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1. LNTRODUCTION

In view of the wide usage of cold--working and interference-fits to improve the
fatigue performance of bolted joints, a programme is proceeding at these
laboratories to determine the stress/strain fields which are fundamental to the
fatigue life enhancement process.

Previous studies (1,2) have examined the stress/strain fields using two-
dimensional finite-element analyses and also an analytical treatment, with particular
attention given to modelling interference by r'lative displacement loading (rather
than uniform pressure loading which would be correct only for simple plate
geometries). This paper extends the study to a three-dimensional finite element
analysis whilst retaining relative displacement loading.

2. ANALYTICAL PROGRAM

The FEM computations were based on interference of a high-strength steel pin
in a circular aluminium plate ten times the diameter of the pin. The plate thickness
was taken equal to hole diameter. The assumed material properties are as given in
Table 1 and the plate material has been considered to have bilinear stress/strain
characteristics, Fig. 1, with isotropic strain-hardening. Because of the relatively
high yield point for the pin material no allowance was required for yielding.
Interference levels of 2% and 4% were simulated followed by unloading to a cold-
worked state from both levels.

The FEM mesh for the plate was a 10 degree sector, as shown in Fig. 2(a),
containing 56 twenty-noded, three-dimensional brick elements, and 18 fifteen-noded
wedge elements. The pin mesh, shown in Fig. 2(b), contained 48 twenty-noded,
three-dimensional brick elements and 64 fifteen-noded wedge elements. A small
hole (2% of the pin radius) was created in the centre of the pin mesh to avoid a
restriction on angular conformation.

The first phase of loading, inducing interference, involved forcing a uniform
relative radial displacement between pin and plate nodes at the interface as
previously described in Ref. 1. However representation of the cold-worked state was
most conveniently carried out by switching to pressure loading and subsequent
unloading, using the pressure distribution in the bore that was found with
displacement loading. Removal of the simulated interface pressure was equivalent
to removing the interference.

The analysis used the PAFEC finite element scheme (Level 6) on the ARL
ELXSI computer. The plasticity routines of that scheme are based on Prandtl-Reuss
equations in association with the von Mises' yield criterion.

3. RESULTS

Stress, strain and strain energy density relationships are presented graphically
along with two-dimensional results from Ref. 2 which are included for comparison.
The presentation of three-dimensional results is as follows :

Fig. 3. Circumferential and radial stresses - interference.
Fig. 5. Circumferential and radial stresses - unloaded.
Fig. 7. Through-thickness stresses - interference.
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Fig. 9. Through-thickness stresses - unloaded.
Fig. 10. Stress distribution in bore - interference.
Fig, 11. Stress distribution in bore - unloaded.
Fig. 12. Circumferential and radial strains - interference.
Fig. 14. Circumferential and radial strains - unloaded.
Fig. 16. Through-thickness strains - interference.
Fig. 18. Through-thickness strains - unloaded.
Fig. 19. Strain distribution in bore - interference.
Fig. 20. Strain distribution in bore - unloaded.
Fig. 21. Strain energy at the plate surface.
Fig. 22. Strain energy at 0.563 of plate thickness from surface.
Fig. 23. Strain energy distribution in bore.

Figs. 3,5,7,9,12,14,16 and 18 above show the variation of stress and strain, in
the radial direction at three planes through the thickness, namely, at the surface, the
mid-plane, and half-way between. The positions of mesh nodes, including mid-side
nodes, are shown on Fig. 3(a) to give an indication of element size. Comparable
di3tributions from the two-dimensional analysis where there is, of course, no
variation in the thickness direction, are given as follows :

Fig. 4. Circumferential and radial stresses - interference.
Fig. 6. Circumferential and radial stresses - unloaded.
Fig. 8. Through-thickness stresses - interference and unloaded.
Fig. 13. Circumferential and radial strains - interference.
Fig. 15. Circumferential and radial strains - unloaded.
Fig. 17. Through-thickness strains - interference and unloaded.

It should be observed that, in the two-dimensional analyses, the mesh size in
the radial direction was half that used in the three-dimensional analyses here.

4. DISCUSION AND CONCLUSIONS

(i) The circumferential and radial stresses at both 2% and 4% interference
in the 3-D analysis show marked variations in the thickness direction
(Fig. 3). Although there is little variation between the values at the
mid-plane and the 3/4 thickness plane, the values at the surface of the
plate, especially close to the hole, are significantly different. In
particular, at the hole, with 4% interference the radial stress at the
surface is approximately half that at the mid-plane. A reduction in the
radial stress 'or contact pressure) at the surface is to be expected,
because the greater freedom to yield at the surface permits the
specified displacement to be achieved at lower pressure. The
occurrence of tensile circumferential stresses at the surface (again
near the hole) follows from the lower contact pressure.

(ii) The stresses in the interior of the plate (ie. at the mid- and 3/4-
thickness planes) in the 3-D analysis of Fig. 3 show good agreement
with the values obtained in the 2-D plane strain analysis of Fig. 4(b).

(iii) The residual circumferential and radial stresses after load removal, as
given by the 3-D analysis, are shown in Fig. 5. Again there is little
difference between the stresses in the interior of the plate, but the
stresses at the surface are noticeably different; the difference between
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the stresses at the surface and in the interior is, however, less than in
Fig. 3.

(iv) The residual stresses in the interior of the plate in the 3-D analysis of
Fig. 5 are in good agreement with the plane strain residual stresses of
Fig. 6(b).

(v) In the 3-D analysis, near the hole, neither the radial nor the
circumferential stresses at the surface change significantly between
2% and 4% interference (Fig. 3). However, the "waviness" of the
surface stress plots (which is even more marked for the residual
stresses of Fig. 5) suggests that perhaps the finite element mesh size
near the surface was not sufficiently fine, especially in the thickness
direction. (See also (vii) below.)

(vi) The through-thickness stresses (ie. the direct stresses in the thickness
direction) are shown in Fig. 7. Naturally, these stresses are zero on the
plate surface. Under interference loading, the values at the mid-plane
are in good agreement with the plane strain values of Fig. 8(a). The
corresponding residual stresses, shown in Fig. 9. exhibit some
differences from the plane strain values of Fig. 8(b); in particular, near
the hole after 2% cold working the stresses from the 3-D analysis are
somewhat less than the plane strain values, whilst after 4% cold
working the 3-D stresses do not exhibit the reverse yielding apparent in
Fig. 8(b).

(vii) In Fig. 10 the circumferential, radial, and through-thickness stresses at
the bore for interference loading are shown as a function of the
thickness co-ordinate. It can be seen that all stresses exhibit the most
rapid variation over the element adjacent to the surface (the thickness
of which is 1/16 of the plate thickness.) It is possible that use of a
finer mesh would have modified both the depth over which this change
occurred and also the surface stress values. The analogous results for
the residual stresses are shown in Fig. 11 and the same trends are
evident.

(viii) Because the finite element mesh size in the radial direction is
relatively coarse in the 3-D analysis, the calculated locations of the
elastic-plastic boundaries may not be accurate. As already remarked,
in the 2-D analysis a mesh size half that of the 3-D analysis was used.
Computational considerations dictated the need for a coarser mesh in
the 3-D analysis.

(ix) Turning now to strains, it can be seen from Fig. 12 that the
circumferential and radial strains at both 2% and 4% interference in
the 3-D analysis show much less variation in the thickness direction
than do the associated stresses; in fact, the circumferential strains
show hardly any variation at all. (See also (xiii) below.) This effect
may be due in some measure to the specified displacement applied at
the interface. The strains of Fig. 12 are consistent with the plane
strain values of Fig. 13(b).
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(x) Similar remarks apply to the residual circumferential and radial
strains, those for the 3-D analysis being shown in Fig. 14, and for the
plane strain analysis in Fig. 15(b).

(xi) The through-thickness strains (ie. the direct strains in the thickness
direction from the 3-D analysis are shown in Fig. 16 for interference
loading. The very low values found in the interior of the plate would
have been expected, being consistent with plane strain behaviour.
However, the strains at the surface are very much less than the 2-D
plane stress values of Fig. 17(a).

(xii) Similar remarks apply to the residual through-thickness strains, those
for the 3-D analysis being shown in Fig. 18, and for the 2-D plane stress
analysis in Fig. 17(b).

(xiii) In Fig. 19 the circumferential, radial and through-thickness strains (for
interference loading) at the bore are shown as functions of the
thickness co-ordinate. As already observed in (ix) above, the
circumferential strain shows virtually no variation, although some
changes in the other strains are apparent near the surface. Similar
remarks apply to the residual strains shown in Fig. 20.

(xiv) Load versus strain energy density plots (Figs. 21 and 22) show a reverse
slope effect during the unloading phase. The possible significance of
this effect in relation to fatigue life enhancement has been discussed in
Ref. 3. This effect disappears at a non-dimensional radius of about 1.5,
although that location should be regarded as approximate.

(xv) The strain energy density distribution at the bore is shown as a function
of the thickness co-ordinate in Fig. 23. Markedly lower values are
apparent near the plate surface. This is to be expected in view of the
lower radial pressure near the surface, coupled with fairly constant
displacements.
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Table 1. Assumed Material Properties

Property Plate Pin

Modules of Elasticity (MPa) 69000 209000

Poisson's Radio 0.33 0.30

Yield Point (MPa) 480 1720

Strain Hardening Slope (MPa) 1.200 486

L I I I
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FIG. 3. CIRCUMFERENTIAL AND RADIAL STRESSES IN 3-D ANALYSIS AT
(a) 2% INTERFERENCE AND (b) 4% INTERFERENCE. (MESH NODE
POSITIONS INCLUDING MID-SIDE NODES ARE SHOWN ON FIG. 3(a))
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