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ABSTRACT

Allocation of resources in nextr-eneration' real-time operating systems requires
some important features in addition to those demonstrated by current systems, resuiting
in an increased complexity of each system. The allocation is closely related to the
scheduling, and the two are based on time considerations, rather then on a static priori-
ty scheme. The allocation is fault tolerance motivated, to cope with the application's
reliability goals. Di,-'ibuted system issues and adaptive behavior requirements in-
crease the complexity and significance of the allocation approach.

The allocation scheme we'proposeiere accomplishes the hard real-time goal of
guaranteeing a deadline satisfaction in case the job is accepted. In addition, this allo-
cation scheme supports fault tolerance objectives in both damage containment and resi-
liency requirements. It does this in cooperation with a schedulability verification
mechanism, and with an object architecture in which for each object there exists a
calendar that maintains the time of its execution. A nice feature of this scheme is the
way in which it can be used for reallocation while increasing the rcsiliency.
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1 Introduction

This paper examines the problem of allocating resources and computation services to support the execution
of a distributed hard real-time computation. Allocation of resources in 'next-generation' real-time operating
systems requires some important features in addition to those demonstrated by current systems, resulting
in an increased complexity of each system. The new systems must provide for general distribution issues,
like deadlock prevention, along with supporting adaptive behavior requirements. In addition, there are
requirements to support hard real-time goals and fault tolerance objectives. These goals and objectives must
be guaranteed to be satisfied even under specified environment changes.

In real-time operating systems the resource allocation has to be related closely to the scheduling, and
the two are based on time cousierations. Scheduling is the mechanism through which the timing properties
of an execution instance of a software module are finalized. The allocation must also be fault tolerance
motivated, to cope with the reliability goals of an application.

The allocation scheme we propose here supports fault tolerance goals in both damage containment and
resiliency requirements. In addition, this allocation scheme accomplishes a deadline satisfication guarantee
for all its accepted jobs. It does this in cooperation with a schedulability verification mechanism, and with
an object architecture, in which for each object there exists a calendar that relates time to its execution.

The paper is organized as follows. In the remaining of this section we review briefly the object architecture
and the schedulability verification (11,7,81) that support hard real-time environments. We also introduce some
tools that help us deal with the allocation problem. In the following section we formulate the problem and
the conditions for a solution. We then introduce an algorithm that implements the above solution, and
finally we investigate some of its properties. The paper closes with some concluding remarks.

1.1 Objects Architecture
In [1,7] we have introduced an architecture for designing hard' real-time operating systems. This architec-
ture is based on the use of highly encapsulated entities, called objects. An object is a distinct and selectively
accessible software element that resides on one of the storage resources of the system. The objects archi-
tecture defines the objects as the elements that constitute the system. It also defines their classification,
the relationships between them, the set of operations they are subjected to and execution parameters that
permit scheduling them for execution and access.

In software engineering context, an object is viewed as an entity whose behavior is characterized by the
operations it is subjected to and the operations it carries out on other objects. The external view of an
object (these operations) is its specification, and the internal view of an object is its implementation. In our
architecture, we have considered the use of object architecture in a system context, thereby expanding the
above object definitions to describe elements and entities in a more general way. Yet, some of the properties
that characterize objects in software development context are valid in the system architecture context as
well. For example:

" An object has a state.

" There is a set of actions to which an object is subj.eted and a set of actions it requires from other
objects.

'Hard real-time systems are characteuised by their property of having a nonrcoverble fault when a computation does not
complete before its deadline.
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" It is denoted by a name.

" It has restricted visibility of (as well as by) other objects.

We have shown that our object-oriented system design methodology provides means to construct systems
with a high degree of deterministic and predictable timing properties 11,7]. This determinism, together with
the required fault tolerance schemes, are major principles in our time-constraint oriented system. We bpve
defined a classification of object types, the set of operations each of the object types is associated with, and
their relationships. A conceptual model has been considered in our analysis of the applicability of objects
architecture for a real-time, distributed, and fault tolerant operating system. Issues of creation, deletion and
access for manipulation and state verification, have lead us to define the joint that consists of the following
parts:

" A context independent pointer to the object's body, enabling the naming network to support a multi-
user, selective sharing of the object.

" An owner/user justification structure.

" Resource (and/or server) requirements.

" A ticket check mechanism for the protection scheme.

" A time constraint for an executable object.

" A replica/alternative control mechanism for the fault tolerance scheme.

In our model, objects that relate to each other are connected via the owner/user justifications in the
joint. These relationships are in accordance with the visibility restrictions and the set of operations to whom
the justificand is subjected and the justifier operates on. Operations in this set can change an object's state,
evaluate current state of an object, and allow visiting parts of an object. These operations can be carried out
on object bodies as well as on object joints. We can model a system as a graph whose nodes are objects and
whose arcs are directed from justifier to justificand representing the owner/user relationship. Relationships
between objects necessitate the grouping of objects of the same type into a meta-object, to which the rest of
the objects may refer to as a whole entity.

Scheduling executable objects and context initialization are divided in our model into an on-line part and
an off-line part. The context initializer consists of an off-line allocator/binder that manages the acceptance
of jobs (requests to execute objects) and allocates the resources before loading, and an on-line loader that
activates schedulable objects that are invoked. The scheduling policy is managed by the off-line scheduler,
which is responsible for recognizing the availability of resources, and provides scheduling feasibility verifica-
tion testing and reservation facilities. The on-line schedsler carries out locally the policy, the dispatching
and the preemption of loaded executable objects (processes) according to their time constraints.

The way in which the above allocator works is the major concern of this .gaper.

1.2 Guarantees in Hard Real-Time Systems

When a request for a specific object invocation arrives at a hard real-time reactive operating system, the
operating system has to allocate (if feasible) all the resources required such that it is guaranteed that the
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object's time constraint is met. Informally speaking, a time constraint is a requirement to start executing a
particular executable object, after a condition is satisfied, and complete the execution before its deadline. The
execution time of the object is assumed to be given, and the constraint is extended to a periodic execution
of the object. Based on previous works that define hard real-time systems (e.g., [13,141), we have defined a
time constraint formally in 11,71 as the quintuple

<Id, Taft(conditioni), cU8 , rd, Tbef(conditio, 2) >

where:

Id is the name of the executable object (process) in the proper context,

Taft(conditiornx) states after what event should execution begin,

c/d is the computation time of object Id,

fiz is the frequency with which the computation should be carried out,

Tbef(condition2) states the deadline which should be met.

The time interval defined by Taft(condition,) and Tbef (condition,) is the occurrence interval, which de-
limits the time domain in which the executable object is allowed to execute. In an interval-based notation,
as we have used in [8[, the occurrence interval and the computation interval relate to each other such that
the above quintuple is supported. The occurrence interval is a convex (contiguous) interval, and the com-
putation interval can be non-convex (since it may contain gaps). Let the j'th occurrence of time constraint
i be denoted as the convex interval TC y ) , and let P.(') be a non-convex interval that represents the union
of all possible execution traces of this computation. Then,

" Taft(condition1 ) - beini(TCi').

" Tb.! (condition2) - end,,. (TC ')).

* f, periodicity -. Vi> 1: end,...(TCi ')) - end,=(TcU_1') =

" Ci computation time -. Vi- 1: P = c.

A real-time operating system must use the time constraint as the key to its decisions on execution
initiation and resource scheduling ([131). Before execution initiation, the allocation and context initiaimation
are required to ensure schedulability of an accepted job. In other words, before loading an object, a positive
feasibility result must show that there exists a schedule that includes the invoked object, according to its
time constraint, with no conflict with the already accepted objects. All the required resources should be
allocated and reserved for the object, assuring that it is going to meet its deadline. It is not only processors
that are to be allocated for an object. An object may rely on other server objects in order to perform its
functions. These other objects may or may not reside at the same site. Remote services necessitate the
needs for agents and for communication, each of which has to be achedulable within the time constraints of
the invoked object.

One must take into account the time constraints that are projected between different computation local-
ities, such that each computation locality might have access to a different clock with a different accuracy

m'-mm m
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Figure 1: Object's Owner and User Temporal Justification

and correctness. This projection is discussed in details in [8]. A chosen (and loaded) allocation should avoid
conflicts when users share a server object, with respect to violations of the user objects' time constraints.
Each server object is then considered as a resource, and maintains its own schedule. When a server is allo-
cated to a new user, the binder updates the justification links. The allocated server's future schedule is to
be checked to show schedulability within the new user's time constraints, without violating the services this
server has already guaranteed to serve.

1.3 Scheduling Feasibility Verification

In [81 we have introduced formulation and algorithms that verify the feasibility of scheduling an incoming
execution request, while maintaining and scheduling the requests which have already been accepted before.
These algorithms are based on the architecture described above, and the mechanisms that support the above
algorithms.

Figure 1, describes a temporal justification scheme which is used in our architecture. The same server
object is allocated to different users at different times, hence creating a user justification for this object at
different time intervals. These intervals are in the future and according to them real-time scheduling decisions
are to be taken. A very important issue arises in the above justification scheme. The time according to
which the decisions are taken is a local and imprecise view of the global time. Distributed computations
may have the same local view at different nodes at different "realP times. Therefore, future projection of
time has to avoid ambiguities and conflicts that originate in differences between local views.

Upon arrival, the time constraint of each incoming request is properly projected, and tested for a possible
insertion into the required object's calendar. The test for schedule feasibility depends on the scheduling
policy employed. Conditions for schedule feasibility and algorithms for bot preemptive and non-preemptive
policies are introduced in [8]. In these algorithms, if there is a feasible schedule, then the time constraint of
the incoming request is inserted in the calendar, reserving the computation interval for it in order to avoid
ambiguity of answers to requests in contention. The space is reserved in a way that ensures that the required
object will not be activated by the scheduler, unless an acknowledgement is sent by the initiator of this
request. Furthermore, the reservation is kept for a limited time, and after this "timeout' elapses without
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initiator acknowledgement, this request is removed from the calendar. On the other hand, if the test is
negative, i.e. there is no feasible schedule that does not have a conflict w-_'tl " already guaranteed acceptences,
then a negative answer should be given to the initiator of the incoming constraint. The initiator, in turn,
should remove other requirements that have already been reserved at other calendars (if any), in case this
negative answer prevents its execution.

The allocation model that is presented in this paper assumes the existence of the above mechanism. It is
shown in (81 that this mechanism allows guaranteeing deadline satisfaction. In addition, it is shown later in
this paper that this mechanism not only supports mutual exclusion from the contention point of view, but
it also prevents deadlocks that might arise from some cyclic dependency in the global computation graph.

2 Problem Definition and Formulation

The problem of allocating the execution of computation elements to computation resources has been studied
with respect to many dimensions of that problem. In most of the cases we have found in the literature,
the goal of the allocation has been an optimization of some metric of the execution performance, generally
one stochastic parameter of the performence description. The model which has been mostly used in the
above cases, reflected an allocation of processes to processors, while both the set of processes and the set of
processors have been subjected to some inter-set relations and intra-set optimality constraints. In addition, in
most of the above cases the nature of each of the processors was homogeneous, indivisible, and self contained.

We start this section with a review of some recent important works that have to do with allocation of
real-time computation elements ."rder high reliability requirements. We then introduce our computation
model and our allocation goals, and define the requirements and the conditions for these goals to be met. A
brief review of the graph properties we use later is given for the reader's convenience.

2.1 Review of Some Allocation Approaches

2.1.1 Allocation with IPC Minimization

A centrally controlled allocation scheme is described in [10,11], a scheme which has been used in the BMD
project. There, a nominated computation node has the knowledge of the global status of the system, and
each request for task execution panes this nominated node to be properly allocated to resources. The model
uses only tasks and processors. The relations between tasks and processors are given in matrices, according
to which the allocation is done.

" Task Preference Matrix P where pji, j] = 0 means that task i is not allowed to execute on processor j.

" Task Exclusion Matrix X where zli,j] 0 0 means that task i and task j cannot be assigned to the
same processor.

" Task Coupling Matrix C where c[i, j are the coupling factors that represent the amount of data
transferred from task i to task j.

* Task Distance Matrix D where d[i, ij represent the cost of transferring one data unit from task i to
task j.
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The allocation is considered as a search tree. In this tree, each vertex is a task to be allocated, and each
arc that leaves the vertex is a possible allocation of a processor to that task. The search algorithm is based
on the branch and bound method, and is constructed in setting and backtracking phases. The search goal is
an allocation that minimizes the execution time of a *port-to-port" thread of executing tasks. The execution
cost function consists of the following ([10]):

1. Execution time of the task on the processor, which depends on the task size and the processor MIPs
rate:

E,= sze(task i)
processor MIPs rate

2. The network and operating system overhead (Ov), which is used for concurrency control, integrity
checking, recovery check-point update, etc.

3. Inter-processor communication (IPC), which is higher if communicants reside on different processors.

4. Waiting time (W21 which is consumed when the task waits in the processor enablement queue. This
figure depends highly on the sizes and number of tasks, the processor load, and the number of enable-
ments. (Especially if large tasks are assigned to the same processor.)

The search algorithm ([11]) eliminates search in improper subtrees, while branching to a new subtree ac-
cording to matrix P, matrix X, and the maximal capacity of each assigned processor. Preference is imposed
with dominance relations, Ov, and WT. The IPC cost is computed for each subtree through matrices C
and D, in Z c[i, ji I d[i, j". The lowest cost solution is chosen out of the set of possible solutions.

The major disadvantages of this algorithm are its centralistic nature and the requirements for global
knowledge. Furthermore, no time constraints are taken into account at a tas" level, and no fault toler-
ance goals are set. The above disadvantages indicate that this allocation scheme is not suitable for "next-
generation" real-time operating systems.

2.1.2 Allocation with Bottleneck Processor Load Minimisation

In [2], an objective function is suggested for the problem of allocation of tasks to processors, using an
optimization constraint of minimizing the load on the bottleneck processor, i.e. the most heavily loaded
processor The algorithm is presented in section B. I.

The algorithm assumes that the load on a processor is a function of the inter-module communication
(IMC), the accumulative execution time (AET) of the modules, and the precedence relations (PR) between
executing modules. It defines the problem on a set of J modules, pl, ... , pj, and a set S processors. The
AET of module pi during a particular time interval can be derived from the number of times py executes
during this interval, and the average execution time of py over peak load periods. The AETs of the modules
are assumed to be known, and are denoted as {Tj : 1 :_ j :_ J). IMC in this approach incurs the inter-
process communication cost (IPC) and the processing overhead. IPC can be significantly reduced if the
allocation assigns pairs of heavily communicating processes to the same processor. The workload on a given
processor (Pr), under a given assignment of the J modules to the S processors, is defined as

C(P,; Z) = AET(P,; Z) + IMC(P,; X)

where X is an assignment matrix [z ,i], for which zi, = 1 if pi is assigned to processor j.

-- m mm•mm a~nm •mmhm a p m am, ,9



The assumptions taken in [21 on IPC, allow the selection of a model of communication cost as a sum of
the cost of outgoing messages and the cost of incoming messages, whereas the costs of module enablements
and control messages are ignored.

IMC,.i(X) = IPC(i,j; X) + IPC(j,i; X).

Given the average inter-module communication cost at peak load periods, {IMC,, : 1 <_ i,j < J}, which
can be calculated from the volume of the communication between the modules, one can derive the IMC
index '-IM'C ) 1MG,

APT
Thus, the load at r can be expressed as

J S S

(P,; X) r i_. , + E IPC(r,s;Z) + 1 IPC(s,r;X).
j=1 *=1or 0---dr

The bottleneck processor load is

bottleneck(X) = max {e(P,; X)}

and minimizing this load is
min {bottleneck(.) }

or
min{ max {AET(P,; X) + IMC(P; X)}).

X 1<r<S
Precedence relations (PR) affect the response time of the system, and this aspect is included in this

algorithm. In [2], a model of wait-time behavior is constructed, based on the observed relation between size
ratio of modules, pi,i, and wait-time ratio, R(pi.i). The algorithm then uses the PR index

PR (i,j) = I- R(p,.

The algorithm in section B.1 presents an iterative approach in which the workload C (Pb,,ttneck; X) is
recorded for different tuning scale factors a and P. a represents the scale factor of combining -IrMc with
-ypj, and P is a scale factor for the threshold of processor load on which combining is decided.

The P- I-A algorithm disregards loads on processors due to other computations, rather than p ,..., pj,
and therefore in order to allow independent computations it requires an extra knowledge. Being centralistic
itself, implies that this global knowledge must be centralistic or static. Two major properties of hard real-
time systems are not dealt here, since no time constraints are imposed on module execution, and no fault
tolerance objectives are defined.

2.1.3 NEXT-FIT-M Partitioning for Rate Monotonic Schedulers

In [4[, an on-line algorithm of O(n) time complexity and 0(1) space complexity is introduced, to partition
a set of tasks such that each partition will be scheduled later for execution at a distinct locality by a rate-
monotonic priority scheduling algorithm. The allocation is centrelistic, while the scheduling is distributed.
A subgoal of the algorithm is to use as few processors as possible.

In this model, tasks have the following characteristics:
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" Each task has a constant period.

" Each task has a deadline constraint, and no begin-time constraint is imposed.

" Tasks are independent of each other, without precedence constraints.

" All the tasks require the same computation time-interval.

The tasks are partitioned according to their duty cycle, which is the ratio between the identical com-
putation interval and the task's period. They are then assigned to processors such that the processors will
schedule them in a rate monotonic scheduling algorithm. Each of the rate monotonic algorithms is known
to be bounded ([9]), and therefore the allocation maintains the load allocated to each processor such that it
does not exceed that bound.

The allocation algorithm is described in section B.2. The tasks are divided into M classes, such that

" task T E class-k if 2r1 r < uj < 21 for 1 < k < M.

* task Tj E claas.M if o <_ u < 2k.

The algorithm assigns k class-k tasks to each class-k processor, keeping the utilization factor of the class-M
processor less than n (2).

The partioning mechanism of this allocation algorithm is based on the use of local rate-monotonic priority
schedulers, and it is therefore totally scheduler dependent. Even so, the model of the above scheduler is
too simple to support "new-generation' real-time applications. The absence of begin-time constraints, the
lack of support for a variety of computation requirements, the absence of important relations between tasks
(precedence and others), and disregarding loads on processors due to other computations, are features that
this approach fails to demonstrate. Furthermore, it fails to support any fault tolerance goals, and thus
does not give a comprehensive solution. However, we find the relationship demonstrated in [4 between an
allocator and local schedulers important and useful.

2.1.4 Allocation with Load Balance Optimality Constraint

In [6,51, allocation of processes to processors is examined with respect to a distributed load balancing
optimality constraint, and groups of processes are relocated when one or more processes fail.

A set of processes Pp = jpi,. . .,pi} are related to each other through a set of logical links Cp, to form
a graph

= (PP, ,).
A set of processors Pp = {P 1 ,. .. , Ps} are related to each other through a set of physical links Cp, to form
a graph

9 = (Pp, p).
Each node in the above two graphs can be measured according to its incoming and outgoing links, apply-
ing some weights to the links to express communication costs. These measures can be used as similarity
(clustering) measures, according to which each of the graphs is represented by a cluster tree, rp and rp,
respectively. The allocation algorithm in [61 is mapping the nodes in rp to the nodes of rp. The motivation
of this allocation is to assign heavily communicating processes to heavily connected processors.
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In this approach, all the procesm are assumed to be roughly equal in the load they impose when assigned
to a processor, and this load is assumed to be a unit load. Each processor Pi is assumed to have a current
assigned load denoted ci. The current load is bounded by the processor capacity Ci, and is required to
satisfy an optimality workload constraint

C- -

where A is the optimal load and e is a tolerance. The relation

< 5 ci :A

is another way to express the optimality constraint, where

When a cluster of processors is observed, the sum of its processors' capacities expresses the cluster's
capacity, and a sum of the currently assigned processor loads is the currently cluster load. A metric that
represents the violation of optimality in cluster j can be expressed as

Vj = j~i-Al e

The ALLOCATE algorithm presented in [61 uses the violation values of the children of a node in processor
cluster tree in order to select a candidate cluster of processors to which processes are to be assigned. The
highest violation is selected first.

In order to support fault tolerance objectives, the occurrence of a fault must first be detected. A cluster
of processors that monitor each others status and participate in the detection algorithm are called a detection
unit. The set of S processor is therefore divided to detection units DI,..., DK, and each detection unit Di
is assigned with Ni processes.

Each detection unit is ordered, to have a Leader, second in command, etc. The assumption that no
failure occurs while recovering from a previous failure, allows replacing a Leader that has failed using a
simple protocol. Each Leader maintains some knowledge in order to answer questions of other Leaders that
cannot relocate in their own detection unit. Each Leader maintains additional information for its relocation
management, both for relocating locally (within the detection unit) and for relocating externally (moving
processes to another detection unit).

When a processor Pi is detected to have failed in detection unit Di, its capacity is removed from the
total capacity of the detection unit. The Leader of Di checks if the fault can be dealt with locally, by a local
reconfiguration of the allocation within Di. If this is the case, then

e(D,) - , < N. :_ M(Di) - M2

and the actions taken are described in section B.3.1. The benefits of a local' relocation are the isolation of
failures from other detection units and the minimization of enforcement of departing from optimality.

However, if it cannot be treated locally, the Leader must generate a candidate set, of (v, k) pairs, to select
both the node v to be migrated, and the destination detection unit Dh. For each node v to be migrated to
detection unit Dk, three cost issues aie raised:

12



1. migration cost, M(v, k), which mainly consists of a fix overhead, and a cost which is proportional to
the number of leaf nodes that are descendants of v,

2. affinity cost, A(v), which originates in the increased logical communication between Di and the mi-
gration destination, and therefore depends on the links of the migrated node,

3. utilization cost, B(v, k), which is a measure of the unbalanced load and the violation of the optimality
measure in Di and in the destination detection unit.

Combining the above three costs to a ranking measure, yields

R(v, k) = C,. A(v) + C2 B(v, k) + C3. M(v, k).

An algorithm which is motivated by the above ranking is described in section B.3.2.
We find the relocation approach very appealing from fault tolerance point of view. However, this approach

does not satisfy hard real-time system requirements, because it does not take into account the deadlines in
its clustering measure (e.g. in ALLOCATE) and the impossibility to recover through a roll-back (e.g. in its
migration solution) in many cases.

2.1.5 Heuristic Approaches

In general, the mapping of timing constraints plus the precedence relations onto resource allocation in a
multi-processor environment is an NP-hard problem ([13,141). This fact motivates the research for heuristics
that provide sub-optimal solutions for the hard real-time allocation and scheduling problems. Some heuristic
approaches taken in scheduling ([17,181), suggest some interesting ideas with respect to the allocation scheme.
An example of a heuristic scheduler, the one used in the Spring operating system, is given in section B.4.

In [171, at each level of the search tree, the scheduler updates a vector of the Dynamic Resource Demand
Ratio

DRDR = (DRDRi,..., DRDR,..., DRDR7 )

whose component 'i m indicates the fraction of resource X- to be used by the tasks not yet scheduled.

DRD, = E- Z (CT: T remains to be scheduled AT uses R,)
maxT (dr : T remains to be scheduled AT uses R) - EAT

where EAT is the earliest available time of resource A, and dT and cT are the deadline of task T and
its computation time respectively. One should notice that all the resources are reserved for the whole
computation time. When a search decision is to be taken regarding the schedule feasibility, as in

if strongly-feasible(task.set, schedule) then ...

one should check also

....=...,ri: DRDRi :_ 1.

In [181, the scheduler allows preemption and thus each resource is allowed to be required in one of the
following three modes:

I exclusive,

13



* shared,

* not needed.

At each level of the search tree, the scheduler updates another vector of the Minimum Resource Demand
Ratio

MRDR = (MRDRI,. .. , MRDR,)

whose component i' indicates the fraction of resource RI to be used by the tasks not yet scheduled.

M RD. = XTCps..... (C4 : T remains to be scheduled) + maxTeR..,. (¢4 T remains to be scheduled)

maxT(dT : Tuses R A4 > 0) - EAT

with the terms defined as above, except for c. which is the remaining execution time of task T.

2.2 Model Description

Our model of computation is a system constructed from objects and resources. The objects that participate
in a computation are related to each other via semantic links that are pointed by the object joints. The
temporal properties of each relation are expressed as either convex or non-convex time intervals in a calendar
within the relevant joint. In that respect, resources also can be viewed as objects. However, we distinguish
between the two for differences in fault tolerance properties that are related to monotonicity of faults. The
distinction is also related to properties that concern damage containment in case of faults. The properties
of the resources may allow us to model the system elements in terms of resource segments. For example, we
may model one particular memory page as a resource if we can detect a failure at this level of resolution,
and trigger an off-line recovery at the same level. On the other hand, if we cannot do the above, we may
model the whole memory at a given locality as a resource, or even the whole locality (i.e. the processors,
the memory, the devices, etc.) as a single resource.

Executing and "to-be-executed' objects are to be allocated as system resources, each having its own joint
and calendar. These resources are physically linked according to their geographic and hardware constraints.
However, in addition to resources, services provided by objects may need to be allocated to other objects.
Each of these services nay need other services and resources, and so on. We present this as a graph, where
objects and resources are represented as nodes, and the relations are represented as directed arcs. Note that
resources are always the leaf-nodes, since a resource is not expected to need services from other resources.

The distinction between transient and monotonic faults, as expressed in our object/resource model, allows
the use of two possible recovery mechanisms. We denote the most common one as temporal redundancy, in
which a 'retry' effort is executed upon a fault detection. This mechanism is perfectly suited for faults whose
existence may be a transient phenomenon. It also permits roll-back recovery. Real-time constraints may
conflict with temporal redundancy, because the time needed for recovery may not exist. Furthermore, in
case of a monotonic failure, retrying is ineffective. In such cases only physical redundancy can increase the
system resiliency. Roll-forward recovery and the N-version programming are examples of such redundancy.

In Figure 2 we give an example of the two mechanisms. Objects a and b are allocated with temporal
redundancy, while object c has a physical-redundancy in object d. In the model defined below, resources
ace to be subjected only to physical redundancy, while redundancy of objects is defined by the computation
designer.
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One major obstacle that the allocation and relocation mechanisms must overcome is shown in Figure 3.
Although objects B, and B2 are physically redundant, and so are objects C3 and C4, the allocation in the
figure results in a 0-resilient computation. Any failure of one of the four resources result in a computation
fault, since both redundant threads depend on all four resources. If B, is allocated with Cs, and B2 with
C4 , the outcome is a 1-resilient computation.

2.3 Conditions and Formulation

Let each executable object instance p have a set of resource requirements {Rf P'} and service requirements
{S!)}, called its dependency set, which we denote as DS,. Restricting p with a time constraint TC,
implies a projected time constraint to each member of its dependency set. Each projection is a result of the
temporal relation between p's execution and its requirements. A service requirement can be executed by
another executable object instance, which can be chosen out of a set of alternatives. Hence, we can define
the dependency set as follows.

Definition I The dependency set of an object p with a time constraint TCp is

DSpC, -{{< R i(
, T CR (, ) >: 1 i< k} , 1$I!): <i < n}).

where S I P ) = { < " .-p ) (i) , _ ' .P ) { > : 1 <5 " < M (p ) {  0 }

and M ( i)( s) i the number of service alternatives of service requirement S( P)

Consider a graph that models the dependency relations between an object p and its requirements, denoting
each relation by a directed arc from an object to a member of its dependency set. If a member of the
dependency set is another object q, then q's dependency graph is a sub-graph of p's dependency graph.

Definition 2 The dependency graph of an object is a graph in which the object is represented as a node,
and directed ares connect thi node to the dependency graphs of the members of its dependency set.

We can also define the set of members in each sub-graph as follows.

Definition 3 A reachability set of an object p is the set of all objects Pk, such that there ezists a finite
path from pi to pA. in the dependency graph of pi.

In 171 we have shown that for non-preemptive scheduling discipline we require a totally-disjoint (A)
relation between all the computations, as well as avoiding conflicts between windows of occurrence and their
corresponding computation non-convex intervals.

In the following definitions, we use notation which we adopted in [7]. *Each convex interval, say A, is
assumed to be delimited by t and t0. The leftmost convex sub-interval of a non-convex interval B is
denoted as AB, and respectively the rightmost one by t>B. w is the interval cover operator. Finally, the
interval containment property is denoted by >, the interval intersection operator by n, and the empty set
by 0.
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Definition 4 The laxity of a (computation) non-convez interval Pi that is constrained within a (window)
convex interval TC, is defined by the pair (c, zC,), such that

z7' = tp. - begi.(PiL) 5 L t. - -M tWP6 - tM'

x M enC . .(P) - < t7C - 4 t . tTci - twP,

where Pl = 4d, Pm P = tp. [p

Defining the laxity, one could phrase the condition for non-preemptive schedulability

Condition 1 Let the incoming time constraint have an occurrence window TCj. and a non-convex com-
putation requirement P,,. Let V be the verification interval, derived from the duration of a time constraint
TC., for which TC. = TCi or TC. TCi, such that 10, the set of already accepted time constraints that
intersect with the verification window V, satisfies

,B TC' ) ET ° : TC(j )  TC,.

The incoming time constraint is non-preemptively schedulable if

ViVj: TCJ' E P: 3x_ > 0, 3z+ ">0,

3x!" >_ 0, 3xV'" > o: VPe) E P: R (,)

where Po is the set , I TC Ej)  P)-.

In the preemptive schedule, we now take into account the non-convex nature of the computation intervals.

Definition 5 The set of maximal convex subintervals of convex time intervals A and B is defined as
S({ A}, {B}), such that

* AnB=O==.S={A,B}

* AnB#k=*S={AwB}.

The set of maximal convex subintervals of a non-convez time interval D is the set of maximal convex subin-
tervals of all its convex members {di}. ri

Defining the set of maximal convex subintervals, one could phrase the condition for preemptive schedu-
lability.

Condition 2 Let the incoming time constraint be a time constraint with an occurrence window TCn and a
non-convex computation requirement Pi.. Let V be the verification interval, derived from the duration of a
time constraint TC2 , for which TC. = TWin or TC. > Ti., such that for J° , the set of already accepted
time constraints that intersect with the verification window V, there exists no time constraint that contains
TC,. Let Iv be

v 1 Pu{TCi, - {TC 2 }.

17



The incoming time constraint is preemptively schedulable if

Va.C-s (TV) : E , Ila,. nP,1h)II s: Ils-11

V,:TCjGeZ Vk:p(") EP4

A
11,l -< IlVll- l kII*l

Va.ES(ZV) Yk: pI) E p.

where a, are the convex subintervals of $(1v). 0

The schedulability conditions, Conditions I and 2, establish conditions for an object allocatability.

Condition 3 An object p is allocatable, if it is schedulable, its resource requirements are schedulable, and
for eacit of its service requirements therc is at least one allocatable service alternative (in case the set of its
service requirements is not an empty set). 0

The above definition is recursive, implying that there must exist at least one object with an empty service
requirement set in the reachability set of each allocatable object.

We now define the resilience of an allocated computation to transient faults and to monotonic faults.
But in order to do so, we first define two special subgraphs of an allocated dependency graph.

Definition 6 An allocation graph of an object is a sub-graph of the object's dependency graph in which only
allocatable objects and the schedulable resources are represented.

Note that when the allocation graph of object p includes the object p itself, it contains also all the resource
requirements and all the service requirements of p, due to the allocatability property.

Definition 7 An allocation alternative of an object is a sub-graph of the object's allocation graph in which
for every service requirement only one service alternative is represented.

Due to the definition of the allocation graph, the service alternatives represented in the allocation alter-
native are obviously allocatable.

Condition A An allocation for the ezecution of object p is n-resilient to monotonic faults if p is allocatable,
and there exist at least n + 1 distinct allocation alternatives whose intersection with each other contains at
most the node p. [

It should be emphasised that this condition does not allow any resource requirement of p or any service
requirement of p to be contained in the intersection.

Definition 8 An allocatable instance of an allocation alternative Ap of an object p is the the tuple (Ap, TCp),
where TCV is the particular time constraint reserved for this allocation alternative.

Using the above definition and recalling that a physical redundancy is also a temporal redundancy, we
have the following condition.
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Condition 5 An allocation is n-resilient to transient faults if the computation is k-resilient to monotonic
faults, and each of its k+ 1 allocation alternatives, 0 < i < k, have ri distinct allocatable instances, such that

- >_n.
i=0

The practical implication of the above condition can be stated informally in terms of the following
allocation philosophy. An allocator may be required to achieve an objective of a given resilience to transient
faults, and the number of distinct allocatable instances at a given allocation alternative cannot support it.
Then, allocating additional allocatable instances of another allocation alternative will be an adequate choice
for this allocator.

3 Allocation Algorithm

In this section we introduce our allocation algorithm, based on the definitions and conditions we have
introduced above. But before providing the detailed algorithm, we introduce the principles according to
which it works. In addition, a condensed version of the algorithm is provided for a better understanding of
the principles.

Considering the dependency graph defined in section 2.3 we call a leaf node, a node whose service re-
quirement set in its dependency set is empty. Recall that in the dependency graph the nodes are executable
objects to be allocated. As we will see later, a leaf node plays a special role in this allocation algorithm, and
is in charge of generating the Oyes' answers.

The state of an executable object during allocation can be allocatable or non-allocatable. An executable
object is allocatable when it satisfies the allocatability condition as specified in Condition 3. Even when an
executable object is non-allocatable, it is assumed to be capable to respond to the algorithm performed by
the allocator.

We assume that the allocation algorithm is performed by allocators, each of which is invoked to test the
satisfaction of Condition 3 by a particular object 2 . Therefore,we start by defining the invocation messages
used in the algorithm, and we go to describe the principles of the algorithm.

3.1 Message Types Used

e ALLOCATE(frm, whom, TCphysical-redundancy, temporal-redundancy, to) is the initiator message:

from - initiating object Id.
whom - set of alternative objectSAPs to be allocated.
TC - time constraint.
physical-redundancy - degree of physical redundancy.
temporal redundancy - degree of temporal redundancy.
to - receiving allocator Id.

2The assumption is not restricting the generality of the algorithm, but rather enriches its possible implementations. Allocators
can be different instances of the same allocator (e.g. a recursive call), or different allocators executing concurrently.
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9 ALLOC..REQ(of,tag,rom,whomlevel, TCto) is the query message:

of- initiator Id.
tag - tag number of this ofs computation session.
from - objectSAP that requests the service.
whom - object-SAP whose service is requested.
level - degree of temporal redundancy requested.
TC - time constraint.
to- receiving allocator Id.

* ALLOC-REP(coloroftag,frornwhom,Aleel, TCto) is the feedback message:

color - yes/no.
of - initiator Id.
tag. tag number of this of 3 computation session.
from - object-SAP that replies.
whom - object.SAP which requested the service from from.
A led - degree of temporal redundancy in debt.
TO - time constraint.
to - receiver Id.

3.2 Principles of Algorithm for Initiator
The following algorithm is implemented as an interface between the user who wants to initiate an allocation
session and the allocator. It can be a special service-acces-point of the allocator, or a dedicated server of
another type. When one initiates an allocation session, one must specify its fault tolerance objectives, its set
of alternatives in which the computation can be carried out, and the timing constraints for this computation.
The initiating algorithm tries to reach the fault tolerance objectives by requesting allocation of computation
alternatives (from the set defined above) that adhere to the physical and temporal redundancy defined
by the user, as well as to the timing constraints. Tagging the alternatives allows concurrent allocation of
dependency graphs while maintaining null intersection between these graphs, as long as the computation Id
and the graph tag are spread with the requests thruaghout the graph.

Therefore, the initiator (me) must send enough ALLOC_.IQ(...) messages to allocate members of the
alternative set defined by 'whom', and me now has to wait for the answers. In order to have a higher degree
of concurrency, an artificial object-joint is created instead of keeping me active while waiting (recalling that
me can be an allocator), to collect the answers when they arrive, and to allow choosing another alternative
when the answer is negative.

Decrease of physical redundancy is implicitly prevented by the algorithm. The physical redundancy is
controlled through the INSERTTC function (see section C.1) that does nct reserve in a particular calendar
two requests with the same Id and different tags. This property adheres to the null intersection requirement
in Condition 4.

* Upon receiving ALLOCATE(from, whom, TC, physical-redundancy, temporal-redundancy, me)::
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1. Create an object (ROOT) whose dependency set consists of an empty set of resource requirements,
and a set of service requirements whose cardinality equals the physical redundancy level required
+ i. Distribute the alternatives of whom into these service requirements.

2. For every service requirement in ROOT do:
- Select the first service alternative in the service requirement.
- Send ALLOCREQ for allocating the selected service alternative, distinguishing each service

requirement with a different tag. The ALLOC.REQ asks for the temporal redundancy re-
quired, imposes the requested time constraint, and designates ROOT as the initiator of the
allocation request.

3.3 Principles of Algorithm for Allocator

The following algorithm is implemented in all instances of an allocator object in the system. It consists of
actions responding to an ALLOCREQ(...,me) message (allocation request), and actions responding to an
ALLOCJEP(...,me) message (allocation reply).

An executable object (whom) for which an allocator receives a ALLOC.REQ(.. .,whom,.. .,me) message
must have the schedvalbility property for itself and for its resources for each of its "to-be-executed' instances.
If it is schedulable, it forwards ALLOC_REQ(...) messages to allocate its service requirements in its depen-
dency set. This forward wave of ALLOC_.EQ(...) messages proceeds, propagating the ALLOCJREQ(...)
messages, until a requesting message reaches either an executable object which is non-schedtdable or a leaf
executable object which has no service requirements.

The timing constraints sent in the ALLOC..EQ(...) messages to the service requirements and the
timing requests imposed on the resource requirements are projections of the incoming timing constraint.
These projections are done according to the required temporal relations between the invoker's constraint
and those imposed on the requirements. We assume that these relations are known in advance, and that
they are convergent, as defined below.

Definition 9 A convergent temporal relation sequence, is a sequence of temporal relations (XuY,... I. ,)
that satisfies

XZRY .... Rv:.c ZzvzRY ... Xv3 Z V 2R,,Y ... 2 Z T ZV zRZY ... RZ.z4.Iz

for time intervals z, y. 0

Now we examine how the ALLOC..EP(...) messages are generated. If an executable object whom is
requested to be allocated, and it verifies itself or its resources to be non-schedulable, then there is no point
in verifying the allocatability of its resource requirements. It generates an ALLOCREP(no,...) message to
the object which requested its service. On the other hand, if a leaf object whom is requested to be allocated,
and it verifies itself and its resources to be sehedulable, having no resource requirements, it generates an
ALLOC.REP(yes,...) message to the object which requested its service.

The backward wave of ALLO(_REP(.. .) messages propagates in the following way. If both an executable
object and its resource requirements have been found seAedulable and if this object has received all the answers
it expected with a positive color, then it sends back a positive answer message ALLOCREP(yes,...,prev,...)
to the object that had requested its services. Thus, each node performs a boolean AND of all the pos-
itive answers. On the other hand, if a requesting object exhausts all the alternatives for any particular
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service request, then it cannot meet its requirements, and it sends back a negative answer message AL-
LOCJREP(no,. .. ,prey,. . .). Since in the latter case some services might have already been reserved (in
particular the object itself and the resources), these reservations must be removed to release them for other
possible requests.

" Upon receiving ALLOCJEQ(of,tagfrom, whom, temporal-redundancy-level TCme)::

1. Iterate my-level successful iterations, trying to reserve an execution interval for whom in its
calendar, and for its resource requirements at their calendars. The number of iterations is bounded
by the required temporal redundancy level.

2. If no iteration was successful, send ALLOCREP answering no.

3. Otherwise, if whom is a leaf-object (having no service requirements), send ALLOC.REP answering
yes, indicating how many missing temporal redundancy instances there are according to my-level.

4. Otherwise (not being a leaf-object) do the following for every service requirement in whom depen-
dency set.

- Select the first service alternative in the service requirement.

- Send ALLOC-REQ for allocating the selected service alternative, asking for the temporal
redundancy my-level, projecting the proper time constraint according to the temporal relation
between whom and the service.

5. Update whom joint to include the proper information needed to deal with replies.

" Upon receiving ALLOC.P.EP(coLoroftagfrom, whomA level, TC, me)::

1. If the color is yes, and all the required temporal redundancy instances have been allocated, then
mark this service requirement done.

2. Otherwise, not having enough temporal redundancy instances, if there is another possible service
alternative in the service requirement, do the following.

- Select the next service alternative in the service requirement.

- Send ALLOCREQ for allocating the selected service alternative, requiring the unsatisfied
temporal redundancy level (up to my_/evel, projecting the proper time constraint according
to the temporal relation between whom and the service.

3. However, if there are no more service alternatives at that service requirement, the following two
cases are distinguished.

- If no alternative at all at that requirement have been allocated, then send ALLOCREP
answering no to the object that required the service of whom. In that case release whom, its
resources, and the rest of the requirements.

- If some alternatives at that requirement have been allocated, then decrease the level of tem-
poral redundancy viewed by whom, to the lowest between its current view and the view seen
by from. Then, mark this requirement as done.

4. If all service requirements are done, send an ALLOC-REP to with positive answer to the object
that required the service of whom, indicating the level of temporal redundancy as limited by
whom's view or its requirements.
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We note the way in which the degree of temporal redundancy is maintained, in order to satisfy Condition
5. The temporal redundancy achieved by the object itself and its resources is bounded by the one requested
from the service requirements. If a service alternative cannot satisfy the degree required by a requestor
object, an additional alternative is invoked to satisfy the debt, and so on as long as there are alternatives.
The sum of the redundancy achieved by the alternatives of a service requirement establishes the degree of
that service requirement. The lowest degree achieved by a member of the service requirements is the one
reserved and the requestor is informed about the debt. That way the requestor can try and increase the
degree by requesting another alternative. The principle here is to use a physical redundancy when no more
temporal redundancy can be achieved.

3.4 Local and External Variables

In the algorithm presented here we use some of the variables defined for the joint of an object (see Appendix
A) and the folloing local variables:

mylevel: the degree of temporal redundancy of this object so far.
my~level: the debt in temporal redundancy of this object.
Alevel: the debt in temporal redundancy of the service requirement.
LM_OK: true as long as this object's schedulability is not contradicted.
R.isO.K: true as long as these resources' schedulability is not contradicted.
TCm: time constraint of this object.
R,: a resource requirement.

Ra,: the temporal relation between this object and resource requirement R .
TC: the time constraint of the requirement as projected from TCme using the temporal relatiou R.
Si: a service requirement.
R ,: the temporal relation between this object and service requirement Si.

a service alternative of service requirement Si.

(k, n are the number of requirements for resources and services, respectively.)

3.5 The Allocation Algorithm

Upon receiving ALLOCATE(from, whom, TCphysicaL.deg,temporoldeg,me)::

begin
Let whom be associated with (pi,..., pl,} with k > physcaLdeg;
Construct a non-volatile auxiliary object ROOT with the following:= (ROOT')

1. DSROOT,Tc.oo_ { .'a, : 1 < < c} {5 R ° ° T). 1 < i< n} }
where {R °OT): 1 < k} =

and S(ROOT) = {< (ROOT)() TC >: 2(ROOT)(i) Ep ( Pa, 1.
2. Id - ROOT.
3. pre 4-- from.

4. TC.. 4- TC.
5. myAlevel- 0.
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a. e[il #- 4i, for 1 !5 i :_ phyaical-deg.

7. Analil .- off, for 1 < i < physical-deg.
for tag +- I to physcaldeg step 1 do

send ALLOC-REQ(ROOT, tag, ROOT,a°°r)t ,?cmporo-deg, TC, llocator);

od
end
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Upon receiving ALLOC..REQ(Id, tagyfrom) whom, temporaLdeg, TCme)::

begin
mylevel.-O; -M-0.K.-true;
TM. - construct(whom, TC, Id, tag);
TCme .Levei '-mylevel; TCme,.It ate -idle,
while (myIevel<temporaldeg)A(LMvLO K) do

/* Temporal redundancy reservations/
If INSERT-TC(whom, TCm.) then

/* Reserve necessary resources for whom
i .- 1; R-is-OiC-true ;
while (i < k)A(R..is..OK) do

TC, .- project ()ZR,, TCme,);
TC,.leuel +4-my-level;
if INSERT..TC(R., TCi) then

else /4 cannot get them all: release guaranteed subset 4

R-is..OiC-falae ;
for q 4- 1 to i step 1 do

REMOVE.TC (R,TCq)
ad
I-MLOiC.--false;
REMOVETC (whom, TO,,);

Bi
od /* resource reservation terminated 4

else
IvLO...K-false;

B
If (I-M-Oi) then

my-level.-my-level+l1
TCm,.Letjel 4-my-level;

B
od
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my )evel--mylevel-temporaLdeg;
if (my-level=O) then

send ALLOCREP(no, Id, tag, whom, from,myAleuel, TCme, allocator);
else /* my-level> 0, something was reserved */

if (VS E DS(whom) : Si = 0) then /* leaf-object /
send ALLOC.P, EP(yes, Id, tag, whom, from,myAlevel, TCme, allocator);

else /* non-leaf-object: invoke allocation of service requirements /
prey - from ;
for i .- 1 to n step 1 do

TC - project (Rs,,TC,);

send ALLOCREQ(Id, tag, whom, 3 1w~m (i) ,my-level, TCi, allocator);

['I 4- ;h) ; Ans[il +- off
od

/* In case allocator is reenterant: store in whom joint */
store Id, prey, TCme,myAlevel, sni n1,., ni, Ans[i 1,..., n]

end
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Upon receiving ALLOCREP(color, Id, tag, from, a,."  )' ) , Alevel, TC, me)::

begin
Restore auxiliary variables according to Id, tag, s9

/* prev, TC..,myAlevel, si = 1,..., 4, Ana[i = , .... n .]/
If (color = yea) then

if (level= 0) then
Ana[i] +- done;

else /* Alevel< 0 : more alternatives are needed, some already reserved /
Ana[i] .- on;

fi B
if (Alevel< O)A(j < M('-"")(')) then

TCj .- project (2 s,, TCm)
send ALLOCREQ(Id, tag, whom, a(wh o )() , -Alevel, TCi, alocator)

store si] '-+I
elseif (Alevel< O)A(j = M(Iu°I)('))A(Ana(]i = on) then

myAlevel-- min(myAlevel, Alevel);
Anafil -- done ;

elseif (Alevel< 0)(j = M(w'h-)(')A(An[i] = off) then
/* no alternative reserved release other requirements */

send UNLOAD(whom, TCm.) ;
/* see section C.3 */

if (Id 0 whom) then /* climb up to try again ./
send ALLOCREP(no, Id, tag, whom, prev,myAlsel, TCm, allocator);

else /* ROOT failed to be allocated */
send ALLOCREP(no, ROOT, tag, s[i], ROOTmyAlevel, TCm., prev);

B
else

error in algorithm /

iVi: Ans[i] = done) then
if (whom 36 Id) then

send ALLOCJEP(yea, Id, tag, whom, from,myAlevel, TCme, allocator);
else /* ROOT is properly allocated */

send ALLOCREP(yea, ROOT, tag, ROOT, ROOTmyAlevel, TC.e, prey);
/* temporal redundancy debt in myAlevel /

delete ROOT;

end
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4 Properties

The major properties of the algorithm are discussed in this section: termination of the algorithm, correctness
of allocatability when detected by the algorithm, the achievement of the fault tolerance objectives when
allocatability is confirmed, the mutual exclusion support needed, and finally the deadlock prevention.

4.1 Algorithm Termination

We start examining the algorithm's properties by considering the possibility of a non-terminating allocation
session, in cases of allocating a particular object, p, with a finite reachability set. The finite number of
members in p's dependency set, implies that there's a finite path from p to any member q in the set, and
therefore within a finite time, an ALLOC.REQ (... ) message sent from p will reach q. In addition, the finite
reachability set implies a finite number of requirements. Furthermore, the finite reachability set implies that
every path is either finite, or a close component, or a finite path ending with a close component. Therefore,
these are the cases we examine below.

A path that starts at p, passes through one of its requirements, and is finite. It must eventually reach a
lea-node that has no requirements. There, the forward wave of ALLOC.REQ (...) messages is stopped,
generating an ALLOC.JP (...) message that returns on the same path used by the forward wave.

If p and its requirement q are both members of a closed component, then the following must occur. Object
p inserts its incoming constraint TCP(o) into its calendar, reserving an interval P(o) within this allowed
window of occurrence. Then object p projects its incoming time constraint TC(o) into a constraint TCq(OM.
Object q then inserts P,(o) into its calendar, and passes the request. The request continues and returns
back to p, since it is a closed component. The restriction on convergent temporal relations, yields that the
new arrival of the allocation request comes with a time constraint TCP(x) which is contained within TCP(o).
Now p reserves another time interval Pp(l), which is of the same duration as Ppm and is definitely contained
within TC,(o). The same argument holds for the following occurrences of forwarding the ALLOC..REQ (...)
messages. Note that the finite interval TCP(.) can allow only a finite number of P(.) intervals to be reserved
within its limits. Once this finite number is reached, and another reservation request withiz this window
of occurrence arrives, p is not schedulable any more (both preemptively and non-preemptively). When this
case occurs, a negative reply ALLOCJPEP (no, ... ) is sent back, and the forward wave is stopped.

The third case of a finite path that ends in a close component is a combination of a finite delivery of
ALLOC-REQ (...) followed by the above scenario.

Due to the above, we can conclude that within a finite time the forward wave terminates, and only
backward wave messages exist in the allocation session. Since each backward wave message uses the same
path its corresponding forward wave message has passed, only in reverse direction, then we can conclude
that within a finite time every ALLO2.REQ (...) to an alternative is answered by either a positive or
a negative ALLOC.REP (...). Having a finite number of alternatives for every requirement, and a finite
number of requirements, yields the conclusion of the algorithm within a finite time.

Proposition I The allocation algorithm terminates if the reachability set of ROOT is finite. [

In the case the graph is infinite, the algorithm also terminates due to an implicit timeout mechanism which
is attached to the allocator. The dependence of allocatability on each objects and resource schedulability
hides this timeout. A time constraint is not verified to be schedulable if its latest begin time has already
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pased. In such a case a negative reply, ALLOC-REP (no, ... ), would be generated and forwarded to the

originator. Therefore, we can state the following, expanding Proposition 1.

Proposition 2 The search for an allocation always terminates.

We can conclude by saying that since the algorithm always terminates, either by a normal termination
or by a timeout, the answer to the originator will be generated.

4.2 Allocatability Correctness

There are only two possible *colors' for reply messages: a positive answer, the ALLOC-REP (yes, ... )
mesage, and a negative answer, the ALLOC_ REP (no, ... ) message. The negative answer can be generated
in two caes. The first is the case of a non-schedulable object that receives an ALLOCREQ (...) message,
where non-schedulability refers to the object itself or to one of its resource requirements. The second is
the case of an object that receives ALLOC_ REP (no, ... ) answers from all its alternatives for a specific
requirement. and thus is known not to satisfy the allocatability condition. The positive answer is generated
in the ase of a schedulable leaf node that receives an ALLOC-REQ (...) mesage and immediately
answers with a ALLOCREP (yes, ... ) message. The positive answer propagates only when there were
positive replies from all the service requirements of an intermediate schedulable node, and again schedulable
refer. to the object itself or to one of its resource requirements. Thus we can conclude that each object
that sends an ALLOC-REP (yes, ... ) message is either a schedulable lea-node, and thus allocatable, or a
schedulable intermediate node that received at least one ALLOC.REP (yes, ... ) message from each of its
service requirements, and thus is allocatable. Hence, the following proposition.

Proposition 3 A positive reply from the allocator of ROOT, ensures the ezistence of a non-empty allocation
graph of ROOT. [

4.3 Achievement of Fault Tolerance Objectives

In section 2.3, we have defined two types of redundancy, the temporal and the physical redundancy. Here
we expand on these two concepts, and on their relations.

In the algorithm presented in section 3, every request for allocating an object specifies the temporal
redundancy level required. The temporal redundancy level propagates with some restrictions. Assuming
there is no reason to request from a service a higher temporal redundancy level than the one achieved by
the requesting object, each object first attempts to reach the required level itself. If it succeeds, the request
propagates with no disturbance. Otherwise only a part of the request is forwarded, whose size equals the
level achieved locally (my-level), and a 6debt" of the size

my~level = my-level - required-level

is generated. Note that due to this definition myAlevel is non-positive. If all the service requirements achieve
the redundancy level forwarded to them, then the local debt (myAlevel) is reported in the backward wave
message. If, however, an alternative does not succeed in reaching the objectives set to it by the requestor,
another alternative is invoked for increasing the temporal level. This alternative invocations continue as long
as the temporal redundancy level for the service requirement does not reach the level achieved locally, and
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as long as there are alternatives. If there are no more alternatives, the local level is reduced to the lowest
level achieved by the requirements, and the increased debt is reported in the backward wave message.

The above procedure provides the following result. an allocatable object that answers a request AL.
LOCREQ (..., temporaldeg, ... ) positively with an ALLOCREP (yes, ... , myAleel, ... ) , has reserved
at least temporaLdeg+myAlevel execution instances of itself and its resources, and its service requirements'
answers reported on at least that amount. In other words, tempora-deg+myAlevel distinct allocatable
instances are reserved. Hence the following proposition.

Proposition 4 A positive reply from the allocator of ROOT, ensures that Condition 5 holds to satify a
resiliency to transient faults of an allocatable ROOT of

temporal-deg + myAlevel(ROOT). 0

The physical redundancy is achieved by verifying that there are at least physical-deg allocation graphs
which do not intersect each other, except in ROOT. The non-intersecting nature is achieved by maintaining
that amount of distinct tags for the computation allocated Id. The INSERTTC function that is used to
verify it, assumes every object and every resource have a calendz., each of which is maintained by instances
of INSERTTC and REMOVETC. The implementation of the tags separation as service requirements of
ROOT serves two goals. First, physical-deg replies with different tags are received into a boolean AND.
Second, in case one alternative fails, another one can be chosen for an allocation retrial.

Proposition 5 A positive reply from the allocator of ROOT, ensures that Condition 4 holds to satisfy a
resiliency to monotonic faults of an allocatable ROOT of physical-deg. 0

4.4 Complexity

In a wide variety of cases, real-time computations are composed of a set of objects which form a hierarchical
structure. This hierarchy is depicted by allowing each object to be a member of at most one dependency
set. On the other hand, each resource can be a member of more than one of the resource requirement sets
in the computation session. This yields a tree-like structure for the objects which are not resources. Thus,
in a graph representation of the computation, each of these objects may be connected to all the resources.

This hierarchical abstraction is widely used in real-time and object oriented systems due to the autonomy
it provides. This autonomy is reached by the encapsulation of functions into the object and once triggered
the object has no need for additional external stimuli. Therefore, the liveness of the invoking object is not
a necessary condition to the successful completion of the invokees.

Using the above graph representation, we show now a worst case analysis of the algorithm complexity. We
isolate the set of server objects S, such that they form a tree structure. The algorithm presented in section
3 traverses ISI - 1 arcs due to server dependency. Each server, in turn, may require all the resources in the
resource set R. Therefore, the algorithm traverses SI . IRI arcs in the grapl. due to server/resource relations.
These are the only possible arcs to traverse in the above model. Hence, for hierarchical computations the
complexity of the algorithm is:

ISl. IRI + ISI- l.
The time complexity is degraded if computation graphs which contradict the object architecture objectives
are used.
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4.5 Mutual Exclusion

The mutual exclusion of object utilization results directly from the use of calendars in each of the (totally)
independent Service Access Points. For each computation session, an Id and a tag are generated in order to
,cordiuate the different requests for computation. These request identifications are kept in the calendar of
the object. From the algorithm we can see that if two or more requests come to a specific object with the
same time constraints, the screening of the one that will acquire that window is done at allocation time.

All the requests use INSERT-_TC and REMOVE.TCto update the calendars. These primitives ensure, in
turn, that only one object has an access to the calendar of a particular requested object at a time. Therefore,
at the execution time, a specific constraint is reserved to, at most, one server.

Note that the above development occurs for convex time intervals as well as for non-convex time intervals.
The space in time is reserved for each convex sub-interval which is a member of the non-convex time interval.
For periodic jobs, the same holds, sufficing to reserve the time constraint for each new occurance of the
periodic job at the end of an occurance.

4.6 Deadlock

Deadlock avoidance or detection is automatic in the allocation scheme we have presented here. Note that
in this section we are referring to run-time deadlocks, as opposed to allocation-time deadlocks which have
been shown to be avoided in section 4.1.

Deadlock occurs when there exists a close component of waiting resources in a computation 'wait-for"
graph. Thus, for any deadlock scenario, the wait is for an indefinite period of time. Such a case is not possible
in the allocation scheme presented here, because at run-time objects execution is carried out according to a
certain non-overlapping time ordering. Therefore, objects are prevented from waiting for a resource or for
a message from another object. Instead, all the resources are pre-allocated and the invocation mechanism
uses an underlying message passing mechanism which involves no waits. Hence, we state the following.

Proposition 6 There are no run-time deadlocks.

5 Reallocation Algorithm

5.1 Rationale

Let the system resources, denoted as
P = (I.. K

be connected with a set of physical communication links £p to form a graph

9P= (Plp).

The dependency set of every object p in the system, contains a resource requirement {R! )  1< i < k},
such that

1RP ~i <kJ 9P.

Methods have been suggested to partition 9p into clusters of resources used to monitor each other in
order to detect a monotonic failure. Each of these clusters is called a detection unit, denoted Di, and the
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participating resources are assumed to communicate with other through a detection protocol of some kind.
Here no assumption is taken about the detection protocol. However, our previous assumption on keeping
calendars in a non-volatile storage, suggests a possibility of retrieving the guarantees given and not satisfied
by the faulty resource.

Although we have shown that the resiliency objectives are satisfied, we suggest here an enhancement to
allow recovery of the resiliency after a fault occurs. If there are unused resources in the system that can
support the continuation of the execution of a physical redundancy that has failed, there is no reason for not
using them. A reallocation of that alternative as a substitute to the faulty one can be easily implemented with
the tools described above for the allocation. A retrieval of the calendar of the faulty resource (or object),
allows invoking the reallocation with a negative ALLOCREP, and thus triggering the search of another
alternative. If such an alternative is found, ROOT (and thus the owner who requested the computation) is
only informed about the recovery via a positive ALLOC-REP message. Otherwise, ROOT is informed with
a Alevel that results from the fault.

5.2 Algorithm for Detection Unit Di

Upon detecting failure (obj.asp.T object, TC..-'ime.conatraint)
begin

inform members of Di;
retrieve calendar(obj.8ap)
VTC, E calendar(obj.ap) do

Get auxiliary variables according to obj.aap joint
/* Id,,tag,preu, are restored /

myalevel4- -1 ;
send ALLOC.AEP(no, Idi, tag,, preen, obj.sap,mVt level, TC,, allocator)

od
end

6 Concluding Remarks

In real-time systems, the resource management plan, the allocation, must be closely related to the schedul-
ing, aad the two are based on time considerations, rather then on a static priority scheme. The allocation
presented here is fault tolerance motivated, to cope with the applications reliability goals, ensuring a user
specified resiliency to failures while supporting both temporal redundancy and physical redundancy require-
ments. This approach allows dealing with monotonic fatdt and with transient faults in distinguished manner.

The allocation scheme we propose here accomplishes the hard real-time goal of guaranteeing a deadline
satisfaction in case the job is accepted. In addition, this allocation schem., supports fault tolerance objectives
in both damage containment and resiliency requirements. It does it in cooperation with a schedulability
verification mechanism, and with an objects architecture, in which for each object there exists a calendar

management that relates time to its execution. A nice feature of this scheme is the way in which it can be
used for reallocation while increasing the resiliency back after a failure occurred.

The model employed in this paper has considered service requirements of an object as a boolean AND

32



of a boolean OR of alternatives. It has been done in an alternative selection for each requirement, while
guaranteeing that all requirements are served before committing. However, other approaches can be em-
ployed with some changes in the algorithm, to support different relations between alternatives according to
the application. Extending the relations may couple alternatives or exclude alternatives, according to an
alternative chosen at another service. Another possible approach can be the use of OR of ANDs instead of
the proposed AND o; ORs. Various approaches are planned to be examined in a project of a hard real-time
operating system MARUTI that is being implemented at the Computer Science Department, University of
Maryland.
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A Time Constraints and Auxiliary Variables in Object's Joint

type tine constraint = construct
{ Id: computation identifier;

tag: thread indicator of computation Id;
level: redundancy index;
tc: convextime-interval;
back-slack, for-slack : real;
P : non-convex-time-interval;
freq : real ;
state : integer }

type resource-requirement = construct
{ RR: temporal relation;

Tresource ;
R : non-convex-time-interval };

type service-alternative = construct
{ 2.: temporal relation

Tobject-SAP ;
a : non-convex-time-interval };

type service-requirement = set of service.alternatives
type schedule-type = (preemptive, non-preemptive)
type AnswerWait.Indicator = (off, on, done)

var(obj.sap)

calendar : ordered set of time-constraints
SchedType : 3chedule-type ;
dependency-set : set of k resorce-requirements and n service-requirements;

aux-var(obj.sap)

wait.set: set of Tobject.SAP;
V prey E wait-Jet:

Id : computation identifier;
tag : thread indicator of computation Id;
TCn : time-constraint ;
myAlevel : redundancy index;
s[n] : set of n service-requirements;
Ans[n]: set of n AnswerWaitIndicators;
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B Detailed Review of Allocation Algorithms

B.1 Bottleneck Load Minimization Allocation Algorithm

Algorithm P-I-A (PR, IMC, AET) [2J;

begin /* Init */
AET- 'F=Tj ; /4 Av AET

:pr--!:=t T. ; / Av Processor load */
"1MC(i,)- ' -- IM i, 1 _ <J /* IMC index */

1PR (i,3) 4- 1- R(pj,,) , 1 < i,j < J /* PR index */

/* Iterate */
for a - a, to a2 step Aa do

for R- R, to 2 step AR do

/* PHASE I: combine modules with high IMC /
/* in groups to reduce sum of processor loads 4/

List -- Sort (pi, pj) pairs in descending IMC order;
Gj.- {pj} , 1 < J;
while List $ 0 do

pop (pi,p,) from top of List;
List - List - {(p, ,p)} ;
if at X imc(, j) + IPR(i,3) > 0 then

search (s: pi EG ., t: p. G,)
if (a 6 t) A (T. + T, _< x 6) then /*combine */

G..-G. U Gt ; Gt - ;
T. T. + T, ; T, -0;

fi;
f;

od ;

/* PHASE II: assign module groups to processors /
/* and exhaustively search for smallest BOTTLENECK 4/

X +-{G: 1 < j5J);
{X} .- minx {maxi<,<_s{AET(P,; X) + IMC(P; X)));record ({ };

od;
od;

end;
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B.2 Next-Fit-M Allocation Algorithm

The algorithm in [41 uses the following variables:

e Ti: task, 1<i n.

* ui: utilization factor (duty cycle) of T.

* P,,: set of tasks assigned to a processor.

e Nh: number of class-k processors used so far.

Algorithm Next-Fit-M;

begin
for k:= 1 to M step 1 do

Nk:= 1;
od;
for i:= 1 to n step 1 do

k:= classify(T)
/* returns k for 2rd r - 1 < uj _5 21 - 1, for 1 k I < M */

/ returns M for 0 : 52 - 1. */
if (1 < k < M) then

Pk,N.:= Pk,N u {T } ;
if IPk,NI = k then

Nk:= Nk + 1
fi;

else /* (k = M) *I
If p., uj > (In 2- Uj) then;

NM:= NM + ;
fi;

PM,N.:= PM,., U {T};
ft;

od;
for k:= I to M step I do

f Pk,N, = ' then
Nk:= N - 1

fi;
od;

end;
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B.3 Algorithm for Relocation upon Failure Detection
In the algorithms presented in [6,51, the optimality constraint imposed on each cluster of processors is

m4 < c, < M,

where

The workload bounds on a detection unit are derived accordingly from

Vn: PED, Vn: PeDi

Each Leader maintains the following items in order to answer questions of other Leaders that cannot relocate
in their own detection unit.

*

• r(Dj),

*Ni.

In addition, each Leader maintains the following items both for relocating locally (within the detection unit)
and for relocating externally (moving processes to another detection unit).

* Di = {P,....),

" R, the root of the subtree of rp corresponding to processors in Dj,

" r the root of the subtree of r-p corresponding to processes in Di.

B.3.1 Relocation within The Detection Unit

Algorithm Relocate within Di on P Fault;
begin /* v(D,) - m. - N < M(D,) - M /

do
1. Update R to reflect Pi fault:

1) delete node Pi from tree R,;
2) update parent-nodes' capacities in processor cluster tree

2. Update optimality bounds:
1) M(D,):= M(D,) - Mj-
2) m(D,):= m(D,) - ni,;

3. Invoke ALLOCATE(r, R,);
od;

end;
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B.3.2 Algorithm for Relocation to Another Detection Unit

Algorithm Relocate Externally to D on Pj Fault;

begin I'N, > M(Dj)- Mi
LEADER(D,) do -"

1. Notify VP, E D, on Pi fault:
2. Update J% to reflect Pi fault:

1) delete node Pi from tree R,;
2) update parent-nodes' capacities in processor cluster tree

3. Update optimality bounds:
1) M(D,):= M(D,)- My;
2) m(Di):= rn(D,) - ;

4. Collect network status:
1) Vn $ i, n E 1.. .k Send status request to Leader(Dn)

2) Vn $ i, n E 1.. .k collect answers ( n, Nn, M(D,), m(Dn))
5. Ensure global balancing constraint:

,1Ni < M l.W(D,);

6. Generate candidate set C
7. Rank(C);
8. Select highest ranked (v*, kI), and migrate v* to Dk.

9. Reflect migration and new relocation:
1) N,:= N - W(u) ;
2) Nk-.:= Nh- + W(u*)
3) Delete v* from r, and update ancestors' capacities
4) if N, > M(D,) then goto step 6.

/* iterate until done /
10. Verify that the relocation holds:

Invoke ALLOCATE(r,,/A);
od ;

LEADER(Dko,) do
1. Fetch the already allocated S and append the incoming processes:

S:= S (D {p1,...,p,}.
2. rk.:= cluster(S) ;
3. ALLOCATE(rk., Rk.);
4. Nk.:= Nk. + ;

od;
end;
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B.4 Keuristic Scheduling Algorithm

The following algorithm is used in the Spring Operating System, [161.

Procedure scheduler (task-set: task-set-type; var schedule: schedule-type; var schedulable: boolean);

/* task-set is the set of tasks to be scheduled. */

var EAT', EAT: vector-type;

/* Resources earliest available times in share and exclusive modes. */

begin
schedule *-
schedulable -- true
EAT' - EAT' - 0;
while ((task-set# 0) A schedulable ) bf do begin

VT Etask-set: calculate Tot ;
if -strongly-feasible(task-set, schedule) then

schedulable -- false;
else begin

VT Etask-set: apply function H;T' -- T :minvT~t..-( H(T));

task-set = task-set -{ T' 1;
schedule -- append(schedule, T)
calculate new values for EAT' and EAT'

end
end

end;
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C Scheduling Functions Used by The Fault-Tolerant Allocation

C.1 Inserting Time Constraint into Object's Calendar

type schedule-type = (preemptive, non-preemptive)

boolean function INSERTTC (obj.sap:Tobject,
TCM:time.constraint) ;

varAlready.Accepted : set of time-constraints;
SchedType : schedule-type;
constraint : time-constraint

begin
lock calendar(obj.sap)

/* Already-Accepted 4-- calendar(obj.sap) */
/* SchedType +- obj.sap scheduler type /

if (3 constraint E Already-Accepted:
TCift.Id = constraint.Id A

TC1n.tag 0 constraint.tag
then /* prevent computation connectivity reduction */

result -- false
else

result -- scheduler.PUSHTC(TCU,,,SchedType);
/* see [81 *I

If (result)A(TC..level$ 1)
then V constraint E Already-Accepted I constraint. Id=TCi,. Id A constraint.tag=TC,.tag:

setup consistency control (see (3,121) to obey
1. identical non-determinism resolution, and
2. identical order of servicing input requests.

unlock calendar(obj.sap)
return(result)

end
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C.2 Removing Time Constraint from Object's Calendar

type time-constraint = construct
{ Id: computation identifier;

tag: thread indicator of computation Id;
level: redundancy index;
tc: convexLtime-interval;
back-slack, forslack : real;
P : non-convex-timeinterval;
freq: real ;
state : integer ;

boolean function scheduler.REMOVETC (obj.sap:Tobject, TCi,:time-constraint)

var Already-Accepted : set of time-constraints
constraint : time-constraint

begin
lock calendar(obj.sap)

/* Already-Accepted - calendar(obj.sap) */
if (3 constraint E Already-Accepted: TCin = constraint)

then
V constraint E AlreadyAccepted I constraint.Id=TCi,.Id A constraint.tag=TC .tag:

rearrange consistency control (see section C.1 and [3,121)
Already-Accepted - Already-Accepted -{TCin)};
result .- true

else
result 4- false

fi

unlock calendar(obj.sap)
return(result)

end
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C.3 Loading and Unloading Time Constraint in Object's Calendar

type time-constraint = construct
{ Id: computation identifier;

tag: thread indicator of computation Id
level: redundancy index;
tc: convextime-interval;
back-slack, for.slack : real;
P : non-convextime-interval;
freq : real ;
state : integer }

type resource.requirement = construct
{ R: temporal relation;

Tresource ;
R : non-convex-time-interval };

type service-alternative = construct
{ P.: temporal relation

TobjectSAP ;
s : non-convextime-interval };

type service-requirement = set of service-alternatives
type schedule-type = (preemptive, non-preemptive)
type AnswerWaitIndicator = (off, on, done)

var(obj.sap)
calendar : ordered set of time-constraints
SchedType : schedule-type ;
dependency-set : set of k resource-requirements and n service-requirements

aux-var(obj.sap)
wait-Bet: set of Tobject-SAP

V prey E wait.set:
Id : computation identifier;
tag : thread indicator of computation Id
TCme : time-constraint ;
myAlevel: redundancy index;
sin] : set of n service-requirements
Ana[n] : set of n Answer-WaitIndicators;

local var
Already.Accepted : set of time-constraints;
constraint : time-constraint
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Upon receiving LOAD (obj.sap:Tobject, TC,,.:time..constraint)
begin

wsing joint (obj.sap):
Let DSb..,,,c={<I&, TCR.i>:5 i :5k) (Si 1in)

where Si- {< s '), TCs, >: 1:5 j :5 MW)}
for r - 1 to k step 1 do

TOR, 4-proJect(02R,,TC,.);
CHANGE..TC-STATE ( (R,, TCR.),active)

od
CHANGE.TC.STATE ( (obj.sap,TC.),active)
for r .- 1 to n step 1 do

TCs, -project (2 s,TCi.)
for q 4- 1 to (j: j:5 Mir) A s[rl = a~r)) step 1 do

LOAD( q~, TCs.
od

od
end

Upon receiving UNLOAD (obj.sap:Tobject, TCin:time-constraint)

begin
using joint(obj.sap):

Let DSby..p,Tc={{<RA, TCR >: 1 <i <k} {Si 1:5i <n}}I

where Si- {< a(.',TCs, > 1:5j _M(0)}
for r .- 1 to k step 1 do

TCR, '-project(,R.t, TC.);
REMOVFLTC (R,, TCR.)

od
REMOVE..TC (obj.sap,TC,.);
for r 4- 1 to n step 1 do

TCs, -Project(Rs,M.C,);
for q i- 1to (J: J:5 Mir) A aIr] =as )) step 1 do

od UNLOAD( a4r), TCs.
od.

end
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