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ABSTRACT

The classical Levinson-Durbin linear prediction formulas for real valued input sequences
are examined and compared to the recently proposed split-Levinson formulas. Both the
autoregressive linear predictor model and the adaptive lattice model are used to formu-
late the new split-Levinson algorithms. A brief introduction to the theory of svmmetric
nolviomials i prescaicd to furnt tie dasis ol the new algorithms. Computer simulations
are used to test and compare the computational accuracy of the new algorithms for AR
filter coetlicient estimation, parameter estimation for a moving average process, and
spectral estimation of sinusoids in white noise. Research results indicate that the new
algorithms reduce the number of real multiplications required for a k* order AR filter
problem by one-half, and they are aprplicable to both the extended Prony method of
spectral estimation and the estimation of moving average parameters. /';
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I. INTRODUCTION
A. OBIJECTIVE

The classical Levinson algorithm is known to provide solutions to real valued. hinear
svstems involving Toeplitz structures. The computational cost for these solutions, is
known to be O(k?). where K indicates the filter order. It has recently been proposed that
the classical algorithm may be transformed into 2 simpler algorithms. using the theorv
of symmetric polvnomials, and that either of these algorithms can be used to to solve for
the predictor polvnomial of order k at a reduced computational cost. [Ref. 1: p. 470]

These new algorithms are termed the split-Levinson algorithms because their basis
is formed from the concept of symmetric polvnomuials. These are not new 1n theory, but
the application of the process to linear prediction is a new concept. Svmmetric
polvnomials are based on the Barlett Bisection Theorem [Ref 2 : pp. 1073-1076|. where
a svstem that possesses svmmetry about a point, such as a Toeplitz matrnix. can be de-
composed into a svmmetric and an antisvmmetric part. The unique point of the theory
is that either part mayv be used to solve the problem, or a combination of both parts can
also be used 1 the sviution. Duruig our rescaich we chall only ennsider real data se-
quences.

The split-Levinson case also has a lattice structure as the classical case. However,
ag will be shown, the structure of this lattice shows little resemblance to 1ts classical
counterpart. A derivation of a revised split lattice structure, and its recursive 2lganithm
was attempted in order to represent the split lattice in a form similar to that cf the
classical structure. Although unsuccessful, the derivation procedure is presented for
subject matter continuity.

Computer programs have been written to implement the new algorithms and com-
pare them to the classical algorithms. Additionally, computer programs are included te
apply the split-Levinson algorithm for two cases, where the computational efficiency of
the new algorithm could be of substantial benefit. These cases include the Moving Av-
erage (MA) problem, where the parameters of a MA n.odel must be determined from the
given data, and an extension of the Prony method of spectral estimation, where a least
squares estimation of the presence of sinusoids in white noise is made from the output

data sequence.
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This thesis compares the classical and lattice structures of the Levinson recursion
formula given in [Ref. 3: pp. 145-167], and examines not onlv the formulation of the
recursion formulas for these algorithms. but also the complexity of the computations

and the resulting structure of each of the algorithms.

B. THESIS ORGANIZATION

The structure of the thesis is divided into 4 chapters, including the Introduction. In
Chapter I1 we will review the classical Levinson algorithms. In the first case, the algo-
rithm is obtained using the autocorrelation function of the input sequence. and in the
second case, it 1s obtained using the forward and backward error vectors of the input
sequence. In each case we shall establish the number of real multiplications required to
complete a k-th order recursion of the respective algorithm. As stated, the ultimate goal
is to establish the computational efficiency of the split-Levinson algorithm over the
classical Levinson algorithm. Chapter [ deals with the derivation of the split-Levinson
algorithms preceded by an Introductory section on symmetric polvnomials. As in Chap-
ter 1. both the autocorrelation function and the lattice algorithms will be developed.
In addituon. a comparison between the computational cost of the Levinson and spht-
Levinson algorithms and an attempt to define the split lattice structure in terms similar
to the Levinson based lattice are presented.

In the final chapter two practical applications of the split-Levinson algorithm are
investigated. These are: (1) the MA parameter estimation problem. and (2) the extended
Prony method. In case (1), the Levinson recursion used to determine a predictor coefhi-
cient vector 1s replaced by the split-Levinson algorithm. A comparison between the test
coeflicients and the computed coefficicnts 1s presented. In case (2). an estimation of
sinusoids in white noise is performed. Additionally, overall conclusions of the research

as well as proposed topics for continued thesis research are presented.



Hl. THE CLASSICAL LEVINSON ALGORITHMS

The importance of the Levinson algonthm in hincar prediction theory is well known.
The reason to present the algorithm i 1ts two forms 1s twoflold: (1) to present certain
Jefinttions that will be required later in the develepment of the sphi-Levinson algo-
rithms, and {2) to detail the computational complexity of the Levinson algerithm for
compurison purposes to the split-Levinson versions of the algorithm. In the content of
our discussion witiun this thesis, we shall confine ourselves to the study of autoregressive

modeiing problems of real sequences as in Figure 1. [Ref. 3: p. 132]

w(n) -+ > u(n)

a(1) z

- [

a(2) F 4

e — -
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| a(M) le—oo] -
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Figure 1.  Autoregressive Model.




We know from linear prediction theory the augmented normal equations given by,
(2.

can optuimally be solved by the Levinson algorithm. and that this algorithm can be im-
plemented with either the autocorrelation function or the forward and backward pre-

diction error vectors of the input sequence [Ref. 3: pp. 132-170)

A. THE LEVINSON ALGORITHM

In order to examine the computational complexity of the Levinson recursion. 1t is
necessary to formulate the recursive algorithm, and to determune the number of real
muluplications and additions required to complete the algorithm. First, construct u
Toeplitz matrix from the sequence s(t), of length N, defined as R, =[R,_ 0 < j<A],

where the elements of the matrix are the autocorrelation lags given by [Ref 2! p. 616)

Vel

3 I
Ri=<—71= a

(=i)

sy ste+ 1) (2.2)

then, the predictor vector a can be determined as a solution to the svstem defined by the

matrix equations

[R.1(a,] = [5,.00....017 (2.3)
where o, 1s the prediction error norm, and is defined as
k
ak=R0+Za,u-R, (2.4

=1

[t is recalled from linear prediction theory, that given a positive-definite matrix R,
of order k+ 1, the kth order a coefficient vector can be computed recursively from the
nested Toeplitz submatrices, and their respective successive predictor vectors, a. The

well-known Levinson recursion formula is this solution, and has the form

—_
(]
n
~

- e
Ay = Ay i+ Pryy ki i=012.. .k

with the conditions that a,, = I, and a,_,, = 0. The parameters, p, = a,,. are called re-

flection coeflicients, also PARCOR coefficients, because theyv represent the partal cor-
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relauon between the zero-th and the k-th clement of the prediction vector with the cffect
of all the intermediate elements removed.{Ref. 4: p. §3)
To construct the Levinson recursion we must use the prediction error norm re-
lationship
g, =1(1—-pilo,_. 12.01

=y

and the 1dentity

bl
|

a, (2.7)

Opmibg=—) R ap_y;

P

=

to define the recursion variables. Consider the following definition as it applies to the

Levinson recursion [Ref. 1: p. 472].

k-1
- S z Rii@pmr

& ‘ {2.8)
i=0
=0 1Pk
and solving for p, from Eq.(2.8), we have
i

The error norm o, can be written in terms of the the normalizing term /4, by rewriting

['q. (2.6), and making a substitution from Eq. (2.9)

2
O = (l - 0k)0k_1
=0, — PilOi1Pk) (2.10)

Or—1 ~ Ptk

Combining Eqgs. (2.5), (2.8), (2.9). and (2.10), we have the basis for the Levinson algo-
rithm, and it is summarized in Table 2 of Appendix A.

B. LEVINSON LATTICE REALIZATION

If we are given a real sequence of signal values s(0) s(1), ... s(N-1). and it is known
that s¢ty = O, for —={ = ¢ and r > .V, then for the linear prediction problem of order k we
find it necessary to find a set of real numbers a,. a,,. ..., a,, that will minimize the for-

ward and backward prediction errorvectors using a linear combination of the past signal

N




vectors. [f we call the forward prediction error vector £(r) and the backward error vector

b(1). and define them in terms of the a,, coefTicients, [Ref. 2: p. 646] we have

2
=Y g st—) 211
—— "
K
bin = Z“kﬂ—" ste—1) (2.1

then it turns out that the same real numbers, a,, . wilt provide the solution to either of

the forward or backward prediction problems, (i.e., minimize the squared Euclidean
norm of both f, and 6,).

Let ¢, be defined as the squared norm, that is
o = Ifill’ = [ef (2.13)

From Egs. (2.11) and (2.12) forming the first three terms of each error vector we have
the following,

So0) = aps(0) + apys( =1) + ... + ags( —k) (2.19
Sol1) = apos(l) + ag 5(0) + qpas{ —1) + ... + aqstl — &) (2.1%)
Ll 2) = aos(2) + a s(1) + qpy8(0) + ... + ay.5(2 — k) (2.16)
and,
bi(0) = @ s(0) + Gy ey S(—1) + @y S(—2) + ... + Gos( —k) (2.17)
b 1) = ages(1) + @y 5 S(0) + @y g_y5( = 1) +... + @yes(l — k) (2.18)
bu(2) = ags(2) + a4, (1) + a4, _55(0) + ... + apes(2 — k) (2.19)
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[f we examine the elements of these two vectors we can see thev are related in thut
each can be derived from the other by reversing the order of the a coefficients. If we form
the Euclidean norm of each vector, f.! and b, we see that the 4-th predictor vector
[a.-. a,,.....a,.]7 munimizes the error norm, and f,| = ...

From [Ref. 3: pp. 156-157], we can use the Levinson algerithm to define the

recursion formula for the forward and backward prediction errors given by

LA =fo_ (0 + ppb (1= 1),

. 2.20
by = pyfi_ ) + b _ (1= 1) ( !

If we let the following definition apply to the lattice version of the Levinson algo-

rithm

N4d—2
b= oepi= = O ferD(D) (2.21)
(=1
then using Eqgs. {2.9), (2.10), (2.20), and (2.21) we can summarize the Levinson lattice
algorithm in Table 3 of Appendix A.

Even though the lattice algorithm is implemented directly from the data samples. its
computer implementation will be more complex because of the vector manipulations
that must occur in each iteration. The lattice structure defined by Eq. (2.20) is shown in
Figure 2.

In summary, we discussed the Levinson algorithm which uses the autocorrelation
elements in its recursion and the related lattice structure which uses the input data di-
rectly in its formulation. In terms of the computational complexity, both algorithms re-
quire real multiplications of the order 42, as detailed in Tables 2 and 3 of Appendix A,

in order to realize a k* order predictor filter.
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[II. THE SPLIT-LEVINSON ALGORITHMS

The split-Levinson algorithms are based on the theorv of svmmetric and antisvm-
metric polvnomuals. We know that for an k-th order real autoregressive process. the

normal equations are

- r 7 -
| RO R‘ R: Rk -} i G‘l
Rl RO Rl Rk—l 4] 0
R, Ri R .. R lla 0
= (3.1)
LRk RM—X Rk_w RO a, —0-‘
or,
Ra, =[0.0.0....0]" (2.2)

Using the Barlett Bisection Theorem [Ref. 5: pp. 1074-1076], and because of the sym-
metry of the autocorrelation matrix, we can say that the predictor coefficient vector is

the linear combination of a symmetric and antisvmmetric predictor vector given by

a, =a} +ay (3.3)
The symmetric and antisymmetric vectors are defined as
(5 _ B
a; =|
B -
(3.4)

B
@)
a =
¢ [—B’]

where B represents one-half of the vector components of a,, and B" represents the re-
versal of the vector components of B. Using Eqs. (3.3) and (3.4). we can transform the

normal equations into




Ra) =[0i200...0:2]7

Ray’ =[a1200....,—a2]"

tn

Therefore, we can see some favorable consequences of these revised normal
equations, and their solutions. First, either the svmmetric or antisvmmetric form wiil
give the same solution. and second. because of the symmetry of the predictor vectors,
we need only solve for one-half of the predictor coefficients.

Similar to the Levinson algorithm we now proceed to develop the split-Levinson
algorithms from the input sequence autocorrelation function and the predictor error

vectors.

A. SPLIT-LEVINSON ALGORITHM

The predictor polvnomuial a,(z) is defined as

k
—i

az) = D a (3.6)
i=0

relative to the given Toeplitz matnix of autocorrelation lags. Denote the reverse of our
predictor polvnomial as a(z) = z-*a,(z-!), and the predictor polvnomial has been shown

to obey the recursion {Ref. 3: pp. 136-157]
al2) = ay_y(2) + puz”'a(2) (3.7)

and the reverse polvnomial of Eq. (3.7) is
a2y = 27"a,_ (2) + ppa,_,(2) (3.8)

We now want to form a new polvnomial from the given predictor polynomial that
will form the basis of the split-Levinson algorithm. It is desired to show that the deter-
munation of the coefficients of this polvnomial will allow us to recover the original pre-
dictor polvnomial, and at the same time be more computationally efficient. We define
the symmetric polynomial as P,(z), and the antisymmetric polvnomial as Pf(z) , and we

desire them to be of the form [Ref. 1: p. 472]

10
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[
<

Recall from Eg. (3.4} and (3.3) that the svmmetric and antisymmetric predictor coefli-
cients are composed of two vectors that are reverses of each other. and we will define
these vectors so that thev obey the relationships

Pui = Prk-i

iq)

03} (31‘))
P = = P~

Consider the mathematical interpretation of making the autocorrelation matrix. R,
a singular matrix. If the refiection coeflicient p, is made + 1, then this corresponds to
an element of R, making the matnx singular. For this reason we shall designate the
svymmetric and antisymmetric predictor polynomuals as singular predictor polvnomials
(Ref. 2: p. 472] and from Eq. (3.9) theyv are defined as

-1A

Piay=a,_,(2) + 27 a,_(z) (310
Pz(f\(:) =a,_(2) =27 a,_,(2) ~

Also. these singular predictor polvnomials are self-reciprocal [Ref. 2: p. 472} because of

their svmmetry and may be expressed in the following forms

Pz)=2""Pz™"

. N _ (3.12)
PP =—27*p(z7h
From Eq. (3.11) we have
278 1(2) = Pil2) ~ gy (2) 13
@ (3.13)
=aqu_(z) = P (2)
If we add Eqs. (3.7) and (3.8), and make a substitution from Eq. (3.13) we have
a2) + 8(2) = 27 4 (2) + P4y (2) + Gy (2) + Pr—(2)

= (1 + 0, () + (1 + pp)z ' a4, (2) (3.14)

=2 P(2)

11




where we have defined 4, as
/k=l+p1( (3]5'

In a similar fashion we can solve for the antisvmmetric normalized singular predictor
7

polvnomial by subtracting Egs. (3.7) and (3.8), and substituting from Eq. (3.13) we have

(2 pl(a)

az) = =) = AP (3.16)
where
P

=1-p, (3.17)

Simular to the predictor polvnomial a,(z), we can define the singular predictor coef-

ficient vectors for Eq. (3.9) as [Ref. 2: p. 472]

r
Pi = [Pros Prtv -« Pracd

(3.18)
A = L i AT
Since we want the split-Levinson normal equations to be of the form
R, =[0,00,..,0]" (3.19)
Ra,=1[00,..,0,]" (3.20)
then from Eq. (3.14) and (3.16) the singular predictor polynomials are
a,(z ay(z)
Pk(Z) = k( ) + k(z
/.k /.k
A (3.21)
PEZ) = adz)  als)
k }-La) )_La)

Since a,(z) is a polynomial formed from the predictor coefficient vector that is a solution
to Eq. (2.3), it follows that P,(z) and Py(z) are solutions to the Toeplitz system described
by Eqs. (3.19) and (3.20). [Ref. 1: p. 472]




. (3.2
- a/' a’o
’\“) —_ —_— ~
Rkp}‘( - Rz'-: iy Sa)
[ Ly

i Normaiizing Egs. (3.19) and (3.20) by £, and 2, the split-Levinson normal equations in
matrix form are expressed as
: r
R.-'«.pk = [rk.U.O, ey Tk] + n
@ _ [ @7 (3.2
* Ripi = L7 00, .., =7 ]
where we have defined the modified prediction error norm [Ref. 2: p. 651]
T =2
3 A
o (3.24)
kT - (@)
“k

If we expand the matrix expressions in Eq. (3.23), the modified error norms may be ex-

pressed as finite sums of the predictor coefficients

k
T = Z R, pii
i=0

X
(@) _ (a)
Ty = E R, pii

i=0

where R, is the i-th autocorrelation element of the k-th sub matrix.

Since the symmetric and antisymmetric polvnomials are closely related. we shall
derive only the symmetric polynomial recursion equations, and then simply present the
results for the antisvmmetric case.

The final step in the derivation is to derive a three term recursion formula for the
symmetric polynomial. From Eq. (3.11) and (3.14) we have the surprising result that the
predictor polvnomial a,(z) can be obtained from a linear combination of successive sin-
gular predictor polynomials {Ref. 2: p. 472}. First, form P,.,(z) from Eq. (3.11), and then

eliminate a,(:) using Eq. (3.14)

13
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T

P, D)=al) + :_:&k(:)

aglz) + :_:[,%kPk!:) — ql:)]

(3.20)
-1 —1. 3.2
=~z )@y + 27 AP
(1= 27 ay(z) = Py (2) = 27 2 Pul2)
[f we replace K by k-1 in Eq. (3.26) above we also have
(1= 27ha,_(3) = Pyls) = 27 2 Py (2) (3.27)

We now form our recursion formula by mutiplying Eq. (3.11) by (1 — z7'), and use Ly«

(3.13),03.26). and (3.27) to elimipate p, and all a, predictor polyvnomuials.

(1= :—:)ak(:) ={l - z—i)ak_l(:) + ol — z—x)z_lc.ik_l(z)
= (1= 27, (2) + pel = 27 P2) ~ @ (2]
=1 = 27 (2) + Rl Pez) = @y (2) = 27 Py2) + 27 a1 (2)] (3.28)
= a,_, (21 = T =+ 27 ]
= a (=271~ py)]

If we now substitute for (1 —z-")a,(z7"), (1 —z7")a,_(z7') from Eqs. (3.27) and (3.28). and
eliminate p, using Eq. (3.135), we can complete the derivation

Poo2) = 27 iy Plz) = [Pyz) = 27 5 Pech (D12 = ) + (A Pi(z) = P ](1 = 271
= 2P 2) = i) PyD) = 227 A P (2) + PRIV TN )
+ A PY2) = Pz) = 27 A Pl) + 2T P (3.29)
Peet(@) = (1 = 27H)Pya) + 27 hjem Pec ()2 — 2]
=(1+ 27 )Pul2) — 22” Py (2)

Taking the inverse Z transform of Eq. (3.29), we have the three term recursion formula

for the singular predictor coefficients
Prui = Pt Pra—i = Xl k=1 ki (3.30)
where the recursion parameter a, is defined as
ap =4 [2- 4] (3.31)
We note that t, is determined from P,(z) from Eq. (3.23), and therefore we conclude that

the singular predictor polynomials can be recursivcly computed from Eq. (3.30). How-
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ever, the recursion parameter 2, is not quite in the correct form. From Fgs. (2.10),

(3.15), and (3.31) we can alternatively compute x, from [Ref. 2: p. 473]

Ay =T (3.32)

The dual relationships for the antisvmmetric split-Levinson formulas can be derived
by following a procedure simular to the one presented above. It suffices to replace the
quantities 4., r, a,. p.. by their antisvmmetric duals, i.e., pi?, and use the following anti-

symmetric initial conditions. [Ref. 2: p. 649]

pid =0
(1)
Pio =1 < an
p(d)_ I (-)'-’-))
==
PR R
Ty = R

Recursive equations for the symmetric split-Levinson algorithm are summarized in
Table 4 of Appendix A. Examining the entries in Table 4, we see that a full iteration
loop of the algorithm requires approximately t real multiplications. However, because
of the symmetry of the singular predictor coefficients, we only have to perform one-half
of these calculations. Therefore, for a k-th order filter we need to make on the order of
/2 real multiplications. The é function in Table d is used to distinguish betweer even
and odd orders of the indexing variable.

The FORTRAN program SPLIT, in Appendix B, estimates the predictor coefTicients
using the Levinson and split-Levinson algorithms. Figure 3 is a graphical comparison
between the known test filter coeflicients of SPLIT, shown by the solid curve, and the
filter coefficients computed by the Levinson and split-Levinson algorithms, shown by the
dashed curve. We now undertake the derivation of the lattice form of the split-Levinson
formulas to verify the numerical complexity of that method, and to investigate the

svmmetric and antisymmetric lattice structures compared to the Levinson lattice forms.

B. SPLIT LATTICE ALGORITHM

We begin the split lattice derivation by introducing the symmetric and antisvmmetric
error vectors X,. X [Ref. 2: p. 648]. If we use previously established singularity concepts,
and substitute + 1 for p, in Eq. (2.20) for the svmmetric and antisvmmetric error vectors,

X, and xy?, respectively, we have
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Figure 3.  Levinson / Split Levinson Coefficient Comparison.

() =L () + b (1=1)

a (3.34)
X0 = fim D) = by (1= 1)

As in the split-Levinson case, we shall proceed with the derivation of the symmetric
split lattice, and present the antisymmetric lattice results at the end of the derivation

with any significant changes noted.




If we extend the singular polvnomial concept to the singular predictor coelTicients,

we can start with the Levinson coefficient recursion formula and substitute — | {or p,

1,
¥]
i 4

Qus = dpey ; + Ppd

K= =1 K=
and substituting for p,
Poe =y F ey gy (3.36)

It we write Eq. (3.34) representing the time index (1) with the subscript (i) we have an

algorithm that 1s more easilyv adapted for computers.
'rkizf;(—\,i+bk~l.k——i (3.37)

Now, comparing Egs. (3.36) and (3.37) we have a direct correlation between the two,
and from the split-Levinson equation for the forward error vector, we can write the dual

spat lattice equation for x(/7)

k
X0 = Z Py St —1)

i=0

(O¥]
ts)
[o o]
—

Since Eq. (3.38) is in the form of a convolution sum we can apply Z transform theory

to see if anv inferences can be made

X (2) = P2)S(2)

Kul2) ) (3.39)
NE Pz

From EqQ. (3.39) we can conclude that the symmetric polynomial constitutes the Z
transform of the transfer function formed from the error vector and input sequence z
polvnomials. Now we can use the previously derived split-Levinson algorithm. and in-
verse transform it to obtain the [attice error vector recursion algorithm.

Repeating the split-Levinson recursion we have

Pk+1(:) = (l + :_])Pk(:) - kaz—lpk_[tyz)

- - (340
=P2)+: Pz)—ayz P (2)

Multiplying Eq. (3.40) by S(z) and using Eq. (3.39) for P,(z)S(z) we have

17




S(2)Pyoi(2) = S PY2) + 27 Pylz) = 2Py 12)]

1
-1

. -1 .. (3.41)
Xy — 22 N (0)

’YI(-FK(:) = ‘YK(:) -2z
Applyving the inverse Z transform to each side of Eq. (3.41) we have the singular pre-

dJictor error vector recursion formula [Ref. 2: p. 630]
Xy (1) = () + 27 ) = 2,2 e (1) (3.42)

The svmmetric lattice structure given by Eq. (3.42) is shown by Figure 4. [Ref. 2:
p. 630]

From Eg. (3.32) we know that the recursion parameter a, is defined as /7., and
since z, appears in the recursion formula for the singular error vector, we need to solve

for it. We begin with the Levinson error norm equation

2
o=l —po,_,

ZO'k = :ak—l(l + pk)(l - pk)
T

(3.43)

2
1 +p

= :U[-:—l(l - 0y
k

2041 = pi) = 27,

where we have substituted r, from Eq. (3.32), and 20,_,(1 — p,) is defined as [lx,[* [Ref.
2 p. 650}

The initial conditions for Eq. (3.42) must be examined because most cases are trivial
except for the case of k = 0. From Eq. (3.38) we have

and from [Ref. 2: p. 648] we define py, = 2.

The antisvmmetric duals are very similar to the svmmetric case, and can be formed
by replacing the symmetric variable by its antisymmetric counterpart, i.e., x{(r) for
x{n, — p, for p,, etc. The initial conditions for the antisymmetric case are given below

@y, _
%o (=0 (3.45)

The antisvmmetric lattice structure given by the antisymmetric dual of Eq. (3.42) is
shown in Figure 5. The split-Levinson lattice formulas given by Egs. (3.37), (3.43), and
(3.44) are summarized in Table 5 of Appendix A. If we examine the number of real
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multiplications given in Table 4 and Table 5, then we can deduce the following conclu-
stons. The split versions of the Levinson algorithm do produce a reduction in the com-
plexity of the calculations when compared to the classical versions. The split-Levinson
produces a reduction of one-half, and the Levinseon produces a reduction of 3 2 [Ref. 2:
p. 645]. The FORTRAN program SLATIS, Appendix C, implements the Levinson and
split-Levinson lattice algorithms, and a graphical comparison between the known test
coeflicients, shown by the solid curve, the coeflicients estimated by the Levinson lattice
algorithm. shown by the dashed curve, and the coeflicients estimated by the svmmetric
split-Levinson algorithm, shown by the dotted curve, is presented in Figure 6.

The split lattice structures shown in Figure 4 on page 19, and in Figure 3 on page
20 show that the classical lattice structure appears to be lost in the new algorithm. The
distinct advantage of the original lattice structure is the modularity of the filter. [n order
to retrieve this appealing feature of the lattice filter we shall now proceed to derive a
revised version of the split lattice structure, and see if it can have a form similar to the

classical structure.

C. SPLIT LATTICE REVISED STRUCTURE
To begin, consider the second order classical lattice structure derived from
Figure 2 on page 8. We can write the following equations for the first and second stage

forward and backward prediction errors,

filn)y=s(n) + ps(n=1)

gin)y=pstn) + s(n— 1) .

filn) = fi(n) + pyg,(n—1) (3.46)
g:0n) = pafi(n) + gy(n — 1)

Now substituting the equations for f,(n) and for g,(n) into the equations for f(n) and

g{n). solving for the second stage forward and backward prediction filter errors and

taking the Z transforms yields the transfer functions

-F-ZE)-—IH"(o +p1p3) + 032 (3.47)
S(:) 1 1#2 2 K
and.
Gy(2) -1 =2
S0) =p,+z (p,+pp))+2 (3.48)
21
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which obviously vield the second order predictor transfer function A,(z) and its rcverse

version .»}2(2), where ap =1, a = p,. @y = p, = ppy = p(1 — p;). Now forming the third

order svymmetric polvnomial Py(z) from our second order example, we have [Ref. 1: p.

472)

Pyz) = Ay + 27 4527
- ) - (3.49)
=ay+(a, +ay):" +(a + a2 + agz

)

P




If we define ¢, = 1. and (q, + a;)=p, . then

Psi=1+p:"" spThe

{3.30)

=l+pT T 2T
Decfine the following terms:
Fila)= 1:;,];" (3.51)
Gi=:"(1 - p2)
therefore,
Py(z) = Fy(2) + 272G, (2) (3.52)

Equation (3.32) defines the revised svmmetric split-lattice structure, and Figure 7 gives

a graphical representation of that structure.

F (2)
—

— K P (2)

G1(z)

Figure 7.  Proposed Split Lattice Configuration

In order 10 show that the preceding classical structure can be equated with the
symmetric polvnomual derived earlier, it is now necessary to form the forward and
backward prediction error transfer tunction of the new split lattice structure and com-
pare them to the Z transform of the symmetric polynomial. Therefore, from Figure 7

and Eq. (3.52), we can write Py(z) as

Py)=1+ Kz + 27} K +27") (3.53)
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Now, if we compare Eq. (3.50) to Eq.(3.53), we see that K, = p,. But, from Eq. (3.49)
we know that p, = (4, + a,), and substituting for a, and a, from Eq. (3.48) and (3.49)
vields

Ki=pi=p, +pl = py) (3.34)
Let us now rederive the symmetric polynomial from the revised split lattice structure.

From Eq. (3.50) and (3.54) we have

-2

Piz)=1+(p, = py—p1p2)z" + 27 [(py — py— 010y) + 271 (3.35)

Since we have found that the symmetric lattice can be restructured to a form sinular
to the classical lattice, the next logical step is to find a recurrence relation for the new
lattice. Let us consider a 5* order symmetric polynomial to determine the step-down

recursion procedure, given by
P =1+ psz ™ 4 psyz 4+ psyz 4 psiz 4 27 (3.56)
From Eq. (3.51) we have

v -1 -2
o) =1+ps 27 + psyz
-2 -1
Gyz)=2""+psiz” +ps;

«n

(3.57)
As per the observations made in Figure 7 on page 23 and Eq. (3.51), we have the lattice
reflection coefficient for the second stage, K, = p,,, Now reduce the order of F/:} to find

the first stage reflection coefficient using the standard inverse Levinson recursion [Ref.

4 pp. 156-157].
. Fy(2) = KiGy(2)
Fiz) = 2 . 2
t ; K (3.58)
51 -1
=15
therefore
Psy .
K=T7F (3.39)

Now rewriting the equations for F(z) and Fy(z) using the derived reflection coefficients.

we have




. A

Fiy=1+K:"

Gz =:""+ K,

FA) =1+ K1+ K):7 + Kzz—z
Giz) =27+ K1+ K7 + K,

(3.00)

and we know that

Ps(:) = F:(:) -+ Z-BG:(:)
=1+ K+ K+ Kar e Ry (3.61)
+ R +K): T+ 27

Equating the terms in Eq. (3.36) and (3.61), we have p, = K|(l + K,) and p, =K.
Knowing the values of K| and K,, we now can form a two stage svinmetric lattice similar
to that in Figure 7 on page 23 to implement P(z) . However, we are interested to find
if we can recursivelv obtain the lower orders Pyz), Pz), etc. or the higher orders
P(2). P(z), etc. from P, (z). In an attempt to form P,(z), we use the standard forward

recursion [Ref. 3: pp. 136-157] to obtain

FJ(_:} = Fz(:) + [\'3:—162(:)
=L Kl + K™l Kyl KK (3.
+ KKyl + K3z 78+ Ry

)
>
t

and

Gy(a) =270+ K(1 + Ky)z™2
+ K27+ KKy (3.63)
+ KK+ Ky): 7 + K

Forming the symmetric polynomial Py(z) from Eqgs. (3.62) and (3.63) we have

P(z) = F3(z) + 2_363(2)
=1+ (K + KK, + K,Ky)z"™!
+ (Ky + KKy + K KKzt + Kz ™ (3.69)
+ K7+ (K + KK + KKK ™
+ (K, + KK+ KK) ™ +27°

Comparing Eq. (3.64) to the symmetric form of P(z), we have
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Per = (K} + KK, + K, 45)
sy Psifs2 l (

N I+ ps, * 1+ ps; +TPSLP63

s
[o
‘N

The one-half enters into Eq. (3.63) because we know that for even orders the polynomial
coefhicients are symmetric about the center element, and thev must be shared in the
matrix equations. We shall now expand Eq. (3.65) to attempt to develop a recursive
algorithm for the sixth order coefficients from the fifth order coefTicients. Expanding Eq.
(3.65) we have

N l + psy 2 s
(1 + p2)pst = psy + psipsy + — (psy + sy — aspay] (3.66)

where the term in brackets is an expansion of the coefficient recursion formula, Eq.
(3.30), for pg,. Collecting terms we have

|
(1 + ps)per = psi(l + psy) — (1 + psy) ‘71’52[!’52 + Psy — XsPay]
o (3.67)

Pei = psi + plps: — _25—/7'1]
Substituting for p,, from Eq. (3.30)

Psy = Pay + Pa) — %P3 (3.68)

From Eq. (3.68) we can observe that the a, recursion parameter and the number
of previous coefficients required to be known are increasing in order, and it appears that
a simple recursive algorithm based on the above approach is not possible. Note that
although the new lattice structure does not appear to be order recursive, we can express
a given order symmetric or antisvmmetric lattice structure in a more conventional form.

In summary, we know that the split-Levinson algorithm is a viable replacement for
the classical algorithm because of its computational efficiencv. We have studied both
autocorrelation and data (or lattice) realizations of the split-Levinson algorithm. An at-
tempt to derive a recursive split lattice algorithm vielded a classical-like lattice structure,
but it is not recursive in order. Further investigation is necessary in this direction. We
now need to test the split-Levinson algorithms on som.e signal processing applications.
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IV. APPLICATIONS OF THE SPLIT-LEVINSON ALGORITHM

In this chapter, we applv the split-Levinson algorithm in (1) the MA parameter es-
timation problem, and (2) the extended Prony method of spectral line estimation. Before
we take up these two applications we examine the algorithm’s usefulness if the original

filter has coetlicient sv:metrv. Le., the impulse response of a linear phase FIR filter.

A.  HANKEL AND TOEPLITZ MATRICES
In previous derivations we have assumed the FIR filter equation to be non-
svmmetric. Let us now investigate the problem where the filter equation is svmmetric.

i.e.. of the form

ym =stn) +as(n—1)+ays(n —2) + -~

, (4.1)
+ a,_ystl) + ays(n — k)
By definition, a symmetric polvnomial is self-reciprocal, that is
ayz) = &k(z) =2z ak(z—") {4.2)

Therefore, from the Levinson algorithm, predictor polvnomials are known to obev the

recurrence relation
-1 A -
aplz) = ap_y(2) + ppz ap_y(2) (4.3)
and in our special case we have

-1 A
a2) = ap_(2) + oy a,_,(2) = a(2)

-1 (4.9
=(l +pkz \ak—l(:)

In order to formulate a set of equations similar to the split-Levinson, it is necessary
to derive the normal equations for our special case, and compare them to the standard
equations, in order to develop the recursive algorithms. Since the predictor coefficients
in a recursive algorithm produce estimates of s(n) as the algorithm steps through its re-

cursive steps, denote this estimate as s(»). In vector form, we then have

—_ e - e~ ————— ———— ——————
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To derive the normal equations we must find the minimum mean squared error ( MSE)
from the equation for the error,

e(n) = s(r) = s(nln — 1) 4.6

The minimum mean squared error is found by squaring the error term, and then differ-
entiating the squared term with respect to the given a, vector. Combining these two ev-

olutions we have the following equations,

MSE=J
= Ele’(n)] (4.7)
= E[(s(n) — (3(n)ln — 1))}

To obtain the normal equations, we carry out the following steps:

2]

=5 = 0= 2£Ls()s;_ ] = 2El5181]

ELs(K)8- 1112 = ELs()s;.,] =5
R*=1g = rfrk—l)

From the split-Levinson recursion formulas we know that the singular svmmetric
polvnomial, P(z), is defined as the following,

-1~
Pz)=a,_(2) + 2z a,_,(2) (4.9
Since our predictor polynomial is symmetric, it is a reasonable question to ask if sym-
metric polynomials also obey this recursive relationship. It is noted as an immediate
consequence of the recursive problem, all of the preceding polynomals will also be
svmmetric. Therefore, we check the singular predictor polynomuial recursion to see if 1t

holds when the original polynomial is itself symmetric
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1A
a,_y(2)

L ==k
=q_(z)+:z 2 Ta._,(2)

ayz)=a,_(2)+z"

k1) A

- -2 ~k -1 -2
=l+az 4+az2 " +..+2 +z [l +az" +az "+ .+

- -2 —X

=l+(l+a):" +(q+a)+ . +:7F
Now that we see that the Levinson recursive equation holds for a symmetric
polvnonual, we derive the recursive relationships for our polvnomial using what is
known from the split-Levinson equations. We have defined the svmmetric polvnomial
Pz) to be a normalized combination of a non symmetric polvnonual, a(z). and its re-

ciprocal image. a,(z) in the form of,
AeP2) = ay(2) + a(2) (4.11)

By direct substitution it is a trivial matter to show that this relationship also hoids for
a symmetric polyvnomial, a,(z).

In order to develop the recursion for the symmetric polynomial, it is necessarv to
express the desired linear predictor in terms of the previous two predictors. To this end
use Eq. (4.10), to form a,_,(z). and substitute from Eq. (4.11) to perform this task.

-1A
D=af) +: z

ak+1( ) 1.,-( ) !a;.(( ) (4.12)

= ak(:) + =z [/.kak(‘) - a;‘.(')]

= a1 =27 + 27 a(z)

Solving for (1 — z-Ya.(z), and forming the quantity (1 — z-Y)a,_,(z) we have

1—:"NYa,(z)=a =27 alz

( 1(2) = @y k(2) @13)

1- z-l)ak‘l(z) = aqyfz) - z—lﬂ.k_lak_l(z)

These relationships will now allow us to form the three term recursion for the given

symmetric polynomial from Eqgs. (4.3), (4.11), (4.12), and (4.13)

a(z) = a_(2) + Py, (2)

- - (4.1d)
A (2) =1+ 27 )ay(2) — a2 a1 (2)

where we have defined a,

=iy (2=7p) (4.15)




From Eq. (4.14) we can see that the coefTicient recursion formula is the same form
as Eq. (3.29). and we can deduce that the split-Levinson algorithms will work equally
well for symmetric polvnomials that describe unknown filters s it does for polynonuals
that are not symmetric.

B. FIR MOVING AVERAGE PARAMETER ESTIMATION
If we consider an  FIR filter with an input sequence given by
s” = [sin)s{n — 1)...s(n — m)], and an output ¥(n) given by

M
Jn) = Za,- s{n— i) (4.16)
=0

then we can develop the necessary equations to estimate the moving average parameters,
and solve for the FIR filter coefficients. The algorithm to estimate the predictor coeffi-
cients can be defined as follows:

Let the three predictions, yr(n), s7(n), and $7(n), represent the m-th order predictions
of the forward estimate of v, the forward estimate of s, and the backward estimate of s

respectively. [Ref. 6: p. 1]

yf(n) = Zb,- s(n — 1) (4.17)
i=0
= cstn— i) (4.18)
=0
m
Sy(n—m)= Zd, s(n—m+ ), (4.19)
i=0

where the coefficient vectors are defined as,

b =[1—=by — b, ...—by]
=01 —¢...—c,) (4.20)
" =[0-c, - Cpoy o — € ]

Without going through all the details for the MA parmeter recursions, we can

summarize the recursion formulas for the predictor coefficients as [Ref. 6: p. 2]
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Notice that the predictor vector d” is not included in the preceding definitions since it is
the reverse ¢”

If we examine Eq. (4.21) we see that the recursive relationship for ¢ is a statement
ot the Levinson recursion, since K7, and A are the m-th order reflection coefTicients.
Theretore, we can apply the split-Levinson algorithm to solve for ¢, form d~ , and
recursivelv determine b~. Finally, from the theory of Moving Average processes, b™ = a~

The FORTRAN program MAVL, in Appendix D, uses a 25-th order FIR test filter
to to genecrate a test sequence, and the results are given in Table 6 of Appendix A.

Figure 8 is a graphical comparison between the known test coefhicients, shown by
the solid curve. and the computed filter coeflicients, shown by the dashed curve. The
curves are fitted to the linear magnitudes of the coefficients by interpolating spline

techniques.

C. EXTENDED PRONY METHOD

The estimation of the existence of sinusoids in the presence of noise is a common
occurrence in signal processing applications. In this simulation, we will show that the
spiit-Levinson algorithm can be directly implemented in the process to determine the
approximate frequencies. The noise is zero mean, unit variance, and white in nature.

In this application of the split-Levinson algorithm, we attempt to approximately fit
p exponentials to a data set of N samples. We have the constraint that N > 2p. and a
least squares estimation procedure is used. We begin by defining the estimate of our set
of data samples. [Ref. 7: p. 1404]

4
x= Z bpzm n=0,.,N~1 (4.22

3

where b, = A, exp(j6..)/2, and z, = exp(j2xf,Ar). The z, s are roots of uni® modulus with
arbitrary frequency and occur in complex conjugate pairs as long as f, #0 or 1/2):
Therefore, in order to solve for the p sinusoids, we must solve for the roots of the fol-

lowing polyvnomial. [Ref. 7: p. 1400]
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Figure 8.  MA Coefficient Comparison.

r
Y@y =Y q:¥ =0 (4.23)
e
k=0
The roots can be of unit moduius, and occur in complex conjugate conjugate pairs if
we constrain the polvnomial cocfTicients to be symmetric about the center element of the
polvnomial [Ref. 7: p. 1407]. This is an exact ocurrence in the symmetric and anti sym-
metric polvnomials of the split-Levinson algorithm, as long as the order of the

polynomuial is even, that is

@] (4.29)




Note that the last element of the coeflicient vector is g, 2 rather than a, because of the
svmmetry of the polynomial. and that symmetric polvnomials only guarantee that if a
root z, oceurs, then so does its reciprocal z-' {Ref 7: p. 1407).

The program EPROXNY 1, Appendix E. utilizes the split-Levinson algorithm to ap-
proximate the p order sinusoids to the given data set. A summary of the simulation cases

studied are presented in Table I, and the graphical results follow.

Table 1. SUMMARY OF TEST CASES
Case
Number

Constants Variables

Npts
Test frequencies

f;

SNR(-10, 0, 10 dB)

Test frequencies
2 fs NPTS
SN\R
Test frequencies

Js Filter Order
SN\R
Npts

[O9)

Test frequencies
Js
4 N\R (-10,0,
Npts SN\R (-10,0.10 dB)
SNR
Filter Order

1. Simulation Parameter Definitions
All simulation cases are done in the presence of white noise, and a minimum
possible separation frequency for the input sinusoids was determined. All plots are
sinusoid magnitude, in a linear scale, versus digital radian frequency, 8 for 0 <6 < n.
2. Simulation Results
We begin the spectral line estimation simulations with all parameters fixed, and
then selectively choose a parameter to vary and observe the effects of these changing
parameters. We begin with two sinusoids of f, =350 Hz, ;=75 Hz, which vield

8, = 1.396 radians, and 6, = 2.0944 radians, respectively. The number of data points

33




(NPTS) is set at 1500, and the filter order (M) is chosen to be 4 indicating the presence
of two sinusoids. Now, we chose to vary the signal-to-noise ratio (SNR) for 10 dB. 0 dB.
and -10 dB, shown in Figure 9.

Figures 9 (a) and 9 (b) show that lowering the S\NR from 10 dB, Figure 9 (a),
to 0 dB. Figure 9 (b), causes the estimation to worsen, and both indicate low frequency
estimation error. From both of these cases we can deduce the presence of two sinusoids,
but in Figure 9 (c) it appears that onlv one sinusoid is present, and the low SNR has
caused spectral estimation to fail. The conclusion for the first case is that, the better the
SNR. the better the spectral estimate.

For the second case we selected NPTS as the variable parameter, held the filter
order and sinusoid frequencies constant as before, and set the SNR at 0 dB. From Fig-
ures 10(a), (b), and (c) we clearly see that the better estimation occurs with NPTS =
1000, Figure 10(b), because of the equal amplitude and accurate frequency estimation
as compared to Figures 10 (a) and 10 (¢). All plots show low frequency error, but also
suggests that simulations should be conducted with NPTS set to 1000-1500 points for
the best results. This case provides the rationale for the value of NPTS for all other
stmulations.

In the third simulation all parameters are fixed as in the second case, and M is
varied for 4,8, and 10. From Figures 11(a), (b), and (c¢) we can see that although there
are only two sinusoids present, the estimation plots show M 2 sinusoids for all values
of filter order. Each plot has frequency components in the vicinity of the actual fre-
quencies, but they also give false indications of spectral lines. If we were making a deci-
sion on the number of frequencies based on the magnitude plots of Figures [i(b) and
(¢), then signifigant errors would be introduced. In this case it is obvious that unless the
exact number of sinusoids present is known, then the estimation technique will fail.

[n the final simulation we introduce two additional sinusoids, and examine the
effects of SNR on spectral line estimation. The constants for this case are f; = 35 Hz,
fi=85 Hz, =105 Hz, f,=175 Hz, NPTS = 1500, M = 4, and f, = 525 Hz. Digital
frequencies are 0.419, 1.010, 1.496, and 2.094 radians per second respectively. As in case
1, SNR takes on the values of 10 dB, 0 dB, and -10 dB. In Figure 12(a), where the S\NR
1s 10 dB, we get good results with near uniform amplitude estimation, and digital fre-
quencies that are close for all frequencies. However, from Figures 12 (b) and 12 (c), we
can see that the spectral line for f] is missing, and an errant line appears at approximately
2.8 radians. Both of the figures show unequal amplitude indications, but 3 of the 4
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spectral lines are in close proxinuty to thair actual values. From this case we draw the

conclusion that the spectral ine estimation performance deteriorates at low SNRs.
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Figure 9. Spectral Estimation: Filter Ovrder = 4; Data Record Length = [500;
SNRs: (a) 10 dB, (b) 0 dB. (c) -10 dB.
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Since the overall purpose of the simulation was to test the applicability of the
split-Levinson algorithm to the test cases, then it has been shown that the split-Levinson
will produce estimates for the respective cases. However, if we examine the accuracy of
the low signal-to-noise ratio cases, we see that the new algorithm suffers a similar fate
as the classical case in that it is difficult to accurately estimate the correct sinusoidal

frequencies in the presence of noise.

D. CONCLUSIONS

The split-Levinson algorithm has been shown to be computationally more efficient
than its classical counterpart. We can say that the application of the split-Levinson al-
gorithms to practical applications in lieu of the Levinson algorithm can be advanta-
geous, and the computational cost can be reduced significantly for large order svstems.
Addituonally, the split-Levinson algorithms are applicable to problems where we want
to model MA parameters, and perform spectral estimation using the Prony method.

We note the following restrictive areas for the new algorithm that could make it
unsuitable for certain signal processing applications.

1. Non-recursive split-lattice algorithm.

2. Computational accuracy degradation when performing spectral estimation in low
signal-to-noise cases.

[D¥]

Complexity of svmmetric and antisvmmetric [attice structures.

Since we have shown that the split-Levinson algorithm is a viable substitute for the
Levinson recursion, it is reasonable to consider areas of this topic for further research.
We know that the svmmetric lattice structure can be expressed in a classical form for
given filter orders, however, a recursive algorithm for this new structure has been elusive.
We propose that the existing recursive algorithm for the singular predictor coefficients
should be studied to see if a redefinition of equation parameters can extract a new re-
cursive algorithm for the new symmetric lattice. Additionally, the algorithm's poor per-
formance in low signal-to-noise ratio test cases of the extended Prony method is similar
to the performance of the classical algorithm. Therefore, techniques to improve the
classical algorithm’s performance, as detailed in [Refs. 8,9], may be investigated for ad-

aptation to the split-Levinson algorithm.
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APPENDIV A, TABULAR SUMDMARY OF ALGORITHMS

The tables given in this Appendix were taken [om [Ref. 2: pp.648-674], and are

presented for the convenience of the reader.

Table 2. THE LEVINSON ALGORITHM

Computation Add Mult
g = 1. Ty = Cy
Fork=1,2..n
k=1
';'k == Z Ck—iak—l.i k-l k-]
=0
. 1
qo=1,  pp="rylop,
Ok = Ohy = AP 1 1
k-1 k-1

A= Aoy it Py k=i
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Tabie 3. THE LEVINSON LATTICE ALCORITHM

Computation Add Mult
no=by=s) O<r<N=-1)
v
oy = Z s(0)? N-1 N\
=1
Fork=1.2,..n.
Nmi-2
== D feab = 1) N+k-3 N+k-2
==
P = il Oy !
O) =0y — £1Pk l !
LA = fio () + byt = 1) N +k-2 N +k-1
bty = pfie (D) + by (1) N +k-2 N+ k-1
(t=0,1...... N +k-1)
Table 4. THE SPLIT-LEVINSON ALGORITHM
Computation Add Mult
Po=2po=p.=l1=R p,=0
Fork=1,2,....n
k+1=2r-9,
withd=0or 1
=1
r—1+4
T = Z (Ri+ Ry_)Puy + 8Py t
=0
Pro=1, aq=1,/7,_, 1
pr=1—o, /(1 +p,_)) 2 i
Prat i = Pri ¥ Pii—t — %Pu—1, i1 2t t-1
t=12,....,0
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Table 5. THE SPLIT LATTICE ALGORITHM

Computation Add Mult
Xy =2st1) (U< N -1
q=s)+st=1) V=< M N-1
V-1
po=0, fo=ZS(f)‘ \-1 N
1=0
Fork=1.2,..n
N+k=1
2= ) a0 _ .
1=0 \ + k“ \ + k
Ap = Tyl Ty
k= Tl Ty I
pr=1~0 (1 + 0, 5 1
X (1) = x (1) + X (1 = 1) — 200, _(2) 2AN+K-1) N +k-1

(1=0,...,N+k)




Table 6. MOVING AVERAGE TEST RESULTS

Coetlicient Test <pﬁ§31§1§§$n
Index Coetflicients Coefticients
0 0.1 0.21
3 0.5 0.42
3 0.6 0.52
6 0.7 0.0l
< 0.3 0.71
g 0.9 0.81
9 1.0 0.91
10 1.1 1.02
12 1.3 1.23
13 1.4 1.33
14 1.3 1.24
16 1.1 [.06
a1 0.6 0.59
A 0.5 0.50
2 0.3 0.31
25 0.2 0.20
26 0.1 0.10
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APPENDIX B. SPLIT-LEVINSON PROGRAMS

PROGRAM TO CALCULATE THE NTH ORDER FIR PREDICTOR FILTER USING
THE SYMMETRIC AND ASYMMETRIC SINGULAR PREDICTOR POLYNOMIALS,
THE SPLIT-LEVINSON RECURSION FORMULA, AND THE AUTOCORRELATION
FUNCTION OF THE INPUT SEQUENCE.

SIGMAN
KEVEN

LAMDA

LAMDAS

ALPHA

ALPHAS

KODD

TAU
TAUS

RHO
RHOS

PS

AS

VARIABLE DEFINITIONS
N-TH DEGREE NORM OF THE FILTER.
INTEGER VARIABLE USED TO CONTROL ACCESS TO
SUBROUTINE EVEN WHEN THE INDEX VARIABLE K IS AN
EVEN INTEGER.
REAL VECTOR USED WHEN DEFINING THE SINGULAR
PREDICTOR POLYNOMIAL (PK(Z)) IN TERMS OF THE
NORMALIZED SYMMETRIC AND ANTISYMMETRIC PARTS OF
THE PREDICTOR POLYNOMIAL AK(Z).
LAMDACK) = 1 + RHO(K)
LAMDAS(K) = 1. - RHOS(K)
REAL VECTOR USED TO SIMPLIFY THE THREE-TERM
RECURRENCE RELATION FOR THE SINGULAR PREDICTOR
POLYNOMIALS OF THE SAME TYPE.
ALPHA(K) = LAMDA(K-1)*(2. - LAMDA(K)), OR
ALPHA(K) = TAU(K)/TAU(K-1)
ALPHAS(K) = TAUS(K)/TAUS(K-1)
INTEGER VARIABLE USED TO CONTROL ACCESS TO THE
SUBRCUTINE ODD WHEN THE INDEX VARIABLe K IS AN
ODD INTEGER.
REAL VECTOR OF "MODIFIED NORM VALUES". THE
VALUES ARE CALCULATED FROM A SUMMATION OF
PRODUCT TERMS OF THE AUTOCORRELATION LAGS, AND
THE COEFFICIENTS OF THE SINGULAR PREDICTOR
POLYNOMIALS.
REAL VECTOR OF REFLECTION COEFFICIENTS RHO(1),
RHO(2),. .. ,RHO(N).
DESIRED ORDER OF THE PREDICTOR POLYNOMIAL.
REAL VECTOR OF AUTOCORRELATION LAGS R(0),R(1),
R(2),...,R(N)
ARRAY OF SINGULAR PREDICTOR POLYNOMIAL
COEFFICIENTS FROM P(0,0),...P(N+1,N).
ARRAY OF PREDICTOR POLYNOMIAL COEFFICIENTS.
EACH I-TH ROW OF THE ARRAY CONTAINS THE
PREDICTOR POLYNOMIAL COEFFICIENTS FOR THE I-TH
ORDER PREDICTOR POLYNOMIAL.
INTEGER VARIABLE USED IN THE SUBROUTINE ODD
IN THE COMPUTATION OF THE TAU(K)'S.
DUMMY VARIABLE USED DURING THE CALCULATION
OF THE SYMMETRIC SINGULAR PREDICTOR POLYNOMIAL
COEFFICIENTS.
VARIABLE DECLARATIONS
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C

C

C

©FAL C(0: 100),P(0:100,0: 100),TAU(O: 100)

REAL A(0:100,0:100),LAMDA(0: 100) ,RHO(100),SIGMAN

REAL PS(0:100,0: 100),AS(0: 100,0: 100)

REAL RHOS(100),ALPHAS(100),TAUS(0: 100),SIGMAS

REAL AR(0:30),W(0:5000),S(0:3000),SIGMA(0: 100)

REAL R(0: 100),ALPHA(100),LAMDAS(0: 100)

REAL AA(O:100,0:100),GAM(50),LAMK,LAM(100)

INTEGER M,LL,IX,T,KODD,KEVEN,L,N
OPEN(UNIT=4,BLANK='ZERO")

INITIALIZE FILTER ORDER

READ(4,100)N

LL = N
IX = 1913
M = 3000

WRITE(6,300)
WRITE(G,400)N
WRITE(6,450)M
Do 1 I=0,M
CALL GAUSS(IX,1.,0.,V)
W(I) =V
CONTINUE
CALL INPUT(LL,W,AR,S,M)

INITIALIZE AUTOCORRELATION VECTOR C

CALL ACORR(C,S,N+1,M)
WRITE(6,2100)

INITIAL CONDITIONS FOR THE SYMMETRIC AND ASYMMETRIC PREDICTOR

C  POLYNOMIAL CALCULATIONS.

20
c

0.
-1.

TAUS(0) = C(0)

LAMDAS(0) = 1.

AS(N,0) = 1.0

CALL LEV(C,GAM,N,AA,LAM,SIGMA)
WRITE(6,1700)

WRITE(6,1800)

DO 20 J=1,N

WRITE(6,1900)N,J,SIGMA(J) ,LAM(J),AA(N,J)
CONTINUE
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SYMMETRIC & ASYMMETRIC SPLIT-LEVINSON RECURSION

WRITE(6,800)
WRITE(6,850)
WRITE(6,900)
DO 99 K=1,N
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P(K,0) = 1.
PS(K,0) = 1.
C  CALL STATEMENTS FOR EVEN OR ODD VALUES OF INDEX K
IF(K. EQ. KODD)THEN
CALL AODD(C,PS,K,N,TAUS,T)
CALL ODD(C,P,K,N,TAU,KODD,T)
ELSEIF(K. EQ. KEVEN)THEN
CALL AEVEN(C,PS,K,N,TAUS,T)
CALL EVEN(C,P,K,N,TAU,KEVEN,T)
ENDIF
ALPHA(K) = TAU(K)/TAU(K-1)
ALPHAS(K) = TAUS(K)/TAUS(K-1)
C LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
DO 40 I=1,T
P(K+1,I) = P(X,I) + P(K,I-1) - ALPHA(K)*P(K-1,I-1)
PS(K+1,I) = PS(K,I) + PS(K,I-1) - ALPHAS(K)*PS(K-1,I-1)
C DECISION PATH TO CALCULATE SYMMETRIC SINGULAR PREDICTGR COEFFICIENTS
IF(I.LT.T .OR. I.EQ.K)GOTO 40
L = K+1
DO 50 J=I+1,K
P(L,J) = P(L,L-0)
50 PS(L,J) = -PS(L,L-J)
40 CONTINGE
LAMDA(K) = 2. - (ALPHA(K)/LAMDA(K-1))
LAMDAS(i) = 2. - (ALPHAS(K)/LAMDAS(K-1))
C REFLECTION COEFFICIENT CALCULATION
RHO(K) = LAMDA(K) - 1.
RHOS(K) = 1. - LAMDAS(K)
WRITE(6,1000)K,RHO(K) ,RHOS(K) ,GAM(K)
99 CONTINUE
C  CALCULATION OF N-TH ORDER NORM (SIGMAN) AND N-TH ORDER PREDICTOR
C COEFFICIENTS, A(N,1),A(N,2),...,A(N,N)
SIGMAN = LAMDA(N)*TAU(N)
SIGMAS = LAMDAS(N)*TAUS(N)
WRITE(6,1100)
WRITE(6,600)
WRITE(6,1200)
DO 60 I=1,N
A(N,I) = A(N,I-1) + P(N+1,I) - LAMDA(N)*P(N,I-1)
AS(N,I) = AS(N,I-1) + PS(N+1,I) - LAMDAS(N)*PS(N,I-1)
WRITE(6,1300)I,TAU(I),TAUS(I),ALPHA(I),ALPHAS(I),P(I+1,1I),
+PS(I+1,I),A(N,I),AS(N,I)
60 CONTINUE
100 FORMAT(12)
200 FORMAT(F12.6)
300 FORMAT('1")
400 FORMAT(' FILTER ORDER = ',I3)
450 FORMAT('-',' NUMBER OF SAMPLE POINTS = ',I5)
600 FORMAT('-',103X, 'FILTER COEFFICIENTS')
700 FORMAT(5X,I13,11X,F10.4,21X,F10.4)
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800 FORMAT('-',21X, 'REFLECTION COEFFICIENTS')
850 FORMAT('-',25X, 'SPLIT-LEVINSON')
900 FORMAT(5X, ' INDEX',8X, 'SYMMETRIC',9X, ANTISYMMETRIC',9X,
+"'LEVINSON")
1000 FORMAT(5X,I3,10X,F12.6,12X F12.6,12X,F12.6)
1100 FORMAT('-',5X, 'FILTER PARAMETERS FROM SPLIT LEVINSON RECURSION')
1200 FORMAT(5X, ' INDEX',6X, 'TAU(K)',4X, 'TAU*(K)',4X, ALPHA(K)', &YX,
+"ALPHA*(K)',4X, "P(K)',4X, 'P¥(K)',6X, SYMMETRIC',6X, ASYMMETRIC')
1300 FORMAT(5X,13,6X,F12.6,3X,F12.6,3X,F12.6,4X,F12.6,3X,F12. 6,2X,
+F12.6,2%,F10.4,5%,F10. 4)
1700 FORMAT('-',5X,'FILTER PARAMETERS FROM LEVINSON RECURSION')
1800  FORMAT('-',8x,'INDEX',8X,'SIGMA(K)',5X, LAMDA(K)',8X, 'FILTER
+COEFFICIENTS')
1900 FORMAT(8X,12,13,7X,F12.6,6X,F12.6,12X,F12.6)
2000 FORMAT(5X, 'SPLIT-LEVINSON RECURSION CALCULATIONS')
2100 FORMAT(5X, ' INDEX',5X, '"KNOWN COEFFICIENTS',5X, AUTOCORRELATION
+FUNCTION C(K)")
2200 FORMAT(2X,13,4X,F12.6)
2300 FORMAT(5X,13,40X,F12.6)
WRITE(6,300)
END
SUBROUTINE AODD(C,PS,K,N,TAUS,T)
THIS SUBRCUTINE CALCULATES THE ANTISYMMETRIC "MODIFIED
NORMS'" WHEN THE INDEX K IS AN ODD INTEGER.
REAL C(0: 100),PS(0:100,0: 100),TAUS(0: 100)
INTEGER T
T = (XK-1)/2
TEMP = 0.
Do 5 1=0,T
5  TEMP = TEMP + (C(I) - C(K-I))*PS(K,I)
TAUS(K) = TEMP
RETURN
END
SUBROUTINE 0ODD(C,P,K,N,TAU,KODD,T)
THIS SUBROUTINE CALCULATES THE ""MODIFIED NORMS'" ( TAU(K)'S)
WHEN THE INDEX K IS AN ODD INTEGER.
REAL C(0:100),P(0:100,0: 100),TAU(O: 1C0)
INTEGER T
T = (K+1)/2
TEMP = 0.
DO 15 I=0,T-1
15 TEMP = TEMP + (C(I) + C(K-I))*P(K,I)
TAU(K) = TEMP
KODD = KODD + 2
RETURN
END
SUBROUTINE AEVEN(C,PS,K,N,TAUS,T)
SUBROUTINE CALCULATES THE VALUE OF THE ANTISYMMETRIC
"MODIFIED NORMS" (TAUS(K)'S) WHEN THE INDEX K IS AN EVEN
INTEGER.
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REAL C(0:100),PS(0:100,0: 100),TAUS(0: 100)

INTEGER T

T = K/2

TEMP= 0.

PS(K,T) = 0.

DO 25 I=0,T-1

TEMP = TEMP + (C(I) - C(K-I))*PS(K,I)

TAUS(K) = TEMP

RETURN

END
SUBROUTINE EVEN(C,P,K,N,TAU,KEVEN,T)
SUBROUTINE CALCULATES THE VALUE OF THE "MODIFIED NORMS"
(TAU(K)'S) WHEN THE INDEX K IS AN EVEN INTEGER.

REAL C(0:100),P(0:100,0:100),TAU(O: 100)

INTEGER T

T =K/2

TEMP= 0.

DO 35 I=0,T-1

TEMP = TEMP + (C(I) + C(K-I")*P(K,I)

TAU(K) = TEMP + C(T)*P(K,T,

KEVEN = KEVEN + 2

RETURN

END

SUBROUTINE INPUT(LL,W,AR,S,M)

SUBROUTINE TO GENERATE THE INPUT SEQUENCE FROM A GIVEN FIR

FILTER AND ZERO MEAN, UNIT VARIANCE WHITE NOISE.

REAL W(0:M),AR(0:LL),S(0: M)

CALCULATE INPUT SEQUENCE VALUES BETWEEN O AND FILTER ORDER.

TEMP = 0.

S(0) = W(0)

DO 45 K=1,M

S(K) = W(K) -0.6*W(K-1) + 0.8*S(K-1)
CONTINUE

RETURN

END

SUBROUTINE ACORR(C,S,NLAG,M)
SUBROUTINE TO CALCULATE THE AUTO CORRELATION FUNCTION OF THE
GIVEN INPUT SEQUENCE.

REAL C(0:100),S(0:5000)
INTEGER T

DO 5 I=0,NLAG

TEMP = 0.

DO 15 T=0,M-1-I

TEMP = TEMP + S(T)*S(T+I)
CONTINUE

C(I) = TEMP*(1. /FLOAT (M-1-1))
CONTINUE

RETURN

ENT
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SUBROUTINE LEV(C,GAM,N,AA,LAM,SIGMA)
SUBROUTINE TO CALCULATE THE PREDICTOR FILTER COEFFICIENTS
USING THE LEVINSON RECURSIOCN.
REAL AA(O0:100,0:100),C(0: N+2),GAM(N) ,LAM(100)
REAL LAMK,SIGMA(O:100)
INITIAL CONDITIONS
AACO0,0) = 1.
SIGMA(0) = C(0)
COMPUTE LAM(K), RHO(K); UPDATE SIGMA(K) FOR THE NEXT
ITERATION.
DO 10 K=1,N
LAMK = 0.
AA(K,0) = 1.0
DO 20 I=0,K-1
LAMK = LAMK - C(K-I)*AA(K-1,I)
LAM(K) = LAMK
CONTINUE
GAM(K) = LAM(K)/SIGMA(K-1)
SIGMA(K) = SIGMA(K-1) - LAM(K)*GAM(K)
COMPUTE THE PREDICTOR FILTER COEFFICIENTS
IF(K .EQ. 1)THEN
AA(1,1) = GAM(K)
ELSE
po 30 I=1,K-1
AA(K,I) = AA(K-1,I) + GAM(K)*AA(K-1,K-I)
CONTINUE
AA(K,K) = GAM(K)
ENDIF
CONTINUE
RETURN
END
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APPENDIX C. SPLIT LATTICE ALGORITHMS

PROGRAM TO CALCULATE THE NTH ORDER LATTICE REFLECTION
COEFFICIENTS FROM A GIVEN SEQUENCE USING THE SYMMETRIC ERROR
VECTOR, THE ASYMMTRIC ERROR VECTOR, OR THE FORWARD AND
BACKWARD ERROR VECTORS. VARIABLES DEFINED IN PREVIOUS APPENDICES
ARE NOT REDEFINED.

##%%% THIS PROGRAM REQUIRES SUBROUTINE INPUT FROM APPENDIX A wieiiesk

SIG
GAM

LAM

TAU

AS
AL

AR
X0

LL
X1

VARIABLE DEFINITIONS
N-TH DEGREE NORM OF THE FILTER.
VECTOR OF REFLECTION COEFFICIENTS CALCULATED BY
THE LEVINSON RECURSION.
REAL VARIABLE USED WHEN CALCULATING THE REFLECTION
COEFFICIENTS FROM THE LEVINSON RECURSION
THE REFLECTION COEFFICIENT IN TERMS
OF THE FILTER NORM IS GIVEN BY:
RHO(K) = LAM/SIG
REAL VECTOR OF "MODIFIED NORM VALUES". THE
VALUES ARE CALCULATED FROM A SUMMATION OF
PRODUCT TERMS OF THE SYMMETRIC OR ASYMMETRIC
PREDICTION ERROR SEQUENCES.
ARRAY OF PREDICTOR POLYNOMIAL COEFFICIENTS.
EACH I-TH ROW OF THE ARRAY CONTAINS THE
PREDICTOR POLYNOMIAL COEFFICIENTS FOR THE I-TH
ORDER PREDICTOR POLYNOMIAL.
VECTOR OF COEFFICIENTS FROM THE KNOWN TEST FILTER.
SYMMETRIC OR ASSYMMETRIC PREDICTION ERROR VECTOR
FOR THE (K-1) STAGE OF THE LATTICE FILTER.
DESIRED LATTICE FILTER ORDER.
SYMMETRIC OR ASYMMETRIC PREDICTION ERROR VECTOR
FOR THE K-TH STAGE OF THE LATTICE FILTER.
TEMP STORAGE FOR THE PREDICTION ERROR VECTOR WHILE
COMPUTING THE (K+1) STAGE PREDICTION ERROR VECTOR.
SHIFTED FORWARD PREDICTION ERROR VECTOR.
SHIFTED BACKWARD PREDICTION EROR VECTOR.
DESIRED ORDER OF THE PREDICTOR POLYNOMIAL.
INTEGER VARIABLE USED IN THE PROGRAM.
WHITE NOISE SEQUENCE VECTOR.
INPUT SEQUENCE VECTOR
FORWARD PREDICTION ERROR VECTOR.
BACKWARD PREDICTION ERROR VECTOR.

VARIABLE DECLARATIONS

REAL AR(30),W(0:5000),5(0:5000),RHO(100)
REAL A(0:100,0:100),GAM(20),RHOS(100),AS(0:100,0: 100)
REAL ALPHA,X1(0:5000),X0(0:5000),AT(0: 5000),AL(0: 100,0: 100)
INTEGER M,LL,IX,T,L,N
OPEN(UNIT=4,BLANK='ZERO")
INITIALIZE FILTER ORDER




C

(@}

80

95

90

READ(4,100)M

INITIAL CONDITIONS FOR INPUT SEQUENCE GENERATOR

LOCP

CALL

LL = M
N = 5000
IX = 1913

WRITE(6,200)
WRITE(6,300)M
WRITE(6,400)N
WRITE(6,500)
WRITE(6,600)
TO GENERATE WHITE NOISE SEQUENCE AND TO READ TEST COEFFICIENTS.
Po 1 I=0,N

CALL GAUSS(IX,1.,0.,V)

W(I) =V
CONTINUE

STATEMENT TO GENERATE INPUT SEQUENCE
CALL INPUT(LL,W,AR,S,N)
CALL STATEMENTS FOR SYMMETRIC, ASYMMETRIC, AND LEVINSON LATTICE
RECURSION SUBROUTINES
CALL SLAT(S,M,N,RHO,ALPHA,X1,AT,X0)
CALL ASLAT(S,M,N,RHOS,ALPHA,X1,AT,X0)
CALL LEV(N,GAM,M,S)
WRITE(6,700)
WRITE(6,800)
DO 80 K=1,M
WRITE(6,900)K,RHO(K),RHOS(K),GAM(K)
CONTINCE

DO 90 K=1,4

A(K,0)=1.

AS(K,0)=1.

AL(X,0)=1.

IF(K .EQ. 1)THEN

A(1,1) = RHO(K)

AS(1,1) = RHOS(K)
AL(1,1) = GAM(K)
ELSE

DO 95 I=1,K-1
A(K,I) = A(K-1,I) + RHO(K)*A(K-1,K-I)

AS(K,I) = AS(K-1,I) + RHOS(K)*AS(K-1,K-I)
AL(K,I) = AL(K-1,I) + GAM(K)*AL(K-1,K-I)
CONTINUE

A(K,K) = RHO(K)

AS(K,K) = RHOS(K)

AL(K,K) = GAM(K)

ENDIF

CONTINUE

WRITE(6,1000)
WRITE(6,1100)
WRITE(6,1200)
DO 96 K=1,M



WRITE(6,1300)M,K,AL(M,K),A(M,K),AS(Y,K)
96 CONTINUE
100  FORMAT(I2)
200  FORMAT('1l')

300 FORMAT(' FILTER ORDER = ',I3)
400 FORMAT(' ",' NUMBER OF SAMPLE POINTS = ',I5)
500 FORMAT('-', 10X, 'KNOWN FILTER COEFFICIENTS')

ﬁ 600 FORMAT('-',8X, ' INDEX',10X, 'FILTER COEFFICIENTS')

700 FORMAT('-',10X, 'REFLECTION COEFFICIENTS')
800 FORMAT('-',5X,' INDEX ',3X,'SYMMETRIC',9X,'ANTISYMMETRIC'
+,9X," LEVINSON ")

! 900 FORMAT('-',6X,13,6X,F8.4,12X,F8.4,12X,F8.4)
1000 FORMAT('-',15X,' FILTER COEFFICIENTS ')

1100 FORMAT('-',20X,' LEVINSON ',12X,' SPLIT-LEVINSON ')

] 1200 FORMAT(S5X,' INDEX ',26X,' SYMMETRIC ',4X,' ASYMMETRIC ')
1300 FORMAT(' ',6X,212,10X,F8.4,11X,F8.4,7X,F8.4)

WRITE(6,200)

END
! SUBROUTINE SLAT(S,M,N,RHO,ALPHA,X1,AT,X0)
C SUBROUTINE TO COMPUTE THE LATTICE REFLECTION COEFFICIENTS
C USING THE SYMMETRIC PREDICTION ERROR VECTOR.

REAL X1(0:M+N),X0(0:M+N),RHO(M),S(0:N),ALPHA
REAL AT(O0:M+N),A(100,100)
C INITIAL CONDITIONS

INTEGER T
RRHO = 0.
TAU = 0.
C INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND 1ST
C  STAGES OF THE LATTICE. INITIALIZE THE ZERO STAGE MODIFIED NORM

DO 10 T=0,N-1
XO0(T) = 2.*8(T)
TAU = TAU + S(T)**2
10 CONTINUE
DO 20 T=0,N
IF(T.EQ.N)S(T) = 0.
IF(T. EQ. 0)THEN

X1(T) = 8(T)

ELSE

X1(T) = S(T) + S(T-1)
ENDIF

20 CONTINUE
C  LOOP TO COMPUTE THE REFLECTION COEFFICIENTS
DO 101 K=1,M
TTAU = TAU
c STORE TAU(K-1), AND COMPUTE TAU(K).
TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + X1(T)¥*2
30 CONTINUE
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TAU = TAU/2.
COMPUTE ALPHA(K), RHO(K); STORE TAU(K) AND RHO(K) FOR
NEXT ITERATION.
ALPHA = TAU/TTAU
TTAU = TAU
RHO(K) = 1. - (ALPHA/(1l. + RRHO))
RRHO = RHO(K)
LOOP TO COMPUTE THE (K+1) PREDICTION ERROR VECTOR.
DO 40 T=0,N+K
IF(T .EQ. O)THEN
AT(T) = X1(T)
ELSEIF(T. EQ. N+K)THEN
AT(T) = X1(T-1)
ELSE
AT(T) = X1(T) + X1(T-1) - ALPHA*X0O(T-1)
ENDIF
CONTINUE
LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
(SHIFT X1 INTO XO AND AT INTO X1)
DO 50 T=0,N+K-1
Xo(T) = X1(T)
CONTINUE
DO 60 T=0,N+K
X1(T) = AT(T)
CONTINUE
1 CONTINUE
RETURN
END
SUBROUTINE ASLAT(S,M,N,RHOS,ALPHA,X1,AT,X0)
SUBROUTINE TO COMPUTE THE LATTICE REFLECTION COEFFICIENTS
USING THE ASYMMETRIC PREDICTION ERROR VECTOR.
REAL X1(0:M+N),X0(0: M+N),RHOS(M),S(0: N),ALPHA
REAL AT(0:M+N)
INTEGER T
INITIAL CONDITIONS
RRHO = 0.
TAU = 0.
INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND 1ST
STAGES OF THE LATTICE. INITIALIZE THE ZERO STAGE MODIFIED NORM
DO 10 T=0,N-1
Xo(T) = 0.
TAU = TAU + S(T)**2
CONTINUE
DO 20 T=0,N
IF(T.EQ.N)X1(T) = -S(T-1)
IF(T. EQ. O)THEN

X1(T) = 8(T)

ELSE

X1(T) = 8(T) - S(T-1)
ENDIF
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20 CONTINUE
C  LOOP TO COMPUTE THE REFLECTION COEFFICIENTS
DO 101 K=1,M
c STORE TAU(K-1), AND COMPUTE TAU(K).
TTAU = TAU
TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + X1(T)**2
30 CONTINUE
TAU = TAU/2.
c COMPUTE ALPHA(K), RHO(K); STORE TAU(K) AND RHO(K) FOR
c NEXT ITERATION.
ALPHA = TAU/TTAU
TTAU = TAU
RHOS(K) = (ALPHA/(1. - RRHO)) - 1.
RRHO = RHOS(K)
c LOOP TO COMPUTE THE (K+1) PREDICTION ERROR VECTOR.
TG 40 T=0,N+K
IF(T .EQ. O)THEN
AT(T) = X1(T)
ELSEIF(T. EQ. N+K)THEN
AT(T) = X1(T-1)

ELSE
AT(T) = X1(T) + X1(T-1) - ALPHA*XO(T-1)
ENDIF
40 CONTINCE
C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT X1 INTO XO AND AT INTO X1)

DO 50 T=0,N+K-1
X0(T) = X1(T)
50 CONTINUE
DO 60 T=0,N+K
X1(T) = AT(T)

60 CONTINUE

101 CONTINUE
RETURN
END

SUBROUTINE LEV(N,GAM,M,S)
SUBROUTINE TO COMPUTE THE REFLECTION COEFFICIENTS FOR AN
N-TH ORDER LATTICE FILTER FROM THE FORWARD AND BACKWARD
PREDICTION ERROR VECTORS.

REAL F(0:5100),B(0: 5100),FT(0: 5100),BT(0: 5100),GAM(20)
REAL LAM,SIG,S(0:N)

INTEGER T

aaa

(9]

c ERROR VECTORS.
SIG = 0.
DO 10 I=0,N-1
F(I) =8(I)
B(I) =
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FT(I) = S(D)
SIG = SIG + S(I)¥*2
CONTINUE
LOOP TO COMPUTE THE REFLECTION COEFFICIENTS
DO 20 K=1,M
FORM SHIFTED ERROR VECTORS
DO 30 T=1,N+K-1
BT(T) = B(T-1)
CONTINUE
BT(0) = 0.
FT(N+K-1) = 0.
LAM = 0.
COMPUTE LAM(K), GAM(K); UPDATE K-TH ERROR NORM AND
STORE FOR NEXT ITERATION.
DO 40 T=1,N+K-2
LAM = LAM - FT(T)*BT(T)
CONTINUE
GAM(K) = LAM/SIG
IF(K .EQ. M)GOTO 20
SIG = SIG - LAM*GAM(K)
COMPUTE (K+1) FORWARD AND BACKWARD PREDICTION ERRORS AND SHIFT
INTO TEMPORARY VECTORS FOR NEXT ITERATION.
DO 50 T=0,N+K-1
F(T) = FT(T) + GAM(K)*BT(T)
B(T) = GAM(K)*FT(T) + BT(T)
CONTINU:
DO 60 T=0,N+K-1
FT(T) = F(T)
BT(T) = B(T)
CONTINUE
CONTINUE
RETURN
END
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APPENDIX D. MA PREDICTOR COEFFICIENT PROGRAM

THIS PROGRAM IS TO COMPUTE THE FIR FILTER COEFFICIENTS
USING THE SPLIT-LEVINSON ALGORITHM, AND AN AUTOREGRESSIVE
MOVING AVERAGE PROCESS. VARIABLES DEFINED IN PREVIOQUS
APPENDICES ARE NOT REDEFINED.
*%%% THIS PROGRAM REQUIRES THE SUBROUTINES ODD, AND EVEN
FROM APPENDIX A ek

ENORM

NSTRT
NEND
DELX
DELY
NPTS
EXB
RXY
AA
NX
EN

F

P,

EY
KY
KX
LL
IX
RX
RY
B

C
D
T
L

X
M

Y

VARIABLE DEFINITIONS
PREDICTOR COEFFICIENT ERROR NORM.

ENORM = SQRT((A(0)-AA(0))**2 +...+ (A(N)-AA(N))**2)

NUMBER OF POINTS OF INPUT SEQUENCE TO START.
NUCMBER OF POINTS OF INPUT SEQUENCE AT END OF PROGRAM.
ERROR VECTOR.

ERROR VECTOR.

NUMBER OF INPUT DATA POINTS (O0,1,...,NPTS).
BACKWARD PREDICTION ERROR POWER OF X.

VECTOR OF X AND Y CROSSCORRLATION ELEMENTS
VECTOR OF CALCULATED PREDICTOR COEFFICIENTS.
INDEX FOR X-AXIS OF PLOTTING ROUTINE.

VECTOR OF PREDICTOR COEFFICIENT NORMS.

FORWARD PREDICTI:N ERROR POWER OF X.

FORWARD PREDICTION ERROR POWER OF Y.

Y REFLECTION COEFFICIENT.

X REFLECTION COEFFICIENT.

FILTER ORDER VARIABLE USED IN SUBROUTINE CORR.
INTEGER SEED NUMBER USED BY IMSL SUBROUIINE GAUSS.
X AUTOCORRELATION VECTOR.

Y AUTOCORRELATION VECTOR.

MA COEFFICIENT VECTOR.

MA COEFFICIENT VECTOR.

MA COEFFICIENT VECTOR.

INTEGER VARIABLE USED IN THE SUBROUTINE ODD

IN THE COMPUTATION OF THE TAU(K)'S.

DUMMY VARIABLE USED DURING THE CALCULATION

OF THE SYMMETRIC SINGULAR PREDICTOR POLYNOMIAL
COEFFICIENTS.

INPUT WHITE NOISE VECTOR.

INDEXING VARIABLE USED IN FIR FILTER COEFFICIENT
RECURSION (M=1,2,...,N).

OUTPUT SEQUENCE FROM FIR TEST FILTER.

VARIABLE DECLARATIONS
REAL P(0:100,0:100),TAU(0: 100),C(0:50),8(0:50),EN(200)
REAL A(0:100,0:100),LAMDA(O: 100),X(0: 10000),D(0: 50)
REAL AR(0:30),Y(0:10000),EY(0:50),EX(0:50),KX(50)
REAL DELX(0:50),DELY(0: 50),EXB(0:50),KY(50),XX(200)
REAL RX(0:100),ALPHA(100),RY(0:2),RXY(0: 100),AA(0: 100)
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INTEGER M,LL,IX,T,KODD,KEVEN,L,N,NPTS
DESIRED FILTER ORDER AND THE TEST FILTER COEFFICIENTS
c ARE READ FROM A DATA FILE (FILE FT04F001)

OPEN(UNIT=4,BLANK="ZERO")
C INITIALIZE FILTER ORDER AND TEST FILTER COEFFICIENTS
READ(4,100)N
LL = N
DO 20 K=0,LL
READ(4,700)AR(K)
20 CONTINCE
NPTS = 4000
WRITE(6,300)
WRITE(6,400)N
IX = 1913
WRITE(6,600)NPTS
C GENERATE (NPTS+1) WHITE NOISE SEQUENCE
DO 10 I=0,NPTS
CALL GAUSS(IX,1.,0.,V)
X(I) =V

10 CONTINCE

> CREATE TNPUT SEOUENCE FROM GIVEN FIR TEST FILTER
CALL INPUT(LL,X,AR,Y,NPTS)
INITIALIZE AUTCCORRELATION VECTOR RX,RY, AND CROSSCORRELATION

VECTOR RXY

CALL CORR(N+1,NPTS,X,Y,RX,RY,RXY)
WRITE(6,800)
DO 30 I=0,N
WRITE(6,900)I,AR(I),RX(1)
30 CONTINUE
C INITIAL CONDITIONS FOR MOVING AVERAGE MODEL PARAMETERS
BOO = -RXY(0)/RX(0)
EY(0) = RY(0) - BOO*RXY(0)

]

)

[P Ne]

EX(0) RX(0)
DO 40 I=0,1
C(y =1
D(I) =1

40 CONTINUE
B(0) = 1.
B(1) = BOO

DELY(0) = RXY(1) - BOO*RX(1)
DELX(0) = RX(1)
C LOOP TO GENERATE PREDICTOR COEFFICIENT VECTOR
DO 120 M=1,N
C INITIAL CONDITIONS FOR THE SYMMETRIC PREDICTOR POLYNOMIAL
C  CALCULATIONS.
P(0,0)
P(1,1) 1.
TAU(O) RX(0)
LAMDA(O) = 1.
KopD = 1

2.
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KEVEN = 2
A(M,0) = 1.
SYMMETRIC SPLIT-LEVINSON RECURSION
DO 70 K=1,M
P(K,0) = 1.
CALL STATEMENTS FOR EVEN OR 0ODD VALUES OF INDEX K
IF(K.EQ. KODD)THEN
CALL ODD(RX,P,K,N,TAU,KCDD,T)
ELSEIF(K. EQ. KEVEN)THEN
CALL EVEN(RX,P,K,N,TAU,KEVEN,T)
ENDIF
ALPHA(K) = TAU(K)/TAU(K-1)
LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
DO 60 I=1,T
P(K+1,I) = P(K,I) + P(K,I-1) - ALPHA(K)*P(K-1,I-1)
DECISION PATH TO CALCULATE SYMMETRIC SINGULAR PREDICTOR COEFFICIENTS
IF(I.LT.T .OR. I.EQ.K)GOTO 60
L = K+1
DO 50 J=I+1,K
P(L,J) = P(L,L-J)
50 CONTINUE
60 CONTINCE
LAMDA(K) = 2. - (ALPHA(K)/LAMDA(K-1))
70 CONTINUE
CALCULATION OF N-TH ORDER PREDICTOR COEFFICIENTS, A(K,1),...A(K,K)
COMPUTE PREDICTOR COEFFICIENTS FOR K-TH ITERATION
DO 80 I=1,M
A(M,I) = A(M,I~1) + P(M+1,1) - LAMDA(M)*P(M,I-1)
C(I) = A(M,D)
80 CONTINUE
DO 90 J=1,M
D(1) = -C(J)
IF(J .LT. M)THEN
DO 95 I=J+1,M
D(I) = D(I-1)
95 CONTINUE
ENDIF
90 CONTINUE
D(0) = 0.
D(M+1) = 1.
UPDATE PREDICTION ERRORS
XBTMP = 0,
XTMP = 0.
Do 25 I=1,M
XBTMP = XBTMP + C(I)*RXY(M+1-I)
XTMP = XTMP + C(I)*RX(M+1-I)
25 CONTINUE
DELX(M) = RX(M+1) - XTMP
EXB(M) = RXY(M+1) - XBTMP
UPDATE REFLECTION COEFFICIENTS



KX(M) = -DELX(M-1)/EX(M-1)
EX(M) = EX(M-1) + KX(M)*DELX(M-1)
KY(M) = -DELY(M-1)/EX(M)
EY(M) = EY(M-1) + KY(M)*EXB(M)
C UPDATE B VECTOR
B(M+1) = 0.

DO 45 I=0,M+1
B(I) = B(I) + KY(M)*D(I)
45 CONTINCE
YTMP = 0.
DO 55 I=1,M+1
YTMP = YTMP - B(I)*RX(M+2-I)
55 CONTINUE
DELY(M) = RXY(M+l1) - YTMP
IF(M .EQ. N)THEN
WRITE(6,1000)N
WRITE(6,1100)
DO 130 K=0,M
WRITE(6,1200)K, -B(K+1)
AA(K) = -B(K+1)
130 CONTINUE
ENDIF
120 CONTINUE
100 FORMAT(12)
200 FORMAT(' ')
300 FORMAT('1")

400 FORMAT(' FILTER ORDER = ',I3)

500 FORMAT('-")

600 FORMAT('-'," NUMBER OF SAMPLE POINTS = ',I5)

700 FORMAT(FS8. 4)

8C0 FORMAT('-"','5X, 'INDEX',5X, 'KNOWN COEFFICIENTS',5X,

+' AUTOCORRELATION FUNCTION R(K)')
900 FORMAT(' ',5X,I13,11X,F8.4,21X,F8.4)
1000 FORMAT('-',10X, 'PREDICTOR COEFFICIENTS FOR FILTER ORDER = ',I3)
1100 FORMAT('-',5X, 'INDEX',12X, 'FIR PREDICTOR CCEFFICIENTS')
1200 FORMAT(' ',5X,13,23%,F8.4)
WRITE(6,300)

END
SUBROUTINE INPUT(LL,X,AR,Y,NPTS)
C SUBROUTINE TO GENERATE THE INPUT SEQUENCE FROM A GIVEN FIR
C FILTER AND ZERO MEAN, UNIT VARIANCE WHITE NOISE.

REAL X(0:NPTS),AR(O: LL),Y(0: NPTS)
C CALCUTATE INPUT SEQUENCE VALUES BETWEEN O AND FILTER ORDER.
DO 45 K=0,NPTS
TEMP = 0.
IF(K. LE. LL)THEN
LU=K
ELSE
LU=LL
ENDIF
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J =K
DO 55 I=0,LU
TEMP = TEMP + AR(I)*X(J)
J=7J-1
CONTINUE
Y(K) = TEMP
CONTINUE
RETURN
END
SUBROUTINE CORR(NLAG,NPTS,X,Y,RX,RY,RXY)
SUBROUTINE TO CALCULATE THE AUTOCORRELATION FUNCTION X AND
THE CROSSCORRELATION FUNCTION BETWEEN X AND Y
REAL RX(0:NLAG),Y(0:NPTS),X(0: NPTS),RXY(0: NLAG) ,RY(0: 2)
INTEGER T
COMPUTE THE AUTOCORRELATION OF X AND THE CROSSCORRELATION OF
X AND Y FOR LAGS 0,1,2,...,NLAG
DO 5 I=0,NLAG
XTEMP = 0.
XYTEMP = 0.
CCMPUTE THE ANTOCORRELATION OF X AND THE CROSSCORRELATION OF
X & Y FOR LAG I
DO 15 T=0,NPTS-1-1
XTEMP = XTEMP + X(T)*X(T+I)
XYTEMP = XYTEMP + X(T)*Y(T+I)
CONTINUE
RX(I) = XTEMP*(1l. /FLOAT(NPTS-1-1))
RXY(I) = XYTEMP*(1./FLOAT(NPTS~1-1))
COMPUTE THE ZERO LAG AUTOCORRELATION FUNCTION OF Y
IF(I .EQ. O)THEN
RY(0) = 0.
DO 16 J=0,NPTS-1
RY(0) = RY(0) + Y(J)**2
CONTINUE
RY(0) = RY(0)*(1l. /FLOAT(NPTS-1))
ENDIF
CONTINUE
RETURN
END
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APPENDIX E. EXTENDED PRONY PROGRAM
PROGRAM TO CALCULATE THE NTH CRDER LATTICE REFLECTION

COEFFICIENTS FRCM A GIVEN SEQUENCE USING THE SYMMETRIC ERROR

VECTOR, THE ASYMMTRIC ERROR VECTOR, OR THE FORWARD AND
BACKWARD ERROR VECTORS.

PT

PP
Al

FS
Fi

THETAL

VARIABLE DEFINITIONS

- TEMPORARY ARRAY USED TO AVERAGE PREDICTOR
COEFFICIENTS.

- ESTIMATED NUMBER OF COMPLEX SINUSOIDS PRESENT.

- AMPLITUDE OF #1 SINUSOID, (1-4) SINUSQIDS
PRESENT.

- SAMPLING FREQUENCY.

- FREQUENCY OF #1 SINUSOID IN TEST SEQUENCE.

DIGITAL FREQUENCY OF #1 TEST ANALOG FREQUENCY.
VARIABLE DECLARATIONS

REAL W(0:5000),5(0:5000),ALPHA( 100) ,RO0TR( 100),XCOF(0: 100)
REAL P(0:100,0: 100),ALPHAS(100),COF(0: 100),RO0TI(100)

REAL X1(0:5000),X0(0: 5000),AT(0: 5000} ,PS(0: 100,0: 100),PT(0: 100)

INTEGER T,PP

OPEN(UNIT=4,BLANK='ZERO")

INITIALIZE FILTER ORDER

READ(4,100)PP

M = 2*PP

INITIAL CONDITIONS FOR INPUT SEQUENCE GENERATOR

LOOP

IX

Mo O w e
o nun

FS

W

1913
SQRT(2.)
SQRT(2.)
SQRT(10.)
SQRT(2.0)
SQRT(2.0)

5.5E+01
. 5E+02
. 25E402
. 75E+02
. 25E+02

~4

[ SRy

TWOPI = 6.2831853
THETAl = (TWOPI*F1)/FS
THETA2 = (TWOPI*F2)/FS

TO GENERATE WHITE NCISE SEQUENCE AND TO READ TEST COEFFICIENT

DO 1 I=0,N
CALL GAUSS(IX,1.,0.,V)
W(I) = C*V

Al
A2
A3
AL

o nu

A*COS(TWOPI*(F1/FS)*FLOAT(I))
B*COS(TWOPI*(F2/FS)*FLOAT(I))
D*COS(TWOPI*(F3/FS)*FLOAT(I))
E*COS(TWOPI*(F4/FS)*FLOAT(I))

S(I) = A1 + A2 + W(I)

61




a0

(]

Q

[P

1

CONTINCE

CALL STATEMENTS FOR SYMMETRIC, ASYMMETRIC, AND LEVINSON LATTICE
RECURSION SUBROUTINES

11

100
200
300
400
500
600
700

CALL SLAT(S,M,N,P,ALPHA,X1,AT,X0)
CALL ASLAT(S,M,N,PS,ALPHAS,X1,AT,X0)
WRITE(6,200)
WRITE(6,300)PP
WRITE(6,400)M
WRITE(6,3500)N
DISPLAY COEFFICIENTS OF POLYNCMIAL
JRITE(6,600)
DO 11 K=0,M
IF(K .EQ. M)P(M,K)=1.0
WRITE(6,700)M,K,P(M,K)

CONTINUE

FORMAT(I4)

FORMAT('1")

FORMAT(' NUMBER OF COMPLEX EXPONENTIALS IN MODEL = ',I3)
FORYMAT(' ',' SYMMETRIC FILTER ORDER = ',I3)

FORMAT(' '," NUMBER OF SAMPLE POINTS = ',I5)

FORMAT('-',8X, "INDEX', 13X, 'COEFFICIENTS')
FORMAT(5X,212,16X,F8.4)

WRITE(6,200)
END

SUBROUTINE SLAT(S,M,N,P,ALPHA,X1,AT,X0)

SUBROUTINE TC COMPUTE THE SYMMETRIC PREDICTOR COEFFICIENTS
USING THE SYMMETRIC PREDICTION ERROR VECTOR.
REAL X1(0:M+N),XO(0: M4N) ,ALPHA(M),S(0: N)
REAL AT(0:M+N),P(0:100,0: 100)
INTEGER T
INITIAL CONDITIONS
KGDD = 1
KEVEN = 2
TAU = 0.
P(1,1) = 1.
P(0,0) = 2.

INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND 1ST
STAGES OF THE LATTICE. INITIALIZE THE ZERO STAGE MODIFIED NORM
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DO 10 T=0,N-i
XO(T) = 2.*S(T)
TAU = TAU + S(T)%*2
CONTINUE
DO 20 T=0,N
IF(T.EQ.N)S(T) = 0.
IF(T. EQ. 0) THEN
X1(T) = S(T)
ELSE
X1(T) = S(T) + S(T-1)
ENDIF




. e —

20 CONTINUE
C  LOOP TO COMPUTE THE SYMMETRIC PREDICTOR COEFFICTINTS
DO 101 K=1,M
P(K,0) = 1.0
TTAU = TAU
IF(K .EQ. KODD)THEN
LL = (K+1)/2
ELSE
LL = K/2
ENDIF
c STORE TAU(K-1), AND COMPUTE TAU(K).
TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + X1(T)*#2
30 CONTINCE
TAU = TAU/2.
c COMPUTE ALPHA(K); STORE TAU(K) FOR NEXT ITERATION.
ALPHA(K) = TAU/TTAU
TTAU = TAU
C LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS
DO 40 I=1,LL
P(K+1,I) = P(K,I) + P(K,I-1) - ALPHA(K)*P(K-1,I-1)
C  DECISION PATH TO CALCULATE SYMMETRIC SINGULAR PREDICTOR COEFFICIENTS
IF(I.LT.LL .OR. I.EQ.K)GOTO 40
L = K+1
DO 50 J=I+1,K
P(L,J) = P(L,L-J)

50 CONTINCE
40 CONTINCE
C LOOP TO COMPUTE THE (K+1) PREDICTION ERROR VECTOR.

DO 60 T=0,N+K
IF(T .EQ. O)THEN
AT(T) = XI(T)
ELSEIF(T. EQ. N+K)THEN
AT(T) = X1(T-1)

ELSE
AT(T) = XI(T) + X1(T-1) - ALPHA(K)*XO(T-1)
ENDIF
60 CONTINUE
C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT X1 INTO XO AND AT INTO X1)

DO 70 T=0,N+K-1
XO(T) = X1(T)
70 CONTINUE
DO 80 T=0,N+K
X1(T) = AT(T)
80 CONTINUE
IF(K .EQ. KODD)THEN
KODD = KODD + 2
ELSE
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KEVEN = KEVEN + 2
ENDIF
101 CONTINUE
RETURN
END
SUBROUTINE ASLAT(S,M,N,PS,ALPHAS,X1,AT,X0)
SUBROUTINE TO COMPUYZ THE LATTICE REFLECTION COEFFICIENTS
USING THE ASYMMETRIC PREDICTION ERROR VECTOR.
REAL N1(0:M+N),X0(0: M+N),PS(0:100,0: 100),S(0: N) ,ALPHAS(Y)
REAL AT(0: M+N)
INTEGER T
INITIAL CONDITIONS
PS(0,0) 2.
PS(1,1) 1.
KODD =1
KEVEN = 2
TAU = 0.
INITIALIZE THE PREDICTION ERROR VECTORS FOR THE ZERO AND 1ST
STAGES OF THE LATTICE. INITIALIZE THE ZERO STAGE MODIFIED NORM
DO 10 T=0,N-1
XO(T) = 0.
TAU = TAU + S(T)**2
10 CONTINUE
DO 20 T=0,N
IF(T.EQ. N)XI(T) = -S(T-1)
IF(T. EQ. O)THEN
X1(T) = S(T)
ELSE
XI(T) = 8(T) - S(T-1)
ENDIF
20 CONTINUE
LCOP TO COMPUTE THE REFLECTION COEFFICIENTS
DO 101 K=1,M
PS(K,0) = 1.
TTAU = TAU
IF(K .EQ. KODD)THEN
LL = (K-1)/2
ELSE
LL = K/2
ENDIF
STORE TAU(K-1), AND COMPUTE TAU(K).
TAU = 0.
DO 30 T=0,N+K-1
TAU = TAU + X1(T)**2
30 CONTINUE
TAU = TAU/2.
COMPUTE ALPHA(K) ; STORE TAU(K) FOR NEXT ITERATION.
ALPHAS(K) = TAU/TTAU
TTAU = TAU
LOOP TO CALCULATE SINGULAR PREDICTOR COEFFICIENTS




DO 40 I=1,LL
PS{K+1,I) = PS(K,I) + PS(K,I-1) - ALPHAS(K)*PS(K-1,I-1)
c DECISION PATH TO CALCULATE SYMMETRIC SINGULAR PREDICTOR CCEFFICIENTS
IF(I.TT.LL .OR. I.EQ.X,30TG &40
L = K+l
DO 530 J=I+1,K
PS(L,J) = -PS(L,L-J)

50 CONTINUE
40 CONTINUE
C LOOP TO COMPUTE THE (K+1) PREDICTION ERROR VECTOR.

DO 60 T=0,N+K
IF(T .EQ. O)THEN
AT(T) = X1(T)
ELSEIF(T. EQ. N+K)THEN
AT(T) = X1(T-1)

ELSE
AT(T) = X1(T) + X1(T-1) - ALPHAS(K)*XO(T-1)
ENDIF
60 CONTINLE
C LOOPS TO UPDATE PREDICTION ERROR VECTORS FOR NEXT ITERATION.
C (SHIFT X1 INTO XO AND AT INTO X1)

DO 70 T=0,N+K-1
X0(T) = X1U(T)
70 CONTINUE
DO 80 T=0,N+K
XU(T) = AT(T)
80 CONTINCUE
IF(XK .EQ. KODD)THEN
KODD = KODD + 2
ELSE
KEVEN = KEVEN + 2
ENDIF
101 CONTINCE
RETURN
END
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