
, /7I AT LLE CNIVRSITto
00
co

13 It

,ot.,DTIC

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

DMt=tIUn UAnTzn A
Appiaw for publicr.Igag:

Dtsributiozi Unlimited '

An Experimental Study of Methods for D
Parallel Preconditioned Krylov Methods C

Doug Baxter, Joel Saltz, Martin , AUG 0 2,
Schultz, Stan Eisenstat and Kay Crowley

Research Report YALEU/DCS/RR- 629
June 1988 ^H

The authors were supported in part by the Office of Naval Research under Grant N00014-86-0564,
Distribution Unlimited.

II

Abstract

High perfo ce multiprocessor architectures differ both in the number of processors,

and in the ay costs for synchronization and communication. In order to obtain good

performanc on a given architecture for a given problem, adequate parallelization, good

balance of load and an appropriate choice of granularity are essential.

_We- the implementatioD of parallel version of PCGPAK for both shared mem-

ory architectures and hypercubeA UY araalel implementation is sufficiently efficient to

allow in to complete the solution of our test problems on 16 processors of the Encore

Multimax/320 in an amount of time that is a small multiple of that required by a single

head of a Cray X/MP, despite the fact that the pe k.perfo mance of the Multimax proces-

sors is not even close to the supercomputer rang'4/.JA-Wllustarate the effectiveness of our

approach on a number of model problems from reservoir engineering and mathematics. -

1:A L

NT S i c Iz

j

',A.,t.r.b t on

Table of Contents

1 Introduction

2 Preconditioned Krylov Methods Background 2

2.1 The Test Problems. 3

3 Parallel Implementations of the Basic Krylov Method 5

3.1 SAXPY operations, Vector inner-products, and Sparse matrix-vector multiplies ... 5
3.1.1 SAXPY operations 5
3.1.2 Vector inner-products 5
3.1.3 Sparse Matrix-vector multiplies. 6

3.2 Parallel Triangular Solves. 6

4 Parallel Results 7

4.1 Triangular Solve results. 9

4.2 Projections for total times for the model problems 9

4.3 Comparison of Parallel with Vector Timings. 12

5 Parallelized Preconditioners 15

*6 Distributed Memory Performance 16

7 Conclusions 21

Bibliography 23

1. Introduction

The analysis of the multiprocessor performance achievable by a robust and efficient iterative

sparse linear system solver is of great interest for the following reasons:

1. general linear solvers are of great interest in their own right as they can form the key compu-

tational kernal for a very wide variety of problems and

2. such a solver present varied workloads to multiprocessor machines and require those construct-

ing programs to parallelize, cluster or aggregate work and assign work to processors without

the benefit of a priori problem specific information.

In this paper we utilize a Krylov method solver, PCGPAK, a package produced and marketed

by Scientific Computing Associates Inc. of New Haven, Connecticut. These types of iterative

methods frequently out-perform direct methods [9] and preconditioning with approximate LU fac-

torizations is often crucial in obtaining fast efficient convergence of Krylov iterative methods. These

preconditioners require a lower and upper sparse triangular solve at each iteration.

With increases in both the numbers and the performance of processors in multiprocessor ma-

chines the organization of multiprocessor memory in a hierarchical manner becomes increasingly

attractive from an architectural point of view. In order to achieve good performance on machines

with hierarchical memory structures, for example hypercubes, work must be organized so that data

accesses are reasonably local. Because the data dependencies in sparse matrix iterative algorithms

are controlled by the matrix given to the program, an appropriate partition of the problem is not

obtainable before the matrix is presented. Iterative sparse matrix algorithms consequently present

a particularly interesting challenge from the standpoint of the developing methods for automated

runtime problem partitioning.

Experimental results are presented using the Intel iPSC hypercube. The iPSC is a message

passing or fragmented memory machine in which interprocessor interactions are handled via sending

messages. The messages sent have relatively high communication latencies. We regard message

passing machines such as the iPSC as having very pronounced memory hierarchies; there is a very

large performance penalty to be paid when programs must move data between processors frequently

and/or in large quantities.

Our results make clear the crucial importance of appropriate runtime partitioning. The ef-

ficiencies obtained on this machine overall, were substantially inferior to those obtai:,ed on the

Encore Multimax. However with our methods, we are able to demonstrate that we can obtain good

efficiencies for problems of a moderate size.

1 M1

In Section 2 we briefly present the preconditioned Krylov methods and describe the test prob-

lems used in this paper. In Section 3 we describe the shared memory parallel implementations of

the major tasks in the basic preconditioned Krylov method in PCGPAK. In Section 4 we present

the performance results gained from these implementations and demonstrate that as long as the

triangular solve is dealt with properly, excellent results can be obtained for a rather wide variety of

problems on a closely coupled shared memory machine such as the Encore Multimax. We present

experimental data that reflects on the usefulness of parallel preconditioners in Section 5, and in

Section 6 we discuss the role played by memory hierarchies in determining performance of sparse

matrix computations and present performance data obtained on the Intel iPSC. Finally we present

our conclusions in Section 7.

2. Preconditioned Krylov Methods Background

We briefly present the basics of Krylov methods such as are found in PCGPAK. The interested

reader may find the details of GMRES(k) in [11] and other methods are described in [2, 51

Consider a large, sparse, system of linear equations of the form

Mx = b (2.1)

where M is a real matrix of order N, b is a given vector of length N and x is unknown vector

to be computed.

Given an initial guess xO, Krylov methods generate an approximate solution xi from the

translated Krylov space zo + K, where

Ki C span{ro, Mr 0 , ... , M'-lro).

xi is usually chosen to minimize some norm of its residual b - Mxi [10].

The basic tasks involved in Krylov methods are sparse matrix-vector multiplies with matrix

M, additions of scalar multiples of vectors to other vectors (SAXPYs), and vector inner-products.

The latter are used in determining the linear combination of Krylov vectors to add to the initial

guess so as to minimize the norm of the residual.

Preconditioned Krylov methods consist of using an auxiliary matrix Q - QIQ,. to first generate

the preconditioned system

(Q -MQ 1)Q,_ = Q11 b

2

Where Q is some approximation to M and Q-'v and Q7'1 v for any vector v are easy to compute.

The approximate LU factorization preconditioners [5, 4, 8] take Q to be LU where L is lower

triangular and U is upper triangular. Hence the preconditioned matrix-vector multiply in the

resulting Krylov method consists of doing a forward and backward sparse triangular solves as well

as the sparse matrix multiply by M. It is in this context that we are interested in solving linear

systems for sparse triangular (lower or upper) matrices.

2.1. The Test Problems 0

We now present the eight test problems used in our experiments.

Problem 1 This problem models the pressure equation in a sequential black oil simulation. The
(SPEl) grid is 10 x 10 x 10 with one unknown per gridpoint for a total of 1000 unknowns.

Problem 2 This problem arises from the thermal simulation of a steam injection process. The

(SPE2) grid is 6 x 6 x 5 with 6 unknowns per grid point giving 1080 unknowns. The matrix

is a block seven point operator with 6 x 6 blocks.

Problem 3 This problem comes from an IMPES simulation of a black oil model. The matrix is

(SPE3) a seven point operator on a 35 x 11 x 13 grid yielding 5005 equations.

Problem 4 This problem also comes from an IMPES simulation of a black oil model. The matrix

(SPE4) is a seven point operator on a 16 x 23 X 3 grid giving 1104 equations. ,

Problem 5 This problem arises from a fully-implicit, simultaneous solution simulation of a black

(SPE5) oil model. It is a block seven point operator on a 16 x 23 x 3 grid with 3 x 3 blocks

yielding 3312 equations.

3

Problem 6 This problem is a five point central difference discretization of the following equation

(5-Pt) on the unit square:

a _= 9 a a a 1
(e T-u) - Y(e +u) + 2(z + y)(u + 9u) + (2 +) f

with Dirichlet boundary conditions and f chosen so that the exact solution is

u = zeX isin(rz) sin(ry).

The discretization grid is 63 x 63 giving 3969 unknowns. The L5-pt problem is the

same problem with a 200 x 200 grid.

Problem 7 This problem is a nine point box scheme discretization for the following equation on

(9-pt) the unit square:

82 82 8X F

with Dirichlet boundary conditions and f chosen so that the exact solution is

u = z en sin(irx) sin(7ry).

The discretization grid is 63 x 63 giving 3969 equations. The L9-pt problem is the

same problem with a 127 x 127 grid.

Problem 8 This problem is a seven point central difference discretization of the following equa-

(7-pt) tion on the unit cube:

-9(e 9) - a (etiIaU) - a(e au) + 80(x + y + z) u+ (40 +)U= f

with Dirichlet boundary conditions and f chosen so that the exact solution is

u = (1 - z)(1 - y)(1 - z)(1 - e-)(l - e-Y)(1 - e-').

The discretization grid is 20 x 20 x 20 yielding 8000 equations. The L7-pt problem

is the same problem with a 30 x 30 x 30 grid.

4

3. Parallel Implementations of the Basic Krylov Method

3.1. SAXPY operations, Vector inner-products, and Sparse matrix-vector multiplies S

The iterative loop of PCGPAK performs three basic computational tasks:

1. sparse matrix-vector products;

2. scalar-vector products and vector inner-products;

3. sparse triangular forward- and back-solves;

We shall discuss the straightforward parallelization of scalar vector-products, vector inner

products and the sparse matrix-vector multiply first, we shall then discuss the parallelization of

the sparse triangular solves.

The parallel implementations of the SAXPY, vector inner-products and sparse matrix-vector

products are similar. For p processors and a linear system of order n the indices from 1 to n

are divided into p contiguous groups of roughly equal size. The i th group is assigned to the i th

processor. The local variables iMIN and IMAX contain the limits of the indices associated with

the processor.

3.1.1. SAXPY operations

The SAXPY routine

do i=1,n

y(i) = y(i) + a*x(i)

enddo

is implemented in parallel as

do i=imin,imax

y(i) = y(i) + a*x(i)

enddo

call waitbar

where WAITBAR is a barrier (i.e. WAITBAR does not return until each of the p processes has

called WAITBAR).

3.1.2. Vector inner-products

The vector inner-product routine (SDOT)

sum = 0

do i=l,n

AI

sum = sum + x(i)*y(i)

enddo

is implemented in parallel as

sum = 0

do i=imin,imax

sum = sum + x(i)*y(i)

enddo

sum = sumbar(sum)

where SUMBAR is a summation barrier (i.e., a value is passed to SUMBAR by each of the p

processes and, when all of these values have been summed, the total is returned to each process).

3.1.3. Sparse Matrix-vector multiplies

The sparse matrix-vector product routine

do i=l,n

ax(i) = a(i)*x(i)

do ij=ija(i),ija(i+1)-1

ax(i) = ax(i) + a(ij)*x(ija(ij))
enddo

enddo

is implemented in parallel as

do i=imin,imax

ax(i) = a(i)*x(i)

do ij=ija(i),ija(i+1)-1

ax(i) = ax(i) + a(ij)*x(ija(ij))
enddo

enddo

call waitbar

where WAITBAR is again a barrier.

3.2. Parallel Triangular Solves

The sparse triangular systems obtained through incomplete factorizations of sparse linear sys-

tems allow for the concurrent substitution of a substantial number of rows [13, 1, 7]. It is not

difficult to partition the rows of a triangular matrix into a sequence of sets where all rows within a

6

-u '* Ad

given set can be solved for concurrently. We will discuss only the algorithm and results for solution

of a lower triangular matrix L, the situation applying in the upper triangular case is essentially

identical.

A directed acycic graph G can be generated that depicts the order in which variables, described

by rows in L, can be solved. The evaluation of rows in L are represented by the vertices of G, and the

data dependencies between the rows by G's edges. The dependence of matrix row a on matrix row

b is represented by an edge going from vertex b to vertex a. A topological sort may be performed

which partitions the directed acyclic graph (DAG) into wavefronts. A stage of this sort is performed

by alternately removing all vertices that are not pointed to by edges, and then removing all edges

that emanated from the removed vertices. All vertices removed during a given stage constitute

a wavefront; the wavefronts are numbered by consecutive integers. An adaptation of a common

topological sort algorithm [6] allows the wavefronts of a DAG to be calculated efficiently.

The wavefronts calculated through this process can be utilized directly in implementing a

very general method for scheduling the row substitutions required for the solution of the triangu-

lar equations. The row substitutions in any wavefront may be executed simultaneously. A very

straightforward method for solving the problem is consequently to partition the problem's solution

into phases, each of which is dedicated to a given wavefront. On shared memory machines, the

straightforward application of this technique requires a global synchronization between phases. The

major sources of inefficiency in this simple method are:

1. imbalance of load due to differing quantities of work assigned to processors during a given

phase and.

2. the cost of the global synchronization.

Detailed experimental and theoretical analysis of these sources of inefficiency may be found in [7]

[3] along with several extensions of the above algorithm.
0

4. Parallel Results

In this section, we present benchmarks for using various solution techniques offered by PCG-

PAK to solve the benchmark problems discussed in Section 2.1 and we identify the computational

tasks that require the most CPU time. These results are for a single processor on the Encore

Multimax/320.

The results are shown in Table 1, which is divided into five broad categories, showing the

method and preconditioner used, the iteration count needed to reach the stopping criteria; the

7

Percents of Total Time
Test GMRES Precond- Number of Reduced Factor- Matrix Triangular SAXPY Total

Problem (K) itioner Iterations System ization Vector Solves and Time
Product SDOT (Seconds) S

SPE1 1 ILU(0) 26 17 6 26 33 17 3.6

SPE2 1 ILU(0) 11 - 23 31 37 9 10.1

SPE3 10 MILU(0) 24 15 11 25 28 20 24.1

SPE4 10 ILU(0) 17 21 12 22 26 19 3.1

SPE5 20 ILU(0) 43 - 2 17 22 59 64.0

5-PT 5 MILU(0) 20 17 e 23 30 23 17.6

9-PT 10 ILU(2) 20 - 20 18 38 24 47.9

7-PT 1 ILU(0) 20 - 6 28 38 27 46.4 S

L5-PT 4 MILU(0) 54 8 3 27 34 28 410.7

L9-PT 10 ILU(1) 80 - 5 22 37 36 603.3

L7-PT 1 ILU(O) 31 - 4 29 39 28 239.9

Table 1: Breakdown of Times for single processor PCGPAK on the Encore Multimax/320 with APC-02s

percentage of CPU time spent in the reduced system computation when that methodology was

used; the percentage of time spent forming the preconditioner; and the percentage of time spent

in the -wrious subtasks of the basic preconditioned algorithms. The column labeled "SAXPY and

SDOT" corresponds to item 2 of the basic tasks. These computations involve adding a scalar

multiple of one vector to another vector (SAXPY operation) and computing vector inner-products

(SDOT operation). The stopping criteria used was to reduce the Euclidian norm of the residual by

six orders of magnitude, starting with an initial guess of 0.

These results show that the sparse matrix-vector products occupy roughly 20% to 30% of the

CPU time, the sparse triangular solves occupy roughly 20% to 35% of the time, and the SAXPY and

SDOT operations take from 25% to 40% (with the exceptions of SPE2 (10%) and SPE5 (60%)).

When reduced system preprocessing is use'l, it takes from 7% to 18% of the CPU time. The S

formation of the preconditioner takes from 1% to 10% of the time (except for SPE2 (24%)). Thus,

matrix-vector products, sparse triangular solves, and SAXPY and SDOT operations dominate the

total CPU time.

8

All these experiments used the "right-oriented" preconditioning, i.e. the preconditioned prob-

lem was
MQ-I i = b, X = Q-I'i

where M is the coefficient matrix and Q is the preconditioner. The initial guess was z0 - 0.

The timings were done on an Encore Multimax/320 with 13 megahertz APC/02 boards an

version 2.1 of the FORTRAN compiler.

The parallel implementations of the SAXPY, SDOT and Sparse matrix-vector multiply rou-

tines all run at efficiencies well above 90% for all of the model problems. We do see some superlinear

speedups for the model problems in these operations due to increased cache size when more pro-

cessors are used. However, when speeds are compared between problems that fit in the cache for

a range of number of processors used, we still get above 90% efficiency. To be conservative in our

projections in Section 4.2 we use the 90% efficiency mark for doing comparisons.

4.1. Triangular Solve results

In Table 2 we give the measured efficiencies of the parallel sparse triangular solve using the

wavefront parallelization methods described above. The efficiencies are computed by taking the

time from a sequential sparse triangular solve on a single processor and dividing by the number of

processors multiplied by parallel sparse triangular solve times. The sequential code has none of

the parallel overhead in it.

We note that among the problems depicted, SPE1, SPE3 and SPE4 have the lowest efficiencies

for 16 processors. These problems are quite small; we performed symbolic operation count based

analysis to estimate the efficiency that would be achieved given our mapping of workload to pro-

cessors in the absence of any other overhead costs and the number agree closely (within 10%) to

the observed efficiencies.

As expected, the efficiencies for all problems tend to decrease with increasing numbers of

processors. This decrease is only a trend; changes in the distribution of load can in some cases

cause small improvements in efficiency with increasing numbers of processors. For the five, nine

and seven point templates 16 processor efficiencies ranged from 48% to 77%.

4.2. Projections for total times for the model problems

For the Encore Multimax/320, the speedups attainable for 75% to 95% of the computation

performed in PCGPAK have been demonstrated in the preceding sections. In this section we project

the expected performance of entire PCGPAK package for the model problems on the Multimax/320.

In the course of solving linear systems arising from time dependent and /or nonlinear partial

9

Lam=A '

Efficiencies for Triangular Solves (Percent)

Test Number of processors
Problem 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SPRY1 72 59 50 42 40 35 32 29 27 27 25 23 22 20 20
SPE2 85 73 70 62 55 54 52 50 42 42 40 38 37 34 36
SPE3 86 73 66 59 53 47 47 42 41 39 34 32 32 31 31
SPE4 76 67 57 49 43 40 33 26 26 28 27 28 27 25 24

SPE5 82 85 75 77 66 73 61 69 71 58 55 56 58 52 ,8
5-PT 92 89 83 79 76 78 71 64 63 66 61 58 53 50 48

9-PT 94 89 86 81 74 67 75 67 61 56 52 49 47 51 55
7-PT 92 92 86 83 88 89 83 87 71 85 79 80 81 77 77

L5-PT 94 91 88 85 83 80 78 76 75 75 71 68 69 65 61

L9-PT 95 92 88 86 85 83 76 74 71 73 1 68 63 68 65 61
L7-PT 93 90 89 85 82 87 85 85 74 841 78 82 80 65 77

Table 2: Multiprocessor Triangular Solves on the Multimax/320 with APC-02 boards.

differential equations, many sparse linear systems need to be solved. Most often the sparsity pattern

in these systems does not change from one time step (or Newton-like step) to the next. PCGPAK

allows the user to take advantage of this and save the symbolic preprocessing results from the first

(or previous) call to be used in subsequent calls. Table 3 shows a further breakdown of the setup

phase components into numeric and symbolic parts for the Multimax/320.

In Table 4 we present the expected times for the nonsymbolic part of the PCGPAK compu.

tation for multiple processors. The computation of the approximate factorization has the same

organization as the lower triangular solve, and hence the wavefront methodology may be used to

gain speedups as demonstrated in Section 4.1. The numeric part of the reduced system computation

is comparable to the matrix-vector product and we assume speedups of 90% for this computation.

We have excluded the symbolic part here as it may be amortized over many solves.

In Table 5 we present the projected efficiencies for the model problems on the Encore Multi-

max/320 with APC-02 CPU boards. For the larger problems (SPES through L7-PT) the efficiencies

are above 60% for 16 processors, and above 85% for five or fewer processors. Even for the smaller

problems the efficiency is above 60% with fewer than six processors.

It is clear from the data in Table 1 that the efficient parallelization of the triangular solve is

essential for obtaining acceptable efficiencies for the problem as a whole. An intersting question

is how well a parallelizing FORTRAN compiler would do on this subproblem. Since the data

dependencies would not be known a priori to such a compiler, the best it can do is to parallelize of

10

IruI

Percents of Total Time for Setup Phase

Test Precond- Reduced System Factorization
Problem itioner Symbolic Numeric Symbolic Numeric
SPE1 ILU(0) 4.3 12.5 0.7 5.1

SPE2 ILU(O) - - 1.5 23.3

SPE3 MILU(O) 3.6 11.5 3.3 7.3

SPE4 ILU(0) 5.2 15.9 4.1 7.5

SPE5 ILU(0) - - 0.3 2.0

5-PT MILU(O) 4.4 13.0 0.7 5.6

9-PT ILU(2) - - 11.2 9.2

7-PT ILU(0) - - 0.9 5.3

L5-PT MILU(O) 2.0 5.9 0.3 2.5

L9-PT ILU(1) - - 2.5 2.0

L7-PT ILU(0) - - 0.6 3.6

Table 3: Single processor PCGPAK on the Encore Multimax/320 with 13 MHz APC-02s

Total Times (Excluding Symbolic Setup) (seconds)
Test Number of processors

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SPE1 3.4 2.1 1.5 1.2 1.1 .9 .9 .8 .8 .7 .7 .6 .6 .6 .6 .6
SPE2 9.9 5.8 4.3 3.3 2.9 2.6 2.3 2.0 1.9 1.9 1.7 1.6 1.6 1.5 1.5 1.3
SPE3 22.4 12.5 8.9 7.0 5.9 5.2 4.7 4.2 3.9 3.6 3.4 3.3 3.2 3.0 2.8 2.7
SPE4 2.8 1.7 1.2 .9 .8 .7 .7 .6 .7 .6 .5 .5 .4 .4 .4 .4
SPE5 63.8 36.4 24.0 18.6 14.8 12.9 10.7 9.9 8.5 7.6 7.3 6.8 6.3 5.8 5.6 5.4
5-PT 16.7 9.2 6.2 4.8 3.9 3.3 2.8 2.5 2.4 2.1 1.9 1.8 1.7 1.7 1.6 1.5
9-PT 42.5 23.2 15.9 12.2 10.1 8.8 8.0 6.6 6.2 5.9 5.7 5.5 5.3 5.0 4.4 4.0
7-PT 46.0 25.1 16.7 12.9 10.1 8.5 7.3 6.6 5.7 5.7 4.7 4.5 4.1 3.8 3.6 3.4

L5-PT 401.3 218.7 147.5 112.1 90.9 76.4 66.5 58.8 52.8 47.8 43.4 40.8 38.3 35.4 33.9 32.7
L9-PT 588.2 318.2 214.8 164.0 132.5 110.9 96.0 87.3 78.5 72.0 64.6 61.2 58.6 52.5 50.1 48.4
L7-PT 238.0 130.9 88.5 66.7 54.4 46.1 38.5 34.0 30.2 29.0 24.9 23.6 21.3 20.0 20.6 17.8

Table 4: Total Projected Times on the Multimax/320 with APC-02 boards

the computations in any one row. In Figures 1 and 2, we depict for varying numbers of processors

the following efficiencies:

1. that obtained from the sparse triangular solve parallelized by scheduling rows concurrently;

Percent Efficiency
Test Number of processors

Problem 2F3 4 5 6 7 8 9 10 11 12 13 14 15 16

SPE1 83 75 69 62 61 56 53 49 47 47 44 42 40 38 38
SPE2 85 78 75 70 64 63 61 60 52 52 50 48 47 44 46

SPE3 90 84 80 76 72 68 68 63 63 61 55 54 54 53 53

SPE4 85 80 74 69 64 62 55 47 47 50 48 50 48 46 45
SPE5 88 88 86 86 83 85 80 84 84 79 78 78 79 76 74
5-PT 91 90 88 86 84 85 82 78 78 79 77 75 72 70 68

9-PT 92 89 87 85 80 76 81 76 72 68 65 62 60 64 67
7-PT 92 92 89 87 90 90 87 90 82 88 85 86 87 84 84

L5-PT 92 91 90 88 88 86 85 84 84 84 82 81 81 79 77
L9-PT 92 91 90 89 88 88 84 83 82 83 80 77 80 78 76
L7-PT 91 90 90 88 86 88 88 88 82 87 84 86 85 77 84

Table 5: Projected Total Efficiencies

2. that obtained from parallelizing only the inner-products of the triangular solves, i.e.,parallelizing

computations within a row;

3. that obtained for the entire iterative portion of the calculation, when the triangular solve

parallelized by scheduling rows concurrently, and

4. that obtained for the entire iterative portion of the calculation that would result when only the

inner-products of a triangular solve are parallelized.

These graphs make it clear that runtime interrow parallelization is crucial if we are to obtain

good efficiencies in this situation. Thus the intra-row parallelization potentially available from

parallelizing compilers cannot provide the desired performance.

4.3. Comparison of Parallel with Vector Timings

We can compare the projected times obtained for the iterative portion of our calculation with

execution times on a single processor Cray X/MP. The Cray timings are for generic PCGPAK

in FORTRAN77 [9] compiled with version 1.3 of the CFT77 compiler. The results are shown in

Table 6 We note that for large three dimensional problems, the sixteen processor Encore is roughly

the speed of a Cray X/MP. This is quite surprising as the Multimax/320 is basically a super

minicomputer composed of 16 single chip mircomputers (National Semiconductor 32332S) which

costs about on tenth as much as the Cray X/MP. This illustrates the power of parallel computing

as distinct from vector computing.

12

I-

100 Parallel Efficiency

Wavefront PCC

Wavefroni. Triangular Solve

60

5..

40

20 Intra-row PCG

Intre-row Triangular Solve

10 12 14 16

Processors

Triangular System from ILU(O) Factorization
of Matrix from 30x30x30 grid, 7pt. Template

Figure 1:

We are currently in the process of creating an integrated parallel Preconditioned Krylov solver.

We have encountered in the integrated package some unanticipated inefficiencies arising from some-

what obscure origins. Despite these difficulties, the current performance measurements still come

within approximately 25 percent of our predictions.

In addition, the clock speed of the Multimax is currently 13.5 MHZ; this will be increased to

15MHZ in the near future. We consequently fully expect our performance predictions to be met

or exceeded. We also mention that the Cray timings might be improved by as much as a factor of

2 by use of compiler directives and standard library routines. This still does not alter the flavor

of our result: the parallel Multimax is a significant fraction of a Cray. In addition the incomplete

factorization and the reduced system preprocessing do not vectorize to any significant extent, but

these computations can be expected to run at least as fast as the triangular solves on the Encore.

13

11 1 R lt 1 ' l

jo Parallel EffIiciency

so

40

Processors 1

Triangular System from ILU(2) Factorizationof Afatrix from 127x 127 grid, 9pt. Template

Figure 2:

Multimaxf Cray Comparison

Test Multimax Cray Ratio
Problem (16) X/ MP

SPE1 .48 .11 4.4
SPE2 1 .93 .15 6.11
SPE3 2.11 .44 4.8
SPE4 .30 .06 5.0
SPE5 5.21 1.04 5.0
5-PT 1.25 .50 2.5
9- PT 3.47 1.02 3.4
7-PT 3.20 2.04 1.6

L-5-PT 29.99 12.57 2.4
JL9-PT 47.17 15.30 3.1
L7-PT 17.09 10.13 11.7

Table 6: Total Iterative Time (seconds)

14I

5. Parallelized Preconditioners

We shall now consider the tradeoffs involved in using simpler preconditioners that parallelize

essentially perfectly or by not preconditioning at all and using many direction vectors in GMRES

to ensure convergence (this parallelizes on the Multimax with efficiencies of ; 90 %). We shall
see that there are no clear advantages to the use of such preconditioners, at least in forgiving

multiprocessor environments such as that provided by the Multimax. In Table 7 we display the

results of using GMRES with a large number of direction vectors and no preconditioning or reduced

system preprocessing. The stopping criteria used in Table 1 was also used for results in Table 7

Test GMRES Number of SAXPY Matrix- Actual Total
Problem (K) Iterations and Vector iterative time with

SDOT Product preconditioning
SPE1 100 718 1.24 .15 .049
SPE2 100 >2000 5.37 1.84 .073
SPE3 100 >2000 17.45 1.84 .301
SPE4 100 120 .20 .02 .042
SPE5 100 >2000 11.53 2.83 .294
5-PT 100 265 1.68 .31 .252
9-PT 100 140 .81 .30 .566
7-PT 100 86 1.02 .36 .478

L-9PT 100 403 11.33 4.21 4.206
L-7PT 50 263 6.39 4.08 2.379

Table 7: Projected times for the Cray X/MP with no

preconditioning and no reduced system (in seconds)

In the column labeled iterations in Table 7 the indication > 2000 indicates that the method

failed to converge in 2000 iterations. The last column indicates the total run times from a vectorized

version of PCGPAK on the Cray X/MP where preconditioning and reduced system preprocessing

were used as indicated in Table 1. The column labeled "SAXPY and SDOT" are the estimated times

for the GMRES operations (excluding matrix-vector multiplies) assuming a speed of 120 megaflops.

The column labeled "Matrix-Vector Product" are the estimated times using the speeds measured

on the Cray for each matrix-vector product. 'he sums of the SAXPY and Matrix columns give the

estimated total time for GMR.ES(K) without preconditioning and reduced system preprocessing.

The performance of a polynomial preconditioning with a degree d polynomial and GMRES(m)

may be estimated from the number of iterations shown in Table 7 by dividing the number of

iterations in the table by d (as long as d rn is less than K in column 2 of the table). The

15

0
SAXPY/SDOT times for such a method would be reduced by at best a factor of d and the matrix-

vector product times at best would remain the same since the number of iterations would at best

be reduced by a factor of d.

Hence a comparison of the data in this table clearly shows that polynomial preconditioning is

unlikely to outperform the approximate factorization preconditionings with reduced system prepro-

cessing because of the large number of iterations required. Of course, a practical difficulty incurred

by po.. aomial preconditioning is determining the coefficients to use for the polynomial.

6. Distributed Memory Performance

Experimental results are presented using the Intel iPSC hypercube. The iPSC is a message

passing or fragmented memory machine in which interprocessor interactions are handled via sending

messages. The messages sent have relatively high communication latencies. We regard message

passing machines such as the iPSC as having very pronounced memory hierarchies; there is a very

large performance penalty to be paid when programs must move data between processors frequently

and/or in large quantities. As has been discussed above, the efficient implementation of PCGPAK

hinges on obtaining satisfactory performance for the sparse triangular solve. We present only results

for the sparse triangular solve, implementation and benchmarking of the other procedures discussed

above on the iPSC is currently underway. 0

High performance multiprocessor architectures differ both in the number of processors, and

in the delay costs for synchronization and communication. In order to obtain good performance

on a given architecture for a given problem, an appropriate choice of granularity is essential. The

partitioning and mapping of the computation should be performed in a way that is able to take

advantage of the multiprocessor architecture.

Experimental results measuring the performance of triangular solves on the Intel iPSC hyper-

cube are presented in this section. As has been previously discussed, the triangular solve proves

to be a crucial factor in determining the multiprocessor performance achievable by Krylov space

methods when preconditioning using incompletely factored matrices is employed. The efficiencies

obtained from the triangular solve represent a pessimistic lower bound on the performance that can

be obtained by the iterative portion of the algorithm. We present here only the results pertaining to

the triangular solve, the work on implementing and benchmarking other portions of the algorithm

on the iPSC is still in progress.

Clustering or aggregation methods can be used to reduce the number of communication star-

tups and the volume of information that must be communicated between processors. The effective

16 W

use of these methods is essential for obtaining satisfactory results on machines such as the iPSC.

The method used to aggregate is discussed in detail in [7] and involves two steps. In the first step,

a sort of coordinate system is obtained for the DAG.

This coordinate system is obtained through a process of peeling off layers of the DAG. It

is then straightforward to map the problem to a multiprocessor in a manner that restricts the

fan-in and fan-out of data between processors. To the extent allowed by the data dependencies

in the algorithm, it also becomes possible to map work so that only nearby processors have to

communicate. Finally, the coordinate system is used to allow the specification of work clusters in

a parametric manner.

In the applications discussed here, the clustering of work is controlled by two parameters,

the block size which describes the number of consecutive DAG layers assigned to a processor and

the window size, or number of wavefronts per block. The reduction in communication overhead is

however, achieved at the risk of load imbalance, making this the critical tradeoff. The reader is

referred to [7] for further details regarding this issue.

In Table 8 we present results from two moderate sized problems solved on a 32 node Intel

iPSC hypercube. The problems used were the L5-pt problem and a larger version of the L5-pt

problem on a 300 x 300 grid. Recall that the triangular system is formed in this case using the

reduced system, so that we are using triangular systems with 20000 and 45000 rows in the L5-pt

problem and the larger version of the L5-pt problem respectively. The inter-row data dependencies

are obviously also changed-when the reduced system is formed.

We depict the total parallel efficiency, the total execution time, the number of computational

phases and the estimated communication time. Note that the best efficiencies we are able to obtain

increase with the size of the problem. In the smaller of the two problems the best efficiency is 31%

while in the larger problem the best efficency increases to 53%. These efficiencies in the absence of

aggregation were 12% and 16% respectively.

The ability to aggregate work plays a central role in extracting increased efficiency from larger

problems. When matrix rows are assigned to processors in an unaggregated manner, each row

corresponding to an interior mesh point must communicate its value to another processor. Con-

sequently, the communication volume does not tend to decrease as problems become larger. The

above data did reveal a small improvement in efficiency when the larger problem was solved even in

the absence of aggregation; the amount of computational work per phase does decrease as problem

size grows, even in the absence of aggregation.

17

200 x 200 point mesh

Window Efficiency Total Time Phases Communication
Block Size (%) Time

1 - No grey code 6% 4.58 398
1 12% 2.34 398 1.92
2 21% 1.35 200 1.06
4 31% 0.90 100 0.45
6 24% 1.21 67 0.65
8 18% 1.54 50 0.57

300 x 300 point mesh

Window Efficiency Total Time Phases Communication
Block Size (%) Time

1 - No grey code 8% 7.61 598
1 16% 3.99 598 3.45
2 31% 2.07 299 1.57
4 53% 1.21 149 0.88
6 44% 1.44 99 0.65
8 33% 1.95 75

Table 8: Larger Triangular Solves (Times in seconds)

The aggregation here is performed using graph techniques on sparse matrices. In the absence of

a method that is able to capture the geometrical relationship between matrix rows, it is not possible

to optimize the mapping of the unaggregated problem. In 8, we also depict the performance figures

when the problems were executed without the use of grey coding. This was a conservative attempt

to estimate the effect of not taking the problem geometry into account. In this case we still map

in a manner that ensures that the assignment of work to processors was such that each processor

needed to communicate with only one other processor in each phase. In the larger of the two

problems our mapping and aggregation methods made the difference between an 8% efficiency and

a 53% efficiency.

Aggregation allows a tradeoff between communication costs and time wasted due to load

imbalance. For a given size machine, as problem size grows, one can obtain the same load balance

by aggregating work into increasingly large chunks. This leads to increasingly favorable ratios of

computation to communication costs.

In Table 9 we summarize experimental results for a variety of triangular solves implemented on

18

the iPSC. We present parallel efficiency values for a 32 processor cube; the sequential code used in

calculating the efficiency values was a separate sequential code run on one node of the hypercube.

The choice of aggregation parameters in the problems presented in 9 was made through a

process of symbolically estimating the balance of load that would result from differing degrees of

aggregation, using a method to be described below. Using this estimated load balance along with

an estimate of communication time we calculated an estimate of the optimal degree of aggregation.

The development of robust heuristics for choosing the degree of aggregation is underway, we do not

address this issue here.

Percent Efficiencies

Template Mesh size Preconditioner % Efficiency

5 pt. 63 x 63 Reduced system MILU(O) 7.0

9 pt. 63 x 63 ILU(2) 11.0

7 pt. 20 x 20 x 20 ILU(0) 10.0

5 pt. 200 x 200 Reduced system MILU(O) 31.0

9 pt. 127 x 127 ILU(1) 22.0

7 pt. 30 x 30 x 30 ILU(0) 30.0

5 pt. 300 x .300 Reduced system MILU(0) 53.0

Table 9: Triangular Solves: 32 node Intel iPSC S

The timings presented were obtained by parallelizing and aggregating the triangular solve

computations. The efficiencies obtained for many of the problems listed in 9 were quite low.

It is natural to inquire as to the degree to which one might expect to improve those efficiencies

though improved programming, mapping and scheduling. There is dearly a tradeoff made between

costs of communication and the costs of load imbalance as granularity is increased. While one

can reduce communication costs by aggregating work in small triangular solves, load imbalances

increase rapidly with aggregation. These effects are documented in detail in [7] and will be examined

below in the context of a model problem.

A great deal of care needs to be taken in ensuring that the actual code on message passing

machines functions efficiently. Without the appropriate techniques, high overheads can result from

managing and coordinating the execution of a single irregular problem on a number of processors

with separate address spaces. One way of determining the role of these inefficiencies is to compute

an estimated optimal runtime, which approximates the runtime that would be observed with the

19

S.F

actual work distribution but in the absence of any other multiprocessing overheads. We perform

an operation count based analysis at the time the workload is aggregated, this yields an estimated

speedup. The execution time of the separate sequential program on one processor divided by this

estimated speedup gives us this estimated optimal runtime. One can also estimate the time re-

quired for communication, by maintaining the pattern of communication and specifying the correct

message sizes but deleting all computation and all actual data movement required to pack mes-

sages. In an efficient code, the communication costs and the estimated optimal runtime should

approximately add up to the actual runtime.

We consider below the results of these analysis performed on a small model problem. This prob-

lem will will be presented using data from a triangular system generated from a zero fill incomplete

factorization of a sparse matrix generated by a 120x120 five point template. The tradeoffs between

load imbalance and communication costs in this model problem have been formally analyzed in

some detail [13], [7]. In Table 10 we depict parallel efficiency, estimated optimal time, the total

time required to solve the problem on a 32 node Intel Hypercube and the estimated communication

time. The communication time estimate is obtained by running problems in which computation

is deleted but communication patterns are maintained. We note that when we employ a very fine

grained parallelism (window and block size equal to one), we pay a very heavy communication

penalty relative to the computation time. The completion of this non-computationally intensive

problem requires 240 phases, each one of which requires processors to both send and receive data.

We can reduce the number of computational phases, and hence reduce the communication time

but we do this at the cost of increasing the computation time since the available parallelism is de-

graded due to load imbalances. While appropriate choice of computational granularity is essential

for maximizing computational efficiency, the nature of the triangular solve limits the performance

that can be obtained in small to intermediate sized problems. The example here illustrates this

well, we obtain a three fold improvement in efficiency through a moderate increase in granularity,

i.e. speedup increases to 5.8 from 1.9. The absolute efficiency obtained, even given appropriate

choice of granularity is still quite limited.

The communication times added to the estimated optimal times yield quantities that are

reasonably dose to the total time indicating that the code is not likely to contain gross inefficiencies

that exaggerate the difficulties involved in solving this small problem. We note that only rough

correspondence is expected as the assumptions made in the operation count analysis are clearly

overly simplistic.

20

II

Window Efficiency Total Estimated Communication
Block (%) Time Optimal Time

Size Time
1 6% 1.25 .09 1.09
2 12% .60 .11 .49

4 18% .40 .15 .25

8 15% .48 .31 .10
10 13% .56 .36 .08

Table 10: Granularity effects for triangular solves (Times in seconds)

7. Conclusions

We have discussed the implementation of a parallel version of PCGPAK for both shared mem-

ory architectures and hypercubes. We implemented and benchmarked portions of the code on the

Encore Multimax/320 and have found that our parallel implementation is efficient enough to allow

us to complete the solution of our realistic test problems on 16 processors in an amount of time

that is a small multiple of that required by a single head of a Cray X/MP, despite the vast disparity

in the peak performance of the different types of processors.

The key performance bottleneck identified was the forward and back solution of the the sparse

triangular system of equations formed from an incomplete factorization of the matrix. We solved

this system using a method capable of detecting and exploiting the data dependencies between row

substitutions. To examine the need for runtime detection of parallelism, we performed benchmarks

that compared estimated performance that results from exploiting only the parallelism that is

available from individual row substitutions. While an effective parallelizing compiler should be

able to exploit the parallelism resulting from individual row substitutions, the data dependencies

between the matrix rows are clearly determined at runtime and are unavailable to any compiler.

We briefly examined some of the alternatives to using incompletely factored matrices to precon-

dition the conjugate gradient algorithm. Data was presented that suggested that the high operation

counts required to solve problems using these other preconditioners posed serious limitations on

usefulness of these preconditloners.

The sparse triangular solve was identified as the principal bottleneck to the efficient paralleliza-

tion of PCGPAK. Data was presented data on the performance of the sparse triangular solve on

a message passing machine, the Intel iPSC hypercube. The relatively high communication laten-

cies lead to a striking deterioration in performance. Dramatic improvements in performance could

be obtained for moderate sized problems by clustering or aggregating the computational work.

21

We regard the performance estimates obtained for the triangular solve as pessimistic lower bound

estimates on the efficiency that could be achieved by PCGPAK as a whole on the iPSC.
The work clustering methods discussed above are all performed on the basis of data depen-

dencies exhibited at runtime. It follows that this kind of optimization cannot be performed by a
compiler. The methods used in parallelizing and clustering the triangular solve are being general-
ized and are will be incorporated into an automated runtime mapping and scheduling system called
PARTY [12]. The system is being designed for use in conjunction with a parallelizing compiler but
can also be accessed directly in user programs.

References
[1] A. Greenbaum, Solving Sparse Triangular Linear Systems Using Fortran with Paralilel Exten-

sions on the NYU Ultracomputer Prototype, Report 99, NYU Ultracomputer Note,
April 1986.

(2] Rati Chandra, Conjugate Gradient Methods for Partial Differential Equations, Ph.D. Thesis,
Department of Computer Science, Yale University, 1978. Also available as Technical
Report 129.

[3] D. M. Nicol and J. H. Saltz, Principles for Problem Aggregation and Assignment in Medium
Scale Multiprocessors, Technical Report 87-39, ICASE, September 1987.

[4] Todd Dupont, Richard P. Kendall and H. H. Rachford Jr., An approximate factorization proce-
dure for solving self-adjoint elliptic differen. equations, SIAM Journal on Numerical
Analysis, 5 (1968), pp. 559-573.

[5] Howard C. Elman, Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear
Equations, Ph.D. Thesis, Department of Computer Science, Yale University, 1982.
Also available as Technical Report 229. 0

[6] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Maryland, 1978.

(7] J. Saltz, Automated Problem Scheduling and Reduction of Synchronization Delay Effects, Report
87-22, ICASE report, July 1987.

(8] J. A. Meijerink and H. A. van der Vorst, Guidelines for the usage of incomplete decompo-
sitions in solving sets of linear equations as occur in practical problems, Journal of
Computational Physics, 44 (1981), pp. 134-155.

[9] Scientific Computing Associates, PCGPAK: Benchmarks for the FPS and CA Y/XMP, Tech-
nical Report 111, Scientific Computing Associates, New Haven Connecticut, 1987.

[10] , PCGPAK: User's Guide, Technical Report 106, Scientific Computing Associates,
New H4ven Connecticut, 1984.

(11] Youcef Saad and Martin H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymrtetric Linear Systems, SIAM Journal on Scientific and Statistical
Computing, 7(1986), pp. 856-869.

[12] Joel Salt2, Ravi Mirchandaney, Roger M. Smith, David M. Nicol and Kay Crowley,
The Automated Crystal Runtime System: A Framework, Technical Report 588, Yale
University Department of Computer Science, January 1988.

[13] Y. Saad, M. Schultz, Parallel Implementations of Preconditioned Conjugate Gradient Methods,
Department of Computer Science YALEU/DCS/TR-425, Yale University, October
1985.

22

ILM

DT / W V

~L

