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NONLINEAR THEORY OF PHASE LOCKING GYROTRON OSCILLATORS
DRIVEN BY AN EXTERNAL SIGNAL

I. INTRODUCTION

There is currently considerable interest in the development

of high power phase-locked gyrotron oscillators. These devices

have the potential to combine the high efficiency and power

associated with oscillators with the coherence and phase control

properties associated with amplifiers. Although previous

theoretical work on steady-state gyrotron operation[1-8] has

been successfully applied to the development of cw devices for

heating of tokamak plasmas, the investigation of the phase

locking of gyrotron oscillators driven by external signals has

received much less attention. A consideration of the

properties of driven oscillators necessarily involves the study

of non-stationary operation. Time dependent effects can be

studied using a particle-in-cell simulation code of the type

developed by Lin and co-workers [9]. In this work an

alternative nonlinear, slow-time-scale approach is used to study

time-dependent effects in driven oscillators. Under certain

approximations analytical estimates of such quantities as the

locking bandwidth are obtained. For example, Adler's relation

[10] is recovered for the case of phase locking by direct

injection of radiation at the cavity output.

The time-dependent theory of gyrotrons has been considered

by Nuzinuvich and co-workers [11,12], mainly in the context of

multimode cperation and mode stability. A Lime dependent

multimode theory of quasi-optical gyrotrons has been developed

by Bondeson et al.[13]. Early work on mode selection and phase-
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locking of vacuum tube oscillators was carried out by Van der

Pol [14] and Adler [10]. An analytical theory of the conditions

for phase-locking gyrotrons has been presented by Manheimer

[15,16]. The present work extends the theoretical approach

developed by Manheimer to the nonlinear regime and incorporates

slow-time-scale (STS) gyrotron dynamics.

The time dependent theory of driven gyrotron oscillators

derived in this work is based on slow-time-scale equations for

the electron motion similar to those used in steady-state models

[7,17,18]. Slow-time-scale equations for the cavity rf field

amplitude are obtained by expressing the time-dependent behavior

relative to a reference frequency wo which is close to the

operating frequency w. The fact that the electron transit time

through the cavity is short compared to the radiation field

risetime is also exploited. The external signal is introduced

either directly into the cavity output or via a beam prebunching

cavity. Two approaches are investigated for the case of phase-

locking with a prebunching cavity. In the first the induced ac

current density due to the prebunching cavity is treated as a

small perturbation on the ac current density in the oscillator.

In this approach, which follows the work of Manheimer (161, the

equations for the time-dependent wave amplitude and phase are

similar in structure to the equations for gyrotrons driven by

direct injection and lead to a simple analytical estimate of the

locking bandwidth. The accuracy of the perturbation approach is

investigated by comparing it with the results of the second

approach in which the beam prebunching is introduced in the

2



initial conditions for integrating the equations-of-motion.

This approach is well-known in the analysis of gyro-klystons

[19]. The theory is applied to a high voltage gyrotron

configuration similar to the NRL high voltage gyrotron

experiment [17].

The next section of this paper describes the theoretical

approach. The following section contains the results of

calculations. Section IV presents conclusions drawn from this

research and discusses the maximum bandwidth obtainable using a

prebunching cavity. The last section contains our

acknowledgements.
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II. THEORY

Consider a gyrotron with a cylindrical resonator and a thin

annular beam. The electrons follow helical trajectories in the

applied axial magnetic field about guiding centers located at a

radius Ro from the symmetry axis. The electron beam interacts

with a TE resonator mode which is assumed to be near cutoff. It

is convenient to look at time dependent effects which remain

after a reference frequency w. has been factored out. These 0

effects are characterized by time scales which are much longer

than the wave period and are incorporated in a time dependent

mode profile function f(z,t). Using complex notation, the

transverse electric field is expressed in the form:

Et  = f(z,t)en(r,e;z)exp(-iw0 t) (1)

where en=zxVt* is the waveguide transverse-mode vector function

and * is the corresponding scalar mode function which satisfies a

Helmholtz equation with respect to the transverse coordinates

[18]. The transverse electric field satisfies the wave equation:

1 a2 Et  atJ

Et 1 - = (2)
C2  at2  a

where Jt is the transverse ac current density, c is the speed of

light and p,, is the permeability of free space. MKS units are

used throughout except as noted.

There are two methods of phase-locking gyrotron oscillators:

direct injection of a locking signal or by means of a modulated

4
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electron beam produced by a prebunching cavity. In the case of

direct injection of radiation the wave amplitude function at the

cavity output can be expressed in the form:

f(z,t) - A(t)e ikz*t]+ 13e ik20z (3)

where the first term on the right hand side of Eq.(3) represents

the time-dependent oscillator output (an outgoing wave with

amplitude A and wavenumber.k,; * is a slowly varying phase) and

the second term represents a constant amplitude incoming wave

with frequency w. due to the external signal. In the case of

beam premodulation via a bunching cavity, the ac current density

can be viewed as having two parts:

it = J + 6J (4)

where J is generated by the electric field in the oscillator

cavity and &J is the current density generated in the prebunching

cavity. It is convenient to express the rf current density in

the approximate form [7]:

Jt=(J& + 6Jw)exp(-iwot) (5)
I

where

J - 2 d(wot) J e o (6)
0

I - - -



and similarly for &J.. Substituting Eqs.(l) and (5) into Eq.(2),

noting that af/at<<wf, multiplying by en', and integrating over

the resonator cross section one obtains:

+ + 2i f(zit) - -ipowo da e .(Jw+6Jw)

2  c 2  at I(7)

where w,, is the cut-off frequency of the resonant mode in the

cavity.

To obtain slow-time-scale equations for a gyrotron

oscillator driven by an external signal, multiply Eq.(7) by f*

and multiply the complex conjugate of Eq.(7) by f. Then first

add and then subtract the resulting equations, and integrate the

sum or difference over the axial extent of the cavity. The sum

leads to:

L 2 f 82 f* W2 _W W f 6f*1
dz f* - + f- + 2 ff* + 2i-(f*- - f-) -
0 az 2  8z 2  c 2  c 2  at 6t

[i/I0(A)dadz[f*e*.(Jw+6Jw) - fe.(J,*+6J.*)] (8a)
V

where V denotes integration over the cavity volume. The

difference leads to:

6
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L~r 82 f a2 f- a I fi2
dz f - f- + 2i-0 z aZ 2  z2 c2  at

-iPWJo dadz If *e*.-(JW+ 6Jw) + fe.(J,*+6j,*)] (8b)

As will be shown, Eq.(8a) leads to an equation for the wave phase

and Eq.(8b) leads to an equation for the wave amplitude.

Integrating the first two terms on the right hand side of these

equations by parts leads to:

a1fJ 2  L L f 12 (W2 W2 ) f

d E-2 + 2 1f12 + 2i-(f*- - f-)

az 0 J az c2  c2  at at

-iPojoJdadz[f*e*.(Jw+SJ) - fe.(J,*+J J*)] (9a)

and:

E f ]f I L W" rL a IfI12
f*- - f- + 2i- dz -

a a1z 0 2.J0 at

w, Jdadz[f*e*.(J+6j,) + fe.(J,+Sj(,*)1 (9b)

respectively. The first term on the left hand side of Eq.(9a) is

a boundary term which vanishes for a free running oscillator

7



because f40 at the cavity input (z-0) and Ifi-constant at the

cavity output (z-L) when there is only an outgoing wave. The

boundary term does not vanish when there is an external signal

incident at the cavity output, thus this term corresponds to

phase-locking by direct injection of radiation. The boundary

term in Eq.(9b) corresponds to the net power flow from the

cavity.

In the case of direct injection of radiation (the case of

phase-locking via beam prebunching is treated below), the

boundary term in Eq.(9a) can be written in the form:

a!a Ifl12 L
8z 0= - 4koA(t)Osin[2kzL-*(t)] (10a)

and the boundary term in Eq.(9b) can be written in the form:

f* 1 L

f - f- = 2iko(A(t)2 _ 2 ) (10b)
z az 0

where Eq.(3) has been used and the difference between k. and k.0

has been neglected. Following common practice, the wave

amplitude function inside the cavity is written in the separable

form:

f(z,t) = a(t)e- i (t)h(z) (11)

8



aw[WVHWa
where h(z) is the axial profile function. In what follows, h(z)

will be assumed to have a gaussian form: h(z)-exp[-(K,,Z) 2 ],

centered at the cavity midpoint, where K. is the effective axial

wavenumber inside the cavity. Using Eq.(ll) in Eq.(9a) and (9b)

and substituting Eq.(l0a) or (l0b) for the boundary terms leads

to:

0 r o
-4k, 0A(t)Osin[2k,0 L-*(t)] + 2[ - a(t) 2 + 2-a(t2 -I C2  C2

-i/joa(t)dadzh(z)[le.-J(e * - e.J Wle-W (12a)

from Eq.(9a); and

WO)

2k,0LA(t)2 -102] + 4-a(t)a(t)N
C2

- POWAOa(t){dadzh(z) [e*.J(Ae + e-JW* e-W (12b)

from Eq.(9b);

where:

d =O dzlh(z)I22 (13)

for a gaussian profile, and Wr is the cold cavity eigenfrequency

of the interacting mode.

9



To calculate the ac current density, the interaction with

the electron beam is treated in the single particle

approximation. A considerable simplification of the general time

dependent problem results if one uses the fact that the

characteristic rise time of fields in the resonator is much

longer than the electron transit time in the cavity. In this

case one can use a quasi-steady-state approximation in which the

electron trajectories are calculated for rf fields with fixed

amplitude, f(to), and linearized phase, *=qi(TO)(T-o). The

slow-time-scale nonlinear electron equations of motion for an

electron in a thin annular beam interacting at a particular

harmonic with a single circularly polarized TE mode are readily

deduced from previous steady-state analyses [7,18] and are given

by:

dut r/ U2 dh -i[A-W]
- - J'(RtrL) Re h +i- e (14a)

dz uZ Y do az

dA Sy sS.(_k? rU" dh ;2U

f- - f Re[h +i h--:-
dz uZut knrL YWo dz sQWo y

e + A O - _ (14b)
W0O Y

du, u t  dh - i[A+q](
= J(ktrL )Re i- e (14c

where ut=yvt/c is the normalized transverse momentum amplitude,

u,-yv,,/c is the normalized axial momentum, A gives the slow

10



variation in the transverse momentum azimuthal phase relative to

the reference wave phase, s is the harmonic number, y is the

relativistic mass ratio, kt is the mode transverse wavenumber, rL

is the Larmor radius of the orbit, J. (J) is (the derivative of)

a regular Bessel function, 2 is the nonrelativistic cyclotron

frequency, and f is the normalized rf field amplitude:

lel
f- X mnCJ m_LktR o ) a (15)

m0 c2

Quantities with a "" have been normalized according to:

z-z/rw, L-rL/rwo, Q-S2rw/c, o -wo rw/c, and kn-kn rwo. R

denotes the orbit guiding center radius, e is the electron

charge, mo is the electron mass, m is the mode azimuthal index,

x is a zero of J;, and rwo is an arbitrary normalizationXmn i

factor. The transverse TE mode normalization coeficient

m n - [ x'2-m 2 )jm (X , (16)

The ac current density is obtained by integrating Eqs.(14)

for an appropriate set of initial conditions at the cavity input

at zo . For a cold, phase-mixed electron beam: ut(z o )=ut.,

u,(z o )-Uo , and A(zo )-Ao is uniformly distributed in the interval

[0,2n]. For a thin annular beam the transverse ac current

density is given by

I0 S
i- -vt (17)

v11 S



Substitution of Eqs.(17) and (6) into Eqs.(12) and using the

prescription developed in previous work [7] leads to the

following equations for the time-dependent wave and phase:

-4 2)3sn2,N[ 0 r o WO 2]

-4k0A ).i(2~ L-*(t)] + 2- a(t) 2 + 2-a(t -

C 2  C 2

(18a)

4poIo(3Cnm ktRo )a(t)J'dzh(z)K -krL sin(A4+W))
'0aL uz %0

from Eq.(12a); and, from Eq.(12b),

WO

2kz0 [A( t) 2 -132 ] + 4-a(t)a(t)N=
C
2

4p 0 I 0 W C., Jmkt Ro) a ( t)dzh ( z K co s ( A4-) (18b)
JO aL UZ A0

where < >.a denotes an average with respect to the variable a.

The cavity field amplitude can be related to the external field

amplitude via the output diffraction Q factor according to:

A(t) -a(t) 
(19)

k Z_0 Q c

Substituting Eq.(19) into Eqs.(18), the equations for the time-

dependent phase and amplitude can be written in the form:

121



11N 1 - Ut

- - - - IA.hi) (R7t~ -r sin(AJ+*))

dT(40 f0 /"'tL uZ A0

1 fL
+ - - sin[W 0  (20a)

Q f

df 1 f 2 -fL 2  jdhz)ut

dr 2Q f -z 0ZA

where ~o'o~o 0 k,,L, fL is an effective field amplitude due

to the locking signal given by:

jej 2p. QP

I-i X"IC.mJ ktR 0 ) r(21)fL-moc MINW
0

where PL is the locking signal power, and I is the normalized

current parameter:

Ili rw r 0 j2  (k R,

I- Ia1 (22)

m0cw0  L(1-M 2 /X'2)J2 (XI)N

To treat the case of phase-locking via beam prebunching, the

current density perturbation is assumed to be due to phase

bunching. The ac current density perturbation can then be

expressed in the form:

+ ~ V 0~ i (,Wt-A)~(~ 0
Si a8jX i~j M 10- S~rR.)(23)

13



where

SA-- z + 9 - qsine0 - t (24)
vz0

where q is the bunching parameter and *t, is a phase factor

determined by the locking signal. Evaluating the terms in

Eqs.(9) involving 6J in the same manner as the terms involving J

and using Eq.(23) leads to:

c2  J dadz f*e*.SJwA + f = S()

4NwA)a( t)2

____ v k0  dzh)/fcos' (25)
i-i 0 0 fLo fsinJ )go

where the ""(-)sign on the left hand side of Eq.(25) is

associated with the upper (lower) quantities in the brackets on

the right hand side. Substituting Eq.(24) into (25), and

performing the phase average yields:

4N0 2t) / Jdadz Ife*.6J, + fe-.~J~ (26)

(l I Vto )JL fsinj oS
tij J( ktrL o dzh(z)Jl(q)

rwfvzo iCos vz 0

14



Under the assumption of phase bunching only, the bunching

parameter has no z-dependence in the cavity region and assuming a

gaussian form for the profile function h(z), the axial

integration can be carried out to obtain:

c2 /j, [ddzr[f *e S.8J+ f S 1 (7
4Nw&3a(t)2 jv L ~ f.Jj(

-1 nI V t. J I r O 29 ] 2 j sin (* t
IS tk Lo )eL2vz 0KJ J(q)~~4- 0

1Kr~0 f v,0  (~COS)

where the cavity axial wavenumber defines an effective

interaction length according to Ka2/L. Substituting Eq.(27) into

Eqs.(9) leads to the counterparts of Eqs.(20) for the case of

phase-locking via a prebunched beam:

- = - - - 7 Idzh(i)(J2IE..trL) - sin(Ai-))

3 (28a)
nT L I v to-t

+ - - J l(k trL0 )e L2vz K J(q) cos(*- 0

df f Iru()tJ'kr

d 2Q JO )uz )A0
(28b)

n'- L Vt0 oI
+ -- I -l(k r~o )e L2v 2 0K Jj(q) sin(,p-§o)

15



Eqs.(28) have been derived in part to show the similar structure

of the phase and amplitude equations for a gyrotron driven by a

directly injected rf signal or by a premodulated beam. As

discussed by Manheimer [16], these equations also lead to

analytical estimates of the maximum frequency bandwidth for

phase-locking, i.e., Adler's relation [Eq.(30) below], and of the

exponents .tion time in the approach to phase-lock. To carry out

nonlinear numerical calculations of the temporal evolution of an

oscillator driven by a premodulated beam it is more accurate to

incorporate the beam premodulation directly into the wave

equation source term via the initial conditions on the electron

equations of motion. In this approach a nonuniform initial phase

distribution is used of the form:

Ao " Oo - qsine0 - to (29)

where eo is uniformly distributed in the interval [0,2n).

Eqs.(20) and (28) can be used to obtain estimates of the

maximum frequency bandwidth for obtaining phase-locked operation

for given system parameters. The wave amplitude and frequency

shift due to beam loading for the free-running oscillator during

steady-state operation are given by:

fo [2QI dzh(z) J(trL - cos(A+ ] (30a)
0 t)Uz 

Ao I s

16
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" - -0-[Jdzhlz)J'lktrL) - sin(A+*0) A30b)

where AwFROcOr1-Oro and rl is the beam loaded resonant frequency

of the free-running oscillator.

For an oscillator operating near steady-state conditions and

driven by a weak external signal with frequency w., Eqs.(30) can

be used to rewrite Eq.(20a) as:

T (A) 1 fL
- - sin(TY) (31)

where w-=coo-Wrl and 'Y-o+n. The condition for phase-locked

operation, VY/8T=O, implies:

-- - sin(To ) (32)
00 Q fo

where T. denotes the phase during phase-locked operation. Since

fo and fL are proportional to the square root of the oscillator

output power and locking power, respectively, Eq.(32) leads to

Adler's relation for the frequency pulling bandwidth of a phase-

locked oscillator driving a matched load:

_ -(33)

o Q

17



As discussed by Manheimer [16], for frequencies satisfying

Eq.(33), Eq.(32) has a stable solution of the form: Y=-o+6e-/T,

where 6 is a small perturbation, indicating that the approach to

phase-locked operation is exponential. The time constant is

given by:

T - PAc[ ' 2 p;:jC**l/ 2  (34)
FP (A) PL

Eq.%34) shows that T becomes large, and thus the time to achieve

phase-lock becomes long, for frequencies near the bandwidth

limit.

Similarly, in the case of phase-locking by beam pre-

modulation, a similar analysis based on Eqs.(28) leads to the

following equations describing the time-dependent amplitude and

phase for operation near the oscillator steady-state:

dT A

47 pIG 2 2s !
- - - J 1 (q) e- 4 is (Sft o sinT (35a)

2 Q F fsSt 0

dF (Fo - F)

d-r 2Q

T '- u I G 2 5 2' oS !
+ - - J 1 (q) e . J cos4t (35b)

2Q 0

18I
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In deriving Eqs.(35) the following scaled "universal" gyrotron

field amplitude, current, interaction length, and cyclotron

resonance detuning parameters defined by Danly and Temkin [8]

have been introduced:

F -- I-(36a)

I - (36c)

Szo k
n - - (36c)

The factor in Eqs.(35) involving the Bessel function J'(seto)

reduces to unity when the small argument expansion of the Bessel

function is valid. This is a good approximation for weakly

relativistic beams and low-order harmonic interactions but can

lead to inaccuracies in the relativistic gyrotron regime of

interest here. The condition for phase-locked operation,

aY/8-r-O, implies:

AW 'n u #IG _", 2 s St
= -= J, (q) e .... J'(s t o )I sin'o (37)

WO 2 QFdo f SS a

19



where the amplitude of the driven oscillator FdO is given by:

Fdo - F. + f-UIpi J,(q) e- {... J'(Sto) cost o (38)

Eqs.(37) and (38) show that, unlike the case of direct injection,

the amplitude of the driven oscillator has a dependence on the

locking frequency. From the ratio of these equations one

obtains: (Fdo-FO)/Fdo-2QcotYO6w/w which shows that the change in

wave amplitude can be of order Q times larger than the fractional

frequency shift. Eq.(37) leads to the counterpart of Adler's

relation for phase locking via a prebunched beam:

iJ, J(q) eI] 4 s5 } t(9
W2 QFd( 0 O s 5t) (39

A corresponding result was obtained by Manheimer[16] (using

different notation) for the case of a gyrotron in a linearly

polarized TEln mode. The time constant for the approach to

phase-locked operation is given by:

T - (40)

0

where IAWImax/&3o is given by Eq.(39) with the equality sign.

20



Tran et al. [19] have used single-particle theory in the

small signal approximation to calculate the bunching parameter q.

Their result for the case of a single prebunching cavity with a

gaussian axial field profile and circular mode polarization is:

q - -Fn F, p, e- [ 1 + P (41)

where parameters with a "1" subscript denote bunching cavity

parameters and Pd is the normalized distance from the end of the

bunching cavity to the beginning of the oscillator cavity.

21
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III. CALCULATIONS AND RESULTS

Calculations have been carried out for a driven gyrotron

oscillator using the theory developed in Section II. Phase

locking by both direct injection and using a prebunching cavity

has been simulated and the accuracy of simple theoretical

estimates of locking bandwidth has been inve£tigated. The

dependence of the bandwidth for phase-locking on gyrotron

operating parameters is shown.

The configuration analyzed is a high voltaqe 35 GHz gyrotron

similar to the NRL experiment recently reported by Gold et

al.[17]. The peak voltage and current of the annular beam are

taken to be 650 kV and 1.5 kA, respectively, which are typical

operating parameters. The beam guiding center radius is R.-1.16

cm, the cavity radius is 1.6 cm, and the longitudinal profile of

the cavity fields is assumed to be gaussian with effective length

L-4 cm. The operating mode is the TE6 21 circular mode with

polarization counter-rotating to the beam rotation. The beam

pitch ratio .vt/v,=l. The cavity Q factor Q-250. Spreads in

beam guiding center and pitch ratio are neglected as are space-

charge effects. The cold cavity eigenfrequency fc- the TE 6 21

mode is 35.08 GHz.

The calculated efficiency, output power and frequency shift

due to beam loading of the free-running oscillator (FRO) are

shown as a function of magnetic field in Figure 1. The

corresponding transverse efficiency and normalized cavity wave

amplitude are shown as a function of the detuning parameter A in
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kigure 2. The electronic efficiency n is obtained from the

transverse efficiency nt according to: O-' t [ 1 2 t o /2 ( 1- y o - )] where

in the present case y.-2.27 and Oto= 0 .6 3 . The transverse

efficiency and normalized wave amplitude are related according

to: F2 -ftIG. The normalized operating current is 1G-0.238. The

normalized oscillation threshold current is also shown in Figure

2.

The case of direct injection of radiation is treated by

integrating Eqs.(20). The injected locking power is taken to be

0.5 MW. The magnetic field is 2.5 Tesla [6-0.60] and the cavity

is seeded with a low amplitude field (E-1 kV/cm) at the beginning

of the simulation. The time evolution of the driven oscillator

output power is shown in Figure 3. This Figure shows that the

steady state output power (140 MW) is achieved after about 5

nsec. The time evolutions of the driven oscillator frequency and

phase are shown for three different locking frequencies in Figure

4. The oscillator frequency is expressed as the shift

/o(-)/ -d /dt which vanishes when phase-locked operatio.

is achieved. The initial locking frequency detuning

AWo/WoR(WrRo- o)/Wo is ixl0 - 4 , 2x10- 4 , and 3x10- 4 in Figures

4(a), 4(b), and 4(c), respectively. According to Adler's

relation [Eq.(33)], the maximum locking frequency shift for this

magnetic field is IAW Imax/o=2.4xl 0- 4  As expected, the

oscillator evolves toward phase-locked operation in Figures 4(a)

and 4(b), whereas phase-locked operation is not obtained in

Figure 4(c). Comparison of Figures 3 and 4 shows that the time

to achieve the equilibrium phase during phase-locked operation is
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much longer than the output power risetime. This confirms the

validity of the assumptions made in obtaining Eq.(31) which in

turn leads to Adler's relation.

The dependence of the phase angle for phase-locked operation

on the locking frequency shift is shown in Figure 5 for the same

oscillator parameters and locking power as above. The solid

curve shows the analytical theory result (Eq.(32)] and the open

circles indicate the results of slow-time-scale (STS)

simulations. The angles plotted in Figure 5 correspond to the

difference between the code result at each frequency shift and

the code result for driving the oscillator at the free-running

oscillator frequency. The dashed vertical lines indicate the

minimum locking frequency shift for which phase-locked operation

could not be obtained. This shift is found to be in good

agreement with the maximum frequency shift predicted by

Eq.(33),i.e., Adler's relation. Similar agreement was obtained

between time-dependent calculations and Eq.(32) for a magnetic

field of 2.4 Tesla. Since the oscillator is in the hard

excitation regime for this magnetic field (I<Ithr) , the cavity

was seeded with the steady-state field amplitude in the time-

dependent calculations. The phase-locking bandwidth for direct

injection as a function of detuning parameter calculated using

Eq.(32) is shown in Figure 6. This Figure shows that the

bandwidth is insensitive to the interaction detuning.

Phase-angle vs. locking frequency shift results for a

gyrotron oscillator driven via a prebunching cavity are shown in

Figure 7. The solid curve is based on Eq.(37) and the open
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squares are the results of integrating Eqs.(28) which are based

on the perturbation theory (PT) approach. The open circles show

results based on the klystron (K) approach in which the last

terms on the right-hand-side (RHS) of Eqs.(28) are omitted and

the beam phase bunching is introduced as initial conditions for

the beam equations-of-motion. This avoids the approximation of

separating the ac current density into two terms (cf. Eq.(4)].

The effect of the prebunching cavity, assuming phase bunching

only, is represented by the bunching parameter q=0.16. This

choice for q was used so the locking bandwidth prediction based

on Eq.(39) for a magnetic field of 2.5 Tesla is the same as the

direct injection result using 0.5 MW locking power. The time-

dependent calculations based on perturbation theory are in good

agreement with the results based on Eq.(37) except for negative

frequency shifts near the bandwidth limit. The locking bandwidth

obtained from the simulations is about 8% less than the result

obtainPH using Eq.(39) which is considered to be good agreement

cons ring the complexity of the time-dependent calculations.

On the other hand the locking bandwidth obtained from simulations

using the klystron approach is about 80% wider than the result

obtained from Eq.(39) for this magnetic field. This difference

is attributed to the approximation inherent in the perturbation

theory approach.

The effect on the locking bandwidth of varying the magnetic

field detuning parameter is shown in Figure 8 for phase-locking

using a prebunched beam. According to Eq.(39) the locking

bandwidth based on perturbation theory decreases rapidly as the
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detuning is increased. This behavior is shown in Figure 8 and

implies a constraint on efficiency optimization. The decrease in

bandwidth with increase in A obtained from simulations based on

the klystron method is less pronounced than the perturbation

theory results. The results of the two approaches converge and

finally cross as the detuning is decreased. Comparison of

Figures 6 and 8 shows a much stronger dependence on detuning

parameter for phase locking with a prebunching cavity than by

direct injection which is essentially independent of the detuning

parameter. Figure 8 also shows the dependence of the

exponentiation time constant, given in dimensionless form by

Eq.(40), for the approach to phase-locked operation on the

detuning parameter. The time constant plotted in Figure 8

corresponds to a locking frequency shift of one half the maximum

frequency shift for obtaining phase-locked operation. To obtain

the time constant in seconds, the result given by Eq.(40) should

be divided by the operating frequency. Figure 8 shows that for

the present configuration operating at 35 GHz and A=0.6 the e-

folding time is 21 nsec for a bunching parameter of 0.16. This

time can be decreased to a few nanoseconds by increasing the

bunching parameter and decreasing the detuning parameter.
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IV. DISCUSSION AND CONCLUSIONS

The extension of slow-time-scale steady-state gyrotron theory

to time-dependent analysis of gyrotron oscillators driven by an

external signal is demonstrated in this work. Calculations based

on this theory yield the time evolution of the driven oscillator

output frequency and phase for either the approach to phase-

locked operation or for unphase-locked operation. These results

should facilitate the investigation of driven intense-beam

gyrotrons which are characterized by short pulselengths.

In the case of phase locking by direct injection, the maximum

locking frequency shift which allows phase-locked operation

obtained by integrating the STS time-dependent equations for the

radiation amplitude and phase is in good agreement with Adler's

relation. The simulations demonstrate the validity of the

conceptual model which treats the phase-locking process as a

perturbation of the free-running oscillator operation. Such

calculations for frequencies near the maximum allowed frequency

shift are costly since the time constant for the exponential

approach to the phase-locked equilibrium phase becomes large in

this limit. An important objective in carrying out the

calculations shown, for example, in Figure 5 was to establish the

time and space increments and number of phases needed to obtain

accurate results from the time-dependent simulations.

In the case of phase locking using a prebunching cavity, the

time-dependent calculations show that the perturbation theory

approach underestimates the frequency shift bandwidth for phase
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locking except at small detuning parameters. The analytical

bandwidth estimates based on the perturbation theory approach are

nevertheless extremely useful for design purposes. The

generality of the results has been increased by expressing the

results in terms of ;ell--known dimensionless gyrotron parameters.

The present results for a circularly polarized mode also extend

the results obtained previously by Manheimer for a TE1, linearly

polarized mode.

A few comments can be made regarding the maximum obtainable

bandwidth using a prebunching cavity. According to the

perturbation theory approach, the maximum bandwidth is obtained

when the bunching parameter q=1.83 since this maximizes the

Bessel function Ji(1.83)=0.58. Based on the results of this

paper, nonlinear, nonperturbation theory calculations should

yield somewhat larger bandwidth for a given bunching parameter.

A bunching parameter q>1.83 should also lead to larger bandwidth

when nonlinear effects are taken into account. However, in

practice, as discussed below, q>2 is difficult to obtain so that

the maximum bandwidth based on perturbation theory represents a

reasonable estimate of achievable bandwidth.

To increase the generality of the results it is convenient to

neglect the term in curly brackets on the right hand side of

Eq.(39). This leads to an error of 15% for the high voltage,

fundamental interaction configuration analyzed in this paper.

The error is much less for lower voltage (-100 kV) configurations

except for high harmonic interactions. In this approximation the

maximum bandwidth depends only on the resonator Q factor, the
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normalized steady-state resonator RF field amplitude F0 , the

interaction length /, the beam current parameter IG, and the

resonance detuning parameter A. Thus, in principle, the phase-

locking bandwidth associated with beam premodulation method does

not depend on the power of the locking signal because by suitable

bunching cavity and drift tube design a large bunching parameter

can be obtained with a small input signal. In practice, of

course, this is a difficult problem, especially for overmoded

systems.

The normalized gyrotron parameters corresponding to efficient

operation are highly constrained. Since, for steady-state

operation IG=FO 2 /ylt, the estimate for Q times the maximum

bandwidth depends only on F., p, and A; and is given by:

Q < 0.5 e[ 4] (42)
WO t (Fo ,A,6)

The transverse efficiency for given F0 , p, and optimized A can be

obtained from an F-p plot (81 when the electron dynamics are

treated according to the "generalized pendulum" equations of

motion. The parameters yielding the optimum transverse

efficiency of nt-.7 are approximately p=15, Fo=0.15, and A=0.5.

These parameters are typical of thermionic cathode gyrotrons

developed for average power applications [20] and, for Q=250,

Eq.(42) leads to a maximum bandwidth for phase locking with a

prebunching cavity of IwI/wo=0.02%. According to Adler's
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Relation, to obtain this bandwidth using direct injection, a

locking power to oscillator power ratio of PL/Pout-- 2 6 .4 dB is

required, i.e. 2.2 kW would be required to obtain this phase-

locking bandwidth for a state-of-the-art megawatt gyrotron using

direct injectiun. Presumably much less locking power would be

required for the beam permodulation method with a well designed

bunching cavity system. On the other hand if more locking power

is available, then wider bandwidth can be obtained using direct

injection. Thus, from this point of view, which does take into

account many important practical considerations, phase locking

using a prebunching cavity appears more effective for systems

which are locking power limited whereas systems with ample

locking power can achieve wider bandwidth by employing direct

injection.

Representative normalized parameters for the high peak power

configuration analyzed in this work are F,=0.33, p=9.2, A=0.7,

and nt-0.45. These parameters lead to a maximum phase-locking

bandwidth of II/w 00.1% for Q-250 and a corresponding phase-

locking power ratio of PL/Pout=-. 9 dB. Thus, the use of the

beam prebunching method appears to be particularly advantageous

for high peak power gyrotrons which are characterized by high

cavity RF fields and short interaction lengths. This is because

of the wider bandwidth achievable in this regime, and because

these devices are likely to be locking power limited.

Aside from the bandwidth potential of the beam premodulation

method it also has the advantage of isolating the oscillator

output from the locking source. However, multiple bunching
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cavities will generally be required to realize the maximum

bandwidth potential with low power. To prevent self-oscillation

the bunching cavities are usually short with p,-2 being a typical

value. The Q factor should low for the same reason, i.e. QB-200.

For a low drive power this leads to a RF field amplitude in the

first bunching cavity which is at least an order of magnitude

less than the output cavity field, i.e. F i~F./10-0.03. Finally,

the drift section should be short to prevent degradation of the

phase bunching due to beam velocity spread with Pd~ 3 being a

typical value. In the absence of significant magnetic field

tapering, the bunching cavity detuning parameter is the same as

in the output cavity. Substituting these parameters into Eq.(41)

leads to a rough estimate of the bunching parameter obtainable

from a single bunching cavity, that is, q-0.4, which is much less

the value assumed in the estimate of the maximum bandwidth. This

estimate has been confirmed by more detailed calculations [21].

To increase the bunching additional passive bunching cavities can

be used. The design of a multicavity phase-locked gyrotron is

discussed in Ref. 21.
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