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(ABSTRACT)

The strength of materials solution for a new bonded cantilever beam test specimen to deter-

mine adhesive shear properties is reviewed and discussed. A parametric analysis for the adhesive

shear stress and for the end deflection reveals the specimen dimensions required for reliable bonded

adhesive shear properties determination. Recommendations are provided for conducting repro-

ducible tests. A pure and quasi-uniform shear test for stiff adhesives is proposed. .

Analytical solutions are compared with Finite Element solutions from VISTA and NOVA for

the stresses in the adhesive. It appears that the assumption of pure shear is nearly valid even for

very stiff and/or very thick adhesives. In order to increase the end point deformations for stiff ad- 0

hesives, a modified specimen is proposed. Three-dimensional effects through the thickness of the K,% 0

adhesive layer are studied with the program ABAQUS.

Experiments were performed using the two methods derived from theory and good correlation

between theory and experiment were obtained with some restrictions. For both methods, exper-

imental results underlined the need for defining proper specimen geometry prior to testing. Simple

numerical codes are proposed to facilitate this purpose.
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1 - INTRODUCTION

In bonded structures adhesives are intended to carry shear loads and hence most test specimen

geometries have been designed and oriented towards the determination of shear properties which

could be used in the design of joints. However, many test specimens such as the single lap or thick

adherend have complex stress distributions in the adhesive layer and failures are often related to peel

stresses and the high stress concentration at the bond terminations [I]. Other specimens such as the

Iosipescu or the Arcan do have nearly uniform pure shear in the adhesive layer. However, their

shapes are complex and, therefore, do not lend themselves to routine testing. Hence, the ideal test

for adhesives should be one which eliminates the drawbacks mentioned above and the cantilever

beam to be discussed herein seems to be a reasonable approach.

Recently, Brinson and collaborators 12-51 have suggested the need of better test specimen ge-

ometries especially for durability predictions. The cantilever beam shear test specimen (BMC) is

suggested as a better means of obtaining shear properties and is made by bonding together two thin

plates. When concentrated and equal loads act on the free end of each adherend (fig. 1), the state

of stress is pure shear in the adhesive !ay:.

In order to emphasize the reason for the interest of the so-called BMC specimen, three

cantilever beams subjected to a total load P are presented in fig.2. The three beams are all the same

I - INTRODUCTION I
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length and thickness to permit a comparison of the deflections. The bonded beam deflects more

than the monolithic beam 2h and less than the third (fig.3) when there is no adhesive.

In the case of the monolithic beam shown in fig.2, which could be thought of as a case of

perfect adhesion, the maximum deflection at the beam tip equals,

- 2P(
Ebh3

and the shear stress given by strength of materials is:

3P
= 4bh (2)

Assuming a linear elastic material, the shear strain is as follows:

S -(3)
'=G

or,

3P
= 4G (4)

For the third case when there is no adhesion, the maximum deflection is,

63- = 6P? (5)
EbW

3

Examining case three more closely reveals that the displacement of points A and point B on

the top and bottom beams as shown in fig.4 are,

1 3P ( 2

2Eb h/t

I - INTRODUCTION 4
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The relative motion divided by the space between the beams is, 0

UA - uB

2t (8)

which yields the following apparent strain for the case of no adhesion,

.3 :

3P e -2
3 23 (9)

Obviously, case two shown in fig.2 for two adhesively bonded beams would have a maximum

deflection between that of the limiting cases one and three given by equations (I) and (5), respec-

tively. A relative comparison of the three cases is shown in fig.3. Further, it is intuitively obvious

that case two would be a case of pure shear and the magiitude of the strains for this case would

be bounded by the strains given above for cases one (equation 4) and three (equation 9) which -a.

represent the cases of perfect adhesion and zero adhesion, respectively.

E. Moussiaux 161 has developed a strength of materials type stress analysis to model the be-

havior of the bonded cantilever beam. Our purpose herein is to carry on the analysis of the BMC

specimen. The theoretical model and the first suggestions to determine the adhesive shear modulus

are reviewed, analyzed and optimized. Due to the complexity of the stress equation and the beam

deflection equation as well, a parametric analysis is generated and gives important conclusions

about the use of the theory to design a proper test specimen.

Next, numerical methods give more information about the stress state in the adhesive layer

and the conditions required for a pure shear state. Two finite-elements codes (VISTA, NOVA) are

used to verify the solution obtained by Moussiaux. It should be noted that Moussiaux's simple ,

theory is for the case of plane stress while the Finite Element code VISTA is for the case of plane

strain. The former theory has thus been extended to obtain a complete comparison between the

simple beam theory and the finite element numerical results. In addition, three-dimensional effects U
on the state of stresses are studied in the adhesive layer and at the interface between adherend and

adhesive using the Finite Element code ABAQUS.

I - INTRODUCTION 6
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An experimental program is also outlined and presented to verify analytical solutions. Both 0

steel and aluminum adherends and neoprene rubber and epoxy resin adhesives are investigated.

Measurements of shear deformation in the adhesive layer and end deflection of the beam allow us

to compare the experimental results to analytical predictions.

'A
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2- LITERATURE REVIEW

The use of adhesive bonding as a joining technique has become an attractive alternative due .. ,

to a numbe of disadvantages with conventional fastening techniques especially for non-metallic ,

materials. For example, traditional connectors such as bolts, rivets, welds and screws do not dis- %..,

tribute loads uniformly. Hfigh stres concentrations occur and reduce the strength of the connection

at comparatively small loads. These become serious problems when the components are made of- J'

polymeric or composite materials.

Compared to traditional fasteners , adhesive bonds provide a greater uniformity in load dis- i

tribution and some other potential advantages: .

:AN

" higher joint strength, damage tolerance and fatigue life,

" no reduced strength of composites due to fastener holes, "-e

lower part count,..-.

0 reduced weight,

" easier processing,

" cost saving for operation, maintenance and fuel, '.

• reduced corrosion problems. {

Sd
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Despite these advantages, some factors have caused the adhesive joints to be considered sen-

sitive and unpredictable, and hence, wider usage of adhesives has been limited. Some of these dis-

advantages are given below:

* the complexity of stress and failure analyses of adhesives,

* the difficulty of analyzing the quality and reliability of adhesives,

" the lack of an acceptable standard design and testing methodology for mechanical character-

ization,

* the disparity between bulk adhesive properties and adhesive properties in the bonded state that

often make the former unusable in predicting the response of a full scale structural elements.

The basic features of the adhesive bond problems were examined in the classic analysis of

Goland and Reissner [7]. In their work, the adherends were assumed to deform as thin plates when

bonded by an elastic adhesive layer. In additic - w ie rusulting shear stress, r,,, a significant

normal or out-of-plane (peel) tens"e stress, a., was shown to develop in the bondline. As the ad-
hesive layer was assumed to be very thin, the resulting stress distribution from this model was as-

sumed to not vary through the thickness of the adhesive, Actually, the maximum stress in the

bondline almost always occurs at the interface and differs drastically from the average through the

thickness.

Some studies [8-131 have demonstrated the influence of several factors such as specimen ge-

ometry, material stiffness, experimental processing, etc. on the distribution of stress. Their corn-

bined effect is a non-uniform and non-pure shear state the adhesive layer with stress

concentrations at the bimaterial tips. These variations in stress magnitude and distribution make

difficult the measurement of deformation properties inside the bond.They have led to the existence

of a wide variety of specimen geometries and loading procedures for in-situ adhesive testing. Their

main purpose is to minimize the stress concentration at bond termination and to allow an accurate

determination of shear properties at the same time. The ideal test would contain a constant and

pure shear stress state throughout the adhesive.

2 - LITERATURE REVIEW 9
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The lap shear test and its variants have been and are still the most commonly used shear tests 0

because of their simple geometry and because they give insight to bonded shear properties using

only tensile loads. For example, the thick adherend specimen, based on the the assumptions of rigid

adherends and no rotation, is assumed to be a case of constant and pure shear for the adhesive.

However, in practice, equilibrium and the fact that the adherends are elastic with rotations due to

moments gives rise to very high peel stresses and non-uniform shear stresses. Some authors 18-101 %.

have used the Finite Element technique to perform a stress analysis inside the joint which does

correctly identify the large shear and peel stresses at the bond termination of lap joints. This is il-

lustrated in fig.5 and 6 in the case of the modified single lap shear specimen analyzed in reference

191. The high peel stresses near the bond termination tends to dominate the fracture behavior of

the joint. On the other hand, it is difficult to experimentally verify the high stresses and, as a result, 0

often the failure stress is calculated as the load divided by the bonding area even though a non- F % J'

uniform state of stress occurs in the joint. Obviously, the lap shear test is deficient in producing %

data design for mechanical structures.

An alternate to lap shear testing is provided by the napkin ring torsion test specimen. Even in N.
this specimen, though, stress concentrations exist at edges. However, for adherends with rounded %

comers loaded in tension, stress concentrations are reduced as shown by Liechti [151.

In the three point bending test [lI], the adhesive is again supposed to be in a pure shear state.

Finite Element analysis, however, shows the presence of large cleavage stresses at the bond termi-

nation even though the shear stress does appear to be more uniformly distributed in the adhesive.

But once more the average stress is very different from the actual stress acting at the extremities.

In a torsion test such as the one shown in fig.7, the adhesive is subjected to a more homoge-

neous stress distribution, since the stress concentrations at the bond ends are less significant.

However, a uniform stress is obtained only for small rotations.

The Iosipescu shear test [121 utilizes a notched specimen in bending as a shear test for com-

posite materials (fig.8). This test induces a state of uniform shear stress at the midsection of the I
specimen by creating two counteracting moments which are produced by the applied load. The use

%
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of this test is still limited, because of the need for precision notches in order to achieve a uniform

shear state. The test fixture requires strict dimensional tolerance but according to its inventors, the

optimization of this test could lead to a definitive form of experimental shear test for adhesive joints.

Another promising new test for adhesive joints is the ARCAN specimen [13-151, the geometry

of which is shown in fig.9-a and 9-b. It uses round stiff adherends which are notched and bonded

in such a way as to produce a pure shear state. Loading can be applied to obtain any combination

of tension or shear.

The so-called BMC test or the bonded cantilever beams test is the most recently developed

adhesive shear test. Using the geometry of two cantilever beams bonded together with an adhesive

layer, and applying equally acting loads on both adherends, H.F. Brinson [2-51 assumed that the

specimen should develop a uniform and constant shear state in the adhesive layer. H.F.Brinson and

E. Moussiaux [61 used a strength of materials type solution developed by H. Beck [161 in 1962 to

model the stress state inside the bonded joint of the BMC specimen. As this new shear test is the

topic of this report, the main results from the analytical solution are reviewed ncxt.

An expression of the shear stress was found and was shown to be a function of the x-

coordinate only and of a parameter i.

3P(l + 2t/h)
Sb +3(l +-2:/) (l-cosh i-- + tanh sih i-) (10)¢ =bh(1 + 3(1 + 211h)')  l )

or,

1 ~=(l-cosh-L+tanh~sinh3-L) (10a)

.'d

where,

"4 E hJ th I+3(1 + 2t/h)2 ],.

U.

The shear stress is uniform through the thickness of the bondline at any constant distance

from the end, but varies from zero at the fixed end to a maximum value at the free end:

2- LITERATURE REVIEW 13
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- 3P(1 + 2t/h) 2 [ 1 1 (12)
bh(1 + 3(l + 2t/h) ) cosh

The larger the parameter i, the faster the shear stress reaches its maximum, and so, the more

constant is the stress along the beam length (fig. 10). Hence, for an experimental use, a measure-

ment of the shear strain in the zone where the stress is constant, can easily yield the adhesive shear

modulus by using,

mx = ,max (13)

which assumes a linear elastic behavior of the adhesive.

Along the length, the beam mid-plane deflects as follows: 0

v(x) 6P x x 3Px 6P
EM 2 6 + 4bhG Ebh3Y2

jX x A (.)I Sinh-- X L) 2 X _L )tanh 3cosh ix + L )tanh j] (14)

with,

1I (15)
3(1 + 2t/h) 

2

The end deflection, obtained at x t is:

(l+/A l--I aj
= e (1+ /h) 3[4 1- 2E (A)2 h / 2_ _1 _ _tanh (16)

Or,

6=fi 3 (18)
2Eb(h +1)
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where P is the dimensionless end deflection which can be used to determine the adhesive shear

modulus:

= (+18h))3 4 - 1 + 20 ( -L )2

From the variation of P versus the stiffness ratio (fig. 11), the ratio E/G. of a bonded beam can

be evaluated only if the end deflection measured lies in the fast increasing middle zone of the curve

(fig. 12). In this particular region, P exhibits maximum sensitivity to the specimen deformability and

the best accuracy for G. is obtained in this manner.

In fig.13 and 14, the solutions for shear strain and end deflection derived from BMC theory

are compared with the limiting cases of perfect and zero adhesion discussed in chapter 1. For that

purpose, we used aluminum adheends ( Eff 10' Psi, v=0.3 ) of 3 in. long, 0.125 in. thick and 1

in. wide. Bondline thickness was 0.005 in.. As shown on the figure, we used three types of adhesives

G.= 1,000 Psi - 10,000 Psi - 100,000 Psi. In fig. 14, one can see that for stiff bonded adhesives,

end deflections are very close to each other for these three cases and therefore its measurement must

be very precise in order to accurately determine G.. Table 1 also gives a summary of the numerical

results. In the following section, the BMC method is analyzed with a view of understanding and

controlling every parameter that may influence the experimental application and the collection of

data.

Since Moussiaux's effort, a new finite-element code called NOVA is now available for the

stress analysis of in-situ adhesives (101. The program NOVA can be used for plane stress as well

as plane strain analyses while an older code, VISTA, gives only data for plane strain and has been

extensively used for the stress analysis through the adhesive thickness. Finally, some experimental

results for adhesive shear moduli are presented which have been found using the BMC theory.

I1

2 - LITERATURE REVIEW 17

'.1



t/h~ 1/5
7

h t h I 1506 -

5-
t/h 1 I/ 50

4-

3-

2-

0S

1 10 10a i3 14 10 log 10 E /Go

5....l

Figure I I. Depedence of the end deflection of the BMC on the beam deformability tor various geom-
etries (from reference 6).

2 - LITERATURE REVIEW Is

*I'~fr ~ w .~ *~. a ~ !.. 0 A~



wY %x 'V1TRX.,

;I

E E/Go

Figure 12. Determination of the adhesive shear stiffhess by measuring the end deflection (from refer-
ence 6 )

2 - ]LITERATURE REVIEW 19

K ~I'

F

.~* v * ~ :~ * u



Ur -T

o v

toNJ

020

r-.A

0 00

2~~~~~' -IEATR EVE

WINI

La~ W. uw



uI

0.0

2a 0. 0 ~ ~ .,* , .

g. 

'I.

00

E •2

U!~~. g- 1~wp u

-..2

IP

0 r

.'5
( "m -01x ) uo~~uolp pu .,'")

2 - ,,rrRATU REIEW 1 5,



Table 1. Comparison of the BMC model with the limit cases ( P 10 Lb.).

CASE DEFINITION END DEFLECTION SHEAR STRAIN
(x 0.01 in.) (x 0.01)

no adhesion (1) 2.710 33.8820
adhesion

G. = 1,000 Psi 1.019 5.6237
adhesion

G.= 10,000 Psi 0.691 0.6015
adhesion

G. M 100,000 Psi 0.648 0.0601
perfect adhesion (2) 0.169 1.564E-04

(1) adhesive's shear modulus approaches zero
(2) adhesive thickness aproaches zero

2 -
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3 - OPTIMIZATION OF THE BMC THEORY

The analytical solution of the BMC test for stress (or strain) and deflection distribution can

be used in conjunction with experimental data to determine the mechanical properties of adhesives

in the bonded state. However, limitations occur because the shear stress state in the adhesive as

well as the beam deflection are sensitive to the choice of specimen geometry and to the type of the

adhesive and the adherend which are tested. It is therefore necessary to make a parametric analysis

of the beam geometry for gaining a better understanding of the beam response.

For this purpose, we first defined the range of lengths and thicknesses for which this study

must be limited. Then, the two approaches for the BMC test are analyzed independently. If the

adhesive is characterized from the measurement of the adhesive shear deformation, the influence

of geometry on the stress distribution is studied. If the bonded joint is characterized from the end •

deflection, the influence of geometry on the magnitude of the parameter pis discussed. For each

case, a procedure is presented to define the BMC specimen geometry.

V.
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3.1 - DEFINITION OF SPECIMEN GEOMETRY

3.1.1 - Slenderness ratio te/h

The choice of specimen dimensions is oriented towards two directions: the beam should have

a 'realistic' length and the geometry should not violate the hypotheses from which the theoretical

model is derived. To design a specimen with realistic dimensions, the beam length should be

roughly less than 12 inches. It can be seen in fig. 15 that the slenderness ratio must not exceed 100

if the adherends thickness h is 0.125 in.. When a smaller ratio can be used, it is possible to have

several combinations of beam lengths and adhesive thicknesses. This gives more flexibility to the

user. However, in order to satisfy the basic assumptions of the underlying BMC theory, the .-" -"

slenderness ratio should always be above 10 [6]. Table 2 summarizes the possible lengths as a

function of adherend thicknesses.

3.1.2 - Thickness ratio t/h

The adhesive thicknesses commonly used vary from 0.005 in. in aircraft industry up to 0.2 in.

in automotive industry. Therefore, the choice of the bond thickness of a BMC specimen should

be bounded by these two values. In accordance with the definition of the BMC specimens di-

mensions, we define that the adhesive thickness is 2t and that the thickness ratio t/h deals with half

the adhesive thickness. As discussed in [61, the smaller the thickness ratio, the more uniform is the

shear stress along the beam. For a given adherend thickness h, t/h is minimized by making the ad- S

hesive thinner. Conversely, for a given adhesive thickness, t/h is minimized by using a thicker '. '

adherend. Figures 16 to 18 show the possible combinations of adherend and adhesive thicknesses. .
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Table 2. Variety of valuable beam lengths.

h (in.) (e.h)mn ,,, (in.) (. Ih)m e,,, (in.)

0.0625 10 0.625 192 12
0.125 10 1.25 96 12
0.250 10 2.50 48 12 0
0.375 10 3.75 32 12
0.500 10 5.00 24 12
0.625 10 6.25 19 12
0.750 10 7.50 16 12
0.875 10 8.75 14 12
1.000 10 10.0 12 12

N 0

:%

3N
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Figure 17. Definition or the thicknes ratio -refinefnent for thin adhesives.N
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In conclusion, if a parametric analysis is performed in order to discuss the capabilities of the

BMC method, it should account for the geometric limitations mentioned above. The beam length

remains a realistic quantity if it does not exceed 12 inches. In agreement with practical use of ad-

hesives, the thickness ratio can vary up to 1.6. After the definition of geometrical limitations, the

next step would consist in reducing the number of the parameters involved:

the measurement location x/t which determine the stress magnitude,

I

* the slenderness ratio which involves the beam length 1 and the thickness h,

* the thickness ratio which involves the adhesive and the adherend thicknesses t and h,

* the adherend stiffness E,

* the adhesive shea stiffness G,.
I

From a practical point of view, a BMC test specimen must be designed to allow for reliable

and convenient determination of in-situ adhesive properties. In the following, it is shown that a

compromise can be found for stiff adhesives and shear deformation data. However, finding a I

unique specimen oriented towards end deflection measurements is more uncertain.

3

,3 - OPTIMIZATION OF THE BMC THEORY 29 ".



3.2 - FROM THE SHEAR DEFORMATION TO THE SHEAR No

k N ,

MODULUS

As seen in reference [61, under certain conditions, it is possible to obtain the adhesive shear

properties by measuring the shear deformation: .. i a measurement of the shear strain in the ad-

hesive can be obtained at the place of maximum stress, the shear modulus can be easily found.*

The determination of the shear modulus G, following the procedure mentioned in 16] requires

that the shear stress be constant over the adhesive length where the shear deformation is measured.

The uniformity of the stress is also interesting because it eliminates one parameter in the analysis: 0"

the measurement location x/tf. Such a situation can be found for large values of the coefficient E,

involving a large */h ratio and a small t/h ratio. In addition, another useful finding is the variation

of the maximum shear stress value with increasing stiffness ratio EIGo and various geometries. The

maximum shear stress is: ,0

Max 3P(l + 2:/h) (121
bh(l + 3(1 + 2t/h)2) 1 cosh (2 •

If the parameter i is large enough to cause cosh- to go to infinity and consequently to cause

I - /coshi ) to approach 1, the value of the maximum shear stress becomes a function of the

geometry and the loading only. This situation occurs for i values greater than 6. The variation

of r" versus E/G. shown in fig. 19 indicates that the shear test is also limited to particular material

properties. For the geometry shown, the maximum stress is independent of material properties and

3 is larger than 6 if the ratio E/G, is below 30,000. If material properties combined with geometrical ,.,

properties make the parameter i equals to 6, then the shear stress reaches its maximum at the

loaded end of the beam only. Increasing the uniformity of the shear stress to eliminate the meas-

urenent location dependence, reduces the range of stiffness ratio because this requires a larger Y.
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t/h - 0.02 - limitations of the BMC shear deformation test.
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However, without modifying the stiffness range, it is also possible to vary the beam geometry in

order to obtain higher i for a more uniform stress along the adhesive (fig.20 and 21 ). If the BMC

specimen is assumed to have a slenderness ratio of 96 and a thickness ratio of 0.02, then as shown

in fig.19, the test is valid if 1 < E/G, < 30,000. Using this latter relationship for three adherends,

steel ( E -3xlO' Psi ), aluminum ( E= 1O' Psi ) and titanium ( E= 1.65x10' Psi ), yields the addi-

tional condition in that the adhesive shear modulus be bounded as follows for a valid test.

Adherend Adhesive modulus range (for valid test)

Steel 101:< G,s 3 x 10 Psi

Aluminum 3 x 102 s G, . Ol Psi

Titanium 5 x 102 :s G.:5 1.65 x 10' Psi

For the smallest adhesive shear moduli, 1 is equal to 6 and the shear stress reaches its maxi-

mum at the beam end only. As discussed previously, the stress uniformity is increased by defining

a larger i. This reduces the range of adhesive shear moduli as shown by the following discussion.

If "i equals 14, the shear stress is constant along 70 % of the adhesive and again from fig.19, the test

is valid if 1 < E/G. < 10,000. This condition yields,

Adherend Adhesive modulus range (for valid test)

Steel 3 x 103 < G. - 3 x 10' Psi

Aluminum I0 G,!-I01 Psi

Titanium 1.65 x l (0 < G. < 1.65 x 101 Psi

For the conditions shown above, the adhesive shear stress can be calculated from the geometry

and loading alone. However it should be noted that, in this instance, the technique does not work

well for very soft adhesives. U
The relative displacement of the adherends can be measured at the place of known stress and

the shear modulus can be determined, assuming linear elastic adhesive behavior:
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Figure 20. Variation of the maximum shear stress with adherend-adhesive stilTnesses for I/h- 192,
t/h - 0.04 - limitations of the BMC shear deformation test.
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max max (13)"xy = la) xy

where y-- is from experimental data and T-,, is calculated from the BMC theory.

max 3P(l + 2t/h)x7 = bh(l + 3(l + 2t/h)2) (12a)

Moussiaux pointed out in reference [6] that the maximum shear strain rather than the maxi-

mum shear stress can be used as an indicator of the proper conditions for a good test. This ap-

proach is shown in fig.22 and illustrates that the maximum shear strain varies linearly with stiffness

ratio when the maximum shear stress is constant and determined by geometry and load alone. In

other words, the examples given above are taken for the condition of linear shear strain variations. 5

Fundamentally, the linear shear strain zone or the conditions for a good test increases with in-

creasing beam length and with decreasing adhesive thickness.

Table 3 gives a survey of several adhesives found in the literature which demonstrates that a

broad range of typical commercial structural adhesives are within the range of stiffness of the ex-

amples given above. That the BMC specimen can be used for these combinations of adhesives and

adherends.

3 - OPTIMIZATION OF THE BMC THEORY 35



NI('1,

... 4 ,.°lh - 20

lo J- h - -1.

1030

91lh • 5 ..

10 lot 10h 10 4  I06 log EIG'

Figure 22. Variation of' the shear strain with the stiffness ratio for various geometries (from reference ;
6)...

-T

IIO

.,

3 - PTIMZA7ON O THEBMCTHEOY 3



Table 3. Review of literature of adhesive material properties.

ADHESIVE YOUNG'S MODULUS POISSON'S RATIO SHEAR MODULUS
Eo (Psi) V, Go (Psi)

FM 1018 1.0xl0 6  0.35 3.5-4.0x105
ref. (a)
FM 73 0.2437x10 6  0.32 9.231x101 0

FM 355 4.5x10 s  0.35 1.5x10sref. (a)

FM 300 4.OxI0s 0.35 1.2x101ref. (a)

320/322 1.18x10 5  0.37 4.3x104

ref. (b)
rubber 290 0.49 97

polyurethane 600 0.50 2.0x101
ref. (c)

ref.(a) American Cyanamid, Inc.
ref.(b) Lord Corporation, Inc. 0

ref.(c) Measurement Group, Inc.
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3.2.1 - Parametric analysis 0

The choice of geometry should take into account the preceding restrictions in order to obtain

an extension of the uniform shear stress zone and to facilitate the test procedure. Ideally, in the

calculation of the shear modulus, y, is measured, -r, is calculated from geometry and loading, and

the adhesive is assumed to be linear elastic such that:

G, - - (13a)

In case the shear stress is not equal to its maximum, it is a function of G. through the pa-

rameter :

3P(l + 2t/h)x -•-x .. ,

3PYl+ (/ - cosh + tanh -sinh i ) (10)
) bh(l + 3(1 + 2t/h)2 ) ,

This gives rise to three types of situations which are illustrated in fig.23. .

case I

The kind of shear stress distribution obtained for high values of parameter " is referred to as

case 1. In this case, T,, is constant over almost the entire beam length. Thus, as shown in fig.23, '. N

if the shear strain is measured at either points A or B, the adhesive modulus can be determined

simply from equation (13a) in which T, is not a function of i and is determined only from the

geometry and the applied load.

%

% .%I

.%

S
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Figure 23. Three situations for adhesive shear stiffness determination.
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0

case 2: 0

If the shear strain is measured at point B, then again the shear modulus, G,, can be obtained

easily as in case 1. However, if the shear strain is measured at point A then the shear stress will be

given by :

3P(I + 2t/h)
3x(x) = bh(l + 2t/h)2) (cosh xa+tanh sinh x) (10a)

In equation (1Oa), all quantities are known except for F which is a function of G., the pa-

rameter investigated. In this instance, the adhesive shear modulus must be calculated in an iterative

fashion as discussed below in case 3. 0

case 3:

Case 3 is defined by an i lower than 6. This upper bound was calculated so that the shear

stress never reaches a maximum as defined in equation (12a) because 0 < (coshlx/ - tanha sinh

RX// ) < I. It follows that in this case, the stress is a function of the unknown G. and no math-

ematical transformation exists to eliminate the dependence of r, on G,. Regardless of the position %

of measurement, case 3 is similar to case 2 when a measurement is made at xl/ = x,. That is, ,

knowledge of the adhesive shear modulus is required to predict the adhesive shear stress magnitude, %

and the adhesive shear stress is needed to compute the adhesive shear modulus. Therefore, it be-

comes impossible to obtain the required shear modulus unless a numerical method is used. Solving

for G. numerically would consist of seeking a solution to the following equation:

:e 2.
x x ~~3y P(l + 2t/h)(1)""

G.(1 - cosh a -- + tanh isinh i - =(h19)( +2/h 2  . ,.

bh(l +,3(1 + 2th)2)

While such a procedure can be used, it would not be as direct and useful as for case I above. As a "
%result, this study emphasizes the fact that we need to predict the appropriate specimen dimensions
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in order to create a known shear stress in the adhesive layer when we test an adhesive. Both the

geometry and the material properties of the specimen are included in the expression for i which,

in turn, is directly related to the distribution of shear stress in the joint. In fig.24, " is plotted versus

E/G, with t/h = 0.05 and using several values of the ratio t /h. The horizontal curve for 3 = 6 is

given and characterizes the limit below which the shear stress becomes sensitive to the material

properties. Used in conjunction with the ( r, vs. x/e ) curve such as that shown in fig.23, this set

of curves represents a very useful tool to define the BMC specimen dimensions.

From the stress equation:

?(x) 3P(1 + 2t/h) h - -& + tarsi i--) (10)

bh(l + 3(l + 2t/h)2)

and the parameter i equation:

" (L.)E (12lh) (I+ 3(1+ 2t/h)2 )(1
we can define a relation between the magnitude of i and the beam length over which the shear stress

is constant. This relation, obtained numerically, consists of finding the values of x/f associated with

the values of 3 which make the term in parenthesis in equation 10 approach one. The curve ( i vs.

x/t ) so determined is shown in fig.25 and explicitly defines the values of a for which the shear stress

is constant over a portion of the beam. In other words, the shear stress is constant in the adhesive

layer for all values of -A above and to the right of the curve. Thus, constant shear stress over the

entire beam can be obtained for very high values of i which also implies either a very large

slenderness ratio, a small thickness ratio and/or a small stiffness ratio (fig.24).

.F
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Practically speaking, the choice of a BMC specimen geometry is based on the use of fig.24 and

25. In fig.24 the estimate of the stiffness ratio to be investigated is found and the beam geometry

is adjusted to make the beam as short as possible for practical reasons, and at the same time, to

make the parameter ' as large as possible. From fig.25, a is determined by the desired location for

making a convenient strain measurement. If a uniform shear stress zone does not exist, it means

that the geometry chosen is not good, relatively to the stiffness ratio investigated. Other guidelines

similar to fig.24 are given in appendix, with different values of thickness ratios t/h. It may be useful .

to draw these guidelines for other geometries when we want to extend the limits of validity of the 0

model to the category of soft adhesives. However, as discussed at the beginning of section 3.2, the

simplicity of the test for soft adhesives would lead to an unrealistic beam length and a very thin

adhesive thickness. A compromise will be presented in section 3.3.

3.2.2 - Example of the specimen dimension determination

Our purpose herein, is to emphasize the sensitivity of the method when a geometry is chosen

and an estimate of EIG, is known. 'p

Let us now consider the case when the stiffness ratio is estimated to lie between 102 and 10.

We set the thickness ratio to 0.05 and we find the variation of i versus E/G. for//h = 10 in fig.24.

As pictured in fig.26, if EIG. is 102 and if i is 10, 50 % of the beam is under a constant shear stress

in the adhesive (fig.25). This gives a lot of space for the experimental measurement. However, if

EIG. = l0, i = 3, no beam area is available where the stress is a simple constant function of loading

and geometry. Therefore, the limits of validity of the BMC shear deformation test are exceeded and

it is not possible to characterize the adhesive shear properties other than numerically as mentioned

previously. Hence, the uniform stress zone changes from 50 % to 0 % when EIG. increases from,,. ,,

102 to 102. At the limit point, (i = 6, E/G, 200 ), the stress reaches its maximum at the end only. ,'S

The slenderness ratio chosen is obviously not appropriate fbr this particular case. If by chance, the ,' *.".

real E/G. investigated is below 200, the measurement location should be defined very precisely. In S
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this example, we can also see that to remain on the conservative side, the choice of a BMC speci-

men should be based on an overestimate of the stiffness ratio.

For convenience, a computer program has been written that can help the user to optimize the

BMC specimen geometry. The program has the capability of making a geometrical parametric N

analysis. It computes the data points of the variation of i versus E/G, for various geometries. To

run the program, the user has to input a value for the thickness ratio only. The result is a set of

guidelines similar to those shown in fig.24. The listing of the program is presented in appendix A

and the basic steps of the procedure are described below.

user part: .

* define t/h

computer part:

* do loop tf/h

* do loop EIG.

* plot = f (E/G) varying e/h

user part:

" analyze the plot

* define t/h, according to the estimate of E/G, and the adherend thicknesses available.
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3.2.3 - Proposal for a unique specimen dimension

The BMC shear deformation test is convenient and easy to perform as long as the stress is

not a function of material parameters E and G.. This condition occurs only for stiff adhesives such

that the stiffness ratio is below 10' depending on the geometry. When we look at the variation of

the maximum shear stress versus the stiffness ratio, the entire domain of this type of adhesives is

covered for the highest slenderness ratio e/h and the smallest thickness ratio t/h (fig.20). For

practical convenience, the smallest slenderness ratio would be more suitable but it would imply a

reduction of the adhesive stiffness range that can be tested. However, from the information pre-

sented previously in table 3 where some adhesive properties are listed, it can be seen that the defi-

nition of stiff adhesives can be limited to E/G. = 103, instead of 104. It follows that 1/h can be

reduced to seek a specimen geometry which will produce stress uniformity covering the entire stiff

adhesive domain. Several solutions are proposed for a unique BMC shear deformation test speci-

men. Results are presented in table 4 in terms of percent stress uniformity along the beam.
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Table 4. Definition of a unique specimen geometry for BMC shear deformation test applied to stiff ad-
hesives ( limit of validity E/Ga :5 1000).

percentage of constant t/h 1/h h 2t
shear stress (in.) (in.) (in.)

0.02 40 0.0625 0.02500 2.5
0.02 40 0.1250 0.00500 5.0
0.05 50 0.0625 0.00625 3.125

70 % 0.05 50 0.1250 0.01250 6.2
0.10 70 0.0625 0.01250 4.375
0.10 70 0.1250 0.02500 8.75
0.20 80 0.0625 0.02500 5.0
0.20 80 0.1250 0.05000 10.0
0.01 40 0.0625 0.00125 2.5
0.01 40 0.1250 0.00250 5.0
0.01 40 0.2500 0.00500 10.0
0.02 50 0.0625 0.00250 3.125
0.02 50 0.1250 0.00500 6.25
0.04 70 0.0625 0.00500 4.375

80 % 0.04 70 0. 1250 0.01000 8.75 S
0.05 80 0.0625 0.00625 5.0 A %
0.05 80 0.1250 0.01250 10.0
0.10 100 0.0625 0.01250 6.25
0.10 100 0.1250 0.02500 12.5
0.15 120 0.0625 0.01875 7.5

10.20 130 0.0625 0.02500 8.125

0.02 70 0.0625 0.00250 4.375
85 % 0.02 70 0.1250 0.00500 8.75 %

0.05 100 0.0625 0.00625 6.25
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3.2.4 - Definition of a specimen dimension for property measurement with

Scanning Electron Microscopy ( SEM)

One of the long range objectives in the study of adhesives is to find a means to measure and

observe properties and related deformation mechanisms at micron or submicron levels especially

near the adhesive/adherend interface. To accomplish this task, it is essential to have a simple spec-

imen with a pure shear stress state which can be tested in an SEM. The BMC specimen appears

to be a good candidate for such a specimen and such a test. However, the dimensions of the vac-

uum chamber requires that a relatively short specimen be used. If the beam length does not exceed

3 in., 50% to 60% of the total adhesive length can be analyzed, starting from the loaded end. If the

beam length is one inch longer, only 25% of the adhesive length can be analyzed. Therefore, there

is a limitation on the beam length and we present herein possible specimen geometries for this

particular application. For this purpose, we start with the limitation that e = 3 in. and we arbitrary

chose an adhesive thickness 2t = 0.005 in.. The parametric analysis is presented in table 5. Knowing

t and e, various magnitudes of adherend thickness and the associated ratios are calculated. Then,

the analysis is limited to the range of stiff adhesives such that E/G. *: 10 to compute the minimum

slenderness ratio required for a given state of shear stress within the bondline. Under these condi-

tions, several specimen configurations are suitable one of which is given below.

h = 0.125 in., e = 3 in., 2t = 0.005 in.

The dimensionless ratios are

t/h = 0.02, e/h = 24

And the test is defined for stiffness ratios varying from 1 to 101. In this example, the shear stress is

constant over 50 % of the specimen's length which is well within the range of travel of many SEMs.
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Table 5. Definition of a specimen dimension for SEM application with 2t 0.005 in. and f 3 in.

h (in.) 0.0625 0.125 0.250 ,i
tlh 0.04 0.02 0.01
c/h 48 24 12 0

(elh).,.. .,. 70 50 40 .-.. ,
8 0 % _ _ _ 

.. , I'

(th) , , ,,,' 40 40 30

70 % *___

(tlh)in.,.q. 35 30 25
600/o *

(,e/h). ,,,. 30 20 20

50 % KN

minimum slenderness required by theory to get the percentage ofuniform shea stress indicated.

r -

%

4."t

J,.
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3.3 - A LOAD DEFLECTION TEST TO DETERMINE THE

ADHESIVE SHEAR MODULUS

The end point deflection of the BMC cantilever beam adhesive bond test can also be used as

a means to characterize adhesive shear properties. The method is convenient and simple because

it consists in measuring the end deflection and calculating the shear modulus using equation (18)

given in chapter 2. This method uses the dimensionless value f# reported in the graph presented in

fig. 12 (chapter 2) as a function the stiffness ratio.

Several ways can be used to handle the data generated with this test. First of all, from the

measurement of the end deflection 6, Moussiaux [61 suggested that equation (16) be solved nu-

merically for a and then use the result to calculate G.:

E? (+[ -_ +3E (h)2 +_2 -L - -L tanh3)J (16)2Eb(h + t) Y 2,Ge 2 ,2 -

3Ga( 2 (1+2t)2 1_(1)

E h t/h 1+ 3(1 + 2t/h)2

and,

+ 3(1 + 2t/h) 2

p

On the other hand, a graphical determination of G, using the curves given by Moussiaux in p.-

fig. 11 (chapter 2) is more direct and easier to use. However, for low beam deformability ( low ratio

E/G. ), the dimensionless end deflection tends to an asymptotic value equal to unity. In that case,

the coefficient P is not sensitive to the variations of the stiffness ratio. As the ratio decreases, the

adherend-adhesive combination tends to constitute a system with a resulting stiffness which ap-

proaches that of the adherend itself. As a consequence, the beam behaves like a monolithic isotropic

beam of thickness 2(h + t). For large stiffness ratios, the same phenomenon occurs with a different -
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physical meaning. For soft adhesives, the adherends can develop their full deformation like two S

independent monolithic beams of thickness h. The shear strain is maximum but it also becomes

insensitive to material properties variations as seen in fig.22. In these domains w"here the deflection

is not sensitive to the material stiffnesses, the adhesive shear properties cannot be extracted. It fol-

lows that the bond properties can be evaluated only if the stiffness ratio investigated lies where P
increases rapidly with the stiffness ratio E/G.. 4

We can see in fig. 11 that the domain of large ft variations always covers two orders of mag-

nitude of variation in the stiffness ratio. This is a rather narrow range but does clearly indicate that t *.

a unique test specimen can be designed to test adhesives with a BMC deflection method. In con-
k-% %

clusion, adhesive shear properties can be evaluated by measuring the beam end point deflection,

provided that the specimen geometry is chosen carefully.

In the next section, in order to study the beam deflection response for various geometrical and

material conditions, a parametric analysis has been performed whose purpose is to create guidelines

that would help the user predict adequate specimen dimensions. First, the effect of the shear term

in the deflection equation is analyzed.
,' "

3.3.1 - Influence of the adherend shear deformation on deflection

Close examination of equation (16) on the previous page reveals that the total beam defor-

mation is composed of contributions from the bending of the adherends, shear deformation of the

adherends and shear deformation of the adhesive layer. These are respectively represented by each

of the three terms in the square bracket. '..

A properly designed test specimen should minimize the effects of adherend shear deformations.,T

To visualize the proper conditions to minimize this contribution, the value of .

(I + t/) -- -tanh a(18)
2 2G e 2 /2
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is plotted in fig.27 with (dashed line) and without (solid line) the middle or adhcrend shear term.

As can be observed, the solid and dashed curves coincide for large slenderness ratios i/h. As a result,

to avoid adherend shear deformation effects requires a large slenderness ratio.
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0

3.3.2 - Parametric analysis 0

The preceding discussion has demonstrated that a specimen geometry can be selected to test

adhesives with the end deflection method. For each stiffness ratio investigated, the parameter f# can

only be easily found in the region of rapid variation as seen in fig.28. Therefore, the choice of the

geometry is important because the resulting end deflection might be insensitive to materials prop-

erties if the experimental data or # lie on the horizontal plateaus of the ( f vs. EIG, ) curve. A
0

procedure to select the proper geometry is now proposed and it starts with the assumption that an

estimate of the stiffness ratio is available. A computer program was written to determine the vari-

ations of the dimensionless end deflection versus beam stiffness ratios. The goal of the procedure

is to present on the same figure, the data resulting from the combination of various geometries. In 0

this form, to the user is given an overview of the possible beam geometries that can make the test

successful. It is required that the thickness ratio be input to execute the program for various com-

binations of both the slenderness ratio and the stiffness ratio. The results are shown in fig.28 for

t/h = 0.05 and fig.29 for t/h = 0.04. The values of the slenderness ratio are limited to vary from 20

to 170. Previous discussions have shown that under 10, the slenderness ratio severely influences the

beam deflection by making the adherend shear term dominant compared to other terms. The upper

limit is due to the fact that the # curves converge for values of I/h around 170 making the use of

higher slenderness ratios needless which is in agreement with the conclusions on the parametric

study limitations discussed in section 3. 1. A listing of the program is reported in appendix with

examples computed for varying thickness ratios. An example of the choice of specimen dimension 0

is given in fig.30 for which we assumed that the stiffness ratio was around 10'. One can appreciate

the simplicity of the evaluation of the proper specimen geometry.

Next, a numerical analysis of the BMC specimen with Finite Element Methods is developed.
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4- FINITE ELEMENTS METHODS (FEM)

APPLIED TO THE ANALYSIS OF THE BMC

SPECIMEN

In reference [61, a numerical evaluation of the BMC model was performed to obtain both the

shear stress distribution in the adhesive layer and the beam deflection. The analysis was conducted

with the Finite Element code VISTA which permits the study of plane strain problems. For the 0

cases investigated, it was revealed that a uniform and pure shear stress was acting in the adhesive

layer. Numerical shear stress singularities occurred close to the loaded end however, for which no

consistent explanations were provided. In reference [61, VISTA was also used for the analysis of the

beam deflection but no agreement was obtained when the analytical results were compared to the

numerical results : each computed case differed by 5 % up to 10 % from theoretical values. These

discrepancies may be attributed to the fact that VISTA solves plane strain types of problems only,

whereas the theoretical solution was derived from the plane stress Euler-Bernouilli beam theory.

When dealing with a plane strain problem, the bending stiffness is larger than that for plane stress,

and hence, a smaller deflection is obtained for the same applied load.
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In the present work, the numerical analysis of the BMC specimen started by Moussiaux is 0

extended and consists in a numerical parametric analysis. A complete study of the BMC model is

possible by using additional FEM codes. First of all, we extend the BMC theory in the case of plane -U

strain in order to complete the numerical evaluation by Moussiaux.

4.2 - EXTENSION OF THE BMC THEORY TO PLANE STRAIN

In Moussiaux's work, plane stress theory has been compared to a plane strain numerical code

and discrepancies were found for deflections in the few cases investigated. In this section,we use

Theory of Elasticity to transform in plane strain the shear stress equation and the beam deflection

equations derived in the BMC theory. Next, solutions will be compared to the code VISTA.

K

-0

4.2.1 - Shear stress distribution in a state of plane strain

In reference [6], the shear stress solution from the BMC theory has been compared with

VISTA and has been validated because of the very good agrement found between numerical and

analytical approaches. In the cases investigated, adhesives were relatively stiff and large values of the

parameter i resulted making the shear stress constant in a large section of the adhesive layer. Our

first work has consisted in running cases assuming soft adhesive which implies a small value of the --

parameter i such that the maximum shear stress defined in equation (12a) could never be reached.

We found that the shear stress magnitude is always less than that calculated from the original BMC

theory. Then, conclusions from 16] were questionable and we tried to rewrite the shear stress

equation in order to account for plane strain problems.

For the plane stress situation, the shear stress distribution at the midplane of the BMC spec-

imen is: _
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where,

G 3..(L) (1 + 2/h)2  (12/12)(I

3E

Replacing E in the latter equations by and v by V transforms the equations to
R n t t i - V

their general form for the plane strain condition. The new solution leaves the adherend and the

adhesive shear moduli unchanged, but the coefficient i becomes RJTl -.

Therefore, the shear stress distribution for plane strain is as follows:

1~~ , x) ( cosh R - V + tanh(--fl - 2)sia( - - 1'- 2 )(23,).

(X) e

As shown above, equation (23) differs from equation (10a) by the presence of a factor

--v' in the hyperbolic functions. We can see that due to the nature of the variations of the

hyperbolic functions cosh and sinh, this factor will cause the shear stress to vary differently to its

variation calculated from the plane stress theory.

Comparison between the theoretical solution represented in equation (23) and numerical re-

suts from VISTA will be presented in section 4.4. Next, we turn to the development of the beam

deflection equation in the case of plane strain.

4.2.2 - End Deflection of the beam in a state of plane strain

e

We recall that the beam deflection derived for plane stress is given by:

'=4 4 tanh a (16)

2Ebh3 + - + 2 (2-

4 - FINITE ELEMENTS METHODS ( FEM ) APPLIED TO THE ANALYSIS OF THE BMC
SPECIMEN 61

•9



Proceeding as we did for the shear stress, the form of this equation in plane strain becomes 0

as follows: 
IJ

,is IAL____ - E)
2Ebh 3  2G(l - v 2 )

12 1 tanh 1 (24)

When we look at equation (24), it is clear that a smaller deflection will result in plane strain

due to the factor (1- v2) in front and inside the square bracket. Results for deflection will be also

presented in section 4.4 in comparison with FEM.

4.3 - DESCRIPTION OF THE FEM CODES AVAILABLE

We first used the finite element code VISTA as prescribed by the work done in 161. This code .,

may be used for the analysis of axisymmetric bodies or for the plain strain analysis of two-

dimensional problems. The material library allows us to model isotropic-linearly elastic, viscoelastic

materials, and orthotropic-linearly elastic materials. The element library offers isoparametric quad- -N

ratic quadrilaterals and triangles as well as subparametric triangle elements. In our study, the

specimen was discretized by a two-dimensional plane strain mesh of 8-node isoparametric •

quadrilateral elements. The mesh, consisting of 633 nodes and 192 elements, is shown in tj 31.

Recently, a new finite-element code called NOVA is available for the stress analysis of in-situ

adhesives 1101. NOVA has the capability of solving two-dimensional, planar or axisymmetric 'a- ;

problem geometries with either isotropic or anisotropic materials. Routines allow for geometrical

nonlinearities and nonlinear viscoelastic behavior in the adhesive. The code was validated by com-

parison with analytical and experimental results found in the literature for specimens such as the ,. ..

single lap joint, the thick adherend lap joint, rod, viscoelastic adhesive coupon including moisture
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diffusion, creep, etc... In our work, NOVA was used for a numerical plane stress analysis of the

BMC test specimen. The 'NOVA' specimen was discretized into 288 8-node isoparametric and

two-dimensional plane stress elements : 24 elements in the x-direction, 12 elements in the y-

direction and a total of 937 nodal points. The mesh with NOVA is shown in fig.32.

For each run, we assumed both the adherends and the adhesive to be linear elastic. The Finite

Element mesh was gradually refined towards the loaded and the clamped ends in order to describe

possible singularities. The loading of the BMC was applied by imposing the following boundary

conditions : a symmetric load applied at one end as shown in fig. 1 and the other end clamped. The

stresses in the adhesive layer and the deflection of the beam were studied for various geometrical

and material properties input data in order to analyze the effect of these parameters. Results ob-

tained numerically have been compared to analytical predictions in section 4.4. Before presenting

these results, a first study is performed with the code VISTA to provide a better understanding of

the numerical shear stress singularities found in reference [61 and recalled at the beginning of this

chapter.

4.3.1 - Influence of the Finite Element mesh on the stress distribution

For a more accurate description of the numerical stress gradients near the extremity of the

adhesive, a more refined mesh was used for the analysis with VISTA. We divided the adhesive into

24 elements instead of 16 in the x-direction with same refinements close to the edges. The results

are shown in fig.33. It can be seen that the stress singularity is shifted to the beam tip as the mesh

is refined. Therefore, it appears that the stress singularity occurring when a FEM analysis of the

BMC specimen is performed, is sensitive to the degree of refinement of the mesh. By making the

mesh even more refined at the edge, the singularity would concentrate in an infmitively small region

at the beam extremity. Another comparison with the FEM code NOVA confirms this observation

,1%
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b'eJ

with the additional information that the FEM code definition is also involved in the stress numer-

ical singularity observed because it has been noticed in the analysis with NOVA that the stress

singularities is smoother than that observed in the analysis with VISTA.

4.4 - COMPARISON OF BMC THEORY WITH FEM RESULTS
.%

Table 6 lists the input data for the comparative FEM analysis. Geometrical and material data

are given in terms of parameter i in accordance with chapter 3. Numerical results for the maximum .a,

shear stress and the end deflection of the beam are printed in table 7, together with the analytical

predictions. This allows us to make a comparison between theory and Finite Element results, and

also to appreciate the good agreement between them. For a better overview of the quality of the

results, a graphical comparison of the beam deflections is shown on fig.34 to 36. Finally, the sol-

ution for the shear stress field proposed in chapter 3 for a BMC specimen oriented towards SEM a

application is checked by numerical analysis. Results are shown in fig.37.

, a.
.-

a..':

* .a-"

0

0
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Table 6. Definition of geometrical and material properties used as input data for the numerical analysis. 0

specimen t h e t/h th E/G, a
number (in.) (in.) (in.)

1 0.0625 0.25 5.0 0.25 20 100000 0.3
2 0.0625 0.25 5.0 0.25 20 260 6.9
3 0.0250 0.25 2.5 0.10 10 26 14.3
4 0.0250 0.25 2.5 0.10 10 87 7.8
5 0.0250 0.25 2.5 0.10 10 260 4.5
6 0.0250 0.25 2.5 0.10 10 2600 1.4
7 0.0250 0.25 2.5 0.10 10 84000 0.2
8 0.0250 0.25 5.0 0.10 20 260 9.0
9 0.0125 0.25 2.5 0.05 10 26 18.8
10 0.0125 0.25 2.5 0.05 10 87 10.3
11 0.0125 0.25 2.5 0.05 10 260 5.9
12 0.0125 0.25 2.5 0.05 10 2600 1.9
13 0.0125 0.25 2.5 0.05 10 26000 0.6
14 0.0125 0.25 2.5 0.05 10 84000 0.3
15 0.0125 0.25 5.0 0.05 20 84000 0.6
16 0.0050 0.25 2.5 0.02 10 26 28.5 0
17 0.0050 0.25 2.5 0.02 10 87 15.6
18 0.0050 0.25 2.5 0.02 10 260 9.0
19 0.0050 0.25 2.5 0.02 10 2600 2.8
20 0.0050 0.25 2.5 0.02 10 26000 0.9 ,
21 0.0050 0.25 2.5 0.02 10 84000 0.5

"ab

'a,|

a-

S
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Table 7. Numerical results from FEM codes VISTA and NOVA compared with BMC theory (P- 100
Lb.).

specimen VISTA THEORY (1) NOVA (2) THEORY (2)
number Ta 6 r, 6 Tr, 6 "6

(Psi) (in.) (Psi) (in.) (Psi) (in.) (Psi) (in.)

1 13 1.37E-01 12 1.40E-01 14 1.53E-01 14 1.54E-01
2 233 2.62E-02 232 2.60E-02 235 2.84E-02 232 2.85E-02
3 271 3.72E-03 271 3.81E-03 272 4.17E-03 271 4.17E-03
4 271 4.17E-03 270 4.24E-03 271 4.64E-03 271 4.65E-03
5 266 5.27E-03 265 5.30E-03 266 5.75E-03 265 5.81E-03
6 144 1.10E-02 141 1. 17E-02 150 1.30E-02 148 1.29E-02
7 8 5.79E-03 8 6.OOE-03 10 6.53E-03 8 6.60E-03
8 272 3.16E-02 271 3.16E-02 271 3.49E.02 271 3.47E-02
9 285 4.15E-03 285 4.23E-03 285 4.63E-03 285 4.64E-03
10 285 4.41E-03 285 4.48E-03 285 4.95E.03 285 4.91E-03 %%,
11 285 5.08E-03 284 5.12E-03 285 5.67E-03 284 5.61E-03
12 195 1.00E-02 194 1.OOE-02 202 1.14E.02 201 1.10E-02 ,
13 42 1.61E-02 41 1.66E-02 45 1.74E-02 44 1.82E-02
14 14 5.75E-03 14 5.93E-03 15 6.28E-03 15 6.51E-03
15 49 4.22E-02 49 4.29E-02 55 5.44E-02 53 4.72E-02 0
16 295 4.45E-03 294 4.53E-03 295 4.97E-03 294 4.96E-03
17 295 4.57E-03 294 4.64E-03 295 5.1OE-03 294 5.08E-03
18 295 4.88E-03 294 4.93E-03 295 5.53E-03 294 5.40E-03
19 258 7.84E-03 256 7.81E-03 260 8.84E-03 260 8.57E-03
20 84 1,47E-02 83 1.49E-02 91 1.59E-02 89 1.64E-02
21 31 5.57E-03 31 5.70E-03 35 6.00E-03 34 6.26E-03

(1) plane strain
(2) plane stress

%

- ..-..

4 - FINITE ELEMENTS METHODS (FEM )APPLIED TO TilE ANALYSIS OF THE BMC ,,
SPECIMEN 68 ' '

% %



p. ' , - ' . l, " i',N V .,,, V,,i. ' J, a .a a .J _',P7', .u.w °'W J I. JP ' J w

K

) j=

U0

Ip

0.00%

0.001 ,

Lj 'A.

P 100OLb.
E/Ga = 260

h - 0.125 in.
t 0.0025 in.

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0. . 1

X/L

,.n

Figure 34. Comparison of the beam deflection obtained with VISTA (triangles ), NOVA ( diamonds )1

in plane stress. Solid curve : plane stress BMC theory. Dashed curve : plane strain BMC
theory.
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puted with NOVA in plane stress.
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4.5 - STRESS ANALYSIS WITHIN THE ADHESIVE

,.

The FEM codes were used to pursue the analysis of the BMC specimen in greater detail. .

They provide a further understanding of the role played by modifications in the BMC test specimen

in influencing the stresses in the bonded joint. The effect of the loading mode on the stress distrib- ,

ution has already been treated in 161 and it was concluded that the pure shear state within the ad- "

hesive layer is severely dependent on the symmetry of the applied load. In the present analysis, the :-

influence of the adhesive thickness on the stress distribution and three-dimensional effects on -

stresses are studied. A particular BMC specimen with an adhesive layer shorter than the adherends ,

is also analyzed.

'-',

4.5.1 - Effects of the adhesive thickness on the stress state

Purity and uniformity of the shear stress state are analyzed for various adhesive thicknesses.

For thick adhesives, the purity of the stress state might be perturbed by the development of tensile

stresses u and . In addition, the uniformity of the shear stress distribution can be altered by the

increase of the adhesive thickness.

VISTA was used to study the effects of adhesive thickness on the stress distribution within thets"

bondline. Five cases were run and compared for oint thicknesses of 0.005, 0.01, 0.025, 0.05 and .,

0.25 in.. The material properties used to run these examples were as follows : stiffness ratio E/G. _

- 260, adherends thicknesses h =0.25 in., and beam lengths 1 2.5 in.. The only variable was ,.

the adhesive thickness 2t.o t rs a

Tensile stresses a,, and shear stress T, from the FEM outputs are reported in fig.38 to 42..]

in the form of iso-stress maps covering all the adhesive layer in the plane x-y. The analysis of these

figures revealed thate the purit of the tensile stresses do not exceed a few percent of that of the nsil

shear stress. This also holds true for the case of thickest adhesive of 025 in.. Hence the shear state' -
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in the adhesive layer is dominant and it is pure at the midplarie. The shear stress is also uniform

almost everywhere in the y-di'ection, irrespective of joint thickness. We note however that the .

-.

shear stress varies in the y-direction in areas such as the adherend-adhesive interface and the loaded .

V=.,

end. This fact can be attribute to the discretization of the adhesive layer with VISTA. By refining

the mesh in the y-direction and in the x-direction, the intermediate small regions where "he shear

stress is not constant in the y-direction is expected to be reduced. In conclusion, the thickness of

the adhesive layer does have an influence on the stress magnitude but it is not important enough

to affect the purity and the uniformity of the shear stress state. 0

Although their magnitudes are small compared to that of the shear stress, normal stresses do

exist in the adhesive layer. Their presence is not acceptable in view of the assumption of pure shear

state of the BMC theory. In order to understand the presence of these stresses, a solution is pro-

posed herein for which we turn to the analysis of the adhesive stiffness effect on the adhesive state

of stress.

The case of a BMC specimen in which adherends are bonded with a soft adhesive such as

rubber has been studied with VISTA. The numerical code showed that the state of stress in the

adhesive is pure shear due to the absence of significant tensile stress at any location in the adhesive.

Conversely, in the case of a stiff adhesive, the beam tends to act like a monolithic beam and an

infinitesimal element of the adhesive experiences tensile stresses a, and a, in addition to the shear

stress -r,. In fig.43 and 44, we plotted stress fields for two cases studied with FEM. Both cases

featured the same specimen geometry and the stresses were picked up at the same location

x/t= 0.5. Adherends had also the same stiffness and Poisson's ratio. Only the adhesive stiffnesses

differed: for one specimen the adhesive Young's modulus was 105 Psi and for the second specimen,

it was 100 Psi. These properties made the stiffness ratios equal to 260 and 260,000 respectively.

The diagrams for the axial stress c, clearly reveal the influence of adhesive stiffness on the BMC

specimen behavior.

In conclusion, material properties and beam geometry contribute to the magnitude of each

stress. FEM showed that in most cases, the state of stress is always shear since the tensile stresses

are negligible. Moreover, the pure shear stress state at the midplane of the adhesive is extended to
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the entire bondline when the joint is soft compared to the adherend stiffness. Therefore, the two-

dimensional numerical analysis underlines that the BMC theory based on the assumption of pure

shear acting in the adhesive, is valid for a category of adhesives with low stiffness. It is also inter-

esting to recall that in reference [6], Moussiaux studied the influence of boundary conditions on the

BMC specimen. When a nonsymnmetric load is acting, tensile stresses a., a, develop at the

centerline close to the loaded end, but the magnitude of the shear stress is not affected.

'SS.-

le01
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4.5.2 - Three-dimensional stress analysis in the adhesive

The preceding sections have been concerned with two-dimensional numerical analysis of the

BMC specimen. The present section is devoted to further analysis based on the understanding of

stress state and beam deflection in a modelling closer to the real situation than the two-dimensional

analysis when dealing with the experimental use of the BMC specimen.

In order to analyze the in-plane and the out-of-plane stresses in the adhesive layer, we used

Ii

the 4.5 version of the ABAQUS code made available at Virginia Polytechnic Institute and State

University under an academic contract with Hibbit, Karlsson and Sorensen, Inc..

ABAQUS is a Finite Element program, designed for the analysis of structural responses. The

program libraries permit a large flexibility and a high degree of generality in modelling both linear

and nonlinear problems. The program can solve stress problems divided into static and dynamic

Mesponses and offers options for material, geometric and boundary nonlinearities. Specifications for

boundary conditions and for history definition are very flexible and the specifications are made even

more powerful by the possibility of adding subroutines written by the user to the internal main

program. This option makes the program usable for any kind of structural analysis.

The geometric modelling for the three-dimensional analysis of the BMC specimen required the

use of twenty-node quadratic elements as shiown in fig.45, where the node numbers have been re-

ferred to a cartesian coordinate system. In our analysis of the BMC specimen, the Finite Element

mesh consisted in 400 elements arranged as follows: 10 elements in the x-direction, 3 elements in

Uvch adherend and 4 elements in the adhesive in the y-direction and 4 elenets in the z-direction

(figA46). This discretization produced 2189 nodal points and a total of 6c6 degrees of freedom. A

more refined mesh may have been more suitable in our analysis, especially in the z-direction.

However, due to the difficulties of running the program when we tried to define a more refined

aesh, we simply optimized the discretization of the beam ir order to ensure sufficient storage and

maximum accuracy in the output data.
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4.5.2.1 - Boundary conditions

In the BMC test specimen problem, the first boundary condition is kinematic and consists in ''

specifying fixed displacements at the clamped end of the beam. In the Finite Element modelling .

with ABAQUS, a node set is assigned the boundary condition. The degrees of freedom of the nodal

points in the set acre constrained in the 3 directions x, y and z to satisfy the fixed displacement ,
condition. B

Extending the two-d imenpole the a is bona condi sional problem modifies the

boundary conditions for loading because the load acting at the extremities is now distributed along

the edges. The force is acting parallel to the y-direction and it is distributed uniformly in the z-

direction with a resultant equal to The problem then cnsists in fi ding the nodal force dis-

tribution.

In reference [171, O.C. Zienkiewicz proposed to integrate the appropriate shape functions at '

the nodal points multiplied by the load, over the volu at ment. However, the mathematical

bor consimplified by noticing that the forces are acting only at one edge of the elements at the beam ng

tips. Consequently, the problem is equivalent to calculating the force contribution on the three

nodes of a one-dimensional quadratic element. mntgh d c

The interpolatip ions for a one-dimensional three-nodes element are given by J.N.mahmaia

Reddy in 118 . These functions are constructed by using the linear stretch transformation

2x- (x+, + ,+, )
( =,,t' ~(25) .. ,,"'

h,-

where o is the local coordinate equal to -I at the left end node and equal to + I at the right end

node. The coordinates x and x+, are referred to the global coordinate system and represent the

positions of the left end and the right end nodes respectively. The quantity h Js the length of the

element and subscript e indicates that the variables are referred to the element.
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The interpolation functions are easily derived. Their expressions at nodes 1, 2, 3 of the ele-

ment are:

N, -.-_1 (1 - ) (26a)

N2 = 1 -2 (26b)

N3 = 2 -0( + ) (26c)

In order to obtain the nodal forces equivalent to a distributed load acting on edges of the BMC

three-dimensional model, we have to integrate the shape functions N, multiplied by the acting force,

over the length of the one-dimensional quadratic element. Prior to the integration and because a

change in coordinate system has been done, we must differentiate the variable x with respect to the

local variable 4, namely:
i he

dx T d (27)
2

Next, in the local coordinate system 4, the force acting at node i of element e is given in the

general case as follows:

ff=f N, f--i- d (28)
(22

In equation 28, f is equal to --. Due to the choice of the Finite Element mesh, h, is I inch
2 4

for every element. Finally, for each node, we obtain:

-f P (29a)
48

-P (29b)
12
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P(29c)0

The distribution of the loads at the edge of the BMC specimen characterized by x7 was

drawn in fig.47. 0

4.5.2.2 - Results and discussion WI

The properties of the cases investigated in the three-dimensional Finite Element analysis are

listed in table 8. The results for stresses and deflections are presented at the end of this section.

Due to symmetry, results are given for only one quarter of the adhesive layer at 9 different locations.

These locations are shown in fig.48.

The deflections depicted in fig.49 to 52 show that the numerical results with ABAQUS lie

between theoretical predictions in plane stress and in plane strain for any location in the adhesive. 0

This remark was expected because when one uses FEM to analyze a three-dimensional problem,

there is no option to define whether the problem should be solved in plane stress or in plane strain.

Depending on the choice of the specimen geometry, the numerical solution in 3 dimensions ap-

proaches one of the two two-dimensional solutions in plane stress or in plane strain. In reference

1191, Timoshenko and Goodier define plane stress and plane strain in terms of the geometry and the

loading of a body. On account of geometry, plane stress state is defined qualitatively as thin plates

problems whereas plane strain state concerns bodies whose dimension in the z direction is very

large. Then, when we compare the beam deflections in fig.49 and 50 for EIG, = 26000 to that shown

in fig.51 and 52 for E/G,= 260, we can see that the adhesive thicknesses considered do not influence

the convergence of the numerical solution towards either the plane stress or the plane strain the-

oretical solution. However, for the deflection of the softer adhesive characterized by the highest

stiffness ratio, numerical solution approaches the theoretical solution for plane strain. Conversely,

in the case of the stiffer adhesive, numerical solution is closer to the analytical predictions in plane
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Table 8. Definition of geometrical and material properties used as input data for the numerical analysis
with ABAQUS.

case # t h ' t/h t/h E v E. V.
(in.) (in.) (in.) (Psi) (Psi)

1 0.025 0.25 2.5 0.10 10 10' 0.3 10 0.3
2 0.0125 0.25 2.5 0.05 10 10' 0.3 10 0.3
3 0.025 0.25 2.5 0.10 10 10' 0.3 10S 0.3
4 0.0125 0.25 2.5 0.05 10 10' 0.3 10 10.3

0 0

N

N
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stress. An explanation would be that when the adhesive stiffness approaches that of the adherend,

the BMC specimen tends to behave like a monolithic beam of thickness 2(h + t) but when the ad-

hesive is very soft, the deflection of the specimen is almost due to the bending of the adherend alone

whose thickness is h. Then, in the case of the stiff adhesive, the ratio of the beam thickness by the

beam width is larger than that in the case of the beam with a soft adhesive. Consequently, regardless

to the definition given in [191 for plane stress and plane strain in term of geometry, the deflection

in the first case is closer to the deflection calculated analytically in plane stress and the second case

favorises the deflection to approach the plane strain situation with a dominant dimension in the z 0

direction. On account to an experimental application, the beam deflection measured on the BMC k

specimen can differ from the theoretical solution for the reasons explained above without going %

against the validity of the BMC theory.

Next, we turn to the analysis of the stress state in the adhesive layer.

In fig.53 to 68, we plotted the numerical results obtained for stresses a, a,, a, and T., at dif-

ferent locations in the adhesive layer. The locations where the stresses were calculated are listed in

the figures. The first remark is that the shear stress is acting alone at the adhesive midplane because

all other stresses are zero at this location. In the case of the shear stress distribution, numerical re-

suits superpose very well with the analytical solution from the BMC theory reported in fig.53 to % .

56. The agreement between theory and ABAQUS is perfect for soft adhesive but in the case of stiff S

adhesive, numerical results differ by a few percent from theory in the z direction for a given x lo-

cation. However, ABAQUS gives a similar shear stress distribution to theory in the plane z = 0. %

We can see that there is no influence of the adhesive thickness on the quality of the results except,

of course, for the magnitude of the resulting shear stress. Stress singularities occur at the loaded end

which have already been studied in the two-dimensional FE analysis. In the case of the axial -.-

stresses, they all present stress singularities at both the clamped end of the beam and the loaded end %.,

with high concentration at the latter location. In addition, the decrease of the adhesive thickness

contributes to reduce the magnitude of tensile stresses. The magnitude of the in-plane stresses o,

and a, are significantly increased from soft adhesive with less than 1 Psi to stiff adhesive with less

than 10 Psi. The larger in-plane stresses are present at the interface between adherend and adhesive

'N
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Figure 57. Tensile stress sigma x in the adhesive layer from three-dimensional analysis. P = 100 Lb.,

E/Ga 26000, 1/h - 10 and t/h - 0.1.
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Figure 61. Tensile stress sigma y in the adhesive layer from three-dimensional analysis. P- 100 Lb.,
E/Ga 26000, f/h - 10 and t/h - 0.1.
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Figure 64. Tensile stress sigma y in the adhesive layer from three-dimensional analysis. P- 100 Lb.,
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Figure 67. Tensile stress sigma z in the adhesive layer from three-dimensional analysis. P 100 Lb.,
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Figure 68. Tenmile st.e sigma z in the adhesive layer from three-dimensional analysis. P- 100 Lb.,
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for a, and at the external surface of the adhesive for a,. These stresses approach zero as they are

calculated closer to the midplane. Finally, the out-of-plane stress cr, is a compressive stress in the

upper half of the adhesive with high magnitude compared to that of the other tensile stresses. The

same singularities occur at the extremities and large stress concentrations are present at the

adherend-adhesive interface.

In conclusion, the three-dimensional Finite Element analysis of the BMC specimen reveals the

presence of in-plane and out-of-plane stresses in the adhesive layer in addition to the shear stress.

As said in the two-dimensional analysis, the magnitude of the axial stresses is negligible in com-

parison to that of the shear stress especially for soft adhesive, but concentrations at the loaded end

occur, particularly at the interface between adherend and adhesive. Tensile stresses do not modify

the state of shear because FE showed that in the cases investigated, good agreements were obtained

for the shear stress distribution between theory and numerical results. The additional analysis of the

beam deflection reinforced the validity of the BMC theory.

0

S
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4.5.3 - Comparison of the stress state in the adhesive between the BMC test 0

specimen and a modified BMC specimen "

For stiff combinations of adherends and adhesive (aluminum-epoxy for instance ), the adhe- ,

sive shear deformation as well as the end point deflection resulting from the loading of the beam

can be very small and can require sensitive measuring techniques to be measured. In extreme cases, . .

the shear stress state would approach that of a monolithic beam. In chapter 2, a quantitative

parametric analysis has been conducted to illustrate the situation. In order to increase the shear

deformation in the adhesive layer, one option is to reduce the length of the bonded adhesive.

VISTA was used to analyze the resulting state of stress in the short adhesive layer. Tensile stresses 0

a, and a, may exist in the adhesive but as long as their magnitudes are still a few percent of that

of the shear stress, the state of stress is still pure shear for all practical purposes.

4.5.3.1 - Finite Element model

We considered an adhesive layer with half the adherend length and located symmetrically be-

tween the two clamped adherends. In the adhesive layer, the mesh consisted of 112 elements with

some refinement at the bond tips. The FEM mesh is depicted in fig.69.

0

4.5.3.2 - Results and discussion

Figure 70 represents the shear stress distributions at the adhesive mid-plane for a short adhe-

sive of length -- and for an adhesive of length 1. For the long adhesive layer, the shear stress

is that predicted by theory. For the short adhesive, the shear stress differs entirely from theory : it
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increases uniformly from left to right towards where the beam is loaded and it drops to zero at the 0

tips. Fig.71 shows that the shear stress is uniform within the adhesive thickness, and that it is not

uniform along the length far away from either extremity of the adhesive where the shear stress has

peaks. The tensile stresses acting in the adhesive layer are shown in fig.72 and 73 and they can be

compared to that depicted in the iso-stress maps for the same BMC specimen with an adhesive

bonded over the entire beam length. On fig.72 and 73, one can see that high tensile stresses con- , '-.'-

centrations occur at the extremities especially at the adherend/adhesive interface for the peel stress.

These stress concentrations are however limited to small lengths at the adhesive ends and the larger

stress magnitudes are close to the loaded end. No other stress than the shear stress is acting at the

midplane. Furthermore, when we compare the magnitude of the shear stress with that of the tensile

stresses, one can see that the latter are negligible far enough from the extremities of the joint where 0

the peaks are. Therefore, in the major part of the joint, the state of stress is still pure shear, uniform

over the thickness and with an increasing magnitude along the x-location. Finally, by reducing the

joint length, the shear strain is increased from 20 up to 100 % compared to the case of a long joint.

This increase facilitates the measurement of the deformation for low BMC beam stiffness ratios.

In the next section, we present the results of an experimental study made in addition to the % *.*

analytical and the numerical analyses of the BMC specimen. "e'll
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5 - EXPERIMENTAL APPROACH

The experimental tests on the BMC specimen were performed in order to measure the de-

flection of the beam and the shear deformation. Specimen geometries were varied to compare ex-

perimental results to analytical predictions, The adherends were steel ( E= 30x101 PSi ( 207000

MPa ), vf= 0.31 ) and aluminum ( E = 10.2x10' PSi ( 70380 MPa ),v= 0.29 ). The adhesives were

Neoprene 5109S ( Go= 130 PSi ( 0.897 MPa )) and FM300-K ( G. = 1.2xl10 PSi ( 805.4 MPa )).

Three types of adherend-adhesive combination were considered. Rubber-to-steel and epoxy-to-

aluminum were the two extreme cases because their resulting stiffness ratios are large ( 2.3 x l0S)

and small ( 10 ) respectively. They also ill 'strate some of the most used adhesion combinations in

bonded structures. A third set consisting of rubber-to-aluminum specimens provided more data for

the experimental evaluation of the BMC theory.

5.1 - SPECIMEN PREPARATION

To prepare the specimens, the adherends were vapor degreased, grit-blasted with steel grit, and

vapor degreased again with tri-chloroethane 1,1,1. For bonding the rubber, two coats of Chemlock

205 primer and two coats of Chemlock 220 topcoat were brushed on the adherends, allowing for
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drying before applying the next layer. The mold was preheated in the platen press and the specimens 0

were placed inside with a rubber layer sandwiched between the two adherends. The rubber was 4

vulcanized at 163@C ( 325,F ) for two hours at a pressure of 3.45 MPa ( 500 PSi ). In the case of

the specimens bonded with epoxy, the resin was inserted between the aluminum adherends imme-

diately after the second vapor degreasing. Then, the specimens were cured for one hour in a pre-

heated oven at 1750C ( 3476F ). The shape of the specimens is shown in fig.74 and the properties

of the beams are listed in tables 9, 10, 11.

5.2 - EXPERIMENTAL SET-UP

A special device had to be designed to conduct the experiments on the BMC specimen. As 'r

shown on fig.75, the beam was clamped vertically on a rigid frame that supported the loading sys- . '

tern which consisted in a screw and a mini load cell connected to a yoke on which a pin was at-

tached. The load was applied by pulling on one side of the specimen with the horizontal pin acting

on a groove built on the constrained side of the specimen. The load was transferred to the two

adherends by putting a rigid shim between both adherends at the loading point of the same thick-

ness as the adhesive layer. The load applied with the screw was recorded with the load cell fixed

between the specimen and the rigid frame device. The beam end deflection as well as the relative ' _

motion of the adherends were measured simultaneously in the manner described next.

,.'.N.

N
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Figure 74. Specimen configuration.
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Table 9. Rubber-4o-steel specimens. 0

specimen adherend adhesive beam length measurement
code thickness thickness location *

h(in.) 2t(in.) ,(in.) _ _ _

RBI 0.125 0.051 3.5 0.58
RB2 0.125 0.048 4.5 0.52

RB3 0.125 0.039 5.5 0.45
RB4 0.125 0.045 6.5 0.44

RB5 0.125 0.040 7.5 0.63 .-.-
RB6 0.125 0.041 9.5 0.71

0.48
0.24

RB7 0.125 0.045 9.5 0.75
0.44

E= 30x10' Psi, v=0.31
Ga= 130 Psi
() for shear deformation measurements

,

%

0

%0
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Table 10. Rubber-to-aluminum specimens.

specimen adherend adhesive beam length measurement
code thickness thickness location *

h (in.) 2t (in.) e ( )in. x/
ARBI 0.125 0.015 3.5 0.41
ARB2 0.125 0.016 4.5 0.40
ARB3 0.125 0.041 4.5 0.43
ARB4 0.125 0.024 5.5 0.45

E- 10.2x101 Psi , v0.29
Ga- 130 Psi
() for shear deformation measurements

5 R1A

.V

*I

-"
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Table II. Epoxy-to-aluminum specimens.

specimen adherend adhesive beam length
code thickness thickness

h (in.) 2(in.) e (m.)
EALI 0.125 0.046 2.5
EAL2 0.125 0.088 2.5
EAU 0.125 0.048 3.5
EAL4 0.125 0.043 3.5

EAL5 0.125 0.038 4.5
EAL6 0.125 0.040 4.5

E 10.2x106 Psi,v 0.29
Ga- 1.2xl0 Psi

0

' %.

N

"4',%. .!
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5.3 - SHEAR DEFORMATION MEASUREMENTS

The measurement of the shear deformation of the beam was conducted with a Krieger gage

[201 which is an extesometer initially developed to give the shear stress-strain curve for a glue line

in a thick adherend lap shear specimen. The extensometer is positioned on the side of the BMC

specimen as pictured in fig.76. When the beam is loaded, the extensometer records the relative

motion of the adherends. The applied force and the shear deformation are then printed on a X-Y

plotter and provide the data for a comparison between the experimental shear strain and that pre-

dicted from theory. The experimental results are presented on fig.77 to 87 and they are compared

with the theoretical predictions. The shear strain was calculated by dividing the shear deformation

by the distance separating the two hard steel points of the gage and clamped to each adherend. The

theoretical curves were obtained from the shear strain approach of the BMC theory and by using

the input data listed in tables 9 and 10. Comparison between experimental and analytical results

shows that a good agreement is found especially when the shear deformation is measured far away

from the loaded end. As demonstrated by specimens RB6 and RB7, the measured shear strain is

very sensitive to the measurement location and the difference between theory and experiments in-

creases with the quantity -!-. We expect the Krieger gage itself to be responsible for this disparity

because the closer to the beam tip the shear deformation is measured, the larger is the bending de-

formation of the adherends. Therefore, each cross section of the adherend rotates relatively to the

adhesive midplane and causes a reduction of the real deformation in shear recorded by the Krieger

gage. This is illustrated for several specimens on the following figures.

For our purpose, the Krieger gage was difficult to use and is not recommended for further

experiments on the BMC specimen. Vibrations occurred and the measurements lacked

reproducibility on repeated loading. In particular, this happened when the shear deformation was 0

expected to have a small magnitude relatively to the material properties of the specimen.
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Figure 77. Shear strain versus load. Specimen RD 1. Comparison at theory (solid curve )with exper- o

imeats (triangles ).
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Figure 78. Shear strain versus load. Specimen RB2. Compaison of theory (solid curve ) with exper-
iments ( triangle*).
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Figure 79. Shear strain versus load. Specimen RB3. Comparison of theory (solid curve ) with exper-
iments ( triangles).
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Figure 80. Shear strain versus load. Specimen RB4. Comparison of theory ( plane and slashed lines
with experiments ( triangles and diamonds ) for two measurement locations on the beam.
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Figure 82. Shear strain versus load. Specimen RB6. Comparison or theory (solid and dashed curves)
with experiments (triangles, diamonds, squares).
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Figure 84. Shear strain versus load. Specimen ARB I. Comparison of theory (solid curve ) with exper-
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Figure 86. Shear strain versus load. Specimen ARB3. Comparison of theory (solid curve )with exper-
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Figure 87. Shear strain versus load. Specimen ARB4. Comparison of theory ( solid curve ) with exper-
iments ( triangles).
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5.4- DEFLECTION MEASUREMENTS

The end deflection was measured with a MTS extensometer mounted at the loading point of

the specimen. With an X-Y plotter, we simultaneously recorded the load deflection curve. Exper-

imental results are presented on fig.88 to 101. We also have reported the theoretical data corre-

sponding to the specimens geometrical and material properties. This allowed for a graphical

comparison of experiments results with the BMC theory based on the beam deflection approach.

For rubber-to-steel specimens or rubber-to-aluminum specimens, excellent agreement is obtained

between the two results. Even for the epoxy-to-aluminum specimens, good agreement is found

between theory and experiments. However, the loading of the epoxy-to-aluminum specimens had

to be modified. When the specimens were loaded by pulling on one side and by assuming that the S

load was transferred to both adherends with the inserted rigid shim, deflections were 50 % larger

than those predicted. The loading system was responsible for this disparity because, due to the large

stiffness of the epoxy resin, the applied force on the upper adherend was actually not transferred to

the lower aluminum beam. As a results the force magnitude was 2- instead of P regardless to the
2

initial loading conditions of the theoretical model. By designing a new loading device, we were able

to apply equal forces on both aluminum beams. We set one small screw at the extremity of each

adherend. The yoke was modified in order to support two pulleys on which a piano wire type cable 0

was going around. The two extremities of the cable were attached to each small screws fixed on each

adherends. By pulling on the yoke, the adherends were constrained equally. Then, experimental

results matched with theory with errors inferior to 10 % which can further be attributed to a lack •

of rigidity of the clamping system of the specimen because the boundary conditions did not per-

fectly reproduced the ideal clamped BMC specimen situation. As shown in the next figures, it re-

sulted in higher deflections for all stiff specimens bonded with epoxy. In addition, contribution of
0

the solid loading frame is not negligible when the epoxy-to-aluminum specimens are loaded with a

side load.

5A
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Figure 88. End deflection versus load. Specimen RB3. Comparison or theory (solid curve ) with exper-
imnenti (triangles ).
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Figure 89. End deflection versus load. Specimen RB4. Comparison of theory (solid curve ) with exper- -'iments ( triangles ).r.
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Figure 90. End deflection versus load. Specimen RBS. Comparison of theory (solid curve ) with exper-
iments ( triangles ).
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Figure 91. End deflection versus load. Specimen RB6. Comparison of theory (solid curve ) with exper-
iments (triangles).
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Figure 92. End deflection versus load. Specimen RB7. Comparison of theory ( solid curve ) with exper- .
iments ( triangles ).
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Figure 93. End deflection versus load. Spezimen ARBI. Comparison of theory (solid curve ) with ex-
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Figure 94. End deflection versus load. Comparison of theory (solid curves )with experiments for spec-
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Figure 95. End deflection versus load. Specimen ARB4. Comparison of theory (solid curve ) with ex-
periments ( triangles ).
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Figure 97. End deflection versus load. Specimen EAL2. Comparison ot theory (solid curve )with ex-
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Figure 99. End deflection versus load. Specimen EAL4. Comparison of theory ( solid curve ) with ex-
periments ( triangles ).
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5.5 - DISCUSSION OF THE RESULTS 0

In this section, the experimental data were used to evaluate the adhesive shear modulus for

each specimen tested. The results were compared to the adhesive shear moduli provided in tables

9 to 10 and the validity of the experimental data obtained from the shear deformation and the end J %

deflection tests were discussed. The data were also used to verify the conclusions concerning the

optimization of the BMC methods.

5.5.1 - Determination of the adhesive shear modulus from the shear ,.-

deformation measurements

First of all, in order to derive the adhesive shear modulus from experiments, we had to eval-

uate the magnitude of the shear stress at the measurement location from BMC theory and by using

data listed in tables 9 and 10. Then, we calculated the adhesive shear modulus as follows:

G, - T (13a)
Yexperlmentai

We also calculated the error generated by the evaluation of G. in comparison with the pre-

dicted values given in tables 9 and 10. These results are presented on table 12 and one can see that

the adhesive shear modulus is usually obtained with less than 10 % of error.

Another approach is now presented for the evaluation of G. It is based on a graphical method

and its main interest consists in the verification of the conclusions developed in chapter 3. For this

purpose, we plotted the variations of quantity y/( b with increasing stiffness ratio. They are

related as follows:

3E(I + 2,/h) - xoh) t".s,5
2 1 - cosh R tanh a siah R (25)

EM G,(l +3(l + 2:h))eE b h -: "
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Table 12. Comparison between experiments and theory for the calculation of the adhesive shear
modulus from shear deformation measurements ( P- 10 Lb.).

specimen theory experiments error on
code G. G.

(Psi) (in./in.) (Psi) (in./in.) %--

RBI 130 0.0173 123 0.0182 5
RB2 130 0.0259 120 0.0281 7
RB3 130 0.0521 118 0.0576 9
RB4 130 0.0447 127 0.0458 2
RB5 130 0.0866 133 0.0847 2
RB6 130 0.0497 127 0.0596 2
RB7 130 0.0825 147 0.0727 13

ARBI 130 0.0841 129 0.0846 1
ARB2 130 0.1378 125 0.1402 4
ARB3 130 0.0826 126 0.0856 3
ARB4 130 0.1369 123 0.1442 5

(I) Tv thoredcal - .
Vghjr) = Ga

G(2)

a ypueimsniai

5,

I,

5- EXPERIMENTAL APPROACHI 157

%. *..Z.~%P~d* ~ V r .



where the dimensionless measurement location x/t" is input as an experimental data.

The proper experimental value of the shear strain is indicated by an horizontal line on the

strain-stiffness curve. The intersection between the horizontal line and the theoretical curve gives

the corresponding stiffness ratio E/G,. The adhesive shear modulus is calculated from the stiffness

ratio and the value which is found is the estimate of the adhesive shear modulus obtained from the

BMC test procedure. It can be compared with the value of the shear modulus provided in tables 9

and 10 and which have been referred as the adhesive shear modulus predicted prior to the test. Such

an analysis has been conducted for every specimen tested to obtain shear strain data. The results 0

are presented on fig.102 to 107. It is then important to notice that for rubber-to-steel specimens,

for which EIG, is 2.3xiG, the method is not appropriate to calculate the adhesive shear modulus

because the experimental data mostly coincide with the upper horizontal plateau of the curve.

Therefore, more than a unique value of the stiffness ratio can match. However, for the longest and

thinnest beams, the linear part of the curve covers a larger range of stiffness ratios so that very good

agreement is found between experiments and theory. For rubber-to-aluminum specimens, the

stiffness ratio is smaller : E/ G. = 7.8x10'. The experimental data match with the theoretical input N

in an intermediate region located between the linear zone and the plateau. In this region, the shear

stress is sensitive to the beam material properties (chapter 3) and cannot be calculated easily using

equation 12a. In order to evaluate the adhesive shear modulus, the method is then to use a graphical 0

representation of the results. However, if the BMC specimen geometry is not defined properly prior

to the test, the experimental data might lies within the constant zone of the strain-stiffness curve

where it is not possible to get an accurate determination of the adhesive shear modulus.

In addition, on each curve we plotted the variation of the maximum shear strain (dashed line

curves), provided by the BMC theory as follows:

V m a x 
( 6

P G.y 2( + 2t/h) cosh ) (26)
Ebb .".'

where x/e was set to unity. - -" "
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Figure 102. Shear strain versus stiffness ratio. Graphical comparison between theory and experiments.
Top : specimen RB 1. Bottom :specimen RB2.'-
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Figure 103. Shear strain versus stiffness ratio. Graphical comparison between theory and experiments.
Top : specimen RB3. Bottom specimen RB4.
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Figure 104. Shear strain versus stiffness ratio. Graphical comparison between theory and experiments.
Top: specimen RB. Bottom :specimen RB6.
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Figure 10. Shear strain versus stiff'ne-,. ratio. Graphical comparison between theory and experiments ..

for specimen RBT. .
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Figure 106. Shear strain versus stiffness ratio. Graphical comparison between theory and experiments.

Top : specimen ARBI. Bottom :specimen ARB2.
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Figure 107. Shear strain versus stiffness ratio. Graphical comparison between theory and experiments.--
Top: specimen ARB3. Bottom specimen ARB4. -p
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In the case of the maximum strain versus the stilfness ratio curve, the linear variation indicates 0

that the shear stress is only a function of loading and geometry whereas it becomes dependent on

material properties if E/G. increases. The projection of the experimental data on those curves

clearly indicates that it would provide erroneous results for the stiffness ratio if the definition of 0

vm" was used.

The only location where the variation of the maximum shear strain could coincide with that

of the strain calculated at a particular measurement location, is the linear part of the curve. It is

accessible for the BMC beams whose stiffness ratio is below 10 but the linear shear strain zone can

lie over a larger range of stiffness ratio by making the beam longer and by making the adhesive

thinner. For the beams whose stiffness ratio varies linearly with the shear strain, the test is very easy

because we have discussed in chapter 3 that in that situation, the shear stress can be calculated di-

rectly from the beam geometry and the loading alone. In order words, as the shear strain is deter-

mined by the experiments and because the shear stress is known, the adhesive shear modulus is

computed simply as the ratio of the shear stress by the shear strain. For large specimen stiffness

ratio, a long and inconvenient procedure is necessary to evaluate the adhesive shear modulus.

However, the procedure does not even guarantee the accuracy of the final result, specially if prior

to testing, an analysis aimed at the definition of the beam geometry has not been done. This is

clearly illustrated by the contents of this section.

Hence, when we were able to calculate the adhesive shear modulus, we found a good agree-

ment between theory and experiments. Moreover, the conclusions obtained from the optimization

of the BMC shear deformation method were confirmed.

5
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5.5.2 - Evaluation of the adhesive shear modulus from the end deflection 0

measurements

To determine the adhesive shear modulus from the end deflection, it is recommended to use

a graphical method. It consists in drawing the variation of the dimensionless end deflection beta'

versus the stiffness ratio according to the geometry of the specimen tested. The computer routine k

mentioned in section 3.3.2 and presented in appendix A has been written for this purpose. Then, •

one has to report the experimental value of beta on the P versus E/G. curve to deduce the corre-

sponding stiffness ratio.

Table 13 presents the experimental results. A comparison with analytical predictions is also

shown. The curves from which these data are deduced are depicted in fig.108 to 115. One can note

that the results for P agree very well with theory but the error generated for the calculation of El

G. is larger, depending on the slope of curve ( vs. EIG. ).

For rubber-to-steel and rubber-to-aluminum specimens, the fast increasing middle zone of the S

beta variations covers the range of stiffness ratios investigated. Therefore, results are obtained with ".

a lot of confidence. However, the epoxy-to-aluminum specimens for which EIG. is about 100, show

that even for the shorter beams, the disparity between experiments and theory is large. The reason

is that the method based on parameter p is not appropriate for stiff combinations of adherend and .

adhesive. For these beams, P lies in a region where it is not sensitive to the variation of the stiffness

ratio.

ilence, the BMC test method based on the measurement of the beam end deflection works

well with large stiffness ratios but it is limited in the case of the small ratios, even when acting on '1

the specimen geometry. This comes to reinforce the conclusions provided from the optimization -A/

of the BMC theory.

.A
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Table 13. Comparison between experiments and theory for the calculation of the adhesive shear
modulus from the end deflection measurements.

specimen theory experiments error %
code EIG, _ EIGo E/Gf

RB3 2.3x10s 5.57 1.6x105  5.35 28 4
RB4 2.3x10s 5.78 2.6x10s 5.86 12 1
RB5 2.3x10 5.21 1.8xl05  5.04 20 3
RB6 2.3x10 4.89 2.1x10 5  4.77 6 2
RB7 2.3x10Y 5.11 1.9xl0 4.92 17 4

ARBI 7.8x101 3.87 1.0xl03  4.03 28 4
ARB2 7.8x104 3.56 7.4x104  3.52 5 1 0
ARB3 7.8x10 5.24 7.0x10' 5.10 9 3
ARB4 7.8x10 4  3.80 7.3x10' 3.72 6 2
EALI 85 1.11 108 1.19 27 8
EAL2 85 1.23 106 1.35 25 10
EAL3 85 1.06 110 1.12 29 7 0

EAL4 85 1.12 110 1.23 29 7

EALS 85 1.03 123 1.10 45 5
EAL6 85 1.07 103 1.12 21 5

m0
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6- CONCLUSION AND

RECOMMENDATIONS

In conclusion to the present report, we recall that the analysis of the BMC theory has been e. .

oriented towards the directions : 0. .

" a parametric analysis in order to study the capability of the BMC theory to provide adequate '

shear data on structural adhesives via relatively simple and reliable test,

" a numerical analysis developed in two and three dimensions in order to check the validity of , ,,

the shear stress and the beam deflection equations from the BNIC theory as well as to check _e

the validity of the pure shear stress assumption in the adhesive layer with constant regards to ,.'

practical purposes, ,.'

• an experimental study.

PARAMETRIC ANALYSIS : ,.

Starting from the general concepts of the BIMC theory, two tests of different nature were de- .e

rived. These are referred as the BMC shear deformation tests and the BMC end deflection test. The Z.N,

prmtianlssbased on the shear stress and the end deflection concepts revealed the BMC
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specimen dimensions required for reliable adhesive shear property determination. Procedures and S

recommendations were provided to design the BMC specimen in order to calculate the adhesive

stiffness and in order to make reproducible tests.

As a result from the parametric study, in the case of the BMC shear deformation test, the shear

stress can be calculated easily from loading and geometry alone but only if the adhesive stiffness

investigated is relatively high which requires that the stiffness ratio should not exceed 10'. A unique

specimen geometry was proposed to characterize relatively stiff adhesives from the lecture of the

shear deformation inside the bond in conjunction with the analytically predicted shear stress. A

simple pure shear test with a constant shear stress inside almost the entire the bondline was also

presented. %

It also resulted from the parametric analysis that the characterization of the joint shear stiffness S

with the end deflection concept can be made only if the value of the stiffness ratio E/G. investigated

lies in the zone where the end deflection increase the most rapidly with this ratio. This condition

is highly dependent on the choice of the specimen geometry.

NUMERICAL ANALYSIS:

Solutions for shear stress and for beam deflection derived from the BMC theory were com.- %

pared with the Finite Element codes NOVA in plane stress and VISTA to pursue the numerical

evaluation started in reference 16] which motivated the realization of the present study. The use of

VISTA required to extend the BMC theory in the plane strain situation to make possible a com-

plete comparison between numerical and analytical results. Very good agrccments were found in

any case of material properties and specimen geometries which constitutes a validation of the the-

ory. Numerical analysis provided a better understanding about the stress state existing in the adhe-

sive layer and about the conditions required for a pure shear state. Tensile stresses a, and a. do exist

in the adhesive layer whose magnitudes increase with the adhesive thickness and/or stiffness.-.

Three-dimensional analysis with the program ABAQUS showed the presence of stress concen-

tration at the adherend/adhesive interface and both the two-dimensional and the three-dimensional
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studies revealed that the magnitudes of the tensile stresses are negligible in comparison to that of

the shear stress. In addition, tensile stresses do not modify the state of shear because Finite Element

showed that in the cases investigated, good agreements were obtained for the shear stress distrib-

ution between theory and numerical results. In other words, the negligible magnitudes of tensile

stresses confirm that the BMC specimen configuration produces a shear stress state in the adhesive

layer and, the good agreement between numerical and analytical approaches constitutes a validation

of the bonded cantilever beam concept as a shear test. Using VISTA, a modified BMC specimen

was proposed in order to increase the deformations of stiff beams. Tensile and shear stresses peaks

occurred at the adhesive ends, with axial and peel stresses concentrations at the adherend/adhesive

interface, especially close to the loaded end. By comparing the stress magnitudes, stress analysis

showed that in the major part of the joint, the state of stress is pure shear, uniform over the thick-

ness and with an increasing magnitude in the x direction. These numerical results are confirmed in

a recent work by K.M. Liechti which is presented in reference (211. Finally, Jhe fact that the shear

strain increases from 20 % up to 100 % from that of the classic beam when the length of the ad-

hesive layer is reduced between the adherends is especially appealing for experimental purpose and

should be considered as a recommendation for future work.

EXPERIMENTAL ANALYSIS:

The last part of our work consisted in the experimental application and verification of the

theoretical concepts. For that purpose, shear deformation and end deflection measurements were

performed on BMC-method-shaped specimens which permitted to compare the experimental re-

sults to the analytical predictions. Most of the time with the shear deformation method, the ad-

hesive shear modulus is determined with an accuracy not exceeding 10 % which satisfies the

requirements for engineering errors. The evaluation of the adhesive shear modulus from the shear

deformation test data required the use of a long numerical procedure because in the cases investi-

gated, the shear stress could nit be derived directly from geometry and loading alone as suggested
S

in the parametric analysis The use of the simplest form of the shear stress equation which does not
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depend on adhesive mechanical properties was discussed and graphs showed the error generated in

finding the value of the shear stiffness when the BMC theory is not used properly. Also, the de-

velopment of shear deformation measurement with the Krieger gage was limited especially for stiff

adhesives. We found that the shear deformation test would necessitate the development of a special

deformation measurement instrumentation. The device should satisfactorily monitor the relative

displacement between the adherends without being constrained by their bending.

The method based on the end deflection test is easy to perform and tests on specimens of low

deformability such as epoxy-to-aluminum, revealed the importance of keeping the boundary con- 0

ditions for loading similar to those used in the BMC theory. In addition, the calculation of the

adhesive shear modulus is highly sensitive to the value of the dimensionless end deflection fi.

Consequently, sensitive equipment must be used for measuring the beam end deflection. Provided

that the specimen geometry is defined prior to the test by bearing in mind the shear stiffness in-

vestigated, the test can give reliable and accurate results.

Finally, an important conclusion is that the limitations defined in terms of specimen geometry

and stiffness ratio in the parametric analysis and which concerned the shear deformation test as well

as the end deflection test were confirmed experimentally. For that reason, it seemed essential to

recall in the present section the origin, the nature and the consequences of these limitations.

If we compare the effect of geometrical quantities such as e', h and t on curves ( -r-n vs. EIG. e

) and ( P vs. EIG. ) in fig.19 to 21 and fig.28 to 30 respectively, we see that the curves move together

from left to right as the slenderness ratio increases and the thickness ratio decreases. It is thus ir- 0

possible to have, at the same time, the conditions required for a constant shear in the adhesive layer

and those for a deflection highly sensitive to the variation of stiffness ratio. The parametric analysis

showed that a constant shear state cannot be reached for the soft adhesive unless an unrealistic ex-

perimental design of the beam is used. Conversely, a highly sensitive deflection response is more %,

favorable for soft adhesive. Then, a deflection measurement for soft adhesives will replace a shear

deformation measurement for stiff adhesives. The BMC test can work, but the specimen dimension

has to be defined in regard to the adhesive tested in order to make the theory suitable for practical
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use. Simple numerical codes are available to facilitate the definition of the beams geometry in each

situation. Hence, in order to evaluate the shear modulus with the bonded cantilever beams for the

range of soft or stiff adhesives with a testing method satisfying the conditions of simplicity, reli-

ability and rapidity, two different types of measurements must be made which proper procedure are

recalled below:

SHEAR DEFORMATION MEASUREMENTS:
".I

The analysis of the BMC theory revealed that the influence the parameter i which contains

both the material and the geometrical properties of the specimen has been shown to have a very

significant effect on the magnitude and the uniformity of the shear stress in the adhesive. With the

curve ( i vs. x/1 ), a value of parameter i is defined for which the shear stress is constant over a

portion of the beam. In this particular region of the beam, the shear stress has a magnitude function

of geometry and loading only. This is a requirement to facilitate the use and the analysis of the data

provided from the shear deformation test. Then, the shear deformation is measured at the place

of known shear stress and the shear strain is derived from the shear deformation as the ratio of the

latter to the adhesive thickness. Due to the choice of ', the shear stress is predicted from simple %

theoretical formula. Finally, G. is calculated using the classical linear relationship between shear S

stress and strain for elastic materials.

END DEFLECTION MEASUREMENTS:

The end deflection test permits the characterization of a large range of adhesives. For proper

application, the user should bear in mind that the specimen geometry must be defined in accordance

with the adhesive stiffness investigated. Guidelines showing the variations of the dimensionless end

deflection P versus E/G. can help to define appropriate specimen dimensions. Then, the BMC

theory combined with end deflection measurements lead to a graphical determination of the adhe-

sive shear properties.
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RECOMMENDATIONS FOR FUTURE WORK:

Our recommendations to develop further the studies about the bonded cantilever plates test 0

method are oriented towards four directions.

First of all, is the fact that in all our work, from the BMC analysis and the Finite Element

analysis to experimental verifications of predictions, we always assumed the adhesive to be a linear .

elastic material. This has been done on account of the fact that the BMC theory was developed by .

assuming both the adherend and the adhesive to be linear elastic materials in order to facilitate the

mathematical analysis. In reality, most of adhesives exhibit complex material characteristics like

nonlinear and/or time dependent behavior that has to be taken into account in the analytical model .

as well as in the Finite Element analysis.

Secondly, in addition to these complex characteristics, the chemical and mechanical bonding

between adherends and adhesive is not well understood for the majority of shear tests, so more 0

particularly for the BMC test specimen. The interface layer between adherend and adhesive is not

well defined in most of the cases although it can have an important influence on the determination .' .-

of the mechanical properties of the bond. Attention must thus be concentrated on that problem.

Then, experiments showed that there is a lack in pursuing accurate shear deformation meas-

urements on stiff beams. In order to solve that inconvenience, optical methods such as Scanning

Electron Microscopy or a digital imaging strain measurement system [21,221 would be probably the

best candidates.

Finally, the last recommendation concerns the development of mathematical solutions to

model the shear stress in the adhesive layer of the modified BMC specimen presented in chapter 4

and also to provide the BMC concept the capacity of including fracture predictions for future ap-

plication of the BMC specimen in fracture mechanics.

6N
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Listing of the program for computing the data points of the curves alpha bar

versus E/Ga.

PARAMETRIC ANALYSZX s VARIATION OF ALPHA BAR P11TH E/QA?

a This program hes bee mn imten frtedeiiin fte
* specimen dimensions. The thick~ness rstio must be arbitrary chosen*
a end input for the execution of the program.a
a The rnm gives the variations of the parameter beta versus the
a ratio E/Ga for varying 1/h values. Each curves is associated to
* a specific value of 1/h. This ratio varies from 10 to 170 with a a
* step of I0. The program provides the plane stress and the plane
a strain options.

mae.NOTATION -aa-a oamm N- ---

0 0TR Thickn~ess ratio
* DIR S1 Slndrnss ratio %
C GA aStiffness ratioa

D GAL aDecimal logarithm of the stiffness ratio
10 ALPHAS Parameter alpha ber 0

MITEE 5.100) .l
REAOE6,C) 0TR
WRITE1I5,200) ,.

REAOIIC) ICHOIl
OLR=10.
00 20 Jzl.17
A3zOLRC2
VGALzO.
0O 10 Inl,43
CODGAL .r
OGA=l0eNC
blxul1.,2.*OTR)CCZ
A1=B1/DTR

ALPHAB=t (3.*A3CA1CAZ i/DGA J**5

IF(ALPI4AB.GT.80) G0 TO 30
ZFIICHiOI1.EQ.0) GO TO 40W
HRITII 7,300) J,OGA,ALPHAB
GO TO 30

40 MITE 7,300) JOGAL,ALPHAS
30 OGALzOGAL+..
10 CONTINUIE

DLR=DLR+10.
20 CONITINUJE

100 FORMATIX,Enter the thickness ratio')
200 FORKATI2X. 'To ompute alpha bar versus loglO E/G,enter 0',

a /ZX. 'If ycu prefer to comp~ute alpha ber versus E/Ga,enter I')
300 FOAIAT(XIZX,P1.7,2X,1PE15.71

STOP
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Listing of the program for computing the data points of the curves beta versus

E/Ga. %

PARAMETRIC ANALYSIS , VARIATION OF BETA KITH E/UA

* This program has been written for the definition of the 8MC a
specimen dimensions. The thickness ratio mast be arbitrary chosen 41.
a end input for the execution of the program. .0
The run gives the variations of the parameter beta versus the *
ratio E/Ga for varying 1/h values. Each curves is associated toa specific value of 1/h. This ratio varies from 20 to 170 with a .

D OTR : Thickness ratio *
• ALA : Slenderness ratio *
• OGA a Stiffness ratio
• DGAL a Decimal logarithm of the stiffness ratio a
• ALPHAS Parameter alpha bar C

IMPLICIT REALSS( A-HvO-Z)
WRITE 5,10)
READ(6s,*) DTR

DE . E.07
DAO. 3
0P =1 0. (A

NRZTEI 5,200)
READ(6,*} ICHOIC P
IF(ICHOIC.EQ.0) GO TO 10

aPLANE STRESS ANALYSIS

MRITEt 7,300)
NRITE( 7,v400)
DLRzZ0.
DO 20 J=1,16
Al-I. +Z.*DTR
AZ=Al**Z ,

A3=I.+( (3.*AZ)W*( -1))
A4sAZ/OTR
AS=i DLR) *Z
DGAL=O.
00 30 1=1,18
DGA= IO"OGAL
ALPHAB=( 3CA5*A4*A3/DGA )*0. 5
XLx1S0.
IF(ALPHAB.GT.XL) GO TO 40
CO( EXP ALPHA) EXP -ALPHIAB) )/Z.
SI=I EXP( ALPHAB )-EXP( -ALPHAB) )/Z.
TA=SI/C0
GOTO SO

40 TA-I.
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*5END DEFLECTION OF THE BEAM ON NNN--- ------

SO Flz~l..DTR)-3

F4u3.0E1.,DA)*IDLRW*(-Z))
FS=12./A3
F6uI 1.-CTA/ALPHAB) 3/CALPHAB**2)
FTcFS*F6
BETAz F3.F4+F7 )*Fl
NRITEC 7,500) .J,DGAL,BETA
DGALcDGAL+O.5

*30 CNIU
DLR=DLR+1.

20 CONTINUE
go TO 60

a PLAN STRAIN ANALYSIS

10 DE=OE/(1.-DAW*2))

MEND DEFLECTION OF THE BEAM---------------------

IIRITE( 7,400)
NRITE( 7,600) '

DLR=20.
DO 70 Jw1,16
Al=l.+Z.*0TR
AZ=Al*e2
A31.+((3.*AZ)WW-1))
A4=AZ/DTR
ASal DLR 3*52
DGAL2.
DO 80 Im1,13
DGA=10M*DGAL
ALPHABE 3*ASMA4NA3U( 1-duw2 )/DGA 3*50.5

IF(ALP4A.GT.XL) 0O TO90'
COC EXPI ALPHAB ).EXPI -ALPHAS) 3/2.
SIC EXPI ALPHAB )-EXP( -ALPHAB) )/2.
TAzSZ/C0
GO TO 95

90 TAi1.

* *5 ~END DEFLECTION OF THE BEAM --------------------------------

95 F1=C1.,DTR)*e3
F3=*.u41.-(1./A3))
F43.*(.DA)*DLRWC -2))
F~x12./A3
F6= 1.*-( TA/ALPHA9) 3/CALPI4AB*e2)
F7aF5*F6
BETAC F3*F4+F7 )*Fl
NRITEC 7,500) JPDGALSETA
DGALuDGALO. S

60 CONTINUJE
DLRuDLR41O.

70 CONTINUE
GO TO 60

UFORMATS-------------------------------

100 FORMATI /2X,'Enter tAV')e
ZOO FORMAT( /2X, 'Far Plane stress analysis enter 1 also 01)
300 FORMAT( /2X, 'Plane stress analysis '
400 FORAT/OX,E/Ga,SX,Beta3
500 FORHATI /2X(,12,.2X,1PE1S.7,1ZX,1IPE1S.7)
600 FORMAT( 1ZXv Plwa strain anlyis'
60 STOP

END
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Execs for plotting outputs

In order to plot the results generated by the preceding routines, the user can invoke the SAS

Graphics package provided by SAS Institute Inc.. This package can be accessed by writing SAS plot

commands in a plot data file such as that presented below.

//boxnume- JO aoasat rumber ,USERID, REGION= IS36K
/*PRIORITY IDLE
//STEP1 EXEC SAS
/WJOBPAR LS
/*ROUTE PRINT VTFl.usorid
GOPTIONS DEVICE=VERSO HSIZE=6 VSIZE=6 NOTEXT82 VPOS43;
DATA ONEs
INPUT GROUPI X Yj
CARDS1

NN*ENTER THE OUTPUT *

PROC GPLOT),
TITLE1 C=BLACK FaXS ISS Hal

FOOTNOTE1 C=SLACK FaXSINSS Hal

FOOTNOTEZ CaSLACK F=XSHISS HaI l
' t^ ... '

AXISI LABEL a A=90 FXSMISS Hal. legand )
VALUE a tFaXSISS Hal I
color a black N,
MINOR a NONEi

AXISZ LABEL al F:XSNISS Hal loglO E/G )
VALUE a (F=XSHISS Ha1 l
COLOR a BLACKs

PLOT Y*X=GROUP1/
OVERLAY FRAME NOLEGEND VAXIS=AXISi HAXIS=AXISZs
SYIlBOL1 C:RED Ll I=SPLINE V:NONEI
SYMBOLZ C=RED L=1 1--SPLINE V=NONEI
SYBOL3 C=RED L=1 IzSPLINE V=NONEI
SYBOL4 CaRED Lul I=SPLINE VzONE)-

//

'I

In the following figures are given guidelines for determining the proper BMC specimen ge-

ometry in order to perform shear deformation or end deflection tests.
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from 10 to 170 in steps of 10 between each curves.
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