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1. Introduction
I

A two-sided matching model is a game in which there are two types of

agents, and the essential coalitions are singletons and doubletons con-

taining one agent of each type. Over the years, they have become an

important part of economic theory. One reason for this is that they

have been deemed worthy models of economic markets with indivisible

goods. '--be--as 4962, Gale and Shapley modeled college admissions

as a matching market. dA-e Shapley and Shubik h9 -adopted

a similar model for their housing market. 4A;" .i-l--a-r- Crawford and

Knoer 4+9&1-]defined labor markets in these terms. _

In all of these instances, the relevant solution concept is that of

the core7 Stinpl , putT,-the-,ee is the set of economic allocations where

no coalition of agents can improve their lot on their own. Herein lies

another reason for the study of these games; the fact that their cores

have many "nice" properties. For instance, their cores are always non-

much of the literature

[Gale & Shapley, Shapley & Shubik, Crawford & Knoer, Kelso & Crawford

1982] relate relatively simple algorithms which calculate core points.

~ This work was supported by Oftice of Naval Research Grant
NOOO-14-86-K-0216 at the Institute for Mathematical Studies in the
Social Sciences, Stanford University, Stanford, California.
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Another important idea is that in some of these games, the core and

the set of economic equilibria are equivalent 4Zapley h-Subik)p and

both are generally sets of positive measure. This contrasts other

economic models (with completely divisible goods) in which the set of

equilibria is a proper subset of the core and is of measure zero.2S

Thus, given a sets of agents' preferences, there is usually some

latitude in choosing equilibrium prices. Intuitively, the amount of

flexibility would be measured by the core's volume.

Other papers have examined the special structur7' of the core in

these games. (Roth [1984], Demange & Gale [1985 One thrust in this

area is the idea that the core is "elo This means that, if

restricted to the set of core a la ions, the "fortunes of agents on

the same side of the--market tend to rise and fall together" (Shapley-

Shubik).

In this paper, we quantiILy this last notion in the setting of

Shapley and Shubik's housing market.1 We develop an easy-to-calculate,

scalar measure, call the competition ratio, or CR, which measures the

amount of "competition" in the market. Using economic and geometric

arguments, we argue that CR is also a good measure of "elongation".

In the process, we obtain simple bounds on the volume of the core, and

also necessary and sufficient conditions for the volume to be zero.
2/

Finally, this analysis gives a method for finding bounds for the

volume of polytopes of a certain class -- and this method involves only

solving four linear programs.
@P
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The paper is organized as follows. Section 2 describes the model

and gives background results. Section 3 motivates the issue of

"elongation" and runs through some attempts to define the concept. In

Section 4, we define our CR, give it an economic interpretation, and I

show how it relates to the core's volume. Finally, in Section 5, we

propose areas for future study.

2. The Modell/

The Shapley-Shubik housing market is a model of a market for "large"

indivisible goods, such as jobs, cars, or, naturally, houses. In such a

setting, we assume agents only consider owning zero or one such

object. However, they do distinguish amongst the houses, and different

consumers may value the same house differently.

To facilitate house trading among the agents, there is a second,

completely divisible good called money. An important assumption of the

model is that utility is identified with money. In other words, any

agent's valuation of any house can be expressed in dollars, and is inde-

pendent of his income. This has two important ramifications. First,

since utility is defined in terms of money, it follows that each agent

values money the same. This property we call separability. Second, the

above independence clause implies that the utility for money is linear.

In more general models (i.e., like those of Demange & Gale and

Crawford & Knocr, where the above property of monay i act assumc) it

is assumed that money is not completely transferable; instead, it can

only be transferred between agents who trade with each other. However,

S:
all. --



.0

-4-

In terms of the core, the linearity and separability assumptions above

imply that it does not matter whether or not we restrict monetary

transfer in this way. / Hence, to start, we will follow Shapley and

Shubik and allow free exchange of money among all agents.

Now let us review Shapley and Shubik's model in detail. Suppose

there are n homeowners in a market, and n prospective purchasers. S

Refer to them as sellers and buyers respectively. The allowable moves

in the game are for any seller to sell his house to any buyer. No buyer

may buy more than one house. The ith seller values his house at g-

dollars, while the Jth buyer values the ith seller's house at hij

dollars...

It is now possible to define the characteristic function V(S) for
vS

any coalition S of buyers and/or sellers in the game:

The maximum net benefit that
V(S) players in S can attain via

house sales within S.

We now proceed to calculate V(S). The simplest case occurs when

S consists of one seller i and a buyer J. If gi > hi~j no sale

should take place between them; the net benefit for either player is

zero. Hence, V(S)= 0. However, if g, j hlj, then it is better for

both i and j if i sells his house to j for price Pi satisfying

g <p < hi* For any such pi, seller i's net benefit will beV(S is qu

P- , 0, and buyer J's will be hij - P, > 0, so V(S) is equal

to (P - ) + (h -p )  h - >  .
-- I
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In summary, we have V [coalition of a seller i and a buyer .K

= max(O,hj - i ) . Denote this value by cij, and note that

c j > 0.

Upon reflection, we see that for all other coalitions, V will

depend directly upon the one-seller-one-buyer case. This is because the

best that any coalition can do is to "split up into separate trading

pairs and pool the profit". Hence,

V(S) max C ij (2.1)
assignments .x (ij)E(2

i,J ES

for any coalition S, where an assignment is defined as any sequence

p of seller-buyer pairs [ (i j ) containing all distinct

players. At this point, a word on notation is important: if (ij) is

a pair contained in assignment p, we write j = p(i) and

i = L (j). Also, by a full assignment, or matching, we mean an

assignment containing n pairs, i.e., one where every player in the

game is used.

For the case where S = N, the grand coalition of all 2n sellers

and buyers, equation (2.1) becomes 5

V(N) = max Y Cj (2.2)

full assignments [i (ij)EP

the evaluation of which is commonly known as "the assignment problem".

We call any matching which solves (2.2) a maximal matching, and denote

one by *.

W
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At this point, we are ready to define the core. It is defined as

the set of economic allocations under which it is impossible for any

coalition on its own to improve the lot of each of its constituents.

Hence, the core defines a class of allocations which exhibit a certain

kind of stability. Due to the assumption that utility (i.e., money) is

completely transferable, we can write that the core is the set of

sellers' utilities (u 1 ,...,un) and buyers' utilities (v1 ,...,v)

which satisfy:

n n
u + Y v = V(N) (2.3)

i=1 j=1

+ . Vj .V(S)VS , (2.4)
iES jES

u i , vj > o Vij (2.5)

However, (2.1) and (2.2) imply this is equivalent to (u ,...,u n)

and (v1,...,vn) satisfying

u i + v 4*(1 ) = cil.(i) (2.6)

ui + v > c j (2.7)

uiv P*(i) > 0 Vij (2.8)

for any maximal matching i*.

Relations (2.6)-(2.8) provide a slightly different interpretation of

the problem. Suppose the buyers and sellers have already arranged

I
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themselves into pairs (i I*(i))]i=1 . Then (2.6) and (2.8) represent

what the pairs [(i P*(i))] can achieve for themselves (within the

constraints of individual rationality). For this reason, we call (2.6)

and (2.8) the feasibility constraints. On the other hand, the

inequalities (2.7) describe limits placed on u and v (i)based on

what other pairs are capable of achieving. We call them the stability

constraints.

Up to now, we have not tackled the question of how the concepts of

core and economic equilibrium compare, or if core vectors even exist.

The following theorem, again due to Shapley and Shubik, addresses these

issues.

Definition: An equilibrium is a matching 4, a set of prices[ in 6.,

[p_ and a nonnegative set of utilities (u ,....u )P S
p 1' 11 n M~

(Vl,...,Vn) with

1 J

V= c - p  =maxc. - p j (2.9)

u = mxc - v i =pi ]i (2.10)

This puts the usual equilibrium notion of utility maximization into this

game's context.

Theorem 2.1: In the above context, an equilibrium exists with 4i

if and only if p is a maxi:!al matching. Moreover, the set of utility

vectors under 4 which satisfy (2.9) and (2.10) is precisely the set of

vectors in the core.



Before carrying on with the proof, it is important to note the

ramifications of the Theorem. First, by its definition, at least one

maximal matching always exists. Hence, the core is always nonempty.

The usual case is for there to be exactly one maximal matching. Thus,

under only one i will equilibria exist and under only one ± will the

core relations (2.6)-(2.8) hold. Again, we denote this p by 4*.

Finally, the second statement in the theorem means that the core and

the set of equilibria are equivalent.

Proof: Consider (P), commonly known as the assignment linear

program:

n n

max I c p (p)
i=1 j=1 i

n <
l Pij-(2.

Pi (2.12)ij

Pij - 0 Vi,j (2.13)

Let IT I solve (P).
1i i,J=1

Claim: Evaluating (2) is equivalent to solving program (P).

Proof: It is clear that the Claim follows if (P) always solves

with Pij's all equal to 0 or 1. However, this holds via a simple

" "



-9-

@

perturbation argument, or the recognition that the matrix defined by

(2.11) and (2.12) is totally unimodular..Z/

Now consider any full assignment p* which satisfies

(ij)E* => pi = 1 (2.14)

Clearly the set of p's which setisfy (2.14) is just the set of
S

maximal matchings. The next step, then, is to find utility vectors

which satisfy (2.9) and (2.10). However, when we take the dual of (P),

we obtain program (D):

n n
min Y. U. + V (D)

i=1 j=1 *

s.t. u. + v. > c.. (2.15)

u >,v 0 -i,j (2.16)

Let [ui] and 1-.] solve (D). (In general, there will be many

such vectors.) Then, if p*(i) = j,

(i)= j => pi = I

=> constraint (2.13) is "loose" (2.17)

=> U. + V. C.
1 3 13

by the complementary slackness theorem of linear programming/ 
.

Relations (2.15) and (2.17) respectively imply:

%

d ~ .5 .~s%5'%%s? *~ ***( ~ .f,% ~ ~-r~ f%**~*~5 ~W.~ .. . I
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> c. -v for j * *(i)
1~ 

2J j

u. c -v for j = *(i)i i ,1

which together give (2.10). Similarly,

v. > c.. - u. for i * .* (j)

V. = c.. -u. for i e (j)

which implies (2.9). This concludes the "if" part of the theorem.

To prove the converse, suppose matching i supports equilibrium

Iui]1. 1 , [v] I . Then (2.9) and (2.10) together imply that (2.15) and

(2.16) hold. Hence, by the weak duality theorem,-

n A n

u. + Y v. > c Ci(i) (2.18)i=I j=1 j- Wi)F-

for any matching 4. The left hand side of (2.18) represents the total

net utility attained by the grand coalition under ., while the right

hand side represents the same quantity under 4. Hence, p. is a

maximal matching.

Finally, it is easy to see (and we have already pointed out) that 6

(2.9) and (2.10) are equivalent to (2.6)-(2.8); thus the equivalence

between core and equilibrium follows easily.

At this point it is helpful to present an example and see what the

core looks like. Let the joint utility matrix (JUM) C be the n x n

matrix defined by the c ij's. From the previous discussion, C is

necessary and sufficient to define the core:

.1"4 -, "" ", ,-,;,. ' ' "..,",," '"'"' '",,.:,:- , ;"e b ","," :;". > ". ,,. .:,,:% ..--jv . ,v -..... ,:.-,- ,,'
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u + v(i) = ci(i) (2.6)

u +v > c (2.7)

u>v 0 :vi,j (2.8)

Note that (2.6) implies we can define the core solely in terms of

the sellers' utilities (u ,...,u n ):

0 < u <ci( ) (2.19)

u + j c ji,j (2.20)

Hence, the core can be represented as an n-dimensional region II "u-

sp:ce"..2/ As an example, suppose

c = 5 4 4
I 0 2

Clearly, p* = [(11),(22),(33)], and the core is defined by the

inequalities 0

0< -< U,> -3 u2  - 3 > 2

0 <u 2 (4 u 1 u-3 > 3 -u 1> -2

0 < u 2 u U > 2 u- u > -4

3 .1

ijS
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(2,4.1)

(1.4,0) 4(2,4,0)

(1,3,0)

Figure 1

which is a polytope with four vertices (figure 1). Its volume is

3. Elongation and the Volume Ratio

Shapley and Shubik also made some interesting observations on the

structure of the core. First, as previously noted, the core is an n-

dimensional polytope. However, they observed further that it is

"elongated, with its long axis orientated in the direction of market-

wide price trends. There is a 'high price corner'...[where] every

seller gets his top profit and every buyer his bottom. There is also a

'low price corner', where the reverse is true." All this is evident in

Figure 1. The "high price corner", or sellers' optimum, is at

u = (2,4,1), while the buyers' optimum is at (1,3,0).

The underlying mathematical concept here is that of sublattice.

First, define the Join of two vectors x and y by z where

= max(xiYi' and the meet by w where wi = min(xiY i ). Then, a

sublattice is any region U in Rn  where, if u' and u" are any two

vectors in U, their meet and join are also.



Theorem 3.1: (Shapley-Shubik) The core is a sublattice.

Proof: Suppose u' and u"l are in the core, and let v' and

v" be the vectors of buyers' utilities defined by !e and u"l

respectively. Also let uH and uL be the join and meet respectively

of u' and u"l. We need to show that uH and u L are in the core,

H L L Hand do this by demonstrating that (a v and (,v)both satisfy

(2.6)-(2.8). But for all i and j,

H = max(u ',u"i)

= max(ci ()- *()c*()-v i)

i 4*(i) mmcw(i

L
C c ,*(i) - *0

L H
11 1 ,*(j) -v,*(i) similarly,

H Li H +)
miu u+ voui

i 3 j

L H
u + v 1  cii similarly, and, finally,

ui, vi, Ui, and vHi are all nonnegative.
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A note: an alternative to this proof exists through the realization

that relations (2.19)-(2.20) satisfy the requirements for a theorem of
~Vei nott si.1/

So the core is a polytope and a sublattice. Intuitively, such a

region "goes up and to the right". Hence, polytopes A, B, and C

are all sublattices; polytope D is not because the joints of points

A

u2
d

C D

Figure 2

d and e is f, which is not contained in D. Finally, for a case in

three dimensions, the reader can verify that the core in Figure I is

also a sublattice.

What are the economic remaifications of this? First, recall the

theorem from lattice theory which states that any compact sublattice has

a greatest point and a least point. 1J This implies the existence of the

sellers' and buyers' optima described above. From now on, denote these

by u and uL  respectively.

Another important observation is that the "fortunes of all the

sellers tend to rise and fall together". This makes intuitive sense --

if seller i' is selling his house for a high price, then seller i"
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is likely to be doing the same because he doesn't face stiff competition

from i'. On the other hand, suppose i''s selling price is low.

Then, if i" keeps his price high, he is likely to get left out in the

cold, because i' will strike up a deal with i"'s buyer. Hence, i"'s

price must be low as well.

We can sense this effect by examining level sets in Figure 1. For

instance, if u2 = 3, (u ,u 3 ) must be equal to (1,0); if u2 is

raised to Z, (u1,u3 ) can lie in the triangle defined by (1,0),

,0), and ( , j) -- all of whose points are preferred over (1,0) by

sellers 1 and 3. Finally, if u2 = 4, the triangle is (1,0), (2,0), and

(2 11).

However, all of the statements in this section so far have been

qualitative. The theme of this paper is the question of just how

"elongated" the core is, or to what degree the sellers' utilities corre-

late. For instance, if it resembles sublattice A, the core doesn't

seem "elongated" at all. Knowledge of ul tells nothing about u2 , and

vice versa. We say that the sellers' utilities are uncorrelated. A

more typical case would be B, which is somewhat "elongated". Finally,

C represents the opposite extreme from A -- the core has been so

"stretched out" that is has become a line. In this completely

correlated case, u1  completely determines u2 and vice versa.

Geometrically, there is a natural way to measure this effect. Let

R be the rectangle defined via the following:

UI L H
R = Ul,...,u ): u. u - u. for every i}.

n@

1~ i%
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Due to the nature of the sellers' and buyers' optima, it is easy to see

that the core is completely contained in R. For this reason, we call

R the enclosing rectangle.

The more "elongated" the core, the less room it takes up in its

enclosing rectangle. So, define the volume ratio, or VR, by:

VR = volumevolume of core
volume of enclosing rectangle (3.1)

Clearly 0 < VR < 1, and, from the above discussion, VR is a good

inverse measure of "elongation". In the sublattice A, the lattice is

the same as its enclosing rectangle; hence, VR attains its maximal

value of one. In case B, VR is somewhere between 0 and 1. In

completely correlated case C, VR = 0 because the two-dimensional

volume of a line is equal to zero. Finally, in the example presented at

the end of the last section, the reader may wish to verify that VR is

equal to .3/

However, there are two problems with VR. First, consider how

difficult it is to calculate. One must first find the volume of the

2
core; this in turn means determining the intersection of n + n

halfplanes, and then on top of that, finding the volume of the intersec-

tion. Second, VR has no direct economic meaning in terms of the given

data (the cia's) of the problem.

So we seek an easy to calculate, economically meaningful measure

which at the same time is highly correlated with VR. Is this too tall

an order? Our answer lies in the "next best alternative", i.e., the

matching which for the entire economy is "next best" after, or,
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"completes the most with", L*. The idea is this: if p yields a

small utility, each of the members in each of the pairs of v* has a

lot of "bargaining room"; hence, the core should be "fat" and resemble

A. On the other hand, if yields a utility close to x*'s, the

opposite effect occurs, and the core gets "skinny" and approaches C.

A two-by-two example illustrates the point*

u2

U2JUM U2xXO 5 U I

x2u 1  5 U1

Figure 3

Consider the JUM in the upper left, and suppose 0 < x < 5.

*= [(11),(22)], yielding a total utility of ten. The next best

alternative (indeed, the only alternative) is = [(12),(21)], which

gives 2x. Now, if x = 0, j's yield is minimal, and the core is a

"fat" square. VR - 1. However, as x increases, ;'s yield of 2x

rises, and the core and VR both get smaller. Finally, when x = 5,

has become a second maximal matching, and VR is equal to zero.

Thus, a good "competition ratio" would be

CR = total utility from A (3.2)
C total utility from (

Defined this way, CR appears to have the following properties
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1) VR = 0 <=> CR = 1. (3.3)

2) VR = 1 <=> CR = O. (3.4)

These seem plausible based on the above discussion, and we prove them

formally later.

3) As the payoff for L is [raised,lowered],

VR [decreases,increases] and CR [increases,decreases]. (3.5)

Again, we prove a formal version of this in the next section after we

define CR for higher dimensions.

Also, CR should satisfy another property. Suppose the cores of

two games CI and C2 are the same shpe [but possibly displaced from

one another in Rn+]. Obviously, VR(C1 ) = VR(C2 ). Hence, we would

like the measure CR to satisfy CR(C) CR() If so, CR is said

to have translation invariance.

Translation invariance is easily accomplished by considering the

adjusted Joint utility matrix, or AJUM, denoted by C , where

A L L
c =c ~u -V.ij ij i  J

It is easy to check that [ui]ni and [vn = satisfy (2.6)-(2.8)

L n L ]nwith JUM C if and only if [ui, i=_ and [v v satisfy

(2.6)-(2.8) with JUM CA•

Thus the shape of the core is the same for CA as for C. CA

describes the unique case where uL and vL are "anchored" at 0. Any

such CI and C2 as described above will have the same AJUM. Hence,

• "
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if we define CR for any matrix C in terms of C , we automatically

accomplish translation invariance.

For this reason, from now assume any JUM is already an AJUM, and

drop the superscript "A". Note that since u = 0 and v = 0 are in

the core,

Cij < c , and (3.6)1.-1(j) j

cij < ci.*(i) respectively (3.7)

for all i and j. Also, since the enclosing rectangle is now

X n[~c .(±)], we can interpret it as the set of feasible u's. Thus,

VR is measuring the proportion of feasible allocations which are stable

equilibria. Hence, we can interpret it as a measure of "flexibility"

for the economy. Finally, note that the volume of the enclosing

rectangle is ri=p ci (i)" 14/

The next task is to generalize CR to n dimensions. This is not

as simple as it seems, because there are a lot of choices for i once

n > 2. We end this section by considering two "intuitive" ways to

define CR and show why they are unacceptable.

Based on the above discussion of the 2 x 2 case, it is logical to

try:

Smax c
CR = cax n=1 c (i)

'i=1 ci.*(i)

U
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CR1  is the ratio of the global utilities of p* and the matching which

attains the next highest global utility. But consider the following

C1 :

/6 0 0

C1  0 5 0

0 0 2

,[Note that C1  is already an AJUM because it satisfies (3.6) and

(3.7).] It is easy to see that Cl's core is the rectangle with uL

(0,0,0) and u = (6,5,2), so CR should be equal to 0. However,

CR (C) 6

To account for this case, it might be tempting to try:

2 maxp:(i)*(i)i = i(i)
CR 2=

yn

In this case p is limited to matchings where everyone has a different

partner from p*. Indeed, CR2 (C1 ) = 0. However, suppose

1 1 0

C 2 :1 1 0

0 0 2

From (2.20), any vector in the core must satisfy u1 + 1 - u2 > 1 and

u2 + 1 - u I > 1, which implies U, = u2 . Hence, the core is two

dimensional, VR = 0, and so CR should be equal to one. But

CR (c ) -1
2 4

.-
V
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4. The Competition Ratio

In this section we define our CR and prove some interesting

properties. So let C be an n x n AJUM. In this entire section, and

without loss of generality, relabel indices so that V*(i) = i for

every i, i.e., the maximal matching is the "long diagonal". Also,

abbreviate ci,.(i) (or cii to c .

Now define the competition ratio by:

CR = max (4.1)

Denote any argmax of (4.1) by j. Let the degree of ., denoted

by d, be the cardinality of the set {i: (i) * V*(i)}. Observe

d < n.

It is important to describe in words what CR is. First note that

we are back to considering all matchings in the search for the next best

alternative .i. However, this time the search criterion is different:

instead of minimizing the percentage loss in global utility from V* to

i, we are minimizing the percentage loss in utility restricted to those

who switch partners.

Immediately, we see that 0 < CR < 1, and that in the 2 x 2 case,

(4.1) reduces to (3.2). Also, we are relieved to find that CR(C ) = 0

and CR(C2 ) = 1, where C1  and C2 are the AJUMs defined at the end
2 C

of the last section. Finally, CR of the matrix defined at the end of

Section 2 is equal to 2 .2
3
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Perturbation Effects on VR and CR

The following result defines a sense in which VR and CR are

inversely related:

Theorem 4.1: Suppose C is an AJUM with competition ratio CR.

1) Suppose i * j. Then

A) CR is nondecreasing in ci&16/

B) VR is nonincreasing in cij.

2) For any i,

A) CR is nonincreasing in ci .

B) VR is nondecreasing in ci.

This is the promised analogue for (3.5) of the 2 x 2 case.

Proof: IA) and 2A) are evident from the definition of CR (4.1).
Now suppose first that C is given and then cij is raised, i * j.

Consider the core inequalities (2.19)-(2.20). Since i * Vi*(j) and

j * p*(i), only the right hand side of (2.20) is affected, so the

volume of the core decreases (or stays the same). Since the enclosing

rectangle remains the same, VR decreases also.

For the proof of 2B), let i = I without loss of generality. For

any (--(u2,...,u), let [a ,b,] be the interval {u (u ,'a) is

in the core}. LV Next, let
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length of [a.,bJVR~ =

VR-u measures the proportion of ul's in [Ocl] under which (ula)

is in the core. We have

volume of core
= volume of enclosing rectangle

c* f-VR-dD

c

~fVR ~da

Only the numerator is dependent on cI , so it will suffice to show that

an increase in cI  causes an increase in VRu for every 7.

So suppose cI  is raised to c1 + a, resulting in a new game C.

Let (u 1,a) be any vector in the core of C, i.e., solving (2.19) and

(2.20). Then this implies (uI + x, 0) solves (2.19)-(2.20) for Ca,

where x is any number satisfying 0 < x < a. Hence (a LIand

(bS + a,a) lie in Ca's core,
uA

C C C C
,a b+a-a~ b- a-

C u > ta u
VR. > 1 > u - VRC  (4.2)

u - c +a - c u

An Upper Bound for VR

The next step is to establish a quantitative link between VR and

CR. One would think this is improbable, given that VR is dependent •I



-24-

on n 2variables and CR is a scalar. Nevertheless, we shall see that

it is possible to establish meaningful bounds for VR in terms of CR.

n
Theorem 4.2: VR < 1 CR

Proof: We prove this by induction on the number of sellers n. If

n =2,

ITTF71C1 1 C12 C21
C~~ C2 1C'C 21by (26)-(27).

A.JUM

U2  C.2

The shaded area at the Iloft
represents the core.

C, C2l U,

We have:

2 +02

VR=1 - 12cc 1

CR = c 1 2 +021
C1 4c 2

We need to show:

2 2
c 1 -+ c ic 12 +c' 1 2
2- c + c
1 2 1 2

or, equivalently, that

2 2 2 2
(c12 + c21 )(cl + c2) -2c 1c2(C1 2 + c2 l) > 0.
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But the left hand side of this is equal to

2 2
(C1 C2 1  '2'12 ) + (C1 12 - c2 c2 1 )

which is clearly nonnegative.

To prove the result for higher dimensions, consider two cases:

Case 1: p(i) = *(i) for some seller i.

Without loss of generality, let i = 1, and consider the game C

without seller 1 and buyer 1. Since we have not "disturbed" x, CR

for this game is the same as for the larger one. Now let U be the n-

dimensional region defined by

U = fuI  [O,c ],(u 2,...,u) F core(C-)1

Now,

vol(U) = c1 * vol(core(C-))

n
= c,* VR(C) * n c.

i=2 %

It is also clear that the core of C is contained in U. Hence,

n .
vol(core(C))< H c * VR(C-) ..i=1 i.

=> VR(C) < VR(C-)
..

Finally, using the inductive hypothesis and the fact that CR < 1,

VR(C) < VR(C) < 1 - CRn 1 < 1 - CR. (4.3)

,;..
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Case 2: iL(i) * t*(i) for every i.

In order to prove the result for this case, it is first necessary to

state two simple lemmas from the theory of convex functions 19/

Lemma 1: Let x 1 0 for all i. Then, for any integer n > 0,

n * IT x i <x

Lemma 2: Let xI > 0 for all i. Then, for any integer n > 0,

i=1 n

The logic of the proof for Case 2 is as follows:

1) Define n disjoint regions which are within the enclosing

rectangle R but are not in the core.

2) Show that the ratio of the total area of these regions to that

of R is at least CRn.

Lemma: Let u = (u1 ,...,un) be any vector in R satisfying

u ti > u _1'(i) + c I - c _1i i (4.4)

for some i. Then u is not in the core.

..... .. .. - -- - ----
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Proof: Rearranging the terms in (4.4) gives

U-1 (j) + c -1

which is a direct contradiction of (2.20).

Now define the n regions [Ri] by:

Ri 1 ueR: u.i> (mxk+ c~ -c 1i

By the preceding lemma, no point in Ri is in the core. Furthermore,

because c1  a 1  0, [by (3.6)], all of the R i's are disjoint.

The next step is to find the area of the R.' s. To do this, we

calculate R, as an example:

R 1 fUcR: u 1 > (max uk~) + c }%111
Well, for any particular ul, the n - 1 dimensional volume of

(u 2' ... u nmax u )< ul - cl + c, 1 1)

is obviously (u 1  c c1 + c,71(1)1) To get the volume of Rif we

need to integrate over possible values ofu1

11

(C1 4-1 )n

n M

QNt



-28-

So the volume of all the R 'a is:
Wi

n (c-(i)in

Thus,

(c (i ) 

VR < 1 - i= n

Applying lemma I gives

VR<1i=1 nVR <I -

- (7n=lci)n

Finally, applying lemma 2 gives

n c )n

VR < 1 - ( l (i)in- n )n

n
which is indeed VR < 1 - CR

Actually, there is an easy improvement to Theorem 4.2:

d
Corollary: Let d be the degree of 1. Then VR < 1 - CRd .

Proof: Let D = {(i,j) : R(i) V*(i), j = g*(i)}. Then

consider the subgame CD  containing only the players in D. Using Case

C D d
2 above, VR < 1 - CR . One by one, add back into the model the

players in C/D. Now the corollary follows by using the argument of Case
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1, except without the final "< in (4.3).

A Lower Bound for VR

Theorem 4.3:

VR > (1 - CR)n (4.5)

Proof: This proof has three basic steps:

1) Define a class of r of mtrices for which

VR > (1 - CR)n  for all Ce!'

=> VR > (1 - CR)n  for all AJUMs.

2) Determine the structure of matrices in this class.

3) Using 2), define an area in the enclosing rectangle with a

volume of (1 - CR)n *I ci' all of whose points are in the core.
i=1

For the first part of the proof, it is necessary to define the

concept of tightness. Suppose C is an AJUM with competition ratio

CR, i.e.,

c ci(i ) < c.CR Vi * *, and (4.6)
i:c (i)#*c(i) f sm(i) - (i) il

cig~i = c.CR for some ji * p*. (4.7)
i: (i* *(=)i: p(i)* *(i) i

I
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A ^ 
j

Choose any i and j, i*j, and let M be the set of full

assignments in which 1(i) = j. If (4.6) holds with equality for some

AM i j , Vit means that c- cannot be raised without destroying the
ij

validity of (4.6)-(4.7), i.e., without raising CR. In this case, we say

that c-^ is "at its limit". On the other hand, if (4.6) holds with

ij

strict inequality for all c^^M c.. can be raised without affecting
ij

CR. Perturb C by raising c,, until it reaches its limit, even if it
ij

means violating (3.6) or (3.7).

Continue by raising every cit i * j, to its limit, and denote the

resulting matrix by C. We have:

ciS > 0 -i,j (4.8)

ci1 (i) < c.CR VJ * I (4.6)

Also, for every i and j, P ijE M such that

c ij,. - c.CB (4.9)

i:4 ij (i) *(i) i: i()#*()

Any C which satisfies (4.6), (4.8), and (4.9) is said to be

tight. Alternatively, a tight matrix is one where no cij, i*j, can be

n
raised without raising CR. In other words, given (ci]i and CR,

the partnerships in V* face a "maximal amount of competition." At any

rate, note that u*(C) = *(C), and of course that CR(C) = CR(C).
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At this point it is useful to present an example:

C 0 4 2

0 36

0=42
1 3 6

For both matrices, CR = 1/2. AJUM C is not tight because c31  and

C1 2 have not reached their limits. By raising these coefficients to

their limits, we arrive at C, which is tight. Note that C is no

longer an AJUM, because it violates (3.6) for i=1 and j=2.

Next, consider what has happened to VR as C was being transformed

into C. Through repeated applications of 1B) of Theorem 4.1, it has

either stayed constant or decreased. Hence, if (4.5) holds for C, then

it holds for C. And if it holds for all CaP, Where r is the class

of all tight matrices, it will hold for the entire set of AJUMs.

The next step is to get an idea of the structure of tight

matrices. Given [ci ]ni, and CR, it turns out that F is an n -

1 dimensional object, easily parameterized by the values in n - 1 of

a matrix's cells.

First, though, we need to state a lemma:
S
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Lemma: Let rl be a sequence of integer pairs [(i p p)]

jel,...,n. Define:

11, if i =k

k 0, otherwise

JP = 1, if j k

k 0, otherwise

Suppose for every kEl,...,n

y Ik Jp. (4.10)
pairs p pairs p

[Note that (4.10) means that for any kE1,...,n, k appears equally

many times as a first coordinate in as it does a second coordinate.]

Then, by adding pairs of the form (k k) to r we can form *,

which is partionable into one or more matchings on 1,...,n.

Example: n = 4, n = [(12), (12), (23), (31), (21)],

* = [(12), (23), (31), (44)11(12), (21), (33), (44)].

The proof of this lemma is in Appendix 1.

Lemma 1: If C is tight, and i*j,

c .. + cji = ciCR + c.CR. (4.11)

Proof: Suppose not. Without loss of generality, assume (4.11)

fails with i=1 and j=2. In light of (4.6), this means

c12 + c2 1 < clCR + c2CR. (4.12)

SW%|*.i~ '-K.~'~.. ' ~ % '
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12 21
Next, since C is tight, matchings i and p such that

[see (4.9)]

12 (1) = 2

Yc i412 W c.iCR (4.13)

12 ) W 2 (*(Ii)i

21 (2) =1

21c 421W 2 1 .R(4.14)

12 21
Let TI= {(ij):j=tI (i)*P7*(i), i*1} ++ {(ij):j=ii (i*1.i*M, i*2}, the

symbol ++ meaning "take the union but save repeats". Clearly T)

satisfies (4.10), so let n 1..,n be matchings partitioning TI*

(see previous lemma). By (4.6),

c. <i c.CR for qF-l,...,M. (4.15)

Adding inequalities (4.15) gives

c. < c. CR, or

pairsET)*:j *11*(i p pairsEr1*:j *g*(i)
p p P p W

c 1 2 )+ 42M
12 i~()+ 21 .

i*1 i*2

<c.CR + c CR. (4.16)
.12 1211

i*1 1*2
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But (4.13), (4.14), and (4.16) together imply

A

c 1 2 + c 2 1 >c CCR + c 2 CR,

which contradicts (4.12).

Lemma 2 If C is tight, (4.6) holds with equality for all i,

i.e.,

C = cI CR for every p##*. (4.17)

Note that this is much stronger than (4.9). Also, note that (4.11) is

just the special case of (4.17) where =[(ij),(Ji),{(kk)}ki or J]

Proof: Again, suppose (4.17) does not hold, i.e.,

S i <i) c CR (4.18)

for some matching 4.

Define the "complementary matching" 4 c by

W j <=-> (j) - i.

By (4.6),

cic(i) < c CR. (4.19)

Observe that the set of pairs [(ip (i))]n is the same as

Thus, we can rewrite (4.19) as

: %V1
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c < C c CR. (4.20)

Adding (4.18) and (4.20) jives

C ci(i ) +c < ciCR + iCR. (4.21)

i:

However, this is a contradiction because Lemma 1 implies (4.21)

should hold with equality.

It is important to dwell for a bit on the ramifications of (4.17).A
Suppose C is a tight matrix, 4*(i) = i for all i, and we are given

CR and the diagonal elements cSuppose further that we

n-1
specify the elements [ai]i=, where a,= c,+ 1 .

b a12 ...

b c2  a "'"

CI

b c

b•. 2 c3•••

*~ : ... :

n-1 n-I

Immediately (4.11) determines the values of the b 's, i=l,...,n-1.
i

From there, we can use (4.17) to determine the rest of the cij 's. For 'j
A i

instance, we can calculate c13 from

c 1 3 + b + b2  CCR + cCR + cCR.
1 2
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In general it turns out that:

j-1 J-1

If j > i, c : a - ' c CR (4.22)

k=1 k=i+l k

i i-1

If j < i, c.= CCR - a (4.23)
kij k kj ki3 k=j k=j

As an exercise, the reader may wish to consider C from the last

example, and verify (4.22)-(4.23) using a, = 5 and a2 = 2.

Thus, F consists of the matrices which satisfy (4.22) and (4.23),

with the further stipulation that all cij's so defined are

nonnegative.

The next lemma is a curious result of the way we define CR.

Lemma 3: Suppose C is an AJUM with competition ratio CR.

Then a column j for which

ci3 < ciCR for all i 3. (4.24)

Suppose seller i considers selling his house to someone other than

buyer i. Since CR is a measure of the dropoff in utility of next

best alternatives, he should expect a yield of c1 CR if he does this.

Thus, if cij < ciCR, buyer j will probably not be attractive to

him. In fact, (4.24) means that poor buyer J won't appeal in this way

to anyone. For this reason we call 3 a weak buyer. 20/
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S
Proof: Again, suppose the lemma is false. Then for every column

J, i:j with

c > cCR. (4.25)
ij i

Now consider column j=1. Without loss of generality, suppose

(4.25) holds with i=2, i.e., c21 > C 2CR. Then c12 is not greater

than clCR, because, in that case,

c12 + c21 > c1CR + c2CR,

which contradicts (4.6).

Now let j = 2. Because c12 < c CR, we know (4.25) does not hold

with i = 1. So, again without loss of generality, suppose it holds

with i = 3, i.e., c32 > c 3CR. Then,

c13  c1CR, because otherwise,

c + c +c >cCR + cCR + c3CR,
21 32 13 1 c 2 3

and c2 3  because otherwise,

c + c > c2CR + c CR.
23 32 2 3

So, for j=3, (4.25) does not qold for i=1 or 2. So, without

loss of generality, suppose c > c CR...
43 4

Continuing to define row and column numbers in this fashion, we see

that in general, for the kth column,

ci ciCR for all i < k.

k eaf

+ ~~'it .,
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Thus, by the time k finally reaches n, we have that cin c. CR

for all i < n, which is indeed (4.24) for j = n.

Corollary: Suppose C is a tight matrix with competition ratio

CR. Then row i which satisfies

cT. > CR for all j * 1. (4.26)

Proof: Let J be the column specified in the previous lemma, i.e.,

c k- < CkCR for any k * j (4.27)

Now let 1 = *- (J) = 3. By (4.11),

C- + c = c-CR + ckCR (4.28)
I k k j k

Finally, (4.27) and (4.28) together imply C1k > CkCR.

The last colollary states that if C is tight, there is a strong

seller "-, for whom all buyers can provide more than cI - CR.

Interestingly, in V* he is paired with the weak buyer j described in

the last lemma.

Thus, in the search for core allocations, it is natural to try to

give i "a lot" and j "little". In fact, this is precisely what we

do.
^ n

So let C be any tight matrix, defined by [ci]i'=S, CR, and

n-i
a ili= 1 .  Without loss of generality, assume further that i (and thus

j) is equal to 1. Thus,

Ci1 < ciCR (4.29)

r . . . . . . '-J~-
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cjI~ c1CR (4.30)

for all i,jE2,...,n.

Now let 0 < x . < c~ -c CR, i=1, ...,n, and let the point u be

defined by

u1= C CR +x1

U, = c CR - a+x

k=1 k=lk

Notice that U E [set of u's which can be defined this way] has a

volume ofH nil (ci - cCR). Thus, if we can show that any point in

U is in the core, we'll have

r' (c c CR)

- i n

which is, of course, the Theorem.

Before demonstrating that this is so, note how U's definition

makes sense in light of the previous discussion concerning i and

j. In general, u 1  and v 1  must lie in I, = [Oc ] In U, u

(which is the utility for i) is constrained to lie in [c CR,c]

which is the high end of IV Menawhile, v 1 (the utility for 3) is

in [0,c1 - c1CRI, which is the low end.

'r or Ir

Ir LN
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At any rate, suppose u is any point in U. To show u is in the

core, we first need to prove feasibility, i.e., that 0 < ui < ci  for

every i.

Case 1: i = 1. It is easy to see that u1  ranges from

ClCR to c1 .

Case 2: i > 1. The lowest possible value for ui, occurring when

x 0, is equal to cil, which is of course nonnegative. The highest

possible value is cil + ci - ciCR, which is less than or equal to ci

because of (4.29).

Finally, we need to show stability, i.e., (2.20):

Case 1: i > J. Then,

I i-1

u + c -u = kCR- a + x ik=1 k=l

k=1
- kC -ak + x

i i=1
=C + cCR - a + x - x

k=j+l k=J j

i. i-1

- c CR- 7a +c -cCR +x -xk= k k k JJ i j
k=j k=j

i i-1

> c CR- Y a by def. of x 'x
k=j k k=j i
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a = [see (4.23)].

Case 2: i < J. Then,

U +c -u c cCR-Ya + x

Sj k1k k=1 = +

a C~RC+ +X -x

k=1 k=i+1

-1 j-1
a - c' CR +c -cCR +x -x

k1 k=i+1

1- j-1
> a c' CR

k=i k ki+1

a 0ij

This concludes the proof of the Theorem.

Corollary: The volume of the core is zero if and only if CR =1.

Proof: Follows directly from the inequalities (1 - CR) <R < 1 CR.

Remember that CR = 1 is equivalent to the linear program (P)

[section 2] being degenerate. Also, the same proof suffices to show

that the core is the same as the enclosing rectangle (yR =1) iff

CR =0 (i.e., all of the off-diagonal elements of C are zeroes).

%~s %
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Mathematical and Computational Ramifications

Next, consider the issue of computational complexity. Given a

Shapley-Shubik game C, let P(C) be the polytope which is the core

(in "u-space") of C. Looking back over our work, we have defined a

method for determining bounds on the volume of P(C) for any C. The

first step is to solve linear program (P) [Section 2i and find .

Next, we calculate C , which in turn necessitates finding
L L L

u and v L However, u is the solution to:

n
min ui  (LPUL)

t=1 (

n n n
s.t. u , + = 7 ci .*Wi=i J=1 j  i=1

ui + v> c 'i,j

ui,v > 0 Vi,j.

Similarly, by changing the objective function from u i  to vji, we
L -

can present a linear program which solves with v

A
Hence, we can find C merely by solving three linear programs. In

addition,

Theorem 4.4: The calculation of

CR = max (4.1)Y, , 7i. .*icl
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can be done by solving a linear program.

Proof: Consider the minimum cost/time cycle problem (MCCP). This

problem, presented in Dantzig, Blattner, and Rao (1967), is as

follows. We're given a directed graph G, with node set

N = (1,...,n). With each arc (i + j) is associated a profit i

and a time tlj. The problem is to find a "min-cost/time ratio" cycle,

i.e., a simple cycle Z which maximizes

f(Z) = I e(i J)cZ iJ

Lemma: Suppose we solve (MCCP), where

1) N 1,...,n

2) G is the directed graph where arc (i + J) exists if and only

if i j j. For example, if n = 4,

Note that arcs

G 4 t-- i [loopsi
not allowed.

3%
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3) ij = C ijfor all i,j.

4) t ii ci [= c i = Cj* ) j for all i~j.

and suppose Z is a solution. Define the matching ~iby:

J, if (i + j)Ez

i, if (i + k)jZ VkE1,....,n.

Then a is an argmax to (4.1).

Proof: Suppose not. Then let pi be an ergmax to (4.1), with

Now EA

Nwdefine the cycle Z by:

[4(1) =J,i*j] ==> (i+J)Ez.

Then,

f(Z) ui I

which in turn implies f(Z) > f(Z). But this contradicts the

definition of Z as a solution to (MCCP).

Lemma: We can solve (MCCP) with a G, N, nt and t defined as in

1)-4) above by solving the linear program:

%~A
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n
max 7c. 'x. (LPCR)

i #j

n
s. t. ), c x =

i, j=1 ij
i j

n n
x - j x k=OJkEI,....,n

i *k j *k

X.> 0 vi,.jIi*j].

Proof: See Dantzig, Blattner, and Rao, Theorem 1.

Thus, the linear program (LPCR) can be used to calculate CR in (4.1).

Next, define the sets

P C = Polytopes P :P = P(C) for some n x n matrix C

En= Polytopes P :P = 1u 5  n satisfying

u. - u > d. ijVi, j 5 1,...,n

0 < u. < c. JWie,.. . ,nC

2
for some ceRn, dRn }

Pnis the class of all polytopes which can arise as cores of

Shapley-Shubik games. From (2.19)-(2.20) [and a relabeling of columns

n -
so that 3*(i) =i Wi], it is easy to conclude that P P ~n

However, we also have:
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n n

Theorem 4.5: Pn = Pn.
C

Proof: We need to show pn Pc So, suppose we're given Pa n ,

defined by

u - u. > d 3 Vi,j (4.31)1 3 - 13

0 < u. < c. Vi (4.32)

- 1 - 1

Now define the JUM C by:

c = c i Vi (4.33)
ic

c" = c. + di.. if d.. > -c.; Ji,j (4.34)

0 otherwise

Claim: 4* (1 1),...,(n n) is a maximal matching for C.

Proof: Suppose not, and let i * x* be a maximal matching. Let

D = {i:(i)**(i)}. Since ji is maximal,

Ae

d di4(i) > 0. (4.35)iED

Now, since P exists, (i u) n such that

u u(i)> di^(i ) icD (4.36)

Adding inequalities (4.36) gives I
0o Y(u >UA _ ) > Y d d,

i cD i I

PR
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which contradicts (4.35).

Thus, the inequalities for the core P(C) are

u. + c. - u. > [c + dij Wili (4.37)

0 < ui < ci Vi. (4.38)

We now prove the Theorem by showing that ueP <==> uEP(C).

First, suppose uEP. Then obviously (4.32) implies (4.38). To

show that u also satisfies (4.37), consider two cases:

Case 1: c. +d >0.

Then ui -u i> d ==> + c- u i_ c. + d.= [c + d ij]

Case 2: c. + d.. < 0.

Then u. + c.- u. > 0 because u > 0 and u. < c..
1 3 3- i - 3-

Now suppose uEP(C). Again, (4.38) implies (4.32). And again, in

proving u also satisfies (4.31), there are two cases:

Case 1: c. + d.. > 0.-~ 3 1 - ~ ~~

Then u + c. . > [c di + ] .u - u > d . by the converse1he 3i  - 3j [C 3 1 = 3i - - 13

argument to the previous Case 1. i

Case 2: c. + d. . < 0. S
3 13

Then, since ui > 0 and u. < c., u - u. > -c. > d. This concludes

the proof of the Theorem.
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Thus, we can get the bounds (1 - CR)n < VR < 1 - CRd  for the

volume of any poloyope P in Pn in the following fashion. First,

apply (4.33) and (4.34) to get "C(P)", i.e., the Shapley-Shubik game

in which P is the core. Then, simply apply the four linear programs

outlined previously to find CR and the bounds.

Also, note that since all four linear programs have on the order of

2
(or less than) n constraints, the amount of work done to get the

bounds is polynomial in the amount of problem data.21/

Of course, the next logical question is "How sharp are the

bounds?" The answer is "Not very, but they do tell us something." For

results on a random sample of 15 problems, turn to Appendix 2.

5. Conclusion

In this paper, we have attempted to relate the mathematical and

economic concepts of core, competition, correlation, and volume. And,

as may be expected, we have raised many questions in doing so. The most

obvious question is that of how good the bounds (1 - CR)n < VR < 1 - CRd

are, especially as n increases. The upper bound seems more

informative for two reasons. First is the fact that d rises more

slowly than n. (An interesting question is just how fast an

"average" d does rise.) Second, since the maximum in (4.1) is taken

over more and more p's one would expect CR to increase toward one.

Our results in Appendix 2 seem to corrborate this.

The lower bound (1 - CR)n appears to be worse on both of these

counts. However, we still believe Theorem 4.3 is very significant.

h
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This is because we proved the theorem by constructing U, a rectangular

region wholly contained in the core. Remember that the length in the

ith dimension of U is (1 - CR)*c i. In other words, there exist

intervals {Ii} of length {(1 - CR)*ci}, where, so long as

PiCIi , is an equilibrium price vector. Since by feasibility

piE[O,ci], the factor (1 - CR) expresses a measure of (a lower bound

of) "flexibility" for pi" Indeed, this was one of the ideas expressed

way back in the Introduction.

Nevertheless, a meaningful problem is that of improving the lower

bound. This we hope to accomplish through further study of either the

geometry of the core or the set of tight matrices. Another way is to

try and define how individual players' welfare correlate, both to other

individuals and to the set of other agents as a whole. This would be an

improvement over CR, which is a global measure of the maximal amount

of competition in the game. The new version of "CR" would be a

vector, and the increased detail would probably give a more precise

range for VR.

Finally, we would like to extend the above analysis to the more

general case where linearity and separability assumptions (see section

2) do not hold. There is some hope here -- for instance, Demange and

Gale have proved that the core is still a sublattice. Such work we hope

to do in future research.

"p',
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APPENDIX 1

Lemma: Let Ti be a sequence of integer pairs

[(ip jp)]p i, j 1,...,n. Define:

P1, if i = k;
k 0, otherwise

= 1, if jp = k;

k O, otherwise.

Suppose for every kEl,...,n

k P (Al)
pairs p pairs p k

Then, by adding pairs of the form (k,k) to i, we can form ri*,

which is partitionable into one or more matchings on 1,...,n.

Proof: Use the following algorithm:

1). Set ri* = 0, and consider all pairs PED as unused.

2). Set K = 0 and consider any unused pair p = (ij)Er.

If there are no unused pairs, STOP.

3). Let K = K {i}, and let -1* = 1* ++ p. (The symbol

++ means 'take the union but save repeats.') The pair p is

now used. If j c K, go to 5). If not, continue to 4).

-We- e
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4). Now find an unused pair p* = (i* j*) with i* j and

j* j j. p* exists by virtue of (Al). Now set p = p*, i =

i*, and j = j*, and return to 3).

5). Add (kk) to n* for all k S K. Go to 2).

It is easy to see that this algorithm actually forms the set of I

assignments specified in the lemma's statement. [The number of such

assignments in T1* is just the number of times we pass through step

5)3.

I-'

•N
~~,~i. -. Pt..,,.



-52-

APPENDIX 2

We generated fifteen JTJMs by choosing random integers from the
interval [0,999] for each cell in each JUN.

n CR d (1-CR )n l-CR d

2 .32 2 .46 .90

2 .64 2 .13 .59

2 .64 2 .13 .59

2 .51 2 .24 .74

2 .18 2 .67 .97

4 .95 2 (.05)' .10

4 .57 4 .03 .89

4 .71 2 .007 .49

4 g90 3 .0001 .28

4 .74 2 .006 .47

8 .93 5 (.07)8 .32

8 .9994 3 (.0006 )8 .00

2

8 .94 2 (.06)8 .13

8 .92 4 (.08) 8 .27

8 .86 2 (14)8 .26

Source: Handbook of Tables for Mathematics, 4th edition, Cleveland:
Chemical Rubber Co., 1970, p. 976. a

%p
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FOOTNOTES

/ See for instance, Debreu, Chapters 11 and 14.

2/ Operations researchers will recognize the core as the set of dual
solutions to the "assignment" linear program.

For a more thorough discussion of the model, the reader is referred
to Shapley and Shubik, 1972.

_/ This is borne out when we reduce the core equations to (2.6)-(2.8).

The model here extends without loss of generality to the case where
there are m homeowners and n prospective purchasers, m * n,
because we can add "dummy" sellers (i.e., those with houses which
all buyers value at zero) or "dummy" buyers (those who value all
houses at zero) to the model. See also footnote 14.

6/ By utilities here we of course mean "net utilities", which for
sellers i are their true utility minus gi"

.Z/ Hoffman and Kruskal, p. 225.

.2/ Dantzig, pp. 135-6.

21 Dantzig, p. 130.

./ We could of course also represent the core as an n-dimensional
region in "v-space". In fact, all of the subsequent analysis holds
for the "v-space core" as well.

11/ Veinott, Section 2.4, "Finite Meet Representation of Sublattices".

22 Velnott, Section 1.2, "Partially Ordered Sets".

1 The enclosing rectangle R is the cube with vertices (1,3,0),
(1,3,1), (1,4,0), (2,3,0), (2,4,0), (2,3,1), (1,4,0), and (2,4,1),

1/6 1
which has a volume of 1. Lence, VR -

A Suppose the market originally had m sellers and n buyers, m < n.
When "dummy" players were added, ci r(i = 0 for n - m i's, say

fcr iem + 1,...,n. Ti en (3.6) and (3.7) imply thatA
Cij = 0 V(i,j): ism + 1,...,n and V(ij): jEi*(m +

ij
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Thus removing players {(i p*(i)}I from the game does not
i=m+1

affect the core in m-dimensional space, and our results concerning
VR and CR can apply for this smaller, m x m game.

2/ This is evident once we realize the AJUM is

*i
1-,, 1 0
1 1 0:

j6/ in all four parts of this theorem, we assume the perturbations are
small enough so as not to change p*.

17/ This region is an interval because the core is a polytope.

18/ Discerning readers will note that the first '_" relation in (4.2)
actually holds with equality.

9/ Hardy, Littlewood, and Polya, p. 17 and 26.

20J The idea of "ranking" the buyers and sellers, in a different
context, has been raised by Shapley [1962] and more recently by Mo
[1986].

21L/ The fact that the linear programming problem is polynomial in the
amount of problem data is due to Khachian (1979) and is discussed
in Papadimitriou and Steiglitz (1982), Section 8.7.

Z Z.
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