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SIMULATION OF ELECTROSTATIC MODES IN A MAGNETOPLASMA
“WITH TRANSVERSE INHOMOGENEOUS ELECTRIC FIELD
I. INTRODUCTION

The ion-cyclotron instability has been important to both space and
laboratory plasmas. In most studies, field-aligned currents or ion beams
have served as the driving mechanism.1 Recently some laboratory
experimentsz’3 have reported ion cyclotron instability in circumstances
wvhere neither field-aligned currents nor ion beams provide a satisfactory
free energy source, and the existence of an inhomogeneous electric field is
conjectured to play a role. Furthermore, unstable ion cyclotron waves have
been reported in connection with double layers4 and shocks in space
plasmas.5 In all these cases a localized electric field perpendicular to
the ambient magnetic field is an intrinsic feature of the plasma
equilibrium.

In order to understand the role of the d.c. electric field in the
excitation of the ion waves around the ion cyclotron frequency, Ganguli et
al.6 developed a nonlocal kinetic theory. In the early version of the
theory the gradients of the electric field were ignored so as to avoid the
confusion with the Kelvin-Helmholtz (K-H) instability which is explicitly
dependent on the second derivative of the electric field. They suggested a
possible mechanism based on the coupling of positive and negative energy
waves, in a plasma equilibrium containing a uniform magnetic field along
with a transverse localized electric field, that can excite the ion waves.
Dependent on the parameters such as the magnitude of the d.c. electric
field, these waves can have real frequencies around the ion cyclotron
frequency.

Recently the kinetic theory has been generalized by Ganguli et al7 to
include continuous gradients in the d.c. electric field, and in the weak

shear limit (i.e. Vé(x)/Qi << 1, where VE is the spatial derivative of the

E X B drift and @ is the ion cyclotron frequency) the distinctions between

Manuscript approved February 5, 1988.




the nev ion wvaves and the kinetic K-H waves have been studied. They
obtained a general dispersion relation at the second order differential
equation level (see the Eq. (29) in Ganguli et al.7). For the localized
transverse electric field profile (~ sechzx) and the initial density as
shown in Fig. 1, the growth rates of the kinetic K-H mode (Fig. 2 (a)) were
obtained for various values of u = k“/ky vhere k” and ky are the components
of the wave vector in the z (parallel to the magnetic field BO) and the y
directions. The K-H mode is localized below b = kip? = 1 and kyL ~1,
wvhere L is the scale length associated with the d.c. electric field and CH
= Vit/Qi is the ion gyro-radius. Furthermore, the growth rates are reduced
strongly as u increases. The calculated growth rates of the ion-cyclotron-
like modes with u = 0.038 are plotted in Fig. 2(b). This mode becomes
unstable where b >> 1 and kyL >> 1. The unstable domains for both modes
are clearly distinctive.

In this paper we investigate the new kinetic ion-cyclotron-like (I-C-
like) instability6 driven by a localized electric field perpendicular to
the ambient magnetic field by means of particle simulations. The emnnasis
in this paper 1is to demonstrate the existence of the new mode6 and
distinguish it from the well known Kelvin-Helmholtz branch and the kinetic
modification of this branch. The initial loading of particles in phase
space is another significant issue in regard to the simulation of this
instability, because the most obvious choice of initial distribution
function, i.e., a Maxwellian shifted in the y velecity component due to the
E x B drift, is not a self consistent equilibrium. Previous attempt58 at
simulating the iC-like modes have encounte'ed difficulties as a result of
this fact. Therefore, we will also attempt to clarify this issue. 1In Sec
IT the simulation model and vresult. are presented and concluding remarks

and discussions are described in Sec. III.
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II. SIMULATION MODEL AND RESULTS
A two-dimensional electrostatic code is wused which retains the full
dynamics of the ions in three dimensional velocity space. Electrons are
treated by the guiding center approximation in the perpendicular direction
while the parallel motion is treated exactly. We use a system length Lx =
1284, Ly = 320 or 6448, where A 1is the grid size which is equal to the
2

electron Debye length, Ae and Eéke = 36. The external electric field is

applied in the form of on(x) = onsechzl(x - 64)/L] in the x-direction

wvhich produces E X B drift in the y-direction given by VE(x) = —on(x)/Bo.
For the present problem, in which a nonuniform d.c. electric field

transverse to a uniform magnetic field is present, the initial distribution

function constructed out of the constants of motion was provided by Ganguli

et al.,7

fO(E,H) = N exp(-BH)g(¥&) (1)

vhere N = no(3/2n)3/2. B = l/vf,v is the thermal velocity and

t

g(&) = exp {Ble¥(E)/m + sz(&)Q”n(E)—l/z o)
vhere n(&) = 1+vé(&)/9, [1'= d{1/dE, & - (v Vg(8))/2 is the guiding
center position, H = (vxzwyzwzz)/2 + e¥(x)’/m is the total eneirgy and

Y(x) is the electrostatic potential associared with the d.c. electric

field. For the purpose of initial loading in a computer simulation, the
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distribution (1) can be expressed in terms of the physical position x (for

details see Ganguli et al.7),

(v —VE(X))2

2
Bexp(—L[v? + 1)
- 2_x ) [1+0(e)]. (3)

2rtf0l =

N(x)

It is interesting to note that the distortion in the gyro-orbit introduced
by the sheared transverse d.c. electric field leads to a sustainable
difference in the temperature in the two dimensions transverse to the

14
uniform magnetic field. For weak shears (i.e. V_ /Q << 1), (3) reduces to

E

1

gV L(x)
anf_ = Bl + ‘—4%—1<"y-"g(x))2 - vi]} exp(— g(v)2(+(vy—VE(x))2)) . (4)

We see that for weak shear the use of a shifted Maxwellian for the
initial loading is acceptable and the system will adjust to the above
distribution automatically with only minor relaxation. If the VE'/Q
correction is ignored, then (4) becomes identical to a Maxwellian shifted
by the magnitude of the E X B drift in the y component of the velocity.
Such an initial distribution was wused by Pritchett and Coroniti8 and
Pritchett9 but they extended it to higher shear values (VE’/Q 2 1 so that n
< 0) where this initial distribution 1is no Jlonger acceptable. If the
initial state 1is far from equilibrium then there will be additional
artificial free energy which may 1lead to strong relaxation of the initial
nonequilibrium state. Such strong relaxation from a nonequilibrium initial

condition is invariably accompanied by a substantial release of free

energy, which in turn leads to a noisy dynamic state quite different from




the quiescent initial state essential for simulation of the instability.
!
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results in these papersg’9 (especially the conclusion of Pritchettg, that

Therefore, for larger values of V,/Q, the interpretations of the simulation
the Kelvin-Helmholtz instability will always dominate over the new
instability6) remain dubious.

In the following we shall ignore the order € terms but retain the shear
corrections and employ (3) for the initial 1loading of our simulations.
Later on we shall also use the shifted Maxwellian scheme for a weak and a
moderately strong shear case and compare the results with the more
appropriate loading scheme given in (3).

We first choose Boy/B0 (=k”/ky) = 0.0075 and Ly = 64Xe. The minimum b
becomes 0.21. As shown in Fig. 2(a), the kinetic K-H mode has maximum
growth rate around b = 0.2. Thus we can expect the simultaneous excitation

of both the branches.

Other parameters used are Q /w = 4, T,/T = 3.5, m,/m_ = 100, L =
e’ “pe i"ve i'e
2 = o] o~ o
= / = = . . ]
114, « E Ox/mneTe 0.2, VE 0 59vlt where Ny VE’ and vy, are the

averaged electron density, the peak value of VE(x) and the ion thermal
velocity, respectively. The time evolutions and their spectra are shown
for the modes (0, 3) which corresprnds to b = 1.89, kypi = 1.37 and kyL =
3.23, and (0,4) which corresponds to b = 3.38, kypi = 1.84 and kyL = 4.31,
in Fig. 3. As shown in Fig. 3.(a) the mode (0, 3) begins to grow clearly
and emerge from the background thermal noise around Qit = 150, and goes
into the nonlinear stage around Qit = 300, The detailed wave analysis
shows that in the linear stage this mode has real frequency arountd U.SQi.
As shown in Fig. 3 (b), the peak of the frequency spectrum is located
around O.ZQi. The frequency of this mode becomes lower in the nonlinear
stage. This is a common feature for all the modes. The real frequency of

the (0, 4) mode saturates around O.SS?i as shown in Fig. 3 (d). Also from



fig. 3 (b) and (d) we find a number of smaller peaks around higher
harmonics.

An estimate of the growth rates of several modes in order to identify
the fastest growing mode indicates that the mode (0, 4) which corresponds
to b = 3.38, has the maximum growth rate Y/Qi ~ 0.025. 1In Fig. 4 ve plot
the estimated growth rates of the (0,1) to (0,5) modes against b. It
should be remarked that the mode (0, 1) which corresponds to b = 0.21 and
kyL = 1, and falls on the K-H branch (the solid curve in Fig. 4) has a
smaller growth rate (y/S?i ~ 0.015) than the higher modes which form the new
branch. Clearly it is the ion-cyclotron-like branch with the mode (0,4)
that actually dominates. The maximum growth rate of this ion-cyclotron-
like mode is located around large b (= 3.38 and kyL~4) and large real
frequency W, (~ Qi’ in the linear stage). Thus, unambiguous distinction is
made between the kinetic K-H mode and the new ion-cyclotron-like mode.
Besides, we have identified both the branches of the system in our
simulation and for the given set of parameters we find that the dominant
mode does not belong to the K-H branch; instead it lies on the new I-C-like
branch which has higher frequency and shorter wavelength.

The average ion flow velocities vy(x) are shown in Fig. 5. In the
earlier linear stage (Qit < 80) there 1is hardly any reduction in the peak
of the velocity profile or any relaxation in the topology of the profile.
In the linear stage we find that the real frequency is around the ion-
cyclotron frequency and its higher harmonics. This is in sharp contrast to
the simulations of Prichettg, vhere there was a strong relaxation of the
initial profile right from the very onset of thke simulation. The reason
for this strong relaxation can be traced to the employment of the
simplified initial loading scheme of a shifted Maxwellian in Prichettg;

which is not acceptable when the magnitude of VE/Qi is significant. Ve




discuss the critical importance of the initial loading scheme later on.

In the late quasilinear (Qit = 250) and the nonlinear (Qit > 300)
stages the wave amplitudes become large and can interact with and reduce
the magnitude of the d.c. electric field. Thus in the final stages of the
simulation we see a reduction in the magnitude of VE(X)' Also since the
real frequency is proportional to kyVE(x) (see Ganguli et al.7), ve find
that in the quasilinear stage the real frequency starts reducing along with
the magnitude of VE(X)' Further reduction in the real frequency occurs in
the fully nonlinear phase.

In the previous simulation we included a slight density gradient. The
profile of transverse electric field on(x)/on, the initial density
profiles for the electrons and the ions are shown in fig. 6(a), (b), and
(¢). The density ratio of the maximum to minimum nh/ni, equals to 1.1.
The density gradients are 1localized at the half value of the transverse
electric field as shown in Fig. 6. The reason that the ion density profile
is not as smooth as the electron density profile is due to the fact that
the ions have larger gyro-radius. The location of the guiding centers of
ions are exactly the same as those of the electrons. Hovever, the gyro-
motion of ions smears out the density gradients. This particular profile
will be used for all the simulations in this article (except Fig. 7(a) and
(b)).

In the preceeding discussions we have established the existence of the
I-C-like branch and distinguished it from the K-H branch. We have also
demonstrated that at least for some parameters the T-C-like bhranch can
dominate. Hence, in order to economize on the (PY time we shorten LV to
328 in the remainder of this paper to isolate the I-C-like branch and study
the characteristic features of this branch only (except Figs. 9 and 11).

Note that the mode (0,4) will now correspond to the mode (0,2) and so on.
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The time evolutions of the perturbations of the electrostatic potential
for the mode (0,2) with and without density gradients and their spectra are
shown in Fig. 7. 1In these cases we use Boy/BO = 0.005, keeping the rest of
the parameters unchanged. The case with the density gradients has the
growing wave with slightly larger growth rate, larger amplitude, and lover
real frequency, as shown in Fig. 7. Inclusion of even a slight density
gradient shows enhancement in the growth rate and the amplitude. This is
in contrast to the K-H instability wvhere density gradient leads to

reduction of the growth rates of the instabilitylo.

The fact that density
gradients lead to stronger growth for the I-C-like modes was predicted by
the theory7.

The dependence of the real frequency w_ on VE(X) is now examined. The
time evolutions of the perturbations of the electrostatic potential for the
mode (0,2) corresponding to Vg = O.59vit and 2.Ovit and their spectra are
shown in Fig. 8. Here Boy/BO = 0.005 and the rest of the parameters remain
unchanged. the real frequencies in the linear stages (not necessarily the
largest peak) are found around 0.382i (b) and l.OQi(d). As expected from
the theory7, we find that the real frequencies of the instability are
approximately proportional to kyvg.

The diftusion of the guiding center of ions in the case of Ly = 644 is
shown at Qit = 0, 80, 160, 240, and 320 1in Fi_. 9. A subset of ions with
initial position such that 58 < x < 64, are followed in time, and the local
guiding centers of ions are plotted atr each time. At the time (th=l60)
when the waves begin to grow out of the thermal noize, zlight waving of the
column is observed. At the beginning of the nonlinear stage (Qit:240), the

column is twisted. At the nonlinear stage the ions ave strongly diffused

due to the vortices.
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The evolution of vortices at the nonlinear stage (Qit = 240) is shown
in the case of Ly = 328 in Fig. 10. The electrostatic potential in the x-y
plane has strong vortices at the center. The strong vortex moves along the
direction of the E x B drift. As shown in Fig. 10, the excited waves are
well localized around the center. In the case of L= 644 similar strong
vortex is also created which moves along the direction of the E x B drift.
In the later nonlinear stage the number of the vortices is increased.

The local electric fields Ex,y at x = 69, y = 14 in the case of Ly =
6448 is diagnosed, and the power spectrum 1is obtained. As shown in Fig.
11(a), around Qit = 300 strong sharp peaks are produced by the passing
vortices. The spectrum has several peaks around Qi which correspond to the
real frequencies in the linear stage. the largest peak 1is produced by the
vortices in the nonlinear stage.

The profiles of overall wave energy in the case of Ly = 324 are shown
in fig. 12. The time-averaged excited wave energy (Ei) is localized around
the center of the system. Obviously, the excited wave energy is much
larger than the thermal energy outside the electric field. The time-
averaged polarization electric field energy with minus sign _(Ex)% is also
plotted, which is much smaller than the excited wave energy.

Now we demonstrate the importance of ihe proper initial loading. Ve
first examine the weak shear case where VE/LQ = 0.24, and compare the
difference in results produced by the simplified and the improved initial
conditions. As expected and noted earlier there 1is no remarkable
difference in the weak shear limit. However. as =hown in Fig. 13 (a) and
(c) the growth rate of the mode (0, ?) with the improved initial conditions
is slightly larger and the amplitudes the nonlinear stage are slightly

reduced. Furthermore, at Qi[ = 80 the averapge ion [low velocities with our

improved initial condition remain almost unchanged whereas the use of the
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shifted Maxwellian initial condition leads to relaxation in the velocity
profile, although marginal in this case since the shear strength is weak.
Apparently, our initial condition improves the simulation results even in
the weak shear limit.

The simulations with the larger transverse electric field (Vg = 2.Ovit
which corresponds to o = 2.24) with density gradients have been carried out
keeping the other parameters the same as in Fig. 13. Now the shear of the
d.c. electric field is moderate (VE/LQi = 0.86). Therefore, we expect
greater improvements in the simulation results by employing our initial
conditions provided in Eq. (3) over the simple initial condition (shifted
Maxwellian). Perturbations of electrostatic potential for the mode (0,2)
corresponding to the two different initial conditions are compared. As
shown in Fig. 14, the mode with our improved initial conditions has much
larger growth rate and larger amplitude at the end of the simulation. This
demonstrates that with the improved initial condition not only does the
initial noise level decreases but also the instability becomes much more
coherent and pronounced.

The evolutions of the average ion flow velocities vy(x) corresponding
to the two different initial conditions discussed earlier are also compared
for the larger transverse electric field case. As expected, with our
initial conditions the early relaxation and reduction of the average ion
flow until Qit = 80, was greatly reduced as (see Fig. 15(b)). In this

case, the free energy is solely dedicated to excite the large amplitude

waves as shown in Fig. 14(c). The amplitudes of the excited waves hecome
quite large at around Qit = 240 and therefore can interact with the d.c.
electric field to reduce it’s magnitude. At  the same time the excited

strong vortices cause large diffusions of ious (see Fig. 9(e)) and

consequently the average ion flow velocities are greatly reduced.



Yy

III. DISCUSSIONS

Ve have investigated the new ion-cyclotron-like waves driven by a
localized transverse electric field by means of a numerical simulation with
the assistance of the nonlocal kinetic theory. The linear theory shows
that the growth rates of the kinetic Kelvin-Helmholtz modes are strongly
reduced with increasing u, and they become unstable only where b < 1 and
kyL = 1. On the other hand, the new modes have larger real frequencies and
become unstable at larger b > 1 and kyL >> 1.

Ve have performed a number of simulations for the new kinetic ion
modes. Results show that ion-cyclotron-like waves are excited in the
regions where the E X B drift is localized. The linear growth rates of
several modes are estimated from the wave analysis of the simulation. This

linear analysis shows that the (0, 4) mode which corresponds to large b and

large kvL, has the maximum growth rate. Clearly, these are not K-H modes
(See Fig. (2)). Further, the simulation vresults show that density
gradients help to enhance the growth rates. This in in contrast to the

established properties of the Kelvin-Helmholtz instabilitylo. However,
like the K-H mode the real frequencies of this instability are

g. This 1is predicted by the nonlocal

approximately proportional to kyV
theory.7

Furthermore, we established the «critical importance of the initial
condition which includes the modification due to the gradient of the d.c.
electric field.7 Vhile this improved initial condition is preferable even
for weak shears of the d.c. electric field, it becomes crucial when the
shear is large. We have demonstrated that for moderate shear values, our
initial condition provides the quiescent initial state essential for

simulations of the instability. Thereforve,  the initial relaxation of the

average ion flow velocity, which 1is wunavoidable when the simple initial

11
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condition (the shifted Maxwellian) 1is used for shear values that are
significant, is greatly reduced.

The nonlinear phenomena such as diffusion and coalescence of vortices
are investigated. In the linear stage, smaller vortices are generated and
larger vortices with the lower real frequencies are dominant in the

nonlinear stage. In the nonlinear stage the ions diffuse strongly due to

the large scale vortices.
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(a), (b): k”/)\eII = 0.0075 x 2n x 3/64 = 2.21 x 107, kyxe” = 2N %
3/64 = 0.295.

. _ _ 3 .
(c), (d): k“/xe“ = 0.0075 x 2n x 4/64 = 2.95 x 107, kyAeH = 2N X

4/64 = 0.393.
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The average ion flow velocity vy(x) at Oit = 0, 160 and 250 in the
same case as Fig. 3.
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