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1 - INTRODUCTION

In bonded structures adhesives are intended to carry shear loads and hence most test specimen
geometries have been designed and oriented towards the determination of shear properties which
could be used in the design of joints. However, many test specimens such as the single lap or thick
adherend have complex stress distributions in the adhesive layer and failures are often related to peel
stresses and the high stress concentration at the bond terminations [1]. Other specimens such as the
losipescu or the Arcan do have nearly uniform pure shear in the adhesive layer. However, their
shapes are complex and, therefore, do not lend themselves to routine testing. Hence, the ideal test
for adhesives should be one which eliminates the drawbacks mentioned above and the cantilever
beam to be discussed herein seems to be a reasonable approach.

Recently, Brinson and collaborators [2-5] have suggested the need of better test specimen ge-
ometries especially for durability predictions. The cantilever beam shear test specimen (BMC) is
suggested as a better means of obtaining shear properties and is made by bonding together two thin
plates. When concentrated and equal loads act on the free end of each adherend (fig.1), the state
of stress is pure shear in the adhesive lay<:.

In order to emphasize the reason for the interest of the so-called BMC specimen, three

cantilever beams subjected to a total load P are presented in fig.2. The three beams are all the same
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Figure 1. BMC test specimen.
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length and thickness to permit a comparison of the deflections. The bonded beam deflects more

than the monolithic beam 2h and less than the third (fig.3) when there is no adhesive.
In the case of the monolithic beam shown in fig.2, which could be thought of as a case of
perfect adhesion, the maximum deflection at the beam tip equals,

61='2i (1)

Ebh?
and the shear stress given by strength of materials is :

3p
= 4bh @

T

Assuming a linear elastic material, the shear strain is as follows :

T
Y=7 3
or,
3p
"= 2Goh Q)

For the third case when there is no adhesion, the maximum deflection is,

- leps

EbR® 4

63

Examining case three more closely reveals that the displacement of points A and point B on
the top and bottom beams as shown in fig.4 are,

P ¢\
w35 (%) ©)
T EAY
“8= " 2Eb h) @)
1 - INTRODUCTION 4

------ -




Figure 3. Comparison of the BMC specimen deflection with the limit cases.
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The relative motion divided by the space between the beams is,

Uy —up
y N (8)

which yields the following apparent strain for the case of no adhesion,

n=a (%) ®

Obviously, case two shown in fig.2 for two adhesively bonded beams would have a maximum
deflection between that of the limiting cases onc and three given by equations (1) and (5), respec-
tively. A relative comparison of the three cases is shown in fig.3. Further, it is intuitively obvious
that case two would be a case of pure shear and the magnitude of the strains for this case would
be bounded by the strains given above for cases one (equation 4) and three (equation 9) which
represent the cases of perfect adhesion and zero adhesion, respectively.

E. Moussiaux [6] has developed a strength of materials type stress analysis to model the be-
havior of the bonded cantilever beam. Our purpose herein is to carry on the analysis of the BMC
specimen. The theoretical model and the first suggestions to determine the adhesive shear modulus
are reviewed, analyzed and optimized. Due to the complexity of the stress equation and the beam
deflection equation as well, a parametric analysis is generated and gives important conclusions
about the use of the theory to design a proper test specimen.

Next, numerical methods give more information about the stress state in the adhesive layer
and the conditions required for a pure shear state. Two finite-elements codes (VISTA, NOVA) are
used to verify the solution obtained by Moussiaux. It should be noted that Moussiaux’s simple
theory is for the case of plane stress while the Finite Element code VISTA is for the case of plane
strain. The former theory has thus been extended to obtain a complete comparison between the
simple beam theory and the finite element numerical results. In addition, three-dimensional effects
on the state of stresses are studied in the adhesive layer and at the interface between adherend and

adhesive using the Finite Element code ABAQUS.
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An experimental program is also outlined and presented to verify analytical solutions. Both

steel and aluminum adherends and neoprene rubber and epoxy resin adhesives are investigated.
Measurements of shear deformation in the adhesive layer and end deflection of the beam allow us

to compare the experimental results to analytical predictions.
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2 - LITERATURE REVIEW

# The use of adhesive bonding as a joining technique has become an attractive alternative due
to a number of disadvantages with conventional fastening techniques especially for non-metallic

materials. For example, traditional connectors such as bolts, rivets, welds and screws do not dis-

tribute loads uniformly. High stress concentrations occur and reduce the strength of the connection
at comparatively small loads. These become serious problems when the components are made of
polymeric or composite materials.

Compared to traditional fasteners, adhesive bonds provide a greater uniformity in load dis-

tribution and some other potential advantages:

¢ higher joint strength, damage tolerance and fatigue life,
¢ no reduced strength of composites due to fastener holes,
¢ lower part count,

e reduced weight,

®  casier processing,

®  cost saving for operation, maintenance and fuel,

® reduced corrosion problems.
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Despite these advantages, some factors have caused the adhesive joints to be considered sen- »

L\

f:: sitive and unpredictable, and hence, wider usage of adhesives has been limited. Some of these dis-

% advantages are given below: )

:|‘.

0 3 - .

. ¢ the complexity of stress and failure analyses of adhesives,

@
¢  the difficulty of analyzing the quality and reliability of adhesives,

::‘ e the lack of an acceptable standard design and testing methodology for mechanical character- \

<A

ization, ®

Y

L

;.: ¢ the disparity between bulk adhesive properties and adhesive properties in the bonded state that '

". B

::: often make the former unusable in predicting the response of a full scale structural elements.
£

)

o

' The basic features of the adhesive bond problems were examined in the classic analysis of

4

:: Goland and Reissner [7). In their work, the adherends were assumed to deform as thin plates when )

¢

()

::' bonded by an clastic adhesive layer. In additic . i, he rosulting shear stress, 7,,, a significant :

@

o normal or out-of-plane (peel) tens.e stress, o,,, Was shown to develop in the bondline. As the ad- :

’- hesive layer was assumed te be very thin, the resulting stress distribution from this model was as-

e
= sumed to not vary through the thickness of the adhesive. Actually, the maximum stress in the

’; bondline almost always occurs at the interface and differs drastically from the average through the ¢
o .

.': thickness. :

V.

s Some studies [8-13] have demonstrated the influence of several factors such as specimen ge-

p ?: .

ometry, material stiffness, experimental processing, etc. on the distribution of stress. Their com- ™

B J

N bined effect is a non-uniform and non-pure shear state  the adhesive layer with stress A

[\

e concentrations at the bimaterial tips. These variations in stress magnitude and distribution make 1
L) :
3| difficult the measurement of deformation properties inside the bond. They have led to the existence ° '

;' of a wide variety of specimen geometries and loading procedures for in-situ adhesive testing. Their

' main purpose is to minimize the stress concentration at bond termination and to allow an accurate

R determination of shear properties at the same time. The ideal test would contain a constant and ¢

®

" pure shear stress state throughout the adhesive.

? :

!
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The lap shear test and its variants have been and are still the most commonly used shear tests
because of their simple geometry and because they give insight to bonded shear properties using
only tensile loads. For example, the thick adherend specimen, bascd on the the assumptions of rigid
adherends and no rotation, is assumed to be a case of constant and pure shear for the adhesive.
However, in practice, equilibrium and the fact that the adherends are elastic with rotations due to
moments gives rise 10 very high peel stresses and non-uniform shear stresses. Some authors [8-10]
have used the Finite Element technique to perform a stress analysis inside the joint which does
correctly identify the large shear and peel stresses at the bond termination of lap joints. This is il-
lustrated in fig.5 and 6 in the case of the modified single lap shear specimen analyzed in reference
[9). The high peel stresses near the bond termination tends to dominate the fracture behavior of
the joint. On the other hand, it is difficult to experimentally verify the high stresses and, as a result,
often the failure stress is calculated as the load divided by the bonding area even though a non-
uniform state of stress occurs in the joint. Obviously, the lap shear test is deficient in producing
data design for mechanical structures.

An alternate to lap shear testing is provided by the napkin ring torsion test specimen. Even in
this specimen, though, stress concentrations exist at edges. However, for adherends with rounded
comers loaded in tension, stress concentrations are reduced as shown by Liechti {15].

In the three point bending test [11], the adhesive is again supposed to be in a pure shear state.
Finite Element analysis, however, shows the presence of large cleavage stresses at the bond termi-
nation even though the shear stress does appear to be more uniformly distributed in the adhesive.
But once more the average stress is very different from the actual stress acting at the extremities .

In a torsion test such as the one shown in fig.7, the adhesive is subjected to a more homoge-
neous stress distribution, since the stress conceptrations at the bond ends are less significant.
However, a uniform stress is obtained only for small rotations.

The losipescu shear test [12] utilizes a notched specimen in bending as a shear test for com-
posite materials (fig.8). This test induces a state of uniform shear stress at the midsection of the

specimen by creating two counteracting moments which are produced by the applied load. The use
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Figure 6. Bondline tensile stresses in lap shear specimen ( from reference 9 ).
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of this test is still limited, because of the need for precision notches in order to achieve a uniform .
shear state. The test fixture requires strict dimensional tolerance but according to its inventors, the N,
M
optimization of this test could lead to a definitive form of experimental shear test for adhesive joints. ,'
|
Another promising new test for adhesive joints is the ARCAN specimen [13-15], the geometry :;:
of which is shown in fig.9-a and 9-b. It uses round stiff adherends which are notched and bonded .
i
in such a way as to produce a pure shear state. Loading can be applied to obtain any combination "
A4
of tension or shear. .
The so-called BMC test or the bonded cantilever beams test is the most recently developed ,f ’
adhesive shear test. Using the geometry of two cantilever beams bonded together with an adhesive N
.M‘
layer, and applying equally acting loads on both adherends, H.F. Brinson [2-5] assumed that the e
X
specimen should develop a uniform and constant shear state in the adhesive layer. H.F.Brinson and '
)
E. Moussiaux [6] used a strength of materials type solution developed by H. Beck {16] in 1962 to
model the stress state inside the bonded joint of the BMC specimen. As this new shear test is the N "
L
topic of this report, the main results from the analytical solution are reviewed next. N
An expression of the shear stress was found and was shown to be a function of the x- ',,_,
coordinate only and of a parameter @. ::
3
3P(1 + 2tk o
Ty = ( A —~(1 —cosh@-+tanh T sinh 3 -5) (10) A
bA(1 + 3(1 + 2t/h)%) ¢ ¢ g
\]
or, 4
\J
i* y
T =7 (1 —cosha = + tanh @ sinh & =) (10a) L
xy ¢ ¢ e
where, : |
oy
\
3G 1+ 20h)?
E=\/ e (L) 4 ”(1+ 1 2) a ]
E \ A th 3(1 + 2t/
:
o
The shear stress is uniform through the thickness of the bondline at any constant distance ".
from the end, but varies from zero at the fixed end to a maximum value at the free end : ' '\
A

o
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. LmAx _ 3P(1 + 2t/h) [1 _ 1 ] (12)

P bh(14 3 + 2R cosh @

'ty The larger the parameter @, the faster the shear stress reaches its maximum, and so, the more

I constant is the stress along the beam length (fig.10). Hence, for an experimental use, a measure-

X ment of the shear strain in the zone where the stress is constant, can easily yield the adhesive shear

[ modulus by using,

) T =G (13)

R which assumes a lincar elastic behavior of the adhesive.

Along the length, the beam mid-plane deflects as follows : *

% W) = —8P— ex* x>, 3P 6P
X Ebh3 2 6 4bhG Ebh3y2

3 [—’32‘-2——-"61+ (%)’sinhf‘(i-(%)’x—(%)’mhacosh-@f—+ (%)’mha] (14)

with,

2 1
A Y=l —Ll (15)
z 3(1 + 21/R)?

The end deflection, obtained at x=¢is :

I (o LN 3E (A, 2L 1 -
6'zzb(h+,)3“+""’[“<‘ ,2)+2G(z)+ 2(4 J*anha)} (16)

5=p—PC 18
g 2EB(h + 1) (%) ’
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where B is the dimensionless end deflection which can be used to determine the adhesive shear

modulus :

B=(+ l/h)3[4<l -—17) +3E
y

From the variation of § versus the stiffness ratio (fig.11), the ratio E/G, of a bonded beam can
be evaluated only if the end deflection measured lies in the fast increasing middle zone of the curve
(fig.12). In this particular region, # exhibits maximum sensitivity to the specimen deformability and
the best accuracy for G, is obtained in this manner.

In fig.13 and 14, the solutions for shear strain and end deflection derived from BMC theory
are compared with the limiting cases of perfect and zero adhesion discussed in chapter 1. For that
purpose, we used aluminum adherends ( E= 10" Psi, v=0.3 ) of 3 in. long, 0.125 in. thick and 1
in. wide. Bondline thickness was 0.005 in.. As shown on the figure, we used three types of adhesives
: G,= 1,000 Psi - 10,000 Psi - 100,000 Psi. In fig.14, one can see that for stiff bonded adhesives,
end deflections are very close to each other for these three cases and therefore its measurement must
Le very precise in order to accurately determine G,. Table 1 also gives a summary of the numerical
results. In the following section, the BMC method is analyzed with a view of understanding and
controlling every parameter that may influence the experimental application and the collection of
data.

Since Moussiaux’s effort, a new finite-clement code called NOVA is now available for the
stress analysis of in-situ adhesives [10]. The program NOVA can be used for plane stress as well
as plane strain analyses while an older code, VISTA, gives only data for plane strain and has been
extensively used for the stress analysis through the adhesive thickness. Finally, some experimental

results for adhesive shear moduli are presented which have been found using the BMC theory.
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Table 1.

Comparison of the BMC model with the limit cases ( P=10 Lb.).

CASE DEFINITION | END DEFLECTION | SHEAR STRAIN
{x 0.01 in.) (x 0.01)
no adhesion (1) 2.710 33.8820
adhesion
G, = 1,000 Psi 1.019 5.6237
adhesion
G, = 10,000 Psi 0.691 0.6015
adhesion
G, = 100,000 Psi 0.648 0.0601
perfect adhesion (2) 0.169 1.564E-04
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(2) adhesive thickness aproaches zero
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[
i ]
l. ¢
Yy
8 o
°
x The analytical solution of the BMC test for stress (or strain) and deflection distribution can
b,
[ be used in conjunction with experimental data to determine the mechanical properties of adhesives
'.‘ in the bonded state. However, limitations occur because the shear stress state in the adhesive as
well as the beamn deflection are sensitive to the choice of specimen geometry and to the type of the .
4 adhesive and the adherend which are tested. 1t is therefore necessary to make a parametric analysis
G ;
o of the beam geometry for gaining a better understanding of the beam response. 3
" For this purpose, we first defined the range of lengths and thicknesses for which this study ¢ :
;" must be limited. Then, the two approaches for the BMC test are analyzed independently. If the
L
adhesive is characterized from the measurement of the adhesive shear deformation, the influence
" of geometry on the stress distribution is studied. If the bonded joint is characterized from the end .
o deflection, the influence of geometry on the magnitude of the parameter B is discussed. For each
. .
j case, a procedure is presented to define the BMC specimen geometry.
L
l. :
Iy .
4§ d
o
" .
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3.1 - DEFINITION OF SPECIMEN GEOMETRY

3.1.1 - Slenderness ratio ¢/h

The choice of specimen dimensions is oriented towards two directions: the beam should have
a “realistic” length and the geometry should not violate the hypotheses from which the theoretical
model is derived. To design a specimen with realistic dimensions, the beam length should be
roughly less than 12 inches. It can be seen in fig.15 that the slenderness ratio must not exceed 100
if the adherends thickness h is 0.125 in.. When a smaller ratio can be used, it is possible to have
several combinations of beam lengths and adhesive thicknesses. This gives more flexibility to the
user. However, in order to satisfy the basic assumptions of the underlying BMC theory, the
slenderness ratio should always be above 10 [6]. Table 2 summarizes the possible lengths as a
function of adherend thicknesses.

3.1.2 - Thickness ratio t/h

The adhesive thicknesses commonly used vary from 0.005 in. in aircraft industry up to 0.2 in.
in automotive industry. Therefore, the choice of the bond thickness of a BMC specimen should
be bounded by these two values. In accordance with the definition of the BMC specimens di-
mensions, we define that the adhesive thickness is 2t and that the thickness ratio t/h deals with half
the adhesive thickness. As discussed in {6], the smaller the thickness ratio, the more uniform is the
shear stress along the beam. For a given adherend thickness h, t/h is minimized by making the ad-
hesive thinner. Conversely, for a given adhesive thickness, t/h is minimized by using a thicker

adherend. Figures 16 to 18 show the possible combinations of adherend and adhesive thicknesses.
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r Table 2. Variety of valuable beam lengths. ;v_:{v‘

B (in) | @/Amn | Cmn (i0) | (/A)me | Zmes (i) o
0.0625 10 0.625 192 12 e
0.125 10 1.25 96 12 L
b 0.250 10 2.50 48 i2 )

0.375 10 3.75 32 12 "'.-:':'5

0.500 10 5.00 24 12
0.625 10 6.25 19 12 A
0.750 10 7.50 16 12 e
0.875 10 8.75 14 12 o
h 1.000 10 10.0 12 12 nY
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- adhesive thicknesses commonly used —
» h=0.0625 in.
uq
uJ
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”4
. h=10.250 1
p = n.
961 h=0.375 in
| o4 h=0.500 in
| 631 h=0.625in
| 02 h=0.750 in
Q1 — —= —— h=0.875 in.
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Figure 16. Definition of the thickness ratio.
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Figure 17. Definition of the thickness ratio - refinement for thin adhesives.
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In conclusion, if a parametric analysis is performed in order to discuss the capabilities of the
BMC method, it should account for the geometric limitations mentioned above. The beam length
remains a realistic quantity if it does not exceed 12 inches. In agreement with practical use of ad-
hesives, the thickness ratio can vary up to 1.6. After the definition of geometrical limitations, the

next step would consist in reducing the number of the parameters involved :

¢  the measurement location x/¢ which determine the stress magnitude,

e the slendemness ratio which involves the beam length ¢ and the thickness h,

¢  the thickness ratio which involves the adhesive and the adherend thicknesses t and h,
¢ the adherend stiffness E,

¢  the adhesive shear stiffness G,.

From a practical point of view, a BMC test specimen must be designed to allow for reliable
and convenient determination of in-situ adhesive properties. In the following, it is shown that a
compromise can be found for stiff adhesives and shear deformation data. However, finding a

unique specimen oriented towards end deflection measurements is more uncertain.
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) 3.2 - FROM THE SHEAR DEFORMATION TO THE SHEAR 3
0
MODULUS N
2
[ ]
* 7Y
As seen in reference [6], under certain conditions, it is possible to obtain the adhesive shear o
N
SN
properties by measuzing the shear deformation: “...if a measurement of the shear strain in the ad- Y ‘:'
RN
hesive can be obtained at the place of maximum stress, the shear modulus can be easily found.” -
r The determination of the shear modulus G, following the procedure mentioned in [6] requires ?_ Nyt
b’- '*
that the shear stress be constant over the adhesive length where the shear deformation is measured. '::’r(
KWK
k The uniformity of the stress is also interesting because it eliminates one parameter in the analysis: ®
L N,
<
the measurement location x/¢. Such a situation can be found for large values of the coefficient &, :3‘:'5_
Y '\\
s
involving a large ¢/h ratio and a small t/h ratio. In addition, another useful finding is the variation : :::i{
okt
* of the maximum shear stress value with increasing stiffness ratio E/G, and various geometries. The °
A
maximum shear stress is: :‘,tﬁ"'
g
Sl ¢
max 3P(1 + 21/h) I Bt
Ty = 3 1 - b3 (12) °
bA(1 + 3(1 + 2t/A)Y) cosh « —
. '.;.l:.'
If the parameter z is large enough to cause cosha to go to infinity and consequently to cause ‘ ‘.\
g
Y
( 1 - l/cosha ) to approach 1, the value of the maximum shear stress becomes a function of the .‘ .
SN
’ geometry and the loading only. This situation occurs for @ values greater than 6. The variation ' .‘:.l::
4
of =ns= versus E/G, shown in fig.19 indicates that the shear test is also limited to particular material %
' ‘F ‘.‘l
properties. For the geometry shown, the maximum stress is independent of material properties and O
P @ is larger than 6 if the ratio E/G, is below 30,000. If material properties combined with geometrical ,'3:-_: '
My
properties make the parameter @ equals to 6, then the shear stress reaches its maximum at the '»;
\J'-'-ﬁ i
loaded end of the beam only. Increasing the uniformity of the shear stress to eliminate the meas- by
o
* urement location dependence, reduces the range of stiffness ratio because this requires a larger a. Vv
§
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However, without modifying the stiffness range, it is also possible to vary the beam geometry in
order to obtain higher @ for a more uniform stress along the adhesive (fig.20 and 21 ). If the BMC
specimen is assumed to have a slenderness ratio of 96 and a thickness ratio of 0.02, then as shown
in fig.19, the test is valid if 1 < E/G, < 30,000. Using this latter relationship for three adherends,
steel ( E=23x10" Psi ), aluminum ( E= 10’ Psi ) and titanium ( E=1.65x10 Psi ), yields the addi-
tional condition in that the adhesive shear modulus be bounded as follows for a valid test.

Adherend Adhesive modulus range (for valid test)
Steel 1< G, < 3x10" Psi

Aluminum Ix1<G, <10 Psi

Titanium Sx 1< G, < 1.65x 10" Psi

For the smallest adhesive shear moduli, @ is equal to 6 and the shear stress reaches its maxi-
mum at the beam end only. As discussed previously, the stress uniformity is increased by defining
a larger @. This reduces the range of adhesive shear moduli as shown by the following discussion.
If @ equals 14, the shear stress is constant along 70 % of the adhesive and again from fig.19, the test
is valid if 1 < E/G, < 10,000. This condition yields,

Adherend Adhesive modulus range (for valid test)
Steel Ix1P<G,<3x 10 Psi

Aluminum 10 <G, < 10" Psi

Titanium 1.65x 10° < G, < 1.65 % 107 Psi

For the conditions shown above, the adhesive shear stress can be calculated from the geometry
and loading alone. However it should be noted that, in this instance, the technique does not work

well for very soft adhesives.

The relative displacement of the adherends can be measured at the place of known stress and

the shear modulus can be determined, assuming linear elastic adhesive behavior :
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Figure 20. Variation of the maximum shear stress with adherend-adhesive stiffnesses for I/h=192,

t/h = 0.04 - limitations of the BVIC shear deformation test,
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Figure 21. Variation of the maximum shear stress with adherend-adhesive stiffnesses for I/h=24,
t/h=0.02 - limitations of the BVIC shear deformation test ,
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i 7:;?“ = Gayrxnyax (13)

X where ym* is from experimental data and 7 is calculated from the BMC theory :

. max _ 3P0+ 20 : (120 t
bA(1 + 3(1 + 2i/h))

Moussiaux pointed out in reference 6] that the maximum shear strain rather than the maxi-

mum shear stress can be used as an indicator of the proper conditions for a good test. This ap-

—

proach is shown in fig.22 and illustrates that the maximum shear strain varies linearly with stiffness

B ratio when the maximum shear stress is constant and determined by geometry and load alone. In

other words, the examples given above are taken for the condition of linear shear strain variations. ®
I Fundamentally, the linear shear strain zone or the conditions for a good test increases with in-
».!‘ creasing beam length and with decreasing adhesive thickness.

ol Table 3 gives a survey of several adhesives found in the literature which demonstrates that a
broad range of typical commercial structural adhesives are within the range of stiffness of the ex- \

5 amples given above. That the BMC specimen can be used for these combinations of adhesives and ‘
0 adherends. '.
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Figure 22. Variation of the shear strain with the stiffness ratio for various geometries ( from reference S
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Table 3. Review of literature of adhesive material properties. Py
ADHESIVE { YOUNG'S MODULUS | POISSON’'S RATIO { SHEAR MODULUS
E, (Psi) v, G, (Psi)
FM 1018 1.0x10¢ 0.35 3.5-4.0x108
ref. (a)
FM 73 0.2437x10¢ 0.32 9.231x10* [ )
FM 355 4.5x10% 0.35 1.5x10°
ref. (a)
FM 300 4.0x10% 0.35 1.2x10¢
ref. (a)
320/322 1.18x10¢ 0.37 4.3x10¢ ®
ref. (b)
rubber 290 0.49 97
polyurethane 600 0.50 2.0x108
ref. (c)
ref.(a) : American Cyanamid, Inc.
ref.(b) : Lord Corporation, Inc. ®
ref.(c) : Measurement Group, Inc.
(]
®
[
®
L]
1
5
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3.2.1 - Parametric analysis

The choice of geometry should take into account the preceding restrictions in order to obtain
an extension of the uniform shear stress zone and to facilitate the test procedure. Ideally, in the
calculation of the shear modulus, y,, is measured, 7,, is calculated from geometry and loading, and
the adhesive is assumed to be linear elastic such that :

4

Ga=-:;;y— (13a)

In case the shear stress is not equal to its maximum, it is a function of G, through the pa-

rameter « :

3P+ 2k
BA(1 + 3(1 + 2¢/R)?)

(X (1 ~cosh@ % +tanh @ sinh 3 ) (10)

This gives rise to three types of situations which are illustrated in fig.23.

case | :

The kind of shear stress distribution obtained for high values of parameter  is referred to as
casc 1. In this case, 1,, is constant over almost the entire beam length. Thus, as shown in fig.23,
if the shear strain is measured at either points A or B, the adhesive modulus can be determined
simply from equation (13a) in which r,, is not a function of & and is determined only from the

geometry and the applied load.
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case 2 :

If the shear strain is measured at point B, then again the shear modulus, G,, can be obtained 2};
casily as in case 1. However, if the shear strain is measured at point A then the shear stress will be 2.0
given by :

‘,
e

2

[

L4
PP

5 4 5
{..
-l

L

3P(1 + 2t/A
( + 208 (1 = cosh @x, + tanh @ sinh &x,) (10a)

Tpal®) = bh(1 + 3(1 + 2t/h)?) o

A
% "

®
In equation (10a), all quantities are known except for @ which is a function of G,, the pa- %‘h '
. ;
rameter investigated. In this instance, the adhesive shear modulus must be calculated in an iterative _ ‘::

fashion as discussed below in case 3. e
case 3 : 4

X N
Case 3 is defined by an & lower than 6. This upper bound was calculated so that the shear 7 "‘\‘

stress never reaches a maximum as defined in equation (12a) because 0 < ( cosh@x/¢ - tanha sinh

ax/¢ ) < 1. It follows that in this case, the stress is a function of the unknown G, and no math- v
ematical transformation exists to eliminate the dependence of t,, on G,. Regardless of the position TN

of measurement, case 3 is similar to case 2 when a measurement is made at x/¢=x,. That s, NS

<,
L4
7

s
® % g

Y

knowledge of the adhesive shear modulus is required to predict the adhesive shear stress magnitude,

3

and the adhesive shear stress is needed to compute the adhesive shear modulus. Therefore, it be-

[}
-
<

X

37

comes impossible to obtain the required shear modulus unless a numerical method is used. Solving

P
54
v
AR

-
;l": k3

A Am
5

x4
3
‘.1'

for G, numerically would consist of seeking a solution to the following equation :

Iy P(1 + 2t/R)

)= bA(1 + 3(1 + 2t/h)%)

Gyl - cosh&'%+tanh?isinh&

~|x

(19)

While such a procedure can be used, it would not be as direct and useful as for case | above. As a

result, this study emphasizes the fact that we need to predict the appropriate specimen dimensions
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in order to create a known shear stress in the adhesive layer when we test an adhesive. Both the
geometry and the material properties of the specimen are included in the expression for @ which,
in tum, is directly related to the distribution of shear stress in the joint. In fig.24, 7 is plotted versus
E/G, with t/h = 0.05 and using several values of the ratio ¢/h. The horizontal curve for a=6 is
given and characterizes the limit below which the shear stress becomes sensitive to the material
properties. Used in conjunction with the ( r,, vs. x/¢ ) curve such as that shown in fig.23, this set
of curves represents a very useful tool to define the BMC specimen dimensions.

From the stress equation :

3P(1 + 2t/h)
‘rxy(x =

= —cosh@=> +tanh @ sinh @ =) (10)
BA(1 + 3(1 + 2t/R)%) ¢ ¢

and the parameter a equation :

_ 3G, [ ¢ \a (1+20R)} 1
= ~-a (< 1

we can define a relation between the magnitude of @ and the beam length over which the shear stress

is constant. This relation, obtained numerically, consists of finding the values of x/¢ associated with
the values of & which make the term in parenthesis in equation 10 approach one. The curve ( @ vs.
x/¢ ) so determined is shown in fig.25 and explicitly defines the values of @ for which the shear stress
is constant over a portion of the beam. In other words, the shear stress is constant in the adhesive
layer for all values of % above and to the right of the curve. Thus, constant shear stress over the
entire beam can be obtained for very high values of @ which also implies either a very large

slendemness ratio, a small thickness ratio and/or a small stiffness ratio (fig.24).
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Practically speaking, the choice of a BMC specimen geometry is based on the use of fig.24 and

25. In fig.24 the estimate of the stiffness ratio to be investigated is found and the beam geometry
is adjusted to make the beam as short as possible for practical reasons, and at the same time, to
make the parameter « as large as possible. From fig.25, a is determined by the desired location for
making a convenient strain measurement. If a uniform shear stress zone does not exist, it means
that the geometry chosen is not good, relatively to the stiffness ratio investigated. Other guidelines
similar to fig.24 are given in appendix, with different values of thickness ratios t/h. It may be useful
to draw these guidelines for other geometries when we want to extend the limits of validity of the
model to the category of soft adhesives. However, as discussed at the beginning of section 3.2, the
simplicity of the test for soft adhesives would lead to an unrealistic beam length and a very thin

adhesive thickness. A compromise will be presented in section 3.3.

3.2.2 - Example of the specimen dimension determination

Our purpose herein, is to emphasize the sensitivity of the method when a geometry is chosen
and an estimate of E/G, is known.

Let us now consider the case when the stiffness ratio is estimated to lic between 10° and 10°.
We set the thickness ratio to 0.05 and we find the variation of & versus E/G, for ¢/h = 10 in fig.24.
As pictured in fig.26, if E/G, is 10? and if  is 10, 50 % of the beam is under a constant shear stress
in the adhesive (fig.25). This gives a lot of space for the experimental measurement. However, if
E/G, = 10°, 3= 3, no beam area is available where the stress is a simple constant function of loading
and geometry. Therefore, the limits of validity of the BMC shear deformation test are exceeded and
it is not possible 1o characterize the adhesive shear properties other than numerically as mentioned
previously. Hence, the uniform stress zone changes from 50 % to 0 % when E/G, increases from
102 to 10%. At the limit point, (=6, E/G, =200 ), the stress reaches its maximum at the end only.
The slenderness ratio chosen is obviously not appropriate for this particular case. If by chance, the

real E/G, investigated is below 200, the measurement location should be defined very precisely. In
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Figure 26. Alpha bar versus E/Ga with £/h = 10 and t/h = 0.05. Example of specimen dimension deter-
mination from an estimate of the stiffhess ratio.
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this example, we can also see that to remain on the conservative side, the choice of a BMC speci- Aol
men should be based on an overestimate of the stiffness ratio. T
y For convenience, a computer program has been written that can help the user to optimize the '
BMC specimen geometry. The program has the capability of making a geometrical parametric x"_b{
analysis. It computes the data points of the variation of = versus E/G, for various geometries. To ::: Ny
run the program, the user has to input a value for the thickness ratio only. The result is a set of b2l
guidelines similar to those shown in fig.24. The listing of the program is presented in appendix A .,r" .':“"'

and the basic steps of the procedure are described below .

user part : s
N “

® definet/h v

computer part :

) ¢ doloop¢/h

e doloop E/G,

Y% SN
2Patale

Lo |

* plota = f( E/G,) varying ¢/h

: P
T RA
PR Sy

—
i .
.r";'i.'

user part :

o

l‘ -‘-A?-
4

'
5‘.‘!
")

®  analyze the plot

-
ol J

hY
.,.,.p.‘-‘

. define ¢/h, according to the estimate of E/G, and the adherend thicknesses available.
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3.2.3 - Proposal for a unique specimen dimension

- -

> -

The BMC shear deformation test is convenient and easy to perform as long as the stress is

-

not a function of material parameters E and G,. This condition occurs only for stiff adhesives such
that the stiffness ratio is below 10* depending on the geometry. When we look at the variation of
the maximum shear stress versus the stiffness ratio, the entire domain of this type of adhesives is
covered for the highest slenderness ratio ¢/h and the smallest thickness ratio t/h (fig.20). For
practical convenience, the smallest slenderness ratio would be more suitable but it would imply a
reduction of the adhesive stiffness range that can be tested. However, from the information pre-
sented previously in table 3 where some adhesive properties are listed, it can be seen that the defi-
nition of stiff adhesives can be limited to E/G, = 10%, instead of 10% It follows that ¢/h can be
reduced to seek a specimen geometry which will produce stress uniformity covering the entire stiff
adhesive domain. Several solutions are proposed for a unique BMC shear deformation test speci-

men. Results are presented in table 4 in terms of percent stress uniformity along the beam.
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Table 4. Definition of a unique specimen geometry for BVIC shear deformation test applied to stiff ad- . e 4
hesives ( limit of validity : E/Ga < 1000 ). bt $.
t]
¢ t
percentage of constant | t/h ¢/h h 2t '4 .l:':'
shear stress (in.) (in) | (in) 'o,::o::'
002 | 40 | 0.0625 | 0.02500 | 2.5 I
002 | 40 | 0.1250 | 0.00500 | 5.0 .
0.05 50 | 0.0625 | 0.00625 | 3.125 Tl
70 % 005 | 50 | 0.1250 | 0.01250 | 6.2 0 ';’::
0.10 | 70 | 0.0625 | 0.01250 | 4.375 e
0.10 | 70 | 0.1250 | 0.02500 | 8.75 ' c‘:
0.20 80 | 0.0625 | 0.02500 | 5.0 LA
0.20 | 80 | 0.1250 | 0.05000 | 10.0 °
0.01 | 40 | 0.0625 [ 0.00125 | 2.5 Kaatut
0.01 40 | 0.1250 | 0.00250 | s.0 o
0.01 [ 40 | 0.2500 | 0.00500 | 10.0 T
002 | 50 | 0.0625 | 0.00250 | 3.125 pad
002 | 50 | 0.1250 | 0.00500 | 6.25 e
0.04 | 70 | 0.0625 | 0.00500 | 4.375 ’ f "
80 % 004 | 70 | 0.1250 | 0.01000 | 8.75 R
0.05 | 80 | 0.0625 | 0.00625 | 5.0 rirnd
0.05 80 | 0.1250 | 0.01250 | 10.0 et
0.10 | 100 | 0.0625 | 0.01250 | 6.25 At
0.10 | 100 | 0.1250 | 0.02500 | 12.5 o
0.15 | 120 | 0.0625 | 0.01875 | 7.5 et
0.20 | 130 | 0.0625 | 0.02500 | 8.125 ®
002 | 70 | 0.0625 | 0.00250 | 4.375 ity
85 % 002 | 70 | 0.1250 | 0.00500 | 8.75 i
0.05 | 100 | 0.0625 | 0.00625 | 6.25 W
oot
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L 3.2.4 - Definition of a specimen dimension for property measurement with )

X Scanning Electron Microscopy ( SEM )

i

3 4
N .

) One of the long range objectives in the study of adhesives is to find a means to measure and

) )
N observe properties and related deformation mechanisms at micron or submicron levels especially b
y .

near the adhesive/adherend interface. To accomplish this task, it is essential to have a simple spec-

imen with a pure shear stress state which can be tested in an SEM. The BMC specimen appears ’

>
-
-

to be a good candidate for such a specimen and such a test. However, the dimensions of the vac- y

V-

uum chamber requires that a relatively short specimen be used. If the beam length does not exceed

-

3in., 50% to 60% of the total adhesive length can be analyzed, starting from the loaded end. If the !

o

! bearn length is one inch longer, only 25% of the adhesive length can be analyzed. Therefore, there
is a limitation on the beam length and we present herein possible specimen geometries for this -
particular application. For this purpose, we start with the limitation that ¢ =3 in. and we arbitrary

chose an adhesive thickness 2t =0.005 in.. The parametric analysis is presented in table 5. Knowing '
’ t and ¢, various magnitudes of adherend thickness and the associated ratios are calculated. Then,
3 the analysis is limited to the range of stiff adhesives such that E/G, < 10° to compute the minimum A
slenderness ratio required for a given state of shear stress within the bondline. Under these condi-
tions, several specimen configurations are suitable one of which is given below.

h = 0125in., ¢ = 3in.,, 2t = 0.005 in.

The dimensionless ratios are :

v -
x v s sk,

t/bh = 0.02, ¢/h = 24
And the test is defined for stifiness ratios varying from 1 to 10°. In this example, the shear stress is

constant over 50 % of the specimen’s length which is well within the range of travel of many SEMs. !

R
PR
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Table 5. Definition of a specimen dimension for SEM application with 2t =0.005 in. and £ =3 in.

et otat it i S SO SR ) SL e SRR R N

h (in.) 0.0625 | 0.125 | 0.250
t/h 0.04 0.02 0.01
¢/h 48 24 12
2|k 7 0 40
Cobms e |70 ’
(!, h)mln required 40 40 30
70 % *
1) i 3 30 25
( /6()) 7 ’
(¢ min required 30 20 20
50 % *

(*) minimum slenderness required by theory to get the percentage of

uniform shear stress indicated.
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3.3 - A LOAD DEFLECTION TEST TO DETERMINE THE

ADHESIVE SHEAR MODULUS

The end point deflection of the BMC cantilever beam adhesive bond test can also be used as
a means to characterize adhesive shear properties. The method is convenient and simple because
it consists in measuring the end deflection and calculating the shear modulus using equation (18)
given in chapter 2. This method uses the dimensionless value B reported in the graph presented in
fig.12 (chapter 2) as a function the stiffness ratio.

Several ways can be used to handle the data generated with this test. First of all, from the
measurement of the end deflection 8, Moussiaux [6] suggested that equation (16) be solved nu-
merically for 3 and then use the result to calculate G, :

P o | _ L\, BE(AYe 12/ 1 _ 1
6—215b(h+z)3(l+'/h)[4(1 y2>+20((>+y2(..2 _;‘anha)} (16)

_ 3G, (¢ \2 (1421 |
= [Za (L) LX) — 1 1
* \[E ( A ) th (l T S+ ) th

and,

1

y=l+ —
(1 + 2t/h)

(15

On the other hand, a graphical determination of G, using the curves given by Moussiaux in
fig.11 (chapter 2) is more direct and easier to use. However, for low beam deformability ( low ratio
E/G, ), the dimensionless end deflection tends to an asymptotic value equal to unity. In that case,
the coefficient f is not sensitive to the variations of the stiffness ratio. As the ratio decreases, the
adherend-adhesive combination tends to constitute a system with a resulting stiffness which ap-
proaches that of the adherend itself. As a consequence, the beam behaves like a monolithic isotropic

beam of thickness 2(h +t). For large stiffness ratios, the same phenomenon occurs with a different
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physical meaning. For soft adhesives, the adherends can develop their full deformation like two
independent monolithic beams of thickness h. The shear strain is maximum but it also becomes
insensitive to material properties variations as seen in fig.22. In these domains vhere the deflection
is not sensitive to the material stiffnesses, the adhesive shear properties cannot be extracted. It fol-
lows that the bond properties can be evaluated only if the stiffness ratio investigated lies where
increases rapidly with the stiffness ratio E/G,.

We can see in fig. 11 that the domain of large f variations always covers two orders of mag-
nitude of variation in the stiffness ratio. This is a rather narrow range but does clearly indicate that
2 unique test specimen can be designed to test adhesives with a BMC deflection method. In con-
clusion, adhesive shear properties can be evaluated by measuring the beam end point deflection,
provided that the specimen geometry is chosen carefully.

In the next section, in order to study the beam deflection response for various geometrical and
material conditions, a parametric analysis has been performed whose purpose is to create guidelines
that would help the user predict adequate specimen dimensions. First, the effect of the shear term

in the deflection equation is analyzed.

3.3.1 - Influence of the adherend shear deformation on deflection

Close examination of equation (16) on the previous page reveals that the total beam defor-
mation is composed of contributions from the bending of the adherends, shear deformation of the
adherends and shear deformation of the adhesive layer. These are respectively represented by each
of the three terms in the square bracket.

A properly designed test specimen should minimize the effects of adherend shear deformations.

To visualize the proper conditions to minimize this contribution, the value of
- 3 AN BB (A 22 (L 4
ﬂ—(l+:/h)[4<l-—y2>+26<!> +y2<;2 aaumha>} (18)
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is plotted in fig.27 with (dashed line) and without (solid line) the middle or adherend shear term.
As can be observed, the solid and dashed curves coincide for large slenderness ratios ¢/h. As a result,

to avoid adherend shear deformation effects requires a large slendemness ratio.
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Figure 27. Influence of the shear term on the end deflection. From left to right, £ /h varies from | to 10
in steps of | between each curve.
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! 3.3.2 - Parametric analysis P
~,;'
)
l’ v
:: The preceding discussion has demonstrated that a specimen geometry can be selected to test )
)
adhesives with the end deflection method. For each stiffness ratio investigated, the parameter § can P
Ry i
A only be easily found in the region of rapid vanation as seen in fig.28. Therefore, the choice of the
> geometry is important because the resulting end deflection might be insensitive to materials prop- ;
kK erties if the experimental data or f lie on the horizontal plateaus of the ( § vs. E/G, ) curve. A
J
;':'. procedure to select the proper geometry is now proposed and it starts with the assumption that an !
estimate of the stiffness ratio is available. A computer program was written to determine the vari-
-,E. ations of the dimensionless end deflection versus beam stiffness ratios. The goal of the procedure 3
: is to present on the same figure, the data resulting from the combination of various geometries. In L
3 this form, to the user is given an overview of the possible beam geometries that can make the test '
'.: successful. It is required that the thickness ratio be input to execute the program for various com-
)
* binations of both the slenderness ratio and the stiffness ratio. The results are shown in fig.28 for PY
) t/h=0.05 and fig.29 for t/h=0.04. The values of the slendemess ratio are limited to vary from 20 ,
i : to 170. Previous discussions have shown that under 10, the slendemness ratio severely influences the X
’.. beam deflection by making the adherend shear term dominant compared to other terms. The upper 3
L
. limit is due to the fact that the § curves converge for values of #/h around 170 making the use of :
: higher slenderness ratios needless which is in agreement with the conclusions on the parametric :
" .
b study limitations discussed in section 3.1. A listing of the program is reported in appendix with '
" y
: examples computed for varying thickness ratios. An example of the choice of specimen dimension o
-
X is given in fig.30 for which we assumed that the stiffness ratio was around 10*. One can appreciate A
.{ the simplicity of the evaluation of the proper specimen geometry. X
L™ »
3 Next, a numerical analysis of the BMC specimen with Finite Element Methods is developed. ° ’
- R!
[ ]
b : ‘
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Figure 28. Variation of beta versus E/Ga. From left to right, £ /h varies from 20 to 170 in steps of 10
between each curve.
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Figure 30. Varistion of beta versus E/Ga. Example of specimen determination from an estimate of the
stiffness ratio
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4 - FINITE ELEMENTS METHODS ( FEM )
APPLIED TO THE ANALYSIS OF THE BMC
SPECIMEN

In reference [6], a numerical evaluation of the BMC model was performed to obtain both the
shear stress distribution in the adhesive layer and the beam deflection. The analysis was conducted
with the Finite Element code VISTA which permits the study of plane strain problems. For the ®
cases investigated, it was revealed that a uniform and pure shear stress was acting in the adhesive
layer. Numerical shear stress singulanties occurred close to the loaded end however, for which no
consistent explanations were provided. In reference {6], VISTA was also used for the analysis of the Y
beam deflection but no agreement was obtained when the analytical results were compared to the

<
9
A
b
numerical results : each computed case differed by 5 % up to 10 % from theoretical values. These 3
4

discrepancies may be attributed to the fact that VISTA solves plane strain types of problems only,

When dealing with a plane strain problem, the bending stiffness is larger than that for plane stress,

and hence, a smaller deflection is obtained for the same applied load.

4 - FINITE ELEMENTS METHODS ( FEM ) APPLIED TO THE ANALYSIS OF THE BMC

whereas the theoretical solution was derived from the plane stress Euler-Bernouilli beam theory. i
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In the present work, the numerical analysis of the BMC specimen started by Moussiaux is

extended and consists in a numerical parametric analysis. A complete study of the BMC model is
possible by using additional FEM codes. First of all, we extend the BMC theory in the case of plane

strain in order to complete the numerical evaluation by Moussiaux.

4.2 - EXTENSION OF THE BMC THEORY TO PLANE STRAIN

In Moussiaux’s work, plane stress theory has been compared to a plane strain numerical code
and discrepancies were found for deflections in the few cases investigated. In this section,we use
Theory of Elasticity to transform in plane strain the shear stress equation and the beam deflection

equations derived in the BMC theory. Next, solutions will be compared to the code VISTA.

4.2.1 - Shear stress distribution in a state of plane strain

In reference [6], the shear stress solution from the BMC theory has been compared with
VISTA and has been validated because of the very good agreement found between numerical and
analytical approaches. In the cases investigated, adhesives were relatively stiff and large values of the
parameter & resulted making the shear stress constant in a large section of the adhesive layer. Our
first work has consisted in running cases assuming soft adhesive which implies a small value of the
parameter & such that the maximum shear stress defined in equation (12a) could never be reached.
We found that the shear stress magnitude is always less than that calculated from the original BMC
theory. Then, conclusions from [6] were questionable and we tried to rewrite the shear stress
equation in order to account for plane strain problems.

For the plane stress situation, the shear stress distribution at the midplane of the BMC spec-
imen is :

4 - FINITE ELEMENTS METHODS ( FEM ) APPLIED TO THE ANALYSIS OF THE BMC
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fx,(x)=?(1-cosha-’(?-+zanhasmha§) (104)

where,

_ G, (¢ \2 (1+2h)} 1
= [3 2 (&£ )P —— _— 1
* \/ E ( A ) th <l T+ 2 > (h

E _ andv by ——— transforms the equations to
I =2 I1—-v

Replacing E in the latter equations by

their general form for the plane strain condition. The new solution leaves the adherend and the
adhesive shear moduli unchanged, but the coefficient @ becomes x\/1 — v3 .

Therefore, the shear stress distribution for plane strain is as follows:
- ~-x / 2 / 2, x 2
1;y(x)=1(1—cosha7 | —v° +tanh(@\/1-—v )smh('a':-—i I~v )) (23)

As shown above, equation (23) differs from equation (10a) by the presence of a factor
/1 —+ in the hyperbolic functions. We can see that due to the nature of the variations of the

hyperbolic functions cosh and sinh, this factor will cause the shear stress to vary differently to its
variation calculated from the plane stress theory.

Comparison between the theoretical solution represented in equation (23) and numerical re-
sults from VISTA will be presented in section 4.4. Next, we tumn to the development of the beam

deflection equation in the case of plane strain.

4.2.2 - End Deflection of the beam in a state of plane strain

We recall that the beam deflection derived for plane stress is given by :

P AE_(_h_)2 P (O S WS E
] zEbh’[4+2G 7 +y2 573 EJtanha (16)
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Proceeding as we did for the shear stress, the form of this equation in plane strain becomes

as follows:

s POU=YY [4+ 3E (L>2+}

2EbR’ 26(1-v) \ ¢
12 1 1 1 - 2
T2y RS SRS S tanha./1 —-v (24)
y’(iz(l—vz) 3 Ru-Af1-4 )

When we look at equation (24), it is clear that a smaller deflection will result in plane strain
due to the factor (1- v3) in front and inside the square bracket. Results for deflection will be also

presented in section 4.4 in comparison with FEM.

4.3 - DESCRIPTION OF THE FEM CODES AVAILABLE

We first used the finite element code VISTA as prescribed by the work done in (6]. This code
may be used for the analysis of axisymmetric bodies or for the plain strain analysis of two-
dimensional problems. The material library allows us to model isotropic-linearly elastic, viscoclastic
materials, and orthotropic-linearly elastic materials. The element library offers isoparametric quad-
ratic quadrilaterals and triangles as well as subparametric triangle elements. In our study, the
specimen was discretized by a two-dimensional plane strain mesh of 8-node isoparametric
quadrilateral elements. The mesh, consisting of 633 nodes and 192 elements, is shown in 4 31.

Recently, a new finite-element code called NOVA is available for the stress analysis of in-situ
adhesives [10]. NOVA has the capability of solving two-dimensional, planar or axisymmetric
problem geometries with either isotropic or anisotropic materials. Routines allow for geometrical
nonlinearities and nonlinear viscoelastic behavior in the adhesive. The code was validated by com-
parison with analytical and experimental results found in the literature for specimens such as the

single lap joint, the thick adherend lap joint, rod, viscoelastic adhesive coupon including moisture
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diffusion, creep, etc... In our work, NOVA was used for a numerical plane stress analysis of the
BMC test specimen. The “NOVA~” specimen was discretized into 288 8-node isoparametric and
two-dimensional plane stress elements : 24 elements in the x-direction, 12 elements in the y-
direction and a total of 937 nodal points. The mesh with NOVA is shown in fig.32.

For each run, we assumed both the adherends and the adhesive to be linear elastic. The Finite
Element mesh was gradually refined towards the loaded and the clamped ends in order to describe
possible singularities. The loading of the BMC was applied by imposing the following boundary
conditions : a symmetric load applied at one end as shown in fig.1 and the other end clamped. The
stresses in the adhesive layer and the deflection of the beam were studied for various geometrical
and material properties input data in order to analyze the effect of these parameters. Results ob-
tained numerically have been compared to analytical predictions in section 4.4. Before presenting
these results, a first study is performed with the code VISTA to provide a better understanding of
the numerical shear stress singularities found in reference {6] and recalled at the beginning of this

chapter.

4.3.1 - Influence of the Finite Element mesh on the stress distribution

For a more accurate description of the numerical stress gradients near the extremity of the
adhesive, a more refined mesh was used for the analysis with VISTA. We divided the adhesive into
24 clements instead of 16 in the x-direction with same refinements close to the edges. The results
are shown in fig.33. It can be scen that the stress singulanty is shifted to the beam tip as the mesh
is refined. Therefore, it appears that the stress singularity occurring when a FEM analysis of the
BMC specimen is performed, is sensitive to the degree of refinement of the mesh. By making the
mesh even more refined at the edge, the singularity would concentrate in an infinitively small region

at the beam extremity. Another comparison with the FEM code NOVA confirms this observation
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Figure 31. Finite elements mesh used with VISTA

Figure 32. Finite clements mesh used with NOVA
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» with the additional information that the FEM code definition is also involved in the stress numer-
ical singularity observed because it has been noticed in the analysis with NOVA that the stress
singularities is smoother than that observed in the analysis with VISTA.
® \&
4.4 - COMPARISON OF BMC THEORY WITH FEM RESULTS ';\éﬁ
N
LA
® Table 6 lists the input data for the comparative FEM analysis. Geometrical and material data
are given in terms of parameter @ in accordance with chapter 3. Numerical results for the maximum
shear stress and the end deflection of the beam are printed in table 7, together with the analytical
P predictions. This allows us to make a comparison between theory and Finite Element results, and _
also to appreciate the good agreement between them. For a better overview of the quality of the _
results, a graphical comparison of the beam deflections is shown on fig.34 to 36. Finally, the sol- .:::"
ution for the shear stress field proposed in chapter 3 for a BMC specimen oriented towards SEM =
P application is checked by numerical analysis. Results are shown in fig.37. ::;:
N
) ,“- '
A
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o
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Table 6. Definition of geometrical and material properties used as input data for the numerical analysis.

specimen t h 4 t/h | ¢/h E/G, =
number (in.) (in.) | (in.))
1 00625 | 025 50 § 025 20 100000| 0.3
2 0.0625 | 025 ] 5.0 | 025 | 20 260 | 6.9
3 0.0250 | 025 | 25 | 0.10 § 10 26 | 143
4 00250 | 025} 25 | 0.10 | 10 87 | 7.8
5 00250 | 0.25 1 25 | 0.10 | 10 260 | 4.5
6 0.0250 | 0.25 | 25 | 0.10 | 10 2600 | 1.4
7 0.0250 | 025 25 | 0.10] 10 84000 ( 0.2
8 0.0250 | 025 5.0 | o0.10} 20 260 | 9.0
9 00125 | 025 ] 25 | 0051 10 26 | 18.8
10 0.0125 1 025} 25 | GO5 | 10 87 | 103
11 00125 | 025 | 25 | 005 10 260 | 5.9
12 0.0125 [ 025 | 25 } 0.05| 10 2600 | 1.9
13 0.0125 | 025 | 25 } 005 10 26000 ( 0.6
14 0.0125 { 025 | 25 | 0.05{ 10 84000 | 0.3
15 0.0125 | 025 5.0 | 005 | 20 84000 | 0.6
16 00050 | 025 25 | 0.02} 10 26 | 28.5
17 0.0050 | 025} 25 | 0021 10 87 | 156
18 0.0050 { 025} 25 | 002 10 260 | 9.0
19 0.0050 | 0251 25 | 0.02| 10 2600 | 2.8
20 0.0050 t 025} 2.5 | 002 ] 10 26000 | 0.9
21 0.0050 [ 025§ 25 | 002 | 10 84000 | 0.5
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) Table 7. Numerical results from FEM codes VISTA and NOVA compared with BMC theory ( P= 100
Lb.).
specimen VISTA THEORY (1) NOVA (2) THEORY (2)
number Tmax S max é mex é Tm 4

(Ps)  (in) |(Ps)  n) |[(Psh  (Gn) |(PS)  (in)

13 | 1L37E-01 12 } 1.40E-01 14 } 1.53E-0] 14 } 1.54E-01
233 | 2.62E-02 | 232 | 2.60E-02 | 235 | 2.84E-02 | 232 | 2.85E-02
271 | 3.72E-03 | 271 | 3.81E-03 | 272 { 4.17E-03 | 271 | 4.17E-03
271 | 4.17E-03 | 270 | 4.24E-03 | 271 | 4.64E-03 | 271 | 4.65E-03
266 | 5.27E-03 | 265 | S5.30E-03 | 266 | 5.7SE-03 | 265 | 5.81E-03
144 | 1.10E-02 { 141 | 1.17E-02 | 150 | 1.30E-02 | 148 | 1.29E-02

8 | 5.79E-03 8 | 6.00E-03 10 | 6.53E-03 8 | 6.60E-03
272 1 3.16E-02 | 271 | 3.16E-02 | 271 | 3.49E-02 | 271 | 3.47E-02
285 | 4.15E-03 | 285 | 4.23E-03 | 285 | 4.63E-03 | 285 | 4.64E-03
285 | 4.41E-03 | 285 | 4.48E-03 | 285 | 4.95E-03 | 285 | 4.91E-03
285 | S.08E-03 | 284 | S.I2E-03 | 285 | S.67E-03 | 284 | 5.61E-03
195 1 LOOE-02 | 194 | 1.00E-02 | 202 { 1.14E-02 | 201 | 1.10E-02

42 | 1.61E-02 41 | 1.66E-02 45 | 1.74E-02 44 | 1.82E-02

14 | S.75E-03 14 | 5.93E-03 I5 | 6.28E-03 15 | 6.51E-03

49 | 4.22E-02 49 | 4.29E-02 55 | 5.44E-02 53 | 4.72E-02 .
295 | 4.45E-03 | 294 | 4.53E-03 | 295 | 497E-03 | 294 | 4.96E-03 .
295 | 4.57E-03 | 294 | 4.64E-03 | 295 | S5.10E-03 | 294 § 5.08E-03 e
295 | 4.88E-03 | 294 | 4.93E-03 ; 295 | 5.53E-03 | 294 | 5.40E-03
258 | 7.84E-03 | 256 | 7.81E-03 | 260 | 8.84E-03 | 260 | 8.57E-03

g friSaf-Svirdui it AT B NV

84 1.47E-02 83 1.49E-02 91 1.59E-02 89 1.64E-02 N

31 | 5.57E-03 K3 5.70E-03 35 | 6.00E-03 34 | 6.26E-03
(1) plane strain N
(2) plane stress i
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P = 100 Lb.
E/Ga = 260
= 3in.

h = 0.125in.
t = 0.0025 in.

Figure 34. Comparison of the beam deflection obtained with VISTA ( triangles ), NOVA ( diamonds )
in plane stress, Solid curve : plane stress BMC theory. Dashed curve : plane strain BMC

theory.
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Figure 35. Comparison of numerical and theoretical dimensionless end deflections for the cases com-
puted with NOVA in plane stress.
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Figure 36. Comparison of numerical and theoretical dimensionless end deflections for the cases com-
puted with VISTA in plane strain.
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4.5 - STRESS ANALYSIS WITHIN THE ADHESIVE

The FEM codes were used to pursue the analysis of the BMC specimen in greater detail.
They provide a further understanding of the role played by modifications in the BMC test specimen
in influencing the stresses in the bonded joint. The effect of the loading mode on the stress distrib-
ution has already been treated in [6] and it was concluded that the pure shear state within the ad-
hesive layer is severely dependent on the symmetry of the applied load. In the present analysis, the
influence of the adhesive thickness on the stress distribution and three-dimensional effects on
stresses are studied. A particular BMC specimen with an adhesive layer shorter than the adherends

is also analyzed.

4.5.1 - Effects of the adhesive thickness on the stress state

Purity and uniformity of the shear stress state are analyzed for various adhesive thicknesses.
For thick adhesives, the purity of the stress state might be perturbed by the development of teansile
stresses o, and o,. In addition, the uniformity of the shear stress distribution can be altered by the
increase of the adhesive thickness.

VISTA was used to study the effects of adhesive thickness on the stress distribution within the
bondline. Five cases were run and compared for joint thicknesses of 0.005, 0.01, 0.025, 0.05 and
0.25 in.. The material properties used to run these examples were as follows : stiffness ratio E/G,
= 260, adherends thicknesses h = 0.25 in., and beam lengths ¢ = 2.5 in.. The only vanable was
the adhesive thickness 2t.

Tensile stresses o,, 0, and shear stress r,, from the FEM outputs are reported in fig.38 to 42

in the form of iso-stress maps covering all the adhesive layer in the plane x-y. The analysis of these

figures revealed that the magnitudes of the tensile stresses do not exceed a few percent of that of the

shear stress. This also holds true for the case of thickest adhesive of 0.25 in.. Hence, the shear state
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Figure 38. Iso-stress lines in the adhesive layer - 2t = 0.005 in.
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Figure 41. lso-etress lines in the adhesive layer - 2t=0.05 in.
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in the adhesive layer is dominant and it is pure at the midplane. The shear stress is also uniform
almost everywhere in the y-direction, irrespective of joint thickness. We note however that the
shear stress varies in the y-direction in areas such as the adherend-adhesive interface and the loaded
end. This fact can be attribute to the discretization of the adhesive layer with VISTA. By refining
the mesh in the y-direction and in the x-direction, the intermediate small regions where the shear
stress is not constant in the y-direction is expected to be reduced. In conclusion, the thickness of
the adhesive layer does have an influence on the stress magnitude but it is not important enough
to affect the purity and the uniformity of the shear stress state.

Although their magnitudes are small compared to that of the shear stress, normal stresses do
exist in the adhesive layer. Their presence is not acceptable in view of the assumption of pure shear
state of the BMC theory. In order to understand the presence of these stresses, a solution is pro-
posed herein for which we turn to the analysis of the adhesive stiffness effect on the adhesive state
of stress.

The case of a BMC specimen in which adherends are bonded with a soft adhesive such as
rubber has been studied with VISTA. The numericai code showed that the state of stress in the
adhesive 1s pure shear due to the absence of significant tensile stress at any location in the adhesive.
Conversely, in the case of a stiff adhesive, the beam tends to act like a monolithic beam and an
infinitesimal element of the adhesive experiences tensile stresses o, and o, in addition to the shear
stress 1,,. In fig.43 and 44, we plotted stress fields for two cases studied with FEM. Both cases
featured the same specimen geometry and the stresses were picked up at the same location :
x/¢ =0.5. Adherends had also the same stiffness and Poisson’s ratio. Only the adhesive stiffnesses
differed : for one specimen the adhesive Young’'s modulus was 10° Psi and for the second specimen,
it was 100 Psi. These properties made the stitfness ratios equal to 260 and 260,000 respectively.
The diagrams for the axial stress o, clearly reveal the influence of adhesive stiffness on the BMC
specimen behavior.

In conclusion, material propertics and beam geometry contribute to the magnitude of each
stress. FEM showed that in most cases, the state of stress is always shear since the tensile stresses

are negligible. Moreover, the pure shear stress state at the midplane of the adhesive is extended to
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the entire bondline when the joint is soft compared to the adherend stiffness. Therefore, the two-
dimensional numerical analysis underlines that the BMC theory based on the assumption of pure Ry
shear acting in the adhesive, is valid for a category of adhesives with low stiffness. It is also inter- oy
* esting to recall that in reference (6], Moussiaux studied the influence of boundary conditions on the ." o
BMC specimen. When a nonsymmetric load is acting, tensile stresses o,, o, develop at the Ny

centerline close to the loaded end, but the magnitude of the shear stress is not affected. sttt
"

4 - FINITE ELEMENTS METHODS ( FEM ) APPLIED TO THE ANALYSIS OF THE BMC A ..'.'0:
SPECIMEN 82 g

.
PELAE Tl TR
LI




2 q s Ty
abatavatdia AVa At Ve Al ! r o - ]
PR R TR KT PR N AN AN PN AL KA RN WY W T "o W - Attty DAL S gl Sabetal A ol SAAN 4N PR e T e . -

U 4.5.2 - Three-dimensional stress analysis in the adhesive

The preceding sections have been concerned with two-dimensional numerical analysis of the
BMC specimen. The present section is devoted to further analysis based on the understanding of

stress state and beamn deflection in a modelling closer to the real situation than the two-dimensional ‘4

.

analysis when dealing with the experimental use of the BMC specimen.

o .oy

In order to analyze the in-plane and the out-of-plane stresses in the adhesive layer, we used

the 4.5 version of the ABAQUS code made available at Virginia Polytechnic Institute and State -

.

University under an academic contract with Hibbit, Karlsson and Sorensen, Inc..

ABAQUS is a Finite Element program, designed for the analysis of structural responses. The

-

program libraries permit a large flexibility and a high degree of generality in modelling both linear '
« and nonlinear problems. The program can solve stress problems divided into static and dynamic *
; sesponses and offers options for material, geometric and boundary nonlinearities. Specifications for ]
| boundary conditions and for history definition are very flexible and the specifications are made even
more powerful by the possibility of adding subroutines written by the user to the internal main )
program. This option makes the program usable for any kind of structural analysis.
N The geometric modelling for the three-dimensional analysis of the BMC specimen required the '

. use of twenty-node quadratic elements as shown in fig.45, where the node numbers have been re-

. d

4 ferred to a cartesian coordinate system. In our analysis of the BMC specimen, the Finite Element

mesh consisted in 400 elements arranged as follows : 10 elements in the x-direction, 3 elements in

P S

¢ach adherend and 4 elements in the adhesive in the y-direction and 4 elements in the z-direction ]

LY

0

X (fig.46). This discretization produced 2189 nodal points and a total of 65 degrees of freedom. A

more refined mesh may have been more suitable in our analysis, especially in the z-direction.

SRRSO -...

) However, due to the difficulties of running the program when we tried to define a more refined

mesh, we simply optimized the discretization of the beam ir. order to ensure sufficient storage and

maximum accuracy in the output data.
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Figure 46. Three-dimensional mesh of the BMC specimen.
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4.5.2.1 - Boundary conditions
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In the BMC test specimen problem, the first boundary condition is kinematic and consists in
specifying fixed displacements at the clamped end of the beam. In the Finite Element modelling
with ABAQUS, a node set is assigned the boundary condition. The degrees of freedom of the nodal
points in the set are constrained in the 3 directions x, y and z to satisfy the fixed displacement
condition.

Extending the two-dimensional BMC analysis to a three-dimensional problem modifies the
boundary conditions for loading because the load acting at the extremities is now distributed along
the edges. The force is acting parallel to the y-direction and it is distributed uniformly in the z-
direction with a resultant equal to % The problem then cunsists in finding the nodal force dis-
tribution.

In reference {17], O.C. Zienkiewicz proposed to integrate the appropriate shape functions at
the nodal points multiplied by the load, over the volume of an element. However, the mathematical
work is simplified by noticing that the forces are acting only at one edge of the elements at the beam
tips. Consequently, the problem is equivalent to calculating the force contribution on the three
nodes of a one-dimensional quadratic element.

The interpolation functions for a one-dimensional three-nodes element are given by J.N.

Reddy in [18]. These functions are constructed by using the linear stretch transformation :

2x—(x,+xe+|)

{= n, (25)
where ¢ is the local coordinate equal to -1 at the left end node and equal to + 1 at the right end . q‘-,..;‘-.
I“d':--‘ i
node. The coordinates x, and x,,, arc referred to the global coordinate system and represent the :\,j
LAY
positions of the left end and the right end nodes respectively. The quantity h is the length of the ::::::::
RESEN

element and subscript ¢ indicates that the variables are referred to the element.

4 - FINITE ELEMENTS METHODS ( FEM ) APPLIED TO THE ANALYSIS OF THE BMC

SPECIMEN 86
- o - . e D - . - - - -~ L3P W TN S ST e T T N I VR T T T I DT IR T e I ---"--.\ B
RN N NSO N I ‘ ; R A A N A A A A N A A A A A ST A P




f' LV LY
Sl Pl

IS TRt TR LWL LS & I A SR Uy y"--’.._'\'.y
il .’- .' “ 45 - ..".. ' e ‘. 'h g » { f

The interpolation functions are easily derived. Their expressions at nodes 1, 2, 3 of the ele-

ment are :

Ny=—221-9) (269)
Ny=1-¢* (26b)
Ny= 8l +9) (260

In order to obtain the nodal forces equivalent to a distributed load acting on edges of the BMC
three-dimensional model, we have to integrate the shape functions N, multiplied by the acting force,
over the length of the one-dimensional quadratic element. Prior to the integration and because a

change in coordinate system has been done, we must differentiate the variable x with respect to the

local variable ¢, namely :

h
dx=7’d¢ (27

Next, in the local coordinate system ¢, the force acting at node i of element e is given in the

general case as follows :

fi= f NS —h{- dg (28)
In equation 28, fis equal to %— Due to the choice of the Finite Element mesh, A, is %— inch
for every clement. Finally, for each node, we obtain :
K=& (2%9)
f=+ (296)
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A= (29)

The distribution of the loads at the edge of the BMC specimen characterized by —J;f- =1 was
drawn in fig.47.

4.5.2.2 - Results and discussion

The properties of the cases investigated in the three-dimensional Finite Element analysis are
listed in table 8. The results for stresses and deflections are presented at the end of this section.
Due to symmetry, results are given for only one quarter of the adhesive layer at 9 different locations.
These locations are shown in fig.48.

The deflections depicted in fig.49 to 52 show that the numerical results with ABAQUS lie
between theoretical predictions in plane stress and in plane strain for any location in the adhesive.
This remark was expected because when one uses FEM to analyze a three-dimensional problem,
there is no option to define whether the problem should be solved in plane stress or in plane strain.
Depending on the choice of the specimen geometry, the numerical solution in 3 dimensions ap-
proaches one of the two two-dimensional solutions in plane stress or in plane strain. In reference
(19], Timoshenko and Goodier define plane stress and plane strain in terms of the geometry and the
loading of a body. On account of geometry, plane stress state is defined qualitatively as thin plates
problems whereas plane strain state concerns bodies whose dimension in the z direction is very
large. Then, when we compare the beam deflections in fig.49 and 50 for E/G, = 26000 to that shown
in fig.51 and 52 for E/G, = 260, we can see that the adhesive thicknesses considered do not influence
the convergence of the numerical solution towards either the plane stress or the plane strain the-
oretical solution. However, for the deflection of the softer adhesive characterized by the highest
stiffness ratio, numerical solution approaches the theoretical solution for plane strain. Conversely,

in the case of the stiffer adhesive, numerical solution is closer to the analytical predictions in plane
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Table 8. Definition of geometrical and material properties used as input data for the numerical analysis
with ABAQUS.

t h '3 ¢h | E E,
(in.) (in.) | (in. (Ps1) (Psi)
1 0.025 025 ] 2.5 10 107 03 | 10| 0.3
2 0.0125 | 025} 2.5 10 1004 03 | 163] 0.3
3 0.025 0251 2.5 10 1071 03 | 108} 0.3
4 0.0125 | 025 ] 2.5 10 100 03 | 106} 0.3
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stress. An explanation would be that when the adhesive stifiness approaches that of the adherend, o
the BMC specimen tends to behave like a monolithic beam of thickness 2(h +t) but when the ad- oy :|'
Rttty
hesive is very soft, the deflection of the specimen is almost due to the bending of the adherend alone ¥ "':::':.'
1
: . : . . . : o
whose thickness is h. Then, in the case of the stiff adhesive, the ratio of the beam thickness by the nhy
[ ]
beam width is larger than that in the case of the beam with a soft adhesive. Consequently, regardless tﬁ"""
LI
to the definition given in [19] for plane stress and plane strain in term of geometry, the deflection '\';';‘_‘:_-_
* ":'. -
in the first case is closer to the deflection calculated analytically in plane stress and the second case > "_q
favorises the deflection to approach the plane strain situation with a dominant dimension in the z - L2 s
L . - . Pty
direction. On account to an experimental application, the beam deflection measured on the BMC :"\,
Mgt 0
specimen can differ from the theoretical solution for the reasons explained above without going :'_:.-‘3_‘;
Vi
against the validity of the BMC theory. :y‘:
Next, we tum to the analysis of the stress state in the adhesive layer. ’?7;'5".
In fig.53 to 68, we plotted the numerical results obtained for stresses o,, 9,, 5, and =, at dif- fE ,\')'
\F
W
ferent locations in the adhesive layer. The locations where the stresses were calculated are listed in -::-“‘
o
the figures. The first remark is that the shear stress is acting alone at the adhesive midplane because :
¥ O
all other stresses are zero at this location. In the case of the shear stress distribution, numerical re- 1”‘,}. ":
LS.
30
sults superpose very well with the analytical solution from the BMC theory reported in fig.53 to ::)t Y
WX
56. The agreement between theory and ABAQUS is perfect for soft adhesive but in the case of stiff .. ‘
D
adhesive, numerical results differ by a few percent from theory in the z direction for a given x lo- ‘~'&- o
.. e e e . e
cation. However, ABAQUS gives a similar shear stress distribution to theory in the plane 2=0. < \3\&
We can see that there is no influence of the adhesive thickness on the quality of the results except, h "f"
of course, for the magnitude of the resulting shear stress. Stress singularities occur at the loaded end ‘_‘-f,::::‘\-
which have already been studied in the two-dimensional FE analysis. In the case of the axial .-'.‘::'_'.;
ALY
stresses, they all present stress singularities at both the clamped end of the beam and the loaded end ""u:;.;‘
with high concentration at the latter location. In addition, the decrease of the adhesive thickness .:'-:f-,
Dy " \
contributes to reduce the magnitude of tensile stresses. The magnitude of the in-plane stresses o, :‘::‘i N,
WY
and o, are significantly increased from soft adhesive with less than 1 Psi to stiff adhesive with less ‘_:':".k
e
than 10 Psi. The larger in-plane stresses are present at the interface between adherend and adhesive °
».‘ N , w
Sy
wr ¥
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Figure 50. Beam deflection from three-dimensional analysis. P =100 Lb., E/Ga= 26000, ¢/h= 10 and
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Figure 55. Shear stress in the adhesive layer from three-dimensional analysis. P = {00 Lb., E/Ga =260,
£/h=10 and t/h=0.1.
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Figure 56. Shear stress in the adhesive layer from three-dimensional anaiysis. P = 100 Lb., E/Ga = 260,

¢/h= 10 and t/h =0.0S.
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Figure 57. Tensile stress sigma x in the adhesive layer from three-dimensional analysis. P =100 Lb,,
E/Ga=26000,¢/h=10 and t/h=0.1. )
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Figure 59. Tensile stress sigma x in the adhesive layer from three-dimensional analysis. P= 100 Lb,,
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Figure 61. Tensile stress sigma y in the adhesive layer from three-dimensional analysis. P= 100 Lb.,
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Figure 62. Tensile stress sigma y in the adhesive layer from three-dimensional analysis. P=100 Lb., K
E/Ga=26000, Z/h=10 and t/h=0.05. N
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Figure 63. Tensile stress sigma y in the adhesive layer from three-dimensional analysis. P=100 Lb,,
E/Ga=260,¢/h=10 and t/h=0.1.
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Figure 66. Tensile stress sigma z in the adhesive layer from three-dimensional analysis. P=100 Lb.,
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for o, and at the external surface of the adhesive for o,. These stresses approach zero as they are
calculated closer to the midplane. Finally, the out-of-plane stress o, is a compressive stress in the

upper half of the adhesive with high magnitude compared to that of the other tensile stresses. The

o A g
et T e

same singularities occur at the extremitics and large stress concentrations are present at the

L
. adherend-adhesive interface. B
0
5' In conclusion, the three-dimensional Finite Element analysis of the BMC specimen reveals the
X presence of in-plane and out-of-plane stresses in the adhesive layer in addition to the shear stress.
As said in the two-dimensional analysis, the magnitude of the axial stresses is negligible in com- 0
:\' parison to that of the shear stress especially for soft adhesive, but concentrations at the loaded end
)
: occur, particularly at the interface between adherend and adhesive. Tensile stresses do not modify
i
» the state of shear because FE showed that in the cases investigated, good agreements were obtained .
3 for the shear stress distribution between theory and numerical results. The additional analysis of the
| ) beam deflection reinforced the validity of the BMC theory.
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4.5.3 - Comparison of the stress state in the adhesive between the BMC test

specimen and a modified BMIC specimen

For stiff combinations of adherends and adhesive ( aluminum-epoxy for instance ), the adhe-
sive shear deformation as well as the end point deflection resulting from the loading of the beam
can be very small and can require sensitive measuring techniques to be measured. In extreme cases,
the shear stress state would approach that of a monolithic beam. In chapter 2, a quantitative
parametric analysis has been conducted to illustrate the situation. In crder to increase the shear
deformation in the adhesive layer, one option is to reduce the length of the bonded adhesive.
VISTA was used to analyze the resulting state of stress in the short adhesive layer. Tensile stresses
o, and o, may exist in the adhesive but as long as their magnitudes are still a few percent of that

of the shear stress, the state of stress is still pure shear for all practical purposes.

4.5.3.1 - Finite Element model

We considered an adhesive layer with half the adherend length and located symmetrically be-
tween the two clamped adherends. In the adhesive layer, the mesh consisted of 112 elements with
some refinement at the bond tips. The FEM mesh is depicted in fig.69.

4.5.3.2 - Results and discussion

Figure 70 represents the shear stress distributions at the adhesive mid-plane for a short adhe-
sive of length ¢, = —;— and for an adhesive of length ¢. For the long adhesive layer, the shear stress

is that predicted by theory. For the short adhesive, the shear stress differs entirely from theory : it
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Figure 69. Finite elements mesh used with VISTA for the analysis of a short adhesive.
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increases uniformly from left to right towards where the beam is loaded and it drops to zero at the
tips. Fig.71 shows that the shear stress is uniform within the adhesive thickness, and that it is not
uniform along the length far away from cither extremity of the adhesive where the shear stress has
peaks. The tensile stresses acting in the adhesive layer are shown in fig.72 and 73 and they can be
compared to that depicted in the iso-stress maps for the same BMC specimen with an adhesive
bonded over the entire beam length. On fig.72 and 73, one can see that high tensile stresses con-
centrations occur at the extremities especially at the adherend/adhesive interface for the peel stress.
These stress concentrations are however limited to small lengths at the adhesive ends and the larger
stress magnitudes are close to the loaded end. No other stress than the shear stress is acting at the
midplane. Furthermore, when we compare the magnitude of the shear stress with that of the tensile
stresses, one can see that the latter are negligible far enough from the extremities of the joint where
the peaks are. Therefore, in the major part of the joint, the state of stress is still pure shear, uniform
over the thickness and with an increasing magnitude along the x-location. Finally, by reducing the
joint length, the shear strain is increased from 20 up to 100 % compared to the case of a long joint.
This increase facilitates the measurement of the deformation for low BMC beam stiffness ratios.

In the next section, we present the results of an experimental study made in addition to the

analytical and the numerical analyses of the BMC specimen.
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e S - EXPERIMENTAL APPROACH
o
* °
[ M
b
io¥F
.
R
- The experimental tests on the BMC specimen were performed in order to measure the de- *
o
; flection of the beam and the shear deformation. Specimen geometries were varied to compare ex-
(" ;
:;: perimental results to analytical predictions. The adherends were steel ( E=30x10¢ PSi ( 207000
X
ot MPa ), v=0.31 ) and aluminum ( E=10.2x10¢ PSi ( 70380 MPa ),v= 0.29 ). The adhesives were °
‘.,' Neoprene 5109S ( G,= 130 PSi ( 0.897 MPa )) and FM300-K ( G, = 1.2x10° PSi ( 805.4 MPa )).
§ Three types of adherend-adhesive combination were considered. Rubber-to-steel and epoxy-to-
l{
! aluminum were the two extreme cases because their resulting stiffness ratios are large ( 2.3 x 105) °
K- and small ( 10% ) respectively. They also ill 1strate some of the most used adhesion combinations in
2 bonded structures. A third set consisting of rubber-to-aluminum specimens provided more data for
‘
i the experimental evaluation of the BMC theory. )
' °
= 5.1 - SPECIMEN PREPARATION
A °
o l
B, To prepare the specimens, the adherends were vapor degreased, grit-blasted with steel grit, and
s, vapor degreased again with tri-chloroethane 1,1,1. For bonding the rubber, two coats of Chemlock
(L
205 primer and two coats of Chemlock 220 topcoat were brushed on the adherends, allowing for L
<,
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drying before applying the next layer. The mold was preheated in the platen press and the specimens
were placed inside with a rubber layer sandwiched between the two adherends. The rubber was
vulcanized at 163°C ( 325°F ) for two hours at a pressure of 3.45 MPa ( 500 PSi ). In the case of S
the specimens bonded with epoxy, the resin was inserted between the aluminum adherends imme-
diately after the second vapor degreasing. Then, the specimens were cured for one hour in a pre- Z:'}'
heated oven at 175°C ( 347°F ). The shape of the specimens is shown in fig.74 and the properties ;;2
of the beams are listed in tables 9, 10, 11. et

5.2 - EXPERIMENTAL SET-UP E

A special device had to be designed to conduct the experiments on the BMC specimen. As )
shown on fig.75, the beam was clamped vertically on a rigid frame that supported the loading sys- ~da
tem which consisted in a screw and a mini load cell connected to a yoke on which a pin was at-
tached. The load was applied by pulling on one side of the specimen with the horizontal pin acting :-".'.N";
on a groove built on the constrained side of the specimen. The load was transferred to the two BN
adherends by putting a rigid shim between both adherends at the loading point of the same thick- ot
ness as the adhesive layer. The load applied with the screw was recorded with the load cell fixed i
between the specimen and the rigid frame device. The beam end deflection as well as the relative

motion of the adherends were measured simultaneously in the manner described next. "'::\: |
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Table 9. Rubber-to-steel specimens.

losad val talh Sal vad Vel tah Sch te B odall a6 2100

specimen
code

adherend
thickness
h(in.)

adhesive
thickness
2t (in.)

beam length | measurement "'E:

¢ (in.)

location * 8!

x/¢ o

RBI1

0.125

0.051

3.5

0.58 oy

RB2

0.125

0.048

4.5

0.52 [ ]

RB3

0.125

0.039

5.5

'r
L
r,

0.45

Dol o
W

RB4

0.125

0.045

6.5

'x"}

0.44

-~
‘

RBS

0.125

0.040

7.5

[

0.63

RB6

0.125

0.041

9.5

1 -

' I.'J'.'f
Ly s
o

0.71
048 » o
0-24 :"‘n:',r h

RB7?

0.125

0.045

9.5

0.75 W

E=30x10¢ Psi , v=0.31

Ga=130 Psi

(*) for shear deformation measurements
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Table 10. Rubber-to-aluminum specimens. ]

specimen | adherend | adhesive | beam length | measurement ; ‘
code thickness | thickness location * :
h(in.) | 2t(in.) 2 (in.) x/€ o
ARBI 0.125 0.015 35 0.41
ARB2 0.125 0.016 4.5 0.40 ¢
ARB3 0.125 0.041 4.5 0.43 f,'_
ARB4 0.125 0.024 5.5 0.45 .

E=10.2x10% Psi , v=0.29 ;
Ga=130 Psi
(*) for shear deformation measurements '
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Table 11. Epoxy-to-aluminum specimens.
specimen | adherend | adhesive | beam length
code thickness | thickness
h(in.) 2t (in.) ¢ (in.)
EALIl 0.125 0.046 2.5
EAL2 0.125 0.088 2.5
EAL3 0.125 0.048 35
EALA4 0.125 0.043 35
EALS 0.125 0.038 4.5
EALS 0.125 0.040 4.5
E=10.2x10¢ Psi,v=0.29

Ga=1.2x10° Psi
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Figure 75. Experimental set-up.

$ - EXPERIMENTAL APPROACH

¥

- -waw SR AT SCA A A, AR, ~ R R Pt RS O IR A AT AT
00, G A i VT S XIAIAY TN A A AN A RPN N Y L e A A



R R T T O R R R O R R R A RN N TN T Y Oy v U Yy TRy

ANV RLY

5.3 - SHEAR DEFORMATION MEASUREMENTS

The measurement of the shear deformation of the beam was conducted with a Krieger gage
[20] which is an extensometer initially developed to give the shear stress-strain curve for a glue line
in a thick adherend lap shear specimen. The extensometer is positioned on the side of the BMC
specimen as pictured in fig.76. When the beam is loaded, the extensometer records the relative
motion of the adherends. The applied force and the shear deformation are then printed on a X-Y
plotter and provide the data for a comparison between the experimental shear strain and that pre-
dicted from theory. The experimental results are presented on fig.77 to 87 and they are compared
with the theoretical predictions. The shear strain was calculated by dividing the shear deformation
by the distance separating the two hard steel points of the gage and clamped to each adherend. The
theoretical curves were obtained from the shear strain approach of the BMC theory and by using
the input data listed in tables 9 and 10. Comparison between experimental and analytical results
shows that a good agreement is found especially when the shear deformation is measured far away
from the loaded end. As demonstrated by specimens RB6 and RB7, the measured shear strain is
very sensitive to the measurement location and the difference between theory and experiments in-
creases with the quantity % We expect the Krieger gage itself to be responsible for this disparity
because the closer to the beam tip the shear deformation is measured, the larger is the bending de-
formation of the adherends. Therefore, each cross section of the adherend rotates relatively to the
adhesive midplane and causes a reduction of the real deformation in shear recorded by the Krieger
gage. This is illustrated for several specimens on the following figures.

For our purpose, the Krieger gage was difficult to use and is not recommended for further
experiments on the BMC specimen. Vibrations occurred and the measurements lacked
reproducibility on repeated loading. In particular, this happened when the shear deformation was
expected to have a small magnitude relatively to the material properties of the specimen.
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Figure 76. Krieger gage on the BMC specimen.
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Figure 77. Shear strain versus load. Specimen RB1. Comparison of theory ( solid curve ) with exper-
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Figure 78. Shear strain versus load. Specimen RB2. Comparison of theory ( solid curve ) with exper-
iments ( triangles ).
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# 5.4 - DEFLECTION MEASUREMENTS .
E:’ The end deflection was measured with a MTS extensometer mounted at the loading point of

A the specimen. With an X-Y plotter, we simultaneously recorded the load deflection curve. Exper- °
;‘: imental resuits are presented on fig.88 to 101. We also have reported the theoretical data corre-

;.; sponding to the specimens geometrical and material properties. This allowed for a graphical

.:' comparison of experiments results with the BMC theory based on the beam deflection approach.
' For rubber-to-steel specimens or rubber-to-aluminum specimens, excellent agreement is obtained ¢
',: between the two results. Even for the epoxy-to-aluminum specimens, good agreement is found

; between theory and experiments, However, the loading of the epoxy-to-aluminum specimens had

A to be modified. When the specimens were loaded by pulling on one side and by assuming that the ®
;': load was transferred to both adherends with the inserted rigid shim, deflections were 50 % larger
;: than those predicted. The loading system was responsible for this disparity because, due to the large

K, stiffness of the epoxy resin, the applied force on the upper adherend was actually not transferred to °
5 the lower aluminum beam. As a results the force magnitude was —2— instead of P regardless to the

" initial loading conditions of the theoretical model. By designing a new loading device, we were able
3 to apply equal forces on both aluminum beams. We set one small screw at the extremity of each

‘: adherend. The yoke was modified in order to support two pulleys on which a piano wire type cable o
E:: was going around. The two extremities of the cable were attached to each small screws fixed on each

:E: adherends. By pulling on the yoke, the adherends were constrained equally. Then, experimental

p results matched with theory with errors inferior to 10 % which can further be attributed to a lack PY
3 of ngidity of the clamping system of the specimen because the boundary conditions did not per-
‘E fectly reproduced the ideal clamped BMC specimen situation. As shown in the next figures, it re-

. sulted in higher deflections for all stiff specimens bonded with epoxy. In addition, contribution of

™. the solid loading frame is not negligible when the epoxy-to-aluminum specimens are loaded with a °
"j side load.
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Figure 88. FEnd deflection versus load. Specimen RB3. Comparison of theory ( solid curve ) with exper-
iments ( triangles ).
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Figure 97. End deflection versus load. Specimen EAL2. Comparison of theory ( solid curve ) with ex-
periments ( triangles ).

’- ..n-.'-'. \‘ o - -..' ""l"l‘,A.. -"

S - EXPERIMENTAL APPROACH 151




oy AU A e A AT " Va® at Gav £a Gat Gat 0.0 ¢t Ba8 0.0 920 220%7.0'.4%

0.010 1

0.009 1

0.008 -

0.007 -

0.008

0.006 1

0.004

END DEFLECTION ( N.)

0.003

0.002 -

0.001 1

0.000 -

Figure 98. End deflection versus load. Specimen EAL3. Comparison of theory ( solid curve ) with ex-

periments ( triangles ).
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Figure 99. End deflection versus load. Specimen EAL4. Comparison of theory ( solid curve ) with ex- ‘
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Figure 100. End deflection versus load. Specimen EALS. Comparison of theory ( solid curve ) with ex-

periments ( triangles ),
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5.5 - DISCUSSION OF THE RESULTS

In this section, the experimental data were used to evaluate the adhesive shear modulus for
each specimen tested. The results were compared to the adhesive shear moduli provided in tables
9 to 10 and the validity of the experimental data obtained from the shear deformation and the end
deflection tests were discussed. The data were also used to verify the conclusions concerning the

optimization of the BMC methods.

5.5.1 - Determination of the adhesive shear modulus from the shear

deformation measurements

First of all, in order to derive the adhesive shear modulus from experiments, we had to eval-
uate the magnitude of the shear stress at the measurement location from BMC theory and by using
data listed in tables 9 and 10. Then, we calculated the adhesive shear modulus as follows :

I (13a)

Gy = —
9 Yexperimental

We also calculated the error generated by the evaluation of G, in comparison with the pre-
dicted values given in tables 9 and 10. These results are presented on table 12 and one can see that
the adhesive shear modulus is usually obtained with less than 10 % of error.

Another approach is now presented for the evaluation of G,. It is based on a graphical method

and its main interest consists in the verification of the conclusions developed in chapter 3. For this

purpose, we plotted the variations of quantity y/( -E}-;Z-) with increasing stiffness ratio. They are
related as follows :
3E(1 + 2/h
LA { i1h) 3 (l—coshi£+tanhﬁsinh&'%) (25)
L G,(1+30+2md ¢
Ebh
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Table 12. Comparison between experiments and theory for the calculation of the adhesive shear ".n
modulus from shear deformation measurements ( P= 0 Lb.). <)
specimen theory experiments error on :'r
code G, y® G? Y G, o
(Psi) (in./in.) (Pst) (in./in.) % -
RBI1 130 0.0173 123 0.0182 5 “
RB2 130 0.0259 120 0.0281 7 ’i‘,-i _
RB3 130 0.0521 118 0.0576 9 ':
RB4 130 0.0447 127 0.0458 2 )1
RB5 130 0.0866 133 0.0847 2 - L
RB6 130 0.0497 127 0.0596 2 ':::;
RB7 130 0.0825 147 0.0727 13 ]
ARBI 130 0.0841 129 0.0846 1 o]
ARB2 130 0.1378 125 0.1402 4 e:
ARB3 130 0.0826 126 0.0856 3 !‘
ARB4 130 0.1369 123 0.1442 5 "
<3
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theoretical G, A
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Ga Y experimental ?_’J__‘
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where the dimensionless measurement location x/¢ is input as an experimental data. ®
O
The proper experimental value of the shear strain is indicated by an horizontal line on the ?"‘F
) .,’
strain-stiffness curve. The intersection between the horizontal line and the theoretical curve gives "5}
a0
the corresponding stiffness ratio E/G,. The adhesive shear modulus is calculated from the stiffness A 1
e
ratio and the value which is found is the estimate of the adhesive shear modulus obtained from the L.
" A
BMC test procedure. It can be compared with the value of the shear modulus provided in tables 9 rfj &
XA
and 10 and which have been referred as the adhesive shear modulus predicted prior to the test. Such f:f\_,
an analysis has been conducted for every specimen tested to obtain shear strain data. The results . "93.
]
are presented on fig.102 to 107. It is then important to notice that for rubber-to-steel specimens, ~:: _.;‘
A
for which E/G, is 2.3x10¢, the method is not appropriate to calculate the adhesive shear modulus :—:;:
) :‘.;J:"\. )
because the experimental data mostly coincide with the upper horizontal plateau of the curve. e
P
Therefore, more than a unique value of the stiffness ratio can match. However, for the longest and Wy '
thinnest beams, the linear part of the curve covers a larger range of stiffness ratios so that very good " N l‘
agreement is found between experiments and theory. For rubber-to-aluminum specimens, the :-(‘_:_
o
stiffness ratio is smaller : E/ G, =7.8x10*. The experimental data match with the theoretical input F ‘;.i
in an intermediate region located between the linear zone and the plateau. In this region, the shear .... .
e
stress is sensitive to the beam material properties (chapter 3) and cannot be calculated easily using e &
AT
equation 12a. In order to evaluate the adhesive shear modulus, the method is then to use a graphical -9
HOYAY
representation of the results. However, if the BMC specimen geometry is not defined properly prior C:&
ol
to the test, the experimental data might lies within the constant zone of the strain-stiffness curve }“;:_‘;:
\,‘\ ™.
where it is not possible to get an accurate determination of the adhesive shear modulus. ) ‘\3\
In addition, on each curve we plotted the variation of the maximum shear strain (dashed line ::;','f:-;
s ‘.r_:..
curves), provided by the BMC theory as follows : ey
max :.‘.-“:::
e — (1) (26) :
P Gy +2m cosh @ NN
Ebh "
e
l:‘ﬂ\ih
where x/¢ was set to unity. :"f-"r-
@
v *’ > 2
R
A
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Figure 102. Shear strain versus stiffness ratio. Graphical comparison between theory and experiments.
Top : specimen RB1. Bottom : specimen RB2.
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In the case of the maximum strain versus the stiffness ratio curve, the linear variation indicates
that the shear stress is only a function of loading and geometry whereas it becomes dependent on
material properties if E/G, increases. The projection of the experimental data on those curves
clearly indicates that it would provide erroneous results for the stiffness ratio if the definition of
yoy* was used.

The only location where the variation of the maximum shear strain could coincide with that
of the strain calculated at a particular measurement location, is the linear part of the curve. It is
accessible for the BMC beams whose stiffness ratio is below 10° but the linear shear strain zone can
lie over a larger range of stiffness ratio by making the beam longer and by making the adhesive
thinner. For the beams whose stiffness ratio varies linearly with the shear strain, the test is very easy
because we have discussed in chapter 3 that in that situation, the shear stress can be calculated di-
rectly from the beam geometry and the loading alone. In order words, as the shear strain is deter-
mined by the experiments and because the shear stress is known, the adhesive shear modulus is
computed simply as the ratio of the shear stress by the shear strain. For large specimen stiffness
ratio, a long and inconvenient procedure is necessary to evaluate the adhesive shear modulus.
However, the procedure does not even guarantee the accuracy of the final result, specially if prior
to testing, an analysis aimed at the definition of the beam geometry has not been done. This is
clearly illustrated by the contents of this section.

Hence, when we were able to calculate the adhesive shear modulus, we found a good agree-

ment between theory and experiments. Moreover, the conclusions obtained from the optimization

i

v
L]

of the BMC shear deformation method were confirmed.

i

LALLM
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5.5.2 - Evaluation of the adhesive shear modulus from the end deflection

measurements

To determine the adhesive shear modulus from the end deflection, it is recommended to use
a graphical method. It consists in drawing the variation of the dimensionless end deflection “beta”
versus the stiffness ratio according to the geometry of the specimen tested. The computer routine
mentioned in section 3.3.2 and presented in appendix A has been written for this purpose. Then,
one has to report the experimental value of beta on the § versus E/G, curve to deduce the corre-
sponding stiffness ratio.

Table 13 presents the experimental results. A comparison with analytical predictions is also
shown. The curves from which these data are deduced are depicted in fig.108 to 115. One can note
that the results for f agree very well with theory but the error ggnerated for the calculation of E/
G, is larger, depending on the slope of curve ( 8 vs. E/G, ).

For rubber-to-steel and rubber-to-aluminum specimens, the fast increasing middle zone of the
beta variations covers the range of stiffness ratios investigated. Therefore, results are obtained with
a lot of confidence. However, the epoxy-to-aluminum specimens for which E/G, is about 100, show
that even for the shorter beams, the disparity between experiments and theory is large. The reason
is that the method based on parameter § is not appropriate for stiff combinations of adherend and
adhesive. For these beams, f lies in a region where it is not sensitive to the variation of the stiffness
ratio.

Hence, the BMC test method based on the measurement of the beam end deflection works
well with large stiffness ratios but it is limited in the case of the small ratios, even when acting on

the specimen geometry. This comes to reinforce the conclusions provided from the optimization

of the BMC theory.
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Table 13. Comparison between experiments and theory for the calculation of the adhesive shear
modulus from the end deflection measurements.

specimen theory experiments error %
code E/G, E/G, B E/G,
RB3 2.3x10¢ 1.6x10° 5.35 28
RB4 2.3x10% 2.6x10¢ 5.86 12
RBS 2.3x10% 1.8x10° 5.04 20
RBé6 2.3x108 2.1x108 477 6
RB7 2.3x10¢ 1.9x10° 4.92 17
ARBI 7.8x10¢ S| L0x10s 4.03 28
ARB2 7.8x104 7.4x104 3.52 5
ARB3 7.8x104 7.0x10* 5.10
ARB4 7.8x104 7.3x10* 372
EALI 85 108 1.19
EAL2 85 106 1.35
EAL3 85 110 1.12
EALA 85 110 1.23
EALS 85 123 1.10
EAL6 85 103 1.12
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Figure 112. Dimensionless end deflection versus stiffness ratio - graphical comparison between theory
and experiments - top : specimen ARB3 - bottom : specimen ARB4
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Figure 118. Dimensionless end deflection versus stiffness ratio - graphical comparison between theory
and experiments - top : specimen EALS - bottom : specimen EAL6
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6 - CONCLUSION AND
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RECOMMENDATIONS

f {.-l

=%
s

4

In conclusion to the present report, we recall that the analysis of the BMC theory has been
oriented towards three directions : 'F'.“‘-

e  a parametric analysis in order to study the capability of the BMC theory to provide adequate i
shear data on structural adhesives via relatively simple and reliable test,
®  a numerical analysis developed in two and three dimensions in order to check the validity of Janoe
the shear stress and the beam deflection equations from the BMC theory as well as to check o
the validity of the pure shear stress assumption in the adhesive layer with constant regards to :‘f:‘fs‘.
practical purposes, s

®  an experimental study. o
PARAMETRIC ANALYSIS : | o

Starting from the general concepts of the BMC theory, two tests of different nature were de- i N
rived. These are referred as the BMC shear deformation tests and the BMC end deflection test. The

parametric analysis based on the shear stress and the end deflection concepts revealed the BMC Oy
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specimen dimensions required for reliable adhesive shear property determination. Procedures and
recommendations were provided to design the BMC specimen in order to calculate the adhesive
stiffness and in order to make reproducible tests.

As a result from the parametric study, in the case of the BMC shear deformation test, the shear
stress can be calculated easily from loading and geometry alone but only if the adhesive stiffness
investigated is relatively high which requires that the stiffness ratio should not exceed 10%. A unique
specimen geometry was proposed to characterize relatively stiff adhesives from the lecture of the
shear deformation inside the bond in conjunction with the analytically predicted shear stress. A
simple pure shear test with a constant shear stress inside almost the entire the bondline was also
presented.

It also resulted from the parametric analysis that the characterization of the joint shear stiffness
with the end deflection concept can be made only if the value of the stiffness ratio E/G, investigated
lies in the zone where the end deflection increases the most rapidly with this ratio. This condition

is highly dependent on the choice of the specimen geometry.

NUMERICAL ANALYSIS :

Solutions for shear stress and for beam deflection derived from the BMC theory were com-
pared with the Finite Element codes NOVA in plane stress and VISTA to pursue the numerical
evaluation started in reference [6] which motivated the realization of the present study. The use of
VISTA required to extend the BMC theory in the plane strain situation to make possible a com-
plete comparison between numerical and analytical results. Very good agreements were found in
any case of material properties and specimen geometries which constitutes a validation of the the-
ory. Numerical analysis provided a better understanding about the stress state existing in the adhe-
sive layer and about the conditions required for a pure shear state. Tensile stresses o, and o, do exist
in the adhesive layer whose magnitudes increase with the adhesive thickness and/or stiffness.
Three-dimensional analysis with the program ABAQUS showed the presence of stress concen-

tration at the adherend/adhesive interface and both the two-dimensional and the three-dimensional
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i studies revealed that the magpitudes of the tensile stresses are negligible in comparison to that of e
" the shear stress. In addition, tensile stresses do not modify the state of shear because Finite Element
‘ showed that in the cases investigated, good agreements were obtained for the shear stress distrib-
': ution between theory and numerical resuits. In other words, the negligible magnitudes of tensile .
. stresses confirm that the BMC specimen configuration produces a shear stress state in the adhesive i
; layer and, the good agreement between numerical and analytical approaches constitutes a validation
; of the bonded cantilever beam concept as a shear test. Using VISTA, a modified BMC specimen
' was proposed in order to increase the deformations of stiff beams. Tensile and shear stresses peaks ¢
tf' occurred at the adhesive ends, with axial and peel stresses concentrations at the adherend/adhesive
:: interface, especially close to the loaded end. By comparing the stress magnitudes, stress analysis
showed that in the major part of the joint, the state of stress is pure shear, uniform over the thick- °
',: ness and with an increasing magnitude in the x direction. These numerical results are confirmed in
_‘ a recent work by K.M. Liechti which is presented in reference [21]. Finally, the fact that the shear
:.: strain increases from 20 % up to 100 % from that of the classic beam when the length of the ad- .
hesive layer is reduced between the adherends is especially appealing for experimental purpose and
! should be considered as a recommendation for future work.
» .
; EXPERIMENTAL ANALYSIS :
4(
, : The last part of our work consisted in the experimental application and verification of the
X theoretical concepts. For that purpose, shear deformation and end deflection measurements were *
{ performed on BMC-method-shaped specimens which permitted to compare the experimental re-
‘ sults to the analytical predictions. Most of the time with the shear deformation method, the ad-
4 hesive shear modulus is determined with an accuracy not exceeding 10 % which satisfies the [y
requirements for engineering errors. The evaluation of the adhesive shear modulus from the shear
; deformation test data required the use of a long numerical procedure because in the cases investi-
,: gated, the shear stress could not be derived directly from geometry and loading alone as suggested o
in the parametric analysis. The use of the simplest form of the shear stress equation which does not
"
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> depend on adhesive mechanical properties was discussed and graphs showed the error generated in
finding the value of the shear stiffness when the BMC theory is not used properly. Also, the de- :":‘;.'.:-
velopment of shear deformation measurement with the Krieger gage was limited especially for stiff E‘*&
adhesives. We found that the shear deformation test would necessitate the development of a special "’.'
deformation measurement instrumentation. The device should satisfactorily monitor the relative :{
displacement between the adherends without being constrained by their bending. :-‘:f
The method based on the end deflection test is easy to perform and tests on specimens of low -"'
deformability such as epoxy-to-aluminum, revealed the importance of keeping the boundary con- .‘
ditions for loading similar to those used in the BMC theory. In addition, the calculation of the :Z".
adhesive shear modulus is highly sensitive to the value of the dimensionless end deflection f. E‘;::
Consequently, sensitive equipment must be used for measuring the beam end deflection. Provided '.':' ’
that the specimen geometry is defined prior to the test by bearing in mind the shear stiffness in- ::\_’F'
vestigated, the test can give reliable and accurate results. :;_:;;
Finally, an important conclusion is that the limitations defined in terms of specimen geometry ﬁi-‘:
and stiffness ratio in the parametric analysis and which concerned the shear deformation test as wcu E;.: )
as the end deflection test were confirmed experimentally. For that reason, it seemed essential to '.\.::
recall in the present section the origin, the nature and the consequences of these limitations. ".':!_'"'
®
o
If we compare the effect of geometrical quantities such as ¢, h and t on curves ( 3> vs. E/G, ;:‘_‘_.5_ 3
yand ( B vs. E/G, ) in fig.19 to 21 and fig.28 to 30 respectively, we see that the curves move together :EE '
from left to right as the slenderness ratio increases and the thickness ratio decreases. It is thus im- jg )
possible to have, at the same time, the conditions required for a constant shear in the adhestve layer . ‘;'
and those for a deflection highly sensitive to the vanation of stiffness ratio. The parametric analysis .
showed that a constant shear state cannot be reached for the soft adhesive unless an unrealistic ex- ') |
perimental design of the beam is used. Conversely, a highly sensitive deflection response is more i;;
favorable for soft adhesive. Then, a deflection measurement for soft adhesives will replace a shear Ef,
deformation measurement for stiff adhesives. The BMC test can work, but the specimen dimension :..:.
has to be defined in regard to the adhesive tested in order to make the theory suitable for practical :,
o
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use. Simple numerical codes are available to facilitate the definition of the beams geometry in each

situation. Hence, in order to evaluate the shear modulus with the bonded cantilever beams for the
range of soft or stiff adhesives with a testing method satisfying the conditions of simplicity, reli-
ability and rapidity, two different types of measurements must be made which proper procedure are

recalled below :

SHEAR DEFORMATION MEASUREMENTS

The analysis of the BMC theory revealed that the influence the parameter @ which contains
both the material and the geometrical properties of the specimen has been shown to have a very
significant effect on the magnitude and the uniformity of the shear stress in the adhesive. With the
curve ( @ vs. X/¢ ), a value of parameter ¥ is defined for which the shear stress is constant over a
portion of the beam. In this particular region of the beam, the shear stress has a magnitude function
of geometry and loading only. This is a requirement to facilitate the use and the aralysis of the data
provided from the shear deformation test. Then, the shear deformation is measured at the place
of known shear stress and the shear strain is derived from the shear deformation as the ratio of the
latter to the adhesive thickness. Due to the choice of @, the shear stress is predicted from simple
theoretical formula. Finally, G, is calculated using the classical linear relationship between shear

stress and strain for elastic materials.

END DEFLECTION MEASUREMENTS :

The end deflection test permits the characterization of a large range of adhesives. For proper
application, the user should bear in mind that the specimen geometry must be defined in accordance
with the adhesive stiffness investigated. Guidelines showing the variations of the dimensionless end
deflection # versus E/G, can help to define appropriate specimen dimensions. Then, the BMC
theory combined with end deflection measurements lead to a graphical determination of the adhe-

sive shear properties.
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RECOMMENDATIONS FOR FUTURE WORK :

Our recommendations to develop further the studies about the bonded cantilever plates test
method are oriented towards four directions.

First of all, is the fact that in all our work, from the BMC analysis and the Finite Element
analysis to experimental verifications of predictions, we always assumed the adhesive to be a linear
clastic material. This has been done on account of the fact that the BMC theory was developed by
assuming both the adherend and the adhesive to be linear elastic materials in order to facilitate the
mathematical analysis. In reality, most of adhesives exhibit complex material characteristics like
nonlinear and/or time dependent behavior that has to be taken into account in the analytical model
as well as in the Finite Element analysis.

Secondly, in addition to these complex characteristics, the chemical and mechanical bonding
between adherends and adhesive is not well understood for the majority of shear tests, so more
particularly for the BMC test specimen. The interface layer between adherend and adhesive is not
well defined in most of the cases although it can have an important influence on the determination
of the mechanical properties of the bond. Attention must thus be concentrated on that problem.

Then, experiments showed that there is a lack in pursuing accurate shear deformation meas-
urements on stiff beams. In order to solve that inconvenience, optical methods such as Scanning
Electron Microscopy or a digital imaging strain measurement system [21,22] would be probably the
best candidates.

Finally, the last recommendation concerns the development of mathematical solutions to
model the shear stress in the adhesive layer of the modified BMC specimen presented in chapter 4
and also to provide the BMC concept the capacity of including fracture predictions for future ap-
plication of the BMC specimen in fracture mechanics.
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o Listing of the program for computing the data points of the curves alpha bar e
4
2
versus E/Ga. s
>
i
b ' e
A
o
PARAMETRIC ANALYSIZ 1 VARTATION OF ALPHA BAR MITH E/GA et
HHHHHHHHHEHHHHHHSHHHHHHHHHHHHHHHHHHHHHHHHHHHHBHHHHHHEHHHEHHHEHHEHHHEHE "“:"
A
# This program has been written for the definition of the BIC » oty
# specimen dimensions. The thickness ratio must be arbitrary chosen » P
| J # and input for the execution of the prograa. » :
# The run gives the varistions of the parameter beta versus the » Y%
# ratio E/Ga for varying l/h values. Each curves is associated to » R
® a specific value of L/h. This ratio varies from 10 to 170 with a = h
® gtep of 10. The program provides the plane stress snd the plane » ?‘
® strain options. » !
IHHHEHHHRHHHEHEHHEHHEHHHHHHHHHHHHHHHHHHHHHHHHEHHHHHHHHHHHHHHHHHHE ‘
L&Y
o
\;‘\«
Loy
HHEGHHE NOTATION SHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHHEHHHEHHHHHHHHHHEHE -':.:-
" OTR : Thickness ratio » ::ir "
L DLR : Slenderness ratio » By
" DGA : Stiffress ratio » .g"-.'
L DGAL : Decimal logarithm of the stiffness ratio » °
" ALPHAB : Parameter alphs bar » o
P HHHHHHHHHHEHHHHHHHHHHHHOHHHHHHEHHHHHEHHEHHHHEHHHHHHHHEHEH -~
s
\'l:-:'
MRITE(5,100) NN
READ(6,#) DTR s
WRITE(5,200) e
READ{6,%} ICHOI1l °
DLR=10. "ix
00 20 J1,17 o
A3=DLRw##2 .c\-:
DGAL=0. .
00 10 I=1,43
C=DGAL A
DGA=108%C e
Blz(1.4+2.80TR Jun2 |
A1=81/DTR 9.
A221.+(1./(3.%81)) ',"-_.
ALPHAB={ (3, #A3®A1%AZ })/DGA )¥0 .5 A
IF(ALPHAB.GT.80) 60 TO 30 PAD:
IF(ICHOI1.EQ.0) 60 TO 40 .r_:.'
NRITE(7,300) J,DGA,ALPHAB .'"-'.
€0 TO 30 o
40 WRITE(7,300) J,DGAL,ALPHAB -
30 DGAL=DGAL+0.2 [ 4
10 CONTINUE N
DLR=DLR+10. w!
20 CONTINUE oL
100 FORMAT(2X, ‘Enter the thickness ratio’) -

200 FORMAT(2X,'To compute alphs bar versus logl0 E/Ga,enter 0°,

® /2%, 'If you prefer to compute alpha ber versus E/Ga,enter 1')
300 FORMAT(2X,I2,2X,1PELB.7,2X,1PE16.7)

sTOP

END
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A s T N

E/Ga.

[T I

# This program has been urxttan for the definition of the BIMC

# specimen dimensions. The thickness ratio must be arbitrary chosen
# and irput for the execution of the program.

% The run gives the varistions of the parameter beta versus the

# ratio E/Ga for varying l/h values. Each curves is associated to
® a specific value of l/h. This ratio varies from 20 to 170 with a
® step of 10. The program provides the plane stress and the plane
# strain options.

"o - SHHHHHHHHHHHHS ¢

PARAMETRIC ANALYSIS : VARIATION OF BETA MITH E/GA

#HHHHE NOTATION 6 THHHEHHEHHHHHHHH

i

DTR t Thickness ratio
DLR : Slenderness ratio
DGA : Stiffress ratio
DGAL :

ALPHAB : Paramester alpha bar

Decimal logarithm of the stiffness ratio

IMPLICIT REAL#8(A-H,0-Z)
WRITE(5,100)

READ(6,%) DTR

DE=1.E+07

DA=0.3

D8=1.

DP=100.

WRITE(5,200)

READ(6,%) ICHOIC
IF(ICHOIC.EQ.0) 60 TO 10

# PLANE STRESS ANALYSIS IHHHHHBHHHPIHEEHHEHHHHEHHEHHHEHHHHEHHEEHHHHHEHEHE

0

WRITE(7,300)

NRITE( 7,400)

DLR=20.

DO 20 J=1,16

Al=l,+2.%0TR

A23A1 %82
A33).+((3,.%A2)nn(-1))
A4=A2/DTR

AS3(DLR )2

DGAL=0.

00 30 I=1,18

DGA=10#%DGAL

ALPHAB=( 3RASHAGHAZ/DGA )#n0. 5
XL2150.

IFCALPHAB.GT.XL) GO TO 40

CO=(EXP{ALPHAB )+EXP( -ALPNAB ) }/2.
SI=(EXPUALPHAB )-EXP(~ALPHAB ) )/2.

TA=SI/CO
60 TO 50
TA=l.
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¥t END DEFLECTION OF THE BEAM MHHHHHHHHHHHHGHHHHHHHEHHHHHHHHEIHRHOHEHH

50 F1=(1.+DTR)un3

® F3=6.%(1.-(1./A3))
Fa=3.m(1. +DA ){ DLRW#( -2))
F5212./A3
F6=(1,-(TA/ALPHAB ) )/( ALPHAB##2 )
F7=F5nF6
BETA=(F34F4+F7 )nF1
NRITE(7,500) J,DGAL,BETA
DGAL=DGAL+0.5

Y 30 CONTINUE
DLR=DLR+1.

20 CONTINUE

60 TO 60

% PLANE STRAIN ANALYSIS MHHOHHHHHHHHHHEHHHHHHHEHHEHHHHHHHHHOHHAHHRHOH
10 DE=DE/(1.-(DA¥®2))

#% END DEFLECTION OF THE BEAM MHHHHHHHHHHHBHHHHHEHHHHHHHHHHHHHHHHHHHHE

WRITE(7,400)
WRITE(7,600)
DLR=20.
DO 70 J=1,16
Al=1.+2.%0TR
( A2=alwn2
A3=1.+((3.%A2)nn(-1))
A%=A2/DTR
A5=(DLR )2
DGAL=2.
00 80 I=1,13
DGA=10%4DGAL
ALPHAB=( 3#ASHAGRASR( 1-claw#2 )/DGA %0, §
e XL=150.
IF(ALPHAB.GT.XL) GO TO 90
CO=(EXP(ALPHAB ) +EXP{ ~ALPHAB ) )/2.
SIs(EXP{ALPHAB )-EXP( -ALPHAB ) /2,
TA=SI/CO
60 TO 95
90 TA=1.

' wt END DEFLECTION OF THE BEAM WHHEHEHHHHHHAHHHHHHHHHAHHHHHHHPEEHHIHERNE

95 F1l=(1.+DTR )#i3
F3=6,.%(1,-(1,7A3))
FG=3.%(1.+DA)%(DLRW*®(-2))
F5212./A3
F6s(1,-(TA/ALPHAB ) )/(ALPHAB®#2 )
F7aF5%F6

t BETAS(F34FG+FTINFL
WRITE(7,500) J,DGAL,BETA
DGAL=DGAL+0.5
80 CONTINUE
DLR=DLR+10.
70 CONTINUE
60 TO 60

¢ % FORMATS SHHHHHHHHHHHBHHHHHSHHHHHHEHHHHH M HHHHHHEHEHEHAH

100 FORMAT( /2%, ‘Enter t/h')
200 FORMAT( /2X%,'For plans stress analysis enter 1 else 0')
300 FORMAT{ /2X,'Plane stress amslysis')
400 FORMAT(/10X,'E/Ga',25X, 'Beta’)
500 FORMAT( /2X,12,2X,1PE15.7,12X,1PE15.7)
600 FORMAT( /2X,'Plane strain amalysis')
. 60 STOP
END

Appendix A. Supplements to the parametric analysis

187

. . A " N ALt T ey
'|.l. AN L% . .l-. W 1 WaLAY xS s W { (L Ak n S %8, “ WS -':I‘ 'P ’ JV-.F

2

L O

A,

O

-

® T

tt‘
v

ol
K P

1,1"fff,l:f

¢

N E_YY
LN

-~

vy KR oY
O?/{f&.'..“s,‘vi

»

P
Xty 4k

2,750

d

,..
Lt
P

W ¥ .
P



b 50" ARNE S8 A PR Rl

Execs for plotting outputs

In order to plot the results generated by the preceding routines, the user can invoke the SAS
Graphics package provided by SAS Institute Inc.. This package can be accessed by writing SAS plot -

commands in a plot data file such as that presented below.

//borgember JOB ecoount rumber ,USERID,REGION=1536K -
/%PRICRITY IDLE

//STEP1 EXEC SAS

/%JOBPARM L=5

/%ROUTE PRINT VTWVMI.userid

GOPTIONS DEVICEsVER8C HSIZE=6 VSIZE=6 NOTEXT82Z VPOS=43)
DATA ONE)

INPUT GROUPL1 X Y3

CARDSS

weee ENTER THE QUTPUT it

PROC 6PLOT)
TITLE1l C=BLACK F=XSHISS H=l
' comments '}
FOOTNOTE1l C=BLACK FsXSWISS Hs=l
' comments ')
FOOTNOTE2 C*BLACK FsXSWISS H=1
tthE LY
AXIS1 LABEL = (A=90 F=XSWISS Hzl, ' legend ')
VALUE = (FsXSHISS K=l )
color = black
MINOR = NONE)
AXIS2 LABEL 3(F=XSNISS H=l ' logl0 E/Ga ')
VALUE = (F=XSHISS H=l )
COLOR = BLACK) N
PLOT Y#X=GROUPL/
OVERLAY FRAME NOLEGEND VAXIS=AXIS1 HAXIS=AXIS2)
SYMBOL1 C=RED L=l I=SPLINE V=NONE)
SYMBOL2 C=RED L=1 I=SPLINE V=NONE}
SYMBOL3 C=RED L=1 I=SPLINE V=NONE)
SYMBOLG C=RED L=l I=SPLINE V=NONE)
/"
I{4

‘{l' J’.'(":f-'ffl’ P M

I"I‘

In the following figures are given guidelines for determining the proper BMC specimen ge-

ometry in order to perform shear deformation or end deflection tests.
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ALPHA BAR

Figure 116. Parametric analysis for alpha bar versus E/Ga with t/h=0.1. From left to right, #/h varies

from 10 to 170 in steps of 10 between each curves,

Appendix A, Supplements to the parametric analysis

189

-".

\" AN
ROXXAK
oA £00.,

x_m_B_ g™}

) P

,'iz':"v:r'-
PJ 1"‘( . .

<
® AL

Q\.":ﬁ




(ot
ALPHA BAR

=T

ey

-

L)

\) - . »
5'bl‘. l‘\ l‘- 'y l“_ a,, ‘u .‘ '. ﬁ._!‘n s 4%,

from 10 to 170 in steps of 10 between each curves.

R

L] A "R}
AANRGLRL R,

Appendix A. Suppiements to the parametric analysis

- )
LRELRLY

P AN e

LA

n u b v‘
AR A Nt A

-

\ %y

o®
©

i ; Figure 117. Parametric analysis for alpha bar versus E/Ga with t/h=0.2. From left to right, /b varies
L]

190

b - %] ‘.‘ "" >

Ny

v

2

-

!



¢
| "‘
LAY
®
5T
Ly
100 Ny
PN
90 1 L
N
MO
80 1 2
A
P
4 T
70 Cari
Y
) N‘S (]
g 60 - g-s ", ¢
®
e
< SOJ NN
4 b
40 A
[ 3
WO
30 ®
7t
_ o
20 S '('\v
g
A
10 1 $=6 f"-\::\_*
—_—a= SRS
1 o
0 | E— —T \'.;:-?.
o
0 1 7 8 8 i)
'-’Q'f-

N
e
&

Figure 118. Parametric analysis for alpha bar versus E/Ga with t/h=0.02. From left to right, ¢/h
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Figure 119. Parametric analysis for alpha bar versus E/Ga with t/h=0.04. From left to right, £/h
varics from 10 to 170 in steps of 10 between each curves,
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Figure 120. Parametric analysis for beta versus E/Ga with t/h=0.1. From left to right, £ /h varies from

20 to 170 in steps of 10 between each curves.
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Figure 121. Parametric analysis for beta versus E/Ga with t/h=0.2. From left to right, Z/h varies from
20 to 170 in steps of i0 between each curves.
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Figure 122. Parametric analysis for beta versus E/Ga with t/h=0.01. From left to right, ¢/h varies
from 20 to 170 in steps of 10 between each curves.
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" Figure 123. Parametric analysis for beta versus E/Ga with t/h=0.02. From left to right, £/h varies
" from 20 to 170 in steps of 10 between each curves.
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continued

Experiments were performed using the two methods derived from theory and
good correlation between theory and experiment were obtained with some restrictions. 'J
For both methods, experimental results underlined the need for defining proper
specimen geometry prior to testing. Simple numerical codes are proposed to
facilitate this purpose.

> - o cpowm O =W

YT v,
-

R N AT

P A

»
)

e AAT

- v,

" o &

L0

Py Ay A

a,

€ CoC g™
Y

FILE AP
» =

X

J
'.' ....- .. N K‘i‘ |.|..'1..'l. i) ", "0 W, 0'- (\l

ALENSERN j N . i : - ",
IR SN N RGN : o Loy OO O 0, Ty o E A, Tt




-

-

=

VAT S

L

ey

v ga® e e Y
a9 Pad A w

(0

(R OO U

“dat
ﬁ'.l

1Ay

o -~ - -

- W2 |~.. “‘\ﬁ_.l k 4 % Sarer e ~ -» ; » a x 5 A 3
uvxﬁ.a.rvuw. x| @ SESRIIN It @PLEELEES @i SRS e,

Ny o
> T 4
w Q

L

S L e
AL S QI QL

LIl B T Y

J
\— b
Q

\.:_ ;
3
{\
)
&
4
]
N '
'
...‘;
)
L
l\ 3
>
N
P

L
L
o
o
M.

28

L J
.
A
\j.‘\
N
S

v

W
o

-
*
hY ‘,\
) '.\




