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Decentralized Naming in
Distributed Computer Systems

Timothy Paul Mann

Abstract

" Designing a global character-string naming facility is an important and difficult problem
in distributed systems. Providing global names-names that have the same meaning on any
participating machine-is a vital step in welding a collection of individual computers into
a single, coherent system. But the nature of large distributed systems makes it difficult to
implement global naming with acceptable efficiency, fault tolerance, and security: network
communication is costly, system components can fail independently, and parts of the system
may belong to many autonomous and mutually-suspicious groups. Existing name service
designs do not solve the problem in full; even the best current designs do not have the
efficiency or capacity to name every object in a large system-they generally name only
hosts or mailboxes, not files. -

(This thesis introduces a new paradigm for name service called decentralized naming.
Directories at different levels of the global naming hierarchy are implemented using different
techniques. The uppermost (global) level employs conventional distributed name servers
for scalability, while at lower (regional and local) levels, naming is handled directly by
the managers of the named objects. The name mapping protocol uses multicast for fault
tolerance and a specialized caching technique for efficiency. A capability system provides
security against counterfeit replies to name lookup requests. (f - ) --

The multicast name mapping technique is shown to have optimum resiliency, in the
sense that whenever an object is accessible at all, it is accessible by name. An analytical
model of cache performance is presented, is validated by comparison with measurements
on a prototype implementation, and is used to set a limit on how large directories can grow
before they must be treated as global rather than regional. The capability scheme is also
analyged: although it red ices both the efficiency and resiliency of name lookup, its impact
can be made as small as desired by limiting the frequency with which security policy is
allowed to change.

T
This technical report reproduces the author's Ph.D. thesis.
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Chapter 1

Introduction

1.1 The Problem

Designing a global character-string naming facility is an important and difficult problem
in distributed systems.

The problem is important because, without global names-names that have the same
meaning on any participating machine-a collection of computers can scarcely be viewed
as a single, coherent system. Chaos and confusion are the rule when hosts do not share a
common naming facility for globally available objects: users find that objects they called
by one name when using one host are unavailable or called by another name when they 0
move to another host; distributed or migrating programs find that the names they have
been referencing on one host are invalid or have different meanings on the next.

The problem is difficult because of the characteristics of a large distributed system.
Such a system can include a large and growing set of heterogeneous objects and hosts,
with individual hosts and parts of the network subject to independent and intermittent
failure. Parts of the system may be owned and controlled by many different autonomous
and mutually-suspicious groups--different individuals, different departments within a uni-
versity or corporation, different corporations, or even different countries. And of course,
even with today's high-speed networks, communication between hosts is relatively costly
compered to local computation.

These characteristics impose several challenging requirements on a naming facility. It
must gracefully accommodate growth in the number and types of objects (and hosts)
supported. It must be fault-tolerant-failures at one point in the system must have little
or no effect elsewhere, Ideally, in fact, no matter how many failures occur, any set of hosts
that remain up and interconnected should be able to continue interoperating as usual.
It must support secure operation-in particular, it must solve the counterfeit problem:
ensuring that when a client program sends out an operation request specifying a target
object by name, it is not fooled by false (counterfeit) responses from servers unauthorized
to bind that name. Yet the naming facility must be efficient, minimizing communication
cost and avoiding bottlenecks, particularly when clients reference nearby or frequently-used
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objects.

Several designs for large-scale distributed naming facilities have been published [3,27,32],
but these efforts have generally focused on the naming of relatively "large" objects, such
as hosts or mailboxes. Naming to the level of individual files has not been included, ap-
parently because these approaches do not offer high enough performance to be used every
time a file is opened. Also, the level of availability they provide (through replication) is
not needed when referring to individual, unreplicated files: when the contents of a file are
unavailable, there is little utility in continuing to be able to look up its name.

A closer look at the naming problem suggests that no single implementation strat-
egy will be appropriate for every directory in a large hierarchical name space, because
directories near the root of the tree can be expected to have substantially different usage
characteristics from those near the leaves. Extrapolating from the behavior seen in smaller
hierarchical naming systems, such as the UNIX [34] file system and the DARPA Internet
Domain Naming service [30], I expect the directories in a large-scale system to fall into
several broad usage classes, with the following characteristics.

Directories near the root are of global interest; that is, the entries they contain are
accessed by nearly all client hosts. They must therefore be very highly available-at
least for name lookup. These directories are also modified on occasion, but not nearly
as frequently as they are read. When changes are made, it may be acceptable for them
to propagate slowly through the system rather than appearing atomic, if this technique
increases availability. Finally, a global directory is likely to contain entries for objects that
are under multiple different administrations, so the authority to make changes must be
carefuliy regulated.

Directories in the middle range of the tree are of regional interest; that is, each is
accessed mostly by a group of client hosts that are geographically or administratively close
to it-perhaps belonging to the same corporation or division. High availability remains
important, but it is acceptable for the directory to become unavailable if the region it
serves fails entirely. The rate of change is moderate. Entries in a regional directory refer
to objects stored on multiple hosts, but generally all under the same administration.

Directories near the leaves of the tree are primarily of local interest; that is, each is
accessed mostly by a small group of closely-associated client hosts-perhaps belonging to
the same department or work group. Each directory at this level holds a set of related
objects-for instance, the set of files containing the source code for a single large program-
typically all stored on the same host. These directories are frequently accessed, and also
change rapidly. In aggregate, most of the information stored by a large naming facility
resides in the local directories.

Given this view of the problem, it is logical to look for solutions that use different
implementation techniques at different levels of the naming hierarchy. One such solution,
called decentralized naming, is introduced and evaluated in this thesis. It is shown to
have attractive fault tolerance, efficiency, and security properties, and its practicality is
demonstrated by a substantial prototype imnpementation for the V d'_'..Ibuted operating
system [7].

, = i, ! = i' n ' V ' T T ' 'AA



1.2. DECENTRALIZED NAMING 3

1.2 Decentralized Naming

In preparation for Section 1.3's summary of research contributions, this section gives an
overview of decentralized naming and define" some necessary terminology.

Decentralized naming uses three directory implementation techniques-global, regional,
and local-corresponding roughly to the three usage classes described above. Global di-
rectories are stored by specialized directory servers; for fault tolerance, they are fully
replicated. Regional directories are partially replicated, with entries distributed across the
object managers that implement objects named relative to them. Each local directory is
stored exclusively by one object manager.

This naming technique is called decentralized because each object manager handles the
naming for its own objects. In fact, each object manager knows the full absolute pathname
for every object it implements; it is a participant in the implementation of each directory
along the path. (A participant in a directory is a server that holds an authoritative record
of one or more entries in that directory.) For example, in Figure 1.1 below, file server 1
implements a local directory named [edu/stanford/dsg/bin, so it is also a participant
in the directories C, [edu, [edu/stanford, and Cedu/stanford/dsg, holding the entry
for odu in the directory [, the entry for stanford in the directory [edu, and so forth.'
An object manager ordinarily records only those directory entries required to define the
absolute names of the objects it manages. For example, in [edu/stanford/dsg/user,
file server 3 records only the names Jones and mann, not smith. Directory servers also
participate in some directories; a directory server holds a complete list of entries for each
directory it participates in.

Local, regional, and global directories are distinguished by the number and type of
servers that participate and the roles that the various participants play in name mapping
(lookup). Each is detailed below.

Local Directories

A local directory has exactly one participant. One object manager stores all entries in
the directory, handles all name mapping in the directory, and manages all the objects
named relative to it. The manager knows that it is the only participant, so it covers all 0
pathnames that pass through the directory.' For example, in Figure 1.1, every object
whose name begins with the prefix [edu/stanford/dsg/user/smith is a filt or directory
whose contents and name binding are stored by file server 2. Every descendant of a local
directory is local as well and has the same manager; for example, [edu/stanford/dsg/
user/smith/source/emacs would also be a local directory stored by the same manager
as [edu/stanford/dsg/user/smith.

11n these exampl.s, pathname components are delimited by "/" characters, and absolute names are
flagged by a leading "C" character. This convention is used in the V naming implementation.

2 An entity is said to cover a name if it authoritatively knows either what the name is bound to, or that
the name is not bound. 0

L 111111
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Figure 1.1: A Small Example

Regional Directories

A regional directory has multiple participants. Each participating object manager stores
a subset of the entries in the directory-specifically, each manager holds the entries for
exactly those child directories in which it participates. For example, as shown in Figure 1.2,

file server 2 holds the entry for smith in the user directory, while file server 3 holds the

entries for jones and mann. The entry for a regional child directory is thus replicated
at each participant in the child, while that of A loca child is stored only by the child's

manager. In the dsg directory, for instance, file server 1 binds bin and file server 2 binds

lib, while both file servers 2 and 3 bind user. Every descendant of a regional directory is

either regional or local.

Name mapping in a regional directory is performed by sending a request to every

participant in the directory; only those participaits that cover the given name respond.

To make such operations more efficient, the participants in each regional directory form

a participant group to which multicasts can be directed; name mapping requests are then

multicast to the group and processed in parallel by its members. The underlying network is

assumed to provide multicast with the following semantics: Any set of hosts (or processes)
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Figure 1.2: Information Held by Each Manager

can form a group with a single address. Neither the clients that send to the group nor the
members themselves are required to possess a complete list of members; they need only
know the group address. When a message is sent to the group, delivery to each member
is assumed to succeed or fail independently of delivery to the others, and failures are not
necessarily reported to the sender.3

One or more participants in a regional directory may hold a name list for the directory-
a complete list of single-component names for which directory entries exist. A name list
does not include the directory entries themselves, only the names-that is, it does not
record what the listed names are bound to, only that each is bound to something. (For
example, the name list for [edu/stanford/time in Figure 1.1 would simply be (a, b,
c). It would not indicate that the named objects are time servers, give their network
addresses, or the like.) Name lists are used primarily to prevent duplicates from arising
when new names are defined in a directory; a new name must be added to the list before
it can be bound. They have other uses as well-if a client attempts to map an unbound
name in a regional directory, a name list holder that receives the request can generate an
error response because it covers all the unbound names: it knows that any name not on
its list is unbound. There are three useful approaches to storing the name list-off line, at
managers, or at directory servers.

Off-line name lists are used in directories where new names are only defined manually
by a system administrator. For example, new host names are only chosen when new

3Group communication of this sort is available in the V system using process groups [11], at the Ethernet
data link level using multicast addressing [18], and experimentally in the DARPA Internet using host groups
[9,13,14].
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machines are acquired, so at an institution with only a few hosts (called, say, Marquette.),
the directory [edu/marquette/host could be made regional, with the name list simply
written on a piece of paper and kept in a system administrator's desk drawer. This
approach is simple and symmetrical, but has the drawback that no on-line participant
covers the directory's unbound names. In the example, a client that references an unbound
Marquette host name receives no reply-its name mapping request times out, leaving the
client uncertain whether the name is unbound or is bound to a host that has crashed.

At the opposite extreme, all (or most) managers participating in a regional directory
may keep a complete name list. In Figure 1.1, for example, both file server 2 and file server
3 might well keep a complete name list for [edu/stanford/dsg/user in stable storage.
Either one is then prepared to give an error response when a client attempts to map an
unbound name in the directory; however, cooperation is required to keep both replicas up
to date when either file server adds or deletes a directory entry.

An intermediate approach is to include one or more directory servers as participants in
the directory and give them the responsibility of maintaining the name list. If more than
one server is included, they coordinate with each other as necessary to keep the copies
identical, as with replicated global directories. This approach keeps the object managers
simple, yet retains the benefits of having the name list available on line. It does, however,
put an additional burden on the directory servers. In the figure, the [edu/stanford/host
directory would become a candidate for this implementation strategy if many additional
hosts were added.

Global Directories

A global directory has many participants, some object managers and some directory servers.
Each participating directory server holds a complete copy of the directory-all entries,
with the binding for each name given. Most operations on the directory (including name
mapping) are handled by the directory servers, so the participating object managers need
not form a multicast group. The object managers do, however, continue to store entries
for the subdirectories in which they participate.

Most global directories are replicated on several directory servers to improve the fault
tolerance and efficiency of read operations (such as name mapping). In an internetwork,
the root directory would typically be replicated at least once on every subnetwork, and
lower-level global directories would be replicated on those subnetworks where they are
heavily used. Update algorithms such as those developed for use in Grapevine [3] and its
descendants are well suited for use in global directories. Updates are infrequent in the
highest-level directories of a large hierarchical name space, and so the slow update propa-
gation rate and "eventual consistency" property of these algorithms should be acceptable.

Whether a particular directory is implemented as global or regional is a matter of
administrative choice. Name mapping in a regional directory is more fault-tolerant, but
it is more efficient in a global directory, and the efficiency advantage increases as the
directory grows to include more participants. This issue is discussed further in Chapter 3,
which derives a practical limit on the size of regional directories, based on performance

11 Nil loom
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considerations.

1.2.1 Name Mapping

Name mapping is an extension of name lookup. It accepts a name and a message as
its arguments, looks up the name's binding, and delivers the name and message to the
manager of the bound object, if any. It returns either a response from the object manager
or (if the name was unbound or the manager could not be contacted) a failure indication.
This definition of name mapping reflects the view that the usual reason for looking up
a name is as a preliminary step in performing an operation on the named object. For
example, if a client program wants to open a file foo, it calls the OpenFile routine with
the target file specified by name. In a decentralized naming system, the OpenFile request
is "piggybacked" on the name mapping request for too by including it in the message that
is delivered to foo's manager. This technique saves network traffic by allowing both the
name lookup and object operation to be requested in a single packet.

With the directories stored as described above, name mapping can be performed using
a simple (but inefficient) protocol involving the directory servers and multicast. 4 The client
begins by submitting its operation request to a directory server for the root directory, which
looks up the first name component. If the name maps to another global directory, the
server forwards the request to a server for that directory (perhaps itself), and this pro ess
is repeated until a regional or local directory is reached. If a regional directory is reached,
the last directory server forwards the request as a multicast to the participant group for the
directory. Each participant then examines the remaining name suffix to determine wheth, r
it covers the name; those that do not cover the name ignore the request. A participaw I
that does cover the name is either the manager of the named object or knows that th,
name is unbound. In the former case, it performs the requested operation and returns the
results; in the latter case it returns a not found error indication. If a local directory is
reached, the directory server forwards the request or- to the directory's manager, which of -
course covers the name, and it handles the request.

An example of the basic name mapping technique is shown in Figure 1.3. A client
program needs to open a file named [edu/stanford/dsg/user/mnn/phonebook. It first
submits its request to a directory server for the root directory "[", which looks up edu in
its copy of the directory. The request next passes through directory servers for edu and
stanford. Determining that the name dog is bound to a regional directory, the server for
stanford passes the request on to the directory's participants-file servers 1, 2, and 3-by
multicasting it to the participant group. File server 1 does not hold a binding for the
name's fourth component, user, so it ignores the request, assuming another participant in
[edu/stanford/dsg will take care of it. File server 2 holds a binding for user, but does
not hold a binding for mann in the regional directory [edu/stanford/dsg/user, so it too
ignores the request. File server 3 does know the binding status of the given name, because
it implements [edu/stanford/dsg/user/mann as a local directory. It therefore completes
the name mapping to find the requested file, opens it, and returns a handle on the open

4The next section explains how caching is used to improve efficiency.

Oil--
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Figure 1.3: Name Mapping Using Directory Servers and Multicast

file to the original client, as shown.

There are three possible outcomes to this name mapping procedure: it either succeeds,
fails with an error reply, or fails with no reply.

Name mapping succeeds, as in the example above, when the given name is bound and
the client is able to communicate with the bound object's manager.

Name mapping fails with an error reply when the given name is not bound, but is cov-
ered by some object manager with which the client is able to communicate. For instance, if
the client in the previous example had invoked the OpenFile operation with the misspelled
name [edu/etanf ord/dsg/user/mann/phnoebook, file server 3 would have recognized the
name as unbound and returned an error indication.

Name mapping fails with no reply when the client is not able to communicate with
any entity that covers the given name---either a hardware fault has made it inaccessible,
or there is no such entity. Generally, several retransmissions and a time delay are required
before the client concludes that no reply is likely to be forthcoming. In the example, if file
server 3 crashes or is partitioned away from the rest of the network, a client presenting the
name [edu/stantford/dsg/user/mann/phonebook would receive no reply. To illustrate
the second possibility, suppose that the name list for [edu/stemford/dsg/user is not
kept on line, and a client presents the name [edu/stanford/dsg/user/aMnn/phonebook.
In this case, all three file managers ignore the request and again, the client receives no
reply. This example shows why (as remarked above) it is useful to keep the name list of a
regional directory on line: it would be preferable for the client to receive a prompt reply
stating that the name is definitely not bound, instead of waiting through a timeout period
and then remaining uncertain as to the reason for the failure.

The basic technique just described is rather inefficient, but it is not the last word in de-
centralized name mapping; the next subsection describes a more efficient and sophisticated
technique that takes advantage of naming information cached by clients.



1.2. DECENTRALIZED NAMING "

1.2.2 Name Caching

Each client of the naming facility keeps a prefiz cache in its local memory. The cache
records bindings between name prefixes (that is, directory names) and directory managers
or groups. These caches are used to reduce the average cost of performing naming opera-
tions; they do so by reducing the number of multicasts and the number of requests sent to
directory servers. Whenever a client is attempting to map the name n, it begins by looking
in its cache to find the longest matching prefix of n.1 If such a prefix match is found, the
client sends the request to the manager or group indicated by the cache. If no match is
found, the client falls back on the basic name mapping procedure, sending the request to a
directory server for the root. A cache lookup is considered a hit if the prefix match reaches
a local directory, a near miss if it reaches a regional or global directory below the root, or
a miss if there is no prefix match.

Cache entries are normally created on demand. Whenever a cache miss or near miss
requires the client to use multicast or go through a directory server, the server that responds
also provides information for the client's cache. For instance, suppose the client in our
running example attempts to map the name [edu/stanford/dsg/user/jones/box, but
finds only the prefix [odu/stanford in its cache. It will receive a response from file server
3 indicating that it manages [edu/stanford/dsg/user/j ones as a local directory.

Entries can also be preloaded into a cache to reduce the impact of startup misses. For
example, in the V implementation, all bindings in the root directory are preloaded into
each client's cache.

Cache consistency is maintained by detecting and discarding stale cache entries on use.
A cache entry becomes satle when the name prefix it contains is no longer covered by the
manager or group it indicates. When a stale cache entry is used, the result is that the
name request is sent to the wrong manager (or group). If the manager no longer exists,
the request fails with no reply. If the manager exists but no longer covers the given name,
it reports that fact back to the client. In either case, the client recognizes that its cache
entry is (or may be) stale, and retries its request without using that entry. In no case can
the name be mapped to the wrong object.

1.2.3 Nearby Groups

One important question remains to be answered: when a client's cache misses entirely,
how does it find a root directory server to fall back on? Nearby groups provide a solution
to this problem and also improve the fault tolerance of name mapping.

The nearby group mechanism works as follows. Conceptually, for each host H's there is
a multicast group bH cor-isting of all object managers and directory servers that are near
to H--say, within one or two hops through the network--called the nearby group for H.
Normally, a client's cache includes an entry mapping from the root directory name
to the nearest root directory server, which matches any name that is not matched by any

5A pathname ni is considered a prefix of n2 if the components of n, respectively match the initial S
components of n2; so [a is a prefix of Ea/b, but not of Cab.
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other cache entry. If the root entry is missing or proves stale, however, H multicasts its
next name mapping request to bH. If one of the nearby managers binds the given name,
it will respond to the request; if a nearby root directory server is up and accessible, it will
respond with a new root cache entry pointing to itself. This technique makes access to
nearby objects independent of failures in the global directory system. 6

This mechanism can be implemented without actually creating a large number of dif-
ferent groups. Instead, all servers for the root directory, together with all participants in
every top-level regional directory, join a single global group. When a client needs to send to
its nearby group, it multicasts its request to the nearby members of the global group---say,
to all members that can be reached in one or two hops through the internetwvork (Scoped
multicast of this sort is available in the IP host group facility [9].)

1.2.4 Generic and Group Naming

In a distributed system, objects that are logically one unit are frequently either replicated or
split into fragments, with each copy or fragment maintained by a different object manager
on a different host. If clients are to see a replicated or fragmented object as a single entity,
it is important that the naming system be able to bind all its parts (or subobjects) to a
single name. Mapping this name should return all subobjects if they are fragments of the
main object; it is sufficient to return any one subobject if they are copies. Names bound in
these ways are called group and generic names, respectively, as opposed to ipecific names,
which are bound to exactly one object.

A decentralized naming facility implements generic names by relaxing the restriction
that only one participant in a regional (or global) directory can bind a given name to an
object it manages. Then when a client's name mapping request is sent to the directory's
host group, several participants can respond. The client software selects one response and
caches the identity of the responder. From then on it sends requests only to the subobject
it first selected, until that manager no longer binds the name or is no longer accessible.
Such events are treated as cache misses, and cause the client to fall back on multicast name
mapping to select a new referent for the name.

Generic naming has proven particularly useful in the V system. For example, the
Distributed Systems Group at Stanford keeps a complete tree of standard system files
(such as executable binaries for common commands) on each of several fie servers in
the Computer Science building. Client programs reference these files using a well-known
generic name, so that if one file server crashes, the others transparently take over its load.
Note that the naming system treats each tree root as an entirely separate local directory; it
is not responsible for keeping the tree copies identical. Thus the problem of file replication
has been factored out of the naming system and treated separately.

Because a group-named object is fragmented among multiple managers, not replicated,
name mapping requests on it should be transmitted to all its managers. Therefore, a group-

6One can also make access to distant objects resilient against the failure of nearby directory servers by
introducing more retries to larger groups.
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named object has a multicast group associated with it, whose members are the managers of
its subobjects. A client whose cache misses on the group name is given the group address
to put into its cache; it then multicasts subsequent name mapping requests to the group.
(The naming system does not take responsibility for ensuring that such multicasts reliably
reach all subobject managers; in cases where reliable multicast is required, the participating
managers must implement it themselves.) Regional directories can be viewed as group-
named objects-they are fragmented across multiple participants, with some entries held
by each.

1.2.5 Other Naming Operations

Besides name mapping, decentralized naming provides three other "read" operations on
name bindings-directory listing, binding check, and inverse name mapping; and two
"write" operations-name binding and name unbinding.

The directory listing operation returns a list of all bound names in a specified directory,
optionally including a type-dependent descriptor for each bound object. The difficult case
here is listing a regional directory with no on-line name list holders. The V implementation
uses an unreliable, "best-efforts" protocol to provide such listings: the client repeatedly
multicasts a request to the participant group for the directory, each time appending a
list of participants that have already responded and therefore should not respond again,
until the request has been transmitted several consecutive times with no response. It then
collates all the received replies to produce a listing.

The binding check operation accepts a name and reports whether it is bound. It differs
from name mapping in that its definition does not require it to send a message to the
manager of the bound object (if any).

Inverse name mapping operations accept a manager-specific low-level identifier for an
object and return the object's absolute name. The pvd command of UNIX, for example,
performs an inverse name mapping on the user's working directory. With decentralized
naming, such operations are particularly cheap and easy to implement because (as men-
tioned above) each object's absolute name is known locally by its manager.

A name binding operation creates a new binding between a given name and a given
object. If the specified object's manager already covers the given name, binding is straight-
forward and no more costly than name mapping. Acquiring coverage of new names is more
problematical; it requires reliable communication with the server that previously covered
the name.

Name unbinding deletes the binding between a given name and object. If the specified
name is still to be covered by the same object manager, unbinding is straightforward.

Giving up coverage requires some additional care.

This completes our overview of decentralized naming. Further details are introduced
as needed in subsequent chapters.
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1.3 Research Contributions

This thesis investigates the properties of decentralized naming. It presents results in the
areas of efficiency, fault tolerance, and security.

One group of results characterizes the efficiency of decentralized naming. First, the
average cost of performing each of the five major naming operations is derived in terms
of basic system parameters, including the cache hit ratio, and is compared with the the-
oretical optimum. Next, an analytical model of cache performance is presented, and it is
validated by comparing its predictions with measurements taken on the V naming imple-
mentation. Finally, it is shown that the maximum practical number of object managers
that can participate in a regional directory is limited by the fact that both the cost of
mapping a name and the average name mapping load per participant contain terms that
are proportional to the number of participants, and an estimate of this maximum for real
systems is derived.

A second group of results characterizes the fault tolerance of decentralized naming.
Name mapping for nearby objects is shown to have the optimum possible fault tolerance;
whenever an object is accessible at all, it is accessible by name. All faults are tolerated ex-
cept failure of the named object's manager or network failures that prevent communication
with it--either of which would prevent operations on the named object from succeeding,
even if its name could still be mapped. Optimum fault tolerance is achieved, however,
only because name mapping is defined to require communication with the named object's
manager, and is not required to distinguish failures caused by unbound names from those
caused by inaccessible object managers. Decentralized binding check, which is not defined
in this way, is shown to have weaker fault tolerance properties. It is also shown that
name binding in a distributed system cannot be made resilient against as large a set of
faults as can name mapping, regardless of whether decentralized naming or some other
technique is used. A special case of decentralized name binding can and does achieve the
same resiliency as name mapping, however.

A third group of results lies in the area of security. The use of decentralized naming
does not complicate the problem of providing mandatory security in a distributed system,
but a solution to the counterfeit problem of discretionary security (mentioned above) is
required. This thesis presents such a solution, based on capabilities, evaluates the solution's
impact on the efficiency and resiliency of naming, and argues that no better solutions are
available. It is shown that, in general terms, one can approximate the efficiency and
resiliency of unsecure decentralized naming more and more closely as the detailed security
policy is allowed to change less and less frequently.

Finally, this thesis demonstrates the practicality of decentralized naming, by describing
a substantial prototype implementation that is in daily use in the V distributed operating
system.
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1.4 What is Not Included

This thesis concentrates on the implementation of regional (and local) directories because
it is the most interesting and novel part of the decentralized approach. A detailed discus-
sion of mechanisms for implementing replicated global directories is omitted because the
required technology has already been rather well explored by other workers [3,40,27,32,42].
Also, the prototype V implementation does not include any global directories: even the
root directory is implemented as a regional directory (with some optimizations). In a
positive sense, the success of this implementation indicates that a system confined to
single local or campus-wide net is small enough that global directories and their complex
replication mechanisms are not needed.

The discussion of security in Chapter 5 concentrates on the counterfeit problem, because
it is the most interesting security problem that arises in a decentralized naming facility.
Most security issues that have been considered by other authors are either not directly
related to naming, or can be solved in the same way in a decentralized naming system as
in any other.

1.5 Thesis Plan

The next chapter surveys related work in naming. Chapter 3 evaluates the performance of
decentralized naming, discussing the caching mechanism used to achieve high performance,
and estimates the limits on the size of a regional directory that are imposed by performance
considerations. Chapter 4 evaluates the fault tolerance of decentralized naming. Chapter 5
is concerned with the security of decentralized naming, describing and evaluating a solution
to the counterfeit problem. Chapter 6 summarizes the research and suggests directions for
future work.

al
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Chapter 2

Related Work

Naming has been recognized as a fundamental issue in computer systems for many years.
Many sorts of objects need names, spanning a wide range in granularity, from individual
memory cells to largn networks of computers within an internetwork. Many types of
names are used, from numeric identifiers chosen for the convenience of hardware devices
to character strings or even pictures (icons) chosen for the convenience of human users.
Common issues recur throughout this large problem space, but a single thesis can treat
only a small part of it; the survey below therefore concentrates on a few naming systems
that are closely related to the main topic of this thesis, merely hinting at the breadth of
existing work in naming,

One of the most basic components of a von Neumann computer is the addressable
memory-which is essentially a naming mechanism: memory addresses serve as low-level
names for data and instructions within a program. Stored-program computers derive much
of their flexibility from this mechanism, because it allows the binding between addresses
and values to change from one program run to the next, and even during program ex-
ecution. While the earliest and simplest computers maintained a fixed binding between
addresses and physical memory cells, later designs incorporated such innovations as base
registers, paging, and segmentation to support multiprogramming, virtual memory, and
data sharing 120,15,24].

Because computers are programmed and used by people, it is also important to pro-
vide meaningful, mnemonic names for the objects they manipulate. Symbolic assembly
languages and higher-level languages allow the programmer to assign such high-level names
to the objects manipulated by his program. (Knuth and Trabb Pardo give an interesting
account of the early development of these languages [25].) Most programming languages
only provide names that are local to a single computation, however.

The task of providing global names for shared objects (particularly files) in a single-
machine system has traditionally been assigned to the operating system. There is little
published research on file naming in single-machine operating systems; Saltzer [37] gives an
excellent overview of the state of the art in this area. Early systems provided a flat space
of file names within each storage device, while the next step was to introduce a separate
directory for each user account. Due to its greater flexibility, the hierarchical directory

14
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system of MULTICS [12] has strongly influenced more recent system designs, beginning
with UNIX [341.

Naming in distributed systems presents a whole new class of problems. As was noted
in the introduction, the nature of a large distributed system makes it difficult to con-
struct a naming facility that is at once acceptably fault-tolerant, efficient, and secure.
The remainder of this chapter discusses several existing distributed naming facilities, each
representing an important contemporary style of naming architecture, and contrasts them
with the decentralized approach.

2.1 Remote File Access

One simple type of distributed naming facility results when a single-machine operating
system is extended to provide transparent access to remote files across a network. Some
recent examples of such remote file access systems include Sun Microsystems' Network File
Sys tem [39] and the Newcastle Connection [5]; an older example is Cocanet UNIX [36].
Each of the cited systems links together a network of UNIX [341 hosts by allowing hosts
to "mount" foreign file systems as subtrees of their own root file systems. As an example,
host Laurel might mount host Hardy's root file system as /hardy, allowing it to access
Hardy's /usr/spool/news directory under the name /hardy/usr/spool/news.

Remote file access systems can be quite useful, but they differ fundamentally from de-
centralized naming in that the naming they provide is not global. That is, because there
is no mechanism for keeping the multiple root file systei as identical, the same object can
have different "absolute" names when viewed from different hosts. This lack of uniform
naming can cause difficulties for distributed application programs, because processes run-
ning on different hosts are in different naming domains. For example, an application using
several hosts to process a data file would run into trouble if the file name were specified as
/usr/man/data; rather than opening the same filek, participating processes on hosts Lau-
rel and Hardy would respectively open /laurel/usr/hann/data and /hardy/usr/mann/
data. Even if the user were to explicitly specify /hardy/usr/mann/data, the program
would fail if Laurel did not have Hardy's file system mounted, or worse, had some other
file system mounted under the name /hardy.

The efficiency and fault tolerance of these systems is inherently good, at least when
each host has a local disk. Name mapping is efficient because the initial component, of
each name are mapped locally, the remainder by the host storing the file, and mapping is
piggybacked on the Open operation; thus a remote fie can be opened with a single packet
exchange. Name mapping is fault-tolerant in that, once the initial Mount operation has
located the remote host, client programs can continue to access files on it as long as it, 0
the local host, and the network remain up; there are no other servers whose failure can
prevent things from working. Both the efficiency and the fault tolerance are reduced when
the client does not have its own disk, however, because name mapping then requires access
both to the server that holds the actual file and to the one that holds the client's root file
system. (The client can, of course, regain some efficiency by caching directory information S

I
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from its root file system in local memory.)

Remote file access systems do not scale well, because if every host mounts every other,
the number of mount points in the system is proportional to n2 . Because of this problem,
each host in a large installation typically mounts only those file systems its users expect
to need, so users who move from one host to another see a different set of available files
on each.

Also, as installations grow, the Mount operation is performed more and more frequently,
so its fault tolerance, efficiency, and detailed semantics become important issues. How are
remote hosts and file systems named in the arguments provided to a Mount call, and how
are those names mapped? Whatever mechanism is used for that purpose is effectively a
part of the file naming system as well.

In conclusion, although remote file access systems do not provide a global name space,
they are useful in some applications, and they tend to be highly fault-tolerant and efficient.
They have also proven relatively easy to implement, even as extensions to existing UNIX
systems. They are at their best when a cluster of hosts running single-machine operating
systems need access to a common set of files, but do not need to run distributed programs.

2.2 Distributed File Service

Locus [44] represents another class of naming architecture, in which a single file system is
extended across a network to form the backbone of a tightly-integrated distributed system.
The Locus naming facility provides a uniform, global name space for objects (primarily
files) stored by multiple servers. Its implementation techniques differ markedly from those
of decentralized naming, however, giving it different efficiency and fault tolerance proper-
ties.

The Locus naming hierarchy is implemented as a set of nonoverlapping subtrees called
file groups, analogous to file asystemj in UNIX. Each file group can be stored at any site,
or replicated (fully or partially) at several sites. Both the files and the directories in
a replicated file group are kept consistent by performing updates as multi-site atomic
transactions. As in UNIX, the complete global tree is built up by first designating the
root of one file group as the global root, then repeatedly using the Mount operation to
attach new groups at the leaves of the exiting tree. Knowledge of where each file group is
mounted is replicated at every site.

The basic name mapping technique used in Locus is quite inefficient, but acceptable ef-
ficiency is achieved by the addition of replication and caching. Mapping a single pathname
can in principle require traversing several file groups at different storage sites before the

site of the target file is reached. In practice, however, the root file group is replicated at
every site and (presumably, as in ordinary UNIX installations) most mounted file groups
are placed directly under the root, so that as in the remote access systems of the previous
section, name mapping begins at the local host and proceeds directly to the bost holding

the named object. Thus, Locus name mapping could easily achieve the same efficiency as

do remote access systems; however, a peculiarity in the implementation sacrifices much of
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that efficiency-the site that originates a name request also performs the lookup for every
component in the pathname, reading directories over the network when they are not repli-
cated locally. Sheltzer's thesis [411 discusses the addition of directory caching to solve this
performance problem. His technique keeps the caches consistent by requiring a directory's
storage site to notify each holder of a cached directory page whenever the page changes.
As compared with on-use consistency, this technique places an added bookkeeping burden
on the storage site and requires it to send notification messages that are often unnecessary
(because the caching site will not use the updated page before the next change); on the
positive side, however, the fact that cached information is always correct allows the holder
to use the cache to perform directory listing as a purely local operation, with no need to
contact the directory's storage site.

Directory replication is used to improve the fault tolerance of Locus name mapping as
well as its efficiency. Replication is quite important; without it, failure of the site holding
the root file group would bring down the entire system by making all files inaccessible. Of
course, replication tends to reduce the resiliency of directory update operations, because
an update must reach every copy to assure consistency. Locus deals with this problem by
allowing directory updates to proceed even if some copies are unreachable-in fact, even
if the system is partitioned, updates can proceed in each partition. An automatic merge
procedure reconciles the partitions after they are rejoined, detecting any name clashes
that have arisen and notifying the owners of the affected files by electronic mail. A polling
protocol is used to detect network failures and establish a consensus on the membership
of each partition; it is not clear how well this protocol will perform in large installations.

In conclusion, the Locus naming facility has a number of interesting features, but is not
a full solution to the problem considered in this thesis. Its efficiency problems have already
been discussed. Further, due to the replication of the root directories and the mount table
on every host, its ability to scale up to large installations (of hundreds or thousands of
hosts) is questionable.

2.3 Distributed Name Servers

In recent years, it has become popular to use distributed name servers to name hosts,
mailboxes, and other objects of similar granularity within large internetworks. In this
approach to naming, the global directory tree is distributed across multiple name servers
scattered throughout the internetwork, with each directory typically replicated at several
server sites. Terry's thesis surveys work in this area [42].

Perhaps the most advanced example of such a naming service is a design described
by Lampson in a recent paper [27]. Unlike its predecessors Grapevine [3,40], and the
Clearinghouse [32], this design supports an unlimited-depth naming hierarchy, and it is
targeted for even larger iistallations-potentially incorporating every networked computer
in the world into a single name space. It is similar to its predecessors in that each directory
is replicated in full at an administratively selected set of sites, and update is performed
non-atomically. Lookup in a directory is defined nondeterministically: it may return any
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name binding that was established since (or current at) the most recent "sweep" of the
directory. Sweeps occur periodically for each directory, bringing all copies into an identical
state. Conflicting updates are reconciled by timestamps-the latest update wins.1

Lampoon's paper concentrates on naming objects of relatively large granularity (such
as hosts or mailboxes), but mentions that "the name service can be used to name a file
system." His colleagues have extended the design to provide global file naming in that way,
forming a file's absolute pathname by concatenating a global file system name (provided
by the name service) with a local file name (provided by the file server) (2]. To look up an
absolute file name, one first submits it to the global naming service, which maps a prefix of
the name to locate the server storing the file; the request is then passed on to that server
to complete the name mapping. This technique is similar, but not identical, to the basic
name mapping protocol of decentralized naming.

One major difference between decentralized naming and the extended Lampson design
is that the latter does not make any use of multicast: it does not include either regional
directories or the nearby-group feature of decentralized naming. In a sense, it is rather
like an installation of decentralized naming that has been configured with no regional
directories-all directories with entries on more than one host are managed by the global
name service. For example, suppose a client host H with an empty name cache attempts
to open a file called [edu/stanford/dsg/fsl/george/calendar that is stored on a file
server FS. Under the extended Lampson design, the global name service must implement
enough of the name to map to a particular server; for instance, if the entire tree rooted at
fsI is implemented by FS1, the global name service maps the prefix [edu/stanford/dsg/
fal to locate that server, then passes the request on to it. Under decentralized naming, on
the other hand, if dog is the first regional directory in the pathname, the global directory
service maps the prefix [edu/stanford/dug to find a multicast address for the participants
in deg, then forwards the request to that address. (Or if the global directory service cannot
be reached and FS is nearby to H, H's multicast to nearby servers reaches FS 1 .) FS,
then maps the remainder of the name and responds to the request. The request succeeds
as long as FS is up and the global directories [, edu, and stanford are available, or
even without the global directories if FS1 is nearby to H. To approach this resiliency
under the Lampson design would require the deg directory to be replicated at FS, (and at
each host named by an entry in the directory-there is nothing special about FS, in this
example). Multicast name mapping cannot simply be tacked on as an added feature in the
Lampoon design, because its philosophy is that objects do not necessarily know their own
names-the name service does not inform an object when its name is changed.

The second major difference between decenttdied naming and Lampson's design is in
their name cache consistency mechanisms.2 In the Lampson design, the cached result of

tThe design includes an authentication service as well, which is described in a companion paper [19].
2As with decentralized naming, caching is important in the Lampson design, because its basic name

lookup procedure is often costly-looking up a single pathname can entail contacting several name servers,
some distant from the client. Because of this cost, Lampson rates caching as "very desirable," even when
his name service is not applied to file naming-and he states that a file directory system is required to be
"much faster" than a service that names only hosts, mailboxes, and the like [27], making caching even more
important when the system is extended to name files.
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a name lookup carries an expiration time assigned by the service. The data is guaranteed
to be valid until that time, but must be discarded thereafter. Lampson does not address
the question of how to choose expiration times-clearly, if expiration times are too short,
cache entries will not live long enough to give a useful cache hit rate, but if the times are
too long, they restrict the frequency with which name bindings can be changed. Decen-
tralized naming, on the other hand, employs on-use cache consistency checking. Again,
this technique cannot simply be tacked on to the Lampson design because objects do not
necessarily know their own names.

In conclusion, although the extended Lampson design is similar in some ways to de-
centralized naming-both use replicated directories at the uppermost levels of the naming
hierarchy and local directories at the lowest-they differ in important respects. Decen-
tralized naming explores the ideas of multicast for fault tolerance and caching with on-use
consistency for efficiency, not considered in the Lampson design.

2.4 Other Related Work

2.4.1 Domain Naming

The Domain Name service recently adopted in the DARPA Internet [30,31] is a simpler
system in the same class as Grapevine and the Lampson design. The design is simpli-
fied by assuming that updates are infrequent enough to be handled manually by human
administrators-the name service interface does not define any way for a client program S
to request the addition or deletion of a name binding. Placement and update of directory
replicas are also handled manually (though some implementations may offer automated as-
sistance). A serious drawback of these simplifications is that they put a heavy burden on
system administrators, offering many opportunities for human error to disrupt the system.

2.4.2 Prefix Tables

Welch and Ousterhout [46] describe an extension of the UNIX file system to distributed
operation, using prefiz tables to locate file servers. Prefix tablcs are quite similar to the
prefix caches discussed in this thesis and provide similar efficiency benefits. As imple-
mented, however, they are less flexible: each prefix table is statically loaded with a set
of prefixes at boot time. The referent for a prefix can change during operation, but new
prefixes cannot be added to the table, nor can old ones be deleted. The authors describe
the design of a mechanism for adding new prefixes dynamically, but do not describe any
way of detecting when old prefixes should be removed entirely. Their scheme also appears
to be vulnerable to the consistency problem discussed in Section 4.2.5 of this thesis.

The directory implementation underlying Welch and Ousterhout's prefix table mech-
anism is entirely different from that employed in decentralized naming. There are no
regional or global directories; instead, every directory is managed by exactly one server.
File servers near the root of the tree delegate authority for some of their subdirectories
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using remote links, yielding a structure similar to that of Locus. One difference from
the Locus approach is that a remote link does not indicate which server implements the
subdirectory in question; instead, the client must broadcast to find it.

2.4.3 Early V System Work

Decentralized naming is an extension of a design described in an earlier conference pa-
per [10]. The earlier design also distributed the responsibility for object naming among
the system's object managers and used a similar name mapping protocol, but it did not
provide a uniform global name space. Instead, each workstation was provided with a small,
independent name server to store local aliases and the top level of the naming hierarchy. A
set of conventions outside the naming system proper ensured that most workstations had
similar views of the name space. Decentralized naming replaces these with the multicast
name mapping mechanism and per-client name caches described in this thesis.

2.5 Chapter Summary

The ultimate global name service has not yet been constructed--existing systems leave
room for improvement in both fault tolerance and efficiency. Decentralized naming attacks
these problems using a new combination of techniques, including multicast name mapping
and prefix caching with on-use consistency.

........ ..



Chapter 3

Efficiency
0

It is important for a distributed naming facility to be efficient, because name mapping
operations are performed frequently-every time a file is opened, for example. Small files
(1 kilobyte or less) are prevalent in modem program development environments [29,21],
and name mapping can easily make up a substantial fraction of the total cost of opening
and reading such files.

Decentralized naming relies heavily on prefix caching for efficiency; without caching,
its name mapping protocol would not be efficient enough for use in large systems. The
inefficiency arises because each multicast to a regional directory's participant group imposes
a load on every participant. With a high enough cache hit ratio, however, multicast is
avoided on most requests, dramatically improving the average efficiency. The hit ratio
also plays a large role in determining where the boundary between global and regional
directories should go; as it increases, multicasts become less frequent, so larger directories
can be handled satisfactorily with regional techniques. This chapter therefore focuses on
evaluating the effectiveness of caching.

The primary results presented are as follows:

" The average cost of name mapping (and several other naming operations) is given in
terms of the cache hit ratio and other system parameters.

e An analytical model of cache performance is presented, and is validated by compar-
ison with measurements taken on the V naming implementation. The V measure-
ments show a hit ratio of 99.7%, and the model predicts similar hit ratios (99.00-
99.98%) in most applications of decentralized naming.

" Performance considerations are shown to limit the number of object managers that
can practically participate in a regional directory to a few thousand.

To simplify the exposition, the initial sections of this chapter discuss systems configured
with no global directories-systems where even the root directory is implemented using
regional techniques. A later section then extends the results to configurations that include
global directories.

Section 3.1 evaluates the average cost per use for several important naming operations.
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These costs depend on the name cache hit ratio, which is derived analytically in Section 3.2.
Section 3.3 presents and discusses measurements of the actual cache hit ratio and other
parameters of the V naming implementation. The cost functions derived in the first three
sections include a term that varies linearly with the total number of object managers in
the system; Section 3.4 shows that this property limits the size of a system with a regional
directory at its root, and Section 3.5 extends the argument to establish a size limit for the
regional directories in a system with a global directory at its root. The chapter closes with
a summary.

3.1 Cost Per Operation

This section evaluates the cost of naming operations in terms of packet events. A packet
event is the transmission or reception of a network packet. Thus, a unicast message costs
two packet events-one at the sender and one at the recipient. A multicast with g recipients
costs a total of g + 1 packet events-one at the sender, and one at each recipient. Packet
events are a good cost metric here because naming operations generally do not take much
processing time; their cost is dominated by the cost of communication. This section's cost
analysis assumes that no packets are dropped by the network and that responses are not
delayed long enough to trigger retransmissions by the requestor. The root directory is
assumed to be regional (and hence no directories are global).

3.1.1 Name Mapping

Determining the average cost of name mapping is a complex problem because of the large
number of cases involved. There are many possible levels of "near miss" between the
extreme possibilities of a hit that leads to a local directory and a miss that returns no cache
information at all. It is not difficult, however, to develop a conservative cost estimate based
on a simplified model of cache behavior that considers all misses together and charges the
worst-case cost for each; such estimates are acceptably accurate when misses are infrequent.
This section states and derives such an estimate, then goes on to illustrate how inordinately
complex the estimate would become if it were extended to consider all miss cases separately.

Equation 3.1 is a conservative estimate for C p, the average number of packet events
required to map a name; its derivation is given below.

C,=p = 4h + (r + m + 3)(1 - h) (3.1)

In this equation, h is the cache hit ratio, r is the number of retransmissions required to
determine a host is down, and m is the number of object managers in the system. Both
client and server packet events are counted. The equation is valid for names that are
covered by exactly one manager (the normal case).

The analysis leading to Equation 3.1 is based on a simple "hit or miss" model of cache
behavior. Under this model, a cache lookup is considered to be a hit only if (1) the data
it returns is still valid (not stale), and (2) the matched prefix refers to a local directory.
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All other outcomes are considered misses, and the worst-case miss cost is charged for each,
yielding a simplified, conservative formula for C,,p.

When there is a cache hit, name mapping costs four packet events. The client unicasts
its operation request message directly to the correct object manager, and the manager's
unicasts the operation result in response. Thus the client sends one packet and receives
one packet, and so does the manager, for a total of four packet events.

When there is a cache miss, as many as r + m + 3 packet events may be needed. This
worst-case cost is incurred when the cache returns stale data referring to a host that is no
longer up, and after the stale data is discarded, there is no information about the given
name left in the cache. In this case, the client first sends off a request to the address given in
the stale cache entry. The client detects that the addressed host is down by retransmitting
its request r times and receiving no response (r packet events). At this point the client
discards its stale cache data, and is left (we have assumed) with no cached information
about the given name-not even a shorter prefix that narrows down the lookup to a regional
directory below the root. Thus, the client next retransmits its request as a multicast to
all m object managers participating in the root directory (m + 1 packet events). Finally,
the client receives a single unicast response from the object's manager (2 packet events),
containing the operation result and a corrected cache entry. Summing these values, the
total cost for this case is r + m + 3.

Combining the two cases yields Equation 3.1 above.
It is clear from Equation 3.1 that C... will be close to the optimum value 4 if the miss

ratio 1 - h is small compared to 1/(r + m + 3), as illustrated in Figure 3.1 below.1 For
example, C. will be less than 4.16 for an installation with 50 object managers, r = 4,
and h = 99.7%.

It is somewhat more costly to map a generic name than a specific name. Although the
cost is the same when there is a cache hit (4 packet events), when there is a cache miss
each manager that binds the name responds to the client's multicast. Thus if g managers
bind the name, the worst-case cost becomes r + m + 2g + 1 instead of r + m + 3, making
the average-case cost C pag- = 4h + (r + m + 2g + 1)(1 - h).

It is still more costly to map a group name (or the name of a regional directory). In
this case, each manager that binds the iame responds regardless of whether the cache hits
or misses. In the case of a cache hit, the client multicasts to precisely the g managers 0
that bind the name and receives g responses, for a total cost of 3g + 1 packet events. In
the case of a miss, there are g responses to the final multicast, so the worst-case cost is
again r + m + 2g + 1 instead of r + m + 3, making the average-case cost C p-gp
(3g + 1)h + (r + m + 2g + 1)(1 - h).

1 In all cames, Cmp : 4, because the definition of name mapping requires at least one unicast message
from client to manager carrying the operation request, and one return message acknowledging the request
and carrying the results.

i 1
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Figure 3.1: Average Cost of Mapping vs. Number of Managers.

Details of the Cache Miss Case

The remainder of this section sketches in the details that were omitted from the "hit or
miss" model of cache behavior given above. A flowchart (Figure 3.2) summarizes the
possible outcomes of a cache lookup and name mapping attempt, and gives the cost of
each. The cost of attempting to map an uncovered name is also given. These details
are provided to illustrate how excessively complex it would be to extend Equation 3.1 to
consider all cases individually.

The two cases considered in Equation 3.1 correspond to the paths (1, 3, 7) and (1, 3,
6, 9, 2, 12) in Figure 3.2. The best-case (cache hit) path traverses blocks 1, 3, and 7, for a
total cost of four packet events, as noted above. The worst-case path for a covered name
traverses (1, 3, 6, 9, 2, 12), for a total cost of r + m + 3, also as noted previously.

The figure also shows several cache-miss cases that are less costly than the worst case.
For example, the cost of a miss is less than the worst case when the cache lookup returns
stale data, but the manager referenced in the stale cache entry still exists-path (1, 3,
6, 13, 2, 12). In this case, the initial, misdirected request is transmitted only once and
receives an error reply, rather than being retransmitted several times with no reply. As
another example, when the initial lookup returns no data, rather than stale data, path
(1, 2, 12) is followed. In the latter case, there is no initial, misdirected request; the client
multicasts immediately.

Paths beginning with block 4 illustrate the cost savings that are gained through inclu-
sion in the cache of prefixes that map to regional directories. Paths through this block
are taken when the cache lookup returns a regional directory name as the longest prefix
match (termed a "near miss"). If the entry is valid, the near miss reduces the cost of name
lookup as compared with a total miss, because it allows the client to multicast its request
to g < m managers rather than all m. If the entry is stale, however, path (1, 4, 10, 14,
2, 12) is taken. This path may appear to be more costly than (1, 3, 6, 9, 2, 12), which



3.1. COST PER OPERATION 25

Is Wha Is j~

r ~n, no w re

2 3

IFigret reName

VVIV IF co verd?

mi se r r ih, wen no regl

gFiire uce 2 0) Nuheidter G isnt rveuts ied for Ne grou piisvunlikel

Lfmakin th , stils teae.T e xonis execto ezr stawe" regina

that any client still has a binding to G in its cache.
The figure also illustrates the cost of attempting to map an ucovered name, which is

considerably higher than the worst-case cost of mapping a covered name. Possible paths
through the flowchart include (1, 2, 5), (1, 3, 6, 9, 2, 5), (1, 4, 8, 15), or worst of all, (1, 4,
8, 15, 2, 5).

Block 15 requires some explanation at this point: it represents an optimization that can
be applied if some regional directory names are statically defined, so that their bindings
to participant group identifiers can never become stale. If the client knows that the cache
entry it used cannot be stale, it can take the yle. path out of block 15, thereby avoiding

i Wii nee



26 CHAPTER 3. EFFICIENCY

an extra multicast to all managers (block 5), and retaining the cache entry for later use
rather than discarding it.

Evaluating the cost of mapping generic or group names requires some extensions to
Figure 3.2. The cost of mapping a generic name is generally the same as that of a specific
name, except when there is a successful multicast (blocks 11 and 12), in which case several
replies are sent instead of just one. In the case of regional directory names and group
names, the path beginning with block 3 is never taken, and again, several replies are sent
in blocks 11 and 12.

Finally, two small differences between the above discussion and the current V naming
implementation should be noted. First, the V implementation differs slightly in its handling
of cache misses. Figure 3.2 assumes that whenever the cache returns data that appears
to be stale, the client software retries the name mapping operation as a multicast to all
managers; i.e., it ignores the cache completely. The V implementation, on the other hand,
retries the operation using what remains in the cache after the apparently stale entry is
removed. For example, if the cached prefixes [storage and [storage/pescadero both
match the name [storage/pescadero/user/fred, but the send using the longer prefix
fails, the retry makes use of the prefix [storage-referring to the figure, the stale entry
is first removed, then the retry begins at block 1 rather than 2. If the [storage entry is
not stale at this point, the lookup cost is reduced by this policy, since the entry is taken
advantage of. If both entries are stale, however, the cost is increased, because the retry
will also fail and a second retry will be needed to map the name. We do not yet have
enough data to determine which policy gives better average performance.

Another small difference is that, under V, cache data and operation results are not both
returned in a single message. Instead, client software handles a cache miss by multicasting
a request for new cache data (a QueryName operation), then transmitting the actual name
mapping operation in a separate message, sent to the address that was returned in the
Queryllame response. Thus two additional unicast messages (4 packet events) are required
in the cache-miss case, increasing the approximate average cost given in Equation 3.1 to

C,.p = 4h + (r + m + 7)(1 - h) (3.2)

This change, of course, has little effect on C,,p when h A 1. In Figure 3.2, the effect is to
add two more unicast messages to blocks 11 and 12.

3.1.2 Name Binding

It is not difficult to evaluate the average cost of name binding, but there are several cases to
consider. The primary division is between cases in which the client knows which manager
is to bind the given name and those in which it requests that the name be bound by
whatever manager already covers it.
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Implicit Manager Specification

Some operations use implicit (or by-name) manager specification-the manager that al-
ready covers the given name is requested to bind it. The client need not know that
manager's identity when it issues such a request. An example is object creation by name,
which accepts a name and object type as its arguments, creates a new object of the spec-
ified type, and binds the name to it. The name is required to have been unbound and
covered by exactly one server; the new object is managed by that server. For instance, if
Cedu/stanf ord/dsg/user/mann is a local directory managed by a file server at Stanford,
the operation CreateFile([edu/stanford/dsg/user/mann/nevfie) creates a new file
on that file server with the given name.

With implicit manager specification, the average cost of name binding is the same as
that of name mapping. The client issues an operation request identical in format to a name
mapping request, requesting that the given name be bound to an object on the manager
that covers the name. When there is a cache hit, the request is unicast directly to the
manager and the response unicast back, at a total cost of 4 packet events. When there is
a cache miss, the worst-case cost is r + m + 3, as was derived in Section 3.1.1 above.2

Explicit Manager Specification

Other operations use explicit manager specification, where the client knows beforehand
what manager is to bind the name and sends the name binding request directly to it. An
example is "mounting" a new file server's directory tree into the global name space; both
the new name and the identity of the fie server must be given in the operation request.

With explicit manager specification, the cost of name binding depends on where the
given name was covered before the operation. Assuming the client already knows a unicast
address for the manager that is to bind the name, there are three subcases: (1) the name
was already covered by the selected manager, (2) it was covered by a different manager,
or (3) it was not covered.

In subcase (1), the cost is 4 packet events. The client unicasts its request to the
manager; the manager in turn carries out the binding request and unicasts its reply.

In subcase (2), the cost is 4 packet events plus the cost of the protocol to transfer

coverage to the new manager. Again, the request and final reply are unicast. Coverage
transfer involves name mapping to find the current coverage holder, plus an extra packet
to complete the three-way handshake (described in Section 4.5.3).

In subcase (3), the cost is 4 packet events plus the cost to determine that the name
appars uncovered. Once more, the request and final reply are unicast. The cost of at-
tempting to obtain coverage of a globally uncovered name is the same as that of attempting
to map it (given above). Note that the operation fails after incurring this cost.

The cost of binding g objects to a generic or group name is roughly g times the cost
2Note that with implicit manager specification, it is impossible to bind a (previously) uncovered name,

and that attempting to do so costs the same as attempting to map an uncovered name.
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of binding a single object to a specific name (using explicit manager specification). The
name is bound to each object, one at a time, and the cost of establishing each binding is
essentially the same as that of binding a specific name. There is a small difference in that
if one or more of the managers needs to request permission to cover the new name (case
(2) above), it may receive replies from each of the several managers that already cover the
name, rather than just one.

The cost of name unbinding is similar to that of name binding. Its evaluation is left to
the reader.

3.1.3 Directory Listing

Another important naming operation is directory listing. Its cost can be shown to depend
on the class of directory (local, regional, or global), and whether the listing includes only
the bound names, or the names plus a descriptor for each bound object. For local (or
global) directories, with or without attributes, the cost essentially varies linearly with the
size of the directory, just as it does in most approaches to naming. The cost is similar
for regional directories if the name list is available and only the names are to be listed. If
the attributes are also to be listed, the cost includes a term proportional to the number
of managers participating, because the client must request the attributes for each name,
resulting in contacting every manager that binds at least one name in the directory. The
best-efforts protocol used for directory listing in the absence of an on-line name list is even
more costly. It and the local directory case are examined in more detail below.

The cost of listing a local directory is equal to the cost of mapping its name, plus
enough additional packet events to return all the directory entries to the client:

C--t = 4h + (r + m + 3)(1 - h) + As (3.3)

Here, a is the size of the directory (number of entries), and A is a constant that depends
on how many entries fit into a packet. In the V implementation, directory entries are
transmitted one to a packet, each in response to a separate request packet, and there is an
additional pair of packets exchanged to "close" the directory after the last entry is read,
so As in Equation 3.3 is replaced by 4s + 4.3

The cost of listing a regional directory with no on-line name list depends on the number
of entries and the number of times the entries are replicated. Specifically, the cost in the
cache-hit case is (r + 1)(g + 1) + As', while the cost in the cache-miss case is m + 1 + r(g +
1) + As'. Here 9' is the total number of entry replicas: if two different managers have a
copy of the same entry, it is counted twice in a'. If no entries are replicated, s' = s. These
costs arise as follows: a client lists a directory of this type by repeatedly multicasting a
request to the participant group for the directory, each time appending a list of members
that have already responded and therefore should not respond again, until the request has
been transmitted r consecutive times with no response. The initial request is multicast to

3One could, of course, reduce the cost of directory listing by caching directory entries in the client. Such
caching is not considered in this thesis because it introduces additional cache consistency problems, and it
benefits only the performance of directory listing, not of name mapping.
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r managers if the cache hits or m if it misses, resulting in r + 1 or m + 1 packet events
respectively. The directory entries are then returned in As' packets, along with cache
information if the initial request missed in the cache. Finally, the request and membership
list (which are assumed to fit into a single packet) are retransmitted r times as a multicast
to the g group members.

As in the local-directory case, the directory listing protocol actually used in V is some-
what less efficient than the idealized version described above; it requires (r+7)(g+1)+4s-6
packet events in the cache-hit case, and m + (r + 6)(g + 1) + 4s - 5 in the cache-miss case.
First, g + 1 events are required to multicast the initial request to all participants in the
directory (or m + 1 if the cache misses). Each manager then sends a response, resulting
in 2g more events. Next, the client retransmits its request r times (g + 1 events per try),
and receives no responses. It now requests and receives each directory entry in a separate
packet exchange, for a total of 4s additional events. Finally, an additional unicast packet
is sent to each manager to inform it that the client is done reading directory entries from
it, and these packets are acknowledged, resulting in 4g events. Summing thccc costs yields
the total given above.

The cost estimates derived in the above sections (3.1.1-3.1.3) say nothing in themselves
about the practical usefulness of decentralized naming, because every formula includes the
cache hit ratio as a parameter. The next sections, therefore, go on to consider what hit
ratios can be expected in real systems and what they imply about the practicality and
scalability of decentralized naming techniques.

3.2 Cache Performance Model

This section develops a statistical model from which the expected cache hit ratio for a given
decentralized naming installation can be computed in terms of other system parameters,
and shows that hit ratios of well over 99% can be texpected under realistic assumptions
about those parameters. The parameters in question are (1) the number of name mapping
requests issued per unit time, (2) the average length of time a name cache entry is valid, (3)
the average length of time a client cache remains in use before it is discarded, and (4) the
"locality of reference" observed in name usage. In the subsections below, we first obtain a
formula for the steady-state hit ratio, then evaluate the ratio for some typical parameter
values, and finally discuss startup misses, which can make the observed hit ratio less than
the steady-state hit ratio.

3.2.1 Steady State Hit Ratio

The steady-state hit ratio is the hit ratio for client caches that have been in existence long
enough to have gathered a (possibly stale) entry for every manager the client references
at all. Section 3.2.3 below shows that the hit ratio for an initially empty cache rapidly
approaches the steady-state ratio after a few startup mibcs.

This section derives the following formula for Ti, the systemwide average steady-state
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cache hit ratio:
/3 (3.4)

j k 8,k+Vk

The generation of name mapping requests is assumed to be a Poisson process, and the
average interarrival time for requests generated by client j that reference a name in local
subtree k is denoted as #,,k. 4 The symbol vk represents the expected validity time for
a cache entry that identifies which manager implements names in subtree k; that is, the
average interval from the time such a cache entry ik acquired to the time it becomes invalid.
The summation is taken over all clients and all subtrees that exist at the moment for which
the hit ratio is being evaluated. Finally, /3 represents the global average interarrival time
for name mapping requests; it is equal to (Ej Ek, ,,) -' Equation 3.4 is derived as follows.

request c ache Miss
Cache entry created

Cache entry becomes stale

Cache entry refreshed

Figure 3.3: Average Intermiss Time Equals v +/3.

First, observe that the steady-state hit ratio for a single pair (j, k) is given by

S /3,k (3.5)
1,,k + Vk

because the average time between misses is /3 k + vk, as illustrated in Figure 3.3. Whenever
a miss occurs, the client acquires a new cache entry that will be valid for a time v'. The

4A local subtree is a complete subtree of the global naming hierarchy, whose root is a local directory that
has a regional (or global) directory as its parent.

'Thus, of course, the hit ratio can vary with time.

WK MU
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next miss will occur on the first request that arrives after the entry becomes invalid-that
is, at time v' + #' for some f' > 0. Now, we know that the average value of v' is vk, and
because we have assumed that the generation of requests is a Poisson process, we also
know that the average time from the end of v' to the next request (i.e., the expected value
of #') is equal to the Poisson parameter /3 ,k. Therefore, the average time between misses
is Pk + Vk. The miss ratio can now be computed as the average number of misses per unit
time divided by the average number of requests per unit time, and the hit ratio as 1 minus
the miss ratio, yielding Equation 3.5 above.

Equation 3.4 is then derived by taking the average steady-state hit ratio across all
client/subtree pairs, weighted by the frequency with which requests are generated involv-
ing that pair. The average is formed by multiplying each pairwise miss ratio by the
corresponding request rate -', summing these terms, dividing the result by the global
request rate #-I, and simplifying.

3.2.2 Typical Values

This section argues that it is reasonable to expect values of 7 in the range 99.00-99.98%
for typical systems using decentralized naming. The argument proceeds by showing that
values in this range are to be expected for individual client/subtree pairs with high traffic,
and contending that such pairs should dominate the global average due to locality of
reference.

The graph in Figure 3.4 illustrates how the steady-state hit ratio for a given client/
subtree pair varies with the average validity time of cache data. In the graph, the average
time between requests Pj,k is normalized to 1 unit, and the average validity time vk (plotted
on the z-axis) varies from 100 to 5000. The steady-statc '-t Li 7jk is plotted on the
y-axis. At Vk - 100, 1 'j,k - 0.9901, while at Vk = 5000, T k = 0.9998.

1.000

0.990
0 2000 4000

Valdity ime interariva time = 1 uit)

Figure 3.4: Hit Ratio vs. Validity Time. 0



32 CHAPTER 3. EFF10,1ENCY

One expects a strong locality of reference property to hold in applications of naming
to large distributed systems. For example, in a distributed system containing a mixtureE
of personal workstations and shared file servers, it is reasonable to expect a given user's

workstation to use two or three file servers almost exclusively during the course of a day,
even if hundreds of servers are available. The user probably keeps all his personal files on

one file server, all in the same local subtree, perhaps loads standard system programs (text
editor, compiler, etc.) from a subtree implemented by a second file server, and perhaps
references a third server to access shared fies belonging to his work group. There may be a
few references to other servers, but most will be to this small subset of the total available.
Call (j, k) an active client/subtree pair if subtree k is a member of the subset that client
i is using frequently.

When this locality property holds, the vast majority of all name references involve
active client/subtree pairs, so their pairwise hit ratios Kjk dominate the global average hit
ratio 1i. For example, suppose that a given client j accesses subtrees 1, 2, and 3 frequently
(once per unit time); subtrees 4, 5, and 6 infrequently (once per 100 time units); and
subtrees 7, 8, and 9 very rarely (once per 10000 time units). If vk = 1000 for all nine
subtrees, j's overall average hit ratio will be 99.8%, quite close to its hit ratio with respect
to 1, 2, or 3, which is 99.9%. The hit ratio with respect to 7, 8, or 9 is only 9.1%, but
these misses have little effect on the overall average since the subtrees are accessed so
infrequently.

Finally, it seems quite reasonable to expect the ratio of vk to Pi,k to be 1000 or more
for active client/subtree pairs, putting the global average hit ratio into the desired range.
Basically, only two types of event can cause a cache entry to become invalid: (1) a server
may crash and be restarted with a new low-level identifier, or (2) the assignment of subtrees
to servers may change. Both these events should be rare compared to name mapping
requests. In a production system, crashes should be infrequent, so that it is quite reasonable
to expect that each of a server's regular clients will access it more than 1000 times between
successive crashes. It is also reasonable to expect that a subtree newly assigned to a
particular server will (on average) be referenced more than 1000 times by each of its regular
clients before it (or a part of it) is reassigned to a new server. For example, one does not
frequently move trees of files from one server to another, because this typically involves
copying a substantial amount of data from one disk to another or physically moving disk
packs.

3.2.3 Startup Misses

The true hit ratio h for a decentralized naming installation will, in general, be less than
the steady-state hit ratio Ti, because the latter does not count the initial misses that occur
when a new, empty cache is created. Call such misses startup misses. Startup misses have
little effect on h if client caches have long lifetimes compared to Pjk, but can reduce h
substantially if the caches have short lifetimes. This effect is quantified below.

Modifying Equation 3.4 to reflect the initial misses that occur after a client cache is
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created can be shown to yield Equation 3.6:

h• 11 -mx o, 1 -(3.6)
h -k & • k +4 VA;j

In this equation, the symbol 1j represents the lifetime of client cache j; that is, the number
of time units between the time it was created as an empty cache and the time it will be
discarded. Each term of the original summation has been multiplied by max(O, 1 - #j,k/lj).

The basic insight leading to Equation 3.6 is that for each client/subtree pair (j, k),
j's first name reference to k following the creation of its cache is always a miss, while
the remainder are hits with probability Ti?,. Thus the probability of a reference from
(j, k) being a startup miss is min(1, #,jk/lj). Equation 3.6 is then obtained by writing an
expression for the probability that a given reference is neither a startup miss nor a steady-
state miss (i.e., that it is a hit), then computing the weighted average over all cient/subtree
pairs. Note that, as with Ej, one can expect the global average h to be dominated by the
pairwise hit ratios of active client/subtree pairs.

It is clear from Equation 3.6 that the observed hit ratio h depends strongly on the
lifetimes of client caches. If a typical client cache lives long enough for the client to make
1000 name references to each of the subtrees it is actively using, hj,k will equal 0.999.hi, k-
only a small reduction. On the other hand, if a typical client cache only lives long enough
for the client to make one name reference to each subtree, hj,k will be nearly zero. Thus,
it is clearly important for an implementation of decentralized naming to preserve client
cache information as long as possible.

The V implementation uses cache inheritance to give its caches a long lifetime. This
technique gives each client program a separate name cache in its own address space, rather
than using a single cache per client machine, to avoid the overhead of interprocess com-
munication on each cache reference.' If each such cache were to start out empty, startup
misses would have a severe impact, because many programs make only a few name refer-
ences during their lifetimes. The V implementation avoids this problem by starting each
new program with a copy of its parent program's cache, thus achieving a startup miss ratio
near that of a per-machine cache, as shown by the measurements in the next section.

3.3 Measurements

This section presents some measurements taken on the V implementation of decentralized
naming. Including such measurements in this thesis serves several purposes.

" To show that a real system can in fact achieve the cache hit ratios that were claimed
to be typical in Section 3.2.

" To show how the cost figures of Section 3.1, given in terms of packet events, translate
into CPU consumption on client and server machines. 0

6Shared memory between separate programs is not available under V.

I 11 11 111 ,I'l 0 NMSU M 1- m a l
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" To give the reader a concrete idea of the elapsed time needed to perform naming
operations, and of the space consumed by cache data and naming code in clients and
servers.

* To show that naming operations are performed frequently enough that it is important
to implement them efficiently.

The measurements were taken on the V installation at Stanford's Computer Science
Department. Our installation at the time consisted of about 35 Sun and MicroVAX II
workstations, three file servers running the V kernel, and five VAX/UNIX systems pro-
viding additional file service, all interconnected by Ethernet. During the measurement
period, the workstations were being used in their normal fashion to support day-to-day
tasks including software development, word processing, and remote access to other hosts
on the DARPA Internet.

3.3.1 Hit Ratio

The measured hit ratios were excellent, and in good agreement with the analytical model
of Section 3.2. Over about 24 days of 24-hour operation, the CSD V installation showed
an average cache hit ratio of 99.70%. During the half hour for which the arrival rate of
name requests was highest the average hit ratio was 99.97%. Based on measurements of
the request arrival rate, and estimates of the rate of client and server reboots, the model
predicts hit ratios of approximately 99.71% and 99.997% for these two periods.

Table 3.1 summarizes the statistics from which the 24-day average hit ratio was com-
puted. Statistics were reported for a total of 6.033 • 107 seconds of workstation running
time, with an average of 25.15 workstations reporting each half hour. During this time,
386626 name mapping requests were issued, of which 385466 were cache hits (i.e., they
were carried out with no need for a multicast query), for a hit ratio of 99.7%. Note this
measurement counts references to uncovered names (resulting in a failing multicast query)
as cache misses, resulting in a conservative estimate of hit ratio.7

Experimental period: Oct 17-Nov 9, 1985
Workstation-seconds: 6.033. 107

Average workstations reporting: 25.15
Total names mapped: 386626
Successful multicast queries: 780 (0.20%)
Failing multicast queries: 380 (0.10%)
No query requircd: 385466 (99.70%) _j

Table 3.1: Overall Statistics.

Table 3.2 summarizes the statistics for the peak half hour of the measurement period.
During this period, 30300 names were mapped-fully 7.8% of the 24-day total, and more

7The current V implementation leaves many names uncovered because the name lists for its regional
directories are always kept off line.
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than in any other half hour slice of the measurement period. There were only 9 cache
misses, for a hit ratio of 99.97%.

Experimental period: 11:41-12:11, Nov 4, 1985
Workstation-seconds: 52383
Workstations reporting: 27
Total names mapped: 30300
Successful multicast queries: 8 (0.026%)
Failing multicast queries: 1 (0.0033%)
No query required: 30291 (99.97%)

Table 3.2: Statistics for Peak Half Hour.

I obtained the data in Tables 3.1 and 3.2 by instrumenting the naming routines in V's
client library. With the modified library in place, each program collects statistics on its own
name mapping behavior, totals them, and reports them to a system statistician process just
before exiting. Each workstation runs such a statistician process. Periodically, a master
statistician program multicasts a request for statistics to the workstation statisticians,
which respond with their current totals, then clear them. The master statistician records
the systemwide totals in a log file.

A rough computation based on the model of Section 3.2 shows reasonable agreement
with these measurements. The computation assumes that each client made about the
same number of name mapping requests during the experiment, and that the global hit
ratio was dominated by their interaction with our most frequently used file servers. It also
assumes that name caches are per-workstation to avoid the complication of modeling V's
per-program caches with inheritance. Currently, two servers provide the bulk of all file
service to the CSD V installation, and they are each rebooted twice a week after dumps
are taken, so it is reasonable to assume vk is equal to 3.5 days for each. Workstations are
rebooted more frequently, often more than once a day, so we can take I, to be 18 hours for
each workstation. From the data in Tables 3.1 and 3.2 we can compute /j,k to be 156.04
for the 24-day experiment, and 1.7288 for the peak half hour. Plugging these figures into
Equation 3.6 yields hit ratio estimates of 99.708% and 99.9968% respectively.

Several factors could account for the difference between the measured and predicted hit
ratios. The discrepancy in the 24-day value is small, and could easily be accounted for by
slightly inaccurate estimates of vk and 1j, by the fact that V uses per-program caches with
inheritance rather than per-machine caches, or the other shortcuts taken in computing
the prediction. The predicted hit ratio for the peak half hour is, however, quite a bit
higher than the observed value. This difference could be due to unusual behavior during
that particular half hour; for example, several references to little-used servers, or several
workstation reboots.

These figures also indicate that name mapping is a common enough operation that it

is important to optimize its performance. During the peak half hour, for example, there

were 0.578 name mapping operations performed per workstation per second, for a total of

15.6 operations per second over all 27 workstations. In a larger installation, of course, the
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overall total would be proportionately higher.

3.3.2 CPU Cost

The measurements reported in this section provide support for the practicality of decen-
tralized naming by showing that, in our installation, only a small fraction of the available
client and server CPU time is consumed in processing name mapping requests. It is of
particular interest that, even during a peak activity period, less than 0.00361% of each
server's available CPU time was consumed in discarding multicast requests for names it
did not cover, because (as discussed in Section 3.4 below) the cost of such multicasts is the
major obstacle limiting the size of regional directories in large systems. This measurement
shows that the CSD V installation is still far from that limit.

Table 3.3 reports the results of an experiment performed to measure the CPU cost of
name mapping. The experiment measured the time required to perform a trivial operation
(GetContextId) on an object referenced by name, for each of three cases of interest. In
the hit case, a cache hit allowed the operation to be completed in a single unicast message
transaction-path (1, 3, 7) in the flowchart of Figure 3.2. In the mus/coered case, the
given name missed in the cache but was covered by some object manager-path (1, 2, 12)
in the flowchart. In the mius/uncovered case, the given name name was not covered by any
object manager-path (1, 2, 5) in the flowchart." CPU time measurements were taken on
the client workstation, on the server covering the specified name, and on another server
participating in the naming system but not covering the specified name (a "bystander").

Case Client (ms) Server (ms) Bystander (ms)
Hit 3.38 ± 0.13 3.89 ± 0.082 0
Miss/covered 26.7 ± 5.5 11.6 ± 0.30 6.42 ± 0.21
Miss/uncovered 16.0 ±1.1 - 9.29 ± 0.75

Table 3.3: CPU Cost Measurements.

The experiment was structured as follows. A test program, linked with the standard
client naming library, ran in a loop, repeatedly trying to map the same name. (For the
mi. /covered case, the program cleared the name cache before each trial.) CPU usage "
measurements were taken on the test program, running on one workstation, and on in-
stances of a server program running on two other workstations. The server was the V
in-memory file server ("RAM disk"). The tests were run on Sun-2/50 workstations with
10 MHz MC68010 processors and Ethernet interfaces based on the Intel 82586 chip. A
test run measured the total time for 100 to 10000 trials; the average time per trial was
obtained by dividing this total by the number of trials. The table gives the means and
sample standard deviations of the times obtained on four test runs.

'rhe cost of detecting stale cache data was not measured. Detecting and replacing a stale cache entry
that maps to an existing server adds to the miss case approximately the time for mapping a name in the hit
case; an entry that maps to a nonexistent server adds approximately the time for the miss/uncovered case.
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These figures, together with the statistics of Section 3.3.1, show that servers in the
CSD V installation spend a very small fraction of their available CPU time in bystander
processing. Assuming there are enough servers that most servers are bystanders even on
successful queries, we can compute an average of 0.0221 ms per naming operation consumed
on each server in processing operations in which it is a bystander. During the experimental
period, there were 386626 name mapping operations observed in 6.033 • 10' workstation-
seconds, for an average rate of 6.4. 10- 3 operations per workstation per second--or taking
the average number of workstations to be 25, 0.16 operations per second. Thus on the
average 0.000355% of each server's time was consumed in bystander processing over a
24-hour period-a negligible amount. The peak load observed over any half hour of the
experimental period was 16.5 operations per second (with 27 workstations reporting).
During this period the cache miss ratio was only 0.025% and the uncovered ratio only
0.00625%, both much lower than the daily average. Repeating the above computation
with these peak load figures, it appears that 0.00361% of each server's time was consumed
in bystander processing during the peak period-still negligible.

3.3.3 Elapsed Time

It is important to measure the elapsed time taken by naming operations, as well as CPU
consumption, because the two are not directly related. On the one hand, all servers
receiving a multicast request process it in parallel, resulting in some savings in elapsed
time. On the other hand, the elapsed time for each operation includes the time for one or
more packets to cross the network, and for some operations, it includes a timeout period
during which the client is waiting for a reply that will not arrive. Examples of the latter
include attempting to map an uncovered name or listing a regional directory with no on-
line name list. For brevity, this section presents elapsed time measurements for name
mapping only.

Table 3.4 lists the elapsed times required for name mapping in the same three cases
measured in Section 3.3.2. The experiment was performed using the same test program
and the same hardware described in that section.

Case Elapsed Time (ms)
Hit 9.23 ± 0.24
Miss/covered 47.7 ± 9.2
Miss/uncovered 5379 ± 92

Table 3.4: Elapsed Time For Name Mapping.

Although the elapsed times for the hit and miss/covered cases are comparable to the
sums of the client and server CPU times, the time for the miss/uncovered case is quite
long (over 5 seconds), because it includes a timeout by the client. In general, such a
timeout requires r. t, seconds, with r (the number of retransmissions, counting the initial
transmission) determined by the required resiliency of name mapping as compared with
the frequency of omission faults in the communication medium, and t, (the time interval
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between retransmissions) determined by the expected time to receive a response. In our
Ethernet-based V installation, both the retransmission interval and the number of retrans-
missions could be reduced significantly were it not for the need to communicate with a
guest-level implementation of the V interkernel protocol running on our UNIX systems
(outside the UNIX kernel). Fortunately, uncovered names are encountered fairly rarely
(0.10% of all names mapped); however, the 5-second delay can be annoying to the user
who inadvertently types in such a name. In such cases the user will typically notice his
mistake after a second or two of delay and interrupt execution of the program from the
keyboard.

3.3.4 Space Cost

One might expect decentralized naming to have a substantial space cost, because it places
some global naming information in every server, a name cache in every client, and some
naming code in both clients and servers. Experience with the V implementation, however,
has shown that the cost is low--enough so that there has been no need to put a size
limit on the cache, and it appears that no such limit will be needed even for much larger
installations.

In servers, the space cost for naming support is not large relative to the overall size of
the servers. For example, in the case of the V disk file server, the server naming library
(which compiles to 12408 bytes of code and static data on the MC68000) represents only
14% of the total static size of the server, and is an insignificant fraction of its run-time
size, as the file server uses all available memory for disk buffers-three to eight megabytes
on our Sun- and VAX-based file servers. (The server naming library itself allocates little
space at run time--at most a few kilobytes.)

The static space cost in client programs is also small in comparison with their total size.
The client naming library for V occupies 4936 bytes on the MC68000 if all of its routines
are used (not normally the case). This space cost is comparable to that imposed by other
standard library routines-for comparison, doprnt (the main module that implements the
C formatted printing routine printf) alone compiles to 1276 bytes on the MC68000.

The run-time space cost in client programs is due mostly to the name cache, which
never grows very large. Recall that a client's cache contains at most one entry for each
local subtree that the client has referenced. Because of locality, a given client is quite
likely to reference only a small fraction of the available subtrees during its lifetime, and
will almost certainly be actively using less than 5-10 at any given moment. In the V
implementation, each name cache entry occupies 22 bytes of memory plus the length of
the name prefix it refers to, which is typically less than 32 bytes. Thus a name cache of
10 entries occupies less than 540 bytes of memory.
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3.4 Limits to Growth

There are some practical limits to how large a system can be built with a regional direc-
tory at its root. For example, although the V implementation works well on the Stanford
CSD network, it would be quite impractical to extend it to a nationwide or worldwide
internetwork without adding a global directory level. This section takes a detailed look at
the limits to growth in decentralized naming systems without global directories (regional
systems). The next section applies these observations to systems that include global di-
rectories (global systems), where they set a limit on how large a directory can grow before
it must be made global instead of regional.

3.4.1 Availability of Multicast

The availability of multicast is currently a technological limit on the size of network in
which regional name mapping can be used, but this limit may not exist for long. Today's
network technology provides multicast only within a local-area network, such as a single
Ethernet cable, not across long-haul networks or even across multiple Ethernets connected
by gateways. This problem would seem to set a practical limit of around 1000 hosts on
the maximum size of a regional decentralized naming system. However, techniques for
internetwork multicast are currently under investigation [9], and of course techniques for
internetwork broadcast have long been known [4,45]. Thus, it makes sense to assume the
technological limits will be overcome, and to ask what other limits are encountered as
systems are increased well beyond 1000 hosts. 0

3.4.2 Cost Per Operation

Another limit to the growth of a regional system arises from the linear increase of name
mapping cost with system size. The graph in Figure 3.1 (Section 3.1.1) illustrates the
problem: if the number of managers in the system is increased while the hit ratio remains
constant, the average cost of mapping a name increases linearly, with the slope of the cost
function equal to the miss ratio 1 - h. At some size, C p will become unacceptably large.
Increasing the hit ratio raises this limit but does not eliminate it.

In a system using replicated global name servers, on the other hand, the number of
packet events required to map a name in the cache miss case is proportional to the number
of servers in the path from the global root name server to an object, not to the total
number of object managers. It therefore increases only as the logarithm of the system
size, assuming name servers at each level have about the same fanout (number of links
to servers at the next level), as suggested by Figure 3.5. (The figure shows a fanout of
two for clarity, but 10-100 would probably be more typical in a real system.) This growth
property suggests that distributed name servers should be used for the uppermost levels
of extremely large hierarchical naming systems, as is done in global decentralized naming.
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Figure 3.5: Name Mapping with Distributed Name Servers.

3.4.3 Load Per Manager

A further dificulty in scaling up a regional decentralized naming system arises because
the average naming load per object manager contains a term that is proportional to the
number of clients, but not inversely proportional to the number of managers. That is, as the
number of clients increases, there is a component of the load on each server that increases

proportionately and cannoa be reduced by increasing the number of object managers.
("Load" here is measured in packet events per unit time.) This load component arises

directly from the use of multicast to handle cache misses, as explained in the following
paragraphs.

A computation similar to those of Section 3.1 yields the following expression for L, the
average naming load per manager, in a system with c clients and m object managers.

L = c. a. (1 h +3 h (3.7)

Here a is the average activity level of each client; that is, each client, on the average,
generates a name mapping requests per unit time. In the notation we have been using,
a -c - j Ek Pl. As before, h is the cache hit ratio.

Equation 3.7 is derived as follows. A cache hit costs 2 packet events at the manager; a
worst-case cache miss costs a total of m + 3 packet events at managers, since in the worst
case, a multicast to all m managers is required.9 Thus the average cost of mapping a single
name is [2h + (m + 3)(1 - h)]m - 1 packet events per manager. Multiplying this expression
by the client activity level and number of clients gives Equation 3.7.

One way of looking at Equation 3.7, illustrated in Figure 3.6, is that it implies a linear
increase in the naming load on each server as a system increases in size, with the slope of
the increase depending on the cache hit ratio. The graph plots the number of clients on
the x-axis and the number of name mapping packet events per server pr unit time on the
y-axis. It assumes that the ratio of client hosts to server hosts remains constant as the
system grows (that is, c = rm for some constant x), and that a also remains constant; in
this figure, e = 10 clients per server and a = I request per time unit.

'When only manager packet events are counted, the worst case is path (1, 3, 6, 13, 2, 12) in Figure 3.2.
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Figure 3.6: Load Per Server vs. System Size (With Constant X)

As the system continues to grow, eventually the servers will become saturated by the
increased naming load, and it will be necessary to reduce the number of clients per server
to compensate. This observation leads to another way of looking at the growth problem,
illustrated in Figure 3.7. The graph assumes that each server has a fixed load-handling
capacity L of 30 naming packet events per unit time, and that the number of clients per
server ic is set just low enough to keep the servers within that capacity. It plots tz on the
y-axis against c on the z-axis. Under these assumptions, the number of clients that can
be handled per server decreases linearly, but slowly, as the total number of clients grows.
For example, with a hit ratio of 0.997, the number of clients per server decreases from 15
to 9 as the total number of clients grows to 4000.
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Figure 3.7: x vs. System Size (Constant Naming Load Per Server).
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It is important to note that Figure 3.7 actually overestimates the problem. In reality,
servers do not have a fixed limit on the number of naming packet events they can handle;
instepd, there is i limit on the tot l packet events. There are many sources of packet
events that do not increase with system growth, as long as the number of servers grows
linearly with the number of clients-for instance, reading from an open file. Thus, for
example, if there are an average of 8 non-naming packet events generated for every client
name mapping request (so that naming represents 20% of the packet events when there
are no cache misses), and each server can handle 150 total packet events per unit time,
r. decreases much more slowly, as shown in Figure 3.8. Again, x is plotted on the y-axis
against c on the x-axis.
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Figure 3.8: x vs. System Size (Constant Total Load Per Server).

In light of the results of this and the previous section, it is clear that regional decen-
tralized naming systems cannot be scaled up indefinitely; however, it appears that systems
including thousands of hosts can be quite practical, at least from a performance standpoint.

3.5 Extension to Global Systems

This section argues that the above results for regional systems can be used to establish a
limit on how high in a global naming hierarchy the boundary between regional and global
directories can be drawn. That is, they determine which directories must be made global.

A global decentralized naming system can be viewed as a set of regional subtrees hang-
ing from the common global directory mechanism.1" Each subtree can then be analyzed
as an independent system-the global directory servers direct each client name request to
exactly one subtree, so each one receives some fraction of the total mass of requests.

I°A rgional eubtree is a complete subtree of the global naming hierarchy, whose root is a regional directory
that has a global directory as its parent.
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The above analysis of name mapping in a regional system applies almost without change
to a regional subtree S in a global system, with the total number of managers (m) replaced
by the total numbcr of participants in tLe root of the subtree (ms).11 The only differcrcc
is that a worst-case miss costs r + d + m + 3 instead of r + m + 3, where d is the number of
packet events incurred in going through the global directory service to find the participant
group for S. The term d is at most equal to twice the path length from the global root to
the root of S (becauie each global directory could be kept at a different directory server,
requiring one unicast packet from each directory's server to the next). The path length
is roughly proportional to the log of the total number of global directories in the system;
thus it is small enough compared to m that it can be treated as a constant. It therefore
has no more effect on the analysis or results than would a change in the value of r.

Therefore, in a global system with similar parameters to the regional systens discussed
earlier, any directory with more than a few thousand participants should be considered
global rather than regional. The exact cutover point depends on the relative values that are
placed on efficiency and resilcr-y. Efficiency is improved by switching to global technuiques
in directories with fewer participants, but as shown in the next chapter, these techniques
give poorer resiliency. On the other hand, resiliency is improved by using regional tech-
niques, but as was shown above, these techniques give poorer efficiency.

3.6 Chapter Summary

This chapter has evaluated the efficiency of decentralized naming. Both the absolute
performance and the scalability of regional name mapping techniques have been shown to
depend critically on the cache hit ratio. The chapter has described a model of cache perfor-
mance that predicts high hit ratios in typical decentralized naming installations-ranging
from 99% to 99.98% and higher-and has validated the model using measurements taken
on the V implementation. Using these figures, estimates of the maximum practical size for
a regional directory have been derived. These estimates indicate that any directory with
more than a few thousand participants should be treated as global rather than regional.

"Recall that a directory's participant set includes the union of the participant sets of all its descendants,
so every manager that names anything in a subtree participates in the subtree's root.
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Chapter 4

Fault Tolerance

i

To be practically useful, a large distributed system must include some degree of fault
tolerance. As a system grows to include more and more components, it becomes less
and less likely that all components will be functioning at any given moment-hosts crash;
networks drop packets or become partitioned. Because such faults are common, they
should at worst cause temporary and localized failures near where they occur. Ideally, no
matter how many faults occur, any set of hosts that remain up and interconnected should
continue interoperating as usual; in particular, if hosts A and B rcmain connected, each
should continue to be able to access all objects stored on the other by name.

This thesis defines two criteria for fault tolerance, called reliability and resiliency.
Informally, a system is reliable if it meets its specification in spite of the occurrence of S
faults; it is resilient if faults do not prevent it from performing its intended service. These
criteria are distinct because fault-tolerant systems typically specify two possible correct
outcomes for each operation request: the operation may succeed, performing the requested
action and returning results to the invoker, or it may fail, returning an error message.
Any other outcome---such as returning incorrect results with no error message-violates
the specification. Thus an operation's implementation is reliable if faults do not cause it
to violate its specification; it is resilient if faults do not cause it to fail.'

This 7hapter evaluates the fault tolerance of decentralized naming. It considers only
omission and crash faults, not Byzantine faults. Reliability is not difficult to achieve under
this fault model, so the chapter concentrates on the more interesting problem of achieving
resiliency. The main results presented are as follows:

9 As the global level of the name service is made more resilient, the resiliency of
decentralized name mapping approaches the optimur2 achievable in any distributed
naming system; it would achieve optimum resiliency if the global level could be made .
perfectly resilient. Moreover, decentralized name mapping does achieve optimum
resiliency for the names of objects with nearby managers-managers that are within

'This concept of failure is similar to the notion of exception in programming languages or abort in database
systems. Failure is an unusual event that may be undesirable, but is not catastrophic, because the system
reports it and remains in a consistent state.
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range of the multicast sent out when a client's cache misses entirely.

9 Decentralized binding check has a suboptimal resiliency, which varies depending on
the replication level of regional name lists. It is argued that the achieved resiliency

is "good enough" in a practical sense.

* Name binding cannot be made as resilient as can name mapping, no matter whether
decentralized naming or another distributed technique is used. A common special
case, however-creating an object and simultaneously giving it a name that was

already covered by its manager-has the same resiliency properties as name mapping.

The next section describes the system model used, while the following four sections

discuss the most important naming operations. Section 4.2 evaluates the resiliency of
decentralized name mapping, Section 4.3 that of binding check, Section 4.4 directory listing,
and Section 4.5 name binding. The initial sections take the resiliency of the global directory
servers as a parameter; Section 4.6 estimates the resiliency that can be expected of them.
Section 4.7 summarizes the chapter.

4.1 System Model

The arguments to be presented in this chapter require a more precise model of naming and
ditributed systems than has been gi-,en so far. Such a model is outlined in this section.

4.1.1 Faults

For our purposes, a distributed computer system consists of a set of host computers in-
terconnected by a multicast network. A multicast network allows any host to transmit a
message and have it delivered to one or many destination hosts in a single operation. Mul-
ticasts are addressed to host groups; the membership of a host group g is the set of hosts
that have taken the necessary (implementation-dependent) action to receive messages sent
to address g.2

The system is assumed to be subject to crash and omission faults (only). Hosts are
subject to crash faults; when a host crashes, it immediately ceases sending or receiving

messages. The network is subject to omission faults; that is, dropped packets. On a

multicast, omission faults can occur independently for each group member.

For simplicity, this chapter generally considers crash and omission faults together, as

access faults. An access fault on a given host B is said to have occurred when either (1) B

crashes, (2) an omission fault prevents a message addressed to B (or to a group including

B) from reaching B, or (3) an omission fault occurs on r. message sent by B.

Each object in the system is managed by some host. An object's manager stores the

2For example, on an Ethernet or other bus network, a host joins gr,"-: g by instructing its network
interface to accept packets addressed to g. On an internetwork, joining a group may involve sending a

message to a gateway or some other agent (9].
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object's representation, implements all operations on the object, and accepts operation
requests from other hosts.' (Objects that logically have multiple managers are viewed
as consisting of multiple subobjects, each with a single manager, all bound to the same
name.) The host at which an operation request originates is called the requestor or client
host.

Most operations are specified to have two possible correct outcomes: the operation may
succeed, performing a specified action and returning a success indication, or it may fail,
returning an error indication. Any other outcome violates the specification; it is incorrect.
In the failure case, there is no guarantee that the specified operation was not performed;
in particular, cases where the requestor does not receive any reply across the network are
treated as failures, even though the object's manager may have received the request and
carried out the action.

The resiliency of an operation's p's implementation I(p) is characterized by its failure
set Fi(p): the set of all minimal fault combinations that can cause I(p) to fail. A combi-
nation (set) f of faults is said to be capable of causing I(p) to fail if there is some set of
initial conditions and parameters to p for which p's specification permits it to succeed, but
the implementation 1(p) can fail when all the faults in f occur together. For example, if a
file is implemented using read-any/write-all replication, with copies at hosts A and B, the
failure set Fmad of the Read operation is { {A, B} }, while F.t. = { {A}, {B} }.4

Similarly, the reliability of an operation's implementation is characterized by its in-
correctness set: the set of all minimal fault combinations that can cause it to violate its
specification. Implementations are normally expected to be all-reliable against omission
and crash faults; that is, their incorrectness sets should be empty.

The resiliency of two implementations can be compared by comparing their failure sets.
Failure sets are partially ordered: F >- F' if and only if every element of F' is a subset
of some element of F and F 6 F'. If F. >- Fb for two implementations a and b, a is
said to be more resilient than b; that is, a "greater" failure set is defined to be one that
gives greater resiliency. An implementation is all-resilient if its failure set is empty. Thus,
continuing the previous example, Read on the replicated database becomes more resilient
if the number of copies is increased to three (at hosts A, B, and C), because its failure
set becomes { {A, B, C} }. Also, Read is more resilient than Write. Note that failure
sets under >- form a lattice, whose greatest element is the empty set 0 (all-resiliency) and
whose least element is the set 10}, if the greatest lower bound of F and F' is defined to
be {f f E F U F' A -i(3f' E F U F, fI C f)}. Intuitively, the greatest lower bound of two
failure sets F and F' represents the best resiliency that is not greater than either F or F'.
If an operation a is implemented by performing operations b and c, both of which must
succeed for a to succeed, then Fa is the greatest lower bound of Fb and Fc.

3See Jones [23] for definitions of object and operation.
4These sets are written in terms of access faults, with an access fault on a given host denoted by the

host's name. It is assumed here and throughout the chapter that requestors do not crash while waiting for
operations to complete.II I
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4.1.2 Naming

A distributed naming system stores a binding relation, a relation between names and
objects, and provides operations to examine and modify the relation. A name is said to be
bound if it is related to some object; unbound if not. A specific name is related to at most
one object, as opposed to generic or group names, which may be related to more than
one object. In this chapter, all names are assumed to be specific. The binding relation
is stored in a distributed fashion: each host holds a set of assertions about the relation.
This representation is consistent if no contradictions arise when all the assertions are taken
together; it is complete if the entire binding relation can be deduced from them.5

A read quorum for a name n is a minimal set of hosts q such that pooling all assertions
held by hosts in q gives sufficient information to determine either that (1) n is bound to an
object On, or that (2) n is unbound. The symbol Q, represents the set of all read quorums
for n. (For example, if any two of the three hosts a, b, c make up a read quorum for n,
Qn = { {a, b}, {b, c}, {a, c} }.) A manager M covers a name n if {M} is a read quorum for
n. It exclusively covers n if it is the only read quorum for n (and is aware that it is the
only quorum).

A write quorum for a name n is a minimal set of hosts w for which one can change
what n is related to (preserving consistency) by changing only assertions held by hosts in
w. Note that every write quorum for a given name n must intersect every read quorum
for n.

A characteristic feature of the decentralized approach to naming is its use of decentral-
ized binding storage. Binding storage is decentralized if and only if, for any name n bound
to an object On that is managed by host M(On), Q, = { {M(On)} }. That is, each object
manager is by itself a read quorum for the names of its objects (and no other set of hosts
is a read quorum). This knowledge is what makes multicast name mapping and on-use
cache consistency checking work.

4.2 Name Mapping

How reliable and resilient is name mapping in a decentralized naming system? To an-
swer that question, this section gives a specification for name mapping and a model for
the decentralized name mapping protocol, then considers how well the model meets the
specification in the presence of faults.

4.2.1 Specification

The name mapping operation accepts a name n and a message m as its arguments. If
n is bound to an object On, the operation sends the pair (n, m) to the object's manager
M(On) and returns a reply, or else fails. If n is unbound, the operation always fails.

5 1t is assumed that changes to these assertions are (or can be) totally ordered in time by a system of
Lamport clocks [26], so that "the set of all assertions held at time t" is well-defined.

Now
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This specification takes the view that the main purpose of name mapping is as the
first step in performing other operations whose target objects are specified by name. The
name mapping step locates the target object and sends its manager a request message; the
manager in turn carries out the requested operation and sends back its results in a reply
message.

4.2.2 Protocol

This chapter uses the following (simplified) model of the decentralized name mapping
protocol.

Binding storage is assumed to be decentralized. When an object manager M receives
a mapping request (n, m), it examines its local assertions about n and proceeds as follows.
If it knows n to be bound to an object O, that it manages, it replies "success." If it knows
n to be unbound, it replies "failure: name unbound." Otherwise, it does not reply.

The global directory service is modeled as another operation Glob that is called as a
subroutine by the name mapping protocol. When Glob is invoked by a client host H with
parameters (n, m), it either causes a name mapping request with parameters (n, m) to be
sent to a set of object managers S that includes every read quorum for n, or else fails.
(The request is marked as having come from H, so any replies from members of S are
directed to H.)

Each client host H maintains a cache CH. A cache is a finite set of entries of the form
(N, a), where N is a set of names and a is a manager or group address. Each client also
holds the address bH of a group of object managers; the members of b/H are said to be
nearby to H.6

A client host H attempting to issue a name mapping request (n, m) runs the following
algorithm:

1. Select an entry (N, a) from CH, such that n E N. If no such entry exists, go to
step 5.

2. Send (n, m) to address a and wait until either (1) a reply arrives, or (2) a timeout
period t expires.

3. If a reply arrives, return it. Done.

4. If no reply arrives, delete (N, a) from the cache and go to step 1.

5. Send (n, m) to address bH and wait until either a reply arrives or the timeout period
t expires.

6. If a reply arrives, return it. Done.

7. If no reply arrives, invoke Glob(n, m) and wait until either a reply arrives or the
timeout period t expires.

6In the implementation, bH corresponds to the use of scoped multicast to send to all object managers
that are near the client-say, within a small number of hops on the network.
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8. If a reply arrives, return it. Done.

9. If no reply arrives, return failure. Done.

4.2.3 Reliability

The first question to be answered about this protocol is whether it is reliable--does it meet
its specification in spite of omission and crash faults? It is straightforward to show that it
does.

Theorem 4.1. Decentralized name mapping is all-reliable.

Proof We first show that the protocol always terminates, then show that it meets its
specification at all exit points.

Except for the loop in steps 1-4 of the algorithm run by H, the protocol consists entirely
of straight-line code, and all steps that wait for a message from another host are protected
by timeouts. The loop always terminates because CH is of finite size, and step 4 deletes
one element each time around the loop, so at worst, step 1 must jump to step 5 when CH
becomes empty.

All exits from H's algorithm either return failure due to no reply, or return a reply
(which may itself read "failure"). A failure return always meets the specification. If a
non-failure reply is returned, it must be correct: the protocol permits a non-failure reply
to be sent to H only by M(O,,), and that only after M(O,,) has received (n, in), in which
case the specification has been met. N

4.2.4 Resiliency

The resiliency of this protocol is the next question of interest. This section shows that it
has optimum resiliency for names bound to objects with nearby managers, and that its
resiliency for other names is limited only by the resiliency of the global directory servers-
that is, its resiliency is the greatest lower bound of the optimum resiliency and the resiliency
of Glob.

Definition 4.2. An operation implementation is said to be ABMA-resilient if its failure
set is I {M(O)} }, where 0 is the object being operated on and M(O) is its manager. That
is, the only fault combinations that can cause such an implementation to fail are those
that include the object's manager. (ABMA stands for "all but manager access.")

Name mapping with parameters (n, m) is considered to be an operation on the object
0, bound to n if n is bound.

Lemma 4.3. Decentralized name mapping with arguments (n,m), n bound, is ABMA-
resilient if M(O,) is nearby to the client host H; otherwise its failure set Fnm is the greatest
lower bound of { {M(O,)} } and the failure set of Glob. (If n is unbound, Fm is empty.) p

11111 11 I
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Proof: First, suppose that H's algorithm exits at step 3, 6, or 8. These steps can
return failure only if the received message indicated "failure: name unbound." But in that
case, the name was in fact unbound, in which case the specification requires failure to be
returned; so any faults that may have occurred during execution of the protocol were not
the cause of the failure.

Otherwise, H's algorithm must exit at step 9. Case 1: Suppose n is bound and M(On)
is nearby to H, that is, M(O,) E bH. If M(O,) receives (n, m), the protocol requires it to
reply: because binding storage is decentralized, M(O ) knows locally that n is bound to
0,,. Now in step 5 (n, m) was sent to a group including M(O,), so if no reply is received,
either the request message was not delivered to M(On) (omission fault), M(O ) crashed,
or M(O )'s reply was not delivered (omission fault), and all these cases are access faults
on M(O ). Therefore the operation fails only if there is an access fault on M(O )-it is
ABMA-resilient.

Case 2: In step 7, Glob(n, m) was invoked. There are then two possibilities: (i) Glob
sent a name mapping request to a group including a read quorum for n, or (ii) Glob failed.
In subcase (i), if n is bound, Glob sent the request to a group including every read quorum
for n. By an argument similar to that of case 1, if no reply arrived, there must have been
a manager access fault. (And as before, if n is unbound, the specification requires a failure
return, so any faults that may have occurred were not the cause of the failure.) In subcase
(ii), Glob failed. Therefore, in case 2, the only faults that can cause name mapping to
fail are manager access faults or a combination of faults that causes Glob to fail. So the
failure set in this subcase is the greatest lower bound of { {M(O )} } and the failure set of
Glob. U

Lemma 4.4. ABMA-resiliency is the optimum (i.e., greatest achievable) resiliency for
name mapping.

Proof: Because name mapping is specified to succeed only when it sends a message
to M(O ) and receives a reply, it cannot succeed in the presense of an access fault on
M(O.). Therefore a failure set equal to { {M(O,)} }, i.e., ABMA-resiliency, is an upper
bound on the resiliency of any implementation. And ABMA-resiliency is achievable-in
particular, decentralized name mapping achieves it if the system is configured with every
object manager host nearby to every client host (by Lemma 4.3). U

Finally, the main result of this subsection follows immediately from the above lemmas.

Theorem 4.5. Decentralized name mapping with arguments (n, in), r bound, has the
optimum resiliency achievable for name mapping if M(O ) is nearby to the client host H;
otherwise its failure set F,,m is the greatest lower bound of the optimum failure set and
the failure set of Glob. (If n is unbound, Fm is empty.)

Proof.- By Lemma 4.4, the phrase "ABMA-resiliency" in Lemma 4.3 can be replaced by
"optimum resiliency," and the set { {M(O.)}, } by "the optimum failure set." ,

I
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4.2.5 Reusable Directory Identifiers

Although decentralized name mapping as modeled above is all-reliable, an important prac-
tical performance optimization involving reusable directory identifiers can compromise re-
liability if it is not implemented carefully. This subsection describes the optimization,
discusses its importance, and outlines a way to maintain all-reliability when it is used.

The basic idea of the optimization is to avoid having object managers redo name
processing that has already been done by the client. It operates as follows. Cache entries
are extended to consist of a name prefix p (representing the set N of names that begin
with prefix p), a manager or group address a, and a directory identifier d. The directory
identifier is a compact numeric identifier for the directory named by p, assigned by the
manager or group a. If a client's cache lookup returns entry (P, a, d), the client sends
the triple (d, n', m) to the indicated address a, where n' is the suffix remaining after p is
stripped from n, in place of of sending the full name n and message m to a. Each manager
that receives this request begins running its internal name lookup routine at directory d,
thereby avoiding lookups in all the directories on the path from the root to d-the client
has effectively done that work as part of its cache search routine.

A reliability problem arises if the identifiers a and d are restricted to be numbers
chosen from a finite set. As new object managers and directories are created and old ones
destroyed, eventually the system will run out of unused pairs (a, d) and must begin to
assign new meanings to previously used pairs. If at the time (a, d) is assigned to a new
directory named p', an old, stale entry (P, a, d) remains in the cache of some client H, it
can result in incorrect name mapping. For example, say p is [edu/stanford/dsg/user/
john and p' is [edu/stanford/dsg/user/mary. Then if H attempts to open the file [edu/
stanford/dsg/user/john/profile, it will get [edu/stanford/dsg/user/mary/profile
instead.

One way to solve this problem is to treat directory identifiers and manager (group)
addresses as T-stable identifiers (in Cheriton's terminology [8]). An identifier is T-stable if
it is not reused for at least T seconds after becoming invalid, for some specified value of T.
In this application, each manager or group a must avoid reusing any directory identifier d
it has issued for at least T seconds after its previous assignment becomes invalid, and the
system must avoid reusing any address a for at least Ty, seconds after its old assignment
becomes invalid. The reliability problem is then avoided if clients discard the directory
identifier d from any cache entry (P, a, d) that was last successfully used (or acquired) more
than max(T, Ty,) seconds ago. When a client finds such an entry in its cache, it is still
able to reduce network traffic by sending only to a rather than its nearby group bH, but
the optimization of sending only (d, n', m) no longer applies; the client must submit the
full name n.

4.3 Binding Check

There is a serious practical problem with the name mapping operation as specified above:
when it fails, it is not required to indicate whether it failed because the given name was

- . .



52 CHAPTER 4. FAULT TOLERANCE

unbound or because of a fault. The decentralized name mapping protocol does sometimes
return "failure: name unbound" for unbound names, but at other times it returns "failure:
no reply," in which case the client does not know for certain whether the name was bound.
To focus on this problem and evaluate its difficulty, this section defines a binding check
operation and discusses its resiliency.

4.3.1 Specification

The binding check operation accepts a name n and returns the name's binding status
(bound or unbound), or else fails, returning an error message.

4.3.2 Achievable Resiliency

This section considers wLt resiliency is Eichievable in any sort of distributed naming sys-
tem, not necessarily decentralized. It is shown that all-resiliency can be achieved if binding
check is optimized in isolation, but there is a tradeoff: name binding and unbinding become
less resilient as binding check is made more resilient.

Let a binding check quorum for a name n be a minimal set of hosts whose pooled
knowledge suffices to determine whether n is bound, and let BCQn represent the set of
all such quorums for n. Note that a binding check quorum need not be a read quorum,
because the hosts are not required to have enough knowledge to determine what n is bound
to, only whether it is bound; however, every read quorum is also a binding check quorum.
Clearly, a correct implementation of binding check can return success only if the requestor
communicates (perhaps indirectly) with every member of some binding check quorum for
the name n-if it is unable to do that, it cannot have gathered enough information to
determine with certainty whether n is bound.

Under these definitions, one can in principle implement binding check with all-resiliency
by configuring the binding check quorums appropriately. In particular, suppose that every
host is made a binding check quorum for every possible name, by including the binding
status of every name among every host's locally-held assertions about the binding relation.
Then binding check can be performed as a local operation at any requesting host, so
network failures or crashes at other hosts cannot cause it to fail. This is, however, the only
implementation that achieves all-resiliency: if some host H is not a binding check quorum
for some name n, and H requests a binding check on n, a sufficient number of omission
faults on the network can prevent H from communicating with any binding check quorum
for n, thereby causing the request to fail. In practice, of course, such an implementation
is unworkable, because changing the binding status of any name would require updating

the local knowledge of every host-giving name binding and unbinding disastrously poor

resiliency and efficiency.

More generally, as one increases the resiliency of binding check, the achievable resiliency
for name binding is reduced. This tradeoff arises because, first, if a given name n is

unbound, before a correct implementation of the name binding operation can succeed



4.3. BINDING CHECK 53

when invoked on n, it must communicate (perhaps indirectly) with at least one member
of every binding check quorum for n-if it missed some quorum q entirely, the pooled
assertions of q's members would continue to identify n as unbound. So a combination of
access faults on every member of any binding check quorum for an unbound name n must
cause name binding on n to fail, implying that each binding check quorum is a member
of (or a superset of a member of) the failure set NBFn for name binding on n-i.e., that
BCQn is an upper bound on the failure set of name binding. Therefore, as one improves
the resiliency of binding check by increasing the number (or reducing the size) of binding
check quorums, the upper bound on the resiliency of name binding is reduced. A similar
argument holds for unbinding bound names.

Given this tradeoff, neither the resiliency of binding check nor that of binding can
be the sole criterion for evaluating the "goodness" of a naming system; they must be
weighed according to their relative importance in the intended application. The next
section describes where decentralized naming in general, and the V implementation in
particular, fall along the scale of possible resiliency choices.

4.3.3 Resiliency When Decentralized
0

The simple model of decentralized naming presented in this chapter imposes just one con-
straint on the resiliency tradeoff between binding check and binding: because decentralized
binding storage requires {M(Oa)} to be a read quorum for n if n if bound, it must also be
a binding check quorum for n. The model says nothing about the composition of quorums
for unbound names.

More constraints are imposed by an actual implementation using global, regional, and
local directories (as discussed informally in earlier chapters), but some flexibility remains;
in particular, the resiliency of binding check can be increased or decreased by adding or
deleting on-line copies of the name list in regional directories. The remainder of this section
informally evaluates the achieved resiliency, then gives some justification for the choices
made.

Consider the name bound case first. For a bound name n, the set of binding check
quorums BCQ,, is almost the same as the set of read quorums Qn. The only difference
is that each name list holder in a regional directory is a binding check quorum for every
name directly under the directory,7 even though it is not a read quorum. Binding check
accordingly uses a slightly modified version of the name mapping protocol; the differences
are as follows:

" There is no request message m.

" The reply message "failure: name unbound" is replaced by "unbound." S

" Other reply messages are replaced by "bound."

" An object manager host M (including a name list holder) replies "bound" whenever

it knows that the given name n is bound, not only when it is bound to an object

7A pathname n is directly under a directory d if deleting the last component of n leaves the name of d.

I~m
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managed by M.

* Glob is replaced by Glob', which relays binding check requests to every binding check
quorum, not only to every read quorum.

The resiliency of this protocol is close to ABMA, but somewhat better, because for a
name n that is directly under a regional directory d, failure can only be caused by a
combination of access faults on M(O,) and all holders of the name list for d. To illustrate
the difference, suppose [edu/stanford/mailbox is a regional directory of mailboxes stored
on various hosts at Stanford. When a user tries to send mail to [edu/stanford/mailbox/
horace . jones, he would like to find out promptly and reliably whether that mailbox
actually exists, even if the mail cannot be delivered immediately. If there is a name list
holder for the directory on line, it can report promptly whether the mailbox exists, even if
the host it is stored on is down; without a name list holder, there is no way to distinguish
between the cases of "host down" and "no such mailbox."

The name unbound case remains to be considered. Let the bound prefix B(n) of a
pathname n be the longest prefix of n that is bound. The failure set F for binding check
on an unbound name n varies depending on the implementation style--global, regional, or
local-used for the directory named by B(n).

1. If B(n) is a global directory, F is equal to FGoW, the failure set for the global
directory service.

2. If B(n) is a regional directory, Fb, is the greatest lower bound of the set of name list
holders for B(n) and the set FGoIb', or just the set of name list holders if they are all
nearby to the requestor. If there are no on-line name list holders for B(n), binding
check always fails when n is unbound.

3. If B(n) is a local directory managed by M, Fk is the greatest lower bound of { {M} }
and FGo,,'.

Verification of these results is left to the reader; the arguments are similar to those used
in Section 4.2.4 above.

This level of resiliency is arguably a reasonable choice for practical implementations
of decentralized naming. For file names, it is similar to that provided by other naming
services. For example, in Lampson's design [27], the global name service records the S
binding of each file server's name, but not the names of individual files on the servers. So
when an (unreplicated) file server is down, binding check on its own name-that is, on the
name of its root directory-can still succeed, but on any file below its root, the operation
fails. The same is true of decentralized naming, except in cases where the fie server's
root is defined in a regional directory with no on-line name list holders. In such a case,
when the server is down, binding check fails even on its root directory-in a sense, the
naming system cannot tell whether the server exists when it is down. This failure mode
is certainly undesirable in some applications (if users are uncertain what file servers exist
or what their names are, for example), but it only arises when the system administration
chooses to configure a regional directory without on-line name list copies, so it can always S

be avoided when unacceptable.
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4.4 Directory Listing

Another operation commonly provided in naming systems is directory listing; this section
briefly (and informally) discusses its resiliency. The directory listing operation provides
a complete list of the single-component names that are bound directly under a given
directory. The operation fails if it is unable to provide a complete list. For simplicity, this
definition does not require any information about the named objects to be returned-only
their names.

The resiliency of directory listing is closely related to that of binding check, because
either operation can be defined in terms of the other. On the one hand, one can implement
binding check on a pathname n by listing each directory whose name is a prefix of n
(proceeding from left to right), and checking whether the next component of n is in the
returned listing. On the other hand, asking for a listing of directory d amounts to asking
wtfich names in the directory8 are bound; it returns the set of all names in the directory
for which binding check would return "bound," or fails if binding check would fail for any
name in the directory. Thus any set of hosts q that includes a binding check quorum
for every name of the form d/c is (or includes) a directory listing quorum for d-that
is, the pooled information of the hosts in q is suffici ). to perform the directory listing
operation on q. Therefore, one would expect the failure set of a reasonable implementation
of directory listing on d to be the greatest lower bound taken over the failure sets for binding
check for every name of the form d/c. It is straightforward to achieve this resiliency in a
decentralized naming system-the name of the directory is mapped in the usual way to
locate a local manager, regional name list holder, or global server for the directory; that 0
agent then returns the directory listing.

Under the above definition, unfortunately, directory listing cannot be usefully applied
to regional directories that have no on-line name list holder. On any such directory with
at least one unbound name, a reliable implementation of listing must always fail, because
binding check on unbound names always fails in such directories. Even if an implementation
of listing could find all the bound names, it would have no way to be certain that its list
was complete-that is, that all of the omitted names were unbound-and so it could not
safely return success.

To work around this problem, the V system defines and implements a different direc-
tory listing operation for regional directories without on-line name lists, called best-efforts
directory listing. The operation is specified to return a subset of the names bound in a
given directory (or fail). There is no guarantee about how many names are returned, but
the implementation makes its best effort to return all names bound to currently accessible
objects. Best-efforts listing is substantially weaker than ordinary directory listing, but is
useful in cases where inaccessible objects are not of interest-for example, listing the hosts
that are currently available for remote execution. In the V implementation of best-efforts
listing, a client multicasts its listing request to a host group that includes all participants
in the target directory (perhaps using the global directory service to relay the request to
the appropriate group), and collates all the replies that come in. It then retransmits the

8Names of the form d/c, where c is a single-component name
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request several times, each time including a list of hosts that have already responded and
therefore should not reply again, until no further replies are received. The resulting list
clearly includes the names of all accessible objects-any missing name could only have
been omitted because of an access fault on the manager of the bound object.

4.5 Name Binding

The final major operation whose resiliency has not yet been discussed is name binding. This
section shows that the general case of name binding cannot be made ABMA-resilient in
any distributed naming system (decentralized or not). Nevertheless, an important special
case--object creation by name-has the same resiliency properties as name mapping.

4.5.1 Limitations on Resiliency

Even if optimized in isolation from other operations, there is a limit to the resiliency
that can be achieved in a distributed implementation of name binding: the following
theorem shows that it cannot be made all-resilient, or even ABMA-resilient. Intuitively,
this limitation arises because the network can partition, and when it does, there must be
some way of preventing inconsistent bindings from being established in two partitions.

Theorem 4.6. No all-reliable implementation of name binding in a distributed system
can be ABMA-resilient. (The system is assumed to include at least two object manager
hosts, but its naming is not assumed to be decentralized. Its representation of the binding
relation is assumed to be complete, so that every name has at least one read quorum.)

Proof. Let n be a name, and let Qn be the set of all read quorums for n. Let U be
the set of all hosts. Case 1: If Qn # {U}, choose a quorum q E Qn such that q # U,
and choose a host b E U such that b V q. Then suppose that b issues a request to bind
the name n to some object 0 that b itself manages, and that n is currently unbound, but
access faults prevent b from sending a message to any host in q, even indirectly. So b's
request cannot have caused the assertions held by any host in q to have changed. Now if
the binding request succeeds, we have a contradiction: q is a read quorum for n, so the
pooled assertions of all hosts in q suffice to tell whether n is bound, but n's binding status
is claimed to have changed without change to the assertions held by any member of q. If
the request fails, ABMA-resiliency is violated. Case 2: If Qn = {U}, assume some host
f E U crashes, and choose a host b E U different from f. Now suppose that b issues a
request to bind the specific name n to some object 0 that b manages. In this case, the
hosts that remain up do not have enough information to determine whether n is already
bound, so the binding request cannot succeed without risk of a consistency violation. If
the request fails, however, ABMA-resiliency is again violated. N

There is also a practical limit on the resiliency of name binding, imposed by its in-
teraction with binding check and name mapping. Carrying out a name binding request
requires contacting every member of some write quorum, so increasing the resiliency of

~!
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name binding entails increasing the number of write quorums (or reducing their size). But
because every read quorum must intersect every write quorum to assure consistency, such
a change implies an increase in the size of the read quorums (or a reduction in their num-
ber). Making read quorums larger reduces the efficiency of name mapping and binding
check-dramatically if the quorums were initially small (as with decentralized naming: one
manager, or one manager plus a few global directory servers). Making the quorums larger
or reducing their number also reduces resiliency by increasing the number or reducing the
size of elements in the corresponding failure sets. Therefore, because name mapping is
the more common operation, it seems appropriate for a naming design to maximize the
resiliency and efficiency of mapping, not binding, as decentralized naming does.9

4.5.2 Object Creation by Name

Dtspite its limited resiliency in the general case, there are special cases of name binding
that have more attractive resiliency properties-in particular, object creation by name is
similar to name mapping in both its optimum resiliency and its achieved resiliency in a
decentralized implementation.

Object creation by name accepts a name and object type as its arguments, creates a
new object of the specified type, and binds the name to it. The new object is managed
by the server that previously covered the given name. The operation fails if the name was
already bound, if it was not exclusively covered by a single manager, or if the covering
manager could not be accessed. Creation by name is one of the most common wrays of
binding names in centralized computer systems, and there seems to be no reason it should
not be equally prevalent in distributed systems.1 0

ABMA-resiliency is the optimum resiliency for object creation by name: The operation
certainly requires access to the new object's manager, so its resiliency can be no better
than ABMA. And as with name mapping, ABMA-resiliency is achieved in a decentralized
implementation if the system is configured with every object manager nearby to every
client.

A decentralized implementation of object creation by name achieves the same resiliency
as does decentralized name mapping; that is, it is ABMA-resilient in the absence of global-
level failures. It is easy to see why: the operation can be performed using basically the same
protocol as name mapping. The only difference is that the covering object manager, in
place of responding "failure: name unbound" to the client's request, creates the requested
object, binds the given name to it, and returns a success indication. (If the name is already
bound, of course, the covering manager responds "failure: name bound.")

9Another alternative, not considered here, is to sacrifice all-reliability in favor of greater write resiliency.
For example, the available co, 'es replication technique [22] allows a write operation to return success after
modifying all copies that can be contacted. Holders of copies that fall out of touch with the rest eventually
notice the trouble and discard their data; in the meantime, however, they can return out-of-date results to
read requests.

101n UNIX, for example, the creat() system call is a creation by name operation-it takes a file name
as its argument and creates a file by that name, stored on the same disk partition as other files in the same
directory.
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A similar result holds for a special case of name unbinding-object deletion by name
from a local directory. Here again, contact with the object's manager is necessary and
sufficient to carry out the operation.

4.5.3 Coverage Transfer

For the general case of name binding, a decentralized implementation may have to transfer
coverage of the given name from one object manager to another. How that is done, and
what resiliency is achieved, are sketched below.

The general case of decentralized name binding is carried out in two steps: acquiring
exclusive coverage followed by locally creating the binding. Suppose a client host H is
trying to bind a name n to an object O. managed by M(O.). H sends its name binding
request to M(O.), which takes responsibility for carrying out both steps. (This convention
makes sense because the second step would requires communication with M(O.) in any
case.) M(On) requests exclusive coverage from whatever entity currently holds coverage,
locating it using basically the same protocol as for binding check, and receives a reply
stating exactly what coverage was granted. If n is currently bound, the coverage request is
refused. Otherwise, there are three cases: (1) If n is currentiy covered by the global direc-
tory service, its first component n, is added to the (possibly replicated) global directory,
and M(On) is given coverage of all names of the form d/ni. (2) Similarly, if n is currently
covered by the name list for a regional directory d, its first component n, is added to the
name list, and M(O,,) is given coverage of all names of the form d/ni. (3) If n is currently
covered in .. '-xal directory d, the local directory must be converted to regional before the
request can succeed; if its manager is not willing to allow the conversion, it refuses the
request.

Some care must be taken to transfer and maintain coverage reliably, to avoid having
some names covered inconsistently or not covered at all. For example, each manager must
record its coverage in stable storage, so that if the manager crashes, its coverage is not
lost when it comes back up. One must also take care that only one instance of a given
manager comes up and tries to use the recorded coverage." Finally, one must take care
that coverage transfer is performud atomically-that coverage is not lost or duplicated
if network failures occur while a transfer is being carried out. The familiar three-way
handshake suffices for this purpose: If host A is trying to obtain coverage from B, it first
sends a request to B. If B decides to grant the request, it records that fact in stable
storage and sends a "success" response to A. A then acknowledges the response, allowing
B to delete its record of the transfer. If faults interrupt the handshake at any point, A
and B retain enough information to abort the transfer or complete it later.

The resiliency achieved by coverage transfer is as follows. If a client host H is trying to
bind a name n to an object O, managed by M(O,.), the operation fails if there is an access
fault on M(On) or a global directory service failure that prevents H from contacting it,

"For this reason, most object managers in the V naming implementation re-request coverage for each of

their names during their initialization phase, as a "sanity check." If there is no duplication of coverage, no
response is received.



4.6. REPLICATING GLOBAL DIRECTORIES 59

or (in case 1) a write failure in the global directory service, (in case 2) an access fault on
any copy of the required name list (assuming read-any/write-all replication), or (in case
3) access to the manager of the local directory d.

The general case of name unbinding is quite similar to that of name binding. In this
case, coverage transfer may be necessary to maintain the convention that unbound names
in a regional directory are covered by the name list. For example, suppose manager A binds
the name [edu/stanford/dsg/user/j ones to a local directory, and the parent directory
user is regional. if A is then asked to delete the local directory, it must also remove j ones
from the name list for user. The reliability and resiliency properties of releasing coverage
in this way are similar to those of acquiring coverage.

4.6 Replicating Global Directories

The global directory service represents a possible point of failure for most decentralized
naming operations, so it is important to make it resilient. One way of doing so is to
replicate the global directories. This section briefly examines the resiliency impact of such
replication on the naming system as a whole.

Replicating global directories improves the resiliency of most naming operations. In
particular, we have seen that the failure set for (non-nearby) name mapping is the greatest
lower bound of (1) a manager access fault and (2) the failure set for a read on the global
directory service. Assuming that the global directory service is structured so that any
single copy of a given directory constitutes a read quorum, increasing the number of copies
improves the resiliency of reads on that directory. For example, suppose that client host H
is trying to map the name [edu/stanford/dsg/V/source/libnaming/cache. c, that the
directory types are as shown in Table 4.1 below, and that the named object's manager is not
nearby to H. By inspection, the failure set for this name is { {DSG 2 }, {B, D}, {A, B, C} }.
Increasing the number of copies of either I or edu would improve the mapping resiliency
for this name.

I Global, replicas at servers A, B, C
edu Global, replicas at servers B, D
stanford Regional, participants throughout Stanford
dog Regional, participants in Computer Science building
V Regional, with DSG file servers 1 and 2 participating
lib and below Local, at DSG file server 2

Table 4.1: Directory Types Along a Sample Pathname

The impact of replication on most other naming operations is similar to its effect on
mapping, because most operations can require reading global directories, but do not need
to modify them.

There is one negative effect of replication: increasing the replication level of a global
directory reduces the resiliency (and efficiency) of name binding in that directory. That is,
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in the above example, adding a new directory [edu/berkeley would become more costly
and less likely to succeed if the number of copies of edu were increased. This difficulty
arises because name binding in a global directory requires access to a write quorum for the
replicated information, and since any single directory replica constitutes a read quorum, a
write quorum must include every replica-potentially a large number."

Updates to global directories are expected to be infrequent, however, so it may be
acceptable to improve their resiliency by performing them non-atomically. That is, any
server holding a copy of the directory will accept an update request, carry it out locally,
and return success, then take responsibility for propagating the update to the other copies.
While an update is propagating, clients may see either the old or new state, nondetermin-
istically. If no permanent faults occur, every update eventually reaches all directory copies.
Conflicting updates are possible, but occ ur rarely and are eventually detected. Protocols
of this nature have been developed and used with some measure of success in Grapevine,
Clearinghouse, and the Lampson naming design.

4.7 Chapter Summary

This chapter has evaluated the fault tolerance of decentralized naming, showing in particu-
lar that decentralized name mapping approaches ABMA-resiliency (which is the optimum)
as the global directory mechanism is made more resilient, and achieves ABMA-resiliency
for nearby objects.

Binding check and directory listing can in principle be made arbitrarily resilient, but
it is costly to do so. Decentralized naming makes each slightly more resilient than name
mapping.

Name biding cannot in general be made ABMA-resilient, but decentralized name
binding has the same resiliency as name mapping in a common case (object creation by
name), and provides a reasonable level of resiliency in the general case.

The resiliency of name mapping (and most other operations) can be improved by keep-
ing more replicas of each global directory; however, doing so makes name binding in those
directories less efficient and (unless non-atomic updates are allowed) less resilient.

12Even using available-copies replication, one must enforce a lower bound on the number of copies written
(typically half) to prevent multiple conflicting updates from being accepted during periods when the network
is partitioned.



Chapter 5

Security

This chapter discusses how to adapt decentralized naming to function in an environment
where the hosts do not all trust one another. The major question to be answered is, when
a client host multicasts a request for naming information, how does it know which replies
to believe? I assume that the system has some well-defined security policy that specifies
which mxangers are authorized to respond to queries about any given name. A response
from an unauthorized manager is termed a counterfeit. A counterfeit-secure naming system
is one that includes a reliable mechanism for preventing counterfeit responses from being
accepted as valid. The counterfeit problem is the problem of providing such a mechanism.

The primary results of this chapter are (1) a solution to the counterfeit problem in
decentralized naming systems, and (2) an evaluation of the cost of this solution, in terms
of its impact on the efficiency and fault tolerance of naming. I also argue that no solution
with significantly lower cost is likely to exist.

The next section explains how this chapter is related to existing work in security,
while the following section gives the security model to be used. Sections 5.3 presents a
technique for detecting and rejecting counterfeits. Its cost is evaluated in Section 5.4,
and Section 5.5 considers whether better solutions are possible. Section 5.6 discusses a
few additional security issues that arise in decentralized naming systems, and Section 5.7
summarizes the chapter.

5.1 Mandatory and Discretionary Security

Counterfeit rejection is a problem in discretionary security, not mandatory security. In
this section I briefly discuss how mandatory security can be provided in a distributed
system, then discuss the r4ationship between counterfeit rejection and other problems in
discretionary security.

Mandatory security models typically define a lattice of security levels, assign a security
level to each process or information container in the system under consideration, and
require the system to prevent information flow from A to B unless either level(A) :5
level(B), or A is a trusted subject-a process that can be relied upon to "sanitize" the
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information it passes to B by eliminating material that B is not cleared to possess [1,28].
For example, a process at the confidential level must not be allowed to read a secret file,
or (if it is not a trusted subject) to write an unclassified file.'

It is certainly possible to enforce mandatory security in a distributed system. A simple
(but draconian) technique is to require that all hosts in the system operate exclusively at
a single security level. It is also possible to enforce security in a multi-level system by
providing each host with a security kernel that regulates all access to the network. The
kernels can prevent impermissible information flow by tagging each outgoing message with
its security level and refusing to deliver an incoming message to a process at a lower level
than the message. (1a fact, in a multi-level system, it is necessary to regulate network
access to enforce mandatory security. If a process P below the highest security level has
unrestricted read access to the network, it is impossible to ensure that it does not read
information it is not cleared for: even if the kernels force all information above the lowest
level to be encrypted, a malicious process P' could transmit information to P using any
of a number of covert channels; for example, modulating the length of its messages.)

In view of these facts, the remainder of this chapter discusses only the counterfeit
problem, an aspect of discretionary security. For simplicity, the discussion is phrased
in terms of a single-level system in which all processes have unrestricted access to the
network, with each client process responsible for counterfeit checking on responses to its
own requests. However, the results can be applied directly to a multi-level system in which
the security kernel does not implement discretionary security. It would also be feasible to
implement the counterfeit rejection mechanism within a security kernel.

Discretionary security mechanisms give their users the ability to place further restric-
tions on the dissemination of information they possess, beyond those imposed by manda-
tory security. For example, a user may want to keep certain of his files private, even from
other users with the same security clearance. Discretionary security models commonly
formalize the notion of "user" under the term principal [38]. Each process in the system
is associated with a principal, corresponding to the person or organization that takes re-
sponsibility for its actions and from whom it derives its authorization. An access matrix
records the system's detailed security policy; its rows corresponds to objects, its columns
to principals, and each entry gives the list of operations that the corresponding principal
is authorized to perform on the corresponding object.

One important problem in implementing discretionary security is how to do authenti-
cation-how to determine whether a client process is entitled to be treated as the principal
it claims to be. Centralized operating systems typically provide a simple user login proce-
dure for authentication. In distributed systems, authentication is somewhat more complex,
but known cryptographic protocols can be used to authenticate clients to servers across a
network [43].

An equally important (but less well studied) problem in discretionary security is authen-
ticating the system to the user; the counterfeit problem considered in this chapter is one
aspect of it. When a user logs into a single-machine ope , fing system, he needs some assur-

'These examples correspond respectively to the simple security property and *-property of Bell and
LaPadula [1].
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ance that he is communicating with the real system, not an imposter that might violate the
security policy; i.e., the system must authenticate itself to him. A more complex version of
the same problem arises in large distributed systems: when a client requests an operation
on some object, it needs some assurance that it is communicating with the object's true
manager, not an imposter. Because large systems include object managers that represent
many different, mutually distrustful principals (different companies, departments, etc.),
one must assume that the legitimate manager of one object may act as an imposter if
queried about other objects, falsely claiming to be their manager as well. When clients use
decentralized name mapping to find object managers, authenticating the managers that
respond requires a solution to the counterfeit problem. For example, if DEC employee
Smith attempts to open and write into a private file [com/dec/wrl/user/smith/secrets
on a DEC file server, but another file server operated by IBM sends out a counterfeit
response to its the name mapping request and captures the data, Smith's discretionary
security has been breached.

The next section defines the counterfeit problem more precisely, while subsequent sec-
tions present and evaluate a solution.

5.2 Counterfeit Security Model

A security policy divides possible events within a system into two classes, allowed and
disallowed. The occurrence of a disallowed event is termed a security violation. A secu-
rity model is a formal or semi-formal framework for describing particular security polic.Cs.
This section presents a security model tailored to solving the counterfeit problem in de-
centralized hierarchical naming systems. The policies described by the model define what
a counterfeit name response is, and require that whenever such a response is generated,
any client that receives has enough information to detect that it is counterfeit and reject
it.

5.2.1 Definition

This section begins by defining a general model GEN suitable for any naming system, then
particularizes the model to decentralized hierarchical naming.

For each name n in the global name space, each principal P is authorized to make zero
or more assertions about n's binding status. A naming authorization function describes
what assertions are permitted; it is a time-varying function that gives, for each principal/
name pair (P, n), the set of assertions P is authorized to make about n. The detailed
security policy of each sy3tem modeled by GEN defines what statements are considered
to be "assertions about n" for each n. Making an assertion means presenting it (as the
truth) in a message to some other principal; an unauthorized assertion made in this way
is said to be counterfeit. Authorization functions have the following closure property: if
an assertion a is implied by other assertions P is authorized to make, then P is authorized
to make the assertion a as well. For example, if P is authorized to assert that n is bound

~~Nh~WVXI
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to a directory, it is authorized to assert that n is bound.

The security policies modeled by GEN disallow clients from accepting counterfeit asser-
tions.' The policies do not disallow the sending of counterfeit assertions, because under
our assumption that all processes have unrestricted network access, there is no way to
construct a mechanism to enforce policies that make such restrictions. A counterfeit-
secure system implementation is one that includes a reliable mechanism in clients for
rejecting counterfeits; informally, the counterfeit problem is the problem of providing such
a mechanism in a way that does not prevent the system from performing its function.'

The authorization function itself is stored by principals called security agents, one of
which is designated the security chief. A GEN security policy allows the chief to state
the value of the authorization function for any arguments, or to delegate portions of its
authority to other security agents, allowing them to state the function's value for certain
sets of arguments designated by the chief. Security agents are included in the model to
reflect the fact that the detailed security policy of a real system can change, and that
such changes must be communicated from the principals that make them to the principals
that are affected by them. Agents are simply principals that have authority to change the
authorization function; the model does not dictate their implementation, which can itself
be distributed.

This completes the definition of GEN. We turn now to HIER, a more specific model
within the class GEN, tailored specifically for decentralized hierarchical naming.

The model HIER begins by assuming the global name space is hierarchical; that is, it is
structured as a rooted tree, and global names are pathnames-they describe a path through
the tree beginning at the root. Each non-leaf node of the global tree is a directory, and
a directory listing operation is provided that enumerates the branches extending outward
from a directory.

The naming authorization function grants or denies permission to make assertions of
the following forms about each name n:

1. An assertion that n is bound, optionally stating what it is bound to.

2. An assertion that n is unbound.

3. An assertion that n is bound to a directory, optionally giving a (partial or full)
directory listing.

4. Any assertion restricting what managers may hold a binding for n. (For example, an
assertion that some prefix of n is bound to a directory with a specified participant
group address.)

For simplicity, HIER restricts the range of the authorization function to three values:

strongly authorized, weakly authorized, or unauthorized.

A principal P that is strongly authorized for a name n is authorized to make any of
2A client receiving an assertion in a message may either accept it (i.e., add it to its store of knowledge,

act on it as the truth, etc.) or reject it (ignore it, consider it possibly false).
31n particular, it is not acceptable to implement counterfeit security by rejecting every incoming message!
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the four types of assertion about n listed above, including giving a full listing if n is bound
to a directory. Further, P is strongly authorized for every name with n as prefix, and is
at least weakly authorized for every prefix of n. $

A principal P that is weakly (and not strongly) authorized for a name n has the
following more restricted permissions. First, P is authorized to state that n is bound to a
directory, but not authorized to state that it is not bound (or is not bound to a directory).
Next, P is authorized to give a partial listing of the directory bound to n, restricted as
follows:

* P may state that a name component c is in the directory, if and only if it is also
authorized for n/c (either strongly or weakly).

* P may state that a name component c is not in the directory, if and only if P is also
strongly authorized for n/c.

Finally, P is weakly authorized for every prefix of n.

A principal P that is unauthorized for a name n is not permitted to make any assertions
about it.

Unless otherwise noted, HIER is used as the security model throughout the rest of this
chapter.

5.2.2 Why This Model?

HIER is a fairly simple model, but is flexible enough for our purposes. It allows the security
agents to specify which principals are authorized to respond to which names, by dividing
the name space into subtrees, each of which is strongly authorized to a different set of
principals. For example, a principal P could be strongly authorized for names with the
prefix [a/b but unauthorized for [a/c, while another principal P2 is strongly authorized
for [a/c but unauthorized for [a/b. As a result of this assignment, both principals acquire
weak authorization for [ and [a, but as a practical matter, weak authorization does not
grant enough power to allow them to do any harm.

It might seem attractive to simplify HIER by eliminating weak authorization; such a
model is, unfortunately, inadequate. Let SIMP be a model that restricts the range of the
naming authorization function to two values: authorized or unauthorized. A principal
that is authorized for a name n has permission to make any of the assertions about n
enumerated above. A principal that is unauthorized for n does not have permission to
make any assertions about n. It is shown below that this model is inadequate, because
it would require each principal that is authorized for any name to be authorized for all
names.

The reader who is not interested in the proof that SIMP is inadequate may wish to skip

to the next section at this point.

Lemma 5.1. Under the SIMP model, authorization for a prefix of any given name implies
authorization for the entire name.

................. .......
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Proof: First, note that in a hierarchical naming system, asserting that a name n is not
bound (or is not bound to a directory) also implies that no name of the form n/m is bound.
Now suppose that principal P- is authorized for a particular name n but not for n/m. So
P is authorized to assert that n is unbound, and because this statement implies that n/m
is unbound, by the closure property of authorization functions P is also authorized to
assert that n/rn is unbound. But by assumption, P is unauthorizcd for n/m, so it is not
authorized to assert that n/rn is unbound. Contradiction. Therefore if P is authorized for
n, it must also be authorized for all names of the form n/m. U

Lemma 5.2. Under the SIMP model, authorization for a name implies authorization for
every prefix of that name.

Proof: First, note that in a hierarchical naming system, asserting that a name of the form
n/m is bound also implies that n is bound (to a directory). Now suppose that principal
P is authorized for a particular name n/m, but not for n. So P is authorized to assert
that n/rn is bound, and because this statement implies that n is bound, by the closure
property of authorization functions P is also authorized to assert that n is bound. But
by assumption, P is unauthorized for n, so it is not authorized to assert that n is bound.
Contradiction. Therefore if P is authorized for any name of the form n/m, it must also
be authorized for n. I

Theorem 5.3. Under the sIMP model, authorization for any name implies authorization
for every name.

Proof: In the above lemmas, substitute the root of the naming hierarchy for n. Now
Lemma 5.2 implies that every principal that is authorized for any absolute name is autho-
rized for the root, while Lemma 5.1 implies that every principal that is authorized for the
root is authorized for every absolute name. Therefore a principal that is authorized for at
least one name is authorized for every name. U

It is possible to work around this problem with SIMP, by statically defining certain
directories and making them well-known to all clients. Specifically, suppose that a given
directory is statically bound to its name n, and that this binding and the directory's
contents (list of immediate descendants) are known to all clients. In that case it is sen-
sible to weaken the closure requirement slightly, allowing a principal P to be authorized
for assertions that imply things about n even when P is not authorized for n itself, be-
cause every client has independent knowledge of n's binding status against which it can
check such assertions. A directory that is made static in this way can have descendants
that are authorized to disjoint sets of principals. For example, the root directory [ of a
company-wide system might be statically defined to contain only the four entries manage-
ment, marketing, production, and development, with the list of principals authorized for
each prefix well-know: to all clients. A file server S belonging to the marketing department
could then be authorzed for the [marketing prefix without requiring authorization for
[, [management, etc.; yet S would have no difficulty in mapping the names it binds (e.g.,
[marketing/projections), even when no other servers are up. That is, {S} appears to

LM JL



5.3. CAPABILITIES 67 0

be a read quorum for [marketing/projections.4

This solution is simple, and may be adequate for some applications, but is rather
inflexible. It amounts to giving every client a complete copy of the naming authorization
function, which is practical only if the function has a compact representation (few static
directories) and does not change while the system is running. Therefore, the remainder of
this chapter uses the more flexible model HIER, for which Theorem 5.3 does not hold and
which therefore does not force any directories to be statically defined.5

5.3 Capabilities

This section describes a solution to the counterfeit problem using capabilities. Conceptu-
ally, a crpability K is a document stating that "principal p(K) is authorized to perform
action a(K) until time t(K)," signed by some principal s(K), where s(K) is authorized to
issue capabilities for a(K). Under the GEN model, s(K) would be a security agent. When-
ever p(K) is claiming the right to perform action a(K), it simply presents the capability,
plus its own signature to verify that it is authorized to use the capability.

When capabilities are provided, a client does not have to maintain any knowledge of 0
the global security policy. Instead, it simply rejects any assertion that is not accompanied
by a capability to validate it.

To use capabilities, all participating principals must agree on how to identify principals
and verify their signatures, which principals are authorized to sign capabilities, and the
language in which capabilities are written. These three points are discussed in the following
three subsections.

5.3.1 Principal Identifiers and Signatures
0

When considering a solution to the counterfeit naming problem that involves rejecting
some messages based on which principal sent them, one must take care to avoid circular
reasoning, because principals themselves are known by names. A principal that claims
its name is P is itself making an assertion that could be counterfeit. Thus it might seem l
that a counterfeit-secure principal naming service is required before one can implement

a counterfeit-secure decentralized naming service, thereby requiring a centralized naming
service (such as a key distribution center) at the lowest level to avoid an infinite regress of
decentralized naming services.

Fortunately, however, there is a way around this problem. Suppose we have a public-
key encryption system [17] that also provides digital signatures (for example, RSA [35]). 0

We can then identify each principal by its public key. That is, a principal's public key
4Strictly speaking, {S} is not a read quorum, because some of the client's local knowledge is taken into

account in mapping the name. The read quorums are actually sets of the form {c, S), where c is a client.
'Arguments similar to those in Lemmas 5.1 and 5.2 do apply to this model, but rather than revealing

problems with it, they simply establish its inheritance properties (for prefixes and suffixes of names authorized S
to a given principal) as theorems.



68 CHAPTER 5. SECURITY

is considered to be the lowest-level name for that principal, its principal identifier.6 No
trusted name service or key distribution center is needed to authenticate the sender of a
digitally signed message as being a particular principal referred to by its identifier, because,
given only the signed message and the public key, one can verify with high probability
that only the holder of the corresponding private key could have sent that message. (And
conveniently, the principal identifier is also a key that can be used to send private messages
or conversation keys to the principal it identifies.)

In more detail, the approach works as follows. Each principal randomly chooses (or is
assigned) a public key that defines a unique encryption function Ep, and a matching secret
key that defines a decryption function Dp.7 For convenience, assume that Ep(Dp(x)) = x
as well as Dp(Ep(x)) = x for all messages x, and that the cipher is equally strong when
the roles of the encryption and decryption functions are exchanged in this way. Now a
message x for principal Ep is sent privately by first encrypting it with Ep, while a message
from principal Ep is digitally signed by encrypting it with Dp. We then define the principal
identifier Ep to be bound to that entity (or set of entities) that possess Dp.

As a sidelight, this mechanism leads to a simple, operational definition of principal:
any entity that can generate a key pair and hold the decryption key secret can act as a
principal, and by extension, so can any set of entities that can distribute a decryption
key among themselves and prevent it from leaking further. For example, a person with
a pocket calculator can be a principal, and so can a single computer system, or a single
process within a computer system (assuming in the latter case that the operating system
can be trusted not to steal the process's secret key). A group of people or processes can
act as a single principal if they have some sufficiently secure way to distribute the initial
secret Dp among themselves.

5.3.2 Authority to Sign Capabilities

The simplest way of regulating the authority to issue capabilities is to view the system
security chief as a single principal with a well-known principal identifier Eehief, and agree
that any capability signed by the chief is valid. Under this approach, a client can begin
secure operation knowing only the capability language, the cryptosystem, and one public
key, Ehjef. It is, of course, undesirable for DI,.jf to be widely known, because it is in effect
a master key to the entire naming system.

One can avoid the need to have a process on line that knows DJcf by introducing
delegation. A delegation capability Kd, issued to a principal p(Kd), states that p(Kd) is

authorized to sign capabilities for the rights a(Kd), or any subset of those rights. Capabil-
ities for such rights, signed by p(Kd), are then accepted if accompanied by the delegation

6Chaum terms a public key used in this way a digital pseudonym [6]. He advocates this approach as a
way of allowing people to provide credentials to computer systems without giving up their privacy; it allows
a person to store his credentials under one or many pseudonyms that have no visible connection with one
another or with his real name.

7Random choice should give an acceptably high probability of uniqueness, because principal P choosing
the same key pair as principal Q amounts to P guessing how to decrypt the messages sent by Q, and a
strong system must make th latter event extremely unlikely.
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capability Kd. Given this mechanism, the security chief PO can delegate subsets of its rights
to security agents P1, P2, etc., by creating delegation capabilities for them. Thereafter,
P0 need not be available on line until a delegation capability expires, or some authority is
needed that P0 has not delegated.

This mechanism minimizes the amount of knowledge a client needs to begin secure
operation, but may not fit the higher-level policies of some organizations. For example,
an organization with a committee at the highest level might find it more appropriate to
require the signatures of several principals on Lop-level capabilities instead of appointing
a single chief. This and other extensions to the capability mechanism can be implemented
as part of the initial agreement on what principals are authorized to issue capabilities, or
as part of the capability language.

5.3.3 Capability Language

A simple capability language is sufficient to implement the naming security model HIER.
The a(K) portion of each capability includes a single name, for which the capability grants
strong authorization. p(K) is the principal identifier of the principal to which the capability
grants rights. The t(K) portion is given in some agreed-upon time units-say, milliseconds
since the beginning of 1970, GMT. The triple (p(K),a(K),t(K)) is signed by s(K), the
principal granting the capability, and s(K)'s principal identifier is appended to the result
to yield the complete capability.

Note that, in accordance with the definitions of strong and weak authorization, a
capability for name n implies strong authorization for any name of which n is a prefix,
and (at least) weak authorization for any prefix of n. There is no real need for capabilities
that grant weak authorization directly, because as noted above, managers are generally
granted weak authorization for a name n only as a byproduct of having beei. granted
strong authorization for some name n/m of which n is a prefix. A manager that needs to
prove it has weak authorization for n can use its capability for n/m to do so.

The action field a(K) of a delegation capability includes a delegation bit, indicating that
p(K) is permitted to delegate the authority granted by K to other principals. Delegation
works as follows: an unexpired capability L with s(L) = p(K) # Eh is accepted as valid
if accompanied by a valid capabilit, K, where a(K) has the delegation bit set and a(L)
is a right implied by a(K). That is, a(K) may grant authorization for the same name as
a(L), or some prefix, and a(L) itself may or may not have the delegation bit set.

5.3.4 Application to Decentralized Naming

This capability scheme i. powerful enough to provide reliable counterfeit security in a
decentralized naming system. In an installation that uses it, every naming response is
signed with the principal identifier of the responding object manager, and clients reject
any response that does not include valid capabilities sufficient to establish the signer's
right to make the naming assertions in the response. In particular, the cache information
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returned in response to a multicast name mapping request on a name n contains not just a
claim that a particular manager (or manager group) implements all names with a certain
prefix, but also a capability K (or set of capabilities) demonstrating the responder's right
to make that claim. The client caching such a response would also cache knowledge of
the expiration time t(K), and consider the cache entry invalid after that time. The exact
nature of K depends on whether n is bound to a local, regional, or global directory.

If n is bound to a local directory, its manager provides a strong-authorization capability
for n or some prefix of n to justify its claim to be n's manager.

If n is bound to a regional directory, on the other hand, a responding participant M
that does not have strong authorization for n includes a special participant-address capa-
bility along with the cache information in its response. A participant-address capability
for n grants M the right to state that n's participant group address has a particular value
Gn. Such a capability can be signed by any principal with strong authorization for n; the
capability type and the value G, appear in the a(K) field. Participant-address capabili-
ties are needed because weak authorization alone is not sufficient to permit M to return
n's participant group address-giving the address implicitly asserts a restriction on what
managers can implement names within the directory n (only members of the group), an
assertion that only managers with strong authorization for n are permitted to make.'

Finally, if n is bound to a global directory, the directory server that responds to the
request returns a capability demonstrating strong authorization for n. (To allow it to
handle directory listing requests, a directory server is given strong authorization for each
global directory it participates in.)

5.4 The Cost of Capabilities

Capability-based security does not come for free. The following two subsections evaluate
its cost-that is, its impact on the efficiency and fault tolerance of name mapping.

5.4.1 Impact on Efficiency

There are two kinds of efficiency costs to be considered: the additional messages needed
to obtain new capabilities after old ones have expired, and the additional time needed to
process ordinary messages that contain capabilities.

Additional Messages

Roughly speaking, the number of capability request messages generated per unit time is
inversely proportional to the average time a capability is valid. This relationship is made

'If HIER were to permit managers with weak authorization to make such assertions, a manager with weak

authorization for [a but no authorization for [a/b could interfere with attempts to map the nam~ie [a/b by
giving out a false participant group address-one bound to a group not including the manager of [a/b.
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more precise below.

We begin by deriving the average arrival rate of requests for new copies of a given
capability. Let v(K) be the total validity time for capability K; that is, if i(K) is the time
when K was issued, v(K) = t(K) - i(K). Assume that the generation of client requests
for action a(K) is a Poisson process, with an average of ac(K) requests per second. Assume
also that a capability K is only requested and passed on to clients through the manager
that performs the actions it authorizes, and that the manager only requests a new copy of
K when a request for action a(K) arrives after all previously issued capabilities for a(K)
have expired. Then, whenever a capability K is issued, there will be no further requests in
the subsequent v(K) seconds; after that, the next request is expected after an additional
1/a(K) seconds. Thus requests for capability K arrive, on average, every v(K) + 1/a(K)
seconds, so their average arrival rate is (v(K) + 1/&a(K)) - 1 requests per second.

Now we can write an expression for the total system load imposed by issuing capabil-
ities, that is, for the overall arrival rate ac, of requests for new capabilities. Let the set
of all outstanding capabilities be {K 1, K 2,. . ., Ki}, of size k. Then aap is the sum of the
contributions by each capability, that is,

a = [v(Ki) + 1/C.(K,)]1  (5.1)

We can draw two conclusions from this formula.

First, as remarked above, the cost imposed by issuing capabilities varies inversely with
their validity times--so long as the validity times are long enough to dominate the expected
inter-usage times. Globally, a, -+ 0 as mini v(Ki) -+ oo. In fact, if v(Ki) > 1/aG(K,) for
all i, and all the v(Ki)'s are multiplied by a factor q, av is inversely proportional to 0. It
is reasonable to suppose that v(Ki) is chosen large enough that v(Ki) > /a.(K,), at least
for most i, because otherwise a large fraction of the requests for action a(Ki) would result
in a request for a new capability.

Figure 5.1 illustrates how cf 1 , decreases as the validity time of capabilities increases.
Each curve assumes a constant number k of capabilities in the system, each with the
same request arrival rate aK. The validity time v(K) (also assumed the same for each
capability) is plotted on the x-axis, and the system load a. on the y-axis. Both axes are
logarithmic. It is evident that, once v(K) is made large enough, as it continues to increase,
cf~, decreases in inverse proportion-that is, the graph approximates a straight line.

Next, note that as the number of capabilities in the system is increased, we must
increase their validity times proportionately if we wish to avoid increasing the overall
load aca,. To see this, assume an existing capability K expires and is reissued as two
capabilities K1 and K 2, with the set of actions authorized by K split between the two: •
a(KI) U a(K 2) = a(K) and a(KI) fl a(K 2) = 0. Then the arrival rate aa(K) is also split
between the two: aa(K,) + aa(K2 ) = aa(K). How should v(KI) and v(K 2) be chosen? If
v(K) = v(K 2) = v(K) > 0, the total system load ac,, is increased by the spht-in the
worst case, if v > 1/a for both the new capabilities, each one individually contributes
the same cost as the old one did, doubling the total. One can, however, prevent the S
cost from increasing by choosing the new v's larger than the old one; in fact, choosing
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Figure 5.1: System Load vs. Capability Lifetime

Field Description Length
a(K) Name Varies, typically _ 64 bytes
p(K) Principal granted to 80 bytes
t(K) Expiration time 6 bytes
s(K) I Principal granted by 80 bytes

Table 5.1: Capability Field Lengths

v(K 1) = v(K 2 ) = 2v(K) is always sufficient. That is, it is always the case that

1 1 + 1 (5.2)

v(K) + 1/aa(K) 2v(K) + 1iar(K,) 2v(K) + 1/aa(K2)

The proof of this statement is straightforward but tedious. By taking derivatives, one shows
the right-hand side of Equation 5.2 achieves its maximum when a,(K,) = taa(K2 ) = aa(K)/2,

in which case equality holds.

Per-message Overhead

Capability-based counterfeit security also imposes a per-message time and space overhead
on the naming system. Some time is required to run the public-key encryption and decryp-
tion algorithms on messages, and messages are made longer by the inclusion of capabilities
and principal identifiers. This section estimates the overhead quantitatively, assuming
the RSA [351 cryptosystem is used. The cost appears small enough to be acceptable in
applications where counterfeit security is needed.

Based on the assumptions in Table 5.1, capabilities can range up to about 320 bytes
long. Principal identifiers are assumed to be 80 bytes because this length (equivalent to

!. 4 -. . i-
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about 200 decimal digits) is typical of RSA keys. Six-byte time values give millisecond
resolution across a range of several thousand years. The a(K) field includes the pathname
prefix covered by the capability, the delegation bit, and for participant-address capabilities,
a participant group address and directory identifier (which total 8 bytes in the V imple-
mentation). The a(K), p(K), and t(K) fields are encrypted using s(K), making about
three 80-byte blocks, and the 80-byte identifier s(K) is transmitted in the clear, for a total
of 320 bytes.

In total, most name responses are lengthened by less than 750 bytes. This figure as-
sumes that most capabilities are issued by direct delegates of the security chief, so that a
response typically includes two capabilities, K, authorizing the response, and K2 autho-
rizing the signature s(Kl) of K1. The response must also include the 80-byte principal
identifier of the responder (which signs the response by encrypting the remainder of it),
and a 6-byte timestamp copied from the request,9 for a total of 726 bytes. In the current V
naming implementation, a QueryName response is short (less than 100 bytes on the Ether-
net), so even if it were increased by 750 bytes, it would still fit in a single Ethernet packet
(up to 1500 bytes).

The time cost to generate or check a capability is substantial, but not intolerable.
Encryption and decryption in RSA are slow; the original paper on RSA estimated it
would take "a few seconds" to encrypt or decrypt a 200-digit (80-byte) block on a general-
purpose machine, and prototype hardware constructed by Rivest ran at only six kilobits
per second with 100-digit blocks [161. Although public-key systems that run faster than
RSA are under development, nothing substantially better is available yet. Forti -ately,
capabilities do not need to be generated or checked frequently; once a client C has seen
a capability authorizing M for a particular part of the name space until time t, C need
not receive additional capabilities from M until t expires, as long as it is confident the
responses it is receiving are from M. Such confidence can be maintained by using a

conventional cryptosystem to communicate after the initial capability-checking step, using
a conversation key supplied by M along with its capability.

In conclusion, although the use of capabilities does increase the average time and space
cost of name responses, this overhead appears small enough to be acceptable in applications
where counterfeit security is needed.

5.4.2 Impact on Fault Tolerance

The additional messages required by capability-based counterfeit security do not only

reduce a naming system's efficiency; they also reduce its fault tolerance. Only resiliency

is affected, not reliability. Failure to receive a requested capability can stop names from

being mapped, by making it impossible for their manager to demonstrate its authorization

to map them. Such failures can occur either due to failure of a security agent, or due to lost

messages on the network. This section quantifies the impact of capability-based security

on resiliency, then examines some ways in which increased resiliency can be obtained at

9 The timestamp is used to match responses with requests, preventing responses from being recorded and

replayed.
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the cost of reduced efficiency.

Under the assumptions of the previous section, the use of capabilities has a severe
impact on resiliency: any fault that prevents a capability from being delivered also prevents
a request from being satisfied. This is true because a manager never requests a new
capability until it is immediately needed to satisfy a request. As acv increases, the fraction
of all requests that are vulnerable to this sort of fault increases with it. If a., is the
overall system arrival rate of naming requests, the ratio r", of vulnerable requests to total
requests is acv/aname.

Note that if faults occur, acv will be higher than was calculated above; that is, efficiency
is reduced as well. Whenever a capability K is requested but not acquired due to a fault,
the next request that requires K will trigger another request for K. Assuming the faults
are independent and occur with probability Pfa.,t on each capability request, the long-term
effect on a,,p is as though v(K) were replaced by (1 - pfjt)v(K) in formula 5.1; that is,

p - [(1 - pfdt)v(K,) + 1/a(Ki)] 1  (5.3)

One can make a capability-based secure naming system more resilient (in the sense of
lowering the fault-vulnerable ratio rd,), at the cost of poorer efficiency. One technique
is to have each manager request a new copy of each of its capabilities K at some time
t'(K) < t(K), that is, before its old copy expires. If each manager does this, a fault on
any single capability request is tolerated, because the old capability is still valid for a
time. After such a fault, the next client request that comes in after the old capability has
expired will trigger a new capability request, which should succeed or fail independently
of the previous failure.10 Using this technique, however, makes a,, independent of the
arrival rate of client requests, because a new capability is requested regardless of whether
the client needs it or not. So, defining v'(K) such that v(K) - v'(K) = t(K) - t'(K),
Equation 5.3 becomes

ap - [(1 - pfat)v'(KO)]-1  (5.4)

Thus if there are many capabilities that are infrequently used compared to their validity
times, this technique increases acap substantially.

A compromise approach is to make a capability K eligible to be re-requested at time
t'(K), but to defer actually doing so until the next client request arrives. With this arrange-
ment, nearly any single fault can be tolerated for frequently-used capabilities, because a
new client request will nearly always arrive between times t'(K) and t(K) if t'(K) is chosen
to be sufficiently early. But the efficiency penalty for infrequently-used capabilities is not
as large, because the arrival rate of client requests does not drop out of the formula for
a~p; in this case,a¢a = [(1 - pfut)v'(Kj) + l/a.(K,)]- (5.5)

10 0f course, in practice requests that occur close together in time do not fail independently, so t(K) - t'(K)
must be reasonably long compared to the mean time to recovery from a failure of the capability-granting
mechanism.
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Thus, if faults are rare, adopting this approach has the same efficiency impact as reducing
the validity time of each capability K from v(K) to v'(K).

5.5 Can We Do Better?

This section argues that no solution to the counterfeit problem for decentralized naming
can have significantly lower cost than the capability scheme described above. Specifically,
it shows that the cost tradeoff exhibited by the capability scheme--between how frequently
the naming authorization function is allowed to change, and how many additional messages
are needed as compared with a non-secure naming system-is a necessary property of any
counterfeit-secure naming system, and argues that, for any given limitation on authoriza-
tion changes, the capability scheme comes close to minimizing the number of additional
messages required.

Theorem 5.4. Under the following conditions, reliable counterfeit rejection requires (in
the worst case) that at least one extra message be sent for each name response that is
accepted by any client. Conditions: (1) The GEN model of counterfeit security is used. (2)
The interconnecting network is subject to omission faults. (3) Neither the client issuing the
name request nor any of the managers responding is a security agent. (4) The authorization
function can change in any way at any moment; no prior notice need be given to principals
that are not security agents. (5) Each naming request made by a client is completed (by
accepting a response or rejecting all responses) before that client's next request is issued.
(6) There is a time limit w on how long clients wait for responses before giving up. (7) A
response from manager M received at time t2, corresponding to a request issued at time
t1 , must be rejected as counterfeit unless M was authorized to give it at some time in the
interval [t1, t2].

Proof (informal): Suppose that client C issues a naming request Q at time t, and accepts
a response R from manager M at time t2. To be sure R is not counterfeit, C must know
that at some time in the interval [t1, t2J, the authorization function permitted M to make
the assertions contained in R; call this fact K. Because C is not a security agent, it cannot
know fact K unless some security agent has asserted K in a message SK (not necessarily
sent directly to C); the sending of this message must be a different event from the sending
of R because M is not a security agent. Now in the worst case, SK is only sufficient to
validate R, not any other name response, because (i) by condition (4), SK need contain no
information about the authorization function at times later than t, (ii) by condition (5),
C's next name request will not be issued until some time t 3 > t2 > t, so C cannot use SK
to validate another incoming response, and (iii) Q may be the only request received by
manager M between times tl and t2 , so M cannot (in the worst case) use SK to validate
another, later outgoing response--M cannot delay sending a response to Q until it receives
another request, because it might not receive another request before time t, + w. I

Note that, as this theorem suggests, binding storage under GEN is no longer decentral-
ized in the strict sense. That is, any read quorum for a bound name n must include at
least one security agent, in addition to the manager of the object bound to n. Thus, it
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is not surprising that the counterfeit-secure version of "decentralized" naming described
above is less efficient and less resilient than the non-secure version.

In the light of Theorem 5.4, the capability scheme of this chapter can be viewed as
a way of reducing the cost of counterfeit-secure naming by limiting the frequency with
which the authorization function can change. That is, it avoids requiring an extra message
for every client request by modifying precondition (3) of the theorem. Specifically, the
issuance of a capability K with expiration time t(K) declares that principal p(K) will
continue to be authorized for action a(K) at least until time t(K).

The capability scheme seems to take the maximum possible advantage of this type of
limitation on changes to the authorization function. For a capability that covers a single
manager M, exactly one pair of extra messages is needed each time a request arrives at M
after the most recent copy of the capability has expired-that is, each time the values of the
authorization function it covers could have changed. One can hardly expect to do better
in this case. For a capability that covers several managers MI, M 2,... , M, there are m
pairs of messages. In this case one might be able to do better in favorable cases, by giving
some managers their capabilities indirectly, piggybacked on other inter-manger message
traffic or by way of common clients; however, this technique seems rather impractical, and
is not applicable in the worst case, where there are no direct inter-manager messages and
no common clients.

5.6 Other Security Considerations

There are other security-related problems, beyond that of counterfeit rejection, that users
might wish to see solved in a "secure" naming system. The following subsections discuss
the feasibility of security models that include two of these considerations: privacy for
requests, and consistency among responses.

5.6.1 Privacy For Requests

GEN does not model policies that require request-privacy. That is, when a client issues a
naming request, there are no restrictions on which managers can hear the request, only on
which responses can be accepted. In some applications, it can make zense to impose such re-
strictions. For example, even the existence of a document called [gov/whitehouse/user/
nixon/enemies/ralph-nader might be considered sensitive information by its owner.

This section shows that request privacy can be implemented as cheaply as counterfeit
rejection, if one is willing to place certain restrictions on the naming authorization function,

%but it is more expensive in the general case. (The cost measure here is number of messages.)

Consider the security model PRIV, defined like GEN, except that it is also a security
Svi)lation if a naming request is received by any principal that is not authorized for the

nan:. 1  It is assumed that principals that are authorized to receive a request will not

An encrypted request is not considered "received" if the receiver is unabie to decipher it.
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relay it to unauthorized principals. It is also assumed that eavesdropping is possible on

the network connecting clients and managers, so the only way to ensure that a message is
private is to encrypt it.

In the case where all object managers are considered to act as one principal Py,, it is no

more expensive to implement a policy in the class PRIV than the corresponding policy in

GEN. For example, if principal identification is implemented as described in Section 5.3.1
above, a client can guarantee its naming requests are private simply by encrypting each
with Ey. before transmitting it. Only a legitimate manager, possessing D.y,, will be able

to decrypt such requests.

Also, if the authorization function is static and well-known to all clients, and it autho-
rizes each name to no more than one principal, policies in the class PRIV are again no more

expensive than the corresponding policies in GEN. In this case, whenever a client issues
a naming request specifying a name n that is authorized to principal Pn, it encrypts the S

request with E. before transmitting it over the network.

In the general case, however, where the naming authorization function distinguishes
among managers and is not known in advance by clients, PRIV is more expensive to im-
plement than GEN. Under PRIV, a client cannot multicast its name mapping requests to

many principals and check only the replies against the security policy. It must instead
pre-evaluate which principal(s) are authorized to carry out each naming request it makes,
and send the request only to them (i.e., encrypt it such that only they can receive it).
Even when attempting to learn which principals are authorized for a given (name, action)
pair, a client cannot send out its request except to a principal already known to be au-
thorized for that pair, because otherwise its privacy could be violated. As a result, each

time a client generates a naming request but does not know which managers are currently
authorized to respond, it must first request that information from a known security agent,
requiring an extra message pair beyond the request itself. This cost is greater than that
of the capability scheme for GEN, where the expiration of a capability results only in extra
messages from the affected managers, not from each of their clients.

5.6.2 Consistency Among Responses

GEN also does not allow one to include requirements for consistency between two or more

responses as a direct part of the security policy. That is, all policies are required to be

1-checkable, in the following sense.

A constraint is 1-checkable if any violation can be observed by looking at a single

message. F'r example, the constraint that only disk drive managers can claim to bind

names with the prefix [device/disk would be 1-checkable.

A constraint is non-l-checkable if violations can only be observed by comparing two

or more messages. It is impossible for any single client to verify that a name response it

receives is not part of a non-l-checkable consistency violation, because the client might

have received only half of a pair of conflicting messages, with the other message going to

a different client. For example, our definition of specific naming includes a nonduplication

%



78 CHAPTER 5. SECURITY

consistency constraint, stating that a given specific name may be bound to no more than
one object at any time. It is impossible to detect a violation of this constraint without
examining at least two purported name bindings.

Nevertheless, given a non-I-checkable constraint S, it is sometimes possible to find a
1-checkable constraint S' that is not unduly restrictive, yet guarantees, if it is not violated,
that S is not violated. That is, if any two claims together violate S, one or the other
must violate S'. For example, dividing the name space into nonoverlapping partitions,
each covered by a different object manager, is an effective way of preventing duplicate
name bindings from arising; it is effective precisely because it is 1-checkable. If any two
managers bind the same name to different objects (violating S), one or the other must be
violating the partitioning restriction S'.

In using GEN as our model, we basically adopt the view that if any non-i-checkable
consistency constraint S is to be placed on a system, the most that the security policy
can do to help enforce this restriction is to enforce a 1-checkable constraint S' that is
strict enough to prevent any violations of S. If the security policy does not do this,
it is implying that the managers are trusted to cooperate sufficiently to adhere to the
constraint without checking on the part of clients. That is, in the case of nonduplication,
if the naming authorization function gives two different managers strong authorization for
the same name, they must simply be trusted to cooperate as necessary to ensure they hold
only one binding between them.12

As an additional note, observe that if two managers are asked to cooperate to preserve a
non-i-checkable consistency constraint, the security policy must permit them to exchange
sufficient information to check that the constraint is not being violated. For example, if
manager A is not permitted to know what names are bound by manager B, it is not safe
for A to bind any name that B is also authorized to bind.

In summary, it is sensible to exclude non-l-checkable restrictions from our security
policy model, for two reasons. First, it is impossible for a single client to verify that a
name response it receives is not part of a non-l-checkable security violation. Second, the
most practically important non-l-checkable restriction-nonduplication of specific name
bindings-can easily be enforced by strictly partitioning the name space among managers
that cannot be trusted to cooperate on their own.

5.7 Chapter Summary

This chapter has defined the counterfeit problem for decentralized naming and presented
a solution based on capabilities. The cost of this solution has been evaluated, in terms
of its impact on the efficiency and fault tolerance of naming, and it has been argued that
no better solutions are available. In general terms, one can approximate the efficiency
and resiliency of non-secure decentralized naming more and more closely as the detailed
security policy is allowed to change less and less frequently. The related issues of request

' 2For that matter, any manager that is authorized to bind a specific name must be trusted to bind it to
only one object at a time.

- . . w-. w
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privacy and non-i-checkable policies have also been discussed.

P



Chapter 6

Concluding Remarks

6.1 Summary

Designing a naming facility for large distributed systems is a difficult problem. Existing
approaches have not yielded a single design that is at once acceptably efficient, fault-
tolerant, and secure.

As a solution, this thesis has introduced and studied decentralized naming, a hierar-
chical naming architecture based on the concept that each object manager should handle
the naming for the objects it manages. Keeping this knowledge at each manager enhances
naming efficiency by supporting prefix caching with on-use cache consistency maintenance,
and by allowing name mapping operations to be completed in a single packet exchange
whenever the cache hits on a local directory. It enhances fault tolerance by supporting
multicast name mapping in regional directories. In global directories, where there are
too many participants for multicast to be practical, name mapping can be handled by
replicated name servers built with known technology. The primary security problem of
decentralized naming, the counterfeit problem, is solved using a capability scheme that
can be implemented using known cryptographic technology.

The results of this research and their consequences are discussed further in the following
subsections. The final section suggests some directions for future work.

6.1.1 Efficiency

Three characteristics of decentralized name mapping have been shown to account for much
of its efficiency: its piggybacking of name lookup on other operation requests, the high
hit ratio of its prefix caches, and its on-use cache consistency mechanism. These featues
depend strongly on one another for their effectiveness.

It is a simple but important characteristic of decentralized naming that name lookup is
not treated as a separate operation to be implemented in isolation, but is instead treated
as the first step in carrying out any operation request that specifies its target object by
name. This piggybacking of name lookup, together with the decentralized storage of name

80
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bindings at object managers, means that lookup is free (in terms of communication cost)
whenever the name cache hits. It is "free" because the client combines the lookup and
operation requests into a single message sent directly to the named object's manager, which
maps the name locally, performs the operation, and sends the results directly back to the 0
client in a second message. Those two messages would have been required to perform the
operation in any case.

The effectiveness of prefix caching is a second important characteristic of decentralized
naming. Prefix caching is applicable and effective because of the hierarchical structure of
a decentralized name space, with directories becoming increasingly localized as one moves
from the root towards the leaves. Matching a relatively short name prefix typically takes
the client to a directory that is local to a single manager, so that the "free" case of name
lookup is achieved. And each prefix matches a large number of names, tending to give
the cache a high hit ratio. One of the main contributions of this thesis has been to make
these observations precise in an analytical model of cache performance, and to validate the
model by comparison with experimental results from the V implementation.

A third important efficiency feature of decentralized naming is its on-use cache consis-
tency mechanism. With on-use consistency, having a stale entry in a cache costs nothing
until the entry is used, at which point it is refreshed. Unlike mechanisms in which servers
asynchronously notify clients when their cache entries become stale, on-use consistency is
reliable; it is also less expensive. Asynchronous notification cannot be reliable, because the
network can partition, separating client and server and preventing the notification from
reaching the client, which then continues to use the stale data. It is also expensive because
many unnecessary notifications are likely to be issued for entries that will never be used
again. Further, unlike mechanisms in which cache entries time out, on-use consistency re-
tains cache entries until they actually become stale, and it does not restrict the frequency
with which data that might be cached is allowed to chpnge. However, on-use consistency is
inexpensive only because of the piggybacking of name lookup on other object operations:
with piggybacking, each name lookup request is sent to the named object's manager in
any case, so the manager is able to check cache consistency at the same time.

The main efficiency drawback of decentralized naming is that the cache does miss
occasionally, resulting in a multicast that can be quite expensive. In the worst case, the
multicast goes to every manager participating in the first regional directory in the given
pathname, which of course includes all managers participating in its subdirectories, their S
subdirectories, and so forth. As discussed in Section 3.4, this effect places a limit on the
growth of regional directories, and thus helps to establish where the boundary between
global and regional directories must fall. Fortunately, however, the high cache hit ratios
achieved in typical installations make it realistic to envision regional directories with over
1000 managers participating.

A minor efficiency drawback is that renaming a directory near the top of the nam-
ing hierarchy is relatively expensive, as compared with approaches in which an object's
manager does not know its absolute name. Renaming a directory implies changing the
absolute pathnames of all the objects that are named relative to it; that is, every node and
leaf of the subtree rooted at it. With decentralized naming, making such a change require

'_• I
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contacting the managers of all the objects involved to inform them of their new names.
Fortunately, however, rcnaming at this level is not a frequent operation. As Lampson
notes [27], changing the name of a top-level directory creates considerable confusion for
users, so it is best to do it rarely.

6.1.2 Fault Tolerance

One of the major strengths of decentralized naming is the high resiliency it gives to name
mapping. As was shown in Chapter 4, name mapping achieves optimum (ABMA) resiliency
in installations that include only regional and local directories. This high resiliency stems
directly from the fact that naming is decentralized--each object manager knows the names
of its own objects-so multicast name mapping can always be used as a last resort, and will
always succeed in mapping the name of any accessible object. In a system that includes
global directories, the directory servers become an additional point of possible failure,
but they can be replicated at moderate cost because they contain a relatively small and
seldom-changing portion of the total information held by the naming system. And even if
all servers for a given global directory are inaccessible, a client can still map the names of
nearby objects using scoped multicast to nearby participants in the directory.

The resiliency of object creation and deletion by name is also a strength. Because these
operations are performed locally bythe manager of the named object, which is located using
the name mapping protocol, they have the same resiliency as name mapping. Although
this resiliency is not the optimum for the general case, it is optimum for these common
special cases.

Decentralized naming is basically an application of a more general design principle for
distributed systems, which we might call the togetherness principle: Keep things together
if they are most often used together, separately if they are most often used separately.
Following this principle yields advantages in both efficiency and fault tolerance. When two
related objects are kept together on one host, the number of messages required to perform
an operation that involves both of them is reduced, as well as the number of possible
failure points. And when two unrelated objects are stored on separate hosts, of course, the
amount of possible parallelism is increased, and the failure of either host makes only one
of the objects inaccessible. Decentralized naming applies this principle by keeping names
together with the objects they are bound to (in local directories), but separating names of
unrelated objects that chance to be in the same regional directory, thus improving both
the efficiency and the fault tolerance of name mapping.

The fault tolerance of decentralized naming is poorest for those operations that require
access to regional name lists: regional directory listing, binding check, and coverage trans-
fer. The togetherness principle does not prcvide much help here; although it suggests that
copies of a directory's name list need not be kept by nonparticipants, it does not remove the
need for a complete copy of the name list to perform these operations. These operations
can therefore do no better than the classic tradeoff for replicated data: the operations that
read the name list (listing and binding check) can be made more resilient by increasing
the degree of replication, but doing this requires the write operations (coverage transfer)

* '' 'v V .f



6.1. SUMMARY 83 0

to update multiple copies, making them more costly and (if updates must be atomic) less
resilient. Note that replicated directory systems have this same problem, but it is worsened
by the fact that name mapping is a read operation on the directory, forcing a high degree
of replication to achieve acceptable resiliency. •

In sum, decentralized naming gives first priority to the resiliency (and efficiency) of the
most common operation-name mapping. The other operations are then made as resilient
and efficient as possible without compromising the performance of name mapping.

6.1.3 Security

This thesis has also examined the security aspects of decentralized naming. The use
of decentralized naming does not make it more difficult to enforce mandatory security
restrictions, and it does not complicate the discretionary checking of client authorization 0
by managers, but it does make it more difficult for clients to be sure the purported object
managers that respond to their requests are authorized to do so by the system's security
policy; that is, tu be sure the responses are not counterfeit.

Chapter 5 presented a solution to the counterfeit problem, using capabilities, and eval-
uated its impact on the efficiency and resiliency of name mapping. It was shown that,
roughly speaking, the capability scheme approximates the performance of non-secure de-
centralized naming more and more closely as the detailed security policy is allowed to
change less and less frequently. Different parts of the name space can be individually
tuned by varying the validity times of individual capabilities.

One cannot expect to improve very much on this scheme. Any solution to the counter-
feit problem can be expected to have some adverse performance impact on a decentralized
naming facility, because, strictly speaking, the naming is no longer decentralized if the
system includes security agents that can revoke an object manager's authorization to bind
names-at least one security agent must be included in each read quorum. The capability
scheme reduces the cost of contacting security agents by allowing the agents to "promise"
that the policy will not change for some set period of time, and it appears to take about
as much advantage of that technique as possible-for a capability that covers a single
manager M, exactly one pair of extra messages is needed each time a request arrives at
M after the most recent copy of the capability has expired. S

6.1.4 Other Results

This thesis has demonstrated the practicality of decentralized naming by describing a
substantial prototype implementation that is in daily use in the V distributed operating
system. Although the current installation includes only about eight file servers and fifty
workstations, it has proven large enough to provide useful experience.

The V implementation also demonstrates the extensibility of decentralized naming.
Most notably, its name space includes the file systems of several UNIX hosts as subtrees.
There is also a server that can make the file system of any host on the DARPA Internet
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appear as a directory in the V name space, using the Internet's File Transfer Protocol [33]
to access the remote files.

D

6.2 Future Work

Decentralized naming appears to be a promising area for continuing work. Most of the
work that remains at this point is implementation and experimentation with some of the
portions of the design that have not yet been incorporated into the V prototype. Two areas
of particular interest are techniques for replicating name lists in large regional directories,
and expansion of the existing regional implementation to include global directories and
span an internetwork.

We do not yet have enough experience with large regional directories to set down
guidelines for administering the replication of their name lists. In particular, it is not
clear how to decide how many replicas are needed and what update mechanism should be
used in a given situation. (The current V implementation does not address this question
because it includes only directories with off-line name lists.) It is known that (roughly
speaking) increasing the number of replicas makes reading more efficient and resilient, at
the cost of making writing less efficient and resilient. To quantify this insight and draw
useful conclusions from it, additional measurements are needed to determine the ratio of
read to write operations, along with some careful modeling to determine the exact cost
and resiliency as a function of the number of replicas. The cost and resiliency are also
dependent on what algorithm is used to select and maintain agreement on the current
set of active replicas. The simplest algorithm statically selects several replica sites, allows
reading any replica, but forces write operations to fail unless all sites are up and accessible.
More complex algorithms dynamically maintain a set of replicas that periodically contact
one another, dropping or replacing any copy that cannot maintain communication with a
majority of the other copies. Algorithms of the latter type incur an additional background
communication cost on top of the basic cost of performing reads and writes, but achieve
improved resiliency for writing. Additional study is needed to decide when the benefits of
such algorithms are worth their cost.

It would also be useful to gain experience with an implementation that includes global
directories and extends across an internetwork. We have begun to experiment with adding •
a global directory level to the V implementation, but our installation is not yet large
enough to put any serious demands on the global level.' Experience with a really large
installation would provide further guidance in deciding where to draw the line between the
global and regional levels of the directory hierarchy. It would also reveal any unforeseen
problems that might arise in interfacing the replicated global directory level to the regional
and local levels.

'In fact, V installations are currently unable to grow beyond a single local network because of limitations
in the V kernel implementation. The naming protocols are layered on top of the message transaction protocol
VMTP [8] provided by the V kernel, which is designed to work across internetworks; however, the current
V kernel implementation does not.
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Finally, of course, it would be pleasant to see the decentralized naming paradigm be-
come widely used and adopted in a variety of future distributed system designs. It appears
qualified to serve well.
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