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SIMULATION OF ELECTROSTATIC MODES IN A MAGNETOPLASMA
*ITH TRANSVERSE INHOMOGENEOUS ELECTRIC FIELD

I. INTRODUCTION

The ion-cyclotron instability has been important to both space and

laboratory plasmas. In most studies, field-aligned currents or ion beams

1
have served as the driving mechanism. Recently some laboratory

experinments' 3 have reported ion cyclotron instability in circumstances

where neither field-aligned currents nor ion beams provide a satisfactory

free energy source, and the existence of an inhomogeneous electric field is

conjectured to play a role. Furthermore, unstable ion cyclotron waves have

4
been reported in connection with double layers and shocks iii spate

5
plasmas. In all these cases a localized electric field perpendicular to

the ambient magnetic field is an intrinsic feature of the plasma

equilibrium.

In order to understand the role of the d.c. electric field in the

excitation of the ion waves around the ion cyclotron frequency, Ganguli et

al.6  developed a nonlocal kinetic theory. In the early version of the

theory the gradients of the electric field were ignored so as to avoid the

confusion with the Kelvin-Helmholtz (K-H) instability which is explicitly

dependent on the second derivative of the electric field. They suggested a

possible mechanism based on the coupling of positive and negative energy

waves, in a plasma equilibrium containing a uniform magnetic field along

with a transverse localized electric field, that can excite the ion waves.

Dependent on the parameters such as the magnitude of the d.c. electric

field, these waves can have real frequencies around the ion cyclotron

frequency.

Recently the kinetic theory has been generalized by Ganguli et al7 to

include continuous gradients in the d.c. electric field, and in the weak

shear limit (i.e. VE(X)/pi << 1, where VE is the spatial derivative of the

E X B drift and 9 is the ion cyclotron frequency) the distinctions between

Manuscript approved February 5. 1988.
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the new ion waves and the kinetic K-H waves have been studied. They

obtained a general dispersion relation at the second order differential

equation level (see the Eq. (29) in Ganguli et al. 7 ). For the localized

transverse electric field profile (- sech 2x) and the initial density as

shown in Fig. 1, the growth rates of the kinetic K-H mode (Fig. 2 (a)) were

obtained for various values of u = k11/ky where k1i and ky are the components

of the wave vector in the z (parallel to the magnetic field BO) and the y

2 2directions. The K-H mode is localized below b = kyPi = 1 and k yL - 1,

where L is the scale length associated with the d.c. electric field and pi

= vit/Q i is the ion gyro-radius. Furthermore, the growth rates are reduced

strongly as u increases. The calculated growth rates of the ion-cyclotron-

like modes with u = 0.038 are plotted in Fig. 2(b). This mode becomes

unstable where b >> 1 and k L >> 1. The unstable domains for both modesy

are clearly distinctive.

In this paper we investigate the new kinetic ion-cyclotron-like (I-C-

like) instability 6 driven by a localized electric field perpendicular to

the ambient magnetic field by means of particle simulations. The empnasis

in this paper is to demonstrate the existence of the new mode6 and

distinguish it from the well known Kelvin-Helmholtz branch and the kinetic

modification of this branch. The initial loading of particles in phase

space is another significant issue in regard to the 3imulation of this

instability, because the most obvious choice of initial distribution

function, i.e., a Maxwellian shifted in the y velo.ity component due to the

E x B drift, is not a self consistent equilibrium. Previous attempts 8 at

simulating the iC-like modes have encounte',2d difficulties as a result of

this fact. Therefore, we will also att,,mpt to clarify this issue. In Sec

II the simulation model and result', are presented and concluding remarks

and discussions are described in Sec. III.

2



II. SIMULATION MODEL AND RESULTS

A two-dimensional electrostatic code is used which retains the full

dynamics of the ions in three dimensional velocity space. Electrons are

treated by the guiding center approximation in the perpendicular direction

while the parallel motion is treated exactly. We use a system length Lx =

128A, L = 326 or 646, where A is the grid size which is equal to the~Y
electron Debye length, X and n 36. The external electric field is

e e e

applied in the form of Eox (x) = Eoxsech 2[(x - 64)/L] in the x-direction

which produces E X B drift in the y-direction given by VE(x) = -E ox(X)/B o .

For the present problem, in which a nonuniform d.c. electric field

transverse to a uniform magnetic field is present, the initial distribution

function constructed out of the constants of motion was provided by Ganguli

7
et al.,

f o(,H) = N exp(-OH)g() ()

3/2 2where N = n 0(/2rt) I/vt ,v t is the thermal velocity and

g() = exp {0[e()/m + VE2 (&)/2j) -1 /2  (2)

where I() = 1+VE()/9, [I d II/d,, x+(v VE( ))/Q is the guiding

2 2 2
center position, H = (v +v zv )/2 eT(x)/i is; the total eneigy andx y z

'f(x) is the electrostatic potential a:R ociapd with the d.c. electric

field. For the purpose of initial loading in a computer simulation, the

3



distribution (1) can be expressed in terms of the physical position x (for

details see Ganguli et al. 7 ),

3exp[ [ 2 (vyVE(x))2

2nfo i  2 [vx + Vi(x) +}ol [1 + o(c)l. (3)
Al (x})

It is interesting to note that the distortion in the gyro-orbit introduced

by the sheared transverse d.c. electric ficld leads to a sustainable

difference in the temperature in the two dimensions transverse to the

uniform magnetic field. For weak shears (i.e. VE /Q << 1), (3) reduces to

tI

2nf1  v E(x) 2 2 (v 2 (v 2

2nf oi 011 +  4Q l(Vy-VE(x)) vx J exp 2(vx ( VE(x)))) (4)

We see that for weak shear the use of a shifted Maxwellian for the

initial loading is acceptable and the system will adjust to the above

distribution automatically with only minor relaxation. If the VE /9

correction is ignored, then (4) becomes identical to a Maxwellian shifted

by the magnitude of the E X B drift in the y component of the velocity.

Such an initial distribution was used by Pritchett and Coroniti 8 and

Pritchett 9 but they extended it to higher shear values (VE /Q > 1 so that n

0) where this initial distribution is no longer acceptable. If the

initial state is far from equilibrium then there will be additional

artificial free energy which may lead to strong relaxation of the initial

nonequilibrium state. Such strong relaxation from a nonequilibrium initial

condition is invariably accompanied by a substantial release of free

energy, which in turn leads to a noisy dynamic state quite different from

4



the quiescent initial state essential for simulation of the instability.
I

Therefore, for larger values of V E/Q, the interpretations of the simulation

8,9 8
results in these papers (especially the conclusion of Pritchett , that

the Kelvin-Helmholtz instability will always dominate over the new

instability 6 ) remain dubious.

In the following we shall ignore the order c terms but retain the shear

corrections and employ (3) for the initial loading of our simulations.

Later on we shall also use the shifted Maxwellian scheme for a weak and a

moderately strong shear case and compare the results with the more

appropriate loading scheme given in (3).

We first choose B oy/B (=k 1/k) = 0.0075 and Ly = 64X e . The minimum b

becomes 0.21. As shown in Fig. 2(a), the kinetic K-H mode has maximum

growth rate around b = 0.2. Thus we can expect the simultaneous excitation

of both the branches.

Other parameters used are Q /w = 4, T./T = 3.5, m./m = 00, Le pe i e 1 e

11, = 4neTe  0.2, VE  0.59v where n VE, and vit are the

averaged electron density, the peak value of VE(x) and the ion thermal

velocity, respectively. The time evolutions and their spectra are shown

for the modes (0, 3) which correspcids to b = 1.89, kyp i = 1.37 and k yL =

3.23, and (0,4) which corresponds to b = 3.38, kyP i  1.84 and k yL = 4.31,

in Fig. 3. As shown in Fig. 3.(a) the mode (0, 3) begins to grow clearly

and emerge from the background thermal noise around 1 t = 150, and goes

into the nonlinear stage around 2.t = 300. The detailed wave analysis

shows that in the linear stage this mode has real frequency around ().5Q.

As shown in Fig. 3 (b), the peak of the frequency spectrum is located

around 0.22.. The frequency of this mode becomes lower in the nonlineari

stage. This is a common feature for all the mroc,. The real frequency of

the (0, 4) mode saturates around 0.52. as shown in Fig. 3 (d). Also from
1
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fig. 3 (b) and (d) we find a number of smaller peaks around higher

harmonics.

An estimate of the growth rates of several modes in order to identify

the fastest growing mode indicates that the mode (0, 4) which corresponds

to b = 3.38, has the maximum growth rate y'Q. - 0.025. In Fig. 4 we plot

the estimated growth rates of the (0,1) to (0,5) modes against b. It

should be remarked that the mode (0, 1) which corresponds to b = 0.21 and

k L = 1, and falls on the K-H branch (the solid curve in Fig. 4) has ay

smaller growth rate (y/9 - 0.015) than the higher modes which form the new

branch. Clearly it is the ion-cyclotron-like branch with the mode (0,4)

that actually dominates. The maximum growth rate of this ion-cyclotron-

like mode is located around large b (= 3.38 and k L-4) and large realy

frequency wr ( - Q,, in the linear stage). Thus, unambiguous distinction is

made between the kinetic K-H mode and the new ion-cyclotron-like mode.

Besides, we have identified both the branches of the system in our

simulation and for the given set of parameters we find that the dominant

mode does not belong to the K-H branch; instead it lies on the new I-C-like

branch which has higher frequency and shorter wavelength.

The average ion flow velocities v (x) are shown in Fig. 5. In they

earlier linear stage (9.t < 80) there is hardly any reduction in the peak

of the velocity profile or any relaxation in the topology of the profile.

In the linear stage we find that the real frequency is around the ion-

cyclotron frequency and its higher harmonics. This is in sharp contrast to

the simulations of Prichett , where there was a strong relaxation of the

initial profile right from the very onset of the simulation. The reason

for this strong relaxation can be traced to the employment of the

simplified initial loading scheme of a shifted Maxwellian in Prichett ;

which is not acceptable when the magnitude of VE/Qi is significant. We

6



discuss the critical importance of the initial loading scheme later on.

In the late quasilinear (9it = 250) and the nonlinear (9it > 300)

stages the wave amplitudes become large and can interact with and reduce

the magnitude of the d.c. electric field. Thus in the final stages of the

simulation we see a reduction in the magnitude of VE(x). Also since the

real frequency is proportional to kyVE(x) (see Ganguli et al. 7), we find

that in the quasilinear stage the real frequency starts reducing along with

the magnitude of VE(x). Further reduction in the real frequency occurs in

the fully nonlinear phase.

In the previous simulation we included a slight density gradient. The

profile of transverse electric field E ox(X)/Eox, the initial density

profiles for the electrons and the ions are shown in fig. 6(a), (b), and

(c). The density ratio of the maximum to minimum nh/ni, equals to 1.1.

The density gradients are localized at the half value of the transverse

electric field as shown in Fig. 6. The reason that the ion density profile

is not as smooth as the electron density profile is due to the fact that

the ions have larger gyro-radius. The location of the guiding centers of

ions are exactly the same as those of the electrons. However, the gyro-

motion of ions smears out the density gradients. This particular profile

will be used for all the simulations in this article (except Fig. 7(a) and

(b)).

In the preceeding discussions we have established the existence of the

I-C-like branch and distinguished it from the K-H branch. We have also

demonstrated that at least for some parametei the 1-C-like bianch can

dominate. Hence, in order to economize on the CPU time we shorten L toY

326 in the remainder of this paper to isolate the 1-C-like branch and study

the characteristic features of this blanc:h onil; (except Figs. 9 and 11).

Note that the mode (0,4) will now correspond to the mode (0,2) and so on.

7



The time evolutions of the perturbations of the electrostatic potential

for the mode (0,2) with and without density gradients and their spectra are

shown in Fig. 7. In these cases we use B /B = 0.005, keeping the rest ofoy o

the parameters unchanged. The case with the density gradients has the

growing wave with slightly larger growth rate, larger amplitude, and lower

real frequency, as shown in Fig. 7. Inclusion of even a slight density

gradient shows enhancement in the growth rate and the amplitude. This is

in contrast to the K-H instability where density gradient leads to

reduction of the growth rates of the instability 0 . The fact that density

gradients lead to stronger growth for the I-C-like modes was predicted by

7
the theory

The dependence of the real frequency wr on VE(x) is now examined. The

time evolutions of the perturbations of the electrostatic potential for the

0mode (0,2) corresponding to VE 0.59v. and 2.Ov. and their spectra aremoe 0,)corepodngtoV E = it it

shown in Fig. 8. Here B /B = 0.005 and the rest of the parameters remainoy o

unchanged. the real frequencies in the linear stages (not necessarily tihe

largest peak) are found around 0.39. (b) and 1.09i(d). As expected from
11

7
the theory , we find that the real frequencies of the instability are

approximately proportional to k V 0

y E

The diftusion of the guiding center of ions in the case of L = 646 isy

shown at Q.t = 0, 80, 160, 240, and 320 in FiL . 9. A subset of ions with

initial position such that 58 < x < 64, are followed in time, and the local

guiding centers of ions are plotted at each time. At the time (Qt=160)

when the waves begin to grow out of the thermal noise, zlight waving of the

column is observed. At the beginning of the nonlinear stage (Q.t=240), the

column is twisted. At the nonlinear stage the ions are strongly diffused

due to the vortices.

8



The evolution of vortices at the nonlinear stage (Q t = 240) is shown

in the case of L = 32A in Fig. 10. The electrostatic potential in the x-yY

plane has strong vortices at the center. The strong vortex moves along the

direction of the E x B drift. As shown in Fig. 10, the excited waves are

well localized around the center. In the case of L = 646 similar strongy

vortex is also created which moves along the direction of the E x B drift.

In the later nonlinear stage the number of the vortices is increased.

The local electric fields E at x = 69, y = 14 in the case of L =x,y y

6446 is diagnosed, and the power spectrum is obtained. As shown in Fig.

11(a), around 9 .t = 300 strong sharp peaks are produced by the passing

vortices. The spectrum has several peaks around Q. which correspond to the1

real frequencies in the linear stage. the largest peak is produced by the

vortices in the nonlinear stage.

The profiles of overall wave energy in the case of L = 326 are shownY

in fig. 12. The time-averaged excited wave energy (E ) is localized around
y

the center of the system. Obviously, the excited wave energy is much

larger than the thermal energy outside the electric field. The time-

averaged polarization electric field energy with minus sign -(E)t is also

plotted, which is much smaller than the excited wave energy.

Now we demonstrate the importance of the proper initial loading. We

first examine the weak shear case where V0 /LS? = 0.24, and compare the
E

difference in results produced by the simplified and the improved initial

conditions. As expected and noted earlier there is no remarkable

difference in the weak shear limit. Howevel. at, shown in Fig. 1 (a) and

(c) the growth rate of the mode (0, 2) with the improved initial conditions

is slightly larger and the amplitudes [he nonlinear stage are slightly

reduced. Furthermore, at 9. - 8() the v*P-,mge flo f ow velocities with our

improved initial condition remain almost unchanged whereas the use of the

9



shifted Maxwellian initial condition leads to relaxation in the velocity

profile, although marginal in this case since the shear strength is weak.

Apparently, our initial condition improves the simulation results even in

the weak shear limit.

The simulations with the larger transverse electric field (V0 = 2.Ov.20it

which corresponds to a = 2.24) with density gradients have been carried out

keeping the other parameters the same as in Fig. 13. Now the shear of the

d.c. electric field is moderate (V0/LQ. = 0.86). Therefore, we expect

greater improvements in the simulation results by employing our initial

conditions provided in Eq. (3) over the simple initial condition (shifted

Maxwellian). Perturbations of electrostatic potential for the mode (0,2)

corresponding to the two different initial conditions are compared. As

shown in Fig. 14, the mode with our improved initial conditions has much

larger growth rate and larger amplitude at the end of the simulation. This

demonstrates that with the improved initial condition not only does the

initial noise level decreases but also the instability becomes much more

coherent and pronounced.

The evolutions of the average ion flow velocities v y(x) corresponding

to the two different initial conditions discussed earlier are also compared

for the larger transverse electric field case. As expected, with our

initial conditions the early relaxation and reduction of the average ion

flow until Qit = 80, was greatly reduced as (see Fig. 15(b)). In this

case, the free energy is solely dedicated to excite the large amplitude

waves as shown in Fig. 14(c). The amplitudes of the excited waves become

quite large at around Q1 t = 240 and therefore can interact with the d.c.

electric field to reduce it's magnitude. At the same time the excited

strong vortices cause large diffusions of iont, (see Fig. 9(e)) and

consequently the average ion flow velocities are greatly reduced.

I0



III. DISCUSSIONS

We have investigated the new ion-cyclotron-like waves driven by a

localized transverse electric field by means of a numerical simulation with

the assistance of the nonlocal kinetic theory. The linear theory shows

that the growth rates of the kinetic Kelvin-Helmholtz modes are strongly

reduced with increasing u, and they become unstable only where b < 1 and

k L = 1. On the other hand, the new modes have larger real frequencies andy

become unstable at larger b > 1 and k L >> 1.y

We have performed a number of simulations for the new kinetic ion

modes. Results show that ion-cyclotron-like waves are excited in the

regions where the E X B drift is localized. The linear growth rates of

several modes are estimated from the wave analysis of the simulation. This

linear analysis shows that the (0, 4) mode which corresponds to large b and

large k yL, has the maximum growth rate. Clearly, these are not K-H modes

(See Fig. (2)). Further, the simulation results show that density

gradients help to enhance the growth rates. This in in contrast to the

10
established properties of the Kelvin-Helmholtz instability . However,

like the K-I mode the real frequencies of this instability are

approximately proportional to ky VE  This is predicted by the nonlocal

theory.

Furthermore, we established the critical importance of the initial

condition which includes the modification due to the gradient of the d.c.

7
electric field. While this improved initial condition is preferable even

for weak shears of the d.c. electric field, iI he-r'om, - urlci;l .h'Iin the

shear is large. We have demonstrated that for moderate shear valkies, our

initial condition provides the (luiesu ent in IiaI state essential for

simulations of the instability. Tho r f(,,I ". Ih- iiitial ielaxation of the

avetage ion flow velocity, which is unavoidable when the simple initial

11



condition (the shifted Maxwellian) is used for shear values that are

significant, is greatly reduced.

The nonlinear phenomena such as diffusion and coalescence of vortices

are investigated. In the linear stage, smaller vortices are generated and

larger vortices with the lower real frequencies are dominant in the

nonlinear stage. In the nonlinear stage the ions diffuse strongly due to

the large scale vortices.
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(a), (b): k11/Xell = 0.0075 x 2n x 3/64 = 2.21 x 103 , kyXel = 2t x

3/64 = 0.295.

(c), (d): k11/Xell = 0.0075 x 2n x 4/64 = 2.95 x 103 , k yXell = 2n

4/64 = 0.393.
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(a), (b): no density gradient
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