a carriage control character, as PY
described in the previous paragraph. Carriage control characters are not explicitly N
returned as a result of an input subptogram, but will (for example) affect the result Rk
of END_OF PAGE. 20N
_Vr__ R
The user should naturally be careful to ensure the carriage control attribute of a file :ﬁ-'.:‘,::
of mude IN_FILE has the same value as that specified when creating the file. ®
‘\;‘
o
A
The syntax of the carriage control attribute is as follows: :-.j-.
o
CARRIAGE_CONTROL => boolcan P
_—)
Y

Alsys I1BM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 13

"o - .. ._‘-'_._.

R A A R AP A L T - Y T e N e e . .r.ac~fﬁ
. A *u e - A T S S S T R R R LS e
,4}.«5‘3-'.47'4 PN N, RN AT S AT NS P ONINY ;n';ﬂ'f:r. P oW ¢ :n“. A e e R e T e

The default 1s set according to the filetype of the file: if the filetvpe 1s LISTING,
the default is CARRIAGE _CONTROL => TRUE otherwise the default is
CARRIAGE CONTROL => FALSE.

Truncate

This attribute applies to TEXT 10 files of mode IN_FILE, and causes the input
procedures of TEXT_IO to remove trailing blanks from records read.

The syntax of the TRUNCATE attribute is as follows:
TRUNCATE => boolean

The default is TRUNCATE => FALSE.

Eof string

This attribute applies only to files associated with the terminal opened using
TEXT_IO, and controls the logical end__of_file string. If a line equal to the logical
end_of_file string is typed in, END_OF_FILE will become TRUE. If an attempt
is made to read from a file for which END_OF_FILE is TRUE, END_ERROR
will be raised.

The syntax of the EOF_STRING attribute is as follows:
EOF_STRING => sequence_of characters
The default is EOF_STRING => /*
The EOF_STRING may not contain commas or spaces.
If, however, the END_OF_FILE function is called, a "look-ahead read"” will be
required. This means that (for example) a question-and-answer session at the
terminal coded as follows
while not END_OF_FILE loop
PUT_LINE ("Enter value:");
GET_LINE (...);
end loop;
will cause the prompt to appear only after the first value has been input. If the
example is recorded without the explicit call to END_OF_FILE (but perphaps
within a handler for END__ERROR) the behaviour will be appropriate.
STANDARD_INPUT and STANDARD_OUTPUT
The Ada internal files STANDARD_INPUT and STANDARD_OUTPUT are

associated with the external files %SYSIN and %SYSOUT, respectively. By default,
the DDNAMEs SYSIN and SYSOUT are defined to be the display terminal, but you

Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS. Versicn 3.2 14

® ‘:;__' '(‘:‘-:;\-ﬂ,;f,\;g &-". '-‘\;-‘,;.‘ \'.' ¥ '\:Si}::;iﬁ-':'-‘{-

AR TS AV VU T VO,
r‘h‘

S v
L4

Y'{‘.' -~

lt.;i::i{{'é.'>

.
]

s v ®
]

x> Tyt N
Pl g Ao, o B
- ol
o L S

PRl
il

TE Ay
o
-

>

e

o

'y

,
22
o

AL AR
v 1Y

AT)

RN

7

"
1

% x

FEAEA

LA

PRI,
:,:I%".,‘:f ‘
-5/ PN X

;e
.

S A

»

.Y
b

' l'l‘.l
AR)
Pl

»
-
»

LY

a4
'y

- a N

S
A Al

may redefine their assignments using the FILEDEF command before running any
program.

8.2 USE_ERROR

The following conditions will cause USE_ERROR to be raised:

= Specifying a FORM parameter whose syntax does not conform to the
rules given above.

= Specifying the EOF_STRING FORM parameter attribute for files other
than TEXT_IO files of mode IN_FILE.

= Specifying the CARRIAGE_CONTROL FORM parameter attribute for
files other than TEXT_IO files.

= Specifying the BLOCK _SIZE FORM parameter attribute to have a value
less than RECORD_SIZE.

s Specifying the RECORD_SIZE FORM parameter attribute to have a
value of zero (or failing to specify RECORD_SIZE) for instantiations of
DIRECT_10 for unconstrained types.

» Specifying a RECORD_SIZE FORM parameter attribute to have a value
less than that required to hold the element for instantiations of
DIRECT_ 10 and SEQUENTIAL__IO of constrained types.

« Violating the file sharing rules stated above.
= Attempting to delete a file opened by DDNAME.,
= Attempting to write a zero length record to other than the terminal.

» Errors detected whilst reading or writing (e.g. writing to a file on a read-
only disk).

8.3 Text Terminators

Line terminators [14.3] are not implemented using a character, but are implied by the
end of physical record.

Page terminators [14.3] are implemented using the EBCDIC character 0C
(hexadecimal).

File terminators [14.3] are not implemented using a character, but are implied by the
end of physical file. Note that for terminal input a line consisting of the
EOF_STRING (see 8.1) is interpreted as a file terminator. Thus, entering such a
line to satisfy a read from the terminal will raise the END_ERROR exception.

The user should avoid the explicit output of the character ASCILFF [C]. If the user
explicitly outputs the character ASCILLF, this is treated as a call of NEW_LINE
[14.3.4].

The following characters have special meaning for VM/SP; this should be borne in
mind when reading from the display terminal:

Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS, Version 3.2 15

Peanl)

"2
"

S 2
Pt
L]

L

Py
t

[

ol

. [P A .-‘ .,
L 'l '- .

A

] .V » " v _w {
N \' = '-;"-:;-{'l

PO

~a - »
l. ‘l

NN MM MEIEN

Character Default VM/SP meaning May be changed using
logical line end svmbol CP TERMINAL LINEND
" logical escape character CP TERMINAL ESCAPE
@ logical character delete symbol CP TERMINAL CHARDEL

8.4

EBCDIC and ASCII

All 1/0 wusing TEXT_ 10 is performed using ASCII/EBCDIC translation.
CHARACTER and STRING values are held internally in ASCII but represented in
external files in EBCDIC. For SEQUENTIAL_IO and DIRECT_IO no translation
takes place, and the external file contains a binary image of- the internal
representation of the Ada element (see section 8.5).

It should be noted that the EBCDIC character set is larger than the (7 bit) ASCII and
that the use of EBCDIC and ASCII control characters may not produce the desired
results when using TEXT 10 (the input and output of control characters is in any
case not defined by the Ada language {14.3]). Furthermore, the user is advised to
exercise caution in the use of BAR (/) and SHARP (#), which are part of the lexis of
Ada; if their use is prevented by translation between ASCII and EBCDIC, EXCLAM
(') and COLON (:), respectively, should be used instead [2.10]).

Various translation tables exist to translate between ASCII and EBCDIC. The
predefined package EBCDIC is provided to allow access to the translation facilities
used by TEXT_ IO and SYSTEM__ENVIRONMENT (see User’s Guide for VM/CMS,
Appendix E).

The specification of this package is as follows:

package EBCDIC is

type EBCDIC_CHARACTER is (

nul, -- 0=0h
soh, -- 1=1h
stx, -- 2=2h
etx, -- 3=3h
E_4,

ht, -- 5=5h
E_S6,

del, -- 7=7h
E_8,

E_9,

E_A,

vt, -- 11 = 0Bh
np, -- 12 = 0Ch
cr, -- 13 =0Dh
80, -- 14 = QOEh
8i, -- 1§ = OFh
dle, -- 16 = 10h

16

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2

S O R st N i
EAE NP

“~

g -'-_'.r_‘.: o e

VY A YRRV

ce
L]
2

h %

LS
o\ <,
(XS

h)

.

R TR

.
v

Ta Ny
L

10

O N R IR ™ TV IR LA TN A AL G L A AU D A A Tl et 07400 s R T 43 070 "0 8 00 L 000 aut el N 0r® HR* R A b g M PN gt "’i‘
|"
. *
o
L
Y
L} 4
l"..
del, -~ 17 = 11h 2y
v-
dc2, -- 18 = 12h .
l¢$
dc3, -- 19 = 13h oY
E_14, ®
nl, -- 21 = 15h P
bs, -- 22 = 16h T
E_17, it
can, -- 24 = 18h f:\
em, -- 25 = 1%h A
A
E_1A,
E_1B, ik
E_lIC, o
gs, --29=1Dh
rs, -- 30 = 1Eh L.
us, -- 31 = IFh o
E_20, S
E_21, o9,
fs, -- 34 =122h “;
E_23, '
E_24, .;,.:’,
E_25, 0
etb, -- 38 = 26h
esc, -~ 39 = 27h '_':‘-"
-
E_28, o
E 29, ,'A-
- P
E_2A, v
— yous
E_2B, o
- « M
E_2C, []
enq, -- 45 = 2Dh i
ack, -- 46 = 2Eh , ,
bel, -- 47 = 2Fh _A_“,‘v
E_30, ‘
E_sl. .‘_(‘ o
syn, -- 50 = 32h .)
E_33, -
E_34,
E_35, o
[l
E_36, Sl
t -- 55 = 37h Wl
eot, = D
E_38, ®
E_39, 3
E_3A, ~d
E_3B, \'.:_
dc4, -- 60 = 3Ch g
nak, -- 61 = 3Dh .:-:.
E_3E, E
sub, -- 63 = 3Fh "
o -- 64 = 40h ol
' “od
E_41, oy
E_42, N
.
E_43, N
E_44, ®
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 17

BL s &5 S22
......\50.. N
Aoy Yyt

2 ..mm.»

70 079 0°0.0 010 8 o @t et 12t Tk

O SO

R

.-;.5

.r\

I Sk

PN

e

= 4Bh
-- 76 = 4Ch
-- 77 = 4Dh

-- 75

-“

&-n-vf.ﬂ-.

-- 78 = 4Eh
--79 = 4Fh
-- 80 = 50H

-- 90 = 5Ah

--91 = 6Bh
--92 =5Ch

* .\N\%\\

¢ s
e Al

S5 A

R ..‘.....ns..,...

= 5Dh
-- 94 = SEh
-- 95 = 5Fh
-- 96 = 60h
-- 97 = 61h

--93

-\NN\\.—

R e)
v \\\\\
.I.-\-. -Ifl-u

\.1\-

>

R
2Ol
'f J--..-Js
=
[se]
O
I}
~~
(=]
n
o o <
©) e
(SNSRI S BN

--108 = 6Ch
--109 = 6Dh

T

u..ﬁn.\.\......

..-w”n\«--.u A ‘-.-
£ O
| i
© ©
o
O
22
=2
-

S =

N ~ 7_

A wmw

F\\.

Px\

.\\\\.

rlrs ®

-rrh: -~

/8

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, I'ersion 3.2

BASLNG ’-."*."’-.‘ﬁ.“'x-."'\‘”\"a" AR R

N X

LSO AR LAY LRy N

o3

AT Al AT

.

q"t-,~.<

\""\“‘"" \' .."q

oY

0

Y008t 400 00 b Qa0 0T tat 00§ 3 A te st i a0 S0 aus ST AN e 0 At § e AT a b g e AN At A At At ¢ ate"ghe plet M-l Bin’ v ke am cate vale Mo ou e tol AN A
?-':-
-C::-;
IR
e
Py
o
--121 = 7%h N
--122 = 7Ah 5::
v 1 [y
o o e
@, - =7 -
--125 = 7Dh _l,.
=, --126 = 7Eh :{: d
--127 = 7Fh ::,-_:_
E_80, o
a’, --129 = 81h iy
b, --130 = 82h 22y
e’ --131 = 83h =
d, --132 = 84h
e’, --133 = 85h
e, --134 = 86h
g, --135 = 87h
*h', --136 = 88h
', --137 = 8%h
E_8A,
E_8B,
E_8C,
E_8D,
E_8E,
E_8F,
E_90,
3, --145 01k
K’ --146 = 92h
v, --147 = 93h
‘m’, --148 = 94h
n’, --149 = 95h
o', --150 = 96h
P, --151 = 97h
'q’, --152 = 98h
r, --153 = 99h
E_9A,
E_9B,
E 9C,
E 9D,
E_SE,
E_OF,
E_A0,
--161 = OA1lh
's’,) --162 = 0A2h
't --163 = 0A3h
u', --164 = 0A4h
v, --165 = 0ASh
W', --166 = 0A6h
'x’, --167 = 0A7h
v, --168 = 0A8h
e, --169 = 0A%h
E_AA,
E_AB,
E_AC,
Alsys IBM 370 Ada Compiler, Appendix F for Vol fCMS, Version 3.2 19

W T -'$-l'-l' .\,-'._"‘

P AN AT AT e T AT AT Rt T M T m T e S At e -
PR LN O G R AL R R

q

[}

X
i
n'.-h
A
e
o
-.*‘
1 173 = UADh :‘.\-;
E_AE, T
E_AF, ::_:_:
E Bo, ST
E_BI, L
E_B2,
E_B3,
E_B4,
E_BS, '
E_BS,
E_B7, "
E_BS, ‘.
E_B9, A
E_BA, P
E_BB, o
E_BC, .
i --189 = 0BDh T
E_BE, R
E_BF, :‘,.:
', --192 = 0COh o
A, --193 = 0C1h o
'B', --194 = 0C2h g
c, --195 = 0C3h 7_..
D", --196 = 0C4h Y
'E, --197 = 0C5h e :
', --198 = 0C6h " o
G, --199 = 0CTh ,N,'; i
'H', --200 = 0C8h b
', --201 = 0CSh .‘
E_CA, '_.\.‘_:
E_CB, ‘,._
E_cc, >3
E_CD, it
E_CE, "y
E_CF, o
g --208 = 0DOh Ry
3, --209 = 0D1h B
K, --210 = 0D2h ey
'L, --211 = 0D3h -.:_‘: :
'™’ --212 = 0D4h el
‘N, --213 = 0D5h 9
0, . --214 = pDGh R
P, --215 = 0D7h
'Q’, --216 = 0D8h
‘R’, --217 = 0D%h
E_DA,
E_DB,
E_DC,
E_DD,
E_DE,
E_DF,
"\’ --224 = OEOh
Alsys IBM 370 Ada Compiler. Appendix F for VA /CMS, Version 3.2 20

.‘:‘f\) r;-v'_r‘v'_"\r"v". PR gri i anh gng A s i e gy N

s
I8 de
L
e
P
E_EfL iR
s, ..226 = OE2h :-'_':f;',;
T, --227 = GE3h (C::‘\.t
v, --228 = OE4h *-.‘_
W -.229 = 0ES5h o
W, --230 = 0E6h ;’*.',
X', --231 = 0E7h
Y, --232 = OE8h
'z, --233 = OESh
E_EA,
E_EB,
E_EC,
E_ED,
E_EE,
E_EF,
'0’, --240 = OFOh
1, --241 = OF1h
2, --242 = OF2h
'3, --243 = OF3h
qr, --244 = OF4h
'5', --245 = OF5h
o, --246 = OF6h
7, --247 = OF7h
'8’, --248 = OF8h
'9’, --249 = 0FSh
E_FA,
E_FB,
E _FC,
E_FD,
E_FE,
E_FF);
SEL : constant EBCDIC_CHARACTER := E_4;
RNL : constant EBCDIC__CHARACTER := E_§6;
GE : constant EBCDIC__CHARACTER := E_S8,;
SPS : constant EBCDIC__CHARACTWR ;= E_9;
RPT i constant EBCDIC_CHARACTLR := E_A;
RES < constant EBCDIC__CHARACTER := E_4;
ENP : constant EBCDIC_CHARACTER := E_4,
POC : constant EBCDIC_CHARACTER := E_17;
UBS : constant EBCDIC_CHARACTER := E_1A;
Cu1 : constant EBCDIC: CHARACTER := E_1B;
IFS : constant EBCDIC_CHARACTER := E_1C;
DS : constant EBCDIC_CHARACTER := E_20;
SOS : constant EBCDIC_CHARACTER := E_21;
wuUs : constant EBCDIC_CHARACTER := E_23;
BYP : constant EBCDIC_CHARACTER := E_24;
INP : constant EBCDIC_CHARACTER := E_24;
LF : constant EBCDIC_CHARACTER = E_25;
SA : constant EBCDIC_CHARACTER := E_28;
SFE : constant EBCDIC_CHARACTER := E_29,
M : coustant EBCDIC_CHARACTER = E_2A;
Alsvs IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 21
R SN ARV B R R AN S

r\" LGl G R G A S A X

CIRNL gl AL o i oVl Al ol oA AR A oA

8 A a0 s a " A WA AR AR et hat] N le 2l .
AR 270 2ol oMl SARANG LA /A I An iy R e o=y e~ s 40 N 2R gt J0em

m

m

(o
W N - O

™

]

|

1

m

1

]

!

m o
mm o OwS

]

m

™
—
o

[BN o]
»-‘I»-
0 =

]

m
—
w

|

o]
—
wn

m
—
[or}

|

1
»

|

™
_
©0

|

V]

|

(s}
-
- oo

~
~

)
o

~
~

o
™

[
el

(2
o

1

MmmMmmmMm:nomm
©
<

L
-

|

censtant EBCDIC CHARACTER
constant DBCDIC CHARACTER
constant EROCDIC }‘ll:\n’,‘\(‘l'flf(

constant }2!&(‘1’1(“7_('1]AHACTER
constant EH'JI)IC»('HAI(A('TEH :

constant Plli(fl)leCllAhACTEH

constant EHCDIC_”('HAKACTER =
. constant EBCDlC‘CHARACTER :
: constant EBCDlC_CHARACTER :
: constant EBCDlC__CHARACTER :
: constant EBCDlC__CHARACTER =
: constant EBCDIC_’CHARACTER :
: constant EBCDIC_CHARACTER :=
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCD]C_CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDlC__CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :

: constant EBCDIC_CHAR.ACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC__CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC___CHARACTER
: constant EBCDIC_CHARACTER
: constant EBCDIC__CHARACTER
: constant EBCDXC_CHARACTER
: constant EBCDIC_‘CHARACTER
: constant EBCDIC__CHARACTER
: constant EBCDIC__CHARACTER
: constant EBCDIC__CHAR.ACTER
: constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER =
: constant EBCD]C__CHARACTER :
. constant EBCD[C__CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER =
: constant EBCDIC_CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDIC_CHARACTER :
: constant EBCDIC__C".ARACTER :
: constant EBCDKC__CHARACTER :
: constant EBCDIC__CHARACTER :
: constant EBCDlCﬁCHARACTER :
: constant EBCDIC__CHAR.ACTER :
: constant EBCDIC__CHAHACTER :

".

e
D)

o

:= nul;
;= soh;
1= 8tx,
1= etx,
:= ht;
:= del;
1= vt
1= np;
;= cr;
1= 80,
1= si;
:= dle;
1= decl;

1= de2;

Alsys IBA 370 Ada Compiler, Appendix F for 1'Af, CMS. Version 3.2

R "

G

W L W WY W

to
to

¢ .
P

AT

Pl

,...
?ﬁﬁ}
. _ 8

P

e e At
AN
payalh
rs

»
2

MO S
a _ s '-.
RN

[y

Lol o 4 o
e RNy
Peee @

»
1] ’~{

N

'l\; ;".';.‘ AN
oy

"
']

"
5

“x"a
P4
)

5L K
'l

‘s

-
»

h]
2
]

-
.
o

s e_e s
RS
‘v'r""\.
Y

¥ 1 52

Pl]
R RN
XA

,‘
«@
o

5 8

’l'}"r‘sf s 4

7 X .‘ A n .A. l.l « v --‘- - ..u v ‘. '-' A W -‘ .F o Ih [L LAY S, SR ‘. - v
oty
i,
[]
o
E_3C : constant EBCDIC_CHARACTER := dc4; '-I'\V'
E_3D - constant EBCDIC_CHARACTER := nak; :'_N¢
E_3F : constant EBCDIC_CHARACTER := sub; .;_ ,
E 40 constant EBCDIC_CHARACTER := "' N - .
E_4B : constant EBCDIC_CHARACTER := "7 []}
E_4C _constant EBCDIC_CHARACTER := '<’; -
E_4D . constant EBCDIC_CHARACTER :='(’; :;::;_
E 4E . constant EBCDIC_CHARACTER :='+; .-:,
E_4F : constant EBCDIC_CHARACTER := '['; :;-j_'
E_50 : constant EBCDIC_CHARACTER := '&": !:".} A
E_SA : constant EBCDIC_CHARACTER :="1"; ;;’..
E_5B : constant EBCDIC_ CHARACTER :='$"; IR
E_5C : constant EBCDIC_CHARACTER := **'; ':-:.:
E_sD : constant EBCDIC_CHARACTER :=")"; ::::,::
E_SE : constant EBCDIC_CHARACTER :=""; S
E_SF : constant EBCDIC_CHARACTER :='"" [:Jh
E_60 : constant EBCDIC_CHARACTER :='-'; .
E_61 : constant EBCDIC_CHARACTER :="'/"; SNy
E_6B : constant EBCDIC_CHARACTER := ' P,
E_6C : constant EBCDIC_CHARACTER :='%"; o
E_6D : constant EBCDIC_CHARACTER :='_"; A
E_6E : constant EBCDIC_CHARACTER := '>"; -'\"}'n
E_6F : constant EBCDIC_CHARACTER := '?"; []
E_79 : constant EBCDIC_CHARACTER := '"; e
E_7A : constant EBCDIC_CHARACTER := ':"; ::-f_'_
E_7B : constant EBCDIC_CHARACTER := '#'; A
E_7C : constant EBCDIC_CHARACGTER := '@"; ::-Z-;
E_7D : constant EBCDIC_CHARACTER := "; ot
E 7E : constant EBCDIC_CHARACTER := "=
E_TF : constant EBCDIC_CHARACTER :=""; ,':.:’_‘."_
E_81 : constant EBCDIC_CHARACTER := 'a’; -.:,-.
E_82 : constant EBCDIC_CHARACTER := 'b'; :.)-\‘
E_83 . constant EBCDIC_CHARACTER :='c’; "
E_84 : constant EBCDIC_CHARACTER := 'd"; oy
E 85 : constant EBCDIC_CHARACTER :=‘e’; ®
E_86 . constant EBCDIC_CHARACTER :='f'; =T
E_87 : constant EBCDIC_CHARACTER := 'g; o
E_88 : constant EBCDIC_CHARACTER := 'h'; '.:f-::_-
E_89 . constant EBCDIC_CHARACTER := 'i"; et
E 91 : constant EBCDIC__CHARACTER :=)", .'.'a':;,
E_92 - constant EBCDIC_CHARACTER := 'k"; ®
E_93 : constant EBCDIC_CHARACTER :=I'; -f_"
E_94 : constant EBCDIC_CHARACTER :='m"; ::,n:::
E 95 : constant EBCDIC_CHARACTER := 'n’;
E_96 constant EBCDIC_CHARACTER := ‘'o’; e
E 97 : constant EBCDIC_CHARACTER := 'p'; RESS
E_98 : constant EBCDIC_CHARACTER :='q’;
E_ 99 : constant EBCDIC_CHARACTER :='r';
E Al : constant EBCDIC_CHARACTER := '-';
E_A2 : constant EBCDIC_CHARACTER :='s';
E_A3 : constant EBCDIC_CHARACTER :='t’;
E_A4 : constant EBCDIC_CHARACTER := "u’;
A'svs 18BM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 23

F AL
t 4 F Ll
5-51/;',- ‘!‘1

Aot RN "'\ AR L} Saf va) ", » . Ay ™ "" W 17 \} \"W Ly "‘ vy M * N = ll‘. _ _ (])
{
, i
oY,
L
.:‘:.
E_AS : constant EBCDIC_CHARACTER := 'v'; -~
E_A6 : constant EBCDIC_CHARACTER := 'w/; o
E_A7 : constant EBCDIC_CHARACTER := 'x’; :"':
E_As8 : constant EBCDIC_CHARACTER := 'y, .":—
E_A9 : constant EBCDIC_CHARACTER := 'v'; s
E_AD : constant EBCDIC__CHARACTER :='{";
E_BD : constant EBCDIC_CHARACTER := [} 1
E_Co : constant EBCDIC_CHARACTER :='{"; AL
E_C1 : constant EBCDIC_ CHARACTER := 'A’; -
E_C2 : constant EBCDIC_CHARACTER := 'B'; =
E_C3 : constant EBCDIC_ CHARACTER :='C;
E_C4 : constant EBCDIC_CHARACTER := 'D'; ::
E_C5 : constant EBCDIC_CHARACTER :='E'; T
E_Cs : constant EBCDIC_CHARACTER := 'F’; -
E_C7 : constant EBCDIC_CHARACTER :='G’; ‘:'_:')
E_Cs8 : constant EBCDIC_CHARACTER := 'H%; >4
E C9 : constant EBCDIC_CHARACTER :='I"; ® §
E_DoO : constant EBCDIC_CHARACTER := '} :.;ﬂ‘
E_D1 : constant EBCDIC_CHARACTER := "J';)
E_D2 : constant EBCDIC_CHARACTER :='K"; :'{‘:'
E_D3 : constant EBCDIC__CHARACTER :='L'; ‘-ﬂ
E_D4 : constant EBCDIC_CHARACTER := 'M"; e
E_Ds : constant EBCDIC__CHARACTER := 'N'; 7.‘
E_Dé : constant EBCDIC__CHARACTER :='0"; Et
E_D7 : constant EBCDIC_ CHARACTER := 'P; o
E_Ds8 : constant EBCDIC_CHARACTER := 'Q%; _'ft '
E_D9 : constant EBCDIC_CHARACTER := 'R% Loy
E_EO0 : constant EBCDIC_CHARACTER :="'\"; K
E_E2 : constant EBCDIC_CHARACTER :='§’; L3
E_E3 : constant EBCDIC_CHARACTER := 'T"; =
E_E4 : constant EBCDIC_CHARACTER := 'U%; :.j_f_
E_E5 : constant EBCDIC_CHARACTER := 'V, e
E_E6 : constant EBCDIC_CHARACTER :='W' o
E_E7 : constant EBCDIC_CHARACTER := 'X"; ’a
E_E8 : constant EBCDIC_CHARACTER :="'Y",
E_E9 : constant EBCDIC_CHARACTER := 'Z’; e
E_Fo : constant EBCDIC_CHARACTER :='0"; :J'_:
E_F1 : constant EBCDIC_CHARACTER := '1"; Rk
E_F2 : constant EBCDIC_CHARACTER := '2'; NN
E_F3 : constant EBCDIC_ CHARACTER := '3); \-':\
E_F4 : constant EBCDIC_CHARACTER := '4’; o
E_Fs : constant EBCDIC_ CHARACTER := '5'; :'::: y
E_Fé : constant EBCDIC_CHARACTER := '¢'; -::.-)
E_F7 : constant EBCDIC_CHARACTER := '7"; o
E_F8 : constant EBCDIC_CHARACTER := '8"; -]
E_F9 : constant EBCDIC_CHARACTER := '9"; e
type EBCDIC_STRING is array (POSITIVE range <>) of EBCDIC_CHARACTER,; {i
r
function ASCII_TO_EBCDIC (S : STRING) return EBCDIC_STRING; ,-:"_’-
e
®
‘_‘_ .
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 24 ::.-:
.
oA
R
%
ol

' ,*"" .-’.:{‘. - ').;f':f..l".;\'-' ,;‘.r“- o
i » » gl

X

R
-‘-’\"\

e ":. "

e

= L qs;\
NP TN NN RN

P R R B S S I U R SR R PO LUl R I RV SN T N VL AL PO PO PO P - s et TR T A T e
2. ,.J‘ L i e P T i LAy J-".J'».:“ ey ‘*__-A_ L T L _l..r\ R

-~ CONSTRAINT ERROR is raised f E_STRING'LENGTH /= A_STRING'LENGTH;
procedure ASCII_TO_ERCDIC (A_STRING : in STRING;
E STRING . out EBCDIC_STRING);

function EBCDIC_TO_ASCII (S : EBCDIC_STRING) return STRING;

-- CONSTRAINT_ERROR is raised if E_STRING'LENGTH /= A_STRING'LENGTH;
procedure EBCDIC_TO_ASCII (E_STRING : in EBCDIC_STRING;
A_STRING : out STRING);

end EBCDIC;

The subprograms ASCII_TO_ EBCDIC and EBCDIC_TO_ASCII convert between
ASCII encoded STRINGs and EBCDIC_STRINGs as appropriate.

The procedures ASCII_TO_ EBCDIC and EBCDIC_TO_ASCIl are much more
efficient than the corresponding functions, as they do not make use of the program
heap. Note that if the in and out string parameters are of different lengths (i.e.
A_STRING’LENGTH /= E_STRING'LENGTH), the procedures will raise the
exception CONSTRAINT_ERROR.

Note that the user may alter the ASCII to EBCDIC and EBCDIC to ASCII mappings
used by the Alsys IBM 370 Ada compiler, as described in the installation guide.

If SEQUENTIAL_10 is instantiated with the type EBCDIC _STRING, 1O of arbitary
EBCDIC strings is possible. Note also that in many mays EBCDIC_STRINGs may
be manipulated exactly as the predefined type STRING; in particular, string literals
and catenations are available.

8.5 Characteristics of disk files

Disk files that are have already been created and are opened take on the
characteristics that are already associated with that file.

The characteristics of disk files that are created using the predefined input-output
packages are set up as described in the below.
TEXT_IO

= RECFM = V, unless the RECORD_SIZE FORM parameter component is
specified in which case RECFM = F and the LRECL is as specified.

a A carriage control character is placed in column 1 if the CARRIAGE control
component is specified.

« Data is translated between ASCII and EBCDIC so that the external file is
readable using other system 370 tools.

Alsys IBM 370 Ada Compiler, Appendix F for VA /CMS. Version 3.2 25

O

(L

Lol'd
?- d

%

Ty
N

k-

. ?'{.‘.Y

P AR
L2ANG

hJ

C,-f.,fgf“l “."'

(B ntaTetat e
H A i

R s e ..

f‘ L ¢
-/-'1'- [RCAEA
L.t Bttt

Ay ty v v Y
B A XA .S o

"ll
L

« 5o, -
. . v
'l

o
./

. I

L2 AIARTY N

Y

L]
v

A, .

2

£

L4

TP

i3y 2

s

e

s

.
< ‘i g

20l 'p e

s %y
[

[3
o)

LTSS

s

4

NN g

f
.l "v ‘l

~

e et e ane R atR . ¥ oy ARl m g Ao o | —
G S P40 AN AL NS S 25 Nt et At et Bt Llat Al R a3 il RN

SEQUENTIAL 10

- RECFM -V, unless the RECORD_SIZE FORM parameter component is
specified in which case RECFM = F and the LRECL is s specified.

= No translation is performed between ASCII and EBCDIC; the data in the
external file is a memory image of the elements written, preceded by a 4-byte
length count in the case of unconstrained types for which a RECORD_SIZE
component has been specified.

DIRECT 10

= RECFM=F and LRECL=ELEMENT_TYPE'SIZE/SYSTEM.STORAGE_UNIT
for unconstrained types (unlesss overriden by a RECORD_SIZE FORM
parameter component), LRECL is defined by the mandatory RECORD_SIZE
FORM parameter component for unconstrained types.

s No translation is performed between ASCII and EBCDIC; the data in the
external file is @ memory image of the elements written, preceded by a 4-byte
length count in the case of unconstrained types.

« DIRECT_IO files may be read using SEQUENTIAL_IO (vice-versa if a
RECORD_SIZE component is specified).

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as
follows:

SHORT__INTEGER -32768 .. 32767 -- 2¥*15 -1
INTEGER -2147483648 .. 2147483647 -- 2%*31 - 1

For the packages DIRECT_IO and TEXT_IO, the ranges of values for types
COUNT and POSITIVE_COUNT are as follows:

COUNT 0 .. 2147483647 -- 2%*31 -1

POSITIVE COUNT 1 .. 2147483647 -~ 2%%3] -]

For the package TEXT IO, the range of values for the type FIELD is as follows:

FIELD 0 .. 255 -- 2%%8 - 1

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 26

-~

e T e T T R T T T L e e T A T AT e T N A e T e et e et e T T -
TR 2 Lol o L N T T e S T e T I R S AT
TR AT ATV St e LA . MY PE VRV VPP R PR PR P R S 0. G P T O P P T T T S WA T TR T o Tt

.
Vo'W WO

l{'"’ oot T
. R
b S
AL By

L P Y

[

0
o

»

LS
pa

S sy A

o N

«
’
w4

A

N
»
o K

o ol
<5
p - -

K

PP

v
a

~ vy
e TN

'éyzfs
2 g

.
«
3

X,
ool
.,

- E{f
'.-.,s‘-'-

"
5 %
Ll

77

ey N
. a
,.,'v’:,‘). LS

’ }"l;'.{.l" l' f’l
<5

>y

-l
+ -

27

ST,
b TN
Pls

,”5

1

‘i@ x

7

.

R

[-' l' l'
4

U
L

TETITFT mff’)’_‘.’.’::"_
o
.-..'
N
°
g
9.2 Floating Point Type Attributes ',‘:-,:
":’;\.
ooy
SHORT_FLOAT .
Approximate 5-:
value :: h
DIGITS" 6 o
MANTISSA 21 .
EMAX 84 o)
EPSILON 2.0 ** -20 9.54E-07 . 8
SMALL 2.0 ** -85 2.58E-26 s
LARGE 2.0 ** 84 * (1.0 - 2.0 ** -21) 1.93E+25 '::i-"
SAFE_EMAX 252 s
SAFE_SMALL 2.0 ** 2253 6.91E-77 o
SAFE_ LARGE 2.0 ** 127 * (1.0 - 2.0 ** -21) 1.70E+38)
FIRST 22.0 ** 252 % (1.0 - 2.0 ** -24) -T.24E+75 o
LAST 2.0 %+ 252 * (1.0 - 2.0 ** -24) 7.24E+75 o
MACHINE_RADIX 16 o
MACHINE_MANTISSA 6 N
MACHINE_EMAX 63]
MACHINE_EMIN -64 it
MACHINE_ROUNDS FALSE hd
MACHINE_OVERFLOWS TRUE R
SIZE 32 o
'\" ,
‘f Y
I\I‘ .
FLOAT R3S
.o
Approximate R
value el
DIGITS 5 R
MANTISSA 51 T
EMAX 204
EPSILON 2.0 ** -50 8.88E-16 8
SMALL 2.0 ** -205 1.94E-62 RSeY
LARGE 2.0 ** 204 * (1.0 - 2.0 ** -51) 2.57E+6l e
SAFE_EMAX 252 N
SAFE_SMALL 2.0 ** =253 6.91E-77 R
SAFE_LARGE 2.0 ** 252 * (1.0 - 2.0 ** 51) 7.24E+75
FIRST 2.0 ** 252 % (1.0 - 2.0 ** -56) -7.24E+75 K
LAST 2.0 ** 252 * (1.0 - 2.0 ** -56) 7.24E+75 RS
MACHINE_RADIX 16 A,
MACHINE_MANTISSA 14 Y
MACHINE_EMAX 63 N,
MACHINE_EMIN -64 AT
MACHINE_ROUNDS FALSE -9
MACHINE_OVERFLOWS TRUE DA
SIZE 64 o
RO
R
°
'-..\-
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 27 :::::,
L)
-
A3
s
-.."_n-
PR
B e O R T T L R A L L AT 0T AT

AL AANICARCR A A S
e
e
LONG_FLOAT 7
N
Approximate
value .
DIGITS 18
MANTISSA 61 AIAY
EMAX 244 &‘_
EPSILON 2.0 ** -60 8.67E-19 PO
SMALL 2.0 ** -245 1.77E-74 e
LARGE 2.0 ** 244 * (1.0 - 2.0 ** -61) 2.83E+73 :
SAFE_EMAX 252
SAFE_SMALL 2.0 ** -253 6.91E-77
SAFE_LARGE 2.0 ** 252 * (1.0 - 2.0 ** -61) 7.24E475
FIRST -2.0 ** 252 * (1.0 - 2.0 ** -112) -7.24E+75
LAST 2.0 ** 252 * (1.0 - 2.0 ** -112) 7.24E+75
MACHINE _RADIX 16
MACHINE_MANTISSA 28
MACHINE_EMAX 63
MACHINE_EMIN -64
MACHINE_ROUNDS FALSE
MACHINE OVERFLOWS TRUE
SIZE 128
R
9.3 Attributes of Type DURATION ;.-‘.;::
\..\
N,
DURATION'DELTA 2.0 ** -14 o
DURATION'SMALL 2.0 %% -14 v
DURATION'LARGE 131072.0 Fes
DURATION'FIRST -86400.0 X
DURATION'LAST 86400.0 o
::-':‘.
-_' ‘
. . e I
10 Other Implementation-Dependent Characteristics e
10.1 Characteristics of the Heap
All objects created by allocators go into the heap. Also, portions of the Ada Run-
Time Executive's representation of task objects, including the task stacks, are
allocated in the heap.
All objects whose visibility is linked to a subprogram or block have their storage
reclaimed at exit.
10.2 Characteristics of Tasks
The default task stack size is 16 Kbytes, but by using the Binder option TASK the
size for all task stacks in a program may be set to any size from 4 Kbytes to 16
Mbytes.
Alsvs [BM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 28 ‘:-l".,-'*
RSN
o}.:f::
g
A

2 .' o$ - WS W N e T ‘\h g LR T Y v A - . i- x-- %A S .v

Timeslicing is implemented for task scheduling. The default time slice is 1000
milliseconds, but by using the Binder option SLICE the time slice may be set to any
period of 10 milliseconds or more. It is also possible to use this option to specify no
timeslicing, i.e. tasks are scheduled only at explicit synchronisation points.
Timeslicing is started only upon activation of the first task in the program, so the
SLICE option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in
the range 1 .. 10. All tasks with "undefined" priority (no pragma PRIORITY) are
considered to have a priority of 0.

The minimum timeable delay is 10 milliseconds.

The maximum number of active tasks is limited only by memory usage. Tasks
release their storage allocation as soon as they have terminated.

The acceptor of a rendezvous executes the accept body code in its own stack. A
rendezvous with an empty accept body (e.g. for synchronisation) does not cause a
context switch.

The main program waits for completion of all tasks dependent on library packages
before terminating. Such tasks may select a terminate alternative only after
completion of the main program.

Abnormal completion of an aborted task takes place immediately, except when the
abnormal task is the caller of an entry that is engaged in a rendezvous. Any such
task becomes abnormally completed as soon as the rendezvous is completed.

If a global deadlock situation arises because every task (including the main program)
is waiting for another task, the program is aborted and the state of all tasks is
displayed.

10.3 Definition of a Main Program

A main program must be a non-generic, parameterless, library procedure.

10.4 Ordering of Compilation Units

The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language. However, if a generic unit is
instantiated during a compilation, its body must be compiled prior to the completion
of that compilation [10.3].

10.5 Package SYSTEM ENVIRONMENT

The implementation-defined package SYSTEM_ENVIRONMENT enables an Ada
program to communicate with the environment in which it is executed.

The specification of this package is as follows:

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 29

P
Fo?

N ‘\‘ '\. Y

A 4

X

'f'::f..{wr.;';:; 5

Polt
«
e

¥,

Sl

NN, 2
.

"..(‘f '.l' ‘r g’ -

[
* 545

v
.». LN ’,

'8
1 &

- P Y z
20NN TT

R Sag FalB ‘g AN WO TYYERY - 9 PP T O e . ‘.. A & -
SRV LN Y U () YRR Lt A S N R N MU W W O CROOCY s O A RO, A U N AD SV Y LY SN

[}
hf::a f.:?'

e

h 7

package SYSTEM ENVIRONMENT 1s

N NN
5%

v v e

subtype EXIT_STATUS is INTEGER,

i
AN

v

type STACK_MODE is (LIFO, FIFO);

l. l"'l
7,
5%

P4

function ARG _LINE return STRING;

"X'{l > "
A

function ARG_LINE_LENGTH return NATURAL;

=

”
3

procedure ARG_LINE (LINE : out STRING;

r'\.“\l
LAST : out NATURAL); .F\c}‘
:.hh'\
function ARG_START return NATURAL; -"'.\'_n"
2
procedure SET_EXIT_STATUS (STATUS : in EXIT_STATUS), " ; :
function EXECUTE_COMMAND (COMMAND : in STRING) ."‘;';
return EXIT_STATUS; ::‘V,.\ (
_\:'\.
~
procedure STACK (COMMAND : in STRING; ;-.5, i
MODE :in STACK_MODE := LIFO); ""“.
Wree d
procedure EXECUTE_COMMAND (COMMAND : in STRING); AN
N
NN
procedure ABORT_PROGRAM (STATUS : in EXIT_STATUS); ;:fﬁ :
o
. '\v o)
function SYSTIME return DURATION; ®
o
function USRTIME return DURATION; “J\.r
:I\:-l' .
function EXISTS (FILE : in STRING) return BOOLEAN; ¥t
\f;:'
~
end SYSTEM_ENVIRONMENT; .f'

The ARG __LINE subprograms give access to the CMS command line. The procedure
ARG_LINE is more efficient than the corresponding function, as it does not make
use of the program heap. The out parameter LAST specifies the character in LINE
which holds the last character of the command line. Note, if LINE is not long
enough to hold the command line given, CONSTRAINT_ERROR will be raised.
The command line returned includes the name of the program executed, but not any
run-time options specified.

The function ARG_START returns the index in the command line of the first
parameter, i.e. ignoring the executed program name.

The exit status of the program (returned in register 15 on exit) can be set by a call N
of SET_EXIT_STATUS. Subsequent calls of SET_EXIT_STATUS will overwrite }::—:
the exit status, which is by default 0. If SET_EXIT_STATUS is not called, a ';«.::\-
positive exit code may be set by the Ada Run-Time Executive if an unhandled .-:.-:
exception is propagated out of the main subprogram, or if a deadlock situation is ’x‘:,w.
detected. "."
j'\‘;\

Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 30 ‘:4':
oy

r,;.r

L‘n"'\

"’.!‘n
\'.\'".\

ey
RGN AN J-'.\"a.‘.f".-’z‘f.'-;-)'.a‘- S P ol P S - e A AR ' '.f VSISO ot ’..'..;..;-»_y,:‘:;-“

P TG P S WA R P O S U WU) o NI L N T N R R X RN N T F R Al ofut et a® Aav Bab e ¥ Be" i et Sut B .
:)
M
N
5
The following exit codes relate to unhandled exceptions: :':F;E
LY
Exception Code Cause of exception ;{;
®
NUMERIC_ERROR: RNy
—_ S
1 divide by zero \.':_ e
2 numeric overflow R”% '
CONSTRAINT _ERROR: Sy
3 discriminant error AN
4 lower bound index error :
5 upper bound index error AT
6 length error P
7 lower bound range error ‘:'f':
8 upper bound range error A
9 null access value e
STORAGE_ERROR: o
10 frame overflow '::"’-».
(overflow on subprogram entry) :-\,:'\.
11 stack overflow N
(overflow otherwise) T
12 heap overflow r:"-l{'
PROGRAM_ERROR: 9
13 access before elaboration)
14 function left without return A
SPURIOUS_ERROR: A
15-20 <an erroneous program> ::'5‘-.
NUMERIC_ERROR 21 (other than for the above reasons) RYAN
CONSTRAINT _ERROR 22 (other than for the above reasons) o
23 anonymously raised exception ,_-"_;
(an exception re-raised using the raise NN
statement without an exception name) oS
24 <unused> e
25 static exception ROAN
(an exception raised using the raise k,_._
statement with an exception name) -:::::
"]
e
Code 100 is used if a deadlocking situation is detected and the program is aborted as r_'.:vl')
a result. oty
FARM
Codes 1000-1999 are used to indicate other anomalous conditions in the initialisation .o
of the program, messages concerning which are displayed on the terminal. S
. DR
- .l'.-
The EXECUTE_COMMAND subprograms with a non-null parameter execute the R
given CMS SUBSET command. The result of the EXECUTE_COMMAND function e
is the return code of the command. 9
RS,
If a null string is given as the parameter, the program exits to CMS subset level. ::-::
This allows CMS SUBSET commands to be executed directly. Issuing the command .\;:-s‘_
RETURN from the CMS subset level will return to the Ada program. The return '::-4'"-
code of the EXECUTE_COMMAND function with a null COMMAND string is R
always zero. ®

PO I

At

Alsys 1BM 370 Ada Compiler, Appendix F for VM /CMS. Version 3.2 31

4 I'%‘l'
S Ie

.
3

L3

LY
s
[
'
¢
»:
3
b
v
»
v
»
Ly
L
.
T
v
[l
¥
L
v
a
)
'
«
«
.
.
)

" >3
L g i'..
>
u-’-.'
| 4
',-‘\ ¢
}\
) "3
The STACK procedure allows a command to be placed on the console stack: either '-:._ G
last-in-first-out (LIFO) or first-in-first-out (FIFO). .r:
-‘..
Pa
The SYSTIME and USRTIME functions allow access to the amount of system and i‘
user time, respectively, used by the program since its execution. -
h*'
3
. ‘e %
The EXISTS functions returns a boolean to indicate whether the file specified by the -."'
file name string exists or not. ,'."_ N
11 Limitations -4
o
.
t"‘-
g
11.1 Compiler Limitations :;‘_:
Lo
» The maximum identifier length is 255 characters. N
. .) N
s« The maximum line length is 255 characters. PR
. .. o
» The maximum number of unique identifiers per compilation unit is 1500. &
-N -
» The maximum number of compilation units in a library is 1023. .
« The maximum number of subunits per compilation unit is 100. -
» The maximum size of the generated code for a single program unit :-_f_'
(subprogram or task body) is 128 Kbytes. e
» There is no limit (apart from machine addressing range) on the size of
the generated code for a single compilation unit. »
. N
= There is no limit (apart from machine addressing range) on the size of a
single array or record object. S
» The maximum size of a single stack frame is 64 Kbytes including the '.'_-‘_
data for inner package subunits which is “unnested" to the parent frame. N
» The maximum amount of data in the global data area of a single !
compilation unit is 64 Kbytes, including compiler-generated data.
LA
-
\:_
e
g
. '!
o)
N
&
-:,-
K%
Alsys IBM 370 Ada Compiler, Appendix F for VM /CMS, Version 3.2 32 :
AN,
\:,\.
e
r
o
l'f.l' .(\,-f .'4-('-‘.!'.-'./'; P I AT S iy
E‘-“' “' a0y, A" NA‘:A?JM-.‘-.'-.J:J‘:A}J.. ;t:' .:f_d‘.:n.- i‘-MLjf__n;mAAA:(N :A.LAIHA.'(AAA_XA!{'JA..L"L‘ L{‘L'f;_' '{AJ‘ lt.".k‘ .\:K‘

RN Va8 RN L Ry e e el Y . . " T ‘g, ey . vals
%0 R S - (S N Y LR P . v

R
)

O

Fd
o

TiaTay
[l S
L}

x

A

b
* ‘f f'f 'x' ['d

-
e

A LA
e
<&

APPENDIX C

[y
if
»

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extensioin .TST
in its file name. Actual values to be substituted are represented by A

names that begin with a dollar sign. A value must be substituted for fﬁN;
each of these names before the test is run. The values used for this Ayﬁ
validation are given below. iﬁ:
..o Jl
L J
Name and Meaning value N
ol '
$BIG_ID1 X23456789012345678901234567890123 i
Identifier the size of the 4567890123456789012345 ﬁya
maximum input line length with A....Al oy
varying last character. |=----1 199 characters

$BIG_ID2
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_ID4
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_INT LIT
An integer 1literal of value
298 with enough leading zeroes
so that it is the size of the
maximum length.

$BIG_REAL LIT
A universal real literal of
value 690.0 with enough
leading zeroes to be the
size of the maximum line
length.

X23456789012345678901234567890123
4567890123456789012345

A....A2

|=-=---] 129 characters

X23456789012345678901234567890123
4567890123456789012345
A....A3A....A

| -99-] |-100-| characters

X23456789012345678901234567890123

. 4567890123456789012345
"A....A4A....A

|-99-] |-100-| characters

0....0298

252 characters

0....0690.0

===

250 characters

Appendix C Page 1 of 4

............ A e e A e = e s w e
T e . i - PR «
DI LT N P L AR AE L .- « »

IR IR T Tl
--------- DR OIS

- PR o - R SN C
S LS T IRACUER ~ T I i R TP S . -
I I R B SR Lo S U A S N S S ;{‘A.‘NMJM SRS AP Wy YA VR S D .:l.&;‘}!':m\‘r .

<

A
Y.I

L
S0P

.
»
.
1

P!
e '

PR
« v
.
s,

,.
vy
e
.l 'I .V'-‘;. .-‘

" —'lr‘l(..’
PN)
‘I .l 'l 'I

PN XN

C e u

"{dqj
P4
-.,} “‘.’5 L
rry 4

>

BEEC 2L
o

Name and Meaning Value

$BIG_STRING1
A string 1literal which when
catenated with BIG STRING2
yields the image of BIG_ID1.

$BIG_STRING2
A string literal which when
catenated to the end of
BIG _STRING1l yields the image
of BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer 1literal
whose value is
TEXT_IO.COUNT'LAST.

$FIELD LAST
A universal integer 1literal
whose value is
TEXT_IO.FIELD'LAST.

SFILE NAME WITH BAD CHARS
An external file name that
either contains invalid
character or is too long.

$FILE_NAME WITH WILD CARD CHAR
An external file name that
either contains a wild card
character or is too long.

SGREATER THAN DURATION
A universal real literal that

lies between ’

DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.,

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that
is greater than DURATION'BASE'
LAST.

$ILLEGAL EXTERNAL FILE NAME1
An external file name which
contains invalid characters.

TEST PARAMETERS

"X23456789012345678901234567890123
4567890123456789012345

A....A"

|=--=-] 72 characters

"A....ALl"

127 characters

235 blanks

2147483647

255

T??22?272?22 LISTING Al

TOOLONGNAME TOOLONGTYPE TOOLONGMODE

100000.0

10000000.0

T??2?2??22? LISTING Al

Appendix C Page 2 0Of 4

o TN NN N A

5

a
)
Ny
~

's(

s’
)

.
L
L)

T
v 't
o’

I's
1
-

7t
- _a_ >

' ' . T
R R
. . .
e K
» o . '

7 7 rea
PV 5
.k$§$$5c

LS AP
ﬁﬁﬁfdﬂ{
Ll

o %

oty

Name and Meaning

TEST PARAMETERS

Value

$ILLEGAL_EXTERNAL_FILE_NAMEZ
2n external file name which is
too long.

$INTEGER_FIRST
A universal integer 1literal
whose value is INTEGER'FIRST.

$INTEGER_LAST
A universal integer 1literal
whose value 1s INTEGER'LAST.

SINTEGER LAST PLUS 1
A universal integer 1literal
whose value is INTEGER'LAST +
1.

$LESS_THAN DURATION
A universal real literal that
lies between DURATION'BASE'
FIRST and DURATION'FIRST or
any value in the range of
DURATION.

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that
is 1less than DURATION'BASE!
FIRST

SMAX-DIGITS
Maximum digits supported for
floating-point types.

$SMAX IN LEN

Maximum input 1line length
permitted by the
implementation.

$MAX_ INT

A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX INT_ PLUS_1
A universal integer 1literal
whose value is
SYSTEM.MAX_INT+1.

TOOLONGNAME TOOLONGTYPE TOOLONGMODE

-2147483648

2147483647

2147483648

-100000.0

-10000000.0

18

255

2147482647

2147483648

Appendix C Page 3 of 4

T N R
PR A

A
R

e ™ § o

LTS R T M A U PR Sy L Al S A Sl R N W
o o a s
o “ Wo P

e Iy M)

N 'Iﬁ.. "
AN T

Py

[

TV\WW\ PATUEOI L U T A N A N AT el Ui b) S Ua e P P O A AR A A AR AR A ueraeab s RS SRR BIEEA UL DL Y

TEST PARAMETERS

Name and Meaning ~ Value AN

LA

AR ARNS
<’y

$MAX LEN INT BASED LITERAL 2:0....011:
A universal integer based | —=--|
literal whose value is 2#11# 250 characters
with enough leading zeroces in
the manticsa to be MAX IN LEN

[

!

o i

long. ~
a3
$MAX_LEN REAL_ BASED LITERAL 16:0....0F.E:)
A universal real based literal | ====] .-
whose value is 16:F.E: with 248 characters gtk
enough 1leading zeroes in the
mantissa to be MAX IN_LEN e
long. o
.
o
$MAX STRING LITERAL "X23456789012345678901234567890123 ::.-
A string 1literal of size 4567890123456789012345 RS
MAX IN LEN, including the A....A3" °
quote characters. | -—=-] 197 characters e
o
SMIN INT -2147483648 iy
A universal integer 1literal KA
whose value is SYSTEM.MIN INT. e
®
$SNAME NO_SUCH_TYPE 2
A name of a predefined numeric o7y
type other than FLOAT, ooy
INTEGER, SHORT FLOAT, S
SHORT INTEGER, LONG FLOAT, or e
LONG INTEGER.)
$SNEG_BASED INT 8420000000000# S
A based integer literal whose A
highest order nonzero bit e
falls in the sign bit position by
of the representation for °
SYSTEM.MAX INT. _'_-.::-.
..
1)
oL,
D o
o
B
@
.
.n“'.
T
Appendix C Page 4 of 4 f:‘
Tt
a
0

o . - - - o P e N 20 Y U S
.N:c;}_‘}*.:‘_f\..\r‘_:\ \.__'r__-.\._ n \:\ R \-f.,\ N R S A G i P A i A, SO J‘_:. N
- ... P -.L,..‘.A A . ., o - A I . 3 X s , (o 8 N } L » 0

-

0l el S et daf Sl ol vag A, 3 “ . g
% N - e W LA LIS LS B ¥ e

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 25 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary.

B28003A:

E28005C:

C34004A:

C355027>7:

A35902cC:

C35904A:

C35A03E,

C35A03R

applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.
Appendix D Page 1 of 3
N N o b NN NN N NN

A basic declaration (line 36) wrongly follows a later
declaration.

This test requires that 'PRAGMA LIST (ON);:' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and
the matter will be reviewed by the ALMP.

The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERROR.

The equality operators in lines 62 & 69 should be inequality
operators.

Line 17's assignment of the nominal upper bound of a fixed-
point type to an object of that type raises CONSTRAINT ERROR
for that value lies outside of the actual range of the type.

The elaboration of the fixed-point subtype on 1line 28
wrongly raises CONSTRAINT ERROR, because its upper bound
exceeds that of the type.

These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

These tests assume that attribute 'MANTISSA returns 0 when

‘vf'\-

'5'1; 't’%“"- N
77 '
VAN s @

S N
[

Y
X

NN
»
.5¥¥

F W S I :
PPN A
LS5 SN

P Al
LN

NG
-~ ¢
L5 @

A '4(%5
”
.0?2?%5

Y %%

'I.\"I:I'T'l ’
PR
L S N T T
LR Tt I)
DA

nAANT
uile

.'/".:’

P A
7

-
2
@
h

C37213H

€C37213J

C37215C

C37215E

C37215G

C37215H

c38102C

C41402A

C45614C

A74016C

C85018B

C87B04B

CC1l311B

BC3105A

WITHDRAWN TESTS

The subtype declaration of SCONS in line 100 1is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises CONSTRAINT ERROR.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

Various discriminant constraints are wrongly expected to be
incompatible with type CONS.

The fixed-point conversion on 1line 25 wrongly raises
CONSTRAINT ERROR.

'STORAGE-SIZE' is wrongly applied to an object of an access
type.

REPORT.IDENT INT has an argument of the wrong type
(LONG_INTEGER).

A bound specified in a fixed-point subtype declaration 1lies
outside that calculated for the base type, raising
CONSTRAING_ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

A bound specified in a fixed-point subtype declaration 1lies
outside that calculated for the base type, raising
CONSTRAING ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAING_ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

A bound specified in a fixed-point subtype declaration lies
outside that calculated for the base type, raising
CONSTRAINT_ ERROR. Errors of this sort occur re lines 37 &
59, 142 & 143, 16 & 48 and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

Lines 159..168 are wrongly expected to be incorrect; they
are correct.

Appendix D Page 2 of 3

‘-r.:-.‘.:r,‘-r o o o el e L RN

v O ™

ol
M AP

™
™

"a
<

*
Yy ®

AL
£33
o

-

&
P

18, &%

X

“
XA
Pl s

Pd
[

A
_"'h'r

v
/

-

4

LNy

:¥¢x%§~ﬁ-

P s
.'-tx\

)Jﬁq.
[I'

<, .;'._:;._;._"“ .
!."‘.’*. LSRN

DA
P A
e
* ’

3

L T TN
)
PEATLY

R
" PR
[] LR
3 .
L A
- Tate e

N "".‘r' ’

v e o o - .
£_1
COA I T
B

P,
Pl

& S
o

L]

!
L 4

e
’

b'e

“.
2/

RPN
g ‘.I /' "‘

'til .
LA e

4

e
¥
Mg

I3

Sy
[r{t‘l 1 ',.'... R fe)

AR EIACH SO PASEASCaRE £ 0 MR A oy Sl /oyt sy) ;

A

-

WITHDRAWN TESTS

AD1AO1A The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

R el

CE2401H The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A This test expects that an attempt to open the default output
file (after it was .closed) with mode IN_FILE raises
NAME ERROR or USE_ERROR; by Commentary AI-00048, MODE_ERROR
should be raised.

LUe .

St
1

Yiaat

¢
P

z
[l
r s

Pld

v ,

Appendix D Page 3 of 3

]
b Y

L% NN
" ‘

%

k)

] LI Y . . _a a [£ '
I A A N N T T T T T e Ful R AL S ST
'»,VU.F.V v.-.h\-'flb..l.v. . n... St r-f.-. .ﬁ LA r...-,.\(n.... .. ‘- fey W-.\-r..»-v. -(\.u

T

