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1 INTRODUCTION

-, -

This report details the work accomplished under the US
Air Force, Rome Alr Development Center Contract No.
F30602-81-C-0193. The twelve month Post Doctoral effort used
as a foundation the education of the Department of Operations
Research, School of Engineering and Applied Sclences at
Southern Methodist University, Dallas, Texas. The primncipal
investigator was Dr., Jeffery L. Kennington.
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K The objective was to take optimization theory developed
- by the Air Force Office of Scientific Research for solving
o multi{ commodity problems, and apply it to the topic of
P communication network management. Under Project Forecast
o II (PFII), a concept for a highly adaptive communication
o network was developed. This complex and survivable network
Q{ will require new technlques for managing its available
.- resources., These results will further develop classes of
ﬁﬂ algorithms that can manage this mnetwork. The results
N~ contained are a compilation of five separate reports,
@ contalioned in Appeadices A - E.
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2 SCOPE

The structure of this report not only reflects the work
done, but the &evolution of this work, as well. Initially,
efforts concentrated on modelling communication networks and

later progressed into algorithm development for high
performance computec architectures.

Appendix A summarizes an initial OR model for a three
node wnetwork. The solution makes use of a coammodity based
supply and demand model.

Appendix B is a new technique for handling network flow
solucioans. In particular, the method is a means for solving
linear equal flow problems, by more efficiency utilizing the
special structure of the side coonstraints. Computational
solution time results are given.

Appendix C summarizes the development of an optimization
model for a single communications node having multiple media.
This code provides an initial capability for examioning node
managment and 1its functions. Incorporated into the model
are capacity and delay constraiats.

Appendix D is a Ph.D. dissertation of Dr, Hossam Zaki
who was supported. on this effort. This report presents the
quadrant interlocking factorization for solving the simplex
algorichm for linear problems on parallel machines. Included
in the report are the relevant justifications and algorithams
required for implementation.

Appendix E containons computational results of work done
on a twenty-CPU Balanmce 21000 computer. Algorithms for
solving mianimal spanning trees were inovestigated.
Comparisons of sequential and parallel solutioms for these
algorithms are presented.

3 CONCLUSIONS

As presented {iu many of the references, much work is
being accomplished 4im OR techniques for a variety of
applications. Many more commuunications network managesment

functions and networking problems are being near optimally
handl ed.
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E?:: The next major efficilency increase appears to be found
H?{ in more powerful computer architectures with new
::fi "supercomputing™ algorithams. One specific application which
SN

needs development is communication algorithms for parallel
processing machines, and the last two reports are examplary
work in this area. Initial summaries reflect that a possible
-:; sub-optimal algorithm may prove more efficient for use onm a
' multiple CPU architecture.

Under the Project Forecast II Program, classes of
network algorithms are wneeded to mavcage the PF II type of
Wl network. This network may incorporate parallel processors to
N perform a variety of user and resource managment functiouns.
s This work and further developments will feed fnto the design
y and implementation of the specific algorithms to be
incorporated in the Project Forecast 1I 62702F Program.
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. APPENDIX A

;\" AN OPERATIONS RESEARCH MODEL

.-\.‘4 R. V. Helgason
e J. L. Keanington
N

Department of Operations Research
Southern Methodist University
Dallas, Texas 75275
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'{2{ This report gives an example of an adaptive communication network and an
:I_:-
g::: operations research model which could be used to solve it. Consider the
o
i’A' 3 node communication network given in Figure 1.
‘-J'\
O Suppose lines 1,3,5,6,7 are telephone lines and 2 and 4 are micro wave links.
= -
; _‘ Suppose the message table is:
)
5 N
§ '\..),: (o]
s 1 2 3 Totals
\,f_\ From
h- %Y
145
{
N 1 - 5 2 7
W
N:_\:
N
::‘.\'
~a 2 1 - 0 )
o
e
A
? 5' »
:' :: 3 4 7 - 11
B,
s ———
! j
e Totals 5 12 2
A
%
5: That is, 5 messages must be sent from node 1 to node 2 during the next time
::i period.
gy . . e
Oy We model this using 3 commoditites (one for each origin node). Then the supply
voe
‘-‘-I-.
o and demands are as follows:
b ;ﬁu
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Commodity 1 2 3
Supply
Node 1 7 0 0
Node 2 0 1 0
Node 3 0 0 11
Demand
Node 1 0 1 4
Node 2 5 0 7
Node 3 2 0 0
Requirement (Supply - Demand)
Node 1 7 -1 -4
Node 2 -5 1 -7
Node 3 -2 e 11

Suppose that node 1 can communicate with node 2 using either telephone lines or
micro wave links, but not both and that node 1 can communicate with node 3
using either telephone lines or micro wave links, but not both. Then the
management decisions are to determine which edges to use and how many messages
should be assigned to each link. Note that messages going from 1 to 2 can go

froml to 3 and then from 3 to 2

We now define a mathematical model corresponding to this example.
Subscripts
k - denotes the commodity (origin node).
i - denotes the node.
j =~ denotes the edge.
Constents
c? - denotes the cost of sending one message originating at k along j.
uy - denotes the capacity of edge j.
A - denotes the node-arc incidence matrix corresponding to the graph.
M - denotes the sum of all supplies for all commodities.
A-4
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For this example:

I (edges)

1 0 0 -1" | (node 1)
0 1 -1 0 (node 2)
1 -1 1 1 (node 3).

<%y r® - denotes the requirement at node i of commodity k.

. rk - denotes the vector of requirements for commodity k.

ry For this example:

ay
s

PR

)

ri= -5 r= 1 r3= -7

22
)

. 7 ! -1 =4

e £y - denotes the fixed cost for using edge j.
. n - denotes the number of edges.
JAY

. m - denotes the number of nodes.

Decision Variables

o Y= 0, if edge j is not used and 1 otherwise.

e
1

. xj - denotes the flow of commodity k on edge j.
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The Model

n k K n
minimize I I c.x. +I f.vy. (1
I PR B

subject to: Axk = rk (2)

1A
c
-
L.
]
(=
-
L ]
-
L3
-
o]

(3

ne~Mm2o
>
A
=
)
-
.
L}
—
-
.
*
jo]

(4)
A (5)

i

L = (6)

.. 2 j 7
SN
<

s y. € {0, 1}, all j . (8)
o J
F*.

"
N Constraints (2) ensure that the messages begin and terminate at the correct
-

N nodes. These are sometimes called flow conservation constraints. Con-

straints (3) ensure that the capacity (bandwidth) of the edges is not exceeded.
Constraints (4) ensure that vy = 1 if any messages are assigned to edge j.
Constraint (5) ensures that at most one of the edges 1 and 2 are used

6 Constraints (7) ensure that messages travel in the proper direction,
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A feasible solution to this prchlem may be:

B

[0, 1, 11]
edge 7
=3
1
2‘ L2 3
s A R
1
l 3
T.
1 /

Note that 2 messages were transmitted from node 1 to node 3, One used edges 1

and 5 and the other used edge 4,
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THE LINEAR EQUAL FLOW PROBLEM
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3
™ This paper presents a new algorithm for the solution of a network problem with equal flow side
o
: N\ constraints. The solution technique is motivated by the desire to exploit the special structure of the
)
: _‘:: side constraints and to maintain as much of the characteristics of pure network problems as possi-
o
X -\"': ble. The proposed algorithm solves the equal flow problem using two sequences of pure network
ity
i ' problems. One sequence corresponds to computing a lower bound while the other corresponds to
§ computing an upper bound. Step sizes exist such that both bounds converge to the optimal ob-
Y - L : o .
-'Qi jective value. Termination when the difference between the bounds is within a prespecified toler-
g
= ) 3 ance is a particularly attractive feature of the solution procedure employed. The algorithm has been
SN tested on problems with up to 1500 nodes and 6000 arcs. Computational experience indicates that
i A
{ ::-: feasible solutions whose objective function value is within 10% of the optimum can be obtained
) \':'
o in 6% of the time required for MPSX to obtain an optimum. Guaranteed 5% solutions can be
SA obtained in 17% of the MPSX time.
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s [. INTRODUCTION

', This paper presents a new technique to solve the linear equal flow problem. The problem
is easily conceptualized as a minimal cost network flow problem with additional constraints on
certain pairs of arcs. Specifically, given pairs of arcs are required to take on the same value. The
problem is defined on a network represented by an m x n node-arc incidence matrix, A, in which

K pairs of arcs are identified and required to have equal flow. Mathematically, this is expressed as:

Minimize cx
s.t. Ax = b
X = Xsx. k=12.K

0sx=<u

where ¢ is a | x n vector of unit costs, b is an m x 1 vector of node requirements, 0 is an n x | vector
of zeroes, x is an n x | vector of decision variables, and u is an n x 1 vector of upper bounds. This
mathematical statement of the problem, henceforth referred to as problem P1, assumes that the first
2K arcs appear in the equal flow constraints. This is not a restrictive assumption, since by rear-
ranging the order of the arcs, any equal flow problem with K pairs can be expressed in the above
form. Note that the K pairs of arcs are mutually exclusive, i. e., an arc appears in at most one side
constraint. We also assume without loss of generality, that u, = u,, ¢ fork = 1,2,... K.

When the flow in arcs must be integral, the problem is referred to as an integer equal flow
problem. Applications of the integer model include crew scheduling [ 5], estimating driver costs
for transit operations [ 141, and the two duty period scheduling problem [11]. The linear equal
flow problem is a natural relaxation for the integer problem and also provides an approximation

to the integer model. The linear model is applicable to problems where integrality is not restrictive.

For example, in federal matching of funds allocated to various projects [4].
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The linear equal flow problem may be solved using a specialization of the simplex mcthod

le @
-

for networks with side constaints [3]. It has also been solved by transformation to a nonlinear

s
P d

programming problem [4]. By exploiting the special structure of the side constraints and the

T PW

network structure, this paper develops a new algorithm which results in a decreasc in both computer

Pd

" 3.:\-3 storage and computation time. The procedure employs relaxation and decomposition and solves
‘:S. the equal flow problem using two sequences of pure network problems, totally eliminating the
\ ) computational overhead associated with maintaining a basis matrix. The computational efficiencies
".5 in specialized software for the solution of pure networks also extend to the solution of sequences
N:;. of minimum cost network flow problems by using reoptimization procedures. The reoptimization
N.. procedures are used in solving the subproblems of the two sequences.
[ . The use of relaxation techniques and/or decomposition techniques in the solution of prob-
‘; :-:' lems with special structure in the constraint set is motivated by potential computational efficiencies.
;. _”‘ Glover, Glover and Martinson [ 6] address a generalized network problem in which arcs in speci-
..r_:_ fied subsets must have proportional flow. The solution approach is via solution of a senies of
Ej problem relaxations and progressive bound adjustment. The underlying principle is shared in the
E‘:‘: ensuing development for the equal flow problem.
- ‘ ' Lagrangean relaxation has been used to aid in the solution of the integer equal flow problem
ray
:E: in two specific instances. Shepardson and Marsten [ 11] reformulate the two duty period sched-
:‘::r:: uling problem as a single duty period scheduling problem with equal flow side constraints and
P
- integrality constraints on the variables. Turnquist and Malandraki [ 14] model the problem of
‘_'::E:: estimating driver costs for transit operations as an integer equal flow problem. In both studies, the
:‘_-: side constraints are dualized and the Lagrangean dual solved using subgradient optimization to yield
gl a lower bound on the optimal objective value. In [14] step-size determination during the sub-
:\ gradient optimization process is aided by a line search. The Lagrangean relaxation, of course, does
_"_:J- not enforce the equal flow constraints. The Lagrangean dual for the lincar or the integer equal flow
:‘_;‘ problem is exactly the same, since the constraint set for the Lagrangean relaxation is identical. This
._. Lagrangean dual is similar to the quadratic programming problem used in [4]. The similarity lies
s B-4
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in penalizing the violating equal flow constraints. The penalty chosen in the quadratic problem

i

??

a7 T

formulation should be sufficiently large to guarantee convergence to the optimal solution.
The objective of this investigation is to develop and computationally test a new algorithm for
the linear equal flow problem. The solution technique consists of solving two sequences of pure

network problems. One sequence progressively yields tighter lower bounds on the optimal value

o
""\.

by using the Lagrangean rclaxation of the equal flow problem with the side constraints dualized.

The sccond sequence progressively yiclds upper bounds on the optimal value for the problem and

maintains a feasible solution at all times. This sequence is obtained by use of a decomposition of
the equal flow problem based on parametric changes in the requirements vector. The solution
procedure has the added attractive feature that it provides a feasible solution which is known to be
within a percentage of the optimal at all times. As such, the algorithm terminates when a solution
with a prespecified tolerance on the objective function value is obtained.

The solution technique makes use of subgradient optimization in the solution of the lower
and the upper bounding problems. Both the lower and upper bounding algorithms have been de-
veloped in the context of the general subgradient algorithm which is briefly presented in Section 11.
Section IIl introduces the Lagrangean dual for the equal flow problem and the lower bounding
algorithm. Section IV presents the decomposition of the equal flow problem and the upper
bounding algorithm. The overall procedure which makes use of the algorithms of Sections 11I and

IV is given in Section V, computational results are given in Section VI and conclusions drawn in

Section VIIL
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Ry II. THE LOWER BOUND
3
I
N
:.:: A lower bound on the objective function of the linear equal flow problem, Pl, can be ob-
{ tained by using the Lagrangean dual of the problem. The lower bound is used in the step size de-
,‘-"_
'\f.: termination as well as in termination criteria for the upper bound procedure. Associating the
_:::: Lagrange multiplier w, with the kth equal flow constraint and defining the K-vector w = (w,, w,,
S
&
\ ., Wg), the Lagrangean dual for P, referred to as problem D1, may be stated as
*\ . .
Py maximize h(w)
: :: w € RX
( where h(w) = min{ex + I, w(X,-X¢,,) |Ax = b,0 < x < u). Since Pl is a linear program,
v
:-_; it is easily established that the optimal objective values of P1 and D1 are equ=] and that any feasible
\ ...f
“j solution to D1 provides a lower bound on the optimal objective value for P1. For any given value
hY
;J of the vector w, the Lagrangean relaxation is a pure network problem. The subgradient of h at a
&5 point w is given by the K-vector
o - .
..:“_ (%) - Xgapo oo Xk = Xpx)

s »

P
PR

where x solves the Lagrangean relaxation at w, given by

.

-

»
v

{min ex + I, W,(x,X¢.,) |AXx = b,0 < x < u).

F A
AR

9

ALGORITHM 1 assumed the function f(y) to be convex, whereas h(w) is piece-wise linear

%

b
R concave. The lower bounding algorithm, ALGORITHM 2, modifies the framework of the previ-
'ia)
- ous algorithm for a concave function. The step sizes used are given by A, = p, and A, = A,_,/2.
N
> .’ The algorithm makes use of a scalar, UBND, representing an upper bound for the problem. Since
$ E_-‘ the solution procedure progressively improves both the lower bound and the upper bound for the
A.-
:‘_"_ equal flow problem, each time the lower bound algorithm is invoked the value for UBND is ob-
o
’ tained from t-c upper bound procedure. For this algorithm, we assume that both bounds are
®
7. greater than 7cro.
<.
\'&:
K B-6
o,
p
]
\
&
4 ::'
o
I A
bfr'-\4 e AP ) R AT SR LRI T ‘.'-‘.'-‘\."."'\"N“‘".' O N e LS U s LS T 'v'\

",
o Sty NN
-""J.‘-, )’.r'\.r i

b Yo n'l i) -' o ‘.A...a':.'“ .|‘

AL P SN -
rv'w‘.-’-"*-'-’f :’u? .,,.-_. ” ~ J'i. Sruahehuhte s
i w_#‘« - *J'-v " o '*.z-,\', paded

'l’a..u ‘u'.::: , '0':' .."

.‘n‘.“c‘ % :o " .‘i‘ !‘l‘ " ! ;'



TR 1L The e T VT T TR I TRATE T T B

207

-
]

'+ @

II. THE SUBGRADIENT ALGORITHM

e 2

The subgradient algorithm was first introduced by Shor [ 13] and provides a framework for

solving nonlinear programming problems. It may be viewed as a gencralization of the steepest de-

AR LhrEth)

scent (ascent) method for convex (concave) problems in which the gradient may not exist at all

)
-

N

:)' points. At points at which the gradient does not exist, the direction of movement is given by a

\
< subgradient. Subgradients do not necessarily provide improving directions and consequently, the

0

,.;.: convergence results of Zangwill [ 15] do not apply. Convergence of the subgradient algorithm is

N
" assured, however, under fairly minor conditions on the step size.

! Given the nonlinear program PO,

k¢

i Minimize {(y)

oy

iy s.t. yeG
o
T’

o
o

:j where f is a real-valued function that is convex over the compact, convex, and nonempty set G, a
N .

"

*»' vector N is a subgradient of f at y" if f(y) - f(y") 2 n(y - y) forally € G. For any given y’ € G, the

3

:} set of all subgradients of f at y* is denoted by &f(y"). Moving a sufficiently large distance s along
JI

:} -n can yield a point X = y” - sn such that x ¢ G. The projection of the point x onto G, denoted

e,

‘) . . . . . .

0 by PLx], is defined to be the unique point y € G that is nearest to x with respect to the Euclidean
:: norm. Using the projection operation, the subgradient algorithm in its most general form follows:
"

Cd
<
L4
e

)

K

[
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o
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ALGORITHM 1: SUBGRADIENT OPTMIZATION ALGORITHM

0 [nitialization

Iety’ € G,
Sclect a set of step sizes s, s, s,,...
i—0.
! Find Subgradient
Let n, € 3f(y').
If n, = 0, then terminate with y' optimal.

2 Move to new point

y*! « Py -sn,]

i — i + 1, and return to step 1.

There are thrce general schema which can be used in determining the step size when the

subgradient algorithm is implemented for a specific problem:

s =)\
i s = AJln 2
ii. s = Af(y) - F)/Iin,Ii?

where F is an estimate of f*, the optimal value of f over G. A summary of the known convergence

results for this algorithm may be found in [2] and [103].
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ALGORITHM 2: LOWER BOUND ALGORITHM

! Initialization
Initialize UBND, step sizc p, and tolerance ¢.
w0
2 Find Subgradient
Let x solve h(w) = min{cx + I WX Xg4y) |Ax = b,0 < x <u).
LBND «~ h(w).
If (UBND - LEND) < ¢(UBND), terminate; otherwise,
d = (X = Xgayy - - oy = Kag)-
3 Move to new point
Q) w < w + pd, p — p/2.
(b) Go to step 2 .
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IV. THE UPPER BOUND

x

An alternate formulation of problem Pl, referred to as P2, obtained by decomposing the

problem is given by

LA L By

.
N
&
R\ . '
oy Minimize g(y)
. - s.t. y €S
".*
\é where for any vectory = (y,, y5 - - -+ ¥x)»
e g(y) = {min ex [Ax = b;0 < x < U X, =X\, =Y, k=12,..K},
¥

and,

-~

()

o
A<

={y|0<y <uy.fork =12.K)}.

-

e

LA

The decomposition assures the satisfaction of the equal flow constraints. The decomposed problem

P2 is equivalent to the problem P1 [12] and may be solved using a specialization of the subgra-

e

PN

<

dient optimization algorithm. The objective function is piece-wise linear convex and the subgra-

vy

»

dient n of g at a point y is obtained from the dual varables, v,, 1 = 1,2,...,2K, associated with the

. -

equal flow constraints in the subproblem, referred to as P3 and given by,

l' .
L'd

Rlsh

-

Minimize X

-
b Y
.

s.t. Ax = b

bR R e

5%,

Xy =% v))

2 RF IS

Xx +3 =% (Vicsr)

) N* xK - yK (VK)
o X3k = Yx (Vax)

S 0<x <

hY

e

‘.
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The K-vector
N = (vy* e Vet Veea o0 Vet Vi)

is a subgradient of g at v = (y,.¥y---¥k)-
The dual variables v, k = 1,2,...,2K may easily be constructed from the solution to the pure
network problem, referred to as problem P4;

{(mincx |Ax = b,y £ x <0},

where the lower and upper bound n-vectors ¥ and 6 are defined by

Yo = & = W k=12.K
‘YK‘I:= OKM:: Y k = ‘,2,4..(1‘(
Y = 0, eu = u,, k = 2K+1,..n

Let IT be the vector of optimal dual variables associated with the conservation of flow constraints,
Ax = bin P4 and the arc associated with the variable x, be incident from node j. and incident to
node },. The optimal dual variables for P3 are given by,

ve= M, + T, + ¢, k=12..2K.
In using the subgradient optimization algorithm for the decomposed problem at each point y, the
subgradient n can be calculated directly using the above development.

It is possible that moving a step along the negative subgradient yields a point which does not
belong to the set S. As pointed out in Section Il, this point is projected onto the set S by means

of a projection operation in the algorithm. For this model, the projection operation decomposes

on k so that PLy] = (PLy,], PLy,], ..., PLyx]) where the projections P[y,] are defined by:
Ify, <0, Ply,] = 0.
Ify, > u, PLy,] = u,
If0 £y, <y, Ply.] =y,
B-11
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The subgradient optimization algorithm for problem P2 makes usc of a lower bound, LBEND, on
'\? the optimal objective value which is used in step size determination using a variant of scheme (iii)
( given in Secti~n 1, as well as in the termination criterion each time the procedure is invoked.

A Again, we as< :me that both bounds are greater than zero.

ALGORITHM 3. UPPER BOUND ALGORITHM

ey
A

RS

[ Initialization

I"

Sclect y € S.
Initialize LBND and ¢.

2
SR 2R o
[T ]
[ 2 )

nd

2 Find subgradient and step size

sl
a
)
»

Let x and I1 be the vectors of optimal primal and dual variables

-~ A
4,0,
&

o

for Min {cx |Ax = b,y < x < 6.
UBND « cx.

AL
SN

v
’.
ool
Tl

If (UBND - LBND) < e(UBND), terminate with x optimal;

otherwise,

.
A A%

X

Ve qTL 4+ T+ ¢, k = 1,2,.,2K.

L 4% &

N (vitvea, .o vetvy)

3 Move to new point

5 .“Qr

LSRN A

(a) y — P[y -((UBND - LBND)/2[Inl%)n].
(b) Goto 2.

> e
r M _\‘ L h' l_"'n_”

oy
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V. THE ALGORITHM

The solution of the equal flow problem using decomposition, as given in the previous section

x can be implemented without the Jower bound procedure. It is also possible to implement the lower

:* bound algorithm independently for the purpose of obtaining a lower bound on the optimal value
: Z of the equal flow problem. For the upper bound problem, some measure of the lower bound on
:'. o4 the problem must be used to aid in termination. By merging the two procedures, an algorithm
::' which adjusts the lower and upper bounds progressively can be used to advantage. Not only can
.r" such a procedure be used for obtaining feasible solutions with relative ease, but it can also provide
t ' a measure of how close this solution is to the optimal.

'_‘ The algorithm for the solution of the equal flow problem iterates between the lower bound
. :: procedure and the upper bound procedure. The lower and upper bounds, LBND and UBND,
.h; progressively become tighter, closing in on the optimal solution to the problem. Each time the
| :j lower bound procedure is invoked, a maximum of ITERL iterations are performed. Each time the
EE upper bound procedure is invoked, a maximum of ITERU iterations are performed. The tuning
o

parameters for the algorithm are as follows: ITERL, ITERU, p (the initial step size), and € (the

fI

Vg YR

termination criterion.)
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ALGORITHM 4: RELAXATION/DECOMPOSITION ALGORITHM

- e
- 9

FOR THE EQUAL FLOW PROBLEM

Tz

]

e 0 Initialization
W
s Initialize ITERL, ITERU, p, ¢.
o
1LY

T+~0R«~0,we 0,UBND « 0O, LBND « -00,

v

:" 1 Compute Lower Bounds
‘N
e (a) Call ALGORITHM 2 (Steps 2 and 3 (a)).
A
v (b) T T+1
(. - If T < ITERL, then go to stcp 1 (a).
o
K '_{:'_' 2 Compute L rrer Bounds
o (a) Call ALGORITHM 3 (Steps 2 and 3 (a)).
A
e (b) R ~ R+1
o If R < ITERU, then go to step 2 (a).
N 3 Reset iteration counts
3 \-:‘
P) ' T « 0,R « 0, and go to step 1.
e | .
,:;:::a The initial equal flow allocation in the upper bound procedure makes use of the solution x to the
Ry
'!n'f,. last pure network flow problem solved in the lower bound procedure. The allocation for each of
the K pairs of equal flow constraints is determined by:
i .\."
N, ™
&it
A
o - -
o ¥, — minl v, (R +%¢.0)21 k= 12..K.
o
-
o
:-::-j All subsequent entries into Step 2 of the upper bound procedure usc the most recent equal flow
N
-\ h‘
AN allocation in the previous upper bound iteration.
At
N
-
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V1. COMPUTATIONAL RESULTS

The computer implementation of the algorithm is written in standard FORTRAN and not
tailored to either the machine or FORTRAN compiler used for testing. The implementation, called
EQFLO, makes use of MODFLO [ 1] to solve pure network subproblems. MODFLO is a set

of subroutines which may be used to solve a network problem as well as reoptimize after problem

data changes. Based on NETFLO [81], this code allows the user to change costs, bounds and/or
requirements for a network problem and reoptimize.

The algorithm has been tested on a set of 10 test problems randomly generated using
NETGEN [91, a large-scale network problem generator. The parameters used to generate test
problems are described in Klingman, Napier, and Scwutz [9]. The test problems have between 200
and 1500 nodes, and between 1500 and 6600 arcs. For each problem, the first 2K arcs were paired
to form K equal flow side constraints. In order to gauge the pcrformance of the algorithm for
vanious values of K, some of the problems were generated using the same base network problem
data with K varying from 75 to 200. The benchmark NETGEN problems have a specified per-
centage of arcs which are uncapacitated. For these arcs, the capacity was defined to be the maxi-
mum of all supplies and demands.

Computational testing was carried out on the IBM 3081D at Southern Methodist University
using the FORTVS compiler with OPT = 2. In order to assess the computational gains afforded
by the decomposition/relaxation algorithm for the equal flow problem, each problem was solved
using MPSX [7]. An additional point of interest which was addressed is the choice of model for
the equal flow problem when using a general linear programming system such as MPSX.

The equal flow problem can also be formulated as a network with side columns. For an equal
flow problem defined on a network with m nodes, n arcs and K equal flow pairs, the side constraint
formulation uses m + K constraints and n variables. The side column formulation has m con-

straints and n - K variables. It is best defined by partitioning the node-arc incidence matrix A =
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LT:N] where Tis m x 2K and N is m x n-2K. The matrix T contains the first 2K columns of

A, which correspond to arcs appearing in equal flow constraints. The side column formulation is
given by
minimize fy + gz
s.t. Sy + Nz =r
0<z=s<u
0<y<U

where, letting t,, and s, denote the ith columns of T and S,

S =t + tea k=12.K
fi = ¢ + chan k=12.K
U =u,. k= 12,..K.

Table 1 details the computational testing of the algorithm with parameters ITERL = 15,
ITERU = 10and p = .005. Of the 10 problems used, the first three are transportation problems
(problems 5, 9, and 10), the next four are capacitated transshipment problems (problems 20, 21,
24, and 25) and the last three are uncapacitated transshipment problems (probiems 28, 30, and 35).
The test problems were formulated using both the side columns model and the side constraint
model. Both models were soived using MPSX with default tuning parameters. The side column
formulation ran slightly longer than the side constraint formulation on MPSX, even though it uses
75 fewer constraints and 75 fewer columns for the test problems in Table 1.

For the test problems, EQFLO obtained feasible solutions whose objective function values
were within 10% of the optimal in one-sixteenth of the time required by MPSX to obtain an op-
timum. For the equal flow problem with 400 constraints, 2692 arcs and 75 equal flow pairs, a 10%
solution as well as a 5% solution are obtained in one-hundreth of the time required for solution
by MPSX. For the 1500 node problem with 5880 arcs a 5% solution was obtained in 6% of the
time required by MPSX. Guaranteed 5% solutions across all problems were obtained in about

one-seventh of the MPSX time.
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To determine the behavior of EQFLO as the number of side constraints increases and the
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stopping tolerance decreases, additional testing with problems 21, 24, and 28 was performed. Each
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of these base problems was used to generate equal flow problems with 75, 100, 150, and 200 equal

.

1.!

-

flow constraints. The corresponding side column model was also gencrated. Table 1I summarizes

o
el

the computational experience. The new algorithm performs favorably, when compared to MPSX,

5
" ’l

in obtaining guaranteed 5% solutions. For the 400 node problem with 2904 arcs and 100 equal

. _?

d”,

flow contraints, a 1% solution is obtained in 3% of the time required by MPSX.
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N Table 1. Comparison of EQFLO with MPSX (All Problems Have 75 equal flow pairs).
{
.
- Problem Description MPSX Time (in seconds) EQFLO Time (in seconds)
e Formulation
':\-: NETGEN Side Side €
NS Number Nodes Arcs Constraints Columns 10% 5%
1 5 200 3100 1.4 12.0 16 119
v 9 300 6395 36.6 36.0 1.9 8.5
o 10 300 6611 336 336 44 192
2 20 400 1484 27.0 384 0.7 1.8
. -S 21 400 2904 67.8 69.0 0.8 0.8
D 24 400 1398 474 46.8 0.8 29
o 25 400 2692 1128 105.0 1.0 1.0
28 1000 3000 45.6 51.6 22 2.8
( 30 1000 4500 45.6 69.0 148 169
) 35 1500 5880 102.0 144.0 4.6 5.8
: e 3298 603.4 328 716
N T - - T
o
A -:J
‘. Table II. Effect of Decreasing € and Increasing the Number of Equal Flow Pairs.
R
! Problem Description MPSX Time (in seconds) EQFLO Time (in seconds)
i N Formulation
"“.! < NETGEN  Number Side Side €
P Number of Pairs Constraints Columns 10% 5% 3% 1%
:. ' 67.8 69.0 0.8 078 108 708
::. 21 100 70.8 87.0 1.0 1.0 1.1 1.9
-.' 21 150 78.0 87.6 1.2 1.7 32 6.3
‘\I 21 200 76.8 91.8 20 101 163 1063
s 24 75 474 468 08 28 49 292
3 24 100 48.0 52.2 1.4 14 298 a.
ot 24 150 76.2 51.0 1.7 610 1445 a.
,::' pL 200 84.0 52.8 58 257 1084 a.
e
[7-. 28 75 45.6 51.6 22 28 89 120
by e 28 100 420 70.1 31 39 144 1075
- 28 150 46.2 87.0 42 152 463 a.
® 28 200 66.6 104.4 99 195 1044 a.
5 7494 8313 441 1455 ZB3I0
4
- a. Problem did not converge after 900 upper bound interations.
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VII. SUMMARY AND CONCLUSIONS

The equal flow problem lends itself to solution by decomposition and relaxation. The use
of these techniques in the solution procedure developed is advantageous because the essential sol-
ution mechantsm required is the solution of sequences of pure network problems. By dispensing
with the working basis required by other techniques, not only are computational efficiencies af-
forded but the natural characteristics of the problem enhanced.

The algorithm can be modified to assist in the solution of the integer equal flow problem.
The lower bound automatically produces integer flows and the projection of the subgradient in the
upper bound routine can be altered to require integrality on the equal flow allocation. Thus this
solution procedure not only provides lower bounds on the integer equal flow problem efficiently,
but it also has the inherent capability of producing feasible integer solutions with ease.

The development for the linear equal flow problem in this paper can be instructive in mod-
elling and solving other network problems with specially structured side constraints such as pro-
portional flow models used in manpower planning. The solution technique is best suited for a

real-world situation in which one must quickly produce near optimal solutions.
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1I.

THE MODEL

The integer programming model describes mathematically the criteria for
assigning a service request to an available trunk. If no trunk is available,

the model has no solution and the service is denied in the simulation.

2.1 Subscript

Let i - denote a trunk

2.2 Constants

Let d ~ denotes the maximum allowable delay of the requested
service (micro-secs).

¢ - denotes the required capacity of the requested service
(K bits/sec).

d; - denotes the delay of the ith trunk (micro-secs).

¢y - denotes the capacity of the ith trunk (K bits/sec).

8; - denotes the availablity of the ith trunk (Z).

u; - denotes the current usage of the ith trunk (K bits/sec).
vy - denotes the unit cost for the ith trunk ($ (K bit/sec)).

2.3 Decision Variables

Let x; - be 1 if the service is assigned to trunk i and, O otherwise.

2.4 Constraints

(TRUNK CAPACITY)

cx; < c:8; - u:;: for all i,

iZ *i%i i*
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III. INPUT
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!"

The input consist of three files corresponding to the service data, the

2eer

trunk data, and a control file to manage the simulation length and output,

3.1 Tape 1: Service Input Data

(A1l data are in free format one entry/line. Please omit decimal points
for integer data.)

Cols Type Description

1-80 Integer Inter-arrival time between calls (secs)
(Assume exponential distribution)

1-80 Integer Expected call duration (secs)
(Assume exponential distribution)

1-80 Integer TD Inter-arrival time between data requests
(secs)

q
o
<
N
N
A
.

1-80 Integer Expected service duration (secs)
(Assume exponential distribution)

1-80 Real / Service capacity required for voice
(K bits/sec)

1-80 Real Service capacity required for data
(K bits/sec)

1-80 Integer Maximum allowable delay for voice service
(micro-secs)

1.-80 Integer Maximum allowable delay for data service
(micro-secs)
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)ﬁ: 3.2 Tape 2: Trunk Input Data
L
:'{{j (Name must appear in columns 1 through 8. All other data are in free
o format one entry/line. Please omit decimal points for integer data. Trunk 2
NN follows trunk 1, etc.)
\ .
‘E? Cols Type Name Description
‘E:H 1-80 Character NAME(I) Trunk I name (8 characters)
ol Examples include:
N LL = Land Line
e SAT = Satellite
- HF = High Frequency
NS LOS = Line of Sight
N
' )
A 1-80 Real CAPAC(I) Trunk I capacity (K bits/sec)
A
J'_‘-',
'.‘ 1-80 Integer DELAY(I) Trunk 1 delay time (micro-secs)
.;5; 1-80 Integer AVAIL(I) Trunk 1 availablity (07 - 100%)
(-
_ 1-80  Real COST(1) Trunk I unit cost ($/(K bits/sec))
-l
g.a: 3.3 Tape 3: Simulation Control Data
g
:?}j (A1l data are in free format one entry/line. Please omit decimal points
i':é for integer data.)
D) '-’:-T
Ef» Cols Type Name Description
.ﬁ:j 1-80 Integer TOTALT Total time of simulation in seconds
f:f: 1-80 Integer PRINT Level of intermediate output
e 0 - No output
A 1 - Print status after 1Z of total time
. 2 - Print every event
. :-'_'--.
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FILE: TRUNK DATA A1 SOUTHERN METHODISY UNIVERSITY -- CMS RELEASE 4.0
LL {LAND LINE) TYPE
192 (K BITS/SEC) CAPACITY
100 (MICRO-SECS) DELAY
100 (zg AVAILABILITY
.0015 ( S/K BITS/SEC) )  COSY
SAT {SATELLITE) TYPE
128 (K BITS/SEC) CAPACITY
500 {MICRO-SECS)
50 (% AVAILABILITY
.0007 ( g/K BITS/SEC) )  COST
HF (HIGH FREQUENCY) TYPE
48. (K BITS/SEC) CAPACITY
250 {MICRO-SECS) DELAY
100 (% AVAILABILITY
.0003 ( &/K BITS/SEC) ) COST
LoS {LINE OF SIGHT) TYPE
128 (K BITS/SEC) CAPACITY
150 (MICRO-SECS)
85 (% AVAILABILITY
.0005 ( S/k BITS/SEC) )} COST
FILE: CONTROL DATA Al SOUTHERN METHODIST UNIVERSITY == CMS RELEASE 4.0
7200 ( SECS) 20 MINUTE RUN
0 PRINT LEVEL

60
240

60
300

64,

250
1006

FILE: SERVICE DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

SECS
SECS
SECS
SECS
K BITS/SEC
K BITS/SEC
MICRO-SECS
MICRO-SECS

(60 CALL/HOUR)

(4 MINUTES/CALL)

(60 DATA REQUESTS/HOUR)

(5 MINUTES/REQUEST)

(VOICE CAPACITY REQUIRED)
(DATA CAPACITY REQUIRED)
(MAX VOICE GELAY ALLOWABLE)
(MAX DATA DELAY ALLOWABLE)




IV. OUTPUT REPORTS

B0
g
AR

Three reports are generated by the simulation on files 7, 8, and 9.

Reports 1 and 2 give a summary of the statistics kept on voice and data
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service. Report 3 gives a summary of the activity on each trunk. Sample
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reports follow:
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FILE: REPORT1 DATA Al SOUTHERN METHODIST UNIVERSITY =~ CMS RELEASE 4.0

TREPORT 1: SERVICE STATISTICS FOR VOICE REQUESTS

- INPUT: EXPECTED INTER-ARRIVAL TIME 60 (SECS)
* [}
e INPUT: EXPECTED DURAT ION 240 (SECS)
W INPUT: REQUIRED CAPACITY 64.0000 (K BITS/SEC)

- INPUT: MAXIMUM ALLOWABLE DELAY 250 (MICRO-SECS)
*:g ' OUTPUT:  TOTAL REQUESTS 2

ﬁ‘) OUTPUT:  NUMBER OF BLOCKED REQUESTS "
; %t. OUTPUT: % REQUESTS BLOCKED 33 (%)

OUTPUT: TOTAL SIMULATION TIME 7239 (SECS)

:‘:\:;.
SL;i
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g
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*;S FILE: REPORT2 DATA Al SOUTHERN METHODIST UNIVERSITY =~ CMS RELEASE 4.0

%]

VTREPORT 2: SERVICE STATISTICS FOR DATA REQUESTS

"y INPUT: EXPECTED INTER-ARRIVAL TIME 60 (SECS)

; INPUT: EXPECTED DURAT ION 300 (SECS)
: INPUT: REQUIRED CAPACITY 9.6000 (K BITS/SEC)
~ INPUT: MAXIMUM ALLOWABLE DELAY 1000 (MICRO-SECS)
‘j OUTPUT: TOTAL REQUESTS 124
j OUTPUT: NUMBER OF BLOCKED REQUESTS ()
OUTPUT: % REQUESTS BLOCKED o (%)
> OUTPUT: TOTAL SIMULATION TIME 7239 (SECS)
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FILE: REPORT3 DATA Al SOUTHERN METHODIST UNIVERSITY -- CMS RELEASE 4.0

IREPORT 3: TRUNK USAGE

TRUNK NUMBER: 1
NAME LL
X CAPACITY 192.00 (K BITS/SEC)
;:; DELAY 100 (MICRO-SECS)
“zﬁ AVAILABILITY 100 (%)
W
o UNIT COST 0.00150 ( S$/(K BITS/SEC) )
TRUNK UTILIZATION
o
o UTILIZATION TIME (SECS) % TOTAL TIME
S comceeasne- ceme Seeesew - onsew weoew
l\‘
s
0- 10 % 846 11.69
1M- 20 % 0 0.00
21- 30 0 0.00
31- 40 % 1274 17.60
u1- 50 0 0.00
51- 60 % <0 0.00
- 61- 70 2422 33.46
5 71- 80 % 0 0.00
ok 81- 90 % 0 0.00
’ 91-100 % 2697 37.26
i TOTAL 7239
oy
-jﬁf 1REPORT 3: TRUNK USAGE
A%
**'
- TRUNK NUMBER: 2
NAME SAT
" CAPACITY 128.00 (K BITS/SEC)
o DELAY 500 (MICRO-SECS)
“; AVAILABILITY 50 (%)
al
. UNIT COST 0.00070 ( S$/(K BITS/SEC) )

¥
=
(]
' c
[ J
' x

UT I LIZATION

C-10

:“:i{);}-:d.c...:'-."‘ 'II '.l .i';‘ -‘ "l

& e
"o i eyt
. ;gz"ﬂt’:‘%&& :.‘z

&
>

R N N I N I I N T I s R RN A LD SRR I .- -~ B} 3 -
O OB SN (1, U006 SRR SR LD SR BRI GIRUE LA CH oy
e AT A N A WA ot LR CS




e FILE: REPORT3 DATA Al SOUTHERN METHODIST UNIVERSITY ~- CMS RELEASE 4.0
t, »
’l.._
N UTILIZAT (0N TIME (SECS) % TOTAL TIME
) Tt T Tt T T
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This paper presents a parallelization of the simplex method for linear

¢

programming. Current implementations of the simplex method on sequential

o
|:'1“ . -~
LU

computers are based on a triangular factorization of the inverse of the current

l5 \
o

Vs

D

Agny

basis. An alternative decompostion designed for parallel computation, called

\d "'k'

the quadrant interlocking factorization, has previously been praposed for

D Lt T
A’r‘f‘

&

solving linear systems of equations. This research presents the the.retical

DA
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justification and algorithms required to implement this new factorization in a

- simplex-based linear programming systen.
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[ I INTRODUCTION
.':;-‘
5 “.-\.‘
¥ -:,'\-:
'( = The introduction of paralle] computers into scientific computing in the past decade
r is the beginning of a new era. The invention of new algorithms will be required to ensure
b >
X
Lo realization of the potential of these and future architectural improvements in computers.
‘ Already the use of parallel computers has given rise to studies in concurrency factors,
RS
b vectorization, and asynchronous procedures. These have led to multifold increases in
- speed over conventional serial machines after the calculations have been rearranged to
. take advantage of the specific hardware. This paper presents a parallelization of the sim-
- plex algorithm for general linear programs. Our work begins with new results for solvin g
_r systems of linear equatons and is directed toward the hardware design currently adapied
o~
S
:;}t: by Sequent Computer Systems, Inc. of Beaverton, Oregon.
® The following notation is used throughout this paper. Let B;. j k1 TEpPresent a subma-
S
b} . .
:ﬁ trix of B composed of rows i through j and columns k through [. If i=; (k=!), we write
«
do . . .
e B, k.1 (B,.jx). The j* row (column) of B is denoted by Bj (B ;). The i,j** element of
1 ).:J
{ BisB, .
oy
K. e The linear programming problem is represented mathematically as follows:
_;.:::I minimize ¢7Tx
B
3 subjectto Ax =b
2
5 0<xsu
oy ’
_:::: where A is a known m by n matrix, all other quantities are conformable, and all vectors
b
~
.‘ ' are known except x.
! . . . .
:2': The upper bounded version of Dantzig's simplex method for solving the linear pro-
N ,
‘,';: gramming problem may be stated as follows:
‘!
)ﬁ'
2. Algorithm 1.1 - The Simplex Method
o
o
o
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F:?-: 0. Initialization

.
EhN
N Le: [x2 1x¥] be a basic feasible solution with A =[B IN]. Let the cost vector
N
; :C\ [c8 1¢¥] and bounds [u8 |uN] be partitioned similarly. Assume that B! js avail-
A Y
N able in some factored form. Initialize irer to O and the reinversion frequency,
N
N freq.
NN
o 1. Calculate the Dual Variables (BTRAN)
\
’ 4 T e c8B-L (1.1)
;?_‘.?
4 . 2. Pricing
X » . _N N
LetKy=(j:x;, =0and¢; =N ; <0J,
o andKy={(j:x" =uland ] -nV ; > 0).
o
~ If K, U K2 = ®, terminate with [x# 1xV] optimal;
x.
'
‘ads otherwise, select ke K'; () K2 and set
f.(
S
2 1, if kek |
N -1, othenwise.
L~
»
{
oS 3. Column Update (FTRAN)
b
L)
1% . -1N
. y «B-IN 4 (1.2)
oo
1%
N 4. Ratio Test
L : x8
s A« min —_— o
Iy sign(y;)=sign(8)  1y; |
‘-‘A,
o B_,B
. up-
'.. AZ — min _J_xL. , 0°
s nign(y;) = sign(-H) ly; ]
ol
o
L . N
O A(—mm{AI .Az,uk}.
.
& 5. Right Hand Side Update
-f.; e
-
o D-4
A
®
Oy
¥ *’;
B "b,
&
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xY —x¥+ A

x8 —x8 - Ay
AY
A=y ,retumto 1.

6. Basis Inverse Update

Let p denote the index of x2 which produced A and set

=yilyp ifi®p

Vyp ; otherwise,

Eel-eel+nel
B!« EB-I. (1.3)

7. Reinversion Check
iter « iter + 1.
If mod (iter freq) = 0, then refactor B-1.

Return to 1 using B~! as B-1, the current basis inverse.

Two of the most common factorizations of the basis matrix inverse are the product
form and the elimination form, which correspond to the methods for solution of linear
equations known as Gauss-Jordan reduction and Gauss reduction (LU factorization),
respectively, where L is a lower triangular matix and U is an upper triangular matrix.
The elimination form produces a sparser representation of the basis inverse than the pro-
duct form. and accordingly leads to faster implementation of a simplex iteration and a

considerable savings in storage.

Historically, the elimination form of the inverse, due to Markowitz [1957-1], was
the first LU factorization method and was introduced to preserve sparsity during reinver-

sion. However. once reinversion was completed further pivot operations were handled
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o using product form. Bartels and Golub proposed updaung L and U in a numencally

3_-: ':_ stabie way. (see Bartels [1971-1]). Their updating scheme tends to promote the growth of
: nonzeros in U, leading to a potentially severe loss of sparsity. Forrest and Tomlin [1972-
o 1] designed a different updating scheme for the triangular factors to preserve sparsity at
\S some sacrifice in numerical stabilitv. Subsequent implementation of the Bartels-Golub
method. designed by Reid [1982-1] and Saunders [1976-1], combine the virtues of accu-
‘ racy and speed.

, ) Several parallel versions of the LU factorization algorithm for solving general linear

systems of equations are presently available (Chen et al. [1984-1] and Dongarra and

Sorensen [1984-2]). All versions are based on restructuring the original serial algorithm

-
1

1o reveal possible independent tasks that can be carried out concurrenty.

L

rf Evans and Hatzopoulos [1979-1] proposed a matrix factorization, called the Qua-
‘LL drant Interlocking Factorization (QIF), as an appropriate tool for solving linear systems
‘.';.:' on parajlel computers. The QIF is similar to the LU factorization, but is claimed to be
'{::_ more suitable for concurrent computation.

Do
; :"‘ This paper presents a parallelization of the simplex method using the QIF. The out-
,. iine of the paper is as follows. In Section I, the QIF 1s developed. An algorithm for
"'_\-_ updating the QIF of B-! is presented in Section IIl. Mathematically, the problem is to
,.\ efficiently obtain a factorization of B-1 (see step 6 of Algorithm 1.1) from the factoriza-
_ tion of B-1. In Section IV, we develop a parallelization of the reinversion routine used in
g 'E step 7 and propose a parallel implementation of both the BTRAN and FTRAN operations
y z of steps 1 and 3.
.,F.,, The parallel algorithms presented in this study are designed for a MIMD parallel
S’::: computer that incorporates p identical processors sharing a common memory and capa-
ﬁ é.:% ble of applving all their power to a single job in a timely and coordinated manner. The
’.P Balance Systems 8000 and 21000 from Sequent Computer Systems are examples of such
machines.
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II. THE QUALRANT INTERLOCKING FACTORIZATION

\' ol afid MR ANE ot R gt il o R S A 4

In this section we describe a matrix factorization suggested by Evans and Hatzo-

poulos [1979-1] known as the Quadran: Interlocking Factorization (QIF). This decom-

position is designed to solve linear systems on parallel computers (see Evans and Hatzo-

poulos [1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1] and Feilmeier [1982-

1]). The factors and some of their characteristics are described in Section 2.1. We show

that any nonsingular matrix can be factorized into its QIF in two ways, the Forward QIF

and the Backward QIF The factorization algorithms are developed in Sections 2.2 and

2.3. The relationship of quadrant and triangular matrices is presented in Section 2.4.

2.1 The Quadrant Interlocking Factors

W

Note that the non-arbitrary entries of W are given by

Consider the following matrix

r h
1 0 s 0 0
Wy 1 0 Wom
Wir waz ... Winl) Wi
Wm-21 Wm=22 . .« Wm-2m-1 Wm-2m
Wm-11 0 o 1 Wm-iom
0 0 C 0 1

._4
-
1]

D-7

2.1

(2.2)

-

. A

T L

L AL o

YA S

r

g _gov




W T T R RERA T ARVELRLTLVRENLUALNL - ' v
HWWVWWWWWWV“WWWWW L ate 2t a2,

o oa A o
e X,

~
et
o [v] = the largest integer not greater than the value of x
-
Il m=m+1-[m/2).
N
-~
T : :
A Also, consider the matnx
{
b .
D ]
A
ety 211 12 - - 2im-l 21m
AhAN
{L90N 0 25~ ... zamy O
"‘- ‘ 0 0 0 0
.‘i
o Z= . (2.3)
-,.::\' 0 o ... 0 0
N -"'l\ 0 im-12 - - - Zm=lm-} 0
r' iml 2m2 -+ - Imm-1 Zmm
'NS: L -
N Note that
l\'{-
v
° j=l. [m~1)/2},i=j+1,...m—j;
N 7ij=0.9 - _ (2.4)
" J=im2}+2....om Ji=m+2-j ..., j-1.
I\n"
r::)
7 . .. . . .
‘-f;': Any square matrix may be partitioned by its diagonal and secondary diagonal into
(s
{ four quadrants. The potentially nonzero elements of W are in the left and right quadrants
el
L
! ;«: whiie those of Z are in the upper and lower quadrants. Therefore, we call any square
L) . -
:’-}. marrix whose nonzero structure follows (2.1) and (2.2), or one that can be brought to
-

such a form by row and/or column interchanges a left-right quadrant (LRQ) matrix.

O

.\j: Similarly, any square matrix whose nonzero structure follows (2.3) and (2.4), or one that
 at
v
\; can be brought to such a form by row and/or column interchanges is called an upper-
) _'-:
.'-f» lower quadrant (ULQ) matrix . Examples of W and Z matrices for an odd and an even m

2 . .

o are given below:

-

o~
N Example 2.1 (m=5)

7‘-}'\.
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la Ale Al AR AR Al Al Al Al el

0 213 214
N w11 0 wWas 0 222223224 0
s W=iwiyywazg lwygwss) ,Z2=10 0 233 0 0].
N'r: wWa 1 0 0 1 w45 0 242 243 244 0
0 0 0 O 1 Zs) 252 253 254 255
L ] L J
Example 2.2 (m=6)
i i r y
1 0 00 O 0 211 212213 214 215 216
' war 1 00 0 wag 0 233 223224225 0
5 W |V s 1 0 wis wig 0 0 233234 0 O
H o = =
i::‘ way wa2 01 W45 W4 2 0 O 243244 0 0O
A :f ws; 0 00 1 wse 0 257 253 254 255 O
0 0 00 O 1 26,1 262 263 264 26,5 266
L J
\\ - -

: Without loss of generality we assume that m is even. For linear programming, we
can always append a nonbinding constraint so that the total number of constraints is
4. even.

" The set of all LRQ matrices of order m is denoted by {Mpy) and the set of all ULQ
matrices of order m is denoted by (M3i}. Let A eR™™ and A-=A,~J~.e,-.ef. If
(A + )e{My] we say that A; ; is a W-elemenr ; otherwise, it is a non-W-elemen: . Simi-
A larly, if A €/M} ) we say that A; ; is a Z-element ; otherwise, it is a non-Z-element.

Proposition 2.1

{My} and {M}]) are closed under addition, scalar multiplication, multiplication and
4 . .
J inversion .

(The proof of this Proposition may be found in Zaki [1986-1)).

- 2.2 The Forward Quadrant Interlocking Factorization Algorithm

N In this section we present an algorithm which obtains the WZ factorization of any
.,_-, nonsingular matrix. That is, given a nonsingular matrix B, find W and Z such that
L4

K

o, B8 =WZQ, where Q is a permutation matrix. This factorization is analogous to the LU

: D-9
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i factorization in common use in many production linear programming packages.

) I

'\ ‘ Definition 2.1

{ An elementary left-right quadrant (ELRQ) matrix of order m and index k is a matrix of

- the form:

G Nk =] —yk-el —vk.ef 2.5

D> where

" l=m-k+1 k €1,2,....(m 12)-1, (2.6)
» el-uk=0 and e7vk=0 fori=1,2,...k.0.I+1,. 2.7

The conditions (2.7) require that the first k¢ and last ¥ components of u* and v be zero,

) that is. #*andv¥ have the form:

Ny u* = (0,0....0ul g ukia, ..., uk_,00,..,07 (2.8)
i vk = (0,0.....0vk v, ... v 00,007, (2.9)

Do In general an ELRQ matrix of order m and index & has the form depicted in Figure
oy 2.1. Thus. an ELRQ matmx of index & is a LRQ matrix whose only nonidentity columns

‘v are columns k and / (!=m-k+1). ELRQ mamrices are easily inverted. It is apparent that
[ -1
T [N*} =] +uk-ef +vk-ef (2.10)

o which is also an ELRQ matrix of index k.

O§

Prooosition 2.2

(I (l
l‘. L

o Let

,‘,._:‘

M NE = NIN2 ... Nk @.11)
.

where N' is an ELRQ matrix of index i , i=1,2....,k. Then N%) is a LRQ matrix whose
.::'_: j* and (m~j+1)% columns are those of NJ.

'j::: (The proof of this Proposition may be found in Zaki [1986-1]).
L] Definition 2.2

e _—=
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R
,_. ~ A partially reduced upper-lower quadrant (PRULQ) matrix of index k and order m is a
B .
N 2 square matrix whose non-Z elements are zero in columns 1 through k-1 and /+1 through
[l
\"V; m, where k =1,2,..,m/2 and | = m~k+1. Its general form is shown in Figure 2.2. Note
/% L
T that B! has no special zero structure and B™"2 is an ULQ matrix.
e :
>
o Proposition 2.3
-.:\:
:_';:'-; Let B* be a PRULQ matrix of index k. If B* is nonsingular then there exist j; and j,
!@ such thatk £/, < j3 £/ and
o
:;:l 5 = Bt.j. .B/k‘jz -Bf'jz 'B/‘.jn =z 0. (2.12)
-~ Proof
e Froot
B
( | Suppose 8=0 for every k<j,<j,<!. Then Bf must be a multiple of Bf . This contradicts
..Q“ the assumption that B is nonsingular.
o
.
4 f{: Permuting the columns of a PRULQ matrix so that certain elements provide a non-
o
° singular 2x2 submatrix is analogous to interchanging rows and columns in matrix inver-
::.'_1 sion to obtain a nonzero pivot element. Now, let B* be a nonsingular PRULQ matrix of
‘-Zj'-:f index k. Let j; and 1 satisfy Proposition 2.3 and define 0 to be the permutation matrix
=~
' v such that
L ® &
" a -
:::_ B* =Bk Ok
k'é: where
N B* =B*%, and BY =B% (2.13)
3) 4 =D AFB . .
) -.'
,.__: Let A be any square matrix of order m and let kg{1,...,m/2}. Define SX(A ) to be the fol-
3
e
= lowing 2x2 principal submatrix of A
b
® Ak Ay
k - Ll L}
- SHA)= Ax Ay (2.14)
N
) j::- where [ =m-k+1. Using these definitions and Proposition 2.3, it is clear that
." B* = B* Qk is a nonsingular PRULQ matrix of index k and S*(B*) is nonsingular.
| ::: We now show how one may transform a PRULQ matrix of index k into a PRULQ
" D-11
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Figure 2.1. Illustrauon of the ELRQ mawix of order m and index k.
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matrix of index k+1.

Proposition 2.4

Let B* be a nonsingular PRULQ marrix of index k and let Q*k be the permutation matrix
that interchanges columns k and m—k+1 with columns j; and j,, respectively, where j
and j, are obtained so that they satisfy Proposition 2.3. Let N* be an ELRQ matrix of
index k whose u* and v* vectors are determined by solving the following (m-2k) 2x2

linear systems
[ uk v‘"] Sk(BX) = [B-/"k B-‘k'l] ,izk+1,...,m~k. (2.15)

Then B%+! = Nk Bk Ok is a nonsingular PRULQ matrix of index k+1.
Proof

Since B* is nonsingular and N* is nonsingular, then B**! is nonsingular. B¥*} is a
PRULQ matrix of index k+1 if all non-Z-elements in columns 1 through k and [ through
m are zero. Since B* is a PRULQ matrix of index k , we only need to show that the
effect of N* on B* is to zero out the non-Z-elements in columns k,/. To show this, we

begin by rewniting (2.15) as

]

- Bf. Bl .
[u‘x "xk] = [Bx".k Btk.IJ

Bf, Bl
orfori =k+1.k+2,...m—k
uk-Bf, +vk- Bl =Bk (2.16)
uk-Bf, +vk-Bf, =BF,. (2.17)

. . k
We now consider the non-Z-elements of B ;’1

Fori =k+1k+2...m-k

B‘Lbl_Nk B’k

=-uk Bf, - vk -Bf, + Bk =0 by(2.16). 2.18)
B_.L‘l-N" Bk

=-uk Bf, -vk Bf,+BF =0 by(2.17) (2.19)
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Bitl=N; -B%, =0 forj=l,..k-1and+],.m. (2.20)

Also we note that the desired zeros created in earlier stages in B are not affected by N*
,since feri=1,..k=1,/+1,..m
Bf*l =Nk -B* =¢; - B* =BF . 221

From (2.18) through (2.21) we conclude that B4*! is a PRULQ matrix of index k+1.

Given the above definitions, the forward quadrant interiocking factorization algo-

rithm may be stated as follows.

Algorithm 2.1 - The Fonvard Quadrant Interiocking Factorization

Let BeR™™ . The following steps decompose B to its quadrant interlocking factors with

B=W2ZQ.

Initialize
Bl=8,
K=m/2.
Main Loop
Fork =12....K-1

1. Column Permutation
Find j, and j; satsfying Proposition 2.3.
If none exists, then terminate with the conclusion that B is singular.
Otherwise, construct Q * using j, and J,.
2. Compute the vectors uk | vk
by solving the (m -2k ) 2x2 linear systems, (2.15).
3. Consuuct v *

Nk =] «yk-el =vk-ef.
4. Constuct B4+!

B%+l = Nk Bk Qk_
Next &
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Proposidon 2.5

Let B be a nonsingular matrix of size m. Then Algorithm 2.1 decomposes B 1o its for-

ward quadrant interlocking factors ,

B=W2ZgQ (2.22)
where
(HWeMy) W= (NK-INK-2... N1y,
() Ze (MA) ,Z =BX and
(3) Qs a permutadon matrix , Q = (Q!Q2--- QK-1y1,
Proof

Let B! =B . Applying Proposition 2.4 for k =1,2,...,(m/2)-1, we obtain
BK=NK'1NK‘2--~N131Ql-“QK’zQK’l, (2.23)

where BX is an ULQ marix, N/, j = 1,...,.K =1 are ELRQ matrices as computed in (2.15)

and Q/ are permutation mamices. From (2.23),
Bl=(NKk-1 NK-2... N1 BK (O ... QK-20k-1)-1, (2.24)

Let NK-D = (NK-1 NK-2... NI)-1 Ry Proposition 2.2 N(X-D js a LRQ matrix. Also,
let QK- =(Q!- .- 0K-20K-1y! Since the product of permutation matrices is a per-

mutation martrix, Q ‘A-1) is a permutation matrix. Thus, (2.24) can be written as
B!=pB =Nk-1) gk Q&-1) (2.25)
and (2.22) follows by setting W = N(K-1), Z = BK and Q0 = Q(X-1)jn (2.25).
Proposition 2.6
Algorithm 2.1 without column permutations requires
m33+m22-4m/3
multiplications on a sequential machine.

Proof

Ignoring column permutations, we trace the operations in the main loop excluding step 1
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The number of multiplications to compute u* and v

K-1
= ; [2+6(m=2k)]
=m +3m(m=-2)/2. (2.26)

The number of multiplications to compute B*+!

K-1
=2. 5 (m-2k)?
k=i
=m.(m=-1).(m=2)/3. (2.27)
Summing (2.26) and (2.27) we obtain the specified total number of multiplications.

In Algorithm 2.1 the columns of the PRULQ matrix are permuted to find a 2x2
matrix with a nonzero determinant. There are obvious alternatives that may be used. To
ensure numerical stability for instance, we may find the matmrix whose determinant has
the largest absolute value, or the matrix that has the smallest condition number. Another
approach is to permute the rows of the PRULQ matrix to find the required nonsingular
2x2 matrix attempting to minimize fill-in in the nonpivot rows. Both row and/or column

permutations can be selected on numerical stability and/or sparsity grounds.

2.3 The Backward Quadrant Interlocking Factorization Algorithm

Unlike the triangular factors (L,U) of a matix, the quadrant interlocking factors
(W,Z) possess different potential density. That is, the number of potentially nonzero ele-
ments in W is different than that in Z. In this section we present an algorithm which
obtains the ZW factorization of any nonsingular mawix. We refer to this algorithm as the
Backward QIF algorithm, as opposed to the Forward QIF algorithm of Section 2.2 that
produces the WZ factorization. The development of this algorithm is very similar to the
previous one. The proofs of Propositions 2.7 through 2.10 in this section, use arguments

similar to those used in Propositions 2.2 through 2.5 and hence are omitted.
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W
‘ , Definition 2.3
I
‘f{tﬁj An elementary upper lower quadrant (EULQ) matrix of order m and index k is a matrix
o
e
::‘_::.: of the form :
%t'.' Mk=1, —rkel ~skefl —e;-ef —e;ef (2.28)
" y where
e I=m=-k+1,kel2, - m/2
2.572.
v el-rk=0 and e7sk=0 fori=k+1k+2,..1. (2.29)
::l' The conditions (2.29) require that components k+1 through m-k of r* and s* be zero,
D
',,.' which are the non-Z-elements of 7% and s* in M*. That is, 7* and s* have the form :
LW
L ’-k = (rl (X} vrtvov-"vovrfv"!rrfl )T 4 (2'30)
‘%_:: sk = (s1 R 7. 0 OO X 7 N L. LI (2.31)
.%: Thus, an EULQ matrix of index & and order m is an ULQ matrix whose only nonidentity
:.;3. columns are columns k& and [ (/=m-k+1). In general, it has the form depicted in Figure
27, 52
':'q:‘. 2.5
P
3 5: The set of all nonsingular EULQ matrices is closed under inversion, and the inverse
{ of any nonsingular EULQ mawix of index k is another EULQ matrix of index k.
3 n)'
oy Propositicn 2.7
A e
‘0 Let M) = Miph-1 ... M1 where M¢ is an EULQ mamix of index i , i=1,2,....k. Then
\
) M &) is a ULQ matrix whose j* and (m-j+1)% columns are those of M/ , j=1,2,....m/2.
\ ;"_“'; The proof "~ similar to that of Proposition 2.2.
Y
:E: Definition 2.4
{ .-:':
S A partially reduced left-right quadrant (PRLRQ) matrix of index k and order m is a
Qi
S‘:.: square matrix whose non-W-elements are zero in columns k+1 through m—k. Note that
‘e
:'js B™'2 has no special zero structure and B! is an LRQ matrix. In general, a PRLRQ matrix
i :t',..
:" is of the form shown in Figure 2.4.
o
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Figure 2.3. Illustration of the EULQ matrix of order /1 and index k.
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Proposidon 2.8
Let B* be a PRLRQ mamix of index k. If B is nonsingular then there exist j; and j2

suchthat1 € j;€kand [ £j,<m and
§ = Bf\jl 'B[k'jz -Bt.j; 'B/‘.jx = 0 (2.32)
The proof is similar to that of Proposition 2.3.

Now let j; and j, satisfv Proposition 2.8 and define P* to be a permuted identity
matrix with column j; in the k™ position and js in the [*. Let B* be a nonsingular
PRLRQ marrix of index k. Obviously, B* =Bk Pk jsa nonsingular PRLRQ matrix of
index & , and S* (B*) is nonsingular.

Using M* of (2.28) and the P* defined above, the elimination operation needed to
reduce a PRLRQ matrix of index k a step further is given by the following Proposition.

Proposition 2.9

Let B* be a nonsingular PRLRQ matrix of index k , let j; and j, satisfy Proposition 2.8,
let P4 be the permutation matrix that permutes columns k and j; and columns m—k +1
and ja. Let M* be an EULQ matrix of index k whose rk s vectors are determined by

solving the following 2k =2 linear systems
[rf sf} . S(BY = [B‘f,k B',",,] vizl. k-=land [+1,.m (2.33)

along with the system

:ﬁ ii = [S“(E")] - (2.34)

Then 3%-i = Mk B Pk is a nonsingular PRLRQ matrix of index k1.

Given the above definitions, we may state the backward QIF algorithm as follows:

Algorithm 2.2 - The Backward Quadrant Interlocking Factorization

Let BeR™ ™. The following stens decompose B toits QIF withB =Z W P
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Initialize

s
1
*
P |

P
A

Bmi=BH,
K=mi.

'] \. " " .l
/x"n/n"n.

Main Loop

"\

Fork =K K-1K-2..,1

'.)'.J"J‘J >

T

25

1. Column Permutation

Find j and j; sadsfving Proposition 2.8.

iy

Pa—

If none exists, then terminate with the conclusion that B is singular.

£
i

> Otherwise, construct P using j, and j,.
(L, 2. Compute the vectors r* |, s*

by solving the (2k =1) 2x2 linear systems (2.33) and (2.34).

—
-
" )

o & oy

s

LA S

3. Consrruct M *

e
{‘ /l "(

ME =] —rkel —sk-ef —e,-ef —e;-ef.
4. Construct B!

CUVLR L, @

B*-1=M*k Bk Pk,

EELL
‘-I\N'v‘nl

Next &

{L/

<

Proposition 2.10

[

e
‘,
P _

e

Let B be a nonsingular mawix of size m. Then Algorithm 2.2 decomposes B to its back-

ward QIF,

)
o

.
-

\
»e

l,

B =ZWP (2.35)

» &
lf-."-

where

£2A,

LA AA

(HZe ML), Z=MM2- - MK)-1,
Q) We My}, W =Bland
(3) P is a permutation matrix , P =(PK ... Py

hal X
Wl
P R P LY

A

The proof is similar to that of Proposition 2.5.

[ R |

Ir‘"‘f/.

As with the Forward QIF Algorithm, row and/or column permutations can be

- o

‘I '-(

adopted to ensure numerical stability and/or sparse factors.

by
"
i)

o
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° 2.4 Some Characteristics of Quadrant Matrices
\€~ -~ In this section we reveal a relationship between the quadrant and triangular
\ L]
Cal . . . . .
\.‘:.-, matrices. which has not previously appeared in the open literature (e.g. Evans and Hatzo-

poulos {1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1], Feilmeier [1982-1],
Hellier [1982-1], and Shanehchi and Evans [1982-1]). A permutation algorithm that res-

tructures any quadrant marrix as a block triangular one is presented.

Consider the following marmices

[— 10xx.xx
X X lxx.xzx
X x 10.xx
o lxxxx . l.xx
Z=xxxxX , W= (2.36)
;r)':,'rx.xx
o X XXX xxJ 10
'.V:,._‘ l
= L
> | J

3 X
o

Where x stands for a potential nonzero element. Note that Z is a lower Hessenberg

eelsa At

matrix with a special zero distibution on the superdiagonal. Also, W is a unit upper tri-

e

angular matrix with special zero distribution on the superdiagonal.

Now we present an algorithm that relates W of (2.1) and Z of (2.3) to W and Z of
(2.36).

Aleorithm 2.3 : The Permutation Algorithm

Let R, S, and T be square matrices of order m, where R is the input matrix to the algo-

rithm and 7T is the output mawix. The following algorithm permutes the columns and

rows of R such that:
(a)if R is a LRQ mawix then T is a W of (2.36), and
(b)if R is 2 ULQ mamix then T is a Z of (2.36).

1. Column Permutation

For j=1.2....m/2

e
oA . O

D-21

@ LA
SANEAAR

. .
l“\il_l_\

B

s

e, T ERRE N T L Sl My Y159 1% S PRI AV EAP SO AP RPN AC S A Pl O il f\-’.‘-"\'
R R R R S e R
- W PR A «” e, a0 A = - ) T L o < tw . ’
e A e e e
B A A iV e I SR NN M : _
SR R S RNG  igY .“J%‘JNJ Al '}}&M.‘



AL

———
@ SN 8

_.
RN

S m-2j+s1 &« R j
S m-zj+2 & R,

Next j
2. Row Permutation

Fori=12,...m/2

Trmoisl..

m-j+1

— S""

Tm-2i+2.. €« Sm-i+1..

Next i

An example o: the permutation algorithm is given below for m=6.

Example 2.3 (m=6)

1 0 00 0 O
W21 1 00 O Wag
, w3l waz2 10 was wag
W= W41 W42 01 W4as Wae
ws; 0 00 1 wsg
0 0 00 O 1
211 21,2 713 214 215 216
0 232223224225 0
0 0 233 234 0 0
Z= 0 0 243 244 0 0
0 252 253 254 255 O
261 26,2 263 264 26,5 266
i J

This clearly shows that the quadrant matrices are permuted block triangular
matrices with blocks of size 2. That is, the Forward (Backward) Quadrant Interlocking

factorization is equivalent to a block Doolittle (Crout) decomposition with blocks of size

2

On sequential computers, a QIF is not expected to be faster than any triangular

D-22

TR

215 21,1 216
265 26,1 26,6

10 wsz wis wa
01 wsp was wa
00 1 0 wyy
00 O 1 ws
00 0 O 1
00 0 0 O
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233234 0 O
243244 0 O
223 224 222 225
253 254 252 255
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decomposition. Since computing the entries of the factors by solving 2x2 systems
requires more operations, as shown in Proposition 2.6. Also, finding a nonsingular 2x2
submatrix is more expensive than finding a nonzero element. However, on parallel com-
puters. the QIF is expected to be competitive, since the number of entnes that can be
produced concurrently in every stage is doubled, and the number of stages is halved as
compared to a triangular factorizaton algorithm. Therefore, we may view the column
permutation step in Algorithms 2.1 and 2.2 searching for a nonsingular 2x2 submatrix as

a computation decoupling price we pay for the concurrency gained in steps 2-4.

Determining the relationship between quadrant and triangular matrices is a key
observation that we will use in the following section to design appropriate updating

scheme for the quadrant interlocking factors of the basis matrix in the simplex method.
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\
\"}‘ III. UPDATING THE QIF OF THE BASIS

At the beginning of a simplex iteration, suppose the basis has the form
%..z B=ZWR, (3.1

s where we assume forms (2.36) for Z and W, and R is a permutation mawix. When the
.) entering column A ; replaces the leaving column B , at the end of the simplex iteration,
e we have a new basis mamix B which is related to the previous basis matrix B by the for-

o mula

‘ e B=BE (3.2)

where E is an eta matrix whose p# column is (B-! A .4 )» and all other columns are the

-
L

oy identity columns. From (3.1) and (3.2) B can be written as

o
“1

B=ZWRE. (3.3)

e

S
."L". -~

An updaring scheme is a sequence of operations applied to the right side of (3.3) to

e

by A

retum it to the form given by (3.1), 1.e.

,Q‘\
A

e

B=ZWR, (3.4)

where W , Z are the new Q.1 factors and R is a permutation matrix. We present an algo-

Pl

RO
LRl SIS ST N

rithm designed to derive (3.4) given (3.3). It is similar to the Forrest-Tomlin [1972-1]

O,

N update for the triangular factors of the basis. Since the spike is in W, our strategy is to
P\
b reduce the spiked W, i.e., WE, to an LRQ matrix using elementary ULQ matrices. The
De
'- h' . . . . 3 -« .
- following algorithm exploits the triangular form of W and the existence of 2x2 identity
]
oF blocks on the diagonal of W'.
&
! In this presentation we use the term brother columns (rows) to indicate columns
(rows) that have the same potential nonzero structure, excluding the diagonal entries in
® , .
= case of LRQ matrices. Thus, for LRQ matrices in the form of (2.36) columns (rows)
N
e
NN
¥ \:
pug D-24
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N
N
e i ,i+] are brother columns (rows) fori=1,3, - - m-1.
o
.
N The first step of this scheme is a column permutation followed by a row permuta-
e
v
’ '?h tion. In Figure 3.1 an example is presented to illustrate this step, in which R of (3.3) per-
{ s mutes columns 2 and 4 of W and x stands for potentially nonzero elements. Thus, W and
N
o WR are as illustrated in Figure 3.1 (a) and (b). From (3.3) we obtain
o _
-,::\: Z-'B=WRE

i

1)

+
{! ".{‘\
-,‘; where S is illustrated in Figure 3.1 (c) and y stands for the elements of the column vector
h g
R
i )
L ::2 (Z-1'A ;). Note that if (Z-! A ;) has the same zero structure as W 4, then the new fac-
"«

tors are immediately available. That is, W is § and Z is Z. If this is not the case, we

(‘f"‘

* -

__‘;.\ place S in a spiked-W form § as shown in Figure 3.1 (d), by applying the column permu-
s

:l‘;",- tation R~1 to § to undo the effect of R. That is,

‘ L

® Z-iBR-1=WRER-!

L =S R

T =S. (3.5)

o
Suppose g < m—-1. We apply the column permutation K to S, placing the spike and the
‘.W_ brother of the leaving column in the positions m and m-1, respectively, and moving all
Vo

}':-: intervening coiumns forward to produce the matrix 49, as illustrated in Figure 3.1(e).
o8 .

< We then apply the row permutation R~} to H9 placing the ¢** row and its brother row in
_ positions m and m-1, respectively, moving all intervening rows two places up to pro-
B \'
S ~

) {: duce the matrix H9 as shown in Figure 3.1 (f), where

) :PN

ﬁ-": P .

Ko ~_lq.ifq is odd;

'Y 9 =)g-1,if q is even.

o N ;

:j:-: Note that g is odd. Of course, if g 2m -1, then R =/. Now (3.5) becomes

o ; - g ;

‘.g R1Z'BR'R=R'WRER-R

® = R‘-l .S: R-1 R-

N3 =R-1S K

N

N
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' : loxxxxxx 1xx0xxxx lyxoxxxx loxyxxxx loxxxxxy loxxxxxy
:k Ol XXXXXX oxx 1 xxxx oyx1lxxxx olxyxxxx olxxxxxy olxxxxxy
: 00loxxxx 00loxxxx oyloxxxx oolyxxxx | ooxxxxly ooloxxoy
Ca, 0001 xxXX olooxxxx OyOQOXXXX O00YXXXX OOXXXXO0Y 0001xx0y

0000]0xx ocoooloxx | oyooloxx | oooyloxx | ocoloxxoy | oocolooy
000001 xx 000001 xx 0yo00 Ixx oooyolxx | ooolxxoy { oooooloy

s O

N oooooolo | oooooolo | oyoooolo | oooyoolo | ooocolooy | ooxxxxly
Y 00000001 00000001 0v000001 000v0001 oocooloy | ooxxxxov
3' W WR S S He Hi
N
" (a) (b) © (d) (e) (6]
A ?

2\3 Figure 3.1. Illustration of the double column and row permutation
:~_, : (m=8,p=2,q=4,3=3).

L,

2

w \]

l):

- 1 ! m

Ll
pe Moxx XXXXXXXX xxxy | 1
- lolxx . XXXXXXXX .. XXXy
" 1o XXXXXXXX XXXy
-~ ol XXXXXXXX XXXy
& '

4 --.\' .
" lloxxxxxx XXXy
U™, lolxxxxxx XXXy
52 Hoxxxx xxoy | {
(LS

Y lolxxxx - Xxo0y

13 loxx XX0Yy

o lolxx XX0Yy
iy o xXX0y
p< ol XX0y
Y . .

&‘ \. . . .
~N

v > . . .
e b llooy

+ e loloy

o Xxixxixx .. xxlly
r} Ix xix xIx x . xxloy | m .
-
¢ , Figure 3.2.  lllustration of the general form of the matrix H/.
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¢ ‘-.‘\
N
N
o F-1
N =R~ H9
D =HJ
nin Ha. (3.6)
\v\
[l o
IO Consider the mazix H! whose general form is depicted in Figure 3.2. Note that the
( g g
matrix resulting from the above permutation is 4/ when / = 7. Note also that all non-
- -\'
=TT . 3 . . . . .
W-elements in A’ are in the last two rows in columns / through m. Our objective now is
| .\.-::} to reduce H9 to a LRQ matrix by eliminating these non-W-elements. We consider elim-
: P inating them four at a time using the 2x2 identities on the diagonal of H!. The necessary
l.»’l-.
.!-r‘:v matrices that should reduce H/ to H!+2, for I=,5+2, - - - n=3, are the following EULQ
‘\""\1‘
T transformations.
'\4
o 1-1 !
RN 0 0
Y
R0 I
® .
A 0 0
o
s Z! = 1 0
"'-,:..
( - 0 0
b I
) ..l‘ . .
,'._:: 0 0
(
.'-:: =H! -H!
e m=1,1-1 m-11
c ! l
o =Hm i1 =Hpm i
Lol
e
-~ By repetitive application of Z! to H!, for [ =,§+2, -+ ,m=3, we get H™-1 which, in
. general. has a non-W-element in its m=1,m entry and a nonconforming element in the
m.m entry. Therefore, the following rank-one elementary transformation is sufficient to
reduce H™=! to the LRQ matrix W,
-
o
\-"
o
b0 D-27
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- m
o
o5 I
L~ Zm-l=
e ~HI n THRZY | m=1
m-]
‘.\ . 1/Hpm m
1 ':-.
N , -
S Theoretically, H,, » is a nonzero element, since otherwise B is singular. Now, combin-
Yy
. ing all transformations applied to 47, we obtain,
e,
'\-" —
":; Zm=1zm=3 ... Z‘7H5=W,
x
o
2 and (3.6) becomes,
\"_.; {Z”‘IZ"’----ZqR]ZI]B{RIR}=Z”"Z”'3"'Z‘7H‘? 3.7
o
. R,~ — -— — ——
o {Z7') B {R')=W,
-
CaVi] . . . . .
Py which is equivalent to the required updated form (3.4), with
1SR - - - . -
= 2=ZRZ7 --.Zm-¥'Zzm-1 (3.8)
7
)
S ﬁ:R'lﬁ.and
N -~
'\,:- W =2zm-! Zm-3 ... Z3 HY.
q,\.
¥
oY . = . . . .
-" Note that Z in (3.8) is not a ULQ matrix, even though all its factors, except the permuta-
9 tion matrix R, are ULQ matrices. In practice, Z~! is stored factorized as in the first
y E: braced term in the left hand side of (3.7).
W)
L]
_\-)'
:‘C Using the above, the updating algorithm may be stated as follows:
K Algorithm 3.] - The B.O 1.F_Updating Algorithm
2
M . . .
- 0. Begin with the m x m matrix B =Z W R, and suppose column p of
oy B isreplaced by A ;.
.
5 1. Define ¢ such thatR , =¢,.
7
g
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(P 2. Set

-1 =g -
o Z2°'A ,,i=q;
‘ W i, otherwise.
k)

Y 3. Let

s
A

il
P

_Jq+l.ifq is odd,
¢ = q-1,if g is even.

T

ey

4, Set
3
Lo :
‘L e, 1<i <.q,
( g €i+2,4 Si <m-l;
G e i =m-l;
_n.‘“. ‘7 ’
WA €, 1 =m
'\\"( q
N
s > - 5
s 5.H«<R*SR.
N o
®
"2." 6. Let
e
o™
*T
w0 ~- Jg,ifqis odd;
,_,_:.: g-1,if q is even.
s Forl=7.37-2.-- m=3.
‘.. -D
~7a
\.:\‘-
:_y.: 7. Set
o (
2 Lisi;
e Z! s m-Lh I=m=1;
) ' g, b=m;
e 0, otherwise.
2Ny
I 3
®
e 1, i=l+1;
Vi 71 “Hp-1441, i=m=1;
N sl €S CH L i=m:
Wy 0, otherwise.
Pl
. “-
P
o Z ;e j#l and j=l+].
o
\
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8 He~2Z'H.

Next /.
9. Set
=Hpy\m/Hp pm,i=m-1,
Znst e VUHp p, i=m;
0, otherwise.
Znlee;, j2m.
10.H «2'H.
11. Set

B-={Z R (Z7y!--- @m-yY H {R"lR}
=Z WR.

This updating scheme inherits the major characteristics of the Forrest-Tomlin
update for the triangular factors of the basis. First, no new nonzeros are created in the
right factor W, since only deletions of items are required. Therefore, sparsity of W is
preserved and fill-in is minimized. Second, the lack of choice of the pivot elements

makes this update less numerically stable than the Bartels-Golub-based updates. Thus,

there is a gain in speed and storage at some sacrifice in numerical stability.
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IV.PARALLEL IMPLEMENTATION

In this section we describe a parallel implementation of two basic tasks of any sim-
plex based linear programming code, namely, basis reinversion and solution of the linear
svstems. A parallel version of the Backward Quadrant Interlocking Factorization Algo-
rithm (BQIF) is presented in Section 4.1. Only the left factor is produced in its product
form whiie the right factor is produced in its explicit form. This form conforms with the
updating scheme of Section III. In this algorithm, parallelism is gained by reformulating
the BQIF Algorithm in terms of high-level modules such as matrix-vector operations.
These modules represent a high level of granularity in the algorithm in the sense that they
are based on mamix-vector operations, 0 (m2) work, not just vector operations, O (m)
work. The module concept has already proven to be very successfui in achieving both
transporiability and high performance of some linear algebra routines across a wide range
of architectures, as reponted by Dongarra and Sorensen [1984-2] and Dongarra and
Hewiu [1986-1].

Given a basic feasibie solution with basis B, each iteration of Dantzig's simplex
algorithm involves solving the systems of equations =B =c? and By =A ;. An
effcient parallelization of the simplex algorithm requires efficient paralle! algorithms for
solution of these svstems. Parallel algorithms for solving these linear systems using the
quadrant factors are presented in Section 4.2. The paralle]l implementation discussed in
this section is proposed for an MIMD parallel computer that incorporates p identical pro-
cessors sharing a common memory and capable of multitasking, that is, the processors
are capable of applying all their power to a single job in a timely and coordinated

manner.

4.1 The Module-Based BQIF Algorithm
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() Given an m x m matrix B, the algorithm either indicates singularity of B or pro-

<. duces
Zm=1zm-3...ZIB R =W, 4.1

where R is a permutation matrix, Z* is a rank-2 matrix of the form,

r
“»
{0 k k+l
')
T

s"‘ N X X k
’-'1.'. X b 4 k+1 4.2)

N zk

2
N
R -y x X )
) ":\.'
N
L,
o
t_. This form conforms with the updating schemes of Section IIl. Its LU version has been
-.'-“..' R .
T~ used in several LP codes (Reid [1982-1]) . At every stage a new Z* is produced and two
“_.\
P rows of W' are updated. The availability of the updated rows of W at every stage allows
C'\‘-" for parallel implementation when searching for a nonsingular 2x2 submatix. Moreover,
X \-",
}‘&' it facilitates finding the 2x2 submarrix of largest determinant rather than finding one with
[oe
{T.'_-:I‘ a nonzero determinant. This reduces the rounding error in the factorization process and
hence improves the numerical accuracy of the results (Shanehchi and Evans [1982-1]).
! o
o)
‘A . . . . .
: "\v The major part of the algorithm is formulated in terms of three basic modules:
' L]
rove
::; Module 1 : Search for a nonsingular 2x2 submatrix
o -
W \g Input : A gR-"
e .
_ ..,,:j Purpose : Find column indices j and f, such that
33 e
e DET =A,j,.Ayja=A2j1.A}j2#0.
@
o Output : j,, 2, and DET or a singular indication.
LAyis
o
A
*-_.: D-32
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Module 2 : Marrix - 2 vectors product

Input :y!eR™2 AlgRMM x1 gR™M2,
Purpose : Compute ¥ ! such that y! e« y1 + Al x!,

Output :y 1.

Module 3 : 2 vectors - matrix product
Input :y2eR™1x2eR%h A2eRN
Purpose : Compute y2 such that y2 « y2+x2 A2,

Output :y2.

These modules represent a high level of granularity in the algorithm in the sense

that they are based on matrix-vector operations, O (m2) work, not just vector operations,

O (m) work.

Algorithm 4.] : Reinversion

Let BeR™ ™. Then the following steps produce a singular indication if B is singular, or

decompose B as in (4.1) if B is nonsingular. The column indices are stored in IPVT (m).

Befine the 2x2 submatrix §; ;{A)to be

Aij  Aija
SiiA)=1 41 Averjm| (4.3)

0. Initialize.
Wiaim & Br:21m
Fori =1,3.--- ,m-3
1. Find a nonsingular 2x2 submatrix.
Setnem-i+landA « W, i 1im.

Call Module 1 (A ,n).

If A is singular, then terminate with B singular;
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: otherwise, permute columns

S , .

3 Wiy With Wy ioand Wy 0y with Wy o

o™

"l Record permutation, JPVT (i )=/, IPVT (i+1)=/;.

b

e 2. Obtain anew Z*.

e .

<o Z' « I, where/ ismxm, S ;(Z') e« [S; (W)L

<

o nyem-=i-l,ns e i-1

t

- Yyl Bizmiist X Wiioinian

), i. .

o For/ =13, --,i=2

R

1 i
A Jidel €& ZA+2:m,1:1+l .

Next /.

v
) LN .

N Call Module 2 01x?,4i,ny,n5)
D N i -1

» 2 camiioy &Y

o
[}

. - .
G 3. Update rows i +2. /+3 ol W,

y
W [y~ i+l lse=m=i+].

o
"" ~ y A
Ko, A= Wiiieam ¥* — B 2is2is2m-
.,( For/=1,3 -4
L
‘, 3 XTIIl*_ZxoZH"IAﬂ'
o
"\-i *

A Next /.

\: - -
- Call Module 3 02x2,4%1,,[2)
-
% ..': Wiidisdieom & ,\.2'

A

- Nexti.

e

.. 4. Update V.

:-f: Fori =13 m-=-3

: S, (W) e[ where/ is2x 2.
... Wiictivam 4—5,_"(2') Wiietis2im
o D-34
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n- 0
- The general approach we propose for parallel implementation involves having the
Ko
b parent processor prepare the parameters for a module and make use of the kids (subtask
Ve processors) to work concurrently on that module. In Module 1, at most n(n-1)/2 column
’a
1 ';‘_ pairs should be checked. The parent sends to each kid the column indices to be checked ;
¥ ;
3 ’ 3

for nonsingularity, and stops all kids whenever one succeeds. As mentioned before, it is

-

possible to find the nonsingular 2x2 submatrix of largest determinant. To do this, the

-

A

..”‘ parent sends the column indices to the kids, each kid finds the column pair of largest
determinant in his list, sends them to the parent, then the parent selects the best by com- ]
‘ paring only p~1 values.

N !
:: The concurrency in Modules 2 and 3 is obvious since they involve matrix-vector ‘
.\ operations. In Module 2 (mamix - 2 vectors product) parallelism is obtained by perform- )
I .J ing 2n; independent inner products, where ny is the row dimension of the matrix. Simi-

e
‘:'.:: lariy. in Module 3 (2 vectors - matrix product) concurrency is gained by executing 2/, .
-~ h
f_.\ independent inner products. where /- is number of columns of the matrix. Step 3 needs )
O

enlv Z'.-,.3,,.1 from Step 2. These are the first two rows of ¥!. Thus, as soon as these
elements become available Step 3 may proceed. This can easily be synchronized. Finally,
in Step 4 the loop divides over i with completely independent tasks. However, the tasks

require different amounts of computation. Two solutions are possible. Either we adopt

i
RIS
-

dynamic task queue allocaton, or we stadcally allocate i=1,m-3 to one processor, y

[~ i=3, m=5to the second. and so on. .
L
), -

. 1
- 4.2 Solving the Linear Systems )
- In this section we investigate the possible parallelism involved when we solve the '
o svstems of equations =8 =c? and B v =A ;. We assume that the basis matrix B is in

° , ;
e the form (4.1), thatis
. D-35 K
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L
o m-17m-3...71 -
s zm-1Z Z'BR=W,
b
5}‘ where Z¥ has the form (4.2), and W is a block unit upper miangular matrix with blocks of
1.*’
size 2.that is it has the form (2.36). We compute the dual variables (n) using the follow-
. ing steps:
l\ —
N (1) Permutation : n=c3R.
. ‘.
(2) Solve a block tiangular system : W =x.
(3) BTRAN: n=nZm-1Zm-3...21,
We compute y, the basis representation of the incoming column A .j» as follows:
() FTRAN :¥ =Zm=1Zm-3...Z14 ;.
(2) Solve a block riangular system : W ¥ =¥,
=~y (3) Permutation : y =R .
_"f;:f We present parallel implementations of the FTRAN operation, the solution of a
;‘ block triangular system, and the BTRAN operation in Sections 4.2.1, 4.2.2, and 4.2.3.
:\ respectively.
{ .::::’
> 4.2.1 The FTRAN in Parallel
I‘ '
‘ \_:: The rules for applying a Z* 1o an arbitrary vector v are as follows:
-S>
ff. a) Exract o ¢ Vi, and O yq ¢ Viay.
b) Set v « 0, and vi,; « 0.
- c) Compute V=v + 0 Zfm x + sy ZEm ko1 -
r :.;: Note that if v¢ =v,4) =0, then V = v and no element of v will change.
J‘.:-
. An example is now given form =6, k = 3. Suppose we have
" R n
SN 0 0 1 11
-":(\j 0 0 2 12
i 3 _ |2 1 _ 3 d _|0
W Z,'3:4— 1 2 , ¥V = 4 , an U= WK
173 1/4 5 15
[ 1/6 172 6 16
"": L J L d . J
e
o’
-:.:; D-36
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Then the computation of Z3v is given by

1 : 1 .- - -
1 0 0 1
2 0 0 2
oeeldos| 2ol 2] o[
5 173 1/4 7
6 1/6 172 8.5
L J L J L L

and the computation of Z3u is given by

- q _ . -
11 01 01 11
12 0 0 12
Z3u = 8 +0 % +0 ; = 8 )
15 173 1/4 15
16 176 1/2 16
L | L) L

These rules are implemented in the following module:

Module : FTRAN Operation (4,v,n)
Purpose : Apply Z* to an arbitrary vector v.
Input :n,A eR™, v ek

Output :v,wherev =Zk v,

Steps : 1. Exmact a; « vy, and ap « va.
2.8etv; «0,and v, « 0.
3.Compute A ; «— Q1A ;.

4. Compute A 2~ 0z A 5.

5. Computev &~ v +A ;+A4 1

Obviously, steps 3 and 4 are independent and can be executed in parallel. In step 5,

the work is partdtioned over the rows of v, assigning each kid a block of rows to evaluate.
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4.2.2 Solving the Block Triangular System

The solution of an m x m triangular system of equations on a sequential computer
can be obtained by either a forward or backward substitution process which requires
O (m?) steps, each defined as one multplication followed by one addition. In order to
solve the system on a parallel computer, methods which require O (m3) processors and,
hence, reduce the computation time to O (log®m ) have been developed ( e.g. Chen and
Kuck [1975-1) and Sameh and Brent [1977-1] ). Evans and Dunbar [1983-1] introduced
methods that run in O (m) time using O (m ) processors. For practical purposes the pro-

cessor and storage requirement of these methods is unreasonably large.

In this subsection we consider solving the linear system
xW =b, 4.4)

where x, b eR™ and W is an upper triangular m x m matrix with 2x2 identity diagonal
blocks. This system may be solved by a forward substitution (FS) process described in

algorithmic form as follows.

Fori=12.---m

i=1
X; =b,' - ZH"-_} Ij.

J=t

Nexti.

It is obvious that a uniprocessor will solve (4.4) sequentally in m (m=2)/2 steps by the
FS process. Let T, denote the time required to solve (4.4) using p processors, where one

step requires one unit of time. Then
Ty=m(m-=-2)/2.

With a paralle! computer that has rocessors, a minimum time requirement for the
P P PP

solution of (4.4) is

min(T, )=T/p=m(m=2)/(2p). 4.5)
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® The minimum completion time of any algorithm based on FS is equal to the number of
D hd
) y . . .
'C X terms in the expression that evaluates x,,, that is
\"
lighs
[ -
™ Tmin=m =2,
W
o From (4.5) it is clear that a minimum of m /2 processors is necessary to solve (4.4) in the
A minimum time of m~2 operations. Again this processor requirement is unreasonably

large for our application.

" The machine we consider has a limited number of identical processors (p <30).
. Therefore, we consider the question: if we are given a fixed number of processors, how
' )
;:o' should the parallel operations be scheduled on the processors to minimize the solution
( B time of (4.4)? We propose to answer this question using a directed graph model that

>

":: represents the FS process as follows. The nodes of the graph represent tasks of equal exe-
!.\ '

.-‘.':E’ cution time and the edges represent the precedence relationships between the tasks. Then
A5

'.' we apply a simple scheduling algorithm due to Hu [1961-1], called the level algorithm, to
'{'t\ schedule the tasks on the processors such that the total execution time is minimized. This
_:::: algorithm is known to be optimum for a tree graph, and it gives extremely good results
3 _'_\"
“ for general graphs as reported by Ramamoorthy et al [1972-1], Huang and Wing [1979-
:i N 1]. and Wing and Huang [1980-1].
o
> ,:,::j We first organize the FS process in terms of operations of equal time and define the
oo corresponding directed graph. Lei x! =[x; , x;,;]. Partition x, b, and W into blocks of
NS size 2. Using S; ; as defined in (4.3), the above FS process can then be written as
iy

e
':f Fori=13,---,m-1

o )

% xi=bi- x7 §; j(W).

j=1.3.-z~.i—2 i ()

P

P2 Nexti.

.

ro?

T : .
k< Let the following operation, where x* is used to update x/, define a task

. . . .

a' x! exl =xt §; j(W). 4.5)
':::;- D-39
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[ ] . . . . . .
S For Hu's algorithm we assume that the execution time of an operation (4.5) is one unit (4
S
N multiplicadons and 4 additions). We can see that the FS process consists of a set of
o
vh
V" . . . . .
‘S: operations (4.5), on which a set of precedence relations exists. That is, to complete the
{ _ evaluation of xi we require xi-2, for i =3,5,--- m=~1. The process can therefore be
T
T represented by a directed graph G (V ,E ) where the vertex set V is defined as
L Y
5
WA . .
P V={v; ; Iv; ; represents an operation (4.6)},
\
Ay and the edge set £ is defined as
b
-"_\\-
I ) . . .
oo E={(v; ;. Vi) operation vy requires the direct result of operation vijl
g
S

We shall call G (V,E) the forward substitution task graph, and refer to it by FSTG.

ﬂv

oy
s

o4
-

In Figure 4.1 the FSTG for m=10 is presented. For every v; ; in the FSTG, the pairi,j is

| -:E indicated. A node is an initial node if it does not have a predecessor and is a terminal
i‘ node if it has no successor. It is clear that the FSTG has only one terminal node, at which
o i =m=3and j =m-1. Accordingly, the minimum completion time, denoted by D, of the
& FSTG is equal to the number of nodes on the longest path from an initial node to the ter-
"'-Z:-j.' minal node. Thus, D =(m/2) - 1, which is the number of times operation (4.6) is exe-
:j_: cuted for x™-1,

E We next determine the levels of the vertices of the FSTG. Define the level number
[~

ok

(l; ;) of a node v; ; as follows: 1) the level of the terminal node is D, 2) the level of a

R

node that has one or more successors is equal to the minimum of the levels of its succes-

'.5"

N

sors minus one. Applying this definition to the FSTG, we can conclude that

. a
ST

Lj=(i+1)72. (4.6)

305

N

»

The level number is simply the latest time by which node v; ; must be processed in order

SO
. s

1o complete the task graph in the minimum time D . The level numbers of the nodes of

P

Fe

.

Figure 4.1 are given as shown.

Q
al

Once the level numbers of the operations are determined, we apply Hu’s scheduling

LA R
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algorithm to assign operations to processors. Define a ready task to be one whose

immediate predecessors have all been processed. The scheduling algorithm is as follows. .

AR @t

Tt

Algorithm 4.2 Hu's Scheduling Algorithm

1. Among all the ready tasks, schedule the one with smallest level number.

2. If there is a tie. schedule the one with the largest number of immediate succes- B

0T,

Applving this Algorithm to the FS process represented by FSTG, the computations

are organized as follows.

Algorithm 4.3 : Fornward Substitution

a
N Setx! « b1,

TN

:: Fork =3,5.- - ,m-1 )
‘oA

[ ] x* &bt —XISU‘(W').

l. !
-: Next k. 3
':'* R (]
o0 Fori=3,---,m-3 s
i

- ¢

Forj=i+2i+4, - m=1

lan T'Y

o . . .
t'-l X/ ex! =xt S‘}(‘V)

1.: .
N . . 4
- Next j. |
>, , i
d Nexti. t

All operations in loop k are independent and have the same level number. Their

level number (/1 = 1) is the smallest among all other operations in the Algorithm, and

.P‘.'v »

hence they are executed first. Similarly, all operations in loop j are independent and have

Y . . . . . .
- the same level number as given by (4.6). The ordering of index i predicates the execution
e
. of the operations by increasing level number. This satisfies the first criterion in Hu's
W
; Algorithm. The second criterion imposes the ordering of the index j. That is, the number
:'. of immediate successors of v;; is always greater than or equal to that of v; ;.3 for 'j
o
.'-
- (
‘
- ]
{ 4
i)
" e G SRR SEe! e L L T i RN N T S
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JEi+li+d, - m=-1.

A paralle! implementation of Algorithm 4.3 involves having the parent processor

P WP
s}&}&}&)‘.}'-;. @ P AN 4

partition the work in loop & among the kids. Then for every i, the computational tasks of

{ loop j are again divided among the kids.
N
o~ Lower bounds on the completion time of a task graph given a fixed number of pro- !
N 4
:: cessors were derived by Ramamoorthy et al. [1972-1]. Let n, be the number of nodes in N
1 level k. Let ;" (p) be the minimum completion time to process a task graph with p pro- 1
~ ‘
N cessors. Then :
4 ]
e :
2 >
( t*(p)2max | &=L—+D -, 4.7
, i .
A "wl 3
W
[ l‘: h
N where D is the minimum completion time of the task graph and [x ] denotes the smallest A
b' X
integer 2 x. The first term in the expression denotes the minimum number of time units ¢
e
K : required to complete all the operadons of the first i levels using p processors. The term ;
) d
4 _ : o
" D -i is equai 1o the number of remaining levels yet to be processed. This bound may be 3
" )

useful in demonstratng optimality of the scheduling using Hu’s Algorithm.

- %
PP

[ QR S &y oy Sy &

4.2.3 Parallel Implementation of the BTRAN Operation

>

In this section, we consider the parallel implementation of the following operation

-

- - ¢
n:ﬂm—lzm 3...2!' 3

where = is an arbitrary vector of m elements and each Z¥ is an m x m rank-2 maix that ‘

has the form (4.3).

The rule for computing & =u Z* is as follows:

-1 '-‘f‘r‘ PRI AN Ly,

a)Set i, e u; fori=k and i=k+1].

b) Set l-l';; — Up-m Zt:m.lz-

) Set ilivy e Ukom ZEm ka1 .
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o For example. letm = 6. k = 3 and suppose we have

G
' ! 00
i ¥
{ Zz%.={7 2 .and w=[111111].

-~ 34

e 62

e |

. L

s

St Thent=uZ¢=[1112911]

WV

i\-: Note that it differs from « in only the k** and the k+1% elements. Note also that the
N
f“:‘t elements u,,i=1, - k-1, are not required in computing &#. Using these observations,
3

the BTRAN process may be represented by the following.

Fork=m-1,---,1

2

z

-

~,~,'S.’ “
LS A

P

U & Ug.m zt:m,k-

Ups) & Uiem Zf:m,k—l .

B -’: ’
‘,S'L,'l.
AL

Next k.

-
* 4

..
'.%. .
Pavars

e We now apply the methodology stated at the end of the previous subsection. Let the fol-

a0

lowing operations define a task

N uk «—uk S, ((Z%). (4.8)

55 \ ul —ul +ut S; ;(Z)). (4.9)

-
[

We assume that the execution time of both operations is one unit. The task graph

LA
A A

G (V ,E) of the BTRAN process is defined by the vertex set V, where

[ 4
A
e

@

an operation (4.8),if i=j;
V ={v;; v, represents '
an operation (4.9), otherwise

SRR

v
-

S LA LL

Ayt
L'

and the edge set E, where

E ={(v,, ,vi:)loperation vy requires the direct result of operation v; ;}.

4
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_. G (V',E) has only one terminal node at which i =3 and j = 1. Following the same argu-
~:; ments used earlier with FSTG, we conclude that
./'
N D=m/2,
! and
4
» 1,ifi =j;
‘L: 1“‘1' =
.o (m—=i+3)/2, otherwise.
1 :
o Applving Hu's Algorithm to the BTRAN task graph yields the following ordering
‘,‘: of computations.
> Algorithm 4.4 - BTRAN Operation
‘_ Fork =m-1m-=3,---,1
§
:: u"(—u" SM(Z").
o
‘ :: Next k.
q . -
; Fori=m-1m-3,---3
_,: Forj=i=2i-4,---,1
<. .
v uw —ul +u'S, ;(@2Z).
_ Next j.
'.: Nexti.
“,
ol The ordering of the index i is imposed by the first criterion of Hu's Algorithm. The
N ordering of the indices & and j is the result of applying the second criterion. Parallelism
\ is gained by having the kid processors work first on loop k in parallel, and then for every
1 i, having the kid processors work on loop j in parallel.
¢
)
&
ff
¢
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V.SUMMARY

Evans and Hawzopoulos [1979-1] developed a new matrix factorization, known as
the Quadrant Interlocking Factorization (QIF), for solving linear systems on paraliel
computers. In this paper we have presented the algorithms required to use this new fac-
torization in Dantzig's simpiex algorithm for linear programming. This work may be
viewed as a parallelization of the simplex method using a quadrant interlocking factori-

zation for the basis inverse.

In Section 1, the factorization algorithms are developed, and the relationship of
quadrant and triangular matrices is presented. In Section III, 2 new algorithm is presented
for updating the factorization during a basis exchange step. In Section IV, we present a
parallel implementation of the factorization algorithm, and develop the algorithms
required to solve the linear systems of the simplex method on a parallel computer using
the QIF of the basis. For each algorithm the concurrency among the steps is revealed, the
computations are organized and a paralle! implementation is proposed. The algorithms
are designed for an MIMD parallel computer that incorporates p identical processors
sharing a common memory and capable of applving all their power to a singie applica-

tion in a timely and coordinated manner.
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;: The objective of this investigation is to computationally test parallel
W

"<

{ algorithms for finding minimal spanning trees. Computational tests were run on
N

;\: a single processor using Prim's, Kruskal's and Boruvka's algorithms. Our

3%

3

o implementation of Prim's algorithm is superior for high density graphs, while
N‘

n : our implementation of Boruvka's algorithm is best for sparse graphs. Implemen-
N tations of parallel versions of both Prim's and Boruvka's algorithms were A
. J.\

'f: tested on a twenty-cpu Balance 21000. For the environment in which a minimum
N

spanning tree problem is a subproblem within another algorithm, the parallel

B

A implementation of Boruvka's algorithm produced speedups of three and five on
a\g five and ten processors, respectively; while the parallel implementation of
o Prim's algorithm produced speedups of three and five on five and ten
,:' processors, respectively. The one-time overhead for process creation negates

ol

L most, 1if not all of the benefits for solving a single minimum spanning tree

\*’

subproblem.
.
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I. INTRODUCTION

The United States along with other developed countries is entering a new
generation of computing that will rcquire software engineers to reﬂesign and
reevaluate standard algorithms for the new parallel processing hardware that is
being installed throughout the developed world. It may well be that algorithms
which proved to be superior for single processor machines may prove to be
inferior in some of the new parallel processing environments. One of the more
popular new parallel machines is Sequent Computer Systems' Balance 21000. The
objective of this investigation is to computationally test parallel algorithms
for finding minimal spanning trees on a twenty-cpu Balance 21000.

An undirected graph G = [V,E] cunsists of a vertex set V and an edee set

E. Without loss of generality we assume that the edges are distinct. If G' =

{V',E'] is a subgraph of G with V' = V, then G' is called a spanning sudbgraph

for G. 1If, in addition, G' is a tree, then G' is called a spanning tree for G.

A graph whose components are trees is called a forest, and a spanning subgraph

for G, which is also a forest, is called a spanning forest for G. We will call

{[V4Ty): Vg = {uy), Ty =@, uy e V) the trivial spanning forest for G and the
[Vi'Ti] trivial trees. Associated with each edge (u,v) is a real-valued cost

c(u,v). The minimum spanning tree problem may be stated as follows: Given a

connected undirected graph each of whose edges has a real-valued cost, find a
spanning tree of the graph whose total edge cost is minimum.

Applications include the design of a8 distribution network in which the
nodes represent cities or towns and the edges represent electrical power lines,

water lines, natural gas lines, communication links, etc. The objective is to
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533; design a network which uses the least length of cable or pipe. The minimum
N

Vs

LA~ spanning tree problem is also used as a subproblem for algorithms for the

o

o travelling salesman problex (see Held and Karp [6, 7] and Ali and Kennington

S

[3]). Some vehicle routing algorithms require the solution of a travelling

3
(]

-’.

salesman problem on a subset of nodes. Hence, a wide variety of applications

l.
T
N

‘::. require the solution of minimal spanning trees. Some applications require a
) single solution and some use the model as a subproblem within another
>

™)
Lo algorithm.
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II. THREE CLASSICAL ALGORITHMS

The algorithms in current use may be traced to ideas developed by Prim,
Kruskal, and Boruvka. These three classical algorithms all begin'with the
trivial spanning forest Gp = {[V;,T;), i = Oyeees |V]=1). A sequence of
spanning forests is obtained by merging spanning forest components. Given
spanning forest G, a nonforest edge (u,v) is selected and the components
(v;,T;] and [V4T4) with u € V5 and v ¢ V4 are removed from Gy and replaced by
(Vg Tels where 2=k + [V], Vi = V;UVy, and Ty = T3 U Ty U {(u,v)), yielding

spanning forest Gy,;. After m = |V|-1 edges have been selected, G

e

{([VomsTor)) = {[V,T]} is a minimal spanning tree for G.
2o 2

.
»

2eL

Let [V,,Ty] and [Vj.Tj] denote two disjoint subtrees of G. Define dij'

.;. h

the shortest distance between the trees, by dj; = min {c(u,v): (u,v) ¢ E, ue

b
Vi, v e Vj). The three classical algerithms may be viewed as different

1@ |

.l?‘l

5

LN

.,
W

applications of the following result:

Proposition 1.
Let Vg, Vy,..,V, denote vertex sets of disjoint subtrees of a minimum
spanning tree for G. Let c(u,v) = dj = ?1n dJn with (u,v) € Vj x Vn. Then
(u,v) is an edge in a minimal spanning tree for G.
A proof of Proposition 1 may be found in Christofides [4, pp. 135-136].

In Prim's algorithm, the noniorest edge (u,v) for Gy is always selected so

that (u,v) e Vy x V where j* is the largest index j such that [Vj.Tj] € Gy.

J'*'
Thus a single component continues to grow as trivial trees disappear. An ex-
cellent description of Prim's algorithm is given in Papadimitriou and Steiglitz
(15, p. 273], slong with its (serial) computational complexity of 0(|V|2). It

is believed that this algorithm is best suited for dense graphs.
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In Boruvka's algorithm, the nonforest edge (u,v) for Gk is always selected
so that (u,v) € V s X Vj, where i* is the smallest index i such that [vi'Ti] 3
Gi. Thus a variety of different-sized components may be produced as the
algorithm proceeds. All trivial trees will be removed first in the early
stages of this algorithm. A description of Boruvka's algorithm is given in
Papadimitriou and Steiglitz [15, p. 277], along with its (serial) computa-
tional complexity of O(|E| log |V|). This algorithm appears to be best suited
for sparse graphs,

Kruskz1l's method may be viewed as an application of the greedy algoritho.
The minimum spanning tree is constructed by examining the edges in order of
increasing cost. If an edge forms a cycle within a component of G, it is
discarded. Otherwise it is selected and yields Gy,). Here also different-
sized components may be produced. A description of Kruskal's algorithm is
given in Sedgewick [18, pp. 412-413], along with its (serial) computational

complexity of O(|E! log |E|).




a0
QY

SN

S

- e e @
e
APl

R/

(e ¥y -
L@

,l '{l ;‘ "‘I ;‘l

PR R
v 0

III1. COMPUTATIONAL RESULTS WITH SEQUENTIAL ALGORITHMS

Computer codes for Boruvka's algorithm, Kruskal's algorithm, and three
versions of Prim's slgorithm were developed. SPARSE PRIM naintainﬁ the edge
data in both forward and backward star format, while DENSE PRIM maintains the
edge data in an {V| x |V| matrix. HEAP PRIM maintains the edge data in both
forward and backward star format and makes use of a d-heap as described in
Tarjan [19, p. 77). KRUSKAL makes use of a partial quick sort as described in
[1, 8] to produce the least cost remaining edge. BORUVKA is a straightforward
implementation of the algorithm presented in [15].

Random problems were generated on both n x n grid graphs and on completely
random graphs. All costs were uniformly distributed on the interval
[0, maxcost]. All codes are written in FORTRAN for the Balance 21000.

The computational results for grid granhs are presented in Table 1. These
graphs are very sparse and BORUVKA was the clear winner. The computational
results for random graphs may be found in Tables 2 and 3. SPARSE PRIM was the
winner for problems whose density was at least 40% with HEAP PRIM running a
close second. For problems with densities of 207 or less, HEAP PRIM was the
winner with KRUSKAL running a close second. KRUSKAL appeared to be the most

robust implementation, working fairly well on all problems tested.
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Table 1. Comparison of Sequential Algorithms on Grid Graphs
(cost range is 0 - 10,000)
Grid Size | Edges | Graph DENSE | SPARSE | HEAP | KRUSRAL | BORUVKA

pXNn Density | PRIM PRIM PRIM

15x 15 420 1.74 1.70 .36 «27 .19 .12

18 x 18 612 1.2% 3.54 T4 W42 .30 .17

20 x 20 760 1.0 5.43 1.10 .54 .39 .21

24 x 24 1,104 72 11,32 2.19 .82 .63 .30

28 x 28 1,512 .52 21,01 4.09 1.13 .86 46

30 x 30 1,740 A5 27.82 5.41 1.37 1.15 .55
| Total Time (secs.) | 70.82 | 13.89 | 4.55 | 3.52 1.81
| Renk | 5 | & | 3 | 2 1
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Table 2.

(cost range is 0 - 10,000)

Comparison of Sequential Algorithms on High Density Random Graphs.

Vertices

Edges

Graph
Density

DENSE
PRIM

HEAP
PRIM

KRUSKAL

BORUVKA

200
200
200
200
400
400
400
400
600

19,900
15,920
11,940
7,560
79,800
63,840
47,880
31,920
179,700

1007
80%
60%
40%

100%
807
60%
40%

100%

1.39
1.39
1.39
1.39
5.67
5.69
5.70
5.1
13.28

1.44
1.22
.99
.76
5.42
4.53
3.62
2.68
11.98

1.52
1.52
.96
.89
4.45
3.58
2.82
1.97
12.38

3.01

1.96
1.47

1.02

12.03

10.28

7.26

4.85
29.85

600 143,760 807 | 13.66 8.79 9.99 | 14.99 23.72
600 107,820 607 | 13.16 7.15 7.99 | 10.63 17.79
600 71,880 405 | 13.02 5.55 5.67 6.05 11.80
|Total Time (secs.) | 81.45 | 49.41 | 56.29 | 61.76 | 125.04
| kank i 4 1 2 | 3 | 5
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\*:' Table 3. Comparison of Sequential Algorithms on Low Density Random Graphs.
‘ (cost range is 0 - 10,000)
b
L Vertices Edges | Graph DENSE | SPARSE | HEAP | KRUSKAL | BORUVEA
L Density | PRIM | PRIM PRIM
[} H
XS 200 3,980 202 1.40 b .49 .50 .52
R
.
R 200 1,990 10% 1.40 | .36 .39 .40 .35
N 200 995 74 1.39 | .32 .32 .35 .17
(' - 400 15,960 202 5.66 | 1.75 1.62 1.47 2.46
S
fo 400 7,980 102 5.71 | 1.40 1.12 1.53 1.30
B (‘--"
s 400 3,990 5% 5.72 | 1.21 .86 | 1.20 .72
ca 600 35,940 202 13.06 | 3.94 3.39 3.99 6.02
S
;:ﬁ:t 600 17,970 10% 13.04 | 3.05 2.14 2.89 2.86
P A .
LN
S 600 8,985 s2 j13.07| 2,73 | 1.50| 2.12 | 1.52
(:-l |Total Time (secs.) | 60.43 | 15.20 | 11.83 | 14.45 | 15.92 |
o |Rank I s | 3 | 11 2 | & |
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IV. PARALLEL ALGORITHMS
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Parallel versions of the three classical algorithms have appeared in the

By

liter~_ure (see (2, 5, 9, 10, 11, 1z, 16, 17]), however; no computation
experience has been reported. The overhead required for coordinating the work
of multiple processors can only be determined by actual implementation on a
parallel processing machine.

A parallel version of Boruvka's algorithm was developed for grid graphs
and a parallel version of Prim's algorithm was developed for high density
randon graphs. Both algorithms use modules (subroutines) which may be executed
in parallel. Suppose there are p processors available for use. The parallel
operations are initiated by the main program using statements of the form:

for m = 1 to p, fork module z(m).

The main orogram and p-1 clones will each execute module z in parallel.
Processing does not continue in the main program until all processors complete
module z. The argument "m" allows each of the p processors to process

different parts of the data or follow a different path. We assume that all

data in the main program is shared with module 2. 1f module 2z has local non-

shared variables, then these will be explicitly stated in the description of
the module. Multiple processors which update the same variable, set, or list

use locks to insure that only one processor has access to a given item.
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4,1 Parallel Boruvka For Grids

Using the fork and lock constructs we present a parallelization of Boruvka's

algorithm for grid graphs. The most expensive component of Boruvka's
sequential algorithm may be described by the following procedure:
for all (u,v) ¢ E
let i and j denote the subtrees containing u and v, respectively;
if { ¢ j then
if cost(u,v) < min(i) then min(i) < cost(u,v)
if cost(u,v) < min(j) then min(j) € cost(u,v)
end if
end for
That is, all the edge costs must be examined and certain subtree data are
updated. Our parallelization of this scan relies upon & partitioning of the
grid into p components (one for each processor). A three processor parti-
tioning of a 7 x 7 grid network is illustrated in Figure 1.
The above edge scan is performed in two stages. The first stage perforams
a parallel scan over edges both of whose vertices lie within the same partition.
The second stage performs a parallel scan over edges across cut sets. If each
partition consists of at least two rows of the grid, then all subtree data up-
dating can be performed independently without the requirement of a lock.
The second part of Boruvka's algorithm is to merge two subtrees by
appending a new edge. The merger of subtrees, both of which lie in the same
partition can also be executed in parallel.

Using this data partitioning approach, the parallel algorithm may be

stated as follows:
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‘.' . . . . . . Y s

~t s
~ | pertition 2 y

£5%"] L
: [ ] L ] L] L] :

' | | | I | | | 3
! cut 2 :

: | | | | | | B

- H o N H ® d * !

K- | psrtition 3 by

N .

( . 1 ] . . » L] L ‘

K :

Wy :

N Figure 1. A Three Processor Partitioning of a 7 x 7 Grid Graph.
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Py PARALLEL BORUVKA FOR GRIDS

B .:?.‘

s
ii:} Input: 1. Ann x ngrid graph G = [V,E] with V « {v{,..., vq).
o

‘r“: 2. For each edge (u,v) ¢ E a cost c(u,v).
{ . 3. The number of processors, p, available for use.
.r:'.;

:{j Qutput: A minimal spanning tree [V,T].
. :. 2
-:{4 Assumption: G is connected and has no parallel edges.

’ o

begin

o
LA

T4 0, r & n/pl, £ & n - rp;

If r < 2, terminate.

-

»

for i = 1toq, S; <« (vi);

)

C & (Sy1,..., Sq}$

['d

Wi « {(v: v €V and v is in grid rows 1 through v + 2};

-\{:
.\‘3.,
4 for m = 2 to p,

*

‘{ti wm & {(v:i v eV and v is in grid rows (m-1)r + 2+ 1 through mr + ¢ };
oy for m=1top, Xy ¢- {(u,v): (u,v) € E, ue Wy, and v e W );

=

32_ form=1ltop-1,
!
iﬂf» Xop €~ {(uw): (uw) e Ewith ue W, ve Wy yoruce Woelr VE W)
P .

" for i = 1 to q, cpu(i) « m, where vi € Ws

) L4

a:: (comment: Spreves Sq are assigned to the p processes)

create p-~1 clones

G0

Y

‘%ii (comment: create p-1 additional processes and place them in the wait
R state)

:'.Q

)

sl vhile |C| # 1

L 3

“:: for m = 1 to p, fork module edgescan(l,m);

i~

N (comment: forks are executed in parallel and processing does not continue
.};3 in the main program until all processes complete edgescan)
-7

'\-.'.

° for m = 1 to p-1, fork module edgescan(2,m);
. ﬁ: L ¢ 0;

"
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I, e
T

®

’;‘h for ;= 1 to p, fork module merge(m);

'I

A

N for all (u,v) ¢ L do

W o

N

?‘*3 let S; and Sj be the sets containing u and v, respectively;
{ .
P, if |S5] < |s;] then
‘-“l
: ::' Si (—SIUSJ. C‘-C\SJ;
NN

~{
;\ﬁ: else

v ) . ) . .
e SJ “«~ Sy L)SJ. C <« C\S;;
::? end if
R

) T &« TU(u,v);

\"'-.
( end for

:‘ﬁt: end while

ey .

:i: kill the clones

‘;:: end

'{SE module edeescan(k,m)

o

o, begin

.z,

v
b "o
°»

A
.

.

(comment: k = 1 implies the scan is within partition m,
k = 2 implies the scan is across the cut set separating rartitions
mand m + 1)

5
-‘A'it'

"
Caraian

s sy

~
LA

for all (u,v) ¢ em

>

let Si' Sj be the sets containing u and v, respectively;

O

if {1 # j then

x
PR
1
’,

v
PR

if e¢(u,v) < min(i) then min(i) < c¢(u,v), shortest(i) & (u,v);

e

g

if ¢(u,v) < min(j) then min(j) 4 c(u,v), shortest(j) 4- (u,v);

-
»?

Y

P

end if

SO,
&

L)
[

(comment: shortest(i) is the least cost edge incident on Si)

[4

end for

end

.
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o,

L ]
b module merge(m)
oy begin
hew

$ fOl’ all Vk € wm do
1 (u,v) & shortest(k)

~
\ let Si, Sj be the sets containing u and v, respectively;
., if i # j then

\ if cpu(i) = cpu(j) then

"y

if |S;] < |S;i then

: | 1I | JI

L~

N S; ¢ 83U S;, C 4 C\Sy;
" else

: SJ é—SiUSJ-, C<—C\Si;

b end if
B!
" lock T

@

z, T« T U{(u,v))

'

v unlock T

> _—

; else
t lock L

.

b L« LVU{(u,v))

.:: unlock L

7_ end if

:‘-‘: end if

-,

fl

" end for

S

Py end
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® 4.2 Parallel Prim
103" H
:*\ﬂ The most expensive part of Prim's sequential algorithm is to find a

minimum entry in an |V| length array. This search can be allocated over p

processors, each of which finds a candidate minimum. The best of the p candidates

:\dk becomes the global minimum. Under the assumption that parallel edges do not
ey

§§ exist, there is also a scan of edges over the forward and backward star of a
P

, :' given node which can be executed in parallel. Date partitioning via the use of
\ )
S50 independent cut sets could also be used for random graphs in s manner similar
P

&
‘:gﬁ to that described in Section 4.1. That has not been done in this
Pooeces

) investigation.

The parallelization of Prim's algorithm may be stated as follows:
o PARALLEL PRIM

e Input: 1. A graph G = [V,E] with V= {v;,..., v,].

2. For each edge (u,v) € E, a cost c(u,v).

A

| R W R g

3. The number of processors, p, available for use.

Output: A minimal spanning tree, [V,T].

\\:" "

Assunption: G is connected and has no parallel edges.

begin

S5

Ué—{vll,vévl,Té 9

5O

.j- for i =1 ton, d(i) ¢~ «;
NN
s create p-1 clones
SN
.
\.’: (comment: create p-1 additional processes and place them in a wait
) state)
e
SN F « {((v,v) ¢ E};
b ‘-l-
_}ﬂ partition F into mutually exclusive sets F},...,F., s < p;
V.
"; for me 1 to s, fork module forwardscan(m);
T
" B ¢ {(u,w) € E};
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e
E:: partition B into mutually exclusive sets By,...,By t < ps
¥
*!
RN for ;= 1 to t, fork module backwardscan(m);
o
SO
e while U ¢ V do
(
b~ globalmin ¢~ =
AN
"
::': for m = 1 to p, fork module nodescan(m);
f‘.,f
b :': (comment: forks are executed in parallel and processing does not
‘ continue in the main program until all processes complete
! nodescan)
s hocescan
"
T T« TU(e(ibest)), U &« U U(w);
N L]
A
o0 F 4 ((w,v) € E);
Y
partition F into mutually exclusive sets Fiseeey Fgy 8 < ps
-::_‘;j for ;= 1 to s, fork module forwardscan(m);
oy —_— ——
o B ¢ ((u,w) ¢ E);
-:'u.:_
-;_,_ partition B into mutually exclusive sets By,..., Bey t < ps
\-':_"-: for ;=1 to t, fork module backwardscan(m);
AN —— ———————————
:::?.j end while
N kill the clones
¢
_&,;.: end
0
RS
1:.'::
o)
»
e
®
o
-j:rc
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2
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oyt
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module nodescan(m)
local data: min, x
begin
min ¢ o
for i = m to n step p do
if d(i) < min then min & d(i), x &« i;
end for

lock globalmin

:; if min < globalmin then globalmin 4 min, ibest & X, W & v ;
‘ unlock globalmin
end
N) module fowardscan(m)
3 begin
- for all (u,v) ¢ Fm do;
: if c(u,v) < d(v) then d(v) & c(u,v), e(v) & (u,v);
end for
end
[ <.
- module backwardscan(m)
begin
for all (u,v) € By dc;
if c(u,v) < d(u) then d(u) & c(u,v), e(u) & (u,v);
end for
end
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o V. COMPUTATIONAL RESULTS WITH PARALLEL ALGORITHMS
=
:: Both slgorithms of Section IV were coded in FORTRAN for the Balance 21000
o located in the Center for Applied Parallel Processing at Southern Methodist
gﬁc- University. The Balance 21000 is configured with twenty NS32032 cpu's, 32
‘553 Mbytes of shared memory, and 16K user-sccessible hardware locks. Each cpu has
,iﬁ 8 Kbytes of local RAM snd 8 Kbytes of cache. The Balance 21000 runs the DYNIX
13 ) operating system, s version of UNIX 4.2bsd. DYNIX includes routines to create,
,'SE synchronize, and terminate parallel processes from C, Pascal, and PORTRAN. More
zj details about the Balance 21000 may be found in [13].
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Table 4 gives the computational results with Boruvka's algorithm. The

-
”\i- times are wall clock times and are the average for three runs. The first row
3'\ﬁ‘ in each table contains the time for the sequential version of BORUVKA and all
K.
o~

other rows contain times for the parallel version. The sequential version is

l"“ ®

e
LR
’

-~
.
)

250 lines of code, while the parallel version required over 400 lines. The

-
) e
a

[l

speedup for a row is calculated by dividing the best sequential time by the

-
3

£ a8
[N

L,

time in that row.

o~

:Q h Initially, the parallel code creates the additional processes to be used
1"'

' iﬁ and requires each of them to build data tables which give the location in
W4

Y™ virtual memory of all shared data. Once this is done, the processes can be

S,

used repeatedly with little system overhead. However, this initisl creation

o
\‘_'.
. .
t:}% and the subsequent killing of those processes at termination can be very
S
:ﬁ:% expensive for this type of problem. The first column of times includes the
‘A Vel
!L. creation and process termination time while the second does not. Hence, if a
E:_; 350 x 350 minimal spanning tree was to be obtained one time, thenm the best
b
::{: speedup is 2.6 using seven cpu's. If however, this is s subprogram of a larger
S
) system, then a 350 x 350 problen can yield a speedup of four on six processors
-7 —_—
- and a speedup of five on ten,
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cpu's PARALLEL BORUVKA PARALLEL BORUVKA
(includes process creation) (excludes process creation)
time speedup time speedup
1+ 98.21 1.00 98.21 1.00
1= 112.57 .87 103.86 .95
2 66.93 1.47 57.49 1.71
3 50.26 1.95 40.92 2.40
4 40.25 2.44 29.95 3.28
5 39.00 2.52 26.52 3.70
6 38.69 2.54 23,45 4.19
7 37.70 2.60 21.62 4.54
8 40.98 2.40 21.58 4.55
9 42.49 2.31 20.85 4.71
10 41.30 2.38 17.52 5.61
) best sequential BORUVKA code
* parallel code run with a single processor
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Table 4.

Parallel Boruvka on 350 x 350 Gr1d Graph

[v] = 122,500

|E| = 244,300

(cost range is 0 - 100 000)
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Table 5. Parallel Prim on G = [V,E] with |V| = 900 and |E| = 404,550

YHaseey @

5

(cost range is 0 - 100,000)

"'.

~ .
- >
o cpu's PARALLEL PRIM PARALLEL PRIM ‘
- (includes process creation) (excludes process creation) t
"
t time speedup time speedup
N
.- 1+ 24.88 1.00 24.88 1.00
f\ \: {]
. 1= 27.09 .92 26.98 .92
2
( 2 23.35 1.07 15.12 1.65
<. 3 22.63 1.10 10.84 2.30
- 4 25.31 .98 8.74 2.85 :
2% 5 28.43 .88 7.39 3.37 ]
®
i 6 31.54 .79 6.62 3.76 \
ol {
.}: 7 36.51 .68 6.03 4.13
N ]
[ 8 41.08 .61 5.62 4.43 ]
g n 9 46.04 .54 5.30 4.69
..- R
3 10 50.54 49 5.02 4.96
.:: ;
o; + g
5 best sequential PARALLEL PRIM code
> * parallel code run with a single processor
K~
;:
‘S
;’ Table 5 gives the computational results with Prim's algorithm. No speedup
ts: is achievable for a one-time solution. For environments in which the minimum '
o)
i§ spanning tree problem is a subproblem, speedups of three and five were obtained :
- 4
- on five and ten processors, respectively. !
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% VI. SUMMARY AND CONCLUSIONS

Five computer codes were developed to solve the minimum spanning tree

P
AT .
}:}: problem on a sequential machine. These codes were computationally compared on
l.\.,‘-
'::j both grid graphs and random graphs whose densities varied from S% to 100%. The
'_\ implementation of Boruvka's algorithm (see [15, p. 277]) was the best for grid
-’,‘4
'jn graphs. An implementation of Prim's algorithms using a sparse data representa-
':“a"
"j: tion (see [15, p. 273]) was best for high density random graphs while an imple-
e
‘ mentation of Prim's slgorithm using a d-heap (see [19, p. 77]) was best for
?:3 lower density random problems. Kruskal's algorithm using a quicksort is the
'izl post robust of all the implementations, ranking either second or third in all
b
B ";
{Eg computational tests. Both Boruvka's and Prim's algorithms were parallelized by
o
j}: the method of data partitioning (also called homogeneous multitasking). This
[ I
-
o involves creating multiple, identical processes and assigning a portion of the
%
) "'n.'
> data to each processor. For the environment in which a minimal spanning tree
O\ problem is a subproblem within a larger system, speedups of five on ten
'\.':\
e processors were achieved with both Prim's and Boruvka's algorithms. The
)
»I-
B overhead for parallel processing on the Balance 21000 negates most of the
- benefits of parallel processing for the first solution of the minimal spanning
f \d
:Nj tree.
‘ol
::_‘:
.'\:-
®
o
4"1
[ " »
"l
~
oy
5
s E-23
'\‘,:
,§
=
o
@
A o L v Ak e a a a mn A g
R A g A S S 0o

-f T

" -0 " ,
.'..t" oW ‘ l'.q}n.q'l“" ;’"‘M .' .?WHO ,g!i X -:'.u"a"a"'.:' .'A“:' &- ‘ LN



o AL X
. @ FeEr
[N N S

s

" ' ‘.I‘.. LN

2R ARRRN

—

Rk
J',."f‘.'.{
.’l'.'l‘l"

'l

LR Y

-
=" M

e
s {‘t "I ‘,l f' *
1

[

-

L B
v s v
RAIE )

¥
Wl

P -" ." -" .‘

—~y
L g .l .f‘ '.‘ .‘l '..
[l [N
NAAARRBRS

O

A

o4, o, !
ALY TR B

_ .
> by v
B P S A
“ % L S L
-\-‘-'. IO P L

Sl

wa o mow,

@
‘l'\'.‘l o.‘x':‘_-'-'
. LR RS

Irl‘

10.

11.

12,

13.

14.

15.

REFERENCES

Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analvsis of
Computer Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

Akl, S., "An Adaptive and Cost-Optimal Parallel Algorithm for Minimum
Spanning Trees," Computing, 36 (1986) 271-277,

Ali, I., and J. Kennington, "The Asymmetric M-Travelling Salesman Problem:
A Duality Based Branch-And-Bound Algorithm,” Discrete Applied Mathematics,
13 (1986) 259-276.

Christofides, N., Graph Theorv: An Algorithmic Approach, Academic Press,
New York, New York (1975).

Deo, N., end Y. Yoo, "Parallel Algorithms for the Minimum Spanning Tree
Problem," Proceedings of the 1981 International Conference on Parallel
Processing, IEEE Computing Society Press, (1981) 188-189.

Held, M., and R. Karp, "The Travelling Salesman Problem and Minimum
Spanning Trees," Operations Research, 18 (1970) 1138-1162.

Held, M., and R. Karp, "The Travelling Salesman Problem and Minimum
Spanning Trees: Part II," Mathematical Programming, 1 (1970) 6-25.

Knuth, D. E.,, Sorting and Searching, Addison-Wesley, Reading,
Massachusetts (1973).

Kwan, S., amd W. Ruzzo, "Adaptive Parallel Algorithms for Finding Minimum
Spanning Trees," Proceedings of the 1984 International Conference on
Parallel Processine, IEEE Computing Society Press, (1984) 439-443,

Lavallee, I., and G. Roucairol, "A Fully Distributed (Minimal) Spanning
Tree Algorithm," Information Processing Letters, 23 (1986) 55-62.

Lavallee, I., "An Efficient Parallel Algorithm for Computing & Minimum
Spanning Tree," Parallel Computing 83, (1984) 259-262,

Nath, D., and S. Maheshwari, "Parallel Algorithms for the Connected

Components and Minimal Spanning Tree Problems," Information Processing
Letters, 14, 1 (1982) 7-11.

Osterhaug, A., Guide to Parallel Programming on Sequent Computer Systems,

Sequent Computer Systems, Inc., Beaverton, Oregon (1986).

Parallel Computers and Computations, Editors J. van Leevwen and J. K.
Lenstra, Center for Mathematics and Computer Science, Amsterdam, The
Netherlands, (1985).

Papadimitriou, C. and K. Steiglitz, Combinatorial Optimization: Algorithas
and Complexitvy, Prentice-Hall, Englewood Cliffs, New Jersey (1982).

E-24

":f\\-f‘ " PJ.:-*\
"‘ ' 'F ' .I
l.! ’.,0 .l‘al & cl.vn .» .!..l

) L

e ’-t.:,-f.; 4;4.'-r.:-.;--;;::;-;.:--;-:.;-: .;--;¢._~-.;» A

o

PR

"'-. '.:-"-_H‘_.\-,'a‘ .
},'s. -._'e,-.":\ -\.




WMWWW\W\W\WLW\\ﬂv MTRTRTITRTR R R AT RS

16.

17.

o 12.

19,

P et B R

=

«efa s n Lam Y

S AP ALY

y f J (

a0

5:!. ;-'\f'.r") Wi 5

Pawagi, S. and I. Ramakrishnan, "An O(log n) Algorithm for Parallel Update

of Minioum Spanning Trees," Information Processing Letters, 22 (1986) 223-
229.

Quinn, M. J., Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, New York, New York (1987).

Sedgenwick, R., Algorithms, Addison-Wesley, Reading, Massachusetts
(1983).

Tarjan, R. E., Data Structures and Network Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1983).

E-25
..... ,,,-_, PRI R RIS UL R NN TN,
AR '_-.H".r, N D TR Oy 2
-’D SR N “, “ R w(' Ce DAY A . ‘. K

Vol )
Rt eIt

W

L
»
-
-
13
-
.!

e
s

>y Ce T
i s ol

ey, -

., -‘»-‘1



< R R T T v vy RO S A RSUI S A AR AR A LA T St i A A g ATV T IR,

£ 5 9CAF 9K oK AAK S AF S 51K L SF S 5 K LA

D‘l

of

Rome Air Development Center

RADC plans and executes research, develcpment, test
and selected acquisdition proghams in supponrt ¢4
Command, Control, Communications and Intelligence
(C3T) activities. Technical and engineening
suppord within areas of competence 44 preovided tc
ESD Prognam Offices (P0s) and othen ESD clements

to penform effective acquisition of C31 systems.
Tne areas 0§ techndcal competence Lnclude

b communccations, command and control, battle

R management, Lngormaticn precessing, survedlflance

y  densons, Antelligence data collection and handling,
D  scldd state scdences, efectromagnetics, and
rrepagation, and electrendce, madintainability,

and compatibildity.
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