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I. INTRODUCTION

The present report will give a general description of the very extensive work

performed in the reported period. This work was done along two major directions:

{. Theory, which is presented in Part I of this Report. This had the goal to
further develop the quantum 1/f theory and to clarify its foundations and
starting points. This part has nine sections, an Appendix, and its own
references.

2. Application to MIS infrared detector structures, presented in Part II. This
part is dedicated to a detailed quantum {/f noise study of an important type of
infrared detector, the metal - insulator - semiconductor structure.

Part III lists the publications corresponding tc this grant period.

At the 111 Conference on Quantum {/f Noise and 1/f Noise in Minneapolis,
April 2&8-29, 1932, Prof. C.M. Van Vliet also presented a quantum 1/f noise
derivation in the Van Hove limit. At present our attention is focussed on

applications of the newly calculated cross - spectra of quantum 1/f noise.
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11. DERIVATION OF THE PAIR-CORRELATION FUNCTION FOR BOSONS

Denoting by ¢(X,t) and x(X,t) the single-particle wave functions of two
scattered bosons, which take into account both the interaction with the
scattering center of forces and the simultaneous interaction with the photons,
the quanium state of two bosons, both emerging from the same interaction process,
can be written in the Heisenberg picture in the form

15> = (1/2)1/2 ja3¢)d3ne(E,0)x(7.0)¥*(£)y* () [0>, (2.1)
where w(E) designates the Heisenberg field operator at a fixed time t = 0 and

the single-particle wave functions have also been taken at t = 0. The two

single-particle wave functions included differ only through some external and
internal phase factors. Vectors are printed in boldface. The state in Eq.
(2.1) is written as a product of two single-particle wave functions, because we
neglect all interactions between the particles except for the quantum exchange
symmetry between identical particles. We have limited ourselves here to two
outgoing particles for the sake of simplicity only; the general N-particle case
is treated in Sec. VIII.
The operator of the equal-time pair-correlation5 in space is

0 = y*(x¥*(x2) wix2)w(x]). (2.2)
This correspon@s to a density autocorrelation functionb. The presence of two-
particle coordinates in the operator 0 does not mean that we are considering

two-particle interactions, it only means that the expectation value which we are

caiculating depends on the relative position of the particles. Using the well
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known commutation relations nr
- —lp - - - - '
v(x) et (y) - vT(y)e(x) = &(X - y), (2.3) M
-> - - -d %,
w(x)ply) - wly)w(x) = 0O, (2.3a) l
VOV - (X)) = 0, (2.3b)
we obtain the matrix element: Bt
<So|0lso> A
= (1/2)<0]p(n" ) w(E*) vt (X)) vH(X2) v(X2) v(X1) v (E) v * () 0> ;
.
- - - —t - . - -— \
= (1/2)[8(g' - x1)8(n' = x2) + &(n' = xj)8(g' - x3)] §:::
L8(7 - %2)8(E - x1) + 6(E - Xp)8(w - X1, (2.4) )
X
where |S°> is the state with well defined particle coordinates. A
Rty
3
The pair-correlation function is then NG
A= <S|0]S> = (1/2)<x (x2)¢ (x1)e(x1)x(x2) + x (x2)é (x1)e({x2)x(x1) A
A
+ () 0" (2)e(x1)x(x2) + x"(X1) 0" (X2) e (x2) x(XD), (2.5) .
]
1) If we assume that the wave functions ¢(X), x(X), ...of different .:
. 'v"
particles in the outgoing flux differ only through a general phase factor, we R
obtain from Eq. (2.5) o
]
A> = 2<|p(x1) 12 10(x2) 12>, E
e
which is similar to our previous result? 2<|¢(t)¢(t+~c)|2> = 2<|¢(t1)¢(t2)|2>. :
'\
the only distinction being the use of the spatial coordinate along the beam )
instead of the time coordinate. As beforel=® we write from Eq. (2.5) )
A = 2¢[onolx1) * i oTBr(x1) 12 Jonolx2) + i spr(xg) %> )
= 2<(9nol? + 1y lo'r2)2 ..,
+ 2¢*no(xl)¢no(x2) Lq <¢*iBr(x2)¢iBr(x1)> + ¢cc. (2.6) X
3
:~l
.a"'ll w,"!-"' ‘.h ..h‘-..'.‘".A'. A'l‘.l- .'Q 'J."l"‘i‘"l' ' ’-' -‘l’- \ ‘I.“Q'.’.l L) .Q" .'Is l‘!~ .I o !!’-‘!ﬁ |‘lu ,.Q‘ l""’?" ..I !‘t -‘ ..0- . !‘a‘!’&! !:’:
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Here we have separated the part with bremsstrahlung into the photon mode i, ¢1Br fiﬁ
from the main part, ¢po, Without bremsstrahlung, and cc denotes the complex ;g:
conjugate of the preceeding term. Each ¢1Br term has an independent random "‘{
phase; as we shall see in Sec. IV, this is the random in itial phase of each Sgg
photon mode i, where i includes both the wave vector and the polarization. The b,-
averaging in Eqs. (2.6) and (2.6a) is with respect to these phases, or, if the ? ¢
emitted photons are included into the single-particle wave function, the average F{i
includes also the expectation value in the space of photons. Due to the uniform *aﬁ
motion of the scattered particles, the outgoing radial coordinate and the time §E§
are equivalent; we will check this intuitive conjecture later in Sec. VI and we '?
will prove by direct calculation of the correlation in space and in time that it lzq
{s a very good approximation. :EE?{
We have denoted here by ¢ the stochastic Schroedinger field ¢ used in our §:§
previous pub]icationsl‘s. This field was not second-quantized, and not an 55?,
operator as far as the charged particles were concerned. It was always called a Et.z
field rather than a wave function, in order to emphasize the presence of random §§;ﬁ
phase factors in its expression, which make it stochéstic in nature, while the 1;4
term wave function was reserved for pure states rather than mixture of states. 'i;d
The stochastic Schroedinger field description is equivalent with the density B?‘
matrix description of quantum mixtures. The reason why y still was an operator ;:;
in the first paper1 is that while the particles were not second-quantized in éé;
that paper, the electromagnetic field was. Therefore, in that paper y was an E:§~
operator only in the space of the photons. ) :E:
2) 1f, on the other hand, the single-particle wave functions ¢(;), x(;), “ee Eﬁ:
also differ through mutually independent sets of random phases in their energy A :Ef‘
loss (¢1Br. xiar, «e.) parts as we conclude in Sec. IV, the first and the last %;?
terms in Eq. (2.5) are constant and do not yield 1/f noise, but the two middle jhii




terms give again the same result as in Eq. (2.6)

A> = <|o(x1) 2<lolx2) 12> + [<o™(x1)e(x2)> |2

(|¢no|2 + I lo1gr12)2 + l¢*no(x1)¢no(x2) + Ij <¢*13r(x1)¢i3r(x2)|>[2

(H’nol2 + I |¢1Br|2)2 + |¢no|4 + (4 |¢1Br|2)2

+ 0" no(x1)enolx2) i ¢™gr(x2)eiprixy) + cc

<lolx1) 1Z><]alx2) 12> + <|a(x1) 12 ]0(xp) 2>, (2.7)

Both in the first and last form we notice that the first term is constant, while
the second is the familiar APSPSWF. Therefore, this is also similar to the
APSPSWF result obtained in our previous papersl'5. but this time the fractional
spectrum will be two times smaller,due (see Sec. VIII) to a 1/N factor with N=2;
fermions have 1/(N-1). Here the average is with respect to the sets of random
phases present in the energy loss (bremsstrahlung) contributions, or, if we
include the photons in second quantization into the final state (see Eq. 4.15),
the average sign in €q. (2.7) alsc includes the expectation value in the Hilbert
space of the photons, which yields exactly the same result. The arguments have
been omitted in some of the terms which do not actually depend on them according
to Eq. (4.15) of Sec. IV. Sec. VIII gives the APSPSWF result for any N.

We conclude that both if the outgoing particle wave functions ¢(;3, x(;s,
««s, differ only by an arbitrary general phase factor, and if they also have
independent sets of phases in their bremsstrahlung energy loss parts, our
previous method of calculating the autocorrelation function is justified on the
basis of the péesent second-quantized calculation; see Sec. IV-V for details.

In Sec. IV, we will determine the correct single-particle wave functions (or

Schroedinger fields) which lead to Eq. (2.7) and to the fractional spectrum
2aA/fN for N outgoing particles (Sec. VIII) with and without the inclusion of
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the photons into the final state of the scattered particles.

Why do we allow for so many possibilities ? Do we need to consider both
cases with and without the photons included into the final state? Often in
electrophysics one describes the quantum motion of an electron in an external
time-dependent, electromagnetic field of force. In this most convenient
description7 energy is not conserved, and the electromagnetic field energy is
not included into the Hamiltonian which is time-dependent. The state does not
include the field either, and is a nonstationary electronic state. This
corresponds to the treatment? presented in this section, i.e., without the
photoné included in the state (Sec. IV). An equivalent, more fundamental,
approach includes both the charged particles and the field energies with their
interaction into the Hamiltonian. Then the photons must be present in the
state, as we did beforel. The two methods are equivalent, and give the same
results, with no contradictions. We consider here both methods.

Finally, why do we need to consider both the case of identical single-
particle wave functions (except for a general phase factor) and the case of wave
functions which have different sets of phases in their energy-loss parts?
Because both cases may occur in practice. Indeed, usually the incoming
particles in a scattering experiment have a random shift in space or time which
scrambles their energy-loss phases and eliminates cross terms as if these sets
of random phases would be completely independent for different particles.
However, in emission processes, such as a-decay, the single-particle wave
functions are not shifted; they all start leaking out at t = 0 when the
radioactive source was prepared by chemical separation. Therefore we must

consider all cases in spite of the inconvenience. For instance, by writing

explicitly o(x) = gno(x) + T olgp(x) a*; and x(x) = xno(x) + ¢ xige(x)a*i, we
i i

obtain from Eq. (2.5) in which the asterisks are interpreted as crosses

indicating hermitian conjugation, the same result as in Eq. (2.7), by
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interpreting the brackets as vacuum expectation values.

I1I. OERIVATION OF THE PAIR-CORRELATION FUNCTION FOR FERMIONS
In the case of fermions, the state of two scattered particles emerging from
the same interaction is similar to Eq. (2.1)
IS¢s+> = (1/2)1/2 Jd3g)d3ne(E,0)x(m:0)w*s (E)y*s (M) 0>,  (3.1)

but now the field operators satisfy anticommutation relations:

vs(X)¥¥s' (¥) + vts+ (V) ws(X) = 8(X - V6,5t (3.2)
vs (X vs* (¥) + vs' (¥)ws(x) = O, (3.2a)
()P (¥) + vrer (D)vts(x) = 0. (3.2b)

The operator of the pair-correlation function is now written in the form

0 = Igg' ¥'s (;1)’#*'5'(;2)4»5'(;z)ws(;ﬂ- (3.3)
Its expectation value in the state given by Eq. (3.1) is calculated with the
help of the matrix elements

<S;1|0"|S§>
= <0y )u(E" DXL ¥ (x2) X2 ¥(x1) (€D (m) 0>
= [-5(7' - XS(E' = xp) + 68" - x)s(n' - Xp)]

[s(n - X2)6(E - x1) - 8(€ - x2)8(n - x1)1; (3.4)
<SylQ)se>
- <Ol )€ ) O e x4 (g () 0
= 5(n' - x2)6(E" - x1)8(n - x2)8(€ - x1);3 (3.5)
< S:Tl 9&' S&?‘ >

QL YE DY )y RN ) [0

s(g' - xz)s(n' - x1)6(g - x2)8(n - x1). (3.6)
We also obtain three similar expectation values with all spins reversed.

The spin-averaged pair-correlation function is then

A = (1/4)cg, g' <Sss' |0"+ 0,+ Uy* QfSss*>
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= (1/8)01x(X1) 12 [o(x2) 12 - x"(x1)e" (x2)x(x2)e(x1) ’

-» -— - - -3 3}
-x(x2)0* (K1) x(x1)e(x2) + [x(x1)12]e(x2) |2 g

-t -V - “ )

+ |x(x2) [2le(x1) 12 + |x(x1) 12 le(x2) 2] .
s SRS SR S L N :'

= (1/2){x (x2)e (xple{xg)x(xz) + x (x1)¢ (x2)e(x2)x(x1}] 2

e

-> S I SR - S =

- (1/8)Ix"(x) o™ (x2) e (x1) x(x2) + x™(x2)e™(x1)e(x2)x(x1)]. (3.7) ’

‘\I"

1) If we assume that the wave functions ¢(x) and yx(x) differ only through a ;
general phase factor, we obtain from Eq. (3.7) ;‘
—> —> <
<A> = (1/2)<o(x1) |2 [o(x2) 2> (3.72) i

-

which corresponds to our earlier APSPSWF result? in the time domain, and which g;
o,

yields again the fractional spectrum 2qA/f found in our previous papers. (See >
Sec. IV for the definition of oA.) z
2) If, on the other hand, the single-particle wave functions also contain ?~
mutually independent sets of random phases in their energy loss parts, we obtain fﬁ
=

- from Eq. (3.7)
B> = <[p|D<[]2 - (1/2) [<6*(x1)8(x2)> |2
= (14nol2 + zj 1o%8r12)2 = (1/2){16nol® + (i lo'arl2)2

+ ¢ nolx1)eno(x2) i ¢ Tgp(x2)eipr(x1) + cc}

- <0152 - (1/2)<|8(x1) 1210(x2) %> (3.7b)

PR ¢

Both in the first and the last form above we notice that the firstterm is
constant, while the second is the familiar APSPSWF. Therefore, this result is

again similar to our previous APSPSWF result1=2 shown in Eq. (2.6) or (3.7a),

g

2x, A, 5,
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and yields the same fractional spectrum 2qA/f. However, at small distances we
now obtain something similar to a Fermi hole due to the minus sign in Eq.
(3.7b). The minus sign corresponds to a 180° phase shift or delay. This means
that the fermions avoid each other at close range. Over large distances, i.e.,
at the low wave numbers significant for 1/f noise, the distribution and the
spectral density are not affected. If we explictly include the photons into the
final state and multiply ¢1Br by a photon creation operation ay ,1» we obtain
again exactly the same result shown in Eq. (3.7b). This shows that although the
phase shift caused by the Pauli principle at short distances was not included,
our previous treatmentl-5 was correct because it started with exactly the same
product of single-particle wave functions and therefore yielded the same final
result as the present calculation. Whether this result should simply be
iaterpreted in terms of frequency beats is a philosophical question; I know it
should. However, while the beats are caused by exactly the same interference of
each single-particle wave function with itself which we had considered from the
beginning, they occur because the single-particle wave functions are included as
symmetrized products into the many-particle wave function of the outgoing flux.
The Fermi hole is absent in Eq. (3), because there only the antiparallel spins
contribute.

We finally conclude for fermions as well as for bosons, that both if the
outgoing particle wave functions ¢(;3. x(;3, «esy differ only by an arbitrary
general phase factor and if they also have independent sets of phases in their
bremsstrahlung energy loss parts, our previous method of calculating the
autocorrelation function is justified on the basis of the present second-
quantized calculation; see Sec. IV-V for details. All claims to the contrary
which have been recently voiced, are therefore wrong. We now need to insert the

correct single-particle wave functions explicitly into Egs. (2.5) and (3.7).
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Before we do this direct calculation, we briefly discuss the connection
between density and current density autocorrelations. The current density

operator in second quantization is
J = (B/2im)y*(x) (F-¥) (X)), (5.6)

where now y(X) and y*(X) are particle field operators, while the same notation
was used earlier1 to designate single particle wave functions which are
operators in the Hilbert space of photons, because the current-carrying
particles were not second-quantized, while the emitted photons present in the
final state were quantized. The operator of the current correlation which

replaces Eq. (2.2) is

0y = (A/2m)2y* (X v (X2) (T2-¥2) w(X2) (¥1-97) w(%y), (5.7)

while in Egqs. (2.5) and (3.7) we have to make the substitutions
#(X1) > (F/2im)(¥1-¥1)e(X1) = (FK/m)e(Xy)

#(X2) » (n/2im)(V2-¥2) o(X2) = (fik/m)e(X2) (5.8)

and similar for x(x), while ¢* and x* are left formally unaffected. Here we

have used the form of ¢(x) and x(x) given by Eq. (5.1) or (5.2) which allow only
for very small momentum deviations g << K caused by infraquanta, which can be
always neglected. Therefore, Eqs. (2.5) and (3.7) will only acquire a general
factor (ﬁK/m)z. We conclude that in general

<s|0g1S> = (nk/m)2<s|o0]s>, (5.9)
i.e., that the current density autocorrelation is proportional to the density
autocorrelation if the single-particle states are close to momentum eigenstates.
The corresponding spectral densities are also proportional, with the same
proportionality factor (ﬂK/m)Z. The fractional autocorrelations, however are

the same for the current, as for the density, because they have the squared
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average value in the denominator. The same equality holds for the corresponding
spectra.

Finally, for single-particle states which are superpositions of states close
to momentum eigenstates, the above proportionality remains approximately valid,
if we replace the proportionality factor with <(ﬁK/m)2>, where the averﬁge is

over the distribution of K.
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IV. DERIVATION OF THE SINGLE-PARTICLE WAVE FUNCTIONS A

The derivation of the Schroedinger field will be performed with the it
help of the Green's fwiction method similar to the method used in a earlier f”'
calculation by Kroll and Watson?, extended to the case of interaction with '
all electromagnetic modes of the universe?. + f':'

It is most convenient to describe the electromagnetic field in terms -

of plane waves. The vector potential is taken in the radiation gauge as B
A(r,t) = T x,1(R?/L3wx) 1/ 2ux,1[ax,1(t)eik-r & aty, ;(t)e-ik.r], (4.1)

)
The polarization vectors ux,: and ux,: are mutually orthogonal unit vectors b4t

UK
JO)
perpendicular to k.

i

The Schroedinger equation for an electron moving in a vector poten- o

(3K

tial A and scattering potential V is M

(1/2m) [~V - eA/c]2y + V¥ = ifi. (4.2) e

A dot has been used to indicate the time derivative. The electromagnetic .
field is treated as a classical field at this point. In order to eliminate | '::
the A? term from Eq. (4.2), we write R '

¥ = expl(-i/h)f(e?/20c1)AL! 10 . Sy
Thus, Eq. (4.2) is reduced to e

[(-h2/2m)0 2 + (ieh/mc)A-T + VI = ifd . (4.3) R
It is convenient to consider first the influence of a single electromagnetic ®
mode, i.e. a single term from Eq. (4.1). Therefore, we take A s acos(wt+7), W,

. 4
where 7 is an initial phase constant, and we treat V@ as a perturbation A
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source term. The solution for Eq. (4.2) is an incoming plane wave plus ;c.s,o{

scattered waves, given by the integral equation o

D (r,t) = S, ~ J‘d=x'_.|;_" dt’GV(r’)® x (r’,t’). (4.4) s

Here ¢x, is the solution of the homogeneous equation, i.e. with V = 0, and
can be uritten in the form ’

dx, = el¥crexp(-(if/2m)f*t(k?, -~ 2eko-A/ch)dt]. (4.5) ::'.:',u::',

G is the Green’s function which satisfies the equation

[(-h?/2m)V ? + (ieBA -V /mc) - IR0 t]G = &(r-r’)8(t-t’). (4.6) 8

Given A = acos(wt + 7), G can be found to be ::::;::'

G = [i/(27x)M]fdke! ®(r-r’ )exp(~(ifi/2m) [k?t - 2ek-asin(wt + 7)/hcw)) S

x exp[(ifi/2m)(k2t' - 2ek-asin(wt’ + 7)/ficw], (4.7) _-,‘

In the first Born approximation we set & x (r’,t’) = ¢x (r’,t’) in the in- <

tegral present in Eq. (4.4) and obtain for the scattered wave ’%ﬁ

W= [i/(2x) 3R] fd3x’ fv dt'V(r’ ) fd3kelk(r-r lexp(~(ifi/2m) R

[kit - 2ek-asin(wt + 7)Ace]} x expl(ifi/2m) (k? - k2,)t’] q.,c,:;

x {exp(ie(ke - k)asin(awt’ + 7)/2mcwleiksr’},

Using the relation iyt

eiBsincwiren) = 5 Ju(fleintueren, (4.8) 0,

where Ja(B) is the nt? order Bessel function, we expand the expression con- m‘ :

tained in curly br:ackets in Fourier series. Then Eq. (4.4) takes the form Sy

O, (r,t) - Sy, (r,t) = [—i/(27z)3ﬁ]j‘d3x’_j;'dt'V(r’)Id’ke'l(f-") '5‘

x exp{-(ifi/2m)[k3t - 2ekasin(wt+7)/hcw]} g

x expl(i/2m) (k* - k)E'1(Z_Ja(Blein@ireNlertyer, (4.9) =

After perfoqning the integration over t’ we use a contour integration method \g

for k. Then Eq. (4.9) is reduced to !

O n,(5,8) = du,(r,t) = (-W/(2DRIE_JulBetsieivenrr/r] S,

x exp(ififk?2(n)t-2ek(n)asin(wt +7)/cw]/2m} x Jdix'elk(s)r'V(r’)eik;r’, :

(4.10) ey

. i ' . ‘WY
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o
where §
A = -e(hika - tko) -a/mcho = -eQ-a/mcho, (4.11)

and Q is the momentum transfer. In Eq. (4.10) k(n) is defined by :::::;
(hk(n))2/2m = (fiko)?/2m - nhw; ka = k(n) = k(n)r/r. (4.12) :.:.:j

The total scattered wave can be written as 'l:
¥s = [-::1/(27:)‘!131-]:'2:° a=-xelE(a)rexp{-ififk2(n)t -2ek(n)~a.sin(mt+7)/hcwj/2m) :i
X Vk(a),k Ja(B)ein?d, (4.13) | F
where Vi(a),x = fe-ik(a)r'y(r'jeiko-r’d3x’ ig the scattering matrix ele- “"
ment calculated without consideration of the interaction with the ?:.’

electromagnetic field oscillators.Generalizatica bo all freld oselliators ',“m 3 phase ¥, for each, ‘
So far the electromagnetic field has not been quantized and was con- ._
sidered as a classical field. We are interested in the corresponding ex- "- ‘
pression of the scattered single-particle wave function when the electromag- s
netic oscillatorls are quantized. Therefore we first linearize Eq. (4.13) j
with respect to the electromagnetic potential wherever a dependence on £ is A
o

present.: ‘:'?)
¥s = [-m/(27)fi2r]Vx,x eikr-ist/Bexp(ieK-asin(wt + 7)/cmw] oy

(1 + el (Wi-ared)f/2 - e-i(wt-qred)g/2) .',:f

= (-m/(27)hi3r]Vg,x eikr-iEt/Bexp[]l + eiK-asin(et + 7)/cnw) .

{1+ \el(w'-"‘f)eQ-a/chﬁm - e-l(wt-qar+MeQ-.a/2mchw}. (4.14) i""

Since k = (v/c)q<¢<q, the r-depedence of the elttromagnetic potential can be :{::

neglected, as it is, in exp [ieK-asin(wt + 7)/cme]. .::Q

Here we have introduced the notations E = (fiK)2/2m and K = k(0). In the 0

last form we will neglect the term with sin{at + 7) that corresponds \'

part of the

to a\coherent quantum 1/f noise contribution which has been considered else- 4
where beforet i, because this term can be considered constant of negli- :
gible magnitude in the calculation of equal time spatial correlations. We ;

also neglected the small difference between k(1) = K - «K/vK and K in 8 and

a

::,::

IS i JO 3 . o - bl - L&V, q
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;
! Vk(l),k,' We conclude that the quantization of the electromagnetic field !‘:3
| )
transforms yg into an operator in the photon Hilbert space ,
LU
."‘:'
#(r,t) = (C/r)eikr-iss/a(]l - F g, b%(k,1l)expi(-wt + qr - 7i)ax, .¢::%
o t!
+ 2 x,1b(k,l)expi(at - qr + 7i)a‘y ). (4.15) ,
, é:
This is the form of the single-particle wave functions which are used in the ':‘.
ot
present paper with or without the photons included. Here we have introduced "
b(f,l) = (1/2)8 and the constant C which designates the factor in front, and a .0?.
gt ot
sum which includes all electromagnetic modes with annihilation operators ag,j.
Wl
In the space of the electron states ¢(r,t) is just a single-particle wave "fi'
7]
function. We have denoted by q the small decrease in the particle momentum ‘oi!f
|‘|lé
required by Eq. (4.12). We have q = (K/E)<fiw = ck/v = w/v, with e
3
(L/2%x)3-4n-3 1<| b(k,1) | #>k2dk = e2Q?a?/4m?c?h2w? 2k2de/3c = cAdw/w, (4.16) o
Y
"!
where a = e?/4xfic = 1/137, A = (2Q?/3mm3c?), and where < > is an angular X
average. We have considered the spontaneous emission caused by vacuum fluc- o\
o
tuations only, yielding for the amplitude e\ *ﬁ
h"n‘
R
dan,ir=2fichals, (4.17) A%
\
2!
oy
The annihilation part is included in Eq. (4.15), but does not contribute to :;:
the quantum 1/f noise on the background of the electromagnetic vacuum. If , )
the calculation is performed on the thermal radiation background, howe\;er, "
Q
we get a white noise contribution added to the quantum 1/f noise which HY
b
remains the same?. Here we have performed the transition from just one
electromagnetic mode to the general case with all electromagnetic modes ad-
hoc, but in our previous paper® this transition was presented in detail.




In Eq. (4.15) we notice the presence of the random phases 7 which

where introduced as initial phases of the electromagnetic oscillators, and
which are independent for each electromagnetic mode i (of given pojapization
1 and wave vector k) of the universe. Since the various scattered perticles
are independent of each other and of the electromagnetic modes, we have to
consider the set of random phases 7, different and independent in thé wave

function of each particle. See also the diseussion befere Ey.(3.10)and after Eg.(A).ii),

V. CALCULATION OF THE PAIR-CORRELATION FUNCTIONS AND

OF THE CURRENT AUTOCORRELATION

In Sec. IV we have determined the single-particle wave functions

in the form, valid at t = 0,
#(x,t) = (C/x)exp(iKx)(1l + T x,ib(k,1l)exp(-iqgx)], (5.1)

or, if the photons emitted in the bremsstrahlung process are included in

second quantization,
$(x,t) = (C/x)exp(iKx)[1 + I x,1b(kDexp(-igx)a‘x,1], (5.2)

Substituting these expressions into the calculated expectation values in Eq.

(3.7), we obtain for the case of fermions

A(xi, X2) = (C*C/x1x2)%({1/2 + 2 x.1) b(k,1) | ?{2~cosq(x: - Xa))
+Z ax*110 | b(Kk,1)] 7] b(k’,1’)| 2[1 -(1/2)cos(q -q’)(x1 - x2)]}. (5.3)

Note that if Eq. (5.2) is substituted, the expectation on the electromag-




rmmmmmmmwmmmmmum%

=20~

netic vacuumm state is calculated. If the thermal radiation background is
also taken into aocéunt, a small white noise term is obtained in addition to
the 1/f noise?. The constant part is the squared expectation value of the
concentration of particles. Dividing the wvariable part by this constant
part,we obtain the fractional spectral density of the particle concent;ation
n, or current density j (with L? being the volume of the normalization box
considered)
Sa(k)dk/n2? = S;(k)dk/j? = 2% 1<<]| b(k,1) | ?>>(L/2x)? 4nkadk

/{1 + 4T x,1 | b(k,1)| 2 + 2% xx*131+| b(k,1) | 2| bi{k’,1’)] 2}

= 23 1<<| b(k,1) | >(k2/27x2)L3dk = 2cAdk/k = S;(f)df/j? = 2aAdf/f, (5.4)

which is in agreement with our previous results, and which also includes a
180° phase shift due to the exclusion principle which is important only at
short distances between the particles. In the final form we have trans-
formed to the frequency f.

The expression of b(k,l) used in Eq. (5.4) was derived in Sec. IV.
It is the well known expression of the bremsstrahlung amplitude in any scat-
tering process

b(k,1) = - (e/offfw) (h/al?)1/2A pAy, (5.4a)

where A; is the polarization vector of the mode, and A p is the momentum
change of the particles in the scattering process considered. In Eq. (5.4)
an average << >> over the angular variables in k and a summation over
photon polarizations were performed, leading to the usual definition of the

quantum 1/f noise coefficient, also known as the nonrelativistic form of the

infrared exponent defined in quantum electrodynamics

@A = (2a/37)(A p/mc)?, (5.4b)

with a being Sommerfeld’s fine structure constant a = e?/fic = 1/137.
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In the case of bosons we substitute Eq. (5.1) or (5.2) into Eq.
(2.5b) and obtain

A(xi.x3) =2 + 22 x,1) b(k,1)} 2[1 + cosq(x;s - x2))
+ ZxaZ w0 bk, 1)} 2] b(k’,1’) ] 3[1 + cos(q - q’")(x1 - x2)];

Sa(k)dk/(n)2? = S;(k)dk/(j)? = Z 1<<]| b(k,1) ]| 2>>(L/27)3 4nkidk

aAdk/k = aAdf/f. (5.5)

Here t;xt short distances we notice an increase of A(x:.x:). The fractional
spectral density is reduced by factor of two compared to the case of fer-
mions. Both results generalize our previous results to the case of short
distances and prove the existence of the conventional quantum 1/f effect in
second quantization, even if the photons are included into the final state
(which is to be avoided if the electromagnetic field is included in the
Hamiltonian as an external field, as we did in earlier papers).

The transition from the wave number spectrum to a frequency spectrum
in the last form Eqs. (5.4) and (5.5) is based on the equivalence of the
density distribution along the outgoing rays with the time-dependence in a
fixed point along the flux of particles which all mdve with the speed v.

The coordinate x along the ray and the time t are in this case equivalent
variables, and therefore the wave number k and the frequency f are also
equivalent variables for the spectral density. We can therefore write 2xf =
vq = ¢k and S(k)dk = S(f)df, which justifies the last form of Eqs. (5.4) and
{(56.5). 1In or;ier to check the validity of this procedure, we will now per-
form a direct calculation of the pair-correlation function in time and

space.
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VI. DERIVATION OF THE PAIR-CORRELATION FUNCTION IN TIME AND SPACE :
|
55
Working in the Heisenberg representation as above, we can generalize :::‘::f
)y
)
the derivation presented above by including two different times in the ’:!!:::
operator of the pair-correlation, although this requires more calculation. :;c;:
]
ek
To simplify the integrals, we consider again the statz of two outgoing fer- .‘.':;::
.l'..:
mions very far from the place where they have independently suffered the ity
@
same interaction, so that the outgoing spherical waves can be approximated .‘;::if
..‘!
(A
by plane waves. Starting therefore with plane waves similar to the spheri- .!:":
N
cal waves used in Eq. (3.1), with q = qE/K = ckEK/Kv and q’ = ck’K/Kv, we ob- s
o
tain again the pair-correlation function in the form i
R
o
l..l“
A(xy, t1; X2, t2) = 1/2§fd3&d3rdIg'dIn’ el
$
{exp(-iEn’) + Z x»,s 8% (k’,8’ )exp[-i(K-q' )%’ lak s’} "‘
aiad
(exp(-iK€’) + I x,sbt(k,s)exp[-i(E-q)§’ laxs) :
i
(exp(iEE) + I x,sb(k,s)exp(i(K-q)&la*na} Bt
{exp(iE7p) + I x»,s'A(k’,s")exp[i(K-q’)7]a*x 4"} : '0::
- ’
(1/4)Z ss+<S°ss: | Ot Oyt Oyt O =z v 1,01, | Sess: >, (6.1) "f
3 \i
@
The operator of the pair-correlation function now contains two consecutive :
A
times. The creation and annihilation operators for particles obey anticom- ;".‘.-:
Y
mutation relations similar to Eqs. (3.2)-(3.2b). Using these operators, the 5'5'
field operators can be expanded in terms of plane waves ,
WX
i
Beltey
Ps(r,t) = V-1/23 , expi(pr-wt)cys, ¥*s(r,t) = V-1/23 , expi(-prtwt)c*ys(6.2) .
.,.:"
which also contain their time dependence, as needed for the operator of the s,
Ok
pair correlation function in the Heisenberg representation. This operator i
)
N

" e ) . n n -y w . " P A
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has an expectation value which can be written, for spin up only, in the form

<S""l O.PKU ti, X2, ta)] 3',’>

O] B(p')(E )% (x1,t1)¥*(xa,t2)P(x2,t2)¥(x1,t1)¥* () ¥*(7) | 0>

(1/Vve8)Z -“.."%'l"” expi(m’p’ +n'§’ -4'x1 +o(u’ )ty ~p'x2 +o(v’)t,
+uxa -w(u)ts +uxy -o(v)t; -mp -nf]
<0] cpscmecy, c/:, S S C*ac*a} 0
= (M/h) st -3t2-dexp{(iM/2R) [ (x1-8) 2/t +(x2-7)3/t2
-(x1-9")2/t1 -(x2-8")2/t3]}
+(M/h) 8ty -3ta=dexp((iM/20) [(x1-7) 3/t1 +(x2-§)2/t2
~(x1-&")2/ty —(x2-%")3/ta])
-(M/h) 8t -3tz -dexp((iM/20) [(x1-§) 2/t1 +(x2-7) 2/t
-(x1-§") 2/t -(x2-9")%/t2])
=(M/h) sty -3t;-dexp((iM/2h) [ (x1-9) 2/t +(xa-§) 2/t
-(x1-%")3/t1 -(x2-§")3/t2]}. (6.3)

Substituting into Eq. (6.1), and integrating with respect to &, 7, £' and

7', we obtain for the part with spin up only

8A”(x;, ti,'x1, ta)
= 01 +Z xS (k’)expilq’xs “Kq'(K -q’/2)ti1/M]ax:)}
{1 +Z xb*(k)expil[gxs -“Nq(K -q/2)t2/M]ax)}

{1 +Z xb(k)expilgx: +hiq(K -q/2)t1/M]a‘*a}

(1 +2 x+A(k’)expilq’xs +hq'(K -q’/2)t:/M]a*x+}0>

1 42 x+] b(k’) | 2expi{q’(x1 -xa1) -Hq' (K -q'/2)(t: -ta2)/M]
+Z x| b(k) | 2expilq(xz -x1) ~hq(K -q/2)(tz: -t,)/M]

+Z kx| blk)b(k’) | 2expi{(q -q’)(x2 -x1) -fiK(q -q')(t2 -t.)/M

+i(q? -q'?)(t2 -t.)/2M]. (6.4)
. ; - - ' - e e e R L A L T
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The first form of this result proves the presence. with t#, of ,E
four single-particle functions (AP3PSWF combination) in Agy- .--
In a similar way the expectation values corresponding to Eqs. (3.5) and 3
‘ '}' ‘
(3.6) are calculated and integrated with respect to &, 7, &' and »'. Put- ',:E'

| Q
! ¥ WA
ting together the terms for all spin orientations as before, we finally ob- ::}i::
- L.‘l!l
tain the desired pair correlation function in the form &
N
)

iy
A(x1,t1;x3,t2) = 1/2 + £ x,1] blk,1) | 2{2 - cosq{xi-x2 -v'(t1-tz)]} «;::
.'..l'i

+Z xx*110 ) b(k,1)| ] b(k’,1) | 2{1 -(1/2)cos(q-q’ }-[x1-x2 -v'’'(t1-t31)]}};(6.5) _ o
e
v’z v(1 -q/2ZK) = v(1-£/4E) = v; v''= v[1 -(q+q’)/2K] = vl ~(e+e')/4E] = v. :::E?:‘
R
o
The approximations v' = v and v'’ = v are justified because the soft photon ! 3
O
energy € = 4:10-1%V for 1Hz is negligible compared to the energy E of the .:%: :
Wiy
particles which may be of the order of leV. This result directly proves our ::.

heuristic generalization of Eq. (5.4) to the case of different times in the %

e

pair-correlation function. The extension to the case of bosons is trivial. {;:-
v,
VII. CROSS-CORRELATIONS AND SPECTRA : _'
. ‘\n
:\x"“.z

In practical calculations of quantum 1/f noise in condensed matter "C'{':
and electronic devices we often need the cross-correlation of the differen- M' ,

. l.'; "‘
tial scattering cross sections at different angles. This is in fact the :"\ .
T
cross—correlation of the outgoing current densities scattered into different :-:,}' ;
| directions, with different incoming wave vectors K and Ki considered. If A
iy
we restrict ourselves agsin to spatial correlations for simplicity, we need :\'&

\ . S,
i to examine the cross-correlation of the probability densities in the scat- :;:\
tered wave at various distances from the scattering center and in various ...‘
:\“’F-
directions. RN

P

For bosons we start from Eq. (2.5) and consider ¢(x) and x(x) as in N




LW Vo 0 T ® Yah tad’ S 8 a0 Vel Bl e 0 0 8 0 0,0 00 4,0 ) 2*8,4"! TR L0 0 0. 8% 0% 2 ¢ 2% 8% 0% 2% 20 00 o*h 2%t 2’4 0%0 2%8 2 ats’ o

-25-

Eq. (5.2), but different from edch other:

é(x,t) = (C/x)exp(iKix)[1 + I x,ib(k)exp(-iqix)a‘*x,1], (7.1)

x(x,t) = (C/x)exp(iKax)(1l + Z x,18(k)exp(-iqax)a‘x,1], (7.2)

where now b corresponds to the momentum change K' - K;,and 8 corresponds to
the momentum change K" - Ki of the second particle, in addition of having a
independent random phase different from that in b, for each k, due to the
different initial phases of the electromagnetic oscillators registered by

the second particle. As in Eq. (2.5), we obtain now

A(K;,K2,K’ ,K";x1,x2) = <8} O] 8> = (1/2){] x(xa) | 2| &(xs)] 2
+ 22(x1) P8 (x3)x(x2)d(x1)+x8(x2)PE(x1)X(x1)P(x2) +| 2(x3) | 2| S(x1) | 2}
{1 42 x,1} Ak,1)] 2)[1 ¢ T x,1] b(k,1)] 2]

+

(1/2)expliK’ (x2-x1) + iK"(x1-x2)1[1 + Z x,:| B(k,1) | 2exp-iq(x2-x1)]
{1+ Zx,1} b(k,1) ] 2expiq(xa-x1)] + [1e 2]

= {1+ Zx,] B8k1)| 211+ Z x| blk,1)] 3] + cos(K'-K*) (x1-X2)

+ Z x,1| A(k,1) | 2cos[(K' -K")(x2~x1) + q{x1-x2)]

+ Z x,t| b(k,1) | 2cos[(K’'-K")(xa-x1) - q(x1-x2)]

+ Zux'1] Bk,1)| 2| b(k’,1’) ]| 3cos(K'-K'+q’-q)(x1-Xx1). (7.3)

Taking into account that the momentum changes caused by infraquanta are very
small (q<<Ki-K:), we now smooth this rapidly oscillating correlation by
averaging over short distances of the order 1/(K:-Ki) and get zero, except
for Ki = K3, 'which still allows each of the incoming directions and outgoing
directions to be different

A(K; K3 ,K' ,K";x1,x2) = ¢S} O] S> T [1+Z «,1 | B(k,1)| 2][1+4Z &, ] b(k,1)| 2]

+ (1 4+ Z a0} Blk,1))| 2+ | blk,1)] 2)lcoslq(x1-x2 [} ,x

B A R L e e e R e o
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+ Zaxr,110] Blk,1) | 2] b(k’,1") | 2cos(q-q’)(x1-x2)8x ,x¥, (7.4) A

This result indicates that only particles of the same energy have quantum et
1/f noise cross-correlations, and groups of different energy yield indepen- et
dent quantum 1/f noise, as was anticipated empirically by Xleinpenning!®. - 'z
Our result in Eq. (7.4) differs somewhat from a heuristic generalization of 9 o
the basic quantum 1/f noise formula used in a previous papers.

For fermions we start from Eq. (3.7) and obtain sty

A(K1,Ba K K" ix1,x2) = (1/2)[] 2(x1) | 2] $(xa) | 2 + (1e2)] - og
~(1/78) [2(x1) % (x2) 2(X2) $(x1) + (1+>2)] | R
= [1+Z x,10 A(,1) | 2101 + Z ko1 | blk,1) | 2] - (1/2)cosl (K’ -K*) (x1-x2)] e
~(1/2)Z 101 Alk,1) | 2 + | b(k,1) | *]cos{(K’-K") (xz-x1) + q(x1-X2)]
-(1/2)Z xx*110 ] B(k,1) | 2] b(k’,1’)| 2cos(K’'-K"+q’~q) (x1-X2). | (7.5) "‘:'0;.‘

Applying again the smoothing operation we obtain now

A(K1,K2,E’ K";x1,x2) = [14Z x,1] Bk, 1) | 2]{1+2 k1] b(k,1) | 2] N
“/72){1 + Zxall Blk,1))] 2 + | btk,1)| 2lcoslq(x1-x2)]}dc ,x» A
-(_1{2)2 xx0, 110 ﬁ(k’l).l 2| b(k’,1’) | 2cos(q-q’)(x1-x2)0x ,x~, (7.6) N ll

For elastic scattering we have K' = K; and K" and K, provided the scattering
center is fixed or very massive (e.g. a crystal). We include the infrared
radiative corrections this time.

Using Eq. (4.16), the angular integrations can be performed in £q. (7.4).
We also apply the relations dk/k = df/f and k/ky = f/f, and obtain

i

1
e ey o e e - R A h . ey . -
S G TA L AR AN A N R HGT IR als AN ) O Dol i Tt RN e

AT



CE) Sa b gk Fep G BT o B e Fa b B gt N R b gt P g g 0. B¢ Y Ut e Bt AN a8 W e Ba bt s 0t U 9a B B e UE a8 208 a8 ok n V8 aBh LCE 08 Lh gt g N

> + + F aA F QA "N’
Ap(KysKp K", K'yxy,exp) = [1 + oAy # (F/F5)% Laf /101 + Ay # (F/fq) ¥ 2df/¢) A
0 o e

F ol o :
+ {1+ u# LAL(E/6) ™ L + Ap(f/f5) % 2Jcosq(x)-x2) (df/f) (7.7) oy

0 :!."iﬁ

2 F oA F oA ' >
+ afAjA7 #o(f/fO) l(daf/f) #o(f./fO) 2(df'/f')cos(q-q')(xl-xz)}cx..K.., on
with A} = ZHZ(E'-E1)2/3um2c2 and Ay = Zﬁz(z“-§2)2/3nm2c2 for boscns. The lower jﬁ
frequency limit f, is the resolution 1imit given by the reciprocal duration of W
the noise measurement. The upper limit F is very high, close to the energy of.
the scattered particles, divided by Plamck's constant. From Eq. (7.6) we obtain ﬂﬂ;

> F F »
Af(il.fz.K'. K" ,x1sxp) = [1 + afy # (f/fo)“Aldf/fjtl + af2 % (f/fo)“AZaf/f] st
) 0 o

F
V2L + o) DT/ & my(0/1) M2 cosaxyxg G0/ Do o (1.8) S
0 "t;;‘

F F
-(a?/2)A1A; # (f/fo)°A1(df/f) ; (f‘/fo)aAz(df‘/f')cos(q-q‘)(xl-xz)IGK.’Ku. e
0 0

for fermions. The infrared radiative correction factors (f/fc,)"A were S
. calculated elsewhere’ and can be set = 1 for all practical cases. Neglecting the ﬂ%&
“noise of noise" term proportional to uz, and using the Wiener-Khintchine
theorem, we obtain the corresponding cross-spectral densities of the scattering '&.E

»> » +» »
rate fluctuations aws =+,> leading from K; to K', and aws + > from Kp to K" ey
KI.K Kz.K . s.’.

T

v v ’! ’u QAI GAZ o
SAW(K]_sKZoK K )b = (0/2f)[A1(f/fo) +A2(f/fo) ]<WE1,E'><W22,K“>6K.!K“ (709) -2

for bosons, the factor in front being a/Ng:f in. general (N=2 here),and Qﬁﬁi

> + » >
SAW(KI’KZ’K.DK")f = (G/f)[Al(f/fo)aA1+A2(f/f°)°A2]<W-> 2, 2CWe + 08, L (7.10)
KysK'™ TKp,K" TKT,K

for fermions, the factor in front being a/(Ng'-1)f now (see Sec. VIII). O]
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VIII. PAIR-CORRELATION FUNCTION FOR N OUTGOING PARTICLES

So far we have considered only the simplest case of two
particles present in the outgoing state, which is the minimal
number that allows for correlations between different particles
to be defined. Quantum 1/f noise is the manifestation of long-
range correlations between particles, causing them to be bunchéd
and to be subject to superpoissonian statistics. Therefore, we
are interested in these correlations which reveal themselves in
the pair-correlation function, also known as the two-particle
distribution function.

In general, there will be more than two particles in the
outgoing state, which are observed in order to determine the
scattered current. In calculating the pair-correlation function,
we should therefore consider the general case in which N scat-
tered particles are simultaneously under observation in the out-
going state during the measurement of the cross section. This
is what we will try to do in tis section.

Similar to the case of two particles in Eq. (2.1), the

state of N scattered particles can be written in the form

18 = (N!)"”ﬁ 1a15d3811(£1)¥*(&1) ] 0> = T1.1Jd2&: 61(£1) | S, (8.1)

() Q ] ” 13 - o r r " A A T A R~ I -
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Here we have denoted by &:(£,) the exact single-particle wave function of
the particle i, where both the interaction with the scattering center and
the intemct;;::h /the electromagnetic field modes are taken into account. For
bosons the operator of the pair-correlation is given by Eq. (3.3), and by

using the permutation relations Eqs. (3.2)-(3.2b), we. obtain

NI<Se] O] 59 = <OJ $(7w)+. . $(7)¥* (X1) ¥+ (x2)B(x2)¥(x1)¥* (£1) ... ¥+ (En) | O
) N o
=0l S0, A3 X080 xa)E T $H(£1)0(Eu-x1)0(Eurxs) | O

Lém,

= )} %; 8(mh ~x1)8(msi -x2)8(Eax1)8(Saxa)E T ' 8(ms-£1)

my 4
=Z I & —xx)5(7/\-xz)3(§n-xx)3(5-—3(:)2 II &(n-§1), (8.2)
”')’S, Miney Vs RIS L]

ms, ez

where the sum over permutations runs over all permutations of the N-2 in-

dices j. This allows us to calculate the complete matrix element

N ¥
8101 $ = [(ININ-1)IZ 2 fd*nh fd*, JdEafd ss

e} mins

%'%)71\'<7+\)¢.”(e.;y)¢.<e.)a<7.s\\-xl)6(7 ~X2)8(£a=x1)8(Ea-x1)
= um(N-l)%ﬂgﬂg;&\t(xz)ﬁ\ux,)¢.(x;)¢.(xz)

N
(1 + 2Zx,1] b(k,1)] 3]-3{N(N-1) + [(N-1)/N][2Z u=1Z x,1] ba(k,1) | 2
N .
+ 22 us1 Z x,1| balk,1) | 2cosq(xi~x2)1)}

{1+ Zx,1]blk,1)| 2]-2{N(N-1) + 2(N-1)[Z 1| b(K,1) ]| 2

+

Z x,1| blk,1)| 2cosq(xi1-x2)]}. (8.3)

Dividing the term dependent on xi1-x: by the constant term, and neglecting

terms of higher order than | b(k,l)] 2, we obtain the fractional spectrum

Ya'a.ly
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density of the quantum 1/f fluctuations in the concentration c of particles,

in the current density J, and in the physical cross section ¢
S;(£)/<3>? = 2aA/Nf. (8.4)

In Eq. (8.3) we have used the form of the single-particle wave functions
given by Eq. (5.1) or (5.2), and in Eq. (8.4) we have used the expression of
the bremsstrahlung amplitude given by Eq. (4.16). Our calculation in Eq.
(8.3) and the result in Eq. (8.4) show how the independent sets of phases in
the bremsstrahlung energy loss part of the single-particle wave functiohs
lead to independent additive quantum 1/f spectral contributions from each of
the scattered particles, and to the 1/N factor in the fractional spectral
density shown in Eq. (8.4). This result and the foregoing calculation are
in agreement with our previous results!-% and calculations, and perfectly
Jjustify our previous use of single-particle wave functions with subsequent
introduction of the 1/N factor on the basis of the independence of 1/f noise
contributions from different carriers.

In the case of fermions the ;:alculation is similar, except for the
use of anticommutators for the fermion field operators. In order to em-
phasize the independence of our results on the representation used, and to
show directly how the calculations presented in this paper can be performed
without second quantization, we give here the direct calculation in terms of

8 Slater determinant for the state nf N scattered fermions

$i1(r1) dir(ra)e....dia(rn)
dia(r1) dia(ra)e....dia(ry)

vll.-..lN(rIoo-rl) = (N!)~l/2 .

din(ry) din(ra)eceedin(ry) (8.5)

"IN K C [ »
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Here r combines the position vector x and the spin variable s for each of

the particles. The pair-correlation function is obtained by integrating
with respect to the coordinates of all but two of the fermions

A(ri,rz) = fdirs...drud] Yis...in(Treeern) | 2, (8.6)
Here the int.grals also include summations over the spins, and the expecta-
tion value is with respect to the phases present in the bremsstrahlung parts
of the wave functions and, if the emitted photons are included in the final
state, the expectation value is also done over the vacuum of the photons.
Assuming orthonormality of the functions ¢ii...4;n, we obtain

N
A(ri,r2) = [1/N(N-1)1Z m,n21<]| du(ri)éa(rs) - du(rs)ds(ri)| 23 (8.7)

To display the spin variables explicitly, we write ¢a(r) = Za(x)| s> and get

N
Agsr(x1,x2) = [1/N(N-1)]Z n,os1<{Xa?(x1)<S| 2at(x2)<s’ | . (8.8)

Xa®(x2)<8’ | Xa¥(x1)¢s| ] [Xa(X1)|S) Xa(x2)]8') - Xa(x2)|s’'} Za(x1)}s) 1>

NA
[1/N(N-1)1Z a,0=1<[ | Xa(x1) | 3| Xa(x2)| ? + | xa(x2)| 2] Xa(x1) | ?

Xa¥(x1)xa({x2)} <8] 8'>] 2xp¥(x3)Xa(x1) ~ (X21¢->x2)]),

Here the simbol (X1« - x2) designates the immediately preceeding term. Con-

sidering all spin orientations, we obtain

N2
A(x1,x2) = A”*" Aﬁ = [(1/ N(N-1)]Z m,n«1<[4] xa] 2| xa] ?
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X
4,00
- xa (x1)X n(x2)xn(x2)xn(x1) = (x] + » x2)1> (form 1) .
080
. [|C| 4/x2N(N-1)][N2[1+}:k 11b(K,1) 232 i
oty
-2 zl exp[iKn(x1-x2) (1 + I§, 1Ibm(k 1)12 expligy(x1-x2)] :E:E::.'
m= ‘l‘.u'l
N/2 -
é exp[-1Kp(x1-x2) 1 + v ¢ b (K*,1')12 expliqq(xy=x2)] (form 2) . N
n=l n n “Q.’
]
Q.",
= [|c] 4;x2<n-1nwc1 + 5,1 Ib(K,1) | 232 «g:
o
- (2/N) ¢ [1 + 2z, ,,lb,,(k 1)] 2cosqq(xy-%2)
n=]l .Q‘;:t:
l‘:v:i::
s 5, |ba(ka1) 210 (K" ,1°) | 2cos(gn-a'n)(x1-%2) ]} e
k,1;k*,1' :::::4
- - :Js'
e []C| 4/x2(N-1){NC1 + 25,1 Ib(k,1) | 232 -1 -21,, |b(K,1) | 2cosq(xy-xp)}. (8.9) o
e
This form of the pair-correlation function includes the 1/N factor which ;:;2;;
.'533‘!
multiplies the variable (noise) part. The crucial point in the derivation :‘S’,:’,:
of the 1/N factor was a elimination of the rapidly oscillating terms exp(K.- .
3 :_""
Ka)(x1-x32) with Ka # Ka present in the second form of Eq. (8.9) above, an ‘é,"
Ai “i
elimination indicated through the approximation sign connecting the second .‘:::‘;
form to the third form above. Indeed, since Ka differs from K, by much more G
|.!.‘
then the momentum change corresponding to the emission of a infraquantum, X n
\
these terms will have a very fast oscillation, and will not yield any low t 3,
a
frequency noise. Since they are also small in magnitude, they are negli- 'v';q:;
ot
gible. This provides the important reduction of the noise term by a factor !'?‘
]
N. In the last form of Eq. (8.8) the first two terms are constant and "
large, and do not yield any rapid oscillations which would justify elimina- o N,
tion of any cross terms. &E
In Eq. (8.9) we have used again the form of the single-particle wave Mg
functions given in Eq. (5.1) or (5.2), with independent sets of phases :1‘:5
A R
.t:.,-
D
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present in the bremsstrahlung energy loss parts of each particle. Had we

used a random time-shift in each of the single-particle wave functions, i.e.
Just a random initial time constant, or, equivalently, a random space-shift-
constant, all results would have been exactly the same. In fact, the random
shift should better describe the initial Poisson distribution of the incom-
ing particles which are scattered. As we have seen in Sec. 1V, the random
phase set in the bremsstrahlung energy loss parts is the set of random ini-
tial phases of the electromagnetic field oscillators. Therefore it should
come in the same way for all particles. However, the random shift will
eliminate expectations of the cross products ba?(k,l)bs(k,l) withm # n
Jjust as the sets of random phases used by us did; if o is for instance a
random space shift, these cross terms yield contributions to the pair-
correlation function of the form <] b(k,1) | ? cosq(xi-x2 + p)> = 0, where
the average is with respect to p. We present this observation here as anaf-
terthought, because the sets of random phases generated by a shift in time
or space will appear to be random, but will still contain some correlations.
The point we make here is that these correlations have no effect on our cal-
culations, so we can continue to use random phases for our purpose. There
may be, of course, some differences in higher-order correlations which we do
not consider here.

In the last form of Eq. (8.9) we have neglected the higher-order
term. Using Eq. (4.16), we can write the pair-correlation function for fer-

mions in the form

A(x1,%2) = (]c] 4/x2)(1 + [2/(N-1)]zg.llb(f€.1)| 20Nt cosq{x1-x2)]}, (8.10)

Dividing again the variable part by the constant term, and neglecting small

constant. terms, we obtain for the fractional spectral density of the fermion
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current and cross section fluctuations

Sj(k)dk/j2 = 2aAdk/k(N-1) = Sj(f)df/j2 = 2aAdf/f(N-1). (8.1)

IX. DISCUSSION

As we have seen in Eqs. (2.5a) and (2.5b) the second-quantized cal-
culation of the pair-correlation function for bosons has yielded just the
autocorrelation of the single-particle probability density which we had used
in the initial publicationst:2, For fermions the same result was obtained
with a minus sign which corresponds to a 180° phase shift. The latter was
interpreted as the result of the Pauli exclusion principle which prohibits
the very close location of two identical fermions of the same apin. _
However, this affects the paix*obmlation function only at very small rela-
tive distances of the particles. For the larger distances and lower
frequencies or wave numbers important for 1/f noise, this difference, which
appears in the case of fermions, is negligible. We conclude that the simple
autocorrelation function calculated for the single-particle probability den-
sity in earlier papers on quantum 1/f noise is required by any second-
quantized calculation which takes into account the quantum exchange between
identical particles automatically. However, there is nothing special about
the secord quantization beyond this automatism and its neatness; the same
results are obtained also without it, by properly symmetrizing the wave

functions, as we have seen directly in Sec. V‘III.." Fuether more, quantum I/f
noise was also derived withoul the APSPSWF,
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At first sight the autocorrelation of the single-particle probability

density function can not be considered as the expectation value of an ob-
servable quantity in agreement with the principles of quantum mechanics, be-
cause it is of fourth order with respect to the wave function. However, as
we have seen, this is required by a correct calculation in second quatiza-
tion. To explain the fourth-order dependence of the pair-correlation func-
tion on the wave function without using the method of second quantization,
we mention that the nonuniformity of the distribution of the outgoing par-
ticles is described by the two-particle wave function, which in turn is a
properly symmetrized or antisymmetrized product of two single-particle wave
functions. Taking the module squared of this two-particle wave function,we
obtain the probability denscty of the relative positions of the par-
ticles, or the pair-correlation fmction': which therefore will be of fourth-
order in terms of the single-particle wave functions. This fourth-order de-
pendence which was present in all publications on quantum 1/f noisel-s, is
therefore in agreement with the principles of quantum mechanics, and is jus-
tified by the detailed many-particle calculation, in spite of the
acrimonious criticism it has recieved’.3 We have also provided for the first
time in this paper a formal derivation both of the quantum 1/f cross cor-
relations and of the 1/N factor of the empirical Hooge relations, in perfect
agreement. with the previously introduced 1/N factori-s.

In conclusion, we have shown how the method of second quantization
can be applied to derive the pair-correlation function of the conventional
quantum 1/f effect in space and in time. Both the pair-correlation function
and the power spectral density are similar to the previously published ex-
pressions based on more elementary derivations. Rather than contradicting
the existence of quantum 1/f noise, the second quantization method confirms

the quantum 1/f effect in a brilliant way, and convincingly justifies my
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previous use of four single-particle wave functions in order to describe the
self-interference of the particle fields, on the basis of quantum exchange
effects between identical particles. '

Finally, we mention that the inclusion of the soft photons into the
final state is not required, if the electromagnetic field modes are not part
of the system studied, but are considered external, being included as a
time-dependent external fcrce field in the Hamiltonian. This extem:‘ﬂ field
description’:?® involves a time-dependent Hamiltonian and a formal lack of
energy conservation, but is well suited for the derivation of quantum 1/f
noise and of most other electrophysical and electronics problems, as I have
pointed out earlier. The present paper shows that the quantum 1/f effect
can also be derived in the language of second quantization, with the ex-
plicit inclusion of the emitted bremsstrahlung photons into the final state.

The equivalence of the wave number spectrum with the frequency
spectrum was proven here by neglecting coherent state quantum 1/f noise,
which was discussed elsewheret!!::2, Indeed, if the coherent state quantum
1/f noise is included, fluctuations caused by virtual photons in the final
state must be included. We recall that coherent quantum 1/f noise is caused
by the energy uncertainty introduced by the coherent state of the
electromagnetic field of a physical charged particle. Both coherent and in-
coherent quantum 1/f noise can be derived in the interaction picture. In
the interaction picture coherent quantum 1/f noise is obtained from diagrams
which do not involve scattering of the particles, while the conventional (or
incoherent) quantum 1/f noise considered in this paper arises from diagrams
of scatterin_g with the simultaneous emission of photons. We have not in-
cluded coherent quantum 1/f noise in our calculation here, because we have
considered only the noise in the final state long after the scattering

process, with the coupling to the electromagnetic field disconnected, and
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with the Heisenberg field operators #(r,t) in free motion. Without this N
restriction, the quantum 1/f noise spectrum in frequencies would have been ‘.:::'
larger than the wave number spectrum. However, in very small electronic ';‘
devices only conventional quantum 1/f noise seems to be present?4. ::?}
R
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APPENDIX B

THE SINGLE-PARTICLE WAVE FUNCTIONS

1. Introduction

The single-particle wavefunctions used in this paper make sense physically
and were first introduced in 1975 on physical groundsl. The objective of this
appendix is to show how they can be derived formally. The single-particle wave
functions were derived in Sec. IV by treating the electromagnetic fiefd
classically, and by writing the final result in terms of photon creation and
annihilation operators. This last step implies the correspondence principle.

A more rigorous derivation should follow perturbation theory, e.g. the
calculation of Yennie, Frautschi and Suural® reformulated by Chun915 in order to
provide a scattering matrix element free of infrared divergences. The
reformulation by Chung shows that the price we have to pay for a finite matrix
element is a more complicated set of 1ncom1ng and outgoing states describing the
scattered particles, with the inclusion of a coherent state of the
electromagnetic field into the notion of charged particle. This new picture was
first suggested by Dollardl’ in the language of nonrelativistic quantum
mechanics, and was successfully generalized to the relativistic case by Kulish
and Faddeev:%, and by Zwanzigerlg. This new picture is intermediary, between
the usual Heisenberg picture and the usual interaction picture, because the
offending (long-range) part of the electromagnetic interaction has now been
included into the unperturbed hamiltonian.

Following Chungls, we obtain a finite matrix element by writing the initial
state of a charged particle involved in a scattering process, with initial

4-momentum p; and final 4-momentum pf, in the form

(2)

| >4 = exp{-(1/2)zy , IS; (k)lz}

exp{Iy,y Sgl)(")e(”(k)ak(”*l lvipi)>
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=|1- (1/2)£k,1|5§l)(k)|2111 + I,y ng)(k)e(l)(k)ak(‘)*J|w(p1)>, (AL.1) ggag
where the summations over k can be transformed in intergrals by multiplication ?igk
with (L/2x)3 as in Eq. (5.4), and where ;PQ
My

s () = (era(zn)%otpre(®)py (AL.2) "

-

is a function which depends on the momentum py of the incoming particle of
charge e. The state |(pj)> includes the bare particle and the vacuum on which
the creation operates a£1)+ act. Here e(‘)(k) is the polarization 4-vector of
the mode k,2. The physical charged particle defined by the first form of Eq.
(Al.1) contains the bare particle and its field which is in a coherent state,
with an indefinite number of photons in each mode and therefore with energy and
momentﬁm which are not sharp, i.e., not well defined. The last form of (Eq.
Al.1) is only an approximation obtained by expanding the exponentials. The f:rm
of 51(3)(k) given by Eq. (Al.2) is correct only in the limit k+0 of interest for
us.

The final state is obtained by replacing pj with ps in Eqs. (Al.1) and
(Al.2). The photon is assumed to have a finite mass A which is allowed to
approach zero at the end of the calculation,

It is easy to verify that if the initial and final particle states are
chosen as shown in Eqs. (Al.l) and (Al.2), all infrared divergences cancel
already at the level of the matrix element Mfj, and not only later at the level
of the process rate or cross section as would be the case had we started with
the usual notion of particle, without the long-range part of the field included.
It is easier to do this proof in two steps: first to second order only, in
order to get acquainted with the formalism; then up to any order. Our treatment
will be simplified and schematized as much as possible, in order to focus on the

essential.
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2. Cancellation of infrared divergences :535:5'
Infrared divergences are of two kinds, arising from virtual photons and real “..
photons. The former are photons which boomerang back to one of the charged E'::E‘:é%
particles involved in the contemplated process. Real photons are emitted (or 'E‘;:'::.'i.
absorbed) for good. Let M, be the basic matrix element calculated for' an “;
arbitrary process (e.g., scattering of charged particles on a fixed potential) §3§:’:
without including the coupling to photons. In fact, however, the process may :::"?;E
also happen with any number of virtual photons. Adding up the infinite series .
of processes (or Feynman diagrams) corresponding to virtual processes of any ?:?éf
order, one obt:a'insls'16 the matrix element "ﬁ?;'.:::
M'y = MgeaB | (A1.3) ‘;‘»

where we have neglected a small nondivergent term, and :E';E;,‘
- - Ry

o - oo [ BT 0y

I \]

. -(1/2)zk,,,,|s$”)(k)-51(")(k)I2 . f.:!:f

Here the rectangular bracket is a 4-vector and the exponent in brackets 3'::
designates the scalar product of the four-vector with itself. For A = 0 the ‘;'
integral derived from the sum in Eq. (Al.4) shows a logarithmic divergence which Ef'
has been exponentiated in Eq. (Al.3) by summing the the virtual photon processes v
(diagrams) of all orders. The value -= of Eq. (Al.4) tells us that M' = 0 in :,_‘
the 1imit A = 0, and therefore there are no processes without the simultaneous EE
emission or absorption of any (observable or unobservable) real photons. 2""
To get a finite result, we multiply the matrix element M, which includes all ';’_E
virtual photon contributions with the sum of all real photon contributions. To f?_-'z
second order, this yields :'{‘:‘ 1
:E: )
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M* = MgedB [1-(1/2) £ |s§”(k)|2“1-(1/z) L |5$‘)(k>|21
kst K,z
ez sPustoonn s stuas o - sPuos®g e
k,2 | 39 k,2

“Moll+n + a8 - (1/2) 5([S}[2 + 512 -25{Sf) + £(sk2]

= Mgll + n + aB + o). (A1.5)
Here in the first form on the r.h.s. we have first included the normalfization
factors present in the in and out coherent states (Al.1). The following factor
(third rectangular bracket) is the scalar product of the in and out coherent
fields, describing a transition without interaction. The next factor describes
the emission of the final coherent state field S#l)(k) in the scattering
process, and the last factor corresponds to the absorption of the incoming state
coherent field. Note that the last three rectangular braékets have just been
taken over and copied from the usual treatment of infrared divergences, just as
we took over the virtual photon contﬁibution. In the second form on the r.h.s.
we consequently limited ourselves to the second order in e/(hc)1/2 and carried
out the multiplications. We omitted the upper polarizatin label and wrote the

argument k as a superscript, also omitting the indication of the summation

variables k and g under the sign of the sum. Finally we introduced the

.notations

ng)(k) ) ng)

(k) = s{&)(k) = sk ; of = (1/2)z)5%|2 , (A1.6)

in order to save space. The term Myn stands for a non-infrared-divergent
contribution. We notice from (Al.4)-(Al.6) that for low k values the summands
(or integrands) in oB and of are identical, but with opposite signs in the limit
A+0. Therefore, the infrared divergences cancel already at the level of the

matrix element.
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The coherent states of the field of a physical charged particle defined by
£q. (Al.1l) are vectors in a separable Hilbert space. The result in Eq. (Al.S)
is not affected by a traqs]ation in this space, which amounts to adding or
subtracting the same vector yk from all states. Indeed, subtracting y§ the

k k
amplitude sk a S¢ - S§ remains the same, and we get
. aB K_ k2 K_ k2
MUei = Moe®(1-(1/2)2]Si=y" |](1-(1/2)z|S¢-y" %)

[I-Rez(S:-yk)*(S:-yk)jll+Rez(S:-yk)Skj[1-Rex(5:-¥k)sk] + nMg
= Mg(1l+n+aB+af) (AL.7)
as before.
To demonstrate the cancellation of divergences to all orders, we regroup the

perturbation theory series in the form
k + k +
Mfi = M°<0Iexpleakjexp[zsk(ak-ak)jexp[-xsiakj l0>

expl-(l/z):(ls';l2 + |S:|2)] + Mgn' (Al1.8)
where Myn' is a nondivergent part.
Applying the relation eP+Q & ePeQe'(l/z)[P’Q] with P = zska: and Q = P*, we
obtain

k k Kk
Mgy = Moe°8<0|expzsfakexpzsiak|0><0|expzsfakexp2$kak|0>

k + ' a
<0 exp-zSKa exprSia, [0> + M0 = Mo(eaB*aB + n'). (A1.9)

The virtual phonon factor e%® arises from e-(1/2)[P,Q] automatically, and has an
upper inteyration limit roughly equal to the energy E of the particle considered
and involved in the scattering process. The integrals in e“g, however, should

be divided in a part below the photon observation threshold ¢5 * hf, and a part
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above, going also up to E, which contains the part of the matrix element

occuring with bremsstrahlung. The parts below g, cancel each other in oB and in
all, demonstrating the disappearance of all divergences. Bringing the rest of
e28 to the denominator and neglecting the difference between B and B, we can
write

1 - [expz'|SK}¢ - 1]

The sum with a prime is over |k| > ¢, only, i.e., is restricted to observable

photons. Here we have separated in the numerator the unity which represents the

1

non-bremsstrahlung part of the rate, as we did earlier® to second order.

3. Single-particle wave functions

The discussion and derivation outlined above suggests Eq. (Al.l) as the
correct choice for the incoming and outgoing physical charged particle states.
For the out state the subscript i is replaced by f. However, conventional
quantum 1/f noise (effect) is defined as the cross section (or process rate)
fluctuation arising due to the small bremsstrahlung effects associated with the
process considered. The current fluctuations caused by the general uncertainty
in the energy and momentum of the physical charged particle states have always
been called coherentlls12 state quantum 1/f noise (effect), and will be studied

11'12. Since we are interested only in the noise

separately in another paper
contribution introduced by the collision at hand, we perform a translation in

the space of principal (coherent) state vectors, by taking y = S: in Eq. (Al.7).
The invariance of matrix elements with respect to any translation was verified
above in second order, and is manifest in Eqs. (Al.10) and (Al.9) to any order,
because SX is an invariant difference of two vectors. Subtracting S§ from the tki>&

amplitudes of all vectors we obtain a bare particle incoming state with no observable
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photons (|k|>¢_ ), and an out state
>¢ = expl-(1/2)zg ,IS*(K) (2}
- - _iTer
exp(zE zS(z)(k)e(")(k)e 1G1x r)a&&)+}l$wga>

. [1-(1/2),:'2'2|sl(,:)][mE’zs(‘)(E)e"B(;'F)aé”*Jl‘!'(Pf)>(A1,1'1)

S < ->-+
Here we have introduced also the recoil phase factors e-1Q(X r) which describe

the momentum loss q = k¢/v of the outgoing paricles of momentum pe = mv when '

a photon of momentum k is emitted. These recoil phase factors are neglected in
the independent boson model which ignores the changes caused by the emission

of individual photoné; we have neglected these factors so far, but are restoring
them here. The particle-specific constant ¥ has fo be introduced because the
single-particle states |>f are not exact momentum eigenstates, and are there-
fore not exactly invariant with respect to translations. Individual single
particle wave functions may differ by such a random translation in space or

time regardless of whether they are localized or completely unlocalized in

space and time. For momentum and energy eigenfunctions, such translations

introduce only a general phase factor which drops out of any physically relevant

In £, (AI1N) il does net drep out. s a shiftr inthe radial cocrdinale x in the exponenl, equivaleal e,

calculationYFor a spherical wave the translation is replaced byYa time-shift,
or time delay; if this requires more than a general phase factor, a randomradial(cr
time)shift must be introduced for each scattered particle inthe exponenls,

With the notation S(L)(k)e(z)eiaF = b(?,z), Eq.(Al.11) becomes similar to
Eq.(5.2) which was used in the main text of this paper. The main difference
is the normalization factor in (Al.11), which was suppressed in Eq.(5.2). The

o =
iqr

phase factor e (or e'S" for spherical symmetry), with constant, particle-

specific [ present in b(f.z), is the random phase factor introduced by

> - - > 4
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us in the main text for each particle. which led to the 1/N factor in e
Sec. VIII. This derivation of the single-particle wave functions i
treats the electromagnetic field quantum-mechanically, while the deri- O
vation in Sec. IV was semiclassical. : it

In the present paper we have considered only one isolated scatte- X
ring event. We also note that the subtraction of S? changes the noise | AT
given by the final state. The corresponding separation in conventio- TR
nal (incoherent) and coherent state quantum 1/f noise seems to be con- P
venient both for conceptual or didactical, and for practical or calcu- J$§
lational reasons, connected with the method of compounding the noise Jﬁe
contributions from successive scattering events. As was indicated
earlier’’, this addition of contributions from many successive, closely bt
spaced, scattering events gives a result close to the contribution, ﬁpv
calculated here, from a single representative scattering event with a h ;ﬁf

correction factor which is usually close'to unity. h
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I. INTRODUCTION

The utilisation of infrared detectors at larger wavelengths and in the staring
mode has made the limitations imposed by {/f noise on the performance of MIE
structures more stringent and conspicusus. On the other hand, the development
of the quanfum {/f theory has provided us for the first time with a roesibility 20
predict, model and calculate from first orinciples the various {/f noise
contributions affecting the many currents and processes which are of importance
in tne operaticn of infrared detec‘;.ors.

The main purpose of the present report is to apply this new knowlecdge of 1/f
noise to MIS structures working as infrared detectors. We start here with a briet
general description of quantum 1/f noise and continue in Sec. I with the
inventory of various components present in the current of MIS infrared detectors.
In Sec. II1 we analyze the quantum 4/f noise asscciated with the currents and
processes discussed in Sec. 1I. In Sec. 1V we compare the {/4 noise components in
macnitude and determine their impact on the performance of MIS detectors.
Finally, in Sec. V we discuss the resulting 1/f noise limitations, and point out
some possibilities of reducing the quantum {/f noise. Those familiar both with
guantum 1/f noise and with infrared detectors may now go directly to Sec. I11.

Quantum 1/¢ noise! ™S is a fundamental fluctuation of physical cross sections
and process rates, caused by the infrared - divergent coupling of current carriers
to low frequency photons and other infragquanta. The physical origin of quantum
1/% noise is easy to understand. Consider for example Coulomb scattering of
electrons on a center of force. The scattered electrons reaching a detector at a
given angle away from the direction of the incident beam are described by
DeBroglie waves of a frequency corresponding to their energy. However, some of
the elecrons have lost energy in the scattering process, due to the emission of

Bremsstrahlung. Therefore, part of the outgoing DeBroglie waves is shifted to
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slightly lower frequencies and interferes with the main, non-Bremsstrahlung,

component, yielding beats. These beats present in the probability density along
the direction of the scattered Seam will be noticed in the detector as low
frequency cur.r'en‘t fluctuations, and will be interpreted as fundamental tross
section fluctuations. Although the wave func‘tion\}J of each carrier is split into a
Bremsstrahlung part and a nen-EBremsstrahlung part, no quantum {/f noise can be
shserved frem a single carrier. A single carrier will only provide a pulse 1n the
detector. Many carriers are needed to produce the 1/ noise effect, just as in the
case'o¥ eléctron diffraction patterns. While incoming carriers may have been
Poisson distributed, the sca‘t‘cefed beam will exhibit super ~ Poissonian statistics
or bunching due to quantum {/f noise. The quantum {/f effect is thus a th -
particle effect, best described through the two - particle wave functicn and two -
particle correlation function.

Let us estimate the magnitude of the quantum 1/f effect by starting with the
tlassical (Larmor) +ormﬁ1a q"32/3c3 for the power radiated by a particle of charge
q and accelerationLv’. The acceleration can be approximated by a delta function
:\_r?t) =A7J (t) whose Fourier tranéformA'\?-is constant. The one - sided spectral

3

density of the emitted Bremsstrahlung power ZQQ-\%Z/3C is therefore also

constant. The number 2q(A'\7)2/ 3hfc? of emitted photons per unit frequency

. LAY,

"E. 5

interval is obtained by dividing with the energy-hf of one photon. The probability

«
l'

7,

(5

amplitude of photon emission [2q(A—\7)2/3hfc3]1/2 is given by the square root ot
this photon number spectrum, including also a phase.factor. The beat term in the
probability density l‘{/l"3 is linear botr'.n in this Bremsstrahlung amplitude and in
the non - Bremsstrahlung amplitude. Its spectrel density will therefore be given
by the product of the squared probability amplitude of photon emission with the

squared non - Bremsstrahlung amplitude which is independent of f. The
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resulting specti al vensity of fractional probability density fluctuatiors is

obtained by dividing with V1% and is therefore
1451 12(6) = 5q2AWZ/3heNCD = ZHA/EN = FEs (1.1)

whered = Zeé/hc = 1/137 is the fine structure constant andolA = 4q2<471>)':/3hc3 is
Known as the infrared exponent in guantum field theory, and is known as the
guantum 1/f noise coefficient, or Hooge censtant, in electrophysics.

The spectral density of current density fluctuations is obtained by multipiying
the probability density fluctuation spectrum with the squared velocity of the
outgeoing particles. When we calculate the spectral density of fractional
fluctuations, the velocity simpiifies and therefore Eqg. (1.1) also gives the
frattional spectrum of current fluctuations SJ(f), as indicated above. The guantum
1/f noise contribution of each carrier ic :ndependent, and theretore the guantum
1/¢ noise from N carriers is N times larger; however, the current j will also be K
times larger, and therefore in Eq. (1.1) a factor N was included in the denominator
for the case in which the cross section fluctuation is ohserved on N carriers
simultaneously.

The fundamental fluctuations of cross sections and process rates are
reflected in various Kinetic coefficients, such as the rnobili'ty/aand the diffusion
constant D, the surface and bulK recombination speeds s and recombination times
T, the rate of tunneling j; and the thermal diffusivity. Therefore, the spectral
density of fractional fluctuations in all these coefficients is given also by Eq.

(1). This ie true in spite of the fact that each carrier will undergo many
consecutive scattering procecses in the diffusion process. The quantum 1/f noise
in the mobility and in the diffusion coefficient ic practically the same as the

gquantum 1/4 noise in a single representative scattering event which limits the

mobility or the diffusicn coefficient.

K
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Due to the rapid relaxation of concentration fluctuations, the quantum 1/+4

fluctuations of scattering cross sections will only be reflected by the

fluctuations of the mobility and the diffusion constant of the carriers, and not by

fluctuatione in the concentration of carriers.
For large devices the concept of coherent state quantum 1/f noise was

introduced ! 12; gee L-.ﬂnn;kffjor details, In this case the Hooge parameter

Xy may be written

oy = Eylop = 284 F 4.6 1073 (1.2)

where o= 1/(137) is the fine structure constant. This is of the same order of

magnitude as the empirical value X, = 2 1073 that Hooge found fcr long devices.

It is therefore propesed that Hooge's emprical value for Xy is due 1o coherent
state quantum /¢ noise, so that it has a very fundamental oripin.

¥ or small devices (e.G. of size L « lo/u m) we apply conventional, or
incoherentz-s. quantum 1/f noise which is just the cross section fluctuation

introduced above in Eqg. (1.1). In that casewy may be written
Xy = pincon = A%/3MLANZ /)3, (1.3)

where A-V‘ is the change in the velocity of the carriers in the interaction process

considered. This expression holds for any 1/f noise source describable by

fluctuating cross sections. Since usually (A'\'/Z/cz)<(i, except for carriers with a

very small effective mass, we now have &, < 3.1 1073, This may explain the low
values of &y (in the range of & = 1075 - 107%) for very small devices. In

between one can introduce a parameter s = f(L/L,) where L is a characteristic

R . ”
sjize and wr:‘tei‘.

Ay = (Yinconbl/ + s)l + (\'H)coh{s/(l +s)], ({.4)
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with e ! for L/L <1 and s> for L/LD>}1. Ac:cording to this rough

appro:-:imaticniz. Ln El 10/4 m fcr samples with & concentration c of carriers of
1015:m'3 and varies propcrticnal to /%, This describes the transition from
Eq. (1.2) *2 Eg. (1.3) when one pgoes to devices with smaller and smaller sizes, as
we shall see telow in Eq. (3.21).

Wher we apply £q. (1.1) tc a certain device we first need to find out which are
the cross secticne which iimit the current, and then we have to determine both
the velocity change AC of the scatizred carriers and the number N of carriers
simultaneously used o test zach of thece cross sections. The next section deals

with the first problem, i.e., is dedicated to the study of currents in MIS infrared

detectors.

[5)]

II. CURRENTS IN MIS DETECTOR STRUCTURE

MIS detectors’are different from photovoltaic detectors, because they do not
contain a pn junction obtained by inhomogeneous doping, and use an insulated
field plate, or gate, placed on top of a homogeneously doped narrow — bandgap
semiconductor. The gate is used to control the surface potential, driving the
semiconductor surface into deep inversion. The field of the induced quasi - pn
anction obtained under the surface of the gate in the homogeneous semiconductor
material is used to separate the carriers generated by photo-electrically induced
band %o band transitions just as in a photovoltaic device. The MIS infrared
detector is therefore similar to a capacitively coupled photovoltaic detector,
without the inconvenience of inhomogeneous dopingAprocesses.

MIS detectore are cperated in the pulsed regime by applying the gate potential
which creates the inversion under the surface for a finite time cnly, and by
applying subsequently a potentizl which flattens the energy bands near the

surface ard releases the carriers which had accumulated from photo electric

T T I G ¥ SN N
\.A'F:x":.‘.',.ﬂ'ﬁ\:-'ﬁ a. V4

RN

Ty s W
.,
-

v

£ T
£

. .(l
{? ..

a1
.;'f .I' ’

2

LAY

)

VXN

AR N A

@ =

A

LA LA

1@ T

NS
A
l‘ ‘c .

A MR



ATVUGASLK LR PN

v e ap Lt a0 & T ey

effect and dark current preceeses during the preceeding interval. The electrical
s:gnal cbtained when the carriers are released, i.e., during readout, is
prcooriona: to the number of carriers accumulated, and therefore to the total
current supplving the inverted volume under the surface with mincrity carriers
érom the bulk and from various thermal and photo electric processes 1n the
derietion. invercion and surfece regiens. This electrical signal is used in crder
to detzrmine the <!ux of infrared rad:atiocn, For this determiﬁation. however, the
dark current contribution needs to be subiracted first.

The dark curren;: is the current supplying the potential well, defined by the
inversion region under the surface, with minority carriers in the absence of the
appliec infrared flux. Any low - frequency fluctuation in the dark current will be
interpreted as a fluctuation in the major infrared flux signal. Therefore
fluctuations o+ the dark current at frequercies telow the readout frequency will
limit the pertormance of infrarec detectors. In the pulsed mode of operation
congidered here, the dark current is monitored only during the inverted phase,
when carriers are accumulated in the potential well. Therefore the cross sections
and process rates which control the intensity of the dark current are not observed
continuously either. Nevertheless, the quantum {/4 fluctuations of these cross
sections and process rates will be the same as if we would have observed them
continucusly. Indeed, the thanges in the incoming flux of electrons testing all
crose sections and process rates in the semiconductor is only slightly affected by
the applied gate voltages, and is present also in thermal equilibrium. This
independence of {/f noise on the continucus or dis&ontinuous character of any
applied bias has heen experimentally verified16 during the last 2 decades, and
hae been found to be in agreement with the interoretation of i/4 nois2 in terms
of fundamental resistance fluctuations. Although the experimental verification

wae performed cn fluctuations in conduction only, from the concept of guantum
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1/¢ noise we Know *hat the similarity of quantum {/4 noise in the continucus and
pulsed regimes should be also true for quantum 1/4 fluctuations in recombination
cross sectiens and tunneling rates.

The darK current has to be sutctracted from the total current in a (HgCd)Te MIS
device tc yield the photocurrent. Theretore, the minority - carrier dark current is
the single most impeortant parameter for the operation of MIS devices as
detectors infrared radiationq. This applies both to operatior ot MIS devices 1
the thermal equilibrium mode, in which the dark current determines the MIS dicde
impedance, and to operation in the dynamic, or integrating mode, in which the gate
voltage is pulsed, and in which the minority - carrier dark current determines the
storage time of the device. The main component of the dark current in narrow
bandgap HgCdTe is the tunneling current via bandgap statesq, which can alsc be
tonsidered as an electric breakdown effect. In general, the tunneling current
occurs both through band to band transitions and through intermediary states.

The band to band tunneling current through a simple triangular barrier is
” ? Z2
Igp = @PEQ/amhdrem*/E Y Zexplam®E 3/ 2/3gnE D, (2.1)

where E is the electric field associated with the barrier, and Eg'is the bandgap.
The electric field can be approximated by the electric field at the semiconductor

surface
=M i/2 2.2
E¢ (,.qnoqg/ego) ) 2.2

where 4{9 represents the empty well surface potential, and ng is the doping
concertration. Substituting this value irto Eqg. (2), with m*/mc, =7 10'255. we

obtain?

Jip = 10'2n01/2q333/29>:p[— 5.3 1010592/(n0¢s)1/2] Aleme, (2.3)
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where ng 18 in em™3 and Eg,‘ﬁ. in volts. Therefore the tunneling current is :i’:':
strongly dependent on the bandgap and also depends on the doping concentration .‘
and the surface potential. ES;':;
Experimental values of the turineling current are usually larger than Eq. (2.3) :::'E:
because of the additional effect of tunneling via bandgap states. This effect is ""‘:
particularly important in n - type devicest?, Indeed, in n - type devicee the .EES
applied gate voltage is negative in order to produce depletioﬁ at the surface. The ?‘ﬁi
energy bands are therefore curved upwards at the surface, and transitions of ::
electrons from the \;alence band ‘o Shockley - Read (SR) states at the middle of E:{
the bandgap, as well as the subsequent transitions from these states to the S::‘
corduction band are facilitated by the presence of many defects right at the ,
surface of the semiconductor. In p - type devices the similar indirect tunneling E?'{
processes occur father away from the surface, because in this case the bands are ";:
curved downwards at the surface, and transitions of electrons from the valence
S0

band to the centers at the middle of the bandgap, as well as the transitions from

J"
s

the centers to the conduction band well at the surface, occur right where the b
curvature begins, i.e., further awéy from the surface, We conclude thatinp - Weh

s

-
-
£

type devices there will be fewer SR centers active in indirect tqnneling, and

-
ol

y

therefore the tunneling current J. via SR centers at a given teperature and a

v

given applied gate voltage will be smaller, The tunneling current will be further

b §
T

reduced in p — type devices due to the lower density of states present in the

rlr

RRA AR
J-

surface potential well due to quantization of the motion of the electrons in the

potential well at the surface. The reduced values of the dark current in p - type

TSAlg

devices correspond to higher values of the breakdown field in these devices. The

e

best measured valuelO of the breakdown field in 10 }Jm cutoff p ~ type devices 1s

® VS

in exess of 1.0 V//;m, whereas that for n - type material of similar bulKk defect

” L

qualit’ is 0.5 \///Am. On the other hand, the minority carriers diffusion current is

7
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larger in p - type devices due to the smaller mass and higher diftusion constant
cf electrons compared to holes. The advantage of p - type devices is therefore
considerable only in the case of very narrow bandgap and very leng cutoff

| wavelengthg. We shall therefore consider both the case of p - type and n.- type

E devices. The large diffusion current nresent in p - type devices corresponds o

' the large value of the diffusion length of electrons and can be reduczd by thinning

the device, i.e., by reducing its thickness well below the diffusion length.

In general the dark current Jy can be written in the form

Ja=dJdgieqe v 4 + I Jgp F Iy J + Jy + . 2.8)
vd diff ¥ Ydep T Ys T Yib T Ytc T Yise T Vb q'Z‘PB

The eight terms on the right hand side correepond to minority carrier diffusion.
from *he bulk, generation from SR centers in the depletion region, generation
from SR centers at the surface, band 1o band tunneling, tunneling via SR centers,
tunneling via surface centers, rgcombination on the back surface and photoelectric

generation by the thermal radiation background flux%. We shall give the

formulaei® which determine these terms below, also including an example of their

calculation in a p - type device

| Jyis = @0 2/p) KT A/ aTadt/2 = (1.6 10719C 36 1024 em™8 /1083 em 00,01V
1.5 105(em2/ve)71076£14/2 = 2 1074 A/em?, 2.5)
Jgep1 = An;W/2 T = Ci1.6 10717C 6 1012em=3 2 10~%em /(2 1076813

= 10" % /cm? (2.8)

= 5y = gnye/2 = L6 10719C 6 10%2em™2 20em/s3 = 1.6 1075 AZem?, (2.D)

Je

Jgc = 107130 §/E ) exor-5.2 1082 2/ET = 107134 1042em=30.2v/0.062V)

expl-5.3 106(0.062V)</3000V/cm] = & 107%A/cm?, (2.
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and J¢p was given by Eq. (2.3), vielding 10-7A/cme. Here N =6 1012em™3 is the

1ntrinslc carrier concentration, and the concentration of holes was saken teo be Fg
=16%9:m3, The mobili‘ty/ﬂn-f 1.5 1049cm?/Ve as well as the life time Th= 106 ]
of the mincrity carriers have 1o be replaced by/ap and Zf for the case of n - type
devices. The surface recombination speed was denoted by s = 40cm/s, and the i,:. :
toncentration of intermediary states e<rective for “unreling was denctecd by Nr =

o) - R . . — , L. - cae
2 104%cm™3, The bendgat considered was 2. = 0,062V, the surface potennaz?s = iy,

0.2V and ihe electric field below the surfzce E = 3000V/em. Ali numerical values bty
have peen included only as an example and are not characteristic of a particular ~
device. The numerical facters in £q. {2.8) correspone to p - type HgCdTe with 2 : ‘
Eo/am cutoff wavelength and were taken from the paper of Kinch and Beck10, For h
n - type devices we also need te include tunneling via surface states. If the
density of fast surface states is denoted by Ny = 1012 em=2v~4, the current ,.
generated from tunneling via a uniform density of fast surface states across the

)
bandoap will be given by9 :..::
o 4

Ty
%

=
SRS A

2%

Jtsc = ~ABP1NgghT/2q = .75 1074 Ascm?, (2.9)

=
o

o

-,

The sum of the first seven currents on the right hand side of Eqg. (2.4) must be

smaller than the eighth which corresponds to the thermal radiation background ..‘,
W

flux, for backaround limited (BLIF) operation. Although not all terms in the dark !.“'}:::'
‘ s

.G 950

current are of importance, we still retain them at this point, because their :'.:'.

quantum 1/4 noise may be guite significant, even if the corresponding current is

neglijibie. We shall now proceed with the calculation of quantum /¢4 noice

A

o reL
-‘:l

o

- -

contributions from all these currents.
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III. GUANTUM 1/¢ NQISE SOURCES

1. 1/4 Noise in the Diffusion Current

The diffusion limited dark current Jg;; will exhibit 1/f roise due to
cenventional quantum ! /f fluctuations in the scattering cross sections .o% the
carriers due to phonons and impurities. We apply the fundamentz] formula civen
by Eqg. ti.1) for an indivicdual scatiering precess in whizh the velﬁcity change A-v'?is
given by the thermal energy cf the carriers, with the assﬁmpt:on that th.»
tollisions are pertectly randomizing collisions. 1f the veloci‘ty?is rotated by an
angle @ in arm elastic collision, the velocity change islA’\7|= 2v sin(d/2). Averaging

over all anglies and velocities,; we obtain

— —

2 2 _ .2 =
V2 = av? sinf©/2) = 22, 3.0

2

and therefore from Eq. (1.1) we get in thermal equilibrium at the temperature T

the 1/f noise coefticient
oL H = (4l/370(6KT/m*c2), (3.2)

where we have assumed a Maxwell distribution of velocities. For Hg,.,Cd, Te
with % = 0.2 we have mn* = 0.00‘E=mo and for x = 0.3 we have mn* = 0.02m,.
Therefore we obtainglyy = 2 1077 in the first case andg{ jy = 7.5 10~8 in the second
case.

For the case of Umklapp scattering, which occurs in semiconductors only to a
limited extent due to the relatively small number of r;igh momentum phonons
available at the temperature T, the momentum change of the electron is given by
the smallest reciproczl lattice vector, and therefored v = h/am®, We *herefore

cbtain the quantum {/¢ noise coefficient

Oy = @R/3TDth/m*ac)?, (3.3)
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which is much larger than Eq. (3.2), but has to be multiplied with a negative .,13:
¢
X
exponential which describes the scarcity of phonons with momentum of the order ::c:
i
of a reciprocal lattice vector. [The negative exponential 9'9/1' could be included ::f'f
in the current weight factor which will be defined below in Eq. &3, but we grefer ::::t‘
N
0'; ¢
to include it here alreadyl. Combining Eqgs. (3.2) and (3.3), we obtain for ::::i
|.'€‘;
conventional {/f noise in the mobility and diffusion coefficients B
[ ]
. R na
& = (@w/FTILSKT/m*e?) + (h/m*acfexp(-6/T3, (3.4) N
. ¢
i
where & is about half the Debye temperature for simple metals, but may be :::‘}
higher, of the order of the Debye temperature, for semiconductors. y,
¢
The guantum i/¢ noise considered =o far is kKnown as conventicnal quantum 1/4 :"cf
{ ™\l
J
noise, and affects cross sections and process rates. In sufficiently large !"3
semiconductors samples we expect a larger form of quantum {/¢ noice, described ‘F?
o,
in Appendi» A and known as coherent state quantum {/f noise. For this type the n::at
Py
1/4 noise coefficient is given by %
O op = 2%AT = 4.6 1073, (3.5 ' o

C J

The values of the gquantum {/f noise coefficient given by Eqs. (3.1) = (3.5) can

be used to calculate the quantum {/f noise which affects the various currents

F
5

-

listed in Eq. (2.4). We first consider the case of the dark diffusion current of

electrons from the bulk through the surface barrier in a p ~type MIS device,

({, f -
@' LIS

similar to diffusion in a n*p junction, because in both cases the current is

o

determined by the diffusion of electrons which are minority carriers, against the

222

L
s

built - in field of a Boltzmann potential barrier into the surface well, and by the

-

thermal generation of carriers there. We start with the derivation of the

mobility fluctuation part of quantum {/f noise in a n*-p diode. For the MIS

barrier, just as for a diffusion limitted n*-p junction, the current is controlled by




diffusiorn of electrons 1nto the p - reg:on over a distance cf the order of the
diffusion length L = (Dn’i'n)“: which is usually shorter than the length wp of the
g - region. I4 Nux) is the number of =lectrons per unit length and Dp, therr

diffusion constant, the electron current zt u is

Ind = - EDndN/pr (3.8)

where we have assumed a planar junction and taken the origin = 0 in the junction
plare. Diffusion constant fluctuaticns, given by KT/e times the mobility

fluctuaticns, will lead. to local current fiuctuations in the intervaldy
S1nabit) = 1y dD 0610/, 3.7)

The normalized weight with which these local fluctuations representative of the
intervalAx contribute tc the total current Iy through the diode at» = 0 is
determined by the appropriete Green function and can be shown to be

(Ax/Lexp(=x/1) for wp/L >» 1. Therefore the contribution of the sectionAx is

dal 40xyt) = @Gx/Dexpl=x /L ,yd D 0tt) /Dy (3.8)
with the spectral density
2 2 2
Sj1gsP = (Ax/L)% expl=2x/L) 1n* Spnbif)/Dpe. 2.9

For mobility and diffusion fluctuations the fractional spectral density is given by
O(Hnd/fNAx, whereO(_Hnd is determined from quantum /4 theory according to Eas.

(3.1) -(3.5). With Eq. (3.6) we obtain then
Sppgtnef) = Ax/L?) pup(-2u /L) (eDndN/dmzo( Hng/ fN. (3.10)

The electrons are distributed according to the soluticn of the diffusion ecuation,

'blel
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Nx) = ITN(O) -NpJ exp(=x/L) +Np; dN/dx = -{IN(0) -Np]/L} exp(-x /L), (3.4 : &

Substituting into Eq. (3.10) and simply summing over the uncorrelated

i)
. . . . (]
tontributions of all intervals A, we obtain :'l-'-‘x!

WP ", ‘.’i’il‘

= 22 [ tnioy - N 120-8%7L 4. _ /L oy s rm tn A
St =% yngteDn/L );fcmm NpIZe™ /Loy 7¢tNw@) - NyJe™ /b eNpy B by

We note that (eDn/L2)2 = (e/'r:n):'. With the expression of the saturation current A
Ig = e(Dn/'tn)Usz and of the current 1 = Iplexple V/KT) - 11 we can carry out the ‘;i:.:;l.:“
integration ) ot et

' . N

Siy'd = “Hnd(ellffn)fazusdu /au+ 1)
o/

= Xpnglel/$Ty) [F@) ~Fa e™ /Ly = et el/fr Jaw/la + OLI,  (3,13)

the last form being for wp << L, Here we have introduced the notations
= exp(-%/L), = expe V/KT) - §,
Fla)= 1/3 - 1722 + 1/a° - (1/ad)n(i+a), (3.14)

For wp >> L we have F(o) = 0, and the second term in rectangular brackets drops
out in Eqg. (3.13),

Eq. (3.13) only contains the fluctuations in the mobility and the diffusion
constani. Ina s;imilar* way we calculate the quantum {/f fluctuations of the
recombination rate in the bulk of the p - region. We have for the recombination
current Alg(x) in a section 4%, if N‘(x) is the excess carrier density,

Algtn) = eN’(x)Ax/'?n . (3.15)

Putting Cp, = {/7 and bearing in mind that 7., and hence C., fluctuates, we have
n n n n

for the section ax,

JAIR(x, 1) = AIR(>:)[JCH/Cnleith
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where /0t = [HG - NpJexp('-er) and Ny = {700 + Np as betore. v"%
t

4 :s5 easily snown that the fluctuating current A I(x, ) at the jnciion is < 2

Jolt, b =JA Iglyy trexpt=x/L) 3.18) :3"%

[« : o
\p

S; 48! ol Hnr‘eprLHTnz) J {IN‘GO 22 /N N OO expe-25 A Lid(x /L) = K

P ; iyt
ol Harielg fTy ’( racud/zau + 1)3du =y Col/ 4T, J0F () - Fae™™wW/h1  3a9 .';:

epwp/L _ ;
where 7(a), a, and u have the same meaning as before.

We can use the similarity of the quantum {/f noise results for diffusion
turrent fluctuations caused by mobility fluztuations and by recombination speed

fluctuations in order to combin2 both into a single formula : [

810h =@l g +A g Le174TI0F @) - Flae™/Ly3, (3.20)

o &

In the limit of very short devices (w. << L) the last factor becomes aw/[(a + {)L3J,

p

and in the limit of long MIS devices (w

o

»» L) it simply becomes F(a). In addition

p t
. . : i it
we have a turrent noise contribution S ;. from the quantum 1/f fluctuation of the A !\
A g
A
recombination speed s on the bacK surface, -
t g
2c far we have ccnsiderzsd only conventional quartum 1/f noise which is )
R
- - e - . . RS
appiicable {5 sufficiently smail devices. In general, however, we must Rt
bl

interpclate between conventional and ccherent quantum { /€ neise, according o L
Tyt
the reletion ::::x
L
‘.':~

. -pe . . cm) oan - W
A= Li/d =l A/§1 + Le/il + 812020743, {3.20 Y
'-.'t.

'i

L
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where s = £, /E| = Ze<N’/m"c“, and N’ = nS is the number of the carriers per urat .:‘
- . L. . .,
length of the cevice. s represents the ratio between the magnetic energy per unit :;t:
g
) . . . . - 5 : W
length and the Kinetic energy per unit length cf the device. The guantity e</m*ct o:d

E'S N . N
=rgm/m” can be calculated in terms of the classical radius of the electronr, = o
. N
2,34 10-13 cm. Then we obtains =2 r,..N’m/m’. i.e., the parameter ¢ represents f'
X
twice the number of carriers present in & length of the device equal to the ,::*
classical radius of the electren. We must compare s with7T A, and if 8 <<714a we ".':
. . " . b
apcly conventional quantum {/f noise, whereas for s >>1 A we have to apply ::'
it ’ J
'(
. 0,
coherent guantum i{/¢ noise. In general the approximate formuia of g, (3.21) iy

must bs used for the transition region.

. W,
The dimencionless parameter s 1s easy to calculate in any practical case, For v §
bt
instance in the case of a MIS device of area SO/Lm % 504m with a concentration of W
carrers of 101¢ cm™3 we obtain N’ = 2.9 ioii/cm, and with m/m¥® = 50 we obtain s I
]
= 7, On the other hand, we can estimate A for ccnventional quantum 1/f noise and .:
\
we will certainly find A << {, because the velocity change of the carriers must be . eﬁ
much smaller than the speed of light. Therefore, in this case we must apply éi
.‘E
coherent quantum {/f noise, because s >> 7TA, Consequently, in Eq. (3.20) we must ‘l:
B!
set .
r
= = 3 -3 o9 - ‘
d Hd ""l Hnr. -d-coh - 4.b 10 (3-&'. : \
-'l

The coherent state guantum 1/f noise coefficient thus replaces the total

conventional Hooge parameter.
2. 1/4 Noise of the Recombination Current Generated in the Depletion Regionr

The ouanium 1/4 noise of the reccmbination current thermally gererated im ths

depletion region arises frem quantum | /7€ fluctuztions of the bulk recombination

N AR R s



rates :n the cepletion region. The differerce between the recombination rate R

and the generation G :s given by

- -
o -
o

G
"

Ton = n%{1/00 + ngizpg + (0 * PyIT ] (3.23)

where ny and p are electron and hole dansities when the Fermi level lies at the
trap level, If the trap level lies at the intrinsic level, Ny =pg=nj. Moreover,
“po and T ., are time constants for eisctrons and holes. If A ig the cross -

sectional area of the junction, the current is
awr w”
i= 55’3 - QA du = e/ (pn - n:il/[(n + nl)'z:po + 0+ njlenglAdn (3.24)
0
¢

where w 1s the widtn of the space - charce region and the trap level is essumed
to lie 2t the intrinstic level,
We now turn to the g - r noise. The time censtants Tpo and 7 np fluctuate ina

1/¢ fashinn and this produces the gquantum i/4 contribution to g - r noise. We now

write
Tho = 1/Ch
T pe = 1/C, (3.25)

where C_ and Cp are the generation {or combination) rates for a single electron

and for a single hole, respectively, Consequently
ano/fno = =(§C,/Cp)
8T po/Tpg = ~dCa/Cp) (3.26)
We now aoply this knowledge t0 Eq. (3.23) and observe that

SR -G =R - GL)

{L«n +rul-)7_‘go(d'Cp/C:)J +{p +p1)'2'nc,<JCn/C’,;)J}/[(n +r\i)'l';_.‘D + i +n)T 30 (32D

l\} .r '
-",,\';: ‘
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so that with

-
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diz=e fJ[R(x) - GG JAd, (3.01
0

[
o0
~

the noise is
“ U
SI(H = e:_f[ {RG) - GOOIATRWMI - G A
¢ 2

2 2o . 2 - Z v wet 2
{lin+ nl) L pc“'bcp(rh H ‘F)/Cp + (D + nl) [ e SCn(/., nh ‘F)/Cn 3

/En )T+ P+ Ny T o 1 Hdxdi) (3.29)

sinte § C_ and 4 Cp, 2re independent.

We now observe that
pn - nZ; = n% lexple V/2KT) = 1 1expleV/2KT) + i1 (3.30)

and that the integrand in Eq. (3.29) has an appreciable value only if p~n= Ny
expieV/2KT). By substitutingn+n;=p+n; = nitexp(eV/ZkT) + 1] we define an

effective width Wets such that
2w

eA J Tpn -~ nzi)d:-:l/[(n + ni)z‘po +{p+ ni)Z'nOJ
]

—

= eA{(pn - nzi)/ni[exp(eV/ZKT) + “}cweH/("po +T no' 3 (3.3
We may thus write

I=1,.=eAwgen;lexpleV/2KT) - 13/('[p0 +*Thno

9
= [eNgg4/(T po +T po) Jtanh eV/2KT (3.32)

where N = AweHniCexp(eV/ZkT) + 1] is the effective number of hole ~ eleciron
pairs taking part in the conduction and noise processes. This equation is exact

but not very us2ful since it contains the unknown parameter wges.

We now turn to £q. (3.29) and abserve that




SC;\“" ®y f)/C‘zp = Hp/f)/[R(x’) + G(x’.‘*](’Z'pc, +Z’n°)A}J(x’ -3) (2.33)
and
SCn("' %y f)/Czn = { Hn/f)/CR(x N+ G ’)](Zpo +"En°)A}J(;~<’ - ) (3.34)

The factar (Tpg +T o) BNters in because Sgony ' #/C7 and Seqti #) /€7

must be independent of Z'po and T . if p¥n¥n; expleV/ZKTi. This yields, if we

no

integrate over the § function
Y
(f) = e‘j {(IRG) - Cv(:<).'."‘fﬁ\/(Z‘F:,(_J +T o LREGO + GOO 12

~
Y
-

T
P

(Ttn + P2 0¥ i/ + (0 + AT g T/ 3/D6N + T + (P + NjITRg 17 5d (3.39)

oo
We now observe that the second factor in Eag. (3.35) is practically a constant
as long as p and n are comparable. We may thus bring that factor outside the

integral sign and write

Lin + )27 % Hp/f* P+ 00T ok /3

Tpo
JUR + )T + 0+ NyTng 3 =k y/f (3.36)

whered |4 is given by
L d b nd 2 ~— - 2
A H* CooCpe * TP Hp* Tro/Tpo * Cro’tlpn B:37
We thus have

w-
S8 =0 o/ FTrp +7 po) T f [RG) - GG IZAARK) + G Jdx

(2]
=[P pielgr/ #Tho +T po! Itanh[e V/2KT] SR I )

We can now prove £q.(3.38) in a Hooge - type formulation [13,

Here we put

SUR/I =el g/ Flp gy (3.39)
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But according to EQ.(3.32) I, = (&N, ;¢/Titanh e V/ZKT, so that ¢
Sy =0 ylel o /$TItanh eV/2KT, T= (Tng +T po) (3.40) ol

in agreement with £q.(3.33). __
1.;.“;’.
= n \."!
er ..l’ (3
(Ng¢441) tanh eV/ZKT, where A1 = e/T fluctuates. We then have b,
@

Ly e
o

We can also prove £q.(2.38) from the following consideratinon, We write 1

S, 1 = L/ or 8, 1) =K 1/ fe /DAL (3.41)
o that, since the NEH hole ~ electron pairs are independznt
S (f) = NogySprtf) = (eNggs8l/FTYp = [(elgr/r’z’b(!_;]tanh ev/2KT (2.42)

wheredl | is given by Eq.(3.37) and T =.(T. o +T ocle

The last two approaches are easily extended to other cases; the method works
as long as a time constant T and an Np¢s can be defined.

We finally evaluated Hp andA pypn, from quantum 1/f noize considerations £z,

£33.
"~ e E ”
A g = (B/3TNDVE /%) = 40l /31([2ealVyie = V) + BKTI/m¥ c<3  (3.43)

A Hp = @OVITWBVZ /c?) = 4d/3MI2e( - a)(Vyiq = VI + 3KTI/m*e?l (3.40)

and as a consequence (see Eq.(3.37) and

- n - #4172 4 om¥ 1472422
AHT (QA/I0L{L2e(Vy s = V) + 6KTI/LIM™ ) +m¥ ) Jec (3.49)

The problem has hereby been solved. Note that in Hoy_,CD, Te with x = 0.3, m*r

= 0.02 m, m"p = 0.55 m, so that C(m* )1/< + (rn"'l:‘)i/:-"l2 = 0,7& m, very much larger

*
than m ne
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3. Noise 1n the Surface Recombination Current

The surface recombination currnet 1s a dark current component originating
from surface states at the interface between the surface passivation layer anc
the bulk. The recombination cross sections of these states will exhibit quantum

1/4 noise. The guantum 1/ noise coefficienty] H reflects the velocity change of

carriere 1nvolved in this process

o iy = @l /3N mPcTILBKT/2 + eU/2 + C.ieV3, (3.46)

where U 1s the surface potential jump present between the surface passivation
laver and the bulK even if no gate voltage is applied, and V is the applied gate
voltage which we take with a cbefﬁcient less than umity, here for example with a
weight of 0.4.

The calculation of surface recombination quantum 1/f noise is similar to the
caiculation of guanium {/+ noise from recombination in the space charge region.
However, 1n this case the cross sections are not distributed over the width ot the
anction, but rather are concentrated at the surface which is caracterized by the

surface potential (I)S. Therefo‘re we can write an expression of the form

Sygth = e tanh x JHT o +7 [ Jexple Q/KT). (3.47)

We note that the fabrication process of MIS structure introduces less bulk
defects than the fabrication of photovoltaic devices. Nevertheless, the
fabrication of M1IS devices introduces some defects in the bulK layer located raght

under the surface. These defects will manifest themselves through a tontribution

to indirect tunneling.
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4. @uantum {/f Noise in the Tunneling Rate

In the case of tunneling from & surface accumulation layer to the bulk, the
velpocity change of the carriers will lead us from the thermal velozity of the
tarrier on one side of the barrier to the thermal velocity of a carrier on thg. cther
side of the barrier, if band to band tunneling is considered. If, however, the
tunneling goes via intermediate states located in the bandgap, the velocity is
zero as long as the carrier is staticnary in the intermediate state. We can

therefore write the {/f noise coefficient

&, = (46/3TEKT /m*c? (3.43)
for band to band tunneling, and

), = (4a/3M3IKT/m*c* (3.49)

for tunneling via intermediate states in the bandgap, where we have tonsidered
the average squared velocity change two times smaller. The effective mass is the
mass of the minority carriers in the bulk material.

Fer band to band tunneling fram a surface inversion layer to the bulk, the
velocity change of carriers corresponds to an energy difference of the order of
the bandgap Eg plus an energy differnce of the order of the thermal energy 3KT/2,
provided we are dealing with deep inversion, as used in practical MIS devices in

the pulsed mode of operation. This yields the guantum i/f coefficient

X, = (AA/BMES + 3KT/2)/m¥c? (3.50)

for 2and 1o banc tunneling. For tunneling via intermediate states in the bancgap

~he corresponding energy differnce wili be smaller, and therefore we replace Eq

by Eg/Z‘.
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0'555:32
L
&= (4a/3ME,/2 + IKT/DM*C?, (3.51) R

L 4
This relation is applicable both if the intermediate states are located in the :i:a
L
depletion region cr 2t the surface. ‘ u"" :ES
In the last four equations we did not divide by the number of carriers ]
eimultaneocusly involved in the tunneling process, because this number is l'éss hw
than unity for practical tunneling currents. Whenever a cross section or a . \
process rate is tested with one eiectron or less than one eiectron at a time, the ' “
effective number of electrons in the denominator of the quantum 1/ formula must ‘:.;.':E\:'::
be replaced by unity., Let us calcuiate the average number of carriers fé’:‘:ﬁt
simultaneously present in the tunneling process at any time. The tunneling ':"!:i
process occurs over a distance d = Eg/eE. and the speed v of the carriers will be ':'\;:':
of the crder of the thermal speed in the case of an accumulation layer, and of the . :":%EE
order of the bandgap erergy in the case of a surface inversion layer. Dividing d '
by v, we obtain a tunneling time t = 6-10™13¢ for accumulation layers and t = 3° ::le
gty
10~13¢ for inversion layers. From Eg. (2.8) we Know that the tunneling current is %ﬁ;
of the order of 1073A/cm2, Multiplying this by t, we obtain 3 - 640716 C, i.e., e
2000 - 3000 electrons/cm?2 tunneling simultaneously in a device of { cm? area. In 1:;::2
a device of dimensions SO/;m x 50/um = 2.5 1075 cm? the average number of \.:3.:‘3
| | S

carriers in the process of tunneling at any time is therefore 0.05 - 0.075, and this L e
ie indeed much less than unity. Nevertheless, if the area of the device exceeds 5 ‘

107" cmz, Eqs. (3.42) - (3.51) require an additional factor e/tJ;A which makes the

noise spectral density proportional to Jt and A, rather than to the square of
these guantities.

The photoelectric current will reflect the fluctuations in the number of
photons arriving from the radiation background. The quantum efficiency will not

exhibit considerable quantum {/¢ noice, because the generated carriers will be

corrected with certainty. Therefore the ccllection of photoelectrically generated
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carriere 1s not conroled by any cross section or prccess rate affected b
Yy any p Yy

considerable quantum 1/f noise. 1f we nealect the L1/f noise generated in the
series resistance of the diode, there should be no photoelectrically generated {/¢
roise from a short - circuited diode.

Since the various darK current fluctuations with 1/f spectrum are statistically

independent, the total 1/4 noise is simply obtained by summing all contributione,

IV, {/f NOISE LIMITED PERFORMANCE OF MIS DIODES

Frcm Eg. (2.8) we write the total dar current fluctuation in the form
JIg = dIgi5 *dIgep *of Ve +d Vip + Ve oS Jise * a7y, @0

and the spectral density of current fluctuations will be neglecting J‘("Z%).

Syd = Sudit * Sydep * Sus * Sutb * Syt * Sutser (4.2

Here we have lumped the recombination current on the back surface Jy, together
with the surface recombination {generation) current J.. I+ we denote all the
torresponding spectral densities of fractional fluctuations by a prime, 8'5; =

SJi/Jiz. we obtain

- 25 2¢ 26
S5 = Waie/ Vo’ “Suit + Waep/ I guep * U/ IS s

+ W/ T2 gap + Wi/ IS g + Wiac/ I 78 Jager (4.3)

This equa'tidn wasg obtained by dividing the previous equation through sz, and
shows that the biggest contribution will not necessarily come from the process
with the highest fractional quantum {/f noise, i. e., with the highest 1/% noise

coeféicient. The weight of each type of noise :& determined by the corresoonding

squared current ratic.
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The detectivity of infrared detectors 1s limited 1n general by three types o+
noise: \1) curent noise 1n the cetector, (1) noise due to hackaround photons \sheton
noise), \111) no1se in the electromic system following the detector. We shall
neglect here the backoround photon noise and the noise in the electrenic system,

The detectivity ic defined ac
D*Q, o = waaf /S NEPEmHZ I 2 W) @ .4)

where A 1g the area of the detector, NEF the noise equivalent power defined as
the r.m.s. optical signal of wavelenghA reguired to produce r.m.s. noise voltage
tcurrent) equal to the r.m.s. noise voltage (current) in a bandwidth A4, and § is ihe

frequancy of modulatiocn., The noise equivalent power NEF is qQiven by
NEF = hV o)t Spyant/Z, (4.5)
Therefore we obtain for the detectivity
D*@, # = (qaa/ho) LA/SyH1Y /2 = dqarho 1854h371/2 (4.6)

We notice that D*@, §) is proportional to A up to the peak wavelength A.. For A >N
we haveM = 0 and thus D*a, 6 = 0. By substituting our result for Sggr we
obtain the general e;;pression' of the detectivity as a function of various
parameters of the MIS device.
Let us now evaluate the magnitude of the various dark current noise

contributions. With my* = 0.55 mg, m.* = 0.02 mg, Z, = 10785, E = 0.4 eV, 3KT/2

0.0f eV, Ny = 1012/ch2. we obtain for a p - type device with Wp »L - -

, - S 1/2 0c 4720 vmias s
S Jcifs = “Hnd +d Hnr)IE/*szdiHJ’ {a) -d-coh{e /[f(kT/ﬂfU ‘ijaf‘ (a)ra

(4.6 1073/4¢N ) 4-10710CH/2/15078¢ 1.5 105 em?/ve) 4-10721 131 /2
1,610 %em</¢, Lor = 1078 cm®/4, with O(”= 2:107° for incoherent noisel (4.7)
P
S Jaep = et/ Trg +T poldgepltanh eV/2KT
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W

) 4

= K yetsFfeAwnieV/2KT) Je V/2KT = dHe/FAwnl = 4.6 10" Tem< /¢ (4.3) ”
!

y

- . o )
Sgg = (49 /371(2/m®c<)L3KT /2 + eU/2 + 0.1 Vel [e tanhx AL "‘Tpo)‘]sj ::

#

’

= {44/3710.02)(2/500000)£0.025 + 0.5 + 0.51 [e tanhx /feAwn,ie®V/2KT - 1)3 v
{

2 \A
=7 10" %em2/¢ (4.9) 9

:,

Syt = (B4/3MHE + 3KT/2)/m¥e® = 4/5.5 137 0.02)40.11/500000) 0

g n ) ¢

= 3,3 10" Yem</+¢ (4.10) a

i

ot

8 J4c = (44/377)(59 + 3KTIZZm*e? = (4/9.5 137 0.02)(0.12/10%) t

. ()

= 1.6 107%eme/f = 8 gy, (4.41) 4

b
o A N . e g
$'Jdisf Was calculated in the small bias limit for wp:';L. but wp= 0.25 L gives the .l
1

same result; the incoherent case with a lattice constant of 0.65 nm and 8= 320 K :!
6'.

.l

wag also listed above {(because a 10/un thick device is very short, so it may be s
applicable), and would give i.: 10"4%mZ/¢ for an - type device. Eqgs. (4.8) - O
S

w

(4.11) would be reduced only m:/rnn= 27.5 times for n - type devices. We mention §
~

that S'Js has been calculated with the inclusion of a term of 10% of the applied P:
gate voltage V into the Kinetic energy of the carriers at the surface, and that for {
]

the back surface recombinaiton current this term has to be dropped in the similar ‘:
expression of S'Jb' However, we have neglected this here, because the surface :
recombination terms will not turn out to be important, as we will see below. The 3
applied gate voltage was taken tobe V=35 V. Using Eg. (4.3) and the current \‘
densities evaluated in Egs. (4.10) - (4.14) to calculate the fraction of each ‘1"
current, we obtain »
M

-2 ’ - 2 < -6 2 : -9 ’ any 2 —Ei
fem™= £ 87506) = (20/132) 1,2 107° + (10/132)° 4.6 1077 + (3.6/132)° 7 10° % +
(0.01/132)2 3.3 107% + (20713202 1.2 107% + (17.5/132)2 1.3 107¢

=3.67107% + 2.6 1071 +5.2 1074 + 1.9 10746 + 6,64 1077 + 3.47 10740 3
. _ \

= 4,37 1078, or ¢or incoherent 1/f noise, 7.4 1077 (@ and 3 10710 (), 4.12) v
\

l

.
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This value cen be used 1n order to estimate the detectivity of the device 1n our
example. Substituting i1nto Eq. (4.8), we obtain with a quantum efficiency ’7L = 0.7

and wavelength of 10um

D*Q, ) = maashe) CSy4A374/ %= £0.7-1.6:1071%C 107 m/(8.6:10734 5 3°
10%m/s)3 [£/44.37°10 8cm? 1.74'1078A2/em® 3872 = 24007 (cm Hz /2w #4175, or

for 1ncoherent 1/4 natse, 5107 (o), and 2.5 10% (. (4.13)

In conclusion we note that for the relatively large devices thch weé have
considered, most of the gquantum 1/ noise comes from fluctuations 1n disfusion
and in the tunneling rate via impurity centers in the bandgap. The effective mass
of the carriers is present 1n the denominator of all quantum {/f noise
contributions except the coherent quantum i/+ fluctuation present in the
diffusion current of large devices. In smaller devices the diffusion current will
also be given by the conventional guantum 1/# formula which contains the
effective mass of the carriers in the denominator. For umKlapp scattering the
mass of the carriers in the denominator is even souared. Consequently we expect
lower quantum 1/f noise from n - type devices, in which the minarity carriers are

holes, particularly if the devices are very small, e.g., below 10/4 m.

V. DISCUSSION

The transition 4rom coherent state quantum 1/f noise to conventional quantum
1/4 noise is particularly interesting, and should be studied experimentally. This
is possible with a sequence of devices of smaller and smaller size, and will show
a consideralble change in noise at a size of the order of 10/am2. The theory of

the transition 15 not yet well developed. Therefore, this experiment has

particular importance: we do not Know i1f the parameter s is sufficient to
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characterize the transission,; and 14 the parameter s should not be replaced by a
power of s, or by any other function of ¢. The interpolation formula used here is
Jst a guess, or a speculation guided by the physical understanding of coherent
guantum {/+ noice as a collective-field effect, and of conventional quantum {/¢
noise as aﬁ effect which is not based on the collective field state of ﬂ.\'e
particles, but aris2s from the individual field of e2ach carrier.

The most interesting component of the recombination current is the surface
recombination current which plays a major rele in the case of infrared detectcrs
with pn jnctions. In the case of MIS devices this role 1s not sc impartant, es our
talculation shows, Nevertheless, or';e should try to reduce both the concentration
of recombination centere and the value of the surface potential jump U. This can
be accomplished with careful surface treatment, and with a good passivation
layer. 5i0. layers have been successfully used by Radford and Jones in
iorn—~1mpianted and double ~ layer epitarial HgCdTe photodiodesm.

In general the larger life time of the carriers in MIS devices, compared to
Jnction devices is due to the absence of the damage inflicted by ion -
implantation, or by the heavy doping required in double - layer epitaxial
photodiodes. The quantum i/f noise is invesely proportional to this life time.
Therefore, MIS devices should have lower {/f noise. On the other hand, 1/ noise
present in the applied gate voltage, in the timing of the readout and the value of
the readout potential will be added as a {/f noise source, if it is present. In the
present calculation, however, this noise source has not been included.

Any reouction in the concentration of tunneling centers present in the bandgap
will have a positive effect on quantum i/f noise. As we have seenan Sec. I, p -
type devices should vield less tunneling via bandgap centers. The effeciive mass
present 1n the denominator of the quantum {/4 noise formula in this case should

Mst be the effective mass of the carriers atter the tunneling process. i.e., the
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efrective mass of the outgoing carriers emerging ‘rom the proctess we have
6\&
considered, or the effective mass of the carriers coming in to the process of "::
A
tunneling toward the centers in the bandgap. Here we have considered the ::(
)
tunneling process as the slower process which actually controls the rate of 3
g o
tunneling via bandgap states. The capture of carriers by the bandgap states is ,.:f
iy
the second part of this compound process and has been considered fast enouoh, sc ::;:
4,
'.,
that it does not limit the rate of the total process. In general, however, beth
50t
parts of the process have to be considered as a limitation on the rai2, and in this :?:"
i
, o
case our noise formulae have to be revised through the inclusicn of an additional :::::
term similar to the recombination ncise term, -
> ¥
In the case of very small MIS devices, where only conventional quantum {/f £
noise should be present, we may find lower ncise in the n - type devices, whose :J-
!
bulk minority carriers are holes with much larger effective masses than the
i
eiectrons. This may happen in spite of the larger tunneling via bandgap centers :
'.C
.I
located right under the surface of these devices. :.
o
Finally, we would like to empahsize that the present study has attempted to )
LI
. ) ) (]
explain the basic concepts of quantum {/f noise and to illustrate their application !:
. _ o
to MIS infrared detectors. Although we have tried to pursue the calculation all o
the way to the evaluation of the detectivity, the data whith we used in the
. '.;
calculation may not be applicable in the practical case at hand, and may have to be Ny
replaced with pertinent data in any concr.ete case. ‘;‘.‘
. i
The author would like to acknowledge the help of M. Belasco, M. Kinch, E. Kelso F
and R. BalceraK in many discussions on MIS devices and their ncise problems, ‘.
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VII. APPENDIX B
BACKGROUND OF THE G - R {/F NOISE DERIVATION

At first sight it looks as if (1) is incorrect since (R - G) should be proportional to
the trap density 'Nj. As will be shown in the following, the trap density is
incorporated into the time constan‘tsfpo and Tppe

According'to Warner and Grung [14, eq. (4 - {91)]

R - G = VoA vaARNy (PN = n2)/vpALin + np + vpAglp + ) (B 1)

Here, v_ is the average speed of the holes, Vp the averapge speed for electrons,

=

Ap the trap cross section for holes, and A, the trap cross section for elecirons.

Multiplying denominator and numerator in (8 1) by Ny and then cividing both by ﬁ
%

VpApN1vRARN, yields £ o

-
oy = >
\ mm&.;p‘_'..‘-mu‘r_.&i'.-ﬂ 5y,




R~-G= ‘.pn-n‘i)/[(n-bnl)’rpo-r p+n)T 3 (B 2)
which 15 st Eq. (3.23), 1In additien
T o= 1/vpApNy = 1/C, Cp = vpApNy (B 2a)
=1{/v =1/ = v, A {B 2b)
’Zno nAnNt { Cn9 Cn Vn nN't, B 2b

as had to be proved. We see that 'zpo and Tno are real - time constants
1

(dimension : seconds) and that Cp and Cn are real rates (dimension : s~

Note, however, that T= Tpo + Tp is not the time constant of the g = r

process. According to Van Vliet [453 the true g - r time constant Z’t is
~ -
Ly=Lin+nv AL+ D+ ni)vapJ = Ny/0in+ my)C + (p + ni)CpJ B3

I+ we put 1/7_ = (n + n)C /Ny 1/2":l =(p+ nj)Cp/Nt. then

o~

Ty = 'Zan/(’E + T, (B 3a)

p

Qur Eg. (3.23) is thus fully correct, I+ Nt goes to zero.“Zm, and 'L’po oo to
infinity and hence (R - G) goes to zerc. Note, however, that 74 is indepencent ot
Ny except for. a possible dependence of n and p upon M.

Ve also note that Ap and Ap, are practically egual. For the case that the trap
is pegatively rharged when occupied by ar electiron, the excited electron interacis
with a neutral *tr'ap and hente has a croes section of the order cof 107 46cm2, Bt
when a hole is treated by having an electron from the valence band recombine with
the empty trap, ihe electron also interacts with a neutral trap and hence has
practizally the same cross section. 1 the trap is neutral while occupied by an

electron, the excited electron interacts with a positively charged trap a~2 hence

has a cross section of the order'of 1019 ~ 10~15¢mZ. But the same 15 true when




an eiectron from the valence band interacts with a positively charged trap.

Hence, Ap and A_ are always nearly equal.

#1/2

However, v F

is inversely proportional to (m ang v, 1s inversely

P

#,1/2

proportional to (my") » 50 that Tno is proportional to (mg #i/2 and 'Z'

*1/2

(mp

. Consequently

Tpo/ Tpp * Tng?z mu*/Lim M2+ m H1/2)

2T ~ 2 # #1/2 #1/2491/2
Tp/ Tpg + Tgh*= my®*/Lim M2 /e 4 um %2 /eglle, (B 4
We need this for the calculation o$¢! H in the g - r {/f noise theory.

There are two forms of quantum 1/4% noise. In the first place Cp and C,

fluctuate because Ay and A fluctuate independently in a 1/+4 fashion, eccording

p

to quantum 1/f noise theory. This would yield Hooge parameters d'y and d'yqs

where
fo= 2,62y = (gel #.2
&'Hp = (40(/371)(Avp /te) = (4 /::37()(3!«"1‘/mp c<)
Ly = 473700 2 /c2) = (4c/3T)3BKT /m ¥, (B 4a)
s1nce mp*Avp:’/Z‘ = mn*nvnz/.? = 3/2¥T {for the excitation of electrans and holes K
from traps.

In the second place the elecirons and holes 1n the space chargs region are
decelerated or actelerated. The potential acrozs the spece cherge recion of wizth

wegs 15 alVygig = V), where a = 1/2 for a symmetric junction and a=v 0.75 fo an nt -

p junztion. Electrons excited from the trap level are accelerated and thus gain an
energy En = ea(VdH -V = mn*Avn2/2 and holes excited from the trap level are
accelerated anc gain an energy Ep = el - alV4i4 - W = mp%vpi’/:. This

produces quantum 1/f noise such that

v ;.‘_!:;‘j:;:‘,. L)
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&'Hp = [2e0t = anVy ¢ - V)/mp*cZJtaoL/am (B5)

o' Hn = [2eatVyic - Vi/m- ¥e21(ae /37 (B 5a)
Adding the two independent contributions tod andcal yields

dyn = (44/3MLL2ea(Vy¢ - V + IKTI/m_ e

App = (BR/3MIL2eU = a)(Vyje = V) + IKTI/m, *e23, (B 8)

so that from (B 4), (B 4), and (3.35)

- o 2 ‘ 2
Ay = 750/ Tpo * Tho' JoLHp + ['Znom'po +T e’ ¥ Un
= (@d/3MUL2e Vi = V) + KT/ Lim M /2 4 (m 1/222¢2, (B 6a)
For Hgy., Cd, Te with x = 0.20, mp* = 0.01m and m_* = 0.55m so that [im "1/2 +
*

(mp*)“‘?lg = 0.74m which is a factor 71 larger than m™ . An earlier estimate by

Radford and Jones [13] used mn* instead of [(mr_,”')“2 + (mp*,1/2]2.
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