o 40 e Tatedy Y e Al e A T R T . L S o S s e T o T S T O o VO TR  DU WO OO ll'l.!;g'l‘w
i
- -~ ‘ ,(' 1].!
@
M
9,50
I~ ,',, Coy . Q
™ BRI S S ' ‘.;
© 4
NI
00 .
Q)  OFFICE OF NAVAL RESEARCH W
e,
o« 0
< Contract N00014-86-K-0043 ',‘.:':‘
‘!h‘.
| TECHNICAL REPORT No. 81 8
Q ::"’i
.‘::‘.'4
< Dynamics of Observed Reality: Abridged Version of Classical ,:c:.’.'
and Quantum Mechanics :,'.':
b o,
y [
et
Azizul Haque and Thomas F. George n:::‘
":?‘:c
250
iy
Prepared for Publication né:::;
in .»
i
Condensed Matter Theories, Volume 4 ':.:::
Edited by J. Keller it
Plenum, New York ':‘:::
o b
Departments of Chemistry and Physics .":::«
State University of New York at Buffalo ,p'::‘v:
Buffalo, New York 14260 004
o)
M!:’
August 1988

g
o
Reproduction in whole or in part is permitted for any purpose of the :';:\“‘.‘
United States Government, ‘:::‘:(
sl
0
This document has been approved for public release and sale; >

its distribution is unlimited.

DTIC 7

AUB 1 91988 "

s

A
\:‘?‘

. PO W)
88 8 1. Tav '

RN
- - . . " . L A N L v W N Sy " - -y Ay 3y, " » -~ L% L%
DO O SN M Ko N e RN AT S A ot OO T H o s N ¢ 22 A WL e

-



Ty . 0 1 ey TR R . . » e . -y
‘\A'hvn'b.i .‘. ‘A:l“n'.. LAY .'V.A.I.‘.‘ .‘n.l') (3] Q. P l. 'n l.o o l,“. ’l\‘ O'ﬁl-.". 20N B ;'.'c‘l.g " ,.'l.," ,~.,.t ..A‘!'Q .I RN N \'d \'\' X% n '$. oY g.ln.l- ""

LS SRR WA O S T L L NU R L RG R T N U UV O LT Y A WA YU R WU WA WO WL ML TR R S R KK KOO

UNCLASSIFIED A = -
SECURITY CLASSIFICATION HIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB N, 0708:0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
UBUFFALO/DC/88/TR~81

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Depts. Chemistry & Physics (if applicable)

Stace University of New York
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Fronczak Hall, Amherst Campus Chemistry Program

Buffalo, New York 14260 800 N. Quincy Street

Arlington, Virginia 22217

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) c 00014-86 0

ontract N -86-K-

Office of Naval Research ¢ K-0043
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Chemistry Program PROGRAM PROJECT TASK WORK UNIT

800 N. Quincy Street ELEMENT NO. [ NO. NO. ACCESSION NO.

Arlington, Virginia 22217

11. TITLE (include Security Classification)
Dynamics of Observed Reality: Abridged Version of Classical and Quantum M :hanics

12. PERSONAL AUTHOR(S)
Azizul Haque and Thomas F. George

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ]15. PAGE COUNT
FROM TO August 1988 15
16. SUPPLEMENTARY NOTATION Prepared for publication in Condensed Matter Theories, Volume 4,
edited by J. Keller (Plenum, New York)
17. COSATI CODES 18. SUBJECT T. S (Continue on reverse if necessary and identity by block number)
R SSUP sUsGRouF —ICLASSICAL QUANTUM MECHANICS ENTROPY .

NIFIED DESCRIPTION/ APPLICATION TO LIQUID ANI
ENSITY MATRIX ) ‘ SOLID ARGON

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

- ,;>> The present paper is concerned with a unified description of classical and quantum
physics. A different way of thinking about the quantum world is expounded, which already
has led to significant results in statistical mechanics and holds future promise for
quantum mechanics. An explanation is provided for the original motivation in quantum
theory, the fomalisms that have evolved from it, and their differences with the classical
theories. The conceptual difficulty that permeates our view of the microscopic world

is spelled out and a remedy thereof suggested.]f,, [
SRR
xnﬁ‘} i .. p ) ‘ . _ ) R ) . A~ /
((. P . [_M/,l" o . .
)
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
63 uncLassiFieounLIMITED BBl SAME AS RPT. {3 oric USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL

Dr. bavid L. leloon (20262624410
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

r
&



.
W TR N R et N T ORI BN MK

To appear in Condenged Matter Theories,
Vol. 4, edited by J. Keller (Plenum,
New York, 1989).

DYNAMICS OF OBSERVED REALITY: ABRIDGED VERSION OF CLASSICAL

AND QUANTUM MECHANICS

Azizul Haque and Thomas F. George

Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall

State University of New York at Buffalo

Buffalo, New York 14260 USA

INTRODUCTION

concerned with a unified description of
classical and quantum physics. A different way of thinking about the
quantum world is expounded, which already has led to significant results
in statistical mechanics and holds future promise for quantum mechanics.
An explanation is provided for the original motivation in quantum theory,
the formalisms that have evolved from it and their differences with the
classical theories. The conceptual difficulty that permeates our view of
the microscopic world is spelled out and a remedy thereof suggested.

The present paper is

BACKGROUND

The laws of nature for the microscopic world are very much different
from those of the macroscopic world, though the building blocks of any
macroscopic system are the microscopic particles. Notable differences
are: (1) Indeterminism in classical statistical mechanics merely reflects
our ignorance of initial conditions. In the quantum world indeterminism
seems to be unavoidable even in principle. (2) Unlike classical
mechanics, quantum mechanics makes explicit conflict between the dynamical
description and the process of measurement. Dynamical equations for

microscopic systems are based on objective reality and are reversible in
time, as are the equations of classical dynamics. However, the observed
reality -- the irreversibility of the microworld -- is an outcome of
measurement and thus directly conflicts with the objective reality. (3)

Bose-Einstein (BE) and Fermi-Dirac (FD) statistics incorporate quantum
incertainty through the indistinguishability of the particles with respect
to their coordinates. This gives rise to exchange terms in quantum
statistical mechanics. There is no analogue of exchange terms in
clagsical statistical mechanics. (4) Many particle wavefunctions for the
microworld obey certain symmetry rules. This quantum mechanical
limitation has no immediate counterpart in classical statistics.

One possible way to resolve these conflicts would be to abandon the
objective reality, as advocated by the believers of the Copenhagen
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interpretation [1). The quantum Liouville equation for mixtures, which
describes the dynamics of observed reality for the microworld, would then
be an appropriate dynamical equation. The central task is thus the
evaluation of the quantum distribution function (QDF), because the QDFs
provide a means of expressing quantum mechanical averages in a form which
is very similar to that for classical averages [2]). This is the case with
the Ehrenfest representation (ER), where a correspondence between a
) classical trajectory and the expectation values of the corresponding
¥ quantum operators is established [3]. However, in most cases, including
. ER, the equations of motion for the average values c¢f position, momentum,
B etc. are not closed and therefore cannot be solved without further
N assumptions. Moreover, attempts to write a proper QDF that 1is positive
‘ and gives the correct individual quantum distributions of position and
momentum have been in vain [2,4]. It is suspected that the quantum
mechanical wuncertainty and the noncommutativity of position and momentum
prohibits a phase space construction of the QDFs. For these reasons, it
has not been possible to develop theories for the microworld based on
observed reality. However, in recent years, it has been found that the
Wigner transforms of all the Gaussian QDFs are non-negative, corresponding
to pure states and mixtures [5]. Existence of such phase space QDFs gives
us an opportunity to study the dynamics of the microscopic world based on
observed reality. This is what constitutes the main content of the &
present paper.
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Our system of investigation is an N-particle statistical system
whose time evolution 1is described by the quantum Liouville equation for
# mixtures [6]. We focus on studying the dynamics of each single particle
K in the N-particle ensemble. We do not assume a priori that the
4 indistinguishability of the particles is necessary when their de Broglie
] wavelengths ()) are greater than or equal to their mean distances (R).
¢ Instead, we measure the quantum uncertainties associated with each
particle in order to understand whether indistinguishability is inherent
in microscopic many-particle systems. The development 1is based on v
K) constructing a Gaussian density matrix in three-dimensional phase space. t
& The density matrix is defined by a set of dynamical variables whose M
K expectation values are considered to be relevant for the dynamics. :
' Construction of the density function is based on a K maximum entropy
formulation (7], and our choice of the dynamical variables is reflected in
such construction. The self-consistent equations of motion are then .

derived for these expectations from the quantum Liouville equation using a )
) projection scheme [8,9]. The solution of these self-consistent field g
% (SCF) equations provides the time evolution of the density matrix.

\ In the next section we derive the equations of motion for the ?
. expectations of these dynamical quantities and construct the corresponding ‘
" density function for mixed states. We also show that these equations of 1
o) motion can be derived solving the classical Liouville equation for ,
. mixtures. In Sec. III we show that for systems in thermal equilibrium 5
) these equations satisfy a new principle of least action. Again, a simple Y
combination of classical and quantum laws can be used to generate these by
equations. Finally, in Sec. IV we discuss the relative merits of tue

theories based on observed reality with those of objective reality. 4

DERIVATION OF THE BASIC EQUATIONS SOLVING QUANTUM LIOUVILLE EQUATION AND
CONSTRUCTION OF THE DENSITY FUNCTION gt

We characterize our N-particle system by the Hamiltonian .
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N 2
H - } 5&; +U(ry. 1) (1)
k=1

and a density matrix p(R,R';t) which satisfies the quantum Liouville
equation (QLE)

do _ 1 = i
at M[H,p] g -ilp , (2)
where V is the interaction potential and is the mass of,, the k-th

particle, r, is the coordinate of the k-th particle, and p, = { Vk is its
conjugate momentum. We are interested in an approximate so*ucion of the
QLE where the time evolution of the exact N-particle system is described
by a reduced density matrix pre(R,R';t), which is a product of N single
particle density functions,

N
R,R";t) = II (r.,r4t , 3
Prel AR (3
where R is a wvector with N coordinate components r,...r,,. This choice

[Eq. (3)] of the density function excludes th% pgssibility of
incorporating quantum uncertainty into our system through the
indistinguishability of the particles with respect to their coordinates.
We introduce the effect of quantum uncertainty by characterizing each
particle with respect to its position, momentum and their £fluctuations.
For this reason, we define each particle in three dimensions using a set
of operators, 0 , a = 1,..., M, which are x,, §,, % &,, p.Pp, and % p,, for
k,2 = 1, 2, 3% In general, to describe the dynamics of each particle in
thrﬁe dimensions (3D) incorporating quantum uncertainties, we need M =
2.3 + 3.3 = 27 independent operators consisting of a complete set of
linear and bilinear products of %, and p,. For notational convenience, we
shall represent these operators in the following matrix form:

Ap =1 . A - £, Ay = P
Ay = (R -0 -0t L A = (B o)e(h - ot
g = (2 - a)e(p - o7 - 2ur . (4)

Here, A, is the unit operator; A, and A, are three component vectors; A,, <;;ﬂ‘

A, and A_ are 3x3 matrices and I is the §x3 unit matrix; 94 and o, are the . -~ °
expectation values of the dynamical quantities A, afd A,;° and the —~—
superscript T stands for transpose. The time evolution® of the )
expectations of these dynamical quantities, <A.>'s, will provide us with —-—
the average values of position (<A.>), moméntum (<A,>), and their i
fluctuations (diagonal terms of <A3; and <AA>) and co%relations (off- ﬁ?
diagonal terms of <A.> and <A,> and <A;>). <A > has the unit of action, i
and the role of its Aiagonal elements 2n the pfesent dynamical description ™
will be discussed later. Here, we should note that <A3> and <A, > are ..
symmetric matrices. U

To derive explicit expressions for the time evolution of the
expectations, <0, (t)>, for each particle j, we use a projection operator —_—
technique in Liou f11e space (8,9]. In this space, R and p(t) can be Codes
written as |H>> and |p(t)>>. Since the exact density matrix p(t) contains ji/or
information more than required by the present method, we evaluate )
expectation values of the dynamical quantities Oja using

uﬂ’)‘ |
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aju(t) 3 <<0ja|p(t:)>> <<0ja|pre(t)>> a=0,1,..., M . (5 o
(X
For each degree of freedom j, we now define an (M+1)x(M+l) overlap matrix 0:‘:9’
with elements .::':
!":'
- q!é
Diﬂ <<Oja|pre(t) 0y >> !
= Tr [Oja pre(t) Ojﬂ] a, =~0,1,..., M (6) :::".:
te
and the Liouville space projection operators ‘::;'
G'|:
N M . 'a..e
P(t) ..} } |pre(t)oja>>[Dj(t)]aﬁ <<ojﬂ| . (7) 8
j=1 a,p=0 o
The properties of the above projection operator have been discussed in “;“}?
Refs. 8 and 9. Let us now assume that at some time t = t’ .::"::
RN
p(E") = p_ (E) . (8) :
Introducing the complementary projection Q(t) = 1 - P(t), along with the ‘:i:‘
projection operator properties discussed in Refs. 8 and 9, we can then ’:.:
derive the equations of motion for the 0, (t)’s from the QLE in the form )
f,
2 -- J '
aja<c) i<<0ja|Llnre(t)>> + } Mog(t.t") ay(0) (9a) '_‘
B ol
(X
where Mip(t,t') is expressed in terms of the 28x28 matrices :::::‘
(AXY
j ’ - e ’ ’ !:“5
MG i<<0ja|DQ(t)U(t,t ) e, ot )055>> (9b) ,:s.,
j ’ - [ ] -
Raﬁ(t’t ) <<0jalu(t’t )Ipre(t )Ojﬂ>> (9e) ":u
]
and is given by .E:"o
Y
) T 3 1 g
M) (t,t') = W (¢t t, e’} } it
aﬂ( ) } a-y( Y[R (e, t )]'Yﬂ (94d) &
7=0 i
Here U(t,t’) is the time evolution operator gﬁ
U(t,t’) = exp[-iL(t-t’')] . (9e) »
y »
Equations (9) describe the time evolution of the 27N dynamical quantities o
3 -1, 2,..., Nya=1, 2,..., 27) and are exact. These equations are -'s
closed for 27N unknown a a(t)’s. In these equations, the time derivative ‘t.“
of a a(t) at time t deplnds on all a, . (t) at the same time. Note that we - ‘»
assuml ojO to be the unit operatol‘ﬁ and the normalization condition o
requires- "its expectation values to be independent of time, a,. = 1. Now ALY
if we agsume that condition (8) holds for all times, then Q(t);?t) =« 0 and ®
we are left with the first term on the right-hand side of Eq. (9a), which oy
represents a mean-field time evolution of the N-particle system, where the !
time evolution of the expectations of the dymamical quantities, Oja’ are 0:::.
given by :.:::
ot
. _ 1 ) !
aja(t:) MTr(Oja[H,pre(t)]) 1 i<<0ja|L|pre(t)>> . (10) .

;-(‘
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Equation (10) describes the time evolution of the dynamical quantities ik, ¥
ﬁk, ﬁkﬁl’ ﬁkﬁz and ﬁkﬁl for k,2 =1, 2, 3. %
4
To determine directly the quantum uncertainties associated with each o
particle, we evaluate explicitly the time evolution of the dynamical \
quantities 3
. o = <> o, = <p> (11la,b) ?
: A A ’t
0y = <( - o)+ - 0)T> (11c) ¢
¢ A A T, «
g - < - O . - > 11d ‘4
: 4= <P - o) (P az)T 1 (114) 3
‘ gg = <(E - 01)e (P - 0))"> - SUI (1le) f‘
i W
h given by ﬁ
2 N
; . LN
X 91 = Ad, (12a) 'é
gy = - V! (12b)
; . aoT e
gy = 0gA + Aog . (12¢) :::
hd - . " - ” b,
f a, V'ag - ogV (124) ﬁ
. ol
o5 = - 03V" + Aaa R (12e)
i where f
' O3
: V. ot 1 &
| V=< v - , A=ml1 . (13) 0
. r AN
dr-dr 0
Equations (12) describe time evolution of 27 matrix elements which are the !’
expectations of the physical operators described by Eq. (4). o for a = 3
1, 2,..., M are $
1 ’Q:
’ alk(t) - <x> aZk(c) = <p> (l4a,b) .:f
. X
[05(E) ]}y = <[x - 07, (O)][x, - 0, ,(E)]> (14c) !
:
; [0,(E) ]y = <[Py = 05 (D)][P, - 0y (B)]> (164) 0
- l A A ‘
A‘ [as(t)]kl 2 <[xl< - alk(t)][pl - azz(t)] :
+ [ﬁ! - 02£(t)][5\(k - alk(t)]> (146) ‘i\
it
‘ \
; k,4=1, 2,3 . :&
i These expectation values in quantum mechanics are evaluated either in the $¥
) coordinate (r,r’') or momentum (p,p’) representation. o
)

From Eq. (12), we find that for a successful application of the
] present method, the choice of ¢, is crucial. We construct each ¢, from
\ the physical consideration which i; the maximum entropy principle [74. Ve
associate entropy with each particle using the relation

S = -k Tr(é; ;] . (15a)

f N
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, We then maximize entropy (§S = 0) subject to the constraint condition ;
tl
£ X
j, Saa(t) - Tr[Oa 6¢J] -0 a=0,1,..., M . (15b) :
¥
y This yields the maximum entropy distribution '
$4() = exp [ } Ao (03051 (16) )
;: a=0 ..t
{
o where the (t)'s are Lagrange multipliers and describe the time 0 |
{; evolution of lﬁe density function ¢ This distribution function is .
b Gaussian in 3D-phase space (q,p) jand in the corresponding coordinate 4
representation (r,r’), whose explicit forms are given by
‘
K L - l l- ’ T -1 ’ ;_ ' T T -1 \
:f ¢(r,r';t) C expf- 2[4(r+r ) a3 (r+xr’) - in (r-xr’) (0503 01-07) y
i L T h
d + 255 (r) (00503 05) (x-x") R
. ? -1 1 ¢
1 I} T - {
; K (r+r' ) oq 5(r-r ) - (r+r') gy al]} (17a) %
$ with A
[ -3/2 ¢ 4-1/2 1T -1 ]
- / - - l
Y C = (27) "03" exp(- 507057041 (17b) :.
L)
and ¢
N q -0 ]
-3 -1/2 - B )
; #@.pit) = 2070 8]V expr- LicaT-o]y L pT-al1 BT M e
) 2 1 2 p-o0 :
: (18a) 4
s :
K where B is a matrix given as
s 3 %
& B = [:T i ] . (18b) \
B 5 4 '
14 ¢
J ¢(q,p;t) is obtained form ¢(r,r’;t) using the Wigner transform [2] d
: #(q,p;t) = IJI ds <q- SI$(t)|q+s>e2ip s/ (19a) :
» (=K ) 3
" :
o and satisfies t
K
: $
K ” dq dp ¢(q,p;t) =1 . (19b) :
7‘. "
‘ﬂ Therefore, the expectation values of the dynamical quantities [Eq. (11)]
&) in the present method can be evaluated using both the trace operation '
R (r,r’) and the phase space (q,p) integration methods. The time evolution
K of these density functions are obtained by solving the coupled set of R
" equations (1Z2). A Close look at these equations shows that they do not
¥
4
)

contain K. This suggests that they are completely classical. In fact, we
obtained these TDSCF set of equations (12) also by solving the classical
Liouville equation using the phase space distribution function (18), and

following the same procedure discussed above. The TDSCF set of equations
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for the moments Oqs +v: 40 usi Gaussi distribution functions
th c

therefore completély classical.

The present classical set of equations (12) differ from Ehrenfest’'s
representation due to the fact that they contain additional dynamical
quantities (o,, o9, and o.) and are closed. To understand the potentiality
of the presént method; we need extensive application. So far, we have
studied only the equilibrium properties of 1liquid and solid argon,
assuming the system to be isotropic. The results of this simulation have
been reported in a separate communication [10]. Here we elucidate only
the underlying physics. Of the various dynamical quantities, only the

time evolution of o.(t), which has the unit of action, shows rapid
oscillations betweén positive

and negative values. This a.5

are

time dependence of o (t)
implies that at diffefent u
times of the measurement each ~
particle has a different .
trajectory, which in turn n
suggests that the classical \
trajectory obtained solving 5
(12) does not satisfy the a 00
principle of least action N
[11]. The time evolution of "
this o.(t) is shown in Fig. 1. f
From this figure, we find that a
the time-averaged trajectory v
for systems in thermal ~
equilibrium has o, = 0. Since —~6.7 i
our system of invéstigation is 0.0 10.0 20.0
isotropic, [{o.] for 1 = j TIME ( PS )
remains zero oVer” all times.
Now substituting <A5> = 0 in
Eq. (12), Fig. 1. Time evo}ution of the action,
. 55{:) -3 a?(r) for i = x, y and 2
71 = A9y (20a) over 20 3 in a typical run for
N . solid greon (V_ = 28.096, T = 50.275
Oy = = \Y (20b) K). o.(t) is Phe action along the
i-th airection of phase space and
o = 0 (20¢) averaged over the entire bath. The
3 vg}ugl of o.(t) originally36in kg
54 -0 . (204) m s = has bé2en magnified 107" times

in this figure.

That is, for systems in thermal equilibrium, the fluctuations o, and o
are the constants of motion. In the following section, we show cgat Eq.
(20) can be obtained using a modified representation of the classical
principle of least action and also from a simple combination of the

Ehrenfest representation with the equations of motion derived from the
quantum uncertainty principle.

ALTERNATIVE APPROACHES TO THE DERIVATION OF THE BASIC EQUATIONS FOR
SYSTEMS IN THERMAL EQUILIBRIUM

Principle of lLeast Action

We introduce the following principle of least action for each
particle in the N-particle ensemble:
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oJS-I dt <L.> j=1,2,..., N . (21)
ta
Here Lj is the Lagrange operator for the j-th particle and
3 ﬁ2
k A
L, =) E+v . 22
; Emj 1® (22)
where its quantum average is
3
" 1 2 .
Lj - <Lj> - ij } ((aZk) + [ahlkk}j - Ifm dr VJ(R) pre(R,RIT) .
k=l (23)
and the o, ,’s are defined in Eq. (14). Let us ow assume that the

extregum path fgr the £-th particle is defined by o (t), whose end points
are al(t ) and ¢ (tb) In 3D phase space

¢ . 2 R 2 . A2 . 4 2
0) = I<x"> + j<yT> + k<z'> = f0]) + joy, + kojy . (24)

To determine the form of this path, we use the usual procedure of the
calculus of variations.

Let us assume that the path is varied away from aa(t) by an amount

Sai(t), with the condition that the end points are fixe that 1is,
2 2
§oy(t ) = 601(tb) -0 . (25)
Now the condition that 3{(:) be an extremum means
2 2. -4 2 )
605 - 05[01 + 601] - 05[01] =0 (26)

to first order in 60{. Using the definitions (21) and /?3), we may write

%

) £ - 2 2 2 2 2 2 2
as[a1 + 801] - Jt dt Lz(a1 + 6§07, 0, + 802, oy + §oq, g, + s0,)
a
% aL aL
-okFt o | ae (sd —E 450t 2
5171 1.2 2 .2
t do do
a 1 2
aL aL
+ 60t —% 4+ 50f 4y (27)
3 602 a 2
3 %%
where for example, /aa 1mplies variation of L, with respect to all
the g,, elements (k = 1 5 Upon integration by parts, the variation
in 05‘ ecomes
, 0L, | % ) _12
805 - m, 601 3 | - I dt (6al[m2 dt 2)
do t t 3o
2 a a 72

."I(-"-"
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aL 3L 3L b
2 2 2 2 2 -
- -—}] + 603 — + Saa ——5) ) (28) e
L}
aal 603 aaa 'f
M
The first term on the right-hand side of this equation is zero since 602 f’
is zero at the end points. The second term is zero if the following ﬂ
condition is satisfied: "
aL aL aL aL ;
sS4y . Ay Lo L5t 2o . (29) e
1tde 832 3 2 3 3 2 4 3 2 v
1 9 %3 % Y
Since the variation of L, with respect to a{ and 02 contains ak and ak for ﬁf
k = £, to obtain the ekXtremum path for each part}cle we need to solve 3N ’
coupled equations obtained from the variation of 0. (£ =1, 2,..., N). 1In Y,
the following, we shall show that Eq. (20) can result from a trivia% $L
solution of these 3N coupled equations. Since between the end points 6o .ﬂ

can take any arbitrary value, the first term in Eq. (29) is zero provided

’} .

-
Lo’

aL aL h
d & 2 _ 2
AR A (30) »
1 1 ")
v 8
These are the Langringe equaiions of motion for the quantum-averaged o
dynamical quantities o> (t) and 02(t)' The second and third terms in Eq. :,
(29) can only be zero }f Q’
2 2 _
803 - 604 -0 . (31) &‘
is is because, is we differentia*e L, of Eq. (23) with respect to a§ and MY
o, , then w1
4 Y
aL aL ¥

2 _ . g @m>e0 , L.L (32) \
3 2 3 2 2 5 2 m, "
03 03 04 \,
Solving the Lagrange equations (30), we obtain Eqs. (20a,b), and from the ;i
condition (31) we obtain Egqs. (20c¢,d). Thus, a trivial solution of the 3N Q;

coupled equations shows that there is a principle of least action (21),
from which Eq. (20) can be obtained. In the following subsection, we show
that Eq. (20) can be derived by combining the Ehrenfest representation
with the equations of motion for the fluctuations obtained from the
quantum uncertainty principle.

v

-~ -

te nfest Repiesentation $°
e
Ehrenfest’s equations describe the time evolution of the mean values ’.
of the coordinates <x> and momenta <p>. With the Hamiltonian given by Eq. N
(1), the time evolution of these expectations may be written as ¢:
’
d_ - - <o N
x> <g-g;> <Py/m>  j=1,2,.... W (33a) I~
d_ - - . eyt b
Ge<Py> <§-§J—> DIR>  § =12, W (33b) s
Py
These equations do not follow the classical laws of motion due to the fact :
that the time derivatives of <x,> and <p,> are equal to certain average .
values whose calculation genlrally ndcessitates the knowledge of the Wy
wavefunction ¥(t). Our TDSCF equations, (20a,b), are identical to these Ny
equations, except that the average values are evaluated using a density g
Y,
I\‘

v

TR N P R I e S PP VLY
e e e A e L



function pre(t). Ehrenfest‘s equations may thus be viewed as a special
case of our TDSCF set of equations (20), where the contributions of the
fluctuations are not taken into account and the density function
¥ N represents a pure state {3,6].

Although the TDSCF set of equationsz(ZO) arg classical, Zthe timg
evolution of the fluctuations o3, = <x.> - <x.,>  and % = <p.> - <p,>

shows that they always satisfy the jquant&m uncértainty londitlon. e
time evolution of a4 and o,, for liquid (V_ = 29.283, T = 89.834 K) and
solid (V = 28.096, T 1 50.27ng) argon usingmthe Lennard-Jones potential
are shown in Figs. 2 2nd 3, respectively.

20.0 3.0
o e
" e
o~ -
NA o
¥ o128 |- a 2.0 +
v
|
!
A
Nh p— A e
v “Q.
A4 \J
5.0 L 1 L 1.0 ! '
0.0 20.0 40.0 0.0 20.0 40.0
TIME ( PS ) TIME ( PS )
3 i
Fig. 2. Time evolution of the dynamical variable 03(t) -z a3(t) in the

units 10722 u? obtained by solving Eq. (20) usift the predictor

algorithm for 1liquid (---) and solid (=) argon at the
temperatures 89.834 K and 50.275 K, respectively, and over a time
period of 40 ps. o,(t) represents the position fluctuation along

the i-th direction of phase space and averaged over the entire
bath,

Fig. 3. The same caption as for Fig. 2, but replacing g4 with g, on the
vertical avis with the units 10 4° kgzmzshz.

In general, we observe that the magnitudes of the fluctuations always
satisfy

2
- L 3 -
a3j°&j G2, j 1, 2,..., 38 , (34)

where the magnitude of G is directly proportional to the energy (<E>) of
the system. This in turn suggests that if we have a system such that the
fluctuations satisfy condition (34), then its time differentiation yields

W
]
Y
\
.
I_'J A O AL

"“A‘?J_..L.\'?\" !

a3jahj + ahja3j -0 j=1,2,..., 3N . (35

e
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Since 0,, and o,. are not zero from the uncertainty condition, one of the

é possiblgjways tojsatisfy (35) would be :
)

& . J
W -0 j -1, 2,..., 3N 36

: g4 j J (36a) '
L &4j -0 j=1,2,..., 3N . (36b) .
X Combining Eqs. (33) and (36), we obtain a set of equations analogous to }
? (20), except that the choice of the density function is still open in the }
" present case. The density function may be for a single particle or for an z
g N-particle system. Again, the density function may represent a pure state A
) or a mixture. For a Gaussian choice of the density function, our TDSCF )

set of equations is thus capable of deseribing the dynamics of all
macroscopic and microscopic systems.

’
! :
ﬁ DISCUSSION 4
1 .
Y We have described a method for studying the dynamics of observed
- reality. The observed system may be classical, classical statistical , s
\ quantum, or quantum statistical. The present development is 1in phase Q
0 space and thus recovers the trajectory concept even for the microscopic }
' systems. In the present method, the trajectory of a particle is described e
by a coupled set of equations (12). These equations represent the time ﬁ
L evolution of the mean values of position (¢,) and momentum (o,), their
) fluctuations (diagonal elements of oq an& o their correlatlions (off-
' diagonal elements of ¢ and as), and tﬁe action terms (diagonal 4
}' elements of o.). Tge present Study has been restricted to isotropic
¥ systems, where 0ff-diagonal elements vanish. 4
0
The diagonal elements of o.(t) are identified with action terms
since they have units of action and éheir time evolution 1is similar to
K that of the phase terms (o_/K) in the path integral approach. Thue, our n
{ present method is reminisceng of Feynman'’s path integral approach [11], 0
W where different values of action correspond to different trajectories. In 2
g the path integral method, optimal trajectories are obtained by invoking 8
b the classical principle of least action. Inspired by this approach, we 4

have introduced a modified version of the «classical principle of least .
action [Eq. (21)] in the analysis of our results. It is worth noting =3
that, in the present method, the density function contains phase

information. In contrast to the path integral approach, the phase 4
vanishes over the minimum action path.

For a Gaussian choice of the density function [Eqs. (17) and (18)],
the equations of motion (12) are closed and are completely classical. For
an N-particle statistical system, we derived these equations from the )
quantum Liouville equation using a projection scheme. It was also assumed ‘
that the SCF density function approximates the exact density function over )
all time. This choice of the density function as given in Eq. (3) |is X
similar to the Hartree approximation, where indistinguisability of the
particles with respect to their coordinates is ignored.

"

The concept of indistinguishability in quantum statistics did not
originiate from first principles, but rather from th: need to explain
quantum uncertainty. Indeed, that indistinguishabilty is not inherent in
quantum statistics 1is evident in our model. We characterized each
particle with respect to its position and momentum, and their respective !
fluctuations. The time evolution of the fluctuations allows direct N

PRy e |




R AN LM AR AR AR AN M AR AX AKX AV AN AN AN AN O L 8"8, N AR N U N MU R URLY, . '¢|- va¥, Al AR vap tal g

N -’:';.S't L) \‘l‘n }.'0..“ ".‘q"‘c‘"b' (3 ’J"A“?"‘.Q“‘,."’ .0'040 0\ X

determination of the quantum uncertainties associated with each particle
(Figs. 2 and 3). These fluctuations are constants of motion over the
minimum action path (605 = 0, 0. = 0) and satisfy the quantum uncertainty
condition (34). This suggests tgac indistinguishability is not a must in
quantum statistics. Thus, all that is needed to describe an N-particle
system is N trajectories with the constraint of minimum action.

It may seem that the validity of this classical description (20)
results from the choice of a normalized Gaussian density function [Egs.
(17) and (18)], and therefore the inclusion of higher-order moments would
cause a departure from the classical picture. By taking higher-oEder
momegts, we introduce fluctuation terms such as o, = <xX;> - <X ><xX.> -
<x.>", which are of third order or greater. Of coursl. che;e highlr-o}der
te;ms represent a departure from the Gaussian picture, but, at the same
time, go beyond the variances (03,04) defining uncertainty in quantum
measurement. Insofar as quantim measurement is random, the choice of a
Gaussian density function is appropriate.

Computer simulation shows that the fluctuations in position and
momentum of each particle are constants of motion over the minimum action

trajectory. Thus, it appears that each particle maintains its distinct
trajectory over all time even though the de Broglie wavelengths of
individual particles overlap. Insofar as computer simulation suggests

that there are N distinct trajectories for an N-particle system, the SCF
approximation (3) is vindicated.

The validity of the SCF approximation in turn suggests that ai. N-
particle system is analogous to N interacting wave vectors in a Hilbert
space. Measurement on each wavevector then yields the density functio. 4,

$ = } Pofu><ul| . (37)
n

From the viewpoint of quantum mechanics, the measurement of a dynamical
quantity gives various eigenvalues with corresponding eigenvectors Iu >
and probabilities P_. Measurement, therefore, introduces irreversibiligy
in our microscopic description. Indeed, trajectories obtained from the
Schrddinger-Heisenberg picture are indeterministic and consequently time-
irreversible. Yet, a phase space (q,p) representation of the density
function in Gaussian form (18) recovers the element of time reversibility
of measurement (20). Notably, computation of trajectories in our method
requires knowledge not only of the position and momentum but also of their
fluctuations.

Computed trajectories in the present method are unique since the
density function chosen is the one satisfying the maximum entropy
principle. This distribugéﬂn has an important advantage over the
canonical distribution (e ) in that the energy constraint condition
(§<H> = 0) is eliminated. Our choice of dynamical constraints (15b) in
the construction of the density function (15a) makes our theory suitable
for nonequilbrium statistical processes. Thus, the present method is far
more general than the equilibrium formulations.

In the classical ensemble picture, individual configurations have no
significance, whereas in the quantum case it is possible to obtain energy
eigenvalues (instead of average energies) for bound state systems, even
though the time-energy uncertainty holds. This is because the uncertainty
principle imposes restriction only on the product of the uncertainties in

_ o - : . e . i e
20 TN L O W 8 R T MO J b S AN R,
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position and momentum (or equivalently energy and time) measurement and
not on the individual uncertainties. Relying on this premise and noting
that bound states, because of their standing wave nature, have no explicit
time dependence, the existence of individual bound energy eigenstates is
assumed in the Schrédinger picture. Solution of the corresponding wave
equation gives the energy eigenvalues. A striking departure from the
classical ensemble picture 1is thus evident in quantum physics. In the
present development the concept of the ensemble picture is retained even
in the construction of the density function. Therefore, the concept of
eigenstates, which is central to BE and FD statistics, is superfluous in
the present method. Further, the symmetry rules of Pauli are implicit in
our approach since we do not need explicit knowledge of the probabilities

P [Eq. (37)]}]. In order to adapt the present method to Fermions,
additional variables are necessary to describe the spin orientation
associated with each particle. This extension will be reported in the
future.

So far, we have confined applications of the present method to
statistical systems only. Nevertheless, it is also suitable for studying
atomic and molecular systems. Sjince for an N-particle system we need a
priori knowledge of N rather than N” density functions, our approach is
particularly attractive for large molecular systems. These applications
await future studies. In the present method, the kinetic energy (KE) is
evaluated from

W2, N
KE = } Z—HS—-- } (2—;— (azj)2 + Lo )y - (38)
=t 4 4=

The temperature for a classical system is related to the kinetic energy by
the equipartition theorem,

3N
1 1 2 _3
<KE> = N } om. (azj) -5 kT . (39)
=1
Because of the appearance of the momentum fluctuation terms o¢,, the

appropriate definition of temperature in our approach is yet to be
resolved. Here we should note that temperature in Figs. 2 and 3
incorporates the effect of fluctuation.

In summary, the present dynamical description requires knowledge of
position, momentum and their respective fluctuations. This does not allow
precise measurement of either position or momentum. As a consequence, the
Einstein, Podolsky and Rosen paradox [l,4] does not arise.
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