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1. Imntroduction

This semi-annual progress report contains a summery of work accomplished on O. N. R.
*. Contract NCD014-86-K-0370, High Resolution Radar Imaging, during the period from 1
‘ mber 1587 to 31 May 1985.
&
The goal of this project is to formulate and investigate new approaches for forming

EA

<

noages of radar targe's from spotlight-mode, delay-doppler measurements. These measurements

G e

cculd be acquired with a high-resolution radar-imaging system operating with an ootical- or

radio-frequency carrier. Twe approaches are under study. The first is motivated by an

e

image-reconstruction method used in radionuclide imaging called the confidence-weighted
algerithrr, here, we refer (o this a2pproach as the chirp-rate modulation apprecch. The second
approach is based on more fundamenta! principles which starts with a mathematical model that

A

accurately descrives thbe physics of 2n imaging radar-system and then nses statistical-estimation

=

theorv with this model to derive methods for\producing target images; we refer to this as the
estimation-~ikeory approgch. _,_,--/ ;? }L «%‘7

e

Fig's. 1 to 4 summarize a broad context in which forming radar images is important and
the way in which the methods we are developing may be useful in this context. Fig. 1 depicts a

)

%

W

A E—

! 1 ,a! TORM %
Delay-Doppler | NLAGE v
Radar Daxz

pel

Hepizy

imsge

eI

B

Figurz 1. Radar Imaging Syste=m

A regdar trapsmitter/receiver ilinminztes the target with a series of
pulses and obsesves echo-éata conizining delay-doppier inicrmzrion.
These data are procassed 12 form 2n ilimzge of the targst
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radar imaging system. Shown is a single target, but multi-target and clutter environments can

be accommodated as well. Images are conventionally formed by processing data acquived with 2

Pl

series of target illuminations using chirped-sinusoidal or stepped-frequency waveforms. The

% usual two-dimensional Fourier transform processipg, described by Wehner [1], is based or 2
< detarministic model in which there is no randomness in tre target’s reflectivity and no noise in
g the radar data, an idealization which is often not met in practice. Another form of processing,

3 & dascribed by Mensa [2], is based on tomographic principles and is also based on a deterministic

’;& ;j model for the problem. The chirp-rate mcdulation approach which we are developing is based

’ <« on tomographic principles; it extends the approach described by Mensa through the use of a
£ variable chirp rate, as first descrited by Bernfeld {3] and Feig and Grunbaum [4], so that only

4 3 smeil angular rotations of the target are necessary for forming the image. Our tomographic

: :;' method is based upon developments in radicnuclide imaging and differs from that of Bernfeld,

4 Feig and Grunbaum in that we can accommodaie practical ambigrity functions that do oot yield

% = the ideal line integrals required with the usual tomographic approaches they employ. The more

_ § '43 fundamental exiimation-theory approach which we are developing uses 2 terget model that

! t
M
m

accounts for diffuse, random reflectivity and for nois2. The image formation process is derived

mathematically using statistical-estimation theory. The n2w processing we obtin 1S more

.\

complex and r~omputationaily demanding thzn either the Fourier-transform or tomographic

[

approzches, but improved imeges cac result because it more accurately zccommodates the

g-
&
_?
re

physics of radar imaging problem. At the present stage of our imvestigations, we are 20t overly

N}

concerned about the compatational load of the approach because the equations to be evaleated

§ t:‘; are qiiite amenzaple 10 evaination on messively parcliel computing arcuitectures.
:§ ?. We are beginning o evaluate the performance of the estimetion-theory approach in
“ :;E comperison tc conventional Fourier transform processing. Only an extremsly preliminary rasult
3 & s available now, but we include it 16 indicate what we hope the gains with our method may bz
: ;:"; 25 w2 complete 2 more complex evalmation. Skown in Fig. 2 are the avercge results obmained
. 8 from 3000 realizztions with a2 computer simulation in which a single point-target of wuait
s scattering strength (iLe., random reflectivity with power ¢2 = 1) 5 illuminated with 2 sinusoidal
= pulse.
,;'_:-
Ex -2
-
=
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Figure 2. Performacce Coraparison for 2 Poiat larget

Shown are the output signal-ts-noise ratip and bias for estimating the
scattering fencticn of a point target with a periodogram and with the
estimiztion-theory method.

A

Shpwa are the bias, dafiaed by

BIAS=E[g2?]-g2,
asG Jzipat signal-to-noise rats, defined by,
. 2
5 SNR_, = ——,
: J MSE

W

where MSE I3 the mesan-square orior defiped Ty

' 27 27 o2
e MSE=E|{c?)*{-E%c?].
w & 3
3 The input signal-te~zoiss ratio is definzd by
¥ 2 »
Ed G :
== SNRins-rurv
.‘\’g Mg
£

N . L. N
3
A

A
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where Ng is the power deasity of additive receiver noise. The scattering strength of the point
target was estimated vsing 2 Fourier transfo-m method (periodogram} and our estimation-thecry
meethod. For input signal-to-noise ratios above about 5 dB, the pencdogram estimate is stroagly
biased and h2s 2 low oulput signzi-to-ncise ratio. In this same regime, the estimztion-theory
method yields an unbiased estimate with abuut a 15 dB greater outpat signal-to-noise ratio.
While this is aa extremely elementary example, it does give us some opiimism that the Dew
2pproach will resolt in improved images compered to the Fourier transform approach whea
appiied 1n more rezalistic situatiens.

Shown in Fig. 3 is a target identification system that uses radar images to aid in the

? FEATURE TARGET
% ¥ o 3 Tacrget
y EXTRACTION IDENTIFICATION Type
Rader 4 3
lmage
TARSET COLLATERAL
TEMPLETS INFORMATION

Figare 3. A Target Ideatification Sysiem

Shown 35 a system in which targets are idsatified on the basis of
featores exmacicd from radar images of the target, target tempiets, and
other collateral information.

identification process. Such 2 system commonly starts with an image formed by the
Fourier-transform method. Features such as edges, regions of simiiar texture, and shepes are
extrectsd. These are then used with 3 catlog of possible farzets and other available
information, such as target-track data, surveillance datz, and target environment, to idsntify the
target typs. Since the idsntification process will be sided by having improved target images
from which to extract features, w2 expect thet more reliable identification will resuit whea
images producad with our estimation-thecry method are used. Note that in this system, tw0
separate and independant steps are involved, that of image formation followed by that of
feature extraction for target identification. One may expact that combining thes2 two steps in a

unifizd manner should result in further improvements in ideatification.
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RULE-BASID & TARGET COLLATIRAL
gj STATISTIC-3ASID]  § TEMPL_TS INFGRMATION
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Figure 4. A Unified Targei Imaging and Identification System

L

Shown is a system ia which targets are imaged sad identified in a
coordinated manner in an extended estimation-theory method in which
rule- aad statistic-based constrzints are reccznized.

(R

formed and features extracted in 2 combined, unified manner. This is z>complished by

incorporating constraints during the image formanon and exmzcuvin Piocess. Looctai@ts may

i

be rule-based, such as to enforce curvature rates ca edges and closure of boundaries, or

statistic-based, such zs rcughness of texture and prior statistical knowledge of the target. Tic

e

)

5

estimation-theory approa.h we arz desveloping is ideally sunited for incorperating rule and
statistic based constraints in a single, coordinatsd process that should resvlt in improved target

(1]

jdentification.

At the present "ime2, research under this contract is focused oa two methods i0 improve

L

target images. Such improvements would be sseful in the bread context of tarzet idersification,

particularly for the sepezrated identification system of Fig. 3. In ocur laboratory. a strong

o)

research effort on image cstimation subject to ruls- and statistic-based coastraiats bas been

o

g% I




~ - - . - o - - L ' é - '3 v
I e LRI B, 43 5 et Fo dhe o8 i i g Jrag i o - ANy > ir'y e - - b -

i
»
v

iy

Fass

initiated [5], with a view towards imp:ementations on higkly parallel computer architectures.
We envision that these developments will be important for a unified target imaging and

identification system in the form of Fig. 4.

2. Summary of Wark Accomplished

B8

2.1. Estimation-Tkeory Approach to Imaging

Goey

Progress during this reporting period has been made on: a, extending the estimation-theo-

X

ry approach to include 3 specular or glint compozent in the radar-echo data in addition to the

22

diffuse component presently in the model; b, analyzing the performsnce of the estimation-thec-
ry approach both analytically through Cramér-Rao bounds ard with simple computer-simuia-
tions; c, extending the estimation-taeory 2oproach to accommodate constraints oa the received
signal-to-noise ratio; d, identifying anzlytical conditieas for the uniqueness of images prcduced
with the estimation-thzory approach; and e, addressing how radar signals should be selected to

N

form good images. Each of these areas is described briefly below and more completely in the

]
-

appendices.

2.1.1. Inclusion of a Specular Component

-

The estimation-theory approach to imaging which we have developed to date is based

)

upon targets having a diffuse reflectivity with no specular or glint component; the refiectivity is

modeied as 2 zero-mean, complex-valued Gaussian random process [6]. We are now developing

R

an apalogous approach for targets that are described by a collection of purely specular

reflections with no diffuose component. The model we are using and a statos report for chis

e

effort are contained in Appendix I, by X. Krause.

g 2.1.2. Perfo:mance Evaination

The estimation-theory approzch to imaging yields an iterative aigorithm for producing
bocy
;—. targei images {6). As a result, the performance of the resulting images is difficult to predict

analytically. For this reason, we hava recently developad a Cramar-Rac lower bound on the
mean sguare-error in estimating the target’s scattering funciion. This is discussed in

Appendices 2 and 3. Anuther apprvach we are beginning to use for studying the performznce

ERD M GR3
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and for making comparisons to alternative image formation strategies is computer simulations.

I | ot v g s b g @

e 0

These are very demanding computationally. Our first results are, therefore, for very simpie

special cases. These are discussed in Appendix 2.

LYo

2.1.3. Forming Images Subject to a Coustraint oa Input Signal-to-Noise Ratio

We have extended the estimation-theory approach to include a specified :iaput
signal-to-noise ratio. The result, obtained by P. Moulin, is discussed in Appendix 2.

e

2.1.4. Conditions for Unigueness of Target Images

s

Conditicns for the uniqueness of target images formed with the estimation-theory method
have been ideatified by J. O'Sullivan in terms of the Fisher inforrzation-matrix a2nd the
Cramér-Rao bound. This is discussed in Appendix 3.

BEY 43N

2.1.5. Signal Selection for Target Imaging

3
A3
3
1
I
2y

An effort has bean initiated to establish a method for determining good radar sigrals to

/

transmit for delay-doppler imaging. Preliminary resuits, obtsined by J. O'Sullivan, are
discussed in Appendix 3.

! Mo,
"

»

2.2. Chirp-Rate Modulation Apnrozch to Imagiag

RAY

Work is continuing on the chirp-rate modulation approach to imaging. Using

013 20s b 1y V7

maximuom-likelihood estimation, the processing to be used con radar-echo signals kas been

v

identified ~hen a lineurity constraint is glaced on the processing. This confidence-weighted

prooessing consists of a bank of bandpass matched filters followed bv additional filiering

ey

‘0

specified by solving a set of normai equations. These equations are valid for a variety of
modulation formats, and we =zre preseatly specializing them for the stepped-frequency

|

s

waveform so that we may compare the processing to convestional two-dimensional Fourier

transferm processing.

b
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K. E. Krause
June 9, 1988

STATUS REPORT:

MAXIMUM LIKELTHOOD APPROACH TO
SPECULAR TARGET IMAGING

The foliowing describes pregress in statistical model formulation and imaging
approach for the Maximum Likelihood Estimation based imaging of delay an
doppler spreaé specular targets. That is, targets composed of mauitipie
reflectors, each of which is characterized by a specular reflection process.
According to Wehner {ref. 1) the reflectors on such targets may be thought of as
having the followinrg properties: reasonably constan: reflection amplitede with
respect to small aspect change, rapidly vaying phase with respect fo aspect,
and weak (for this cifort negligible) reiationship of echeing area to freguency.

Target Model The target is assumed io be composed of an array, in the delay-
doppler plame, of specuiar reflectors as described above. The generic return
from each refiector, with attributes sufficient to capture the aspects of Wehner's
properties, is posmlated. It is

—_—
SAG Spm, Bom) = Y2E; Bap Kt - o) cos { 2x{fp + fm)t 2xfota + O(t-tp) + Oam]

where t is the continuous time variable, 1, is the scatterer delay coordinaie,
is the scatterer doppler coordinate, E; is the traasmitied signal emergy, Banp is
the deterministic amplitude of the refiection coefficient, fp is the radar carrier
fregzency, f(i) is the ampistude of the moduiation’s complex envelope, ¢(1) is the
phase of the carrier modulation’'s compiex enveiope, and 8;; is the random
phase of the refiecion cozfficient. Phase @pp is assumed to arise from the
feillowing probability density given in ref. 2:

expiAnm c0s{Bpm)l]

-m<Ogm<E

?{aﬂmr’\m} = Lo 10(_;;1““3
n agpli rt]

.

ian 18 & consiant which can be adjusted to model the apriori knowiedge of the

randomnress of the phase variations. A vaie 8 implies a uniform distribatica

- 10 -
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or nothing known about the phase and z value of infinity implies the phase is

- B = wn exactly.
: 3 g kno ¥
3 Imaging Approach The received signal available from which to form images
: '{‘g is a sum of reiwras from elements like those described above lccated at anm
g array of locations {tp,fm) in the delay-doppler plane. This signal is corrupted by
additve white gaass*an noise. The received signal may thus bDe expressed in
, g terms of the generic returns from individual scattering elements as:
gg N-1 M
2 se2p(88.B) = X, D se(ti%m.Bam) + w() O<<T
i =0 m=-M
=
= N is the number of discrete delay coordinates where <scatterers exist and M is
= the number of discrete doppler coordinates on either side of O at which
<] scatterers exist. w(it) is the additive white gaussian noise.
ca The desired image is the maximom likelihood estimate of the magnitude of Bz
s at each point in the target array.
1 5 Technigque 1 By making some assumptions on ihe relation between T and the
8 doppler resoiution and by restricting the class of allowed complex eavelopes
. somewhat, a likelihood ratio can be derived which has the forin of 2 product of
t‘,{; ref. 2's Lkelihood ratics for the detection of 2 imown signal with an umwanted
- pfmce Thus, the 2D imaging problem may :2dece in level of compiexity to that
of estimating the reflecion magnitede of a single genmeric target. To date, the
= form of the solution for case Apm=0 and Ap; approaching infinity have been
investigated. A relatively simple expression resnlts for the latter case
§ {corresponding tc phase kaewr exactly). For Apm=C {phase uniformly
¥ distributed), an expression coataining modified Bessel functons of the first kind
£ and orders 0 and 1 results which wounla have to be iteratively mawched with a
A 5‘; imnear function of their arguments to converge on a solation  The case for Agm
arbitrary vields even more complicated ecxpressions which wonld have to be
j 3 soived using computer iterations.
SRS
3 - Technigue 2 Currently, the EM-algorithm of ref. 3 is being izvestigated in
: 2 quest of a more waciable iterative solution io the problem. The first znd most
E = obvious form of the complete data space medel leoked at in this regard appears
4 =5 to have a degemeracy which praciically would cause the accemulaticz of time
E‘_ samples beyond the first 2 to not be meaningfully used in the estimation
3 proceduse. This will be rechecked. The next step, currently in work, is to lcok
¢ o - 11 -
2
&
E =
3 &

@
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for a new compleie daia space model which wili provide meaningful uviilizasion
of all data with improved traciabiiity over Techaigue 1.
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: 1. latroduction

P4 A promising zpproach to maximum-Tkelhood estimation of Tosplits constwained covariance

matrices has besn proposed recentlr jI;. Several developments can be considered. First. this metbod
2150 zpphies to the dual problem of specizum estimation. Another issue of interest is that the statistical
model can 2ccount for the presence of additive poise corrupiing the observations and for limear
wanformations of the process whose covariznce of specwum is sought. These considerations
motivated a new approach to high-resolution delay-doppler redar imeging, where 2 major goal is to
produce estimates of the target’s scattering function 2). In the special case where the wansmitted sig-
nal is 2 constant 2nd there s caly cne delay bin, this reduces to a spectrum estimation probiem This
paper describes some recent results obtained for this simplified problem.

Ous modsl is presented in Section 2. A maximum-Fkelthood formuiation cf the protlem s given

3

s ey

! %3 in Secticn 3, and it is shown how the eguations can be solved. Seciioa 4 is the main section. The st
g & Mpen‘mﬁ&esﬁmhrkﬁn@si,mﬁitb%nbmhmmﬁ&maa&émﬂ
‘ methods such 2s the periodogrem. The results 2re encouraging, and fuwre directions for research are
l proposed. One sach direction consists of using 2 priori information on e sigeel Whea this miorma-
X o Goa is in the form of 2 coastraint oa the Sgazl power, a new estimator can be derived by maximizing
z she Hkelihood subject to that constrzint. Theoretical issues of exisience 2nd unigueness of the solution
G zve discussed in the 12s3 secticn.
%
= 2. Model
. & We now present two models for the spactrum estimation problem. They fondamentally difier in
3 g:‘i thaz the first one 2ccounis for noise correpting the observations.
2.1. Model 1
% This follows from the model presented in (2, when the transmitted signal is 2 constant 2ad only
e one delay bin is considered. Let r be 2n N-vector sample of 2 real Gavssian process corrupted by an
. 2dditive white Gaussian nolse :
E G r=b+uw, (2.1)
where
z £ o is an 2dditive white poise with covariance matrix Nply, uncorrelated with b. where Iy is the
f’ NN identniy matenx:
}3 * Tige wesk was supposted 5y corirass awmaber NOOJ14-85-K-037D from tae Office of Naval Research.
& e
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) 3 b is made of samples of 2 Gaussizn periodic process with period P > N,

k Both ¢ 2nd v 2re zero-mean The pericdicnty assumplion guarantees that the likelihood function is
bounded above: therefore, there existt 2 maximum-likelihood estimator ‘1. The assumpticn ako
impfies that the covariance matrix Kp for a full period of the prozess is 2 Hermitian symmetric. ciren-
iant, Tosplitz matrix. Iis eigenvectors are cclumns of the PXP DFT matrix W, o

Kp= WhasW,, (22

@

ey

where superscript T denotes the Hermiuan-transpose aperator on metsicss, and A5 35 a PXP real diag-
onal mawrix whose dizgonal eatries are monnegative atd are spectium samples.

Assums now thai we are only interested in estimating M of the P spectrum semples {1 < M <
P), the other specwrum samples being zero. This assumption is introduced o deal with the bandlimited

eSER

iy spectra encountered 1a radar applcations ;2. We define she dizgonal matrix of specal parameters ©
= Ap = MiEMy, {2:3)
: g& where

znd Im..,),, and Jjyq)p are respactively the (M+1)/2 X (M+1)/2 2nd the (M1)/2 X (\{-1)/2 identity

mairices. For simplicity, e ccnsider M to be odd. Only the first (M31),/2 2nd the last (Af1),2 diago-
n2l entries of A> are nonzero, and these define the dizgonsl entries c-(2) of the MM diagenal matrix
E. The NXN covariance matrix Kj of b s the upper left corner of Kp. Frem (2.2) and {2.3),

X =TT, (2.4)

GRS

m

where we define the MXN matrix to be
T = My, Waily; 0f . {23)

The covariance matix for r is then given by

.

2.2. Model 2
in most spectrum esiimation problems, it is assumed that the observations zre samples of the
process of interest. This is also the model 2ssumed in {1}. This is a special case of (2.1) in which

B0

r=5b. 2.7

)

From the definitions in {2.3) 2nd {2.5) for T 2nd T'. the covariznce mauwix for 1 is now given by
K =T%r. (2-8)

p.'
o

Vo)

3. Spectrum Estimators

Iz our Smulations in the next section, we compere the performance of three estimaiors for the
spectrum of the process § given r from equation (2.1). Thess three estimators 2re presented in this see-
tion. There are two maximum-likefthood estimators darrved from modzls 1 2nd 2. a2nd denoted by
ML1 and MLO, respactively. The third estimaztor is the periodogram.

e

3.1. ML1 Estimator
Thus estimator is derived from model 1. Following the formulation ia (2], the equation for the
received signal can be rewnitten as

GE ry

r=Tc+w, (3.1)

- 15 -
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where ¢ s a zer0-mean Gaussian random vecior with diagonal covariance ©. The fikelihood function
for K, s
rK)=-%hda K, -2 rKr. {22)
From (2.6) and (3.2), the likelihood function for T is
L{r,E) = ~% In dex (T'ZT + Nply) — % ri(T72T + N2 r {3-3)

Maximiring the likelihood with respeci to T yields the necessary trace sondition which the estimate ©
must seuisdy {1,235

Tr I{IPET + Npby * (mr—T1ET — NoLu{I°ET 5 Moy 6% =0 . (34)
for all MixXM dizgonal matzices 8. This trace condition is 2 nonfinear equation in T Feneraily R cap-
not be solved directly in closed-form, so some numerical search procedure muss be implemenied An
elegent solution s the expectation-maximization (EM) 2!gorithm used in [1,2). An initial estimate =
is selected. At step k+1 {(k =0,1,..) the estimate is updated 2ccordin- w0

S _ orgmez OIS 13.5)

where
- M 44 -
eEltY = T nsn -2y Aldnlz! n2¥) 729, (36)
=) =D
and
Bzl 129 = 59 - S9nrE e n, p e 5 SO ereas o
TS T N LTS i) (3:7)
This algorithm produces a sequence of estimates
FEE = Bl 1n, 59 (33)

having mcreasing hkelihood. It can ba shown that the steble pomnts of this 2izorithm sasisfy the neces
sary trace condition for 2 maximizer (2 The issue of uniqueness is 2ddressed in 2 compeanion paper
Bi-
Special case :N=M=P=1,Nyg=0

A closed-form expression for ¥ can be derived in this special cese:

&ti) = max{0,r* — Ap).- (3.9)
3.2. MLO Estimator
When modal 2 bolds, the equatio. for the recaived <anel can be rewsitten as
r=1%c. {3.10)
where ¢ is a zero-mezn Garssan rendom vecior with dizgonal covariance £ From (2.8} and /32), the
Tikelibood function for T 3s
LrnT)=-%h et (") - & F{TST 7. (3.11)

As for model 1, 2 trace condition for 2 maxunizer of the likelihood c2n be derived. The EM algorithm
can also be used to solve this nonlinear eguation in . The sequence of essimates s il given by (3 8),
where now

Eil (il ri‘m‘* = f}:‘m - iﬁi‘(ﬁi‘“’l‘)ﬁ‘ﬁ“ + é’mmmf‘}"‘ =S af")—‘ e {L)
Cleariv MLO 2nd ML1 are egumivalent for noise-free problams (N, = 0).
Speeizl case - N =M

Wi R I e T T P e T e e A0 1 % 2
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The problem for which the number of observations (X) is equal io the number of parameters to
be estimated {)M) is of some praciical mterest. & 2lso tarns out that the wace condition can be solved
iy clesed-form in this instance. The matrix { is then invertible. Equetion (3.19} indicates that there is
a cne-t0-02e mMapping between 1 and ¢, and the MLO =stimator is Smphy

F =it (3.12)
where T dencses (T3)\.
3.3. Periodogram

The periodogram estimzte of the P-spectium of the periodic process is Smply the megnitude-
squared Fourier tansdorm of the observaticas 14,

Az =(P/N) W> {;}.-z WL, (3.13)

Assume we 2re Jocking oaly ai the first M spectzum samples. Then, from {2.3), {2.5) and {3.13), Tis

gven by

5 =P IEP (3.19)
Specizl cage - N=M= 7P
Whea N =M = P, the matrix I' &5 equal 20 %> 2nd periodogram 2nd MLG estimates are the

seme. In this case, 3 full period of the process Is estimated.

4. Periormance Anslysis
In this section, we 2pply the three estimators presented 2bove to medel 1 2nd study their statise-
iczl perjormances. The bizs and veriznce 2r= eveluated for carh 2stimator. whers

BieslS} = EfT} - T (1)
and
VerfS) = B - (EE)F - 12)

As we shell see in Section 4.3, the performance strongly depends upon the inpat Signal 30 noise ratio
defined by

SNRx=Eq /N>, (2.3}
where £, is the average power of the process, defined by
By = #{0) = (1/P) Tr I} . 149)
Frem {£.1) and (4.2), we derive the dizgonal mean—>guered eiror (MSE) matrix
MSE [S] = EfS-SF] = Verl) + (BiasS)F . (43)
The oripet sgnal to noise ratio matrix is defined as jollow- :
SAR,i5] = T {MSE T}y* 12.5)
In the jollowing section, we evaluate the bias and me-p-squared error for the estimatorr derived
i Section 3. Whenevar closed-fo.m expressions for the ML esuimeies canpot be derived, computer

simulztions are performed. Typically 2000 realizations are g=aersted for each process For a given est-
metor, (4.1 208 {4.6) are then estimezed from the 3000 estirates.

4.1. Performance Analysis

Closed form expressions for the bias 2nd mean-squa. »d error are derived for MLO znd the
periodogram when they ecist. Simulations were cai.ied cut .o compare the performance of the esti-
mators for varions lovels of input SNR.  The performanie  as then compared to the Cramer-Rao

- 17 -
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Lower bound for the variznce of unbiased estimators. Much effort was made for the special case M =
N. Thes provides insight into the problem since the MLO equations can be solved in closed form. The
choice of P is free, so long as P > N {2].

LY P

4.2. Closed-form Expressions for Estimator Performance

!'l" t‘q

(2) ML1

n As indicated in Sectdon 3.2, ro clesed-form expression for the estimator is available, so the
: a&i evaluation of bias and variance is obtained bs computer simulation.
: {b) MLB
: {; Closed-form expressions for MLO can be derived when M = N. The results 2re presented below.
{ Bies
= S Taking the expectation of {3.12) and using (2.6), we get
g = B (9] = %) + Mo(TT°Y(id) (£7)
3 so we have

L
s

Bieslo {i)] = NofiT")(£1) - (18)
The bies is due to the pois» corrupting the observations and is proportional to Ny. The sensitivity of

Pl PN

2 the biss to the Doise is determined by the diagonal entries of the matrix {TT7).
AR
= Mean-Scuered Error
XN Combining {3.1) 2nd (3.12), we can write
:Ii' 8 S0 =l(c + THw)i)? . (49)
By Taking the expectation of (4.9) squared, we obtain
S = . . ) M2 o
3 EG (0P = () (2+8) + No o*() (ATT)(9) + 2 %, RelT (357
3 j=0
u—
] + N (T EF +1 Y TR ). {£103)
ot F=3
After some algebrzic maniprlaticas, this expressica can be lower-bounded by
2] EF (0] > 2 6%) + NI G2 =2 (6 () ) - (s.165)
From {4.7) and {4.10}, (4.5) becomes
8 MSE () = (BT (N TG P (w119)
= and
§ MSE B()) > o*(9) + 2 6%) No (TTFHi) + 2 (No (T (EAF . (4.11b)
x..
A {c) Periodogram
X 2% Bies
'é = Combining (3.1) and {3.14), we can write
) - i) = (P/N) (T + TeXi)e . {312)
5 ; Taking the expectation of {£.12), we get
3 _ EfG (i) = (P/N) (TTSSIT® + NoIT)id) . (413)
R
LR - 18 -
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Biaslo' ()] = ((P/N) (TT'SIT?) — £ Yiid) + {P/N) No (TET)id) . (4.14)

The bias is made of two terms. The second one is due to the noise and is proportional to Ng. The sen-
siavity of the bias to the noise is determined by the diagonal entries of the matrix I'T". The first one
15 independent of Np. Even for noise-free observations the periodogram is a biased estimator of ©
unless IT” is the identity matrix. This would be *he case only for N = M = P (observation of 2 full
period of the process) or N/M — co.

Mean-Sgrared Error
Taking the expectation of (4.12) scuarcd, we obtain

EfE R = (Iﬁ/\")':iz FHIEITHLNT + 4 N % T ey e 1ryeg

J

D

] GBS R

+ 203 (TT){4,if°
5 + 1 o%(0) (T8 OF + (M /2) A3 M 27 -A"g:: GFE]. (¢.15)
< This expression is lower-bounded by
2 2{P/NF [ (TT'SIT! + NoIT}i0) P =2 ( EE° G 7 - (4.15b)
s From {4.13) 2nd (4.15), (45} becomes

MSEE (3} =(EF ()| P + [(P/N) AT'SIT! — (N/P) T + NoITIYia} £,  (4.162)

and

EXE

MSE ()] > (P%/N?) { [TTSTTHNL i + (TTPSITY — (N/P) SYi i
+2 Ny (TTH)(£,9) (2 TT'EIT? — (N/P) S f)
+2[ Ny (TKLIF ). (4.16b)

4.3. Simulation results
Process 1
Here we consider a lowpess process of period P = 1. There are M = 3 nonzero specirem sam-

Al P WY

ples
ac{i)=1 1=0,_,4.

2 (@)
. w The number of observations & N = M = 5, and the noise variance N, ranges from 0 to 1. Figures 1
: 2nd 2 give a plot of the bies and S.N’R,g for the estimataors of ¢°(2) in funciion of SNR.., 2ccording tc
E :‘,3 the definitions (4.1), (4.3), and (46). In the absence of 2dditive nose { SNR,, — 20). ML.1 and MLO are
K the same. Both are unbiased estimators. The periodogram, however, is biased, and its MSE 1s alsc

. larger than the MSE for the ML estimators. Wkea Nj increases from 0. Jie performance of ite estii-

= matoss is roughly consiant so leng as SNR. remzins above some threshold For larger Nj, al three

R estimators exhibit 2 strong degradation In performance. Comparing the thresholds jor MLO apd ML1

= we see the wemendous improvements brought by taking the noise into account in the model Typt
E 2 cally, for 2 same SNR,.., ML1 will have the same performance 2s MLO operating in a 20 d% noisier
E £ environment.
& L

We also notice that the threshold for the periodogram is located at a lower SNR,; than for the
ML estimators. In Sections 4.2(b) and 4.2{c), we indicated how the sensitivity of the performance to
the ncis» can be determined for MLO and the peniodogram whea N = M. It turns out that fc. the pro-
c=ss considered here, with a uniform specttum, the periodogram has a lower sensitivity than MLO and
ML1. This is thought 1o be due to the smooth spectiam used in the sSimulation.

Process £

O R T
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It has been conjectured that the periudogram does not perform well for peaky spectsa 3,. This
moitvated our stady of a sharply peaked spectra. The process has period P = 10, and is made of a sin-
gle spectrum component

) ¥
T

So)=1.

P

There s just N = M = 1 observation. Bias and SNR,,, for the estimators of 6°(0) are plotted as 2
function of SNR_, in figures 3 and 4. In the absence of additive noise, the periodogram is very strongly
biased, 2n4 its MSE is large. Furthermore, in high-ncise environment the periodogram is no longer
more robust than the ML estimators. Clearly, the periodogram is outperformed. It should also be
noticed that for this process, ihe improvement of ML1 over MLO is quite reduced.

Compstational Censiderations

The convergence rate of the EM algorithm depends o several parameters. The computation
time for each iteration is of order M N°. The number of iterations required for convergence of the
algorithm grows as M and N increzse. For ML1, more iterations are required as N, increases, espe-
cally in the threshold region and beyond. Typical figures are: for process 1 with Ny = 0.1, 30 itere-
tioas are required before the spectrum estimates are stable; when Ny = 1, 300 iterations murt be per-
formed. Our algorithm is implemented on a Masscomp model 3500. Running the program on 3000
realizations in the latter case is typically completed in 6 CPU hours.

.
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4.4. Cramer-Ras Bounds

In this section we study how the perjormance of the estimators considered so far relates to tae
Cramer-R20 bound on the varience of apy unbiased estimator. The Cramer-R20 bound on the veri-

”M-
]

4 a:xceofanyunbzaszd(UB)&smnatorofc 17) for our model has been found to be {3}
? 3 UB—CRIZ () = (0%(0) + NolT T (5, F - (417)
' ‘ From (4.5) and (4.17), the MSE for an unbiased estimator reaching the Cramer-Ra2o bound is given by
X @ MSER ()] = (¢°() + NI (G - ” (4.18)
% The Cramer-Rzo bound on the variance of 2 bizsed (B) estimator of ¢ (i) is given by
' B—CRI"(5)] = UB—CRI5" (1)} (SE% (0)/05 () ¥ - (119)
) ! From {4.5), (£.17) and (£.19), the MSE for a biased estimator reaching the Cramer-R20 bound is given

by
MSEG"(1)] = (%) + No(TTY (£ ( 9B (/65" () ¥
+ (Biosig (1)])° - (420}
From the analytical expressions givea for Eig (i)} in Section 4.2, we can now czalculate the gradient of
Eio (1)) for MLO and the periodogram. Then the mimimum MSE for a bizsed estimator baving *he

same bias 2s MLO and ihe periodogram is derived, and a comparisoa with the actual MSE is made No
closed-form expression has been found for ML1.

1

.o o
L% 24 2

02
2 1

FE3

2 MLO
, From (4.7),
S 2 . )
i FEG (i))fds (1) =1. {4.21)
: From (4.8), {4.20) 2nd (4.21), the MSE is lower-bounded by
4 % MSE_J5"(1)] = 0*(i) + 2 6%(3) No (T (L) + 2 | No (TT) (£ .. (422)
Perisdogram
£ @ From (4.13),
K BEG (185" () = {P/N) (TT'TTY(i,§) . (1.23)

1
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Combining (4.14}, (4.20) and (4.23), the MSE :s lower-bounded by
MSE,, [5°(9] = (P2/N?) ( {TTIETTTNE i + {TTTSIT" — (N/P) SXi, 7
+2 No (TTH)i4) (2 TT'EIT? — (N/P) TYi,)
£2 N THEAF ) (£29)
Comparison of MSE’s with Cramer-Rac bounds

The Cramer-Rao bounds (4.22) and (4.24) on the MSE are the same as the bounds (4.11b) and
(4.16b} derived algebraically from the exact expressions (4.112) and {4.16a). Figure 5 shows how the
lower bounds compare with the exact expressions for process 1. The actual MSE's are 34 dB 2bove
their respective bounds.

FEY  E

R

»
%

fF5y

4.5. Discussion

The results derived above suggest 2dditional cominents on a comparison between pericdor—zm
and ML estimators. Typically each component of the gradient of Ejo {i)] given in (423} is «~ 2
smaller than unity for the processes we consider, and the Cramer-Rao bound on the variance of tte
periodogram-like biased estimator is much smeller than the Cramer-Rao bound on the variance of
unbiased estimators. When the variance dominates the MSE, the periodogram offers then a good MSE
performance. This was the case for process 1. For 2 more peaky spectrum such as the one chosen for
process 2, the bias dominates the MSE znd the periodogram is outperformed by the ML estimators.

)

3

o

5. Consirained maximum-likelihocd estimation

5.1. Description of the problem

An examinanon of figures 1-4 suggests that ML1 suffers in certain sitnations. When the input
SAR. is low, the esuinates are biased and their variance is large. Although the raaximum-Ekelihood
estimator is asymptosically unbiased and efficient, these properties are not guaranteed in small sam-
ples. For the prodlems considered in ection 4, the number of samples is only equal to the number of
parameters to estimate. This limitation can be alleviated if a priori knowledge, such 2s SNRy, is
available. Since Nj is known, sach a constrzint ca the signal-to-noise ratio can be {ranslated into a
constraint on the signal power tha- must be satisfied by the maximem-likslihood estimates. In the fo}-
lowing we show how this constraint can be incorporated into the EM algorithm. The constrained esti-
mates exist, and 2re unigue.

R

Ml B

5.2. Equations
The equations for ML1 presented i m Sect:on 3.1 can now be modified as follows. At each step <f
the EM algorithm, we maximize gTiz e )dcﬁzx:dm {5.6), subject to the power constraint

_E__G‘“(*? =PE =S, (5.1)

REA

where E, is the constraint on the signal poeer. The sclution also maximizes

~ (B . M= o o
ol £ 43 (R - ). 62

]

where \ is a L2grange multiplier. Taking the gradient of (3.2) with respect 1o T, we obtain 2 quadraiic
equation for each spectzal component

2% 6%{i) — o%i) + C; =0, (5.3)

(& &5

where
C; = Ejle(i)? s
is calculated according to {3.7). The solution o {3.3) 3

]
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where I is either +1 or -1. The equation for A is

- M= Y‘ L Vi-sc 1-30,) 55

Ry

In general this nonlinear equation in X cannot be solved in closed-form. Furthermore, an ambiguity
subsists about the choice of the signs i The latzer problem is solved bv applizatiun of the following
theorsm :

Theorem
Assume thay Cy > C, 1=1,.M-1. Thea
®
L=-1 :i=1,,M-1
L=+1 :5<2C M-S 1Vidg/cy) |
=—1 :ebse

{2) \is the largest nonzero solution of

(45X = M + TELVI{C/Co) P =1-8C), for S zc:,, and {5.6a)
=]
i
A=0, for S=),C- (5.6b}
Smel

) is upper-bounded by i/3C, and the equation {5.62) can be solved numerically for A \o’e that the
particular case (5.6b} is also the solution to the unconstrainsd maximization problem. Next o (zf"“
calculated from (5.4} The whole procedure is repeated 2t each maximization step of the EM zlgo-
rthra.

5.3. Discussion

An algorithm has been derived to produce maximum-likelihood estimates subjec: to the nower
constraint (5.1). Cwrently we are preparing 2 computer implementation of this z'corithm, and the
performznces of the constrzined estimator will be studied. As indicated in Secticn 5.1, noticezble
improvements In high-nolse situations are expecied.

Conclusions

In this paper, we have described our 2pproech to spectium estimation from noisy data, based
wron 2 statistical model for the observations. From this model, 2 maximum-likelihood sstimaior is
derived, and its bias and MSE are computed 2nd compared with two methods that do wnot take the
additive noise mto accouni. The new estimator can perform significantly better ther its competitors.

A priori knowledge of the signal power can be introduced zs a constraint to improve perfor
mance. Our cwrrent research activities include evaluation of the performance of the new estimainr

‘e expect sigmficant improvements for low S\R... Amoeng future directions %or research, let us men-

tion another issue of practical interest. The information about SNR,. might have the form of n ine-
quality rather than an equality consizaint. We believe that the method described in Seztion 5 can
easily be modified 1o incorporate such a constraint.
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Cramer Rao Bounds for Constrained Spectrum Esfimation wift
Application to a2 Problem in Radar Imaging

Joseph A. O Sulivan
Pizrre Moulin
Dorald L Suyder

Elecoronic Systems and Signels Research Laboratory
Departmeat of Becrical Engineszing
‘Washingion Universizy
3t Lozis, MO 63130

1. Introduction

This paper EsCUSSES SGme recent theomeiical resgfts which we have gerived for maximzm Likehihood
spectrzm estimaiion problems. The practical problem which kzs motivered moch of our stody is 2 Gelay-
doppler radar Enaging prebizm wheme the spectrom 10 be estimated comrssponds 10 an imese of the target
For s prolem 2 5 the soaseaing foncticn, which is 2 delay dependent power spectram, that is of interest.
Tor relaisd probiems, the peaneess of intsrest 2re the 122 covariences. These problems 2= 6ot always
eqcpivaient and one goal of this paper IS to point ont seme of the fcones wixh =t mmgse © the spectom
estimation Sominlaion 6f the proflem.

The resalls ame presenizd in a rather seaerad manner 2nd are then Specialized o probloms of interes. Fairgt,
roblems ¢f inerest are discossed. Tads secton 2iso inroduces some of e soton used throughont the
remzinder of the peper. The #5513 secion Serives the Cramer-Rao lower boomd for the vasianes of
exhissed estimaits o (o spectom sempies. This boomd s need in each of the other seetions of the paper.
masminde of the Cremer-Rao lrwer bouad is then demonormed. The fomth section sddresses 2 peodlem
more specific io the rader i-xaging problem. The sk Is 10 choose 2 tansminiad sisest euch thet the
SOeCTLn esimeies feve musmmm vadencs. This 1S accompiished by miimizing the Cramer-Rao lower
DoenZ WED respect o the Teasmined sicnal. The £nal seesion discusses the implicesions of these reseis
=03 sagzess fmther wok

2. Problem DefiniGoma
There are three probiems which zre of interes. The 55t two are speciel ceses af the 83512 b somz of the
results to be presemied are 2pphicahls 1o ealy eae of the special cases.
L2t Wp be a PXP DFT sz, The kom enlty of Wi is (1P 3o 72% | In each of e e Foblems, 7
is 2 nzar combination of 2 signal vecior nd addisve whiie Ganssian noiss. The gozl of each prodlem is
© iod the maximza Eeiibood esimatz for the power specuwm of the daired siznel givea one
chservation vecix 7.
Problem one:

r=bxw, @3
wikee b is an Noveoior sample from a 2270 mean Caessiza process with Toepliz coverience mamix Ky,
2nd w 5 whits Ganssien noise with coverance Noly. The manix X; 35 conszrzined 10 be of the foim

aamy

K:=1ix 0JF75H» 31‘5'] : @2)

3




N P4
T S g O R L -

- TR

T

where Z is 2 PxP real diagonz] mawix with ponnegetive eatries, [y is an NN identity matdx, and #
denotes complex conjogate transpose. This is cquivalent to assuming that b is T times ¢, where ¢ isa
zz1o m22n Ceassizn vecior with covaniance T and

{

I
v

2 I

s & 1'1=W;{5}. 3
4

¥ Probiem teo:
2 r=Staiw, @9
A

: where w is 2s before, b isan M i=ngth vector,

g b =[x O}W7c, 25)

&l

but now there is zan NxM matrix ST multiplying b. The vector ¢ is zero m=zn Ganssizn distribeied with
real Ezzonal covariance given by Z. Under these assumpiions, the covaniance of 7 is K2+ Nely, where

.
g M

<
2 Ko=S"lh O]W;WP[I’JJS=HEL el
g =5 where
i
= T=Wp [’g] s. k)
; g This problem redocss 1o the first when K= M 2ad § = Iy
R Prodiem thres:
{25 r=Shs+w 28}
;“: where w is 2s before, ST is an N by I siznal manix, and now b is a semple from & process whose
: covariznce mavix 5 AfpxMip block dizzonal with sach Mx3f block being Toeplizz. Separatz § i fp
b 2 sobveciors each of iength M 2a6 kebel these subvecixs seqoeatially from O to Jz—-1. Tae covarimce of
8 % b(k)isgiventy
, £
B B(®)=Uy mW:‘Z(k)WL{“gl 22

R

where K3 (k) is the k% dagonel block of the covariznce of b. If the L.xL mauix Iz} is placed in the &%
Giagonal Hlock of 2 LIz xI; block Gizgonal memmix, T, then we cza w7ite

&

E;_% K3=T{iD,, {2.10)
| m&mr;gms@m&ammmms;&bm@mm

;: s Ip blocks each of which egmals Wy {7y 0f. For this probism, 12 P=LJ;. This moblem redocss o the

£ second when theee is oaly ons block oa the dGizgonal (fz = 1). Since ezch of the other prodlems s obtzinegd

by simplifying this problem, we czn focas our aneation oa this odbiem.
‘We foilow the amalysis in [1.21. Lat k depote either 1, 2. o 3. Problem £ may be restzizd as follows.
Asszme the ohservation veqior r Is given,

L]

F=Tic+w, Q11
-
& where ¢ is 2 Gaussian rzndom variable with covariznce I, 2nd w it white Ganssien noiss with mteasity
& Nolx. Find the maximom EreEhood estimaiz for . Under the assumpions, r is a Genssiza diswibuied
% ;
/= K, =TI + Kdlx. Q12)
d The lozfkeThood function is (neglsciing wers not involving I
7
,rg L=~ % I detT73T: = Now)~ %— riTisi: + NIy, 2.13)

Tzking the partdal derivative with respect 10 Z and sstting # 10 2220 yiddds the wece conditicn which 2
- 27
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solation mas: selisfy {121 & neovssar” conditian icr E to be the maximum likeBihood estimate for the
1 spectium for peoblem £ s the
- = TreTRT: + N/ Y —T15T; - Mg fTI: + R Y155 =0 @.14)
g for 21t Sagonal masices ST of the same wize 25 . Typicaily this egeation ¢smnot be selved for Z explicily
= &g SOme herative echnicne O GeesTyining k- maxitam Foeihood eims'e must be used. The
% slzoritm weed 6 [1.2] & the R 2lguithn. Ong impemizat gues~oz waich this neper zddresses is the
. uniEeness of maximam Tkelthood spllas, 2-resndt derived in tee fomth secticn states thay 2 sufficient
. ?I cootition for the ronsrignoness of maximrm fkelheod »timases is that the Uramer-Rss lower boand be
g : = % Cramer-Rao Lower Booad
’ = TEs sertida contiing 2 dnivuiton of the Cramer-Rao lower honsd for urbiased 2stimetes of the covariance

wngirices for the probiems from Secon 2. it s bopostant o remsember that, for besed estimetes, (e Iower
o for (e vanance of the estimates S proportional to this bound, so thess <akoktions are relevant for
thet case 25 weil 7a fict, the maximaen Fe¥hood estimation procedure cumrently fmplemented in owr
Ibarxoey penerates biased estimaras for the spactram saxiples under certain conditions {73,

1 .‘,.:«’w“,a .

b i
]

g; Following Van Tes 12, p. 7Y}, e variance oF any sobiased maximum LFalhood 2stimate of a
:’é nornundom paramesr s greawd ther or =gual 1o e diagonai elemenss of &ic foverse of the Fisher
ES “nicsmetics mawix. The Fisher informatica manix bas eaes cquzl # Be nzgmives cf e expected vale
i< = of secocd U2 derivatives of L {r X} with respect to the parzmeters o this case 2).

% g Lemma 1t For probiem k| the ma element of the Fishe informaicn mainix egoAls the magniteds sguared
s of m.a element of the marix
R < Te(C{zh: + NeZs Y7L €8
—‘. Proof: In the appendix of {1} @ expression for the srcend derivatye of LI .X) s obtained. Taking the
= negative of the expected vatoe yi2lds the zhove somession O

}:-e{ The zbove reselt &5 vesy impostess for the Smnlitions & order @ deteymine the performance of the
el = estimetion scheme psed. Stime of the simalsions perfommed in cor Labosipry e epericd in [4] end the

perfoamance 15 compered 1o this boesd. In addinion, the alzxithm propoed In [1) is compared o other
2lgorithms for estmeting spectrara sanples 2ad &t i shown that in centain cases this algorithm cutpericrms

N
S ]

the gebers,
5 ’ Ose of the geals of calealating the Crame-Rae bomd 35 © o it @ Geermine the well posedness of
& I::E estimetios proddems.
] &2 Lemma 2: For problem onz the renk of the Fisher informasion manix is isss then or equel o 2N-1.

|
A

Farthermars, if P>2N~1 then Hhars ;s nd migre T posative definiie which maximizes the bogiikelibood.

:,‘ 2{3 Proof: The proci Invelves wiiting the Fisher information warix 25 the vodat of tires mawices cas of
5 . whick I IN-33ON-1. The resk of this memix is thas showa © be Iass then or egpal w 2N-1. The thid
1 matx is the Bermatian wanspess of the first. The first mawix is Pby 2N-1 and hes km element givea by
PR .

« g }ls_e-ja-z:-—_k‘:;?‘ G2
3]

wizre k Genoies the row 2ad renges from 0 10 P-1 2ad m rangss from 0 1o 2N-2. Lettte B elemeat of
(TiZT + NoIn)? be éznoeed by fop Then the s element of the sscond marix is
g N TH-2-m) DEal}-1N-Zn)

ety
4

f mc—’fﬁa«ﬁ—ﬁﬂf::s ’ (3-3

.

oo (ih-i=)  SemciN-iew)

Y

3
r X
\

i
B3
-4
&

o where m 2d b r2nge from O to 2N-2 2nd * dencess comiplex conjages. Maltiplying these thres metrices
= complates the first part of the procf. For the second pan of the proof, 2 I ezsily shown that the additioa of
2 2 real dzzons] metix with eoiniss 211 of the same magnimde with gheraeting signs 1 any memix 4ots Iot
g & change the vaise of the doghikelibeod if P>N-1. Tauos no positive definite T yislds 2 unigoe valve for the
BT = logiteliiood. By the same aiguments, no T with oas Gizgonel extry 2oral 10 0 2nd the rest positive yields
D 3 snigos vaioe of L(r.X). If two 2lameals are zero, however, the arzoenent f2ils znd other t2s1s must be
.‘ [ 2
: & - 28 -
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Lemma 2 gives a precise Statement 2bout the vniguensss of maximum likelihood estimzizs for the
problems under consideration. In particnlar, it States precisely the number of paametzrs which can b2
estimated uniquely for 2 problem of type ons. We believe the boud s tight. That is, for a probiem of type

bed .
!

PR WL

= one, we besieve thar a unigne maximum Ekelibood estimate exists wienever P<2N—1 and that the Fisher
. @ information matrix is of rank ¥ for this case. The basis for this belief is that the first marix compated in
: the procf has full row rak for P<ON~1. For cases of imterest, the second icatrix constrocted is of foll rank.
? If this second mzwix is of foll rank, the inegnality in the first sentence f the lemma Statement can be
' : gﬁ changed 1o eguality.
: The proof of the last lemma ¢id not require that the elemenis of the I” mamix be entries fom #p. Itoaly
R ; iﬁ requized a ceriain staticaarity pXoperty.

. }:i Lemma 3: Lzt the im elemeni of T be g; . 2nd supposs that g; «8is = F; w—a (the product depeads only
{ on the row number and the difference m-n). Then the rank of the Fisher information matrix is at most 2N-1
> = and if P>2N -} thege 15 no unigoe T positive definite which maxirizes the logiikelihood.

3y Proof: Modify the proof of the last lemma by changing the first matrix to have k,m element kg o-xs3- The

proof of the first part is then identical to that proof. To show that there Is O unigue X, we CoasTuct a
matrix soch that if this matrix is added to-Z then the value of the loglikelihood does pot chenge. This
dizgonal perturbational matrix is formed as follows. Let ¥ dencte the i* row of ;. Thea we bhave

rzm=§(&,-1.’t- G2)

Tne potenizal elements of this meatrix are completely detzeminegd by the elements of the oaier prodects of %
with itself for i from 0 to P-1. Form P row vectors with the elemeats cf thase oater prodocts by tzking the
Kreoecker prodocts of ¥ with . Tzke these P vectocs, transpose them, 2nd pot them in the columns of 2
N2xP mairix. Denote this matix G*. This matrix hes ok at most 2N-1 over the complzx numbers Ga2
10 the staticaerity assumpiion on elements of I staizd in the lemme. The 2N-1 linezgly independent rows
have i* element k; 5 x43. Ops of these Hinearly independent rows has all real dements whils the obers are
in general compizx and appear in compliex comjozaie pairs (the real row has eawies i o= Ig; « 15. Thos
this mairix Las oumn rank at most 2N-1 when teken over the r=al mambers. Any real vector in the kzmnesl
of this matrix may be piaced along the dizgonal of a manix and then added 10 T without changing the valos
of L(r %) becans: the dizgona! metices formed in this way have the property thet they zre mepped 0 the
2e10 melrix when premeitiphied by I' and postmeltiphisd by 1.0

- Again the boand is tight becarse in general the metnix formed of Kronscker prodocts of the rows of T will
have rank 2N-1 over the reals. Using the meinix G G2fined i the proof of Lemma 3 2 much more general

fHE

- A

R N

.

l gg reszit may be obszined.

E Lenma 4: Let G be the Px¥2 matrix whose i% row is the Kronscker product of ¢ with . Assoe 2 that
= K, is positive definlte. Thea the Fisher information mairix 1s Zngnler if 2nd oniy i the rank of G is less
= than P. If a positive defindie  yields a unigps maximem of the loglikethood foncimn thiea G hes ek P
o Proof: The Fisher information metrix may be wiinsn as
g G &ABEANG. G3)
&

If X, is soasingular then the rank of this matrix egeals the rank of G a5d it is singuler if 2nd oaly if the
¥ 3 1ank of G Tiessthan . If the rznk of G is Izss then P thea pick a real vector 5 soch that s7G =0 (soch
: E’i an s exists becante the Fisher informeticn manix has real enriss). If these vector elemeats are placed
by & along the Fagonel of 2 maix and added o T the masx K, rexeins unchenged and thos the loglikelhood

is unchenged. On the other hand, if the renk of G eguals P, then there is 00 such vector s 2nd zny cheage
of Lz Giagoaal enmizs of T yiklds a differeni K, 3

4. Signal Selecficn
This section presents soms new thinking o the probism of signal selaction for rader imeging systems. The
spproach is somewnnt geatsd and #t can be changed 1o fit several problems of Intcrest.
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Most zpproaches 1o radar imeging are based on deterministic technignes. Typically, the refiections from
the targt are assumed to bz determinisic and the rader retares are processed psing a wo dimensional
trensform technigos. The tansform used (or in generel the Binear processing scheme used) may be
=modified for the problem 22 hand, bet the overall processing scheme is fixed. The signal seleciion @oblem
123y be thooght of in 2 couple of different ways. One way 1S to seisct the signzl which gimizes e reéar

L
¢
£
H
t
4

G )

] ;’E; rerom for the processing scheme used. For example, sizpped frequency wavefonms described in [5) may
be thought of 2s optimizing the signel assuming that two dimeasional Fouarier ransforms are osed o
process ihe radar retrm.  In gther words, this transmized signel attempes to meke the retom signels look

: g ke the two dimensional Fourier trensform of the target image. A second type of signal selection is more

< gzotral. In this case, the signel is selecied o achieve polse compression so thet by combining the remamed

¥ ; signal propegiy the result of processing achieves desired range and crossrange resolution [5].

. Oxr approach for radar imaging differs from coaventional approaches by starting from 2 madel which
: sccuraiely accoumss for the troe namre of radar reflections The Hizamre on the physics of medcs
* refiections [3,6] ste:zs thet the refiections are random not deterministic. We start with 2 modsl which wkes
imo account this ranGomness (the discrets version of this model is given by problem thres above). The
; processing 10 obisin e "bext™ image is then dzxived {1). This processing is valid for any transmined
L signal zs Jong as the model is valid. Thuos, this preeessing conld be wsed on the radar retams from any
sysiem sreseatly impiemented if the target falls into the category covered by the model. What we aim 10
; 6o in this section of the paper is to introdoce 2 procedare for selecting the transmined signal cptimelly.
% The signal is seleied to mezximize 2 measure of the achievable performance. The polsntial use of this
procedore in practise and open gesstions which we e exploring are addressed shorily.

The measure winch is used to Gztermine the relative menl of 2 trepsmitzd signel is the performance which
isachievable. The performance is measured in terms of the Fisher information meix.

Definition: Let S denoiz the set of admissibie signal manices. Any sigral mairix S8 dzfines 2 matix I's
from (2.10) 2nd 2 PxXN2 matix G as defined :n Lemma 4. Let Q dendss the set of possible tarpet images
for X Let|i-[p be 2 given nomin on PxP metrices. A signal marix S €S is said 10 be optimal if § achieves
the sepremem

Lacat

At

IR

RSE

X e

s B IGEAGK G p. (CR))

The thres chiects which must be given in order 1o altempt © calcnlss the opiimel § 2re §, Q, andf-[p. In
arder 1o simplify the derivation, we asstops that the s=t of possibie target imzges, C, hes only one member,
X This resuicticn will be discossed lier. For the nomn, the tace operaior is chosea. Since 2ll of the
matices gader consideration are hermitian symmetiic and positive semidefnis, the wrace 5 always greater

e

& then or eguz 10 220 2nd 1s zere only when 2il of the eigenvaloes zre zer0 (and henee the meawix is the zet0
F malix becanse #t is similar o 2 zero mewix). The trace Is additive so the tiangls insguality holds and 2
scalr times 3 mamix scales the trece. Thos for the set of posiive semidefinite hermitien symmexic

: o mzimces the racz isa valid ooym.
il There zre severai possibifities for the set of sigrel matrices. For both inmitive znd znalytical reasons it is

S

important 10 have 3 consiraint on the admissible signel matrices. Intwitively, since the noise mensity éoes
ot dep2nd oo the signal magnitnds. ont would expect that increasing the transmiped enerpy would
acerease the effect of the nowse. This is the case analytically 2lso. Parameterize the sizaal mewix as
S=‘{§S.w~§a:a£, may be thooght of 2s the transmitted energy. Obvioasly, I's may thea be wraiea as
Ers.afha:rgisob:aindﬁomrgb}'subsﬁm&ngs for §. Similerly, from (2.10) 2nd {2.11)

e

E = -

¢ X K3=ET{d3=EK, ¢

: a=d '

: g K, =E X3+ Nolx “3)
From T3 form the mamix G the seme w2y G wes formed from 15, Then the Sisher information mamix
(3.5 may berewuitisacs

it

EFGUE K3+ Ny I®EKs + Nolwy " 16T = G UK + WoE Yn Y @ &3 + (oE Mk 16T 4.9
Lening E; g koge Gecveases the edgeavaless of X5+ (Vo'E, My, increasing the eigenvalues of its inverse.
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This increases the eigeavaiues of the Fister infoomation marix and beace increases its race {the ckosen
porm). Thus if the signal marrix were eaceestrained i size, S optimal signal would be infinits.

There are many ways 1 constrain the alipwed magnide of $. Suppose that 3 S—R* is a measure of
how large SeS is. Then we may refaamcize the protlem 28 meximize the norm of te Fisher waformaticn
matrix subject 10 the constraint that 3 (€)= E,. For example, if the erzrgy is 2 quadratic function of §, 4
may be selecied to be the trace of S7S. At ihis point the measme is Dot 100 Imporiuot 35 loog as it
cussaains the largest veloe aay edement of $ may ke, This is ot 10 say that the compatationa] reseis
will ot depend cn M, becense they wil

Using =ny swanderd tzxt on optimization theory (for exampie, see [7)), 2 necessary conditicn for the
solution to this probiem is that there exist a L and an S€8 such that

%LIG & SKANG + l%f‘rsl =0, @3
ard
M(S)=E,. 45;
The partial derivative of the trace of the Fisher informarion metix with respect i 5 in the direction &S is
TrIRASVIVSE I@SIVIVS + STVIVES)], &n

where V 15 e maeix fom (29), (2.10), and the accompenying discossion such that I3=V5. Afier
selecting a pticeier M | the previoss egeatioas zre scived for the signal matix,

This approach to siguel selection hes the disadvantags that the eguatiuas 10 be solved are Lighly ponlinear.
It sheald be nosiced that the signal mawrix enters the partial gerivative tace result both direciiy and throogh
the marix X;%. Even theagh thess equations may be difficolt o sobve, in praciss they are msually
compatad offiine and thes wouald not affect the reatizabifity of the proposed sysem. Any censirzinis ca the
sigmat mairix are Incheded in S and Af so any signel comnpoted by the Zhove scheme should prodece an
implemartzble signzi mari

As menionsd previously, the choice of 3 plays a large part in the complexity of the calculzticns. A good
choice of M could yield 2 calealation for the signal matrix in closed form.

Trz =2sults desived so far pertain 1o the spectal case where Q=2 In zn implementztion, the acmzl L is
coknorn. One possible way © teke this into account s o transit muliiple pulses. For b2 frst palse,
transmit the signal which would be ige2l for some assomet genesic target (perheps @ niform specum).
Calcady's an im2g> psing the-2lgoditm in {1). For pulse k, tzansmit the pulse which is idzel for the image
wisth IS the outp of the k-1 imzging stzge. The convergznce of this scheme mpst b2 expliored.

3, Conclusioas

This pzper bas te0 mazjor resalts on specaum estumaticn prediems where the observed data is the sam of
watie nodse and 2 Binsar combinetion of a rrakzaticn of a portion of a periodic process. The resalis of each
part zre derived from the Tramer-Rao lower bound for the variaece of spectam esimates. The fistsatof
rzsaits Geals with Gnigeensss of maxuoem lkelthood estimuaes of the spectrem ssmples. In particolar, i
the Fisher information matrix is siszular thea there i no postove definils spectrum which yields 2 miqos
maximum «f the lik=Ehood functicn. The second set of resslis proposes a new method for selecing zadar
signals based & the Fsher informaton mamix. Jrensmined signals are selecied 10 meximize the
pesicrmance achievabis. Itis antempred 1o meinimizs the vaiance of the estimaies of £ spectrum samples.
Thos the images prodoced may be refisd npey with more seafidence.

We are sall in the process of impismenting the algawithm proposed In 111  prodocs delay dopler images
using maximum Hkefihood esimains wechmiguss. Some pecliminary sxperiments have been performed on
one dimensional versions of the maging problem ard the resalts Sppear promising ). When going o 222
full rwo Gimeasionzl protiem, the issse 6f choosing 2 £00d uensmined signal ertees. It is hored et the
meihod proposed bers will yield beney images then those teesently ueed.
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