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This thesis consists of three parts. lIf the first part, we characterizercompletely the shared-memory

requirements for achieving agreement in an asynchronous system of fail-stop processes that die

undetectably. There is no agreement protocol that uses only read and write operations, even if at most

one process dies. This result implies the impossibility of Byzantine agreement in asynchronous

message-passing systems. Furthermore, there is no agreement protocol that uses test-and-set operations if

memory cells have only two values and two or more processes may die. In contrast, there is an agreement

protocol with test-and-set operations if either memory cells have at least three values or at most one

process dies.

- n h.segand-panw considei'the election problem on asynchronous complete networks when the
'A,

processors are reliable but some of the channels may be intermittently faulty. To be consistent with the

standard model of distributed algorithms in which channel delays can be arbitrary but finite, we assume

that channel failures are undetectable. W.-iv an algorithm that correctly solves the problem when the

channels fail before or during the execution of the algorithm. Let n be the number of processors in the

network. f be the maximum number of faulty channels, and r be a design parameter. The algorithm uses

no more than O( nrf+- n Iog( )) messagci in the worst case, runs in time 0( n-), and uses

at most O(og ITI) bits per message, where T-is the cardinality of the set of processor identifiers. If r is

chosen to mi!!L -mm=hxr of messages, our algorithm uses no more than O(nf+ nlog n) messages.

--in t2c third part, M.present the most efficiem algorithm #,tqe-knw of for election in

229
synchronous square meshes. The algorithm uses -2-n messages, runs in time E( F" ) time units, and
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requires 0 (log I T ) bits per message. Also, we prove that any conparison algorithm on meshes requires
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at least -Ln messages.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

Distributed systems are often used to access remote shared resources. These systems offer high

availability and reliability in addition to speed. A component failure in a distributed system leads only to

performance degradation, while a component failure in a single processor system is often catastrophic.

For example, the files in a distributed system usually have several replicas at various sites. If a site

crashes, then copies of the files are available at other sites. Furthermore, the nonfaulty sites can ignore

the failed site until it is repaired. Thus, distributed systems are partizularly suited to applications

requiring availability in adverse, stressful environments.

Distributed systems are either synchronous or asynchronous. The clocks of the processors in a

synchronous system are synchronized so that all processors execute each instruction within some fixed

time interval. On the other hand, the clocks of the processors in an asynchronous system are not

guaranteed to be synchronized. To solve a given problem, the processors in a distributed system must bc

able to communicate with one another. In shared-memory systems, the processors communicate through

shared-memory cells. These cells may reside at a central processor that offers virtual shared-memory

services. Sharcd-memory systems are analogous to PRAMs in parallel systems. In message-passing

systems, the processors communicate by passing messages to one another. Such systems are analogous to

fixed interconnection networks in parallel systems.

Link and node failures complicate the design of distributed algorithms. Failures may occur before

or during the execution of the algorithms, and hence data and messages may be lost. There are several

types of failure. For example, failures can be fail-stop, Byzantine, or intermittent. The fail-stop failure is

the most benign of the failure types; a failed node stops sending messages, and a failed link stops

transmitting messages. In the fail-stop failure, once a node or a link stops sending messages, it never

sends another message. On the other hand, the Byzantine failure is one of the most malicious of the

!
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failure types; nodes or links fail by altering messages, sending false information, and so on. The

intermittent failure is more malicious than fail-stop failure but less malicious than Byzantine failure;

nodes or links fail by losing messages at will. Schlichting and Schneider [46] show how to design a

network in which processors fail only by stopping.

To deal with faults, researchers either design algorithms that try to detect faults, or assume that the

faults are undetectable and design enough message-redundancy in the algorithms to tolerate the failures.

Preparata, Metze, and Chien [44] formulate necessary and sufficient conditions for automatic fault

detection in systems with multiple faults. Unfortunately, fault detection is not practical in asynchronous

systems since it forces the nodes to distinguish between very slow links and faulty links. Furthermore,

fault detection wastes valuable time in synchronous systems. Therefore, it is desirable to design fault-

tolerant distributed algorithms that do not rely on fault detection.

In this thesis, we solve some important problems often encountered in the design of fault-tolerant

distributed algorithms: Process agreement and election.

A fundamental problem of distributed computation is the construction of protocols to reach

agreement among the processes in a distributed computer system. Agreement appears in the design of

mutual exclusion algorithms for processes that compete for a shared resource. By communicating among

themselves, the processes agree on which process gains access to the resource. Agreement also appears in

transaction commitment protocols for distributed databases. A transaction may invoke several processes

-- sometimes called the agents of the transaction -- to access data records. To commit the transaction, all

processes must agree to write the new values of the records.

Election is the problem of choosing a unique processor as the leader of a network of processors.

The processors are identical except that each processor has a uniqae identifier chosen from a totally

ordered set. Initially, no processor knows the identifier of any other processor. Hence, the processors

cannot elect a predetermined leader. Two adjacent processors communicate by sending messages to each

other on the communication link connecting them. Two nonadjacent processors communicate through
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processors adjacent to both of them. The election problem occurs, for instance, when a processor must be

selected to replace a malfunctioning central lock coordinator in a distributed database system, or to

replace a primary site in a replicated distributed file system (5], (23], (37]. Election also occurs in

token-passing systems. The processors in these systems pass a unique token among themselves. The

processor that receives the token executes the processor's algorithm and then sends the token to some

other processor. If the token is lost, then the processors elect a leader to issue a new token.

1.2 Literature Survey

1.2.1 Process agreement

Protocols for agreement depend on the characteristics of the distributed system. The system may be

synchronous or asynchronous. The processes may communicate by passing messages or by accessing

cells in a shared memory. Process failures may be Byzantine, in which a faulty process may

communicate maliciously, or fail-stop, in which a process dies without communicating further.

Pease, Shostak, and Lamport [40] showed how to achieve agreement in synchronous message-

passing systems with Byzantine failures. In this situation the problem of reaching agreement is called the

Byzantine Generals Problem. Dolev et al. [15] and Dolev and Strong [17] devised more efficient

solutions for the Byzantine Generals Problem. The most efficient solution to the problem was presented

by Coan [13]. His paper also includes an extensive bibliography on the problem. Dolev, Dwork, Lynch,

and Stockmeyer (14], (18] gave conditions under which limited asynchronism can be tolerated in the

Byzantine Generals Problem.

Now consider asynchronous systems with fail-stop processes. For detectable process death, a

mutual exclusion algorithm of Bums [9] can be modified to achieve agreement with two-valued shared

memory cells, and the protocols of Schneider [47] achieve agreement on message-passing systems. For

undetectable process death, the decentralized simulation of resource managers of Jaffe [31] achieves

agreement with test-and-set operations on four-valued shared memory cells. (Actually, three-valued cells

suffice [30].) Indeed, Jaffe's simulation uses 0 (n 2 ) cells to achieve agreement an unlimited number of

1
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times. On the other hand, Fischer, Lynch, Merrit, and Paterson [19], [20] proved that agreement cannot

be achieved in asynchronous message-passing systems with the undetectable death of even one process;

their result holds a fortiori for Byzantine failures.

All papers that we have cited treat only deterministic protocols. Ben-Or [8] designed a simple

probabilistic agreement protocol for completely asynchronous message-passing systems with Byzantine

failures.

1.2.2 Election

There are three common measures of the efficiency of a distributed algorithm: the maximum

number of messages sent during any execution of the algorithm, the maximum running time of the

algorithm, and the size of the messages required in the algorithm. Election algorithms should minimize

all three measures.

Several synchronous and asynchronous election algorithms have been proposed on a variety of

network topologies. Gafni [23], and Galiager, Humblet, and Spira [24] prove that election algorithms

that work for all networks require e(m+nlog n) messages, where m is the number of links in the network.

Now consider election algorithms that work for specific networks. Bums [9], Frederickson and

Lynch [22], and Pachl, Korach, and Rotem [39] show that election in synchronous rings requires

fQ(nlog n) messages. Since synchronous rings are a special case of asynchronous rings, election

algorithms for asynchronous rings also require 92(nlog n) messages. A series of increasingly efficient

election algorithms for rings appeared in the literature [11], [28], [42]. The recent algorithm by van

Leeuwen and Tan [49] works for synchronous and asynchronous rings and uses 1.44 nlog n messages in

the worst case. Similarly, Afek and Gafni [4] and Peterson [41] prove that election in synchronous and

asynchronous complete networks requires e(nlog n) messages. Afek and Gafni show that election

algorithms for synchronous complete networks require 9(nlog n) messages and run in time e(log n) time

units. Next, Afek and Gaf-ni [4], and Peterson [411, develop several asynchronous algorithms for

complete networks that have a time complexity of 0(n) time units and a message complexity of



E(nlog n) messages.

Election algorithms for some networks can be improved if the processors have additional

information besides the topology. For example, Loui, Matsushita. and West [351 show that 0(n)

messages suffice for election in asynchronous complete networks if at each processor the label on each

link gives the distance, along a fixed Hamiltonian cycle, to the processor at the other end of the link.

Also, Peterson [41] proves that election in asynchronous square meshes requires only 0 (n) messages if

the processors have a sense of direction [451, i.e., the processors have a consistent view of the north, east,

south, and west direction in the mesh. When each processor can distinguish between its left link and its

right link in a ring, Dolev, Klawe, and Rodeh [16] present an election algorithm that works for

synchronous and asynchronous rings and uses 1.356 nlog n wrcssages in the worst case.

The references we cited so far assume that the election algorithms are comparison algorithms, i.e.,

the election algorithms are restricted to use only comparisons of processor identifiers. Frederickson and

Lynch [22] prove that both the departure from the comparison model and the possibility of using a large

number of rounds are necessary in order to obtain an election algorithm of 0 (n) message complexity for

synchronous rings. Gafii [23] presents a synchronous noncomparison election algorithm for rings. The

algorithm is of message complexity 8(n) and of time complexity ((n2+ I 2) where I T is the

cardinality of the set of the node identifiers.

Processor and communication link failures complicate the election problem. The impossibility

result of Fischer, Lynch, and Paterson [20] implies that if a node may fail by stopping, then no election

algorithm exists for asynchronous networks even if all the links are reliable. On the other hand, the

synchronous algorithms of Pease, Shostak, and Lamport [40], Dolev et al. [15], Dolev and Strong [17],

and Coan [ 13] can be modified to obtain election algorithms for synchronous complete networks with

Byzantine node failures.

Only recently have algorithms been designed for networks with faulty links. Goldreich and

Shrira [25] study election in asynchronous rings with one intermittently faulty link. If n is known to all
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the nodes, then they present an algorithm that uses 8(niog n) messages; otherwise, they develop an

algorithm that uses 9(n 2 ) messages. Cimet and Kumar [12] discuss an algorithm that elects a leader

when links fail detectably. The type of failure they consider isfail-stop.

1.3 Contents of the Thesis

Chapters 2, 3, and 4 are self-contained papers, except that all the references are grouped together at

the end of the thesis. The reader may choose to read any chapter without referring to other chapters.

In Chapter 2, we characterize completely the shared-memory requirements for achieving agreement

in an asynchronous system of fail-stop processes that die undetectably. This work, co-authored with

Michael C. Loui, appeared in Advances in Computing Research [34]. Section 2.4 appeared in Hosame

Hassan Abu-Amara's M.S. thesis [3].

In Chapter 3, we present an algorithm for election in asynchronous complete networks when the

links may fail intermittently and undetectably. The algorithm appeared in the IEEE Transactions on

Computers [2].

In Chapter 4, we describe an efficient algorithm for election in synchronous square meshes. Also,

we prove a lower bound on the number of messages any algorithm uses in synchronous meshes.

In Chapter 5, we discuss some open problems.
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CHAPTER 2

MEMORY REQUIREMENTS FOR AGREEMENT
AMONG UNRELIABLE ASYNCHRONOUS PROCESSES

2.1 Introduction

We study an asynchronous system of processes that communicate via a shared memory and die

undetectably. Each process has a binary input, and the processes together must agree on a decision that is

one of their inputs. We prove that there is no agreement protocol that uses only read and write

operations, even if the protocol may assume that at most one process dies. Furthermore, there is no

agreement protocol that uses test-and-set operations if the memory cells have only two values and two or

more processes may die, but there are test-and-set protocols if either memory cells have three values or at

most one process dies. A table in Section 2.6 summarizes our results. Our results imply that Jaffe's

simulation [311 cannot be modified to use two-valued memory cells.

Fischer, Lynch, and Paterson [20] proved that agreement cannot be achieved in asynchronous

message-passing systems with the undetectable death of even one process; their result holds a fortiori for

Byzantine failures. There are three major differences between their paper and ours, however. First,

Fischer, Lynch, and Paterson assumed only one kind of "atomic step" similar to our test-and-set

operation; in one step a process receives a message, changes state, and broadcasts a message to all

processes. Besides test-and-set protocols, we study protocols with read and write operations. Second,

Fischer, Lynch, and Paterson did not consider the message contents, whereas we show that the size of the

set of values that cells may store affects whether agreement is possible. Third, Fischer, Lynch, and

Paterson assumed a weak communication mechanism: there is no bound on the delay between sending

and receiving a message. In contrast, in our shared memory the new value of a cell becomes available for

reading immediately after a process writes the cell. Dolev, Dwork, and Stockmeyer [14] called the

communication mechanism of Fischer, Lynch, and Paterson asynchronous and our communication

mechanism synchronous. Recently, Abrahamson [1] and Herlihy [27] generalized our results.

I
I



Section 2.2 defines process systems, agreement protocols, resilience, and computation graphs.

Section 2.3 presents three simple agreement protocols. Section 2.4 establishes the impossibility of fully

resilient agreement, Section 2.5 the impossibility of k-resilient agreement. Although the results of

Section 2.5 supersede the results of Section 2.4, their proofs are significantly more difficult. Since

Sections 2.4 and 2.5 are each self-contained, the reader may choose to read only the section of interest.

2.2 Definitions

2.2.1 Process systems

Informally. a process system is a set of asynchronously executing processes in a computer system.

The processes communicate via a shared memory. Any memory local to a process is incorporated into its

state.

Formally, a process system S consists of the following:

(1) A finite set of memory cells, denoted MEM (S). Let m I MEM (S) 1, and let VAL (S) be the finite

set of possible cell values. For nontriviality, I VAL (S) I Z 2.

(2) A set of processes, denoted PROC (S). Let n = I PROC (S) I. Let STATES (j,S) be the finite set of

states of process j for j = 1, ..... n. STATES (i,S) and STATES (j,S) are disjoint if i * j.

(3) A cell assignment function 0

cell: U STATES (jS) --+ MEM(S)
j-1

that associates with each process state q in each STATES (j,S) the cell cell (q) in MEM (S) that

process j accesses when it is in state q.

(4) Partial process transition functions 81 .... , 8., with each

8j: STATES (j,S) x VAL(S) -+ STATES (j,S) x VAL(S).

8(q,v) may not be defined for some process states q.

The set of system states of S is
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SYS (S) = STATES (1,S) x STATES (2,S) x ... x STATES (n,S) x [VAL (S)]".

The state of process j in system state s, denoted state (j,s), is the jth coordinate. The value of cell c in

system state s is denoted value (c,s). In an initial system state all cells have the same value. The state of

a process in an initial system state is its initial state.

The process transition functions induce a system transition function

A: [1,2 . n) x SYS (S) -+ SYS (S)

defined as follows. For j in { 1,2,... n} and s in SYS (S) let q = state (j,s), c = cell (q), v = value (c,s),

and 8j(q,v)=(q ,v ). Then

state (j, A(j,s)) = q , and state (i, A(js)) = state (i,s) for all i*j;

value (c, A(j,s)) = v , and value (d, A(j,s)) = value (ds) for all d~c.

We say that A(j,s) is the new system state after a transition from s by process j. The definition of A(j,s)

implies that only process j may change state and only cell c may change value. Moreover, the new state

of process j and the new value of c depend on no other process states or cell values.

A computation is a sequence of system states

Sl, $S2"'

such that so is an initial system state, and for every i there is some process j such that si I = A(j,si). A

computation terminates at system state sf if there is no process j for which A(j,sf) is defined. Call sf the

final system state in the computation.

2.2.2 Agreement protocols

After we define agreement protocols informally, we give precise definitions.

Every process in S has an input in {0, 1). An agreement protocol i for S is a protocol such that at

the end of every computation induced by 11 the processes must agree on a common decision that is the

input of one of the processes. Furthermore, f has these properties:

(1) every computation induced by n terminates;
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(2) ll tolerates undetectable process death;

(3) the processes communicate only through the shared memory.

All processes must eventually agree on either 0 or 1. The processes cannot agree on a fixed value such as

0. For example, if all inputs are 1, then all decisions must be I.

Formally, for every process j, STATES (jS) has five special states B ,5' B), E0 E' and D The
initial state of process j is either B or Bj. The input of process j is 0 (1) if its initial state is B0 (B').

The decision of process j is 0 (1) if state(j,sf) = ZO; (El). Process j is dead in system state s if state (j,s)

= Dj. If process j is not dead in system state s. then it is live in s. Section 2.2.3 will discuss dead

processes further. Once process j enters E° or E! or Dj, it makes no further transitions: Sj(Ev).

8j(Ejl ,v), and 81(Dj.v) are undefined for all cell values v.

An agreement protocol n for S is a specification of the process states and process transition

functions of S such that

(1) every computation induced by I terminates;

(2) for every computation induced by n the decisions of all live processes are the same;

(3) if some process in the final system state sf is live, then its decision is the input of one of the

processes.

Note that ' must necessarily tolerate undetectable process death because for every j, when process j

makes a transition, it does not inspect the state of any other process.

Now we define two kinds of agreement protocols: read/write protocols and test-and-set protocols.

To simplify the notation assume that VAL(S) = (0,1 . It is straightforward to modify the following

definitions for I VAL (S) I > 2.

For read/write protocols a process may atomically read or atomically write a cell. Formally, each

state in STATES (j,S) other than E° , EJ, or D. can have two forms:



I
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(i) q= (j,READ,c,ro,rj), where c e MEM(S)andr 0 ,rt E STATES(j,S). Herecell(q)=c.

Furthermore,

Sj(q,O) = (ro,O) and 8j(q, 1) = (r 1.1).

That is, process j reads cell c. If the value of c is 0 (1), then the next state of process j is ro (r 1),

and the value of c remains the same. Call q a READ state.

(ii) q = (j,WRITE, c,r,v), where c e MEM(S), r e STATES(JS), and v r VAL(S). Here cell (q) = c.

Furthermore,

Sj(q, 0) = Sj(q, 1) = (r,v).

That is, without inspecting the current value of c, process j writes the value v into c and enters state

r. Call q a WRITE state.

For test-and-set protocols a process may read (test) a cell, and depending on its value, write (set) a

new value into the cell and change state in one atomic step. Formally, each state in STATES (j,S) other

than E4j, E!, or Dj has the form

q =(J,c,ro,rl,vo,v1 ),

where c e'MEM(S), ro,r I e STATES (j,S) and vo,vI e VAL (S). Her c = cell (q). Furthermore,

8j(q,0)=(r0 ,vo) and 8j(q, 1)=(rj,vj).

That is, if the value of c is 0 (1), then the next state of process j is ro (r 1 ), and the new value of c is vo

(vj). With a test-and-set operation one can implement both a read operation (by setting v0=0 and vl=l)

and a write operation (by setting ro=rI and v o--v ).

This test-and-set operation was popularized by Lynch and Fischer [36]. In the traditional, weaker,

test-and-set operation (Peterson and Silberschatz [43]) the process must set the cell to the same value,

regardless of the cell's old value. Our test-and-set operation can implement the weak test-and-set

operation by setting vo=v 1.
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2.2.3 Process death

Section 2.2.1 defined a deterministic system transition function A. We modify the definition to

model spontaneous process death - a process may die at any time. Define A to be a nondeteministic

partial function induced by the process transition functions as follows. For j in { 1,2,. . . , n) and s in

SYS (S) let q = state (j,s), c = cell(q), v = value (c,s), and 8j(q,v) = (q',v ). Then

state (j,A(js)) e (q ,D);

state (i, A(j,s)) = state (i,s) for all i;j;

value (c, A(j,s)) = v if state (j, A(j,s)) = q , but

value (c, A(j,s)) = value (c,s) if state (j, A(is)) = Dj; and

value (d, A(j,s)) = value (d,s) for all d*c.

In other words, A(j,s) is one of two new system states. If process j dies by entering state D,, then no cell

value changes. In particular, a process may die on its first transition without changing the value of a

memory cell. After a process dies, it makes no further transitions.

2.2.4 Resilience

Protocols that allow processes to wait differ subtly from protocols that always force processes to

make progress. A protocol is k-resilient if it achieves agreement in all computations with at most k

process deaths, provided that every live process eventually makes transitions. Call an (n-l)-resilient

protocolfully resilient. By definition, every k-resilient protocol is k'-resilient for all k'<k. A k-resilient

protocol could allow a process to wait for other processes to take transitions. For example, standard

mutual exclusion protocols are 0-resilient since they assume a perfectly reliable system; in these protocols

fast processes wait for slow processes that eventually make transitions. A I-resilient protocol assumes

that at most one process will die; thus all processes can wait for one of two distinguished processes to

change the value of a cell. In contrast, in fully resilient protocols live processes must not wait for other

processes to make transitions. The simulation of Jaffe [31] requires fully resilient protocols. This

simulation assumes that a dead process is indistinguishable from a slow process.
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2.2.3 Computation graphs

The following definitions are used in Section 2.4 and Section 2.5.

Let H be an agreement protocol, and let so be an initial system state. Define a directed computation

graph F = (V,A) for ' as follows. The node set V is the set of system states s such that s has no dead

processes and s is in some computation of l starting from some initial system state. There is an arc (s,t)

in A if and only if A(j,s) = r for some process j; that is, t follows from s after a transition by process j.

Label arc (s, ) with j. Call t a child of s. Node u is reachable from node s if there is a directed path from

s to U.

In the sequel we shall not distinguish between a node s in V and the system state corresponding to s.

Also, we shall not distinguish between an arc and the process transition corresponding to the arc.

A leaf of F is a node with no children. By construction, the leaves of F are system states in which

the state of every process j is in (EE1 ). Since n is an agreement protocol, the processes at a leaf t must

have the same decision. Call t a 0-leaf (1-leaj if the decision of the processes in system state t is 0 (1).

Call a node s bivalent if there is a 0-leaf reachable from s and a l-leaf reachable from s. Call a node s 0-

valent if every leaf reachable from s is a 0-leaf. By definition, every node reachable from a 0-valent node

is 0-valent Also, if state (js) = Eq for some process j, then s is 0-valent because j will make no further

transitions, and all processes will agree with the decision of j. Similarly, call a node s l-valent if every

leaf reachable from s is a I-leaf. Call node s univalent if it is either 0-valent or 1-valent. Every node is

either bivalent or univalent.

2.3 Three Agreement Protocols

This section describes three simple test-and-set protocols that motivate the main results of Sections

4 and 5. We present the protocols informally; it is straightforward to express the protocols in terms of

process states and process transition functions.

Firt, let PROC (S) = { 1,2,.. . , n). We can guarantee that all processes achieve the same decision

by using one three-valued cell c. That is, VAL (S) = (0,1,#), and MEM(S) = [c}. Assume that the initial
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value of c is # (blank). In the agreement protocol for this system the first process to take a transition sets

c to its input, and all later live processes adopt this value as their decisions.

Protocol 1. Every process executes the following:

1. Test-and-set c. If the value of c is #, then set c to O (1) if the input is 0 (1) and keep the input as the

decision. If the value of c is not #, then set the decision to the value of c.

Theorem 3.1: For any number of processes, there is a fully resilient agreement protocol that uses test-

and-set operations on one three-valued cell.

Second, consider a system S with two processes, PROC (S) {1,2), and two-valued cells, VAL (S)

(0,1). Assume that the initial value of every cell is 0. It is easy to design an agreement protocol with

three cells: each process uses one cell to announce its input, and then the processes test-and-set the third

cell to 1; the decision of both processes is the input of the process that changed this cell from 0 to 1. We

show that just two cells suffice. Let MEM (S) = (c,d). Both processes execute the following protocol.

Protocol 2.

1. Test-and-set c. If the value of c is 1, then leave c unchanged, set the decision to 1, and halt. If the

value of c is 0, then set the value of c to the input, and continue.

2. Test-and-set d. If the value of d is 0, then set d to 1, keep the input as the decision, and halt. If the

value of d is 1, then leave d unchanged, and continue.

3. Read c. If the value of c is 0, then set the decision to 0. If the value of c is 1, then set the decision

to the complement of the input; that is, if the input is 0 (1), then the decision is 1 (0).

Theorem 3.2: For two processes there is an agreement protocol that uses test-and-set operations on two

two-valued cells.

Proof: We establish the correctness of Protocol 2. Call the processes George and Hannah, and assume

that George performs the test-and-set on c fiist.
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Case 1: The input of George is i. Since George sets c to 1, Hannah determines that the value of c

is I, and Hannah halts with decision I without accessing d. Thus, George must find that d is 0. After

George sets d to 1, it halts with decision 1.

Case 2: The input of George is 0, and George sets d to 1 first. In this case George retains 0 as its

decision. After Hannah finds that d is 1, it reads c again. The value of c at this time is Hannah's input. If

c is 0, then Hannah halts with decision 0, agreeing with George. If c is 1, then Hannah sets its decision to

0, the complement of its input, again agreeing with George.

Case 3: The input of George is 0, and Hannah sets d to I first. In this case Hannah retains its input

as its decision. After George finds that d is 1, it reads c again. The value of c at this time is Hannah's

input. If c is 0, then George halts with decision 0, agreeing with Hannah. If c is 1, then George sets its

decision to 1, the complement of its input, again agreeing with Hannah.F'

Section 2.4.3 shows that there is no fully resilient test-and-set protocol with two-valued cells if there

are more than two processes.

Third, we present a I-resilient test-and-set protocol for n processes with four two-valued cells.

Consider a system S with PROC(S) = {1,2_... ,n), MEM(S) = {c,d,e,fl, and VAL(S) = {0,1). Assume

that the initial value of every cell is 0. In the agreement protocol for this system process 1 and process 2

execute Protocol 2 using cells c and d. Then both write the decision into cell e and set cell f( (finished")

to I to signify the completion of the protocol. Processes 3, .. n wait until either process 1 or process 2

sets fto 1.

Protocol 3. Processes I and 2 execute A l through A5 below.

Al. Test-and-set c. If the value of c is 1, then leave c unchanged, set the decision to 1, and go to step

A4. If the value of c is 0, then set the value of c to the input, and continue.

A2. Test-and-set d. If the value of d is 0, then set d to 1, keep the input as the decision, and go to step

A4. If the value of d is 1, then leave d unchanged, and continue.
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A3. Read c. If the value of c is 0. then set the decision to 0. If the value of c is 1, then set the decision

to the complement of the input.

A4. Write the decision into e.

A5. Write 1 into f.

Processes 3 .... n execute B I and B2 below.

BI. Repeatedly readfuntil its value is 1.

B2. Read e and set the decision to the value of e.

Theorem 3.3: For any number of processes, there is a 1-resilient agreement protocol that uses test-and-

set operations on four two-valued cells.

Proof: We establish the correctness of Protocol 3 for computations in which at most one process dies.

By the correctness of Protocol 2, both process 1 and process 2 choose the same decision v. Since at most

one process dies, either process 1 or process 2 sets cell e to v and cell f to 1. Once fis set to 1, the value

of e will not change. Therefore, processes 3 .... n will eventually read e and set their decisions to v. 0

Section 2.5.3 shows that there is no 2-resilient test-and-set protocol with two-valued cells.

2.4 Impossibility of Fully Resilient Agreement

2.4.1 Properties of fully resilient protocols

Let 1l be a fully resilient agreement protocol on the process system with n processes. Let F be the

computation graph for nl.

Lemma 4.1: r is acyclic.

Proo' Suppose, on the contrary, F has a directed cycle

S1, S2, . Sk, S1.

The arcs in this cycle define an infinite sequence of process transitions because the participating processes

do not have decisions. Because this computation does not terminate, this contradicts the hypothesis that

l is a fully resilient agreement protocol.0
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For a node s and a process j, consider the directed path in r that starts at s and follows only arcs

labeled j. Since l is fully resilient, it achieves agreement even if all processes but j die; hence, this path

must end at a system state t in which process j has a decision. That is, state (j,t) e (EO,EJ}. Define

endpath (j,s) to be this system state t.

Lemma 4.2: There is a bivalent initial system state.

Proof: Let G and H be processes. Let so be an initial system state in which the input of process G is 0

and the input of H is I. Let sG = endpath(G,so) and sH = endpath(H,so). When G reaches its state in sG

it must have a decision that should be valid even if all other processes died. Thus the decision of G in sG

is 0. It follows that the decisions of all processes in all leaves that are successors of SG must be 0.

Similarly the decisions of all processes in all leaves that are successors of sH must be 1.0

Lemma 4.3: Every bivalent node has n children.

Proof: Let s be a node with fewer than n children. There is some process j with no transition from s.

Then state (j,s) is either E° or Ej. In the first case the decision of every process in every leaf reachable

from s must be 0, in the second case 1. Consequently, s is univalent.C

Lemma 4.4: There is a bivalent node s whose children are all univalent.

Proof: Let W be the bivalent nodes of F. By Lemma 4.2, W is not empty. By Lemma 4.3, each node in

W has n children. If every node in W had a child in W, then since F is acyclic, F would be infinite.

Because F is finite, there is a node s in W such that all children of s are not in W.D0

Lemma 4.4 asserts the existence of a crucial node s such that every transition from s compels an

irrevocable decision. We show that each of these transitions must change the value of a cell.

Lemma 4.5: Let j be a process and s and t be system states such that state (j,s) = state (j,t) and

value (c,s) = value (c,t) for all memory cells c. Then the decisions of process j in endpath(j,s) and in

endpath (j,t) are the same.

I
I
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Proof: Lets' = A(j,s) and: = Aj,t). The hypotheses on s and t guarantee that state (J,s') = state (j,t)

and value (c,s) = value (c,t°) for all memory cells c. By induction, the states of process j in endpath (j,s)

and in endpath (J,t) are the same.O

Lemma 4.6: Let s be a bivalent node whose children are all univalent. For every process j, the transition

by j from s changes the value of the cell that j accesses in s.

Proof: Let George (G) and Hannah (H) be any processes such that w = A(G,s) is a 0-valent child of s and

x = A(H,s) is a 1-valent child of s. Let cG = cell (state (G,s)) and cH = cell (state (H,s)). If, to the

contrary, the transition by George from s to w does not change the value of cG, then for every cell d,

value (d,s) = value (d,w). Consequently, by Lemma 4.5, since state (H,w) = state (H,s), the decisions of

Hannah in endpath (H,w) and in endpath (H,s) would be the same. But this is impossible because w is

0-valent and x is 1-valent Similarly, the transition by Hannah from s to x changes the value of CH.E"

2.4.2 Read/write protocols

Theorem 4.1: There is no fully resilient read/write agreement protocol for n >_ 2.

Proof: Suppose H is a fully resilient read/write agreement protocol. In the computation graph for H

Lemma 4.4 guarantees the existence of a bivalent node s whose children are all univalent. Choose a 0-

valent child w of s and a I -valent child x of s. Let George (G) and Hannah (H) be the processes such that

w = A(G,s) and x = A(H,s). Let y = A(H,w) and z = A(G,x). Since w is 0-valent, y is 0-valent. Since x is

1-valent, z is 1-valent. See Figure 2.1.

Let qG = state (G,s) and qH = state (Hs). Lemma 4.6 guarantees that both qG and qH are WRITE

states. Let cc, = cell (qc) and cH = cell (qH). We examine two cases, both of which lead to

contradictions.

Case 1: cG * cH. Since the transitions by George and by Hannah affect different memory cells,

system states y and z are the same. But y = z cannot be both 0-valent and 1-valent.

Case 2: CG = cH. Since the transition by George from x to z obliterates the value written by Hannah

in the transition from s to x, value (cG,w) = value (cG,z). Indeed, value (d,w) = value (d,z) for all cells d.
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Figure 2.1. The Transitions by G and H from s

Furthermore, George's state is the same in both w and z. By Lemma 4.5. George's decision in

endpath (Gw) is the same as in endpath (G,z). But this is impossible because w is 0-valent and z is I-

valent--

Theorem 4.1 is similar in spirit to Theorem I of Johnson and Schneider [32].

2.4.3 Test-and-set protocols

Theorem 4.2: There is no fully resilient test-and-set agreement protocol if nZ3 and memory cells have

1only two values.

Proof: Suppose H is a fully resilient test-and-set agreement protocol for a system with n > 3 processes

and two-valued memory cells. In the computation graph for H Lemma 4.4 guarantees the existence of a

bivalent node s whose children are all univalent. Choose a O-valent child w of s and a 1-valent child x of

i '
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s. Let George (G), and Hannah (H) be the processes such that w = A(G,s) and x = A(H,s). Let y =

A(Hw) and z = A(G,x). Since w is 0-valent, y is O-valent since x is 1 -valent, z is I -valent. See Figure

2.1. Let cG = cell (state (G,s)) and cH = cell (state (Hs)). We examine two cases, both of which lead to

contradictions.

Case 1: cG cH. Since George and Hannah access different cells, system states y and z are the

same. But y = z cannot be both 0-valent and 1 -valent.

Case 2: cG = cH. Let c = c0 = cH. Because c can attain only two different values and because, by

Lemma 4.6, both the transition by George to w and the transition by Hannah to x change the value of c, it

follows that value (c,w) = value (c,x). Since na3, there is a process Frances (F) different from both

George and Hannah. By Lemma 4.5, since state (F,w) = state (F,x) = state (F,s), the decisions of Frances

in endpath (F,w) and in endpath (F,x) are the same. This is a contradiction because w is 0-valent and x is

I-valent.O

2.5 Impossibility of k-Resilient Agreement

We establish that there is no 1-resilient read/write agreement protocol and no 2-resilient test-and-set

agreement protocol. These results imply Theorems 4.1 and 4.2, but their proofs are more subtle. The

proofs resemble the arguments of Dolev, Dwork, and Stockmeyer 114], who considered only message-

passing systems.

2.5.1 Properties of k-resilient protocols

Let S be a system of n processes; we allow processes to have an infinite number of states. Let rI be

a k-resilient agreement protocol for S with ktl. Let r be the computation graph for rl. If k <n-l, then

since rI may allow processes to wait, r may have directed cycles. For example, in Protocol 3 in Section

2.3, process 3 repeatedly reads f until process I or process 2 writes 1 into f. Furthermore, if the number

of process states is infinite, then r would be infinite. The proofs in Section 2.4 require that F be acyclic

and finite.



LII

21

In r let R be a directed path, possibly with repeated nodes, from node s to node t. Let nodes (R) be

the sequence of nodes visited by R, including s and t. For a set of processes P call R P-free if R has no

transitions by processes in P. If P has at most k processes, then since fl is k-resilient, from every node

there is a P-free path to a node in which all processes not in P have reached the same decision.

Lemma 5.1: Let s and t be univalent nodes such that value (c,s) = value (c,t) for all memory cells

c. Let P = (p: state (p,s) * state (p,t)}. If I P I:k, then s and t are either both 0-valent or both 1-valent.

Proof: Suppose s is 0-valent; the case of a 1-valent s is similar. Since 11 is k-resilient, there is a P-

free path R from s to a node in which all processes not in P have reached 0 decisions. Let jI.... j, be

the labels of arcs of R, in sequence. Since R is P-free, none of j: .. j, is in P. Thus from the

viewpoint of processes jr,... JJ, system states sand t look the same. Define so=s and to=t, and for i =

1. r, si = A(ji,si-1 ) and ti = A(ji, ti-1). A straightforward inductive argument yields for i = 0 .... ,

state (j,si) = state (j,ti) for all j 4 P. and value (c,sj) = value (c,ti) for all memory cells c. By construction

of R, in s, all processes not in P have reached 0 decisions. Consequently, since state (j,s,) = state (jt, )

for all j 4 P, in t, all processes not in P have reached 0 decisions. Therefore, since t is univalent, t must

be 0-valent.0

Lemma 5.2: There is a bivalent initial system state.

Proof: Suppose, to the contrary, every initial system state is univalent. Since fl is an agreement

protocol, the initial system state in which all processes have input 0 is 0-valent. Similarly, the initial

system state in which all processes have input I is 1-valent. By changing each input from 0 to I one at a

time, we obtain initial system states so and s i such that so is 0-valent, s is 1-valent, and there is exactly

one process h such that state (h,so) * state (h,s 1 ). Since rI is k-resilient, it is at least 1-resilient, and we

have obtained a contradiction of Lemma 5. 1. 0

I
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2.5.2 1-Resilient read/write protocols

Throughout this section assume that 17 is a 1 -resilient read/write agreement protocol and that r is

the computation graph for 11. We shall construct a path in r in which every process takes infinitely many

transitions, but no process reaches a decision.

Lemma 5.3: For every bivalent node s and every process j there is a node t reachable from s such

that A(j,t) is bivalent.

Proof: Let George (G) be a process. Suppose, to the contrary, for every t reachable from s, A(G,t)

is univalent. In particular, A(G,s) is univalent. Without loss of generality, assume A(G,s) is 0-valent.

Since s is bivalent, there is a path from s to a 1-leaf. Let s be the node on this path such that

state (G, A(G,s')) = El. Node A(G,s') is 1-valent.

Let R be a path from s to s By assumption, A(G,t) is univalent for all t in nodes (R). Since A(G,s)

is 0-valent and A(G,s') is 1-valent, it is straightforward to prove by induction on the length of R that there

exist consecutive nodes u and x in nodes (R) such that A(G,u) is 0-valent and A(G,x) is 1-valent. Let

Hannah (H) be the process such that x = A(Hu). Let w = A(Gu), y = A(Hw), and z = A(G,x). Since w is

0-valent, y is 0-valent. See Figure 2.2.

Let qG = state (Gu) = state (G,x) and qH = state (H, u). First, we claim that qG and qH must be

WRITE states. Suppose, to the contrary, qG is a READ state. Since the values of all cells are the same in

u and in w, Hannah undergoes the same transition from both u and w. Consequently, the values of all

cells are the same in y and in r, hence, the values of all cells are the same in y and in z. The states of all

processes other than George are the same in y and in z. This is a contradiction of Lemma 5.1 because y is

0-valent and z is I -valent. Thus qG must be a WRITE state. Similarly, qy must be a WRITE state.

Let CG = cell (qG) and cH =cell (qH). We examine two cases, both of which lead to contradictions.

Case 1: cG * cH. Since the transitions by George and by Hannah affect different memory cells,

system states y and z are the same. But y = z cannot be both O-valent and 1-valent.
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G G

Figure 2.2. The Transitions by G and H from u

Case 2: cG = cH. Since the transition by George from x to z obliterates the value written by Hannah

in the transition from u to x, all cells have the same values in w and in z. Furthermore, all processes other

than Hannah are in the same state in w and in z. This contradicts Lemma 5.1 because w is 0-valent and z

is l-valenLO"

Theorem 5.1: There is no 1-resilient read/write agreement protocol.

Proof: Suppose there is a 1-resilient read/write agreement protocol 1 for a system with n processes

numbered 0, ... n-1. Let so be a bivalent initial system state guaranteed by Lemma 5.2. Define infinite

sequences of paths Ro,R ,... and nodes s ,s2, ... as follows: fori= 0,1,.... use Lemma 5.3 to find apath

Ri starting from si to a node ti such that A((i mod n),ti) is bivalent, and define

si.,=A((i mod n),ti).
The concatenation of nodes (Ro), nodes (R 1), ... is a computation of rl in which every process makes

I
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infinitely many transitions, but no process reaches a decision. Thus 11 may not terminate.

Contradiction.O

2.5.3 2-Resilient test-and-set protocols

Consider a system with n2!3 processes in which cells have only two values. Suppose r is a 2-

resilient test-and-set agreement protocol. First we establish two Lemmas about the computation graph of

n.

Lemma 5.4: No bivalent node has both a 0-valent child and a 1-valent child.

Proof: Suppose, to the contrary, bivalent node s has a 0-valent child w and a 1-valent child x. Let

George (G), and Hannah (H) be the processes such that w = A(G,s) and x = A(H,s). Let y = A(H,w) and z

= A(G,x). Since w is 0-valent, y is O-valent; since x is 1-valent, z is 1-valent. See Figure 2.1.

Let cG = cell (state (G,s)) and cH = cell (state (H,s)). First, we claim that cG = cM. If CG * cn, then

the transitions by George and by Hannah affect different cells; hence, y and z are the same. But y = z

cannot be both 0-valent and I-valent.

Let c = CG = cR. There are three cases, all of which lead to contradictions.

Case 1: value (c,w) = value (c,s). The transition by Hannah from s to x is the same as from w to y.

All cells have the same values in x and in y. All processes other than George are in the same states in x

and in y. Apply Lemma 5.1 to x and y to obtain a contradiction.

Case 2: value (c,x) = value (c,s). Similar to Case I.

Case 3: value (c,w) * value (c,s) and value (c,x) * value (c,s). Since c can attain only two values,

value (c,w) = value (c,x). Thus all cells have the same values in w and in x. All processes other than

George and Hannah are in the same states in w and in x. Since 1 1 is 2-resilient and there are at least 3

processes, apply Lemma 5.1 to w and x to obtain a contradiction. 1

Lemma 5.5: For every bivalent node s and every two distinct processes i and j, there is a path from

s to a node t such that either A(i, t) or AQ, t) is bivalent.

.7
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Proof: Let George (G) and Hannah (H) be two distinct processes. Suppose, to the contrary, for

every t reachable from s, A(G,t) and A(H,t) are univalent. Without loss of generality assume A(G,s) is

0-valent. By Lemma 5.4, A(H,s) is 0-valent.

Since s is bivalent, there is a path from s to a 1-leaf. Without loss of generality, assume that George

reaches a 1 decision before Hannah does on this path. Let s be the node on this path such that

state (G, A(G,s')) = El. Node A(G,s') is 1-valent. By Lemma 5.4, A(H,s') is either bivalent or 1-valent.

By assumption, since s is reachable from s, A(H,s) is 1-valent.

Let R be a path from s to s'. By assumption, A(G,t) and A(H,t) are both univalent for all tin

nodes(R). Therefore, there exist consecutive nodes tj and t2 in nodes(R) such that both A(G,t) and

A(H, tl) are 0-valent, and both A(G, t2) and A(H, t2) are I-valent. Let Frances (F) be the process such that

12 = A(F,tl).

Let t3 = A(G,t), (4 = A(G, 2), t5 = A(Ht 2), t6 = A(Ft 3 ), t7 = A(Ht 3), and tg = A(Ht 6). Nodes

t6, t7, and t8 are 0-valent because t3 is O-valent. See Figure 2.3. Let CF = cell (state (F,t 1)), cc =

cell (state (G, t I )), and cH = cell (state (H, t 1 )).

First we claim that CF = cG. If CF * cG, then system states t4 and t6 would be the same. But t4 is

1-valent and t6 is 0-valent.

Let c = CF = cG. There are three cases, all of which lead to contradictions.

Case 1: value (c, t2) = value (c, t1). Then George undergoes the same transition from t Ito t3 as

from t2 to (4. All cells have the same values in t3 and in (4. All processes other than Frances are in the

same states in t3 and in 4. Apply Lemma 5.1 to t3 and 4 to obtain a contradiction.

Case 2: value (c, t3) = value (c, t1). The transitions of Frances and Hannah are the same from tI to

t5 as from t 3 to ti. All cells have the same values in t5 and in ts. All processes other than George are in

the same states in t5 and in tg. Apply Lemma 5.1 to t5 and ts to obtain a contradiction.

Case 3: value (c,t 2) # value (c,t ) and value (c,t 3) * value (c,t 1). Since c can have only two

different values, value (c,t 2) = value (c,43). Hannah undergoes the same transition from t2 to t5 as from
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t 7
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Figure 2.3. The Transitions by F, G, and H

t3 to 07 . All cells have the same values in ts and in 0. All processes other than George and Frances are

in the same states in t5 and in 07 . Apply Lemma 5.1 to t5 and t7 to obtain a contradiction.0

Theorem S.2: Theme is no 2-resilient test-and-set agreement protocol if n .3 and memory cells have

only two values.

Proof: Suppose flis a 2-resilient test-and-set agreement protocol. To obtain a contradiction, we

construct a computation of flin which at least n -I processes make infinitely many transitions, but no

process reaches a decision. Let so be a bivalent initial system state guaranteed by Lemma 5.2. Let Po

PROC (S). Define infinite sequences of paths R 0,R1 ,... and nodes s1 ,S2,... as follows:
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for i = 0, 1... do
if I Pi I =1 then Pi := PROC (S) end if;
Choose any Gi and Hi in P;
Use Lemma 5.5 to find a path Ri starting from si to a node tj such that
either A(Gj,ti) or A(Hi,ti) is bivalent;
if A(G/,ti) is bivalent
then si~. := A(G5 ,4); Pi+ - Pi-[Gd
else if A(Hi,ti) is bivalent
then si+ := A(Hi,ti); Pi+: Pi-{Hd
end if
end for

By construction, s s, .. , are defined by transitions of n-I different processes; sx . 32n-2 are

defined by transitions of n-1 different processes; and so on. Ergo, the concatenation of nodes (R o),

nodes (R z).... is a nonterminating computation of r in which at most one process makes only finitely

many transitions.0

2.6 Summary

Table 2.1 summarizes our results on the existence of agreement protocols for asynchronous shared

memory systems in which processes die undetectably.

Theorem 5.1 implies the impossibility of 1-resilient Byzantine agreement in asynchronous

message-passing systems because a shared memory can simulate message-passing. More precisely, if

there were a 1-resilient agreement protocol for an asynchronous message-passing system with

undetectable process death, then we could transform it into a I-resilient read/write protocol on a shared

memory. For every pair of processes (ij) with i~j, allocate a group of cells to hold all the messages that

Table 2.1. Summary of the Results of Chapter 2

TMve of Protocol I-resilient k-resilient for k_2
Read/write No (Theorem 5.1) No (Theorem 5.1)

Test-and-set Yes (Theorem 3.1) Yes (Theorem 3.1)
three-valued cells

Test-and-set Yes (Theorem 3.3) No (Theorem 5.2)
two-valued cells
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process i could send to process j. To simulate the sending of a message, process i writes into the next

unused cell in this group.

Recently Bums (personal communication) generalized our results. He determinea relationships

between the number of possible inputs and the number of memory cell values required to guarantee

agreement. Furthermore, his protocols use the weak test-and-set operation.
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CHAPTER 3

FAULT-TOLERANT DISTRIBUTED ALGORITHM
FOR ELECTION IN COMPLETE NETWORKS

3.1 Introduction

We consider the election problem on asynchronous complete networks when the processors are

reliable but some of the links may be faulty. The failure type we consider is more malicious than fail-stop

failure but less malicious than Byzantine failure. The faulty links fail by losing messages at will. Thus a

faulty link may act as an adversary who deletes a message at the most inopportune time. Since the

network is asynchronous, the link delays are ar itrary; hence, the processors cannot distinguish between

slow links and faulty links. In other words, the faulty links are undetectable. We call the type of failure

that we consider intermittent. Bar-Yehuda et al. [7] solve the same problem for fail-stop link failure.

They also assume that if a link fails, then it fails before the execution of the algorithm. Their algorithm

does not tolerate intermittent link failure, and there is no easy way to generalize their algorithm to handle

intermittent failure. Our work is independent of their work.

Let n be the number of processors in the network. Let fbe the maximum number of faulty links,

where 1 < f S L -- 3j , and let r be a design parameter, where 1+1 S r < ---. We develop an
2 f 2f

asynchronous algorithm that runs in time (- ), uses O( nrf+-l log( ) ) messages, and
(r-l)f (r-t1) (r- 1)f

uses at most O(og ITo) bits per message, where I TI is the cardinality of the set of node identifiers. The

value of r that minimizes the total number of messages in our algorithm is r

=in( l.+ ln(n+2) )", -:- ), where C = l+O( logf). For every value of n and f subject toIf 2f log n

f !5 L -- 31, -15 C:5 1. Thus the minimum number of messages that our algorithm uses is

O(nf+ nlog n). Since the complete network algorithm of Bar-Yehuda et al. [71 also uses e(nf+ nlog n)

messages, our algorithm subsumes theirs.

I
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3.2 Model

Our model follows Goldreich and Shrira's model [25]. Consider an asynchronous complete

network of n processors. We model the network as a complete graph on n nodes, in which each node

represents a processor, and each edge represents a bidirectional communication link. Henceforth, we will

not distinguish between a node and the processor it represents, and we will not distinguish between an

edge and the link it represents. Each node u has a unique identifier, ID(u), chosen from a totally ordered

set. No node initially knows the identifier of any other node, but the nodes know that the network is

complete. When a node u wishes to communicate with a node v, then u sends a message to v on the link

l(u, v) joining them.

A distributed algorithm on the network is a set of n deterministic local programs, each assigned to a

node. Each local program consists of computation statements and communication statements. The

computation statements control the internal computations of a node. The communication statements are

of the form "send message Mon link I" or "receive message M on link l." Each node u has a Send-

Buffer(u,l) and a Receive-Buffer(u,) associated with each link I incident on u, where the buffers are not

necessarily first-in first-out. Let I be I(u,v). When u wishes to send a message M on 1, u places M in

Send-Buffer(u,!). We call this event a send event. To capture the asynchronous nature of our network,

messages may remain in the send-buffers for arbitrary lengths of time. A transmission event in I occurs

when I places M in Receive-Buffer(v,O). We assume that u can not inspect Send-Buffer(u,l) to check

whether M was removed from the buffer. Hence M is in transit from u to v if M is in Send-Buffer(u,l). If

u wishes to process a message M on 1, then u removes M from Receive-Buffer(u,/). We call this event a

receive event. For convenience, we assume that it takes one time unit to remove M' from Receive-

Buffer(u,l) and to execute the computation statements on M'. If M' is not in Receive-Buffer(u,), then u

either waits forM , or u receives some other message, depending on u's local program. Note that when

we say that node u receives a message, we mean that u removes the message from a Receive-Buffer and

processes the message. A loss event in a link I is the event of I discarding a message.
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Consider a particular execution E of a distributed algorithm. Let Events(E) be the mdtiset of the

events in E. For convenience, we assume the existence of a global clock that gives the time it which each

event in E occurs. Although this clock is available to an observer of the network, the nodes do not know

of its existence. We will assume that each event in E occurs at some discrete unit of time starting from

zero. Let Events(u) be the multiset of u's send and receive events in E. The loal program in u ieduces a

total ordering on Events(u). Unlike Goldreich and Shrira [25], two events, each in a distinct node,nmay

occur at the same time. We say that a link I isfaulty in E if 1 experiences at least one loss event in E. In

this chapter, we assume that at most f links fail during any execution. Note that the faulty links may be

different in different executions of the algorithm. If a link is not faulty, then it is reliable. We require

delays on reliable links to be finite. In other words, messages sent on reliable links must eventually be

delivered. Because of the asynchronous nature of the network, a node cannot distinguish between a slow

link and a faulty link that loses messages. Therefore, the nodes cannot detect the faulty links.

In this chapter, we will construct a distributed election algorithm such that, at the end of every

execution of the algorithm, a unique node is elected as a leader of the network. Also, all the nodes will

know the identifier of the leader. We require that all the n local programs that form the election algorithm

be identical.

One of the efficiency measures that we will use is the maximum running time of an asynchronous

algorithm. Although we assume that the link delays are arbitrary when we design the algorithm, we set

the link delays to be at most one time unit when we compute the running time of the algorithm. For

convenience, we also assume that all receive events take zero time units when we compute the running

time. This assumption is reasonable in real systems where the nodes' processing time is negligible

compared with link delays.

3.3 Informal Description of the Algorithm

We present the formal description of the algorithm in Section 3.7.
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3.3.1 Definitions

Let n be the number of nodes, fbe the maximum number of faulty links, and r be a design

parameter. Consider a particular execution E of the algorithm. Each node tries to eliminate all the other

nodes from the competition to be the leader. The unique node that survives all eliminations elects itself

as the leader. If a node u is eliminated at some time t, then we say that u is dead at t. If u is dead at t,

then u is dead at all times t _ t, and u does not try to eliminate any other node after t. If u is not dead at t,

then u is live at t. All nodes are live at the beginning of the algorithm. We assume that all the nodes start

executing the algorithm simultaneously. (For the case when only a subset of the nodes starts executing

the algorithm or when the nodes start executing the algorithm at different times, we can easily modify the

algorithm by requiring sleeping nodes to be eliminated ab soon as they receive any message.)

Each node u keeps an integer variable called phase(u). The value of phase(u) ranges from 0 to

n+2 1 +1. Intuitively, if u is live at some time t, then the value of phase(u) at t is a lower bound on
2(r-I)f

the number of nodes that u eliminated by time t. A node, whether live or dead, cannot decrease its phase.

A live node may increment its phase to reflect an increase in the number of nodes it has eliminated.

If u eliminates a node v, then we say that u is a suppressor of v and that v is a victim of u. Node v

may have several suppressors during the execution E. It is possible for a node to be its own suppressor.

For every time t, a live node at t does not have any suppressor at or before t.

The algorithm maintains the following invariant, called the Algorithm Invariant: Node u becomes

a suppressor of a node v at time t only if all previous suppressors of v are dead at t. Thus each node v

keeps a link pointer called Suppressor-Link(v) that points to the most recent suppressor of v. Initially,

Suppressor-Link(v) = nil. A dead node v may increment phase(v) to give a lower bound on the phase of

the most recent suppressor of v.

When a node u decides that u is the leader, then u informs all the nodes. Each node v halts v's

execution of the algorithm when v learns of the existence of a leader.
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3.3.2 The algorithm

Each node u keeps a set called Untrav(u) initially containing the names of the links incident on u.

Before executing the algorithm, the phase of each node u is 0. As soon as u starts executing the

algorithm, u sets phase (u) to 1. Each node u repeats the following until phase(u) becomes

n+2

F2(r-I)f 1 ~

Suppose that, for some noe u, phase(u) becomes i at some time t and u is live at t, where

1 < i 1 1. If i = 1, then uchoosesFrfl link names from Untrav(u) and deletes them from
2(r-I)f

Untrav(u). If i > 1, then u chooses F rfl -f link names from Untrav(u) and deletes them from Untrav(u).

Call the chosen links Chosen-Links(u,i). Node u sends the message "Eliminate-(ijD(u))" on each link

in Chosen-Links(u,i). Call the multiset of these eliminate-messages New(u,i). (For simplicity, we will

use rf instead off rfl , and (r-1)f instead ofF rfl -J).

For each node v * u, if v receives the message Mf="Eliminate-(iJD (u))" at some time t, then v

compares (iJD(u)) with (jJD(v)) lexicographically, where j is the value of phase(v) at t,:

Case 1: (iD(u)) < (j,ID(v)): Node v sends the message M2="Elimination-Unsuccessful-(ijD(u))" on

l(vu). If u receives M2 at some time t,, then there are two cases:

Case 1.1: u has a suppressor at t : Then u discards M2.

Case 1.2: u has no suppressor at t: Since u may have incremented phase(u) after u sent M1, then u

compares i with k, where k is the value of phase(u) at t.. If k = m, then u becomes eliminated at t,, and u

sets Suppressor-Link(u) to I(u,u) (that is, to itself) to indicate that u becomes its own suppressor. If i < k,

then M2 is an out-of-date message. Thus, u sends the message "'Eliminate-(kJD(u))" on 1(u,v). We say

that "Eliminate-(kID(u))" is a refresher for M1.

Case 2: (j,ID(v)) < (i,ID(u)): Node v sets (phase(v)JD(v)) to (ijD(u)). In addition, v does one of the

following:

Case 2.1: v has no suppressor at t : Then v becomes eliminated at t, and u becomes v's suppressor at

t,. Trivially, the Algorithm Invariant is preserved. Node v sets Suppressor-Link(v) to l(v,u), and v sends
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the message "Elimination-Successful" on I(v,u).

Case 2.2: v has a suppressor at t4: Then Suppressor-Link (v) * nil. Suppose that Suppressor-Link(v) =

I(v,w), where w may be v. Node v sends the message M 3 ="Potential-Suppressor-(ijD(u))" on 1(v,w).

If w receives M 3 at some time tw, then w compares (iJD(u)) with (qJD(w)), where q is the value of

phase(w) at t,:

Case 2.2.1: (i,ID(u)) < (q,ID(w)): Then w sends "Potential-Suppressor-Unsuccessful-(iJD(u))" on

(w,v). If v receives this message, then v sends "Elimination-Unsuccessful-(iJD(u))" on I(v,u).

Case 2.2.2: (q,ID(w)) < (i,ID(u)): Then w sends the message M 4="Potential-Suppressor-Successful-

(iJD(u))" on l(w,v). Also, w sets Suppressor-Link(w) to L(w,w) at time t,, if w has no suppressor at t,,,.

Otherwise, if w has a suppressor at t,, then w leaves Suppressor.Link(w) unchanged. Node v may have

received an eliminate-message from some node x * u after v sent M 3 . Hence if v receives M 4 , then v

compares ID(u) with ID(v). If JD(u) =ID(v), then u becomes a suppressor of v, and v sets Suppressor-

Link(v) to 1(v,u). Note that the Algorithm Invariant is maintained. Also, v sends "Elimination-

Successful" on L(v,u). If ID(u) * ID(v), then v sends "Elimination-Unsuccessful-(ijD(u))" on 1(v,u).

If u receives (r-1)f "Elimination-Successful" messages, each on a distinct link, and if u is live, then u

increments phase(u) by 1.

If phase(u) becomes r n+2 1 +1 when u is live, then u elects itself as a leader. Node u then
2(r-1)f

sends the message "ANNOUNCE-LEADER-(ID(u))" to 2f+l nodes and halts. All the nodes that

receive this message send the message "LEADER-IS-(ID(u))" on all the links incident on them and halt.

When a node receives "LEADER-IS-Q)," for some j, then the node halts. Since there are at most f

faulty links, at least one node v adjacent only to nonfaulty links receives "ANNOUNCE-LEADER-

(ID(u))." Thus, all the nodes in the network will know ID(u) of the leader u and will halt.
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3.4 Proof of Correctness

The strategy of our proof of correctness will be as follows. Lemma 4.5 shows that no two distinct

nodes can be elected as leaders in the same execution. Lemma 4.9 shows that there exists at least one

leader in each execution. Hence, Lemmas 4.5 and 4.9 imply that every execution produces one leader.

Consider any execution E. Let t be a time, and u, v, and w be distinct nodes. Node u is a leader at t

if u is live at t and phase(u) becomes r 1 +1 at or before t. We say that u eliminates v at t if v sets
2(r-l)f

Suppressor-Link(v) to l(v,u) at t. Define Suppressors(v,t) as the empty sequence if v is live at t.

Otherwise, define Suppressors(v,t) as the sequence of all nodes, other than v, that eliminate v at time 0, 1,

t: u precedes w in Suppressors(v,t) if u eliminates v at some time t., w eliminates v at some time

tw, and 0 < t, < t, < t. Note that, by the total ordering on Events(v), t, * t,.

The following lemma shows that no node eliminates another node more than once in the same

execution.

Lemma 4.1: All the nodes in Suppressors(v,t) are distincL

Proof: If u is in Suppressors(vt), then, according to the algorithm, v sends "Elimination-Successful" to

u on l(v,u). Since u sends a refresher message only if u receives an out-of-date message, u does not send

any more eliminate-messages on l(u, v).O

We say that an eliminate-message M that v receives from u is afatal message if M is the last

eliminate-message that u sends to v before u eliminates v. By Lemma 4.1, there is at most one fatal

message for each pair of nodes.

Lemma 4.2: Suppose that u precedes w in Suppressors(v,t). Suppose that u eliminates v at time t, < t,

and that v receives the fatal message "Eliminate-(iJD(w))" from w at some time tl. Then, t, < t1.

Proof: Note that t, * t I since Events(v) is totally ordered. Suppose that, to the contrary, t l < t,.

If Suppressor-Link (v) = nil at t 1, then according to the algorithm, w is the first node in

Suppressors(v,t). This contradicts our hypothesis that u precedes w in Suppressors(v,t).

I
i I
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If Suppressor-Link(v) * nil at tl, then v sets ID(v) to ID(w) at tI, and sends "Potential-

Suppressor-(iJD(w))" on Suppressor-Link(v). Suppose that w eliminates v at some time t2, where

tj < t2 - t. Then, by the algorithm, v receives "Potential-Suppressor-Successful-(ijD(w))" at t2. But

since u precedes w in Suppressors(vt), then t, < t2. Thus ID(v) * ID(w) at t2 because tj < t,

According to the algorithm, v cannot set Suppressor-Link(v) to 1(v,w) at t2, a contradiction.

Hence t, < t -13

Lemma 4.3 shows that the Algorithm Invariant indeed holds.

Lemma 4.3: Suppose that u eliminates v at t. Then, all the nodes except u in Suppressors(v,t) are dead

att.

Proof: The proof proceeds by induction on-the length of Suppressors(v,t), denoted Suppressors(v, t)

Basis: Suppose that I Suppressors(v,t) I = 1. Then Suppressors(v,t) consists only of u, and the lemma is

trivially true.

Inducnve Step: Suppose that the lemma is true forISuppressors(v,t) I< p-1 for some integer p > 2.

Consider the case whenISuppressors(vt) I=p. Let Suppressors(v,t) = wl,w 2 , "'", w-., Iu. By

Lemma 4.1, all the nodes in Suppressors(vt) are distinct. Let the time when wp. 1 eliminates v be t,.

Since u eliminates v after w.. does, then tw < t. Node v receives the fatal message "Eliminate-

(iJD(u))" from u at some time tI < t, where i is some phase value. By Lemma 4.2, t,, < t1. Thus v

receives the fatal message from u after v sets Suppressor-LUnk(v) to l(v,wr.1). Therefore, v receives

M="Potential-Suppressor-Successful-(iJD(u))" from w. at t. By the algorithm, w.-I either eliminated

itself or had a suppressor when w.- sent M. In either case, w,,- is dead at t. By the inductive step,

nodes w 1, " ",w,- 2 are all dead at t,, and hence at t.0

Suppose that u is live when u sets phase(u) to an integer i at t. Then define Victims(u,i) as the set

of all nodes that u eliminates before or at t. If u never sets phase(u) to an integer j, or if u is dead when u

sets phase(u) to j, then we define Victims(uj) as 0.

Lemma 4.4: For every phase value i and nodes u and w, Victims(uJ)-nVictims(w,)--O.
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Proof: Suppose that, contrary to the lemma, there exist some u, v, w, and i, such that

ve Victims(u,iOnVictims(wj). Let t, be the time at which u sets phase(u) to i, t,, be the time at which w

sets phase(w) to i, t, be the time at which u eliminates v, and t, be the time at which w eliminates v.

Without loss of generality, let t S t,. Since vE Victims(ui) and vE Victims(w,), then t,, 5 t, and

t,, S t,. By the total ordering on Events(v), t., * t,. There are three cases, depending on the

relationships among t,, t,,, and t,:

Case 1: t., < tv,: By Lemma 4.3, w is dead at t,. Since t,,, < t.. 5- tw, then w is dead at t,. Thus

Victims(wi)=0, a contradiction.

Case 2: t,.., <r, :5 t,: By Lemma 4.3, u is dead at t,. Hence, Victims(u,i)=0, a contradiction.

Case 3: t,, <5 t, < t,,: By Lemma 4.3, u is dead at t,,,. Since Victims(u,i) * 0, then u is live at t..

Therefore, Suppressor-Link(v) at t. is l(v,u). Suppose that t is the time at which v received the fatal

message M from w. By the total ordering on Events(v) and Lemma 4.2. t < t,,, < tw. Since v sets

Suppressor-Link(v) to I(v,w) at tw, > r., and u is live at t., then phase(w) in M must be at least equal to i.

Thus phase(w) is at least i at t . This contradicts the fact that w sets phase(w) to i at t,.

Thus all three cases lead to contradictions.0

Lemma 4.5: For every execution E, there are no two leaders in E.
n+2

Proof: Suppose that, to the contrary, there are two leaders u and w in some E. Let i F 1 1 +1.
2(r-l)f

Then, phase (u) and phase(w) become i in E. Thus

IVictims(u,i) , I Victims(w,i) 12t ( n2 ) (r-l)f= -- 2 nodes. Since there are n nodes, there is at least

one node v in both Victims(u,i) and Victims(wj. This contradicts Lemma 4.4.0

Let M be an eliminate-message that u sends on I(uv). We define Path(M) as follows: If M is lost

on I(u,v), or if Suppressor-Link(v) = nil when v receives M, then Path(M) = (I(u, v)). Otherwise,

Path(M) = [I(u,v),I(v,w)), where I(v,w) = Suppressor-Link(v) when v receives M. Recall that New(u,i)

is the multiset of the eliminate-messages that a live node u sends on each link in Chosen-Links(ui) when

phase(u) becomes i. We say that Mis new if MeNew(uji), for some i.
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The following lemma shows that the paths of any two distinct new messages sent by a node are

disjoint.

Lemma 4.6: Let M and M be two distinct new messages sent by u. Then, Path(M)(,'Path(M") = 0.

Proof: When u sends a new message on a link 1, u deletes I from Untrav(u). Hence, u sends M on some

l(u,v), while u sends M on some l(u,w), where v * w. Clearly, Suppressor-Link(v) * Suppressor-Link(w)

unless both suppressor-links are nil.0

If an event e in Events (u) occurs when phase(u) = i, then we say that e occurs during phase i. Let

M I be an eliminate-message sent by u on some l(u,v) during phase i. We say that a message M2 is a

successful reply for M I ifM 2="Elimination-Successful," and if v sent M 2 on l(v,u) in response to M 1.

We say that M 2 is an unsuccessfu reply for M I if M2="Eliminaion-Unsuccessful-(iJD(u))," and if v

sent M2 on l(v,u) in response to M1. We say that M2 is a reply forM I if M2 is a successful or

unsuccessful reply for M1 .

According to the algorithm, an eliminate-message can be either new or a refresher for another

eliminate-message. By Lemma 4.6, if u sends two eliminate-messages on the same link, then at least one

of the messages is a refresher.

Lemma 4.7: Suppose that u sends m Z f eliminate-messages in the execution. If no leader is elected in

E, then u receives at least m-f replies for these messages.

Proof: Because there is no leader in E, every node continues to process messages. Thus a node u

receives no reply for an eliminate-message M only if Path(M) contains a faulty link. Let S(u) be the

multiset of the m eliminate-messages sent by u in the entire execution. Some of the eliminate-messages

in S(u) may be refresher messages. Construct the multiset S'(u) from S(u) as follows: An eliminate-

message Me S(u) sent to a node v is in S (u) if and only if M is the last eliminate-message in S(u) that

was sent to v. Note that if M is in S(u)-S (u), then u must have sent a refresher message forM, and thus u

received a reply for M.
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Let IS (u)= m'. If m' f, then u received replies for at least m-m m-f eliminate-messages, and

the lemma is true. If f < W, then let M I and M 2 be any two distinct messages in S'(u). Suppose that u

sent MI to some node v. By the definition of S'(u), u must have sent M 2 to some node w * v. Thus, by

the definition of Path (M) and Path (M 2), Path (M I)r"Pat h (M 2 ) =0 . Hence at mostf messages Min

S(u) have a faulty link in Path (M), and at least '-f replies are received for messages in S'(u). The total

number of replies that u receives is at least (m-rn) + (m-f) = m-f.r"

Suppose that u is live when u sets phase (u) to i at some time t, for some 2:5 i n+2 Then

2(r-)f

define Old(u,i) as the multiset of the eliminate-messages that u sent and for which u did not receive a

reply by t. Define Old(u,l) as 0. Recall that, if u is live, then u sends a refresher message as soon as u

receives an out-of-date message.

Lemma 4.8: Let u be live whenu setsphase(u) to i Z!2. Then.IOld(u,i)I=f. Hence u receives at most

f out-of-date messages during phase i.

Proof: The proof proceeds by induction on i.

Basis: Suppose that i = 2. Node u sent rf new messages during phase 1 and received (r-1)f successful

replies for them. Hence the lemma is true.

Inductive Step: Assume that the lemma holds for i = p-1, for some 3 p F n+.2 Suppose that
2(r-l)f

i=p. During phase p-1, u sent (r-I)f new messages and received replies fork messages in Old(up-l),

where 0 < k <f. Suppose that, during phase p-1, u received successful replies for kI messages in

Old(up-l), where 0 < k1 < k. Then u received unsuccessful replies for k-k I messages in Old(up-1)

during phase p-I. Since u is live in phase p, all these unsuccessful replies were of the form

"Elimination-Unsuccessful-(jJD(u))," where j < p-I. Thus all of the unsuccessful replies that u

received in phase p-1 were out-of-date messages. Hence u sent k-k 1 refresher messages during phase

p-1. Thus u sent (r-1)f+k-k I eliminate-messages during phase p-l. Since u advanced to phase p, u

must have received successful replies for (r-l)f-kI eliminate-messages sent during phase p-1. Hence

Old(up) is equal to the union of [the multiset of eliminate-messages in Old(usp-l) for which u did not
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receive replies during phase p-I] and [the multiset of the eliminate-messages sent during phase p-1 for

which u did not receive replies during phase p-l. Hence,

I Old(u,p) 1= [f-kI+[(r-l)f+k-k i-((r-l)f-k 1)] = f0l

Lemma 4.9: There exists at least one leader in the execution E.

Proof: Suppose that, to the contrary, no leader exists. Thus, for every node v, phase(v) < F n +1.
2(r-1)f

Since no node can decrease its phase, there exists some time tf such that no node changes its phase after

tf. At t1, let (ij) be the highest (phase,ID)-pair among the nodes. Let u be the unique node whose

identifier was j at the start of the algorithm. Then phase(u) is i at tf. To see this, let v be any node whose

(phase,ID)-pair is (ij) at tf. If v = u, then phase(u) is i at tf. Suppose v # u. Node v is dead at tf since

ID(v) =j at tf. Thus, v must have received "Eliminate-(ij)" at or before tf. By the algorithm, only u

can send "Eliminate-(ij)." Hence, by the choice of (i,j), and since no node can decrease its phase,

phase(u) is i at rf. Note also that u is live at tf. To see this, let t, be the time when u sets phase(u) to i

for the first time, where t, < tf. At t,, u is either dead or live. Since u changes phase(u) to i at t,, then if

u is dead at t., then u must change ID(u) according to the algorithm. Thus ID(u) *j at t,. By the

algorithm, u never sends eliminate-messages after u is dead. Thus u never sends "Eliminate-(i,f)." But

this means that (ij) is not a (phase,ID)-pair of any node, a contradiction. Therefore, u is live at t.,. By the

choice of (ij), and since the (phaseID)-pair of any node can not decrease, then no node can eliminate u

after t.. Thus u is live at t.

To prove the lemma, there are two cases, depending on the value of i:

Case1: i > 2. Suppose that u setsphase(u) to i at some time t.:5 tf. After t., u sends (r-l)f new

messages. Because there is no leader in E, u must receive replies for all the messages M in Old(u,i) and

in New(u,i), where Path(M) contains no faulty links. If M is in Nw(u,i), then the reply for M is a

successful reply since u is live at tf. If M is in Old(u,i), then the reply for M can be an out-of-date

message. Since E has no leader, u has not halted, and u must send a refresher message for M. By

Lemma 4.7, at most fmessages in New (u,i)u. Old(u,i) are lost. Hence, u receives at least
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(r-l)f+I Old(u,i) I-f "Elimination-Successful" messages during phase i, all with nonfaulty paths.

Hence, by Lemma 4.8, u receives at least (r-I)f successful reply messages during phase i. Thus u must

increment phase(u) by 1 some time after t,. This contradicts our assumption that phase(u) = i at tf.

Case 2: i = 1. This case is very similar to the previous case, except that u sends rf new messages during

phase 1, and thatI Old(u, 1)1 =0. This case also leads to a contradiction.0

Theorem 4.1: For every execution E of the algorithm, there exists a unique leader. Furthermore, every

node in the network knows the ID of the leader.

Proof: By Lemmas 4.5 and 4.9, there exists a unique leader u in E. Furthermore, u sends

"ANNOUNCE-LEADER-(ID(u))" to 2f+l nodes. Since there are at mostf<t-5--3J faulty links, there
2

exists a node v that is not adjacent to any faulty links and that receives "ANNOUNCE-LEADER-

(ID(u))." According to the algorithm, v sends ID(u) to all adjacent nodes. Thus all the nodes will know

the ID of the leader.CM

3.5 Message Complexity

The following lemma specifies the maximum number of live nodes that reach phase i.

Lemma 5.1: Let ibe an integer such that 25 i:5 F 1+1. For every i, there are at most
2(r-I)f

L nr J nodes u such that u is live when u sets phase(u) to i.

Proof: Suppose that there are at most k nodes u such that u is live when u sets phase(u) to i. Trivially,

k < n. Let uj denote the j-th live node to set its phase to i, for every I < j S k. By induction on i, we can

show that uj must have eliminated at least (i-I)(r-I)f nodes to reach phase i. By Lemma 4.4,

Victims(uji)tnVictims(upJ=0 for every I S j * p < k. Hence k L n j(i-l )(r-l )f "[

Theorem 5.1: The algorithm uses O( nrf+ -- log( -) ) messages in the worst case, where n is
(r-l) (r-l)f

the number of nodes in the network, and f is the maximum number of faulty links.

n+._2_
Proof: Let i < 2 +I be an integer. Ifa node u is live when it setsphase(u) to i at some time t,

2(r-l)f



42

then u sends (r-l)f new messages during phase i. By Lemma 4.8, u sends at most frefresher messages

during phase i. Hence u sends at most rf eliminate-messages during phase i. Each eliminate-message

generates at most three additional messages as follows:

(1) Suppose that u sends an eliminate-message to a node v.

(2) Node v sends "Potential-Suppressor-(iJD(u))" on Suppressor-Link(v).

(3) Node v receives "Potential-Suppressor-Successful-(iID(u))" or "Potential-Suppressor-

Unsuccessful-(WiD (iu))" on Suppressor-Link(v).

(4) Finally, v sends a reply to u.

Thus u causes at most 4rf messages to be generated while phase(u) is i. The total number of

messages the algorithm uses is the sum of the number of messages generated to elect a leader plus the

number of messages used to inform all the nodes of the ID of the leader. By Lemma 5.1, the number

NUM of the messages generated to elect a leader is as follows:

r ..,-2 1
2(r-tyf

NUM < S (num. live nodes u that reach phase i)(num. messages generated by u r i)

- +2  n+2

Z(r-Ilf n 4nr 2(-~ I" 2 - n 4rf + 4nrf < n(r_, g Yqr

NUM -0 ( r-log( -) + nrf)

The algorithm uses (2f+l)n = O(nf) messages to inform all the nodes of the ID of the leader.0

A detailed analysis, omitted here, shows that the value of r that minimizes the total number of

messages is r = min( I+C( ln(n+2) )"2 , ), where C = 1+0( log f). For every value of n and f
f 2f log n

subject tof.: L-3J , - 5C 1. Thus the minimum number of messages that our algorithm uses is

O(nf+ nlog n) messages.
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3.6 Time Complexity

Theorem 6.1: The algorithm takes at most O(-- ) time units to complete, where n is the number of

(r-l)f

nodes, and f is the maximum number of faulty links.

Proof: The maximum running time of the algorithm is the maximum time spent to elect a leader in any

execution. Consider any execution E, and let u be the leader when E terminates. Assume the delay on

each reliable link to be at most one time unit. Let M be any eliminate-message that u sends. As in the

proof of Theorem 5. 1, M generates at most three additional messages. Each message reaches its

destination in at most one time unit. Hence u receives a reply for M in at most 4 time units. Thus , by

induction on i, u spends at most 4(i-1) time units to reach phase i. In particular, u spends at most

4F n+2 I time units to elect itself as the leader. By the algorithm, all the nodes will know the ID of
2(r-1)f

the leader in at most two more time units. Since all the nodes start executing the algorithm

simultaneously, the algorithm will terminate in S ( 1 +2= (-) time units.
2(r-l)f (r-)f

3.7 Formal Description of the Algorithm

We assume in what follows that the node ID's are integers. The algorithm for each node u uses the

following variables and data structures:

* UNK(u) is the set of the names of all links incident on u.

* UNTRAV(u) is a sei of link names. Initially, UNTRAV(u) = LJNK(u). (Link le UNTRAV(u) iff I is

incident on u and u has not sent any eliminate-message on 1.)

* phase(u) is an integer variable. Initially, phase(u) = 0.

* dead(u) is a Boolean variable. Initially, dead(u) is false.

* nu~w ofvictims(u) is an integer variable. Initially, num o victimd(u) 0. (This variable is a lower

bound on the number of nodes that u eliminated during the current phase.)
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* SUPPRESSORLINK(u) is a pointer to a link. Initially, SUPPRESSOR_LJNK(u) = 1(u,u).

* POTENTIALSUPPRESSORARRAY u is an integer array indexed by the names of the links incident

on u. Initially, POTENTIALSUPPRESSOR -ARRAYu[l] = nil for each I in LINK(u). (Intuitively,

POTENTIALSUPPRESSORARRAY-u points to the nodes that are potential suppressors of u.)

* leader(u) is an integer variable. Initially, leader(u) = nil.

The algorithm for each u is as follows:

Che comments refer to the cases in Section 3.3.2.)

begin

Setphase(u) to 1;

Choose rf links from UNTRAV(u);

Call the chosen links e1 ,e2 , • • .,e,;

UNTRAV(a):=UNTRAV(u)-[ej,e 2 , " ef;

Send "ELIMINATE_(1,ID(u))" on each ej, where i - 1,2, - ,rf,

while phase(u) < F n+2 +1 or dead(u)
2(r-l)f

begin

Receive some message M on some link 1;

case M of:

(1) M is "ELIMINATE_(k,j)" and SUPPRESSORLJNK(u) = nil-

/* Case I */

if (k,j) < (phase(u),ID(u)) then Send "ELIMINATIONUNSUCCESSFUL_(k,j)" on 1;
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/* Case 2.1 *

if (k,j) > (phase (u),ID (u) then

begin
SUPPRESSORLINK(u):=l;
dead(u):=true;
(phase (u),ID (u)):=(k,j);
Send "ELIMINATION-SUCCESSFUL" on I
end if-,

(2) M is "ELIMINATE _(k,j)" and SUPPRESSORLINK (u) * nil:

I' Case 1 *

if (k,]) < (phase (u),1D (u)) then Send 'ELIiNATION UNSUCCESSFUL_(k,j)" on 1;

/* Case 2.2 ~

if (k,j) > (phase (u),ID (u)) then

begin
POTENTIALSUPPRESSOR ARRAY u[l]:=j;
(phase (u), D (u)):=(k~j);
Send "POTENTIALSUPPRESSOR_(kj)" on SUPPRESSORLINK(u)
end if,

/* Case 1.2 *

(3) M is "EL.IMINATIONUNSUCCESSFUL_(kj)" and not dead(u):

if phase(u) =k then dead(u):=true;

if phase(u) k then Send "ELIMINATE_(phase(u),ID(u))" on 1;

(4) M is "ELIMINATIONSUCCESSFUL" and not dead(u):

num of victims (u ):=num of victims (i)+1;

I' increment phase (u) *

if num_f_victim(u) =(r-1)f then

beginI phase (u):=phase (u)+ 1;
if has~u)<,n+2 +
if pzaseu)<2(r-1)f*+
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then begin
Set num of-victums(u) to 0;
Choose (r-l)f links from UNTRAV(u);
Call these links e 1,e2 , - efre.,-)f;
UNTRAV(u):=UNTRAV(u)-{e 1 , .,e~rl)
Send "ELIMI1NATE_(phase(u),ID(u))" on each ej;
end if,

end if;

(5) M is "POTENTIAL SUPPRESSOR (k~j)":

1* Case 2.2.1 *

if (k,j) < (phase (u),ID (u)) then Send "POTENTIAL SUPPRZESSORUNS UCCESSFUL (k,j)" on

I' Case 2.2.2 *

if (k,j) 2t (pha~se (u),ID(u)) then

begin
dead(u):=true;
Send "POTENTIALSUPPRESSORSUCCESSFUL_(k~j)" on I
end if;

/* Case 2.2.1 *

(6) M is "POTENTIALSUPPRESSORUNSUCCESSFUL (k,j)":

Find the link I' such that POTENTIAL SUPPRESSORARRAYu u[I' 1j;

Send "ELIMINATIONUNSUCCESSFUL_(k,j)" on I';

/* Case 2.2.2

(7) M is "POTENTIALSUPPRESSORSUCCESSFUL_(k,j)":

Find the link ( such that POTENTIALSUPPRESSORARRAY u [1'] j;

if j ID(u) then Send "ELIMINATIONUNSUCCESSFUL (k,j)" on I';

if] ID(u) then

begin
Send "ELIMINATION-SUCCESSFUL" on I;
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SUPPRESSORLINK(u):=
end if;

/* Case 1.1 */

(8) M is "ELIMINATION SUCCESSFUL" or "ELMINATIONUNSUCCESSFUL_(k,j),"

and dead(u):

Discard A;

(9) M is "ANNOUNCELEADER (j')":

dead(u):=true;

Send "LEADER_15-(j)" on each link in LINK(u);

leader(u):=j

halt algorithm.

(10) M is "LEADERIS(j)":

dead(u):=true;

leader(u ):=j

halt algorithm.

end while;

/* u elects itself as a leader */

Choose 2f+1 links from LINK(u);

Send "ANNOUNCELEADER_(ID(u))" on each chosen link;

leader(u):=ID(u)

halt algorithm.-
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CHAPTER 4

UPPER AND LOWER BOUNDS
FOR ELECTION IN SYNCHRONOUS SQUARE MESHES

4.1 Introduction

Many election algorithms for various synchronous networks were proposed in the literature.

Frederickson and Lynch [22] showed that 0(nlog n) messages are necessary for election in synchronous

rings when the election algorithm is required to being a comparison algorithm, i.e., when the election

algorithm uses only comparisons of processor identifiers. On the other hand, the comparison algorithm of

Loui, Matsushita, and West [351, originally designed for asynchronous complete networks, uses less than

4n messages in the worst case on synchronous complete networks. A natural question arises, thcr.fore,

about whether there exists a comparison algorithm on a bounded degree network using 0 (n) messages.

Peterson [41] answered this question in the affirmative when he designed a comparison algorithm for

asynchronous square meshes that uses about 90n messages in the worst case. When run on synchronous

square meshes, the message complexity of Peterson's algorithm becomes 32n. Although Peterson's

algorithm is of theoretical importance, it is not practical because of the large constants in the message

229
complexity. In this chapter we present a comparison algorithm for square meshes that uses at most 2

messages, runs in time O( 4i ) time units, and requires 0 (log I T I) bits per message, where n is the

number of processors in the mesh, and IT I is the cardinality of the set of processor identifiers. Also, we

57
prove that any comparison algorithm on synchronous meshes requires at least 7 messages. The lower

bound holds a fortiori for asynchronous meshes.

4.2 Model

We define an n-mesh as a square of n processors, with -in processors on each side, but with each

column forming a ring and each row forming a ring. (Hwang and Briggs [29] call our mesh a near-

neighbor mesh.) Figure 4.1 shows a 9-mesh. Two processors in an n-mesh communicate by sending

messages to each other either on the link joining them or via other processors. We assume a synchronous
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Figure4. I. A 9-mesh

mode of communication. This implies that there is an upper limit on link delays before messages are

delivered. We take the delay on each link to be at most one time unit.

We assume that all the processors in the n-mesh are identical except that each processor p has a

unique identifier iD (p) chosen from a totally ordered set. Initially, no processor knows the identifier of

any other processor. We assume that the processors know that the network is a square mesh, but they do

j not know the value of n. We also assume that the processors have a sense of direction (45]. Informally,

sense of direction means that the processors have a uniform notion of which of their four links is the east

link, the south link, the west link, and the north link. Thus, for example, if processorp sends a message

M on p's east link, then processor q that receives M knows that q received M from the west.

A distributed algorithm for an n-mesh is a set of n identical programs; each program is assigned to a

processor. We model each processorp as an automaton. An electon algorithm specifies the following

I
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forp:

(1) the set of states S.. The initial state of p is p's identifier ID (p).

(2) a subset L. of S. called the set of elected states. Ifp is in a state in L., then p is elected as a leader.

(3) a message generation function that maps each state s of p to a 4-tuple (ME ,MS,MwMN), where each

element of the 4-tuple is either a message or the atom nil. Let pE (respectively Ps, Pw, PN) denote

p's east (respectively south, west, north) neighbor. IfME (respectively Ms, Mw, MN) is not nil, then

ME (respectively Ms, Mw, MN) represents the message that p sends to PE (respectively Ps, pw, PN)

when p is in state s. If ME (respectively Ms, Mw, MN) is nil, then p does not send a message to pE

(respectively ps, Pw, PN) when p is in state s.

(4) a transition function that maps the 4-tuple (MEMsMWMN) and p's current state s to p's next state,

where each element of the 4-tuple is either a message or the atom nil. If ME (respectively Ms, M'w,

MN) is nil, then p did not receive a message from pE (respectively ps, pw, pN) whenp is in state s.

We assume that if p's current state is in L., then p's next state is in L.. In other words, L. is a

closed set.

In this chapter, the n-mesh is synchronous. Thus election algorithms on the mesh proceed in

rounds. In each round, each processorp sends some messages according to the message generation

function and p's current state, receives the messages sent to p in the current round, does some internal

computations, and changes state according to the transition function.

We wish the processors to execute an election algorithm so that a unique processor is chosen as the

leader of the network when the algorithm terminates.

4.3 Upper Bounds

We now present an algorithm for election in synchronous n-meshes. All the processors start the

algorithm simultaneously.
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4.3.1 Overview of the algorithm

The algorithm proceeds in phases. Each processor tries to eliminate all other processors from the

competition to be the leader. The processor with the largest identifier will be elected as the leader. We

say that processor u is live at the start of phase i if u has not been eliminated before the start of phase i. If

u is not live, then u is dead. A dead processor does not initiate any messages, although it may relay

messages. Each processor u keeps a variable called largest-seen (u) that contains the largest identifier

that uis aware of. Initially, largest-seen (u) -ID(u).

Before we give the details of the algorithm, we present the intuition behind it. Define a q-square of

processors to be a square mesh of processors with q+l processors on each side but without wrap-around

connections. As in Figure 4.2, let SE(u,q) denote the q-square with processor u at the northwest comer.

When there is no confusion, we let SE (u,q) denote also the set of all processors that are contained in or

on the boundary of square SE (u,q). Let SW(u,q) denote the q-square with processor u at the northeast

comer. Define NW(u,q), and NE (u,q) similarly. The algorithm uses four kinds of messages. We will

explain their use as we explain the algorithm. The messages are

(1) Eliminate messages of the form "EliminatelD 1 ,k,JD 2]," where ID1 is the identifier of the

processor that initiates the message, k is the number of links that the message will traverse in the

current direction, and ID2 is an identifier of another processor,

(2) Kill messages of the form "KiU_[IDI," where ID is an identifier of a processor,

(3) Mark messages of the form "MarkliD,k]," where ID is an identifier of a processor, and k is the

number of links that the message will traverse in the current direction;

(4) Final messages of the form "FinalijIDI," where ID is the identifier of the processor that initiates

the message.

I For the rest of the chapter, we use the letter E to denote Eliminate messages, K to denote Kill messages,

M to denote Mark messages, and F to denote Final messages. We let E. denote any message of the form

"Eliminate_(ID (u),k,lD where ID (u) is the identifier of the processor that initiates the message. We

mad---
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NW(u.q) NE(u.q)

SW(u.q) SE(u.q)

Figure 4.2. The Definitions of NW(u,q), NE(u,q), SE(uq), and SW(uq)

also let M, denote any message of the form "Mark_[D (u),k]," and F, denote any message of the form

"Final[/ID) (u)]." The algorithm has four main ideas.

Let a > 1 be a parameter to be optimized later. The first idea is that. at the start of each phase i,

each live processor u sends an Eliminate message E. to traverse clockwise the boundary of SE (u, '). If

E completes the traversal of the boundary of SE (u, oa), and if u is live when u receives E., then u

advances to phase i-N. Suppose that v is a processor on the boundary of SE(u. a'), and that v receives E.

which contains ID (u). If largest-seen (v) : ID (u), then v is eliminated, largest-seen (v) becomes

ID (u), and E. continues the traversal of the boundary of SE (u, a). If largest -seen (Y) > ID (u), then v
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discards E,. Since the network is synchronous, if u does not receive E" after 40? time units, then u knows

that E, was discarded, and u becomes eliminated.

We can show that the first idea guarantees that if u advances to phase i +1, then all the processors in

SE(u ai) U NW(u, ai) - (u) are eliminated by the time phase i+l starts. Our second and third ideas

will guarantee that all processors in SW (u, a') U NE (u, u i) - (u) are also eliminated by the time phase

i +l starts. Before we present our second idea, observe that if w is a processor in SW (u, a'), then

SE (w, a') n' SE (u, a') contains a processor v,, on the west boundary of SE (u, a) and a processor s,, on

the south boundary of SE (u, a1 ), where v,, may be the same as s,, (i.e., v,, may be the southwest comer of

SE (u, a)). See Figure 4.3. If w is live at the start of phase i, then w's Eliminate message reaches s,

before u's Eliminate message does. Our second idea -s that, when traversing the south boundary of

x I

I
I Figure 4.3. Processor w in S'W(u, a')

!
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SE (u, a), u's Eliminate message E. can determine the processor w0 with the largest identifier in

SW(u, a') whose E,,o reaches the south boundary of SE (u, ce). Thus when E. reaches the processor v,, 0

on the west boundary of SE (u, a), then v,, o sends a Kill message to wo, and E, continues the traversal of

the boundary ofSE(u, a'). Processor wo is eliminated as soon as wo receives a Kill message. Note that

E. spawns at most one Kill message in phase i.

Our third idea is as follows. Suppose that an Eliminate message E successfully traverses the north

boundary of SE (u, a') in phase i, but that a processor v on the east or south boundary of SE (u, a')

discards E. because ID (u) < largest-seen (v). Then v sends a Mark message M, that contains ID (u) to

traverse the remainder of the east and south boundary of SE (u, o&). M makes certain that

largest-seen (v) is at least ID (u) for each processor v on the east and south boundary of SE (u, cc').

Thus when v receives M., processor v compares ID (u) with largest-seen (v). If

ID (u) < largest-seen (v'), then M continues its traversal. If largest-seen (v) < ID (u), then v is

eliminated, v sets largest-seen (v') to ID (u), and v relays M. The processor on the southwest comer

of SE (u, a') discards M.. Similarly, if a processor v" on the north boundary of SE (u, a') discards EM,

then v sends a Mark message MM that contains ID (u) to traverse the remainder of the north boundary of

SE (u, a'). The processor on the northeast comer of SE (u, a') discards MM. (The necessity for

distinguishing between the v and v cases will become clear in Lemma 5.11.)

We will show that our second and third ideas are sufficient to guarantee that all processors in

SW (u, a') U. NE (u, a') - [u) are eliminated when phase i+1 starts.

For our fourth idea, let E. be an Eliminate message that is not discarded in phase i = F logv'nF.

Then E loops around the row containing processor u and reaches u from the west. We will prove that in

phase i*, there is at most a constant number of processors that receive their Eliminate messages from the

west. Thus for phase i *+I, the live processors execute a simple algorithm that guarantees the uniqueness

of the leader. At the start of phase i" +1, u sends to the north a Final message F, that contains ID (u).

Let z be the processor with the largest identifier in the network. In the proof of correctness, we will prove
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that z executes phase i-+l. Thus if F. reaches a processor z' in the row Row (z) containing z, then

ID (u) < ID (z) = largest-seen (z), and z' discards F.. On the other hand, F, traverses the entire column

containing z. When z receives F, from the south, then z knows that z has the largest identifier in the

network, and that all Final messages F, with u * z will be discarded when they encounter Row (z). Thus

z elects itself as the unique leader.

4-3.2 Details of the algorithm

Each processor u keeps a variable called largest-seen (u,i). Intuitively, largest-seen (u, i) is the

largest identifier in an Eliminate message that u receives in phase i from the west or from the north. At

the start of phase i, largest-seen (u,i) = nil, where nil is smaller than the identifier of every processor.

For every time t, largest-seen (u,i) at t is no more than largest-seen (u) at t. Also, largest-seen (u,i)

can never be equal to ID (u). Processor u also maintains a variable called eliminated-from (u).

Intuitively, eliminated-from (u) specifies the direction from which the message that eliminated u came.

Initially, eliminated-from (u) is undefined. If u is live at the start of phase i, then largest-seen (u) =

ID (u).

At the start of each phase i >O, each live processor y sends the message E. =

"Eliminate_[ID (y),cr,nil]" to the east. Next, each processor u, whether u is live or dead, processes each

message that u receives. Suppose that u receives the message E, = "EliminatelID (v),kID']" from the

direction dir, where v is some processor, 1 c < , and dire {west,north,east,south}. An invariant of

the algorithm is that ID" = nil if dir is west or north; otherwise, ID' is largest-seen (w,i) for some w on

the south boundary of SE(v, a). Depending on the value of dir, u executes one of the following four

cases:

Case 1: dir = west:

There are two subcases:
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Case 1.1: ID (v) * ID (u):

Then E, is a message from some processor v different from u.

If largest-seen (u) > ID (v), then u discards E. Processor u sets largest-seen (u,i) to

max(largest-seen (u,i)JD (v)). Also, if k * 1, then u sends "Mark_[ID(v),k-]" to the east.

If largest-seen (u) : ID (v), then u sets largest-seen (u) to ID (v), u sets eliminated -from (u) to

west, and u is eliminated. Processor u sets largest-seen(u,i) to ID(v). Also, ifk 1, then u sends

"EliminateJliD (v),k-l,nil]" to the east. If k = 1, then u is at the northwest comer of SE (v, Ct), and u

sends "Eliminate_[ID (v), t, nil]" to the south.

Case 12: ID (v) = ID (u):

Then E, is an Eliminate message from u. Thus E, originated at u, traversed the entire row Row (u)

containing u, and returned to u. No processor other than u is currently live in Row (u) since Ev was not

discarded. Thus u executes the procedure FINAL defined as follows. Processor u sends the message

F, = "Final_[ID (u))" to the north. Each processor v*u with largest-seen (v) < ID (u) passes F to the

north. If FM arrives at some v with ID (u) < largest -seen (v), then v discards F,. If F. arrives at u, then

u elects itself as the leader.

Case 2: dir = north:

Then ID (v) * ID (u).

If argest -seen (u) > ID (v), then u sets largeyt-seen (u,i) to max (largest-seen (u,i)JD (v)}, and u

discards E,. Also, if k * 1, then u sends "Mark_[ID(v),k-1]" to the south. Ifk = 1, then u sends

"Mark_[ID (v),aLi]I" to the west.

If largest-seen (u) < ID (v), then u sets largest-seen (u) to ID (v), u sets eliminated-from (u) to

north, and u is eliminated. Also, if k * 1, then u sends "Eliminate[ID(v),k-l,nil]" to the south. If

k 1, then u sends "Eliminate_[ID (v), c',largest-seen(u,i)]" to the west. Finally, u sets

largest-seen (u,i) to ID (v).
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Case 3: dir = east:

Then ID (v) * ID (u).

if largest-seen (u) > ID(v), then u discards E. Processor u sets largest-seen(u,i) to

max{largest-seen (u,i)JD (v)}. Also, if k * 1, then u sends "Mark_[iD(v),k-1I" to the west. If k-,

then u does not send a Mark message.

If largest -seen (u) SID (v), then u sets largest -seen (u) to ID (v), and u is eliminated. Also. u does

one of the following:

Case 3.1: k * 1:

Processor u sets eliminated -from (u) to east. Also, if ID (u) = ID and largest-seen (u,i) < ID

then u sends "Eliminate_[ID (v),k-l,nil]" to the west. Otherwise, u sends "Eliminate-[iD (v),k-1,

max[ID argest-seen (u, i)) I" to the west. Finally, u sets largest -seen (u, i) to ID (v).

Case 3.2: k = 1:

Processor u is at the southwest corner of SE (v, CL'). If ID (u) = ID", then u sends

"EliminatejlD (v),ct',nil]' to the north, and u sets eliminated-from (u) to east. Processor u sets

largest-seen (u, i) to ID (v).

If ID (u) * ID and ID < largest-seen (u,i), then u sends

"Eliminate lID (v), a',largest-seen(u,i)]'I to the north. Also, if eliminated -frcm(u)= west, then u

sends K, = "Kill_ [largest -seen(u,i)]" to the west. Every processorx that receives K, forwards the

message to the west until K, reaches a processor x such that ID (x) = largest-seen (u,i). Processor x

J becomes eliminated, but eliminated -from (x) is not changed. If eliminated -from (u) * west, then u does

not send a Kill message. Finally, u sets eliminated-from (u) to east so that u initiates at most one Kill

message in phase i. Also, u sets largest-seen(u,i) to ID(v).

If ID (u) * ID and ID > largest -seen (u,i), then u sets eliminated-from (u) to east and sends

"Eliminate_[ID (v),ox',lD']" to the north. Processor u sets largest-seen (u,i) to ID (v).

I



58

Case 4: dir = south:

If ID (v)=D (u), then k = 1 and E, is a message from u. If u is live when u receives E , then u

continues to receive messages for an additional &' time units, and u advances to phase i +1 if u does not

receive a Kill message during these & time units. If u is dead when u receives Ev, then u discards E.

If ID (v)*ID (u) and largest-seen(u) > ID (v), then u discards E. Processor u sets

largest-seen (u,z) to max[largest -seen (u,i) JD (v)).

If ID(v)ID(u) and largest-seen(u) < ID(v), then k * 1, and u is eliminated. Also, u sends

"Eliminate_[ID (v),k-l,ID ]" to the north. In addition, ifID = largest -seen (u) and

eliminated -from (u) = west, then u also sends "KiIl[ID ]" to the west. Otherwise, u does not send a

Kill message. Finally, u sets eliminated -from (u) to south so that u initiates at most one Kill message in

phase i. Processor u sets largest-seen (u,i) to ID (v).

Suppose that u receives the message "Mark_[ID (v),k]" from the direction dir, where I < k 5 a', v

is some processor, and dirE {west,north,east). First, u compares largest -seen (u) with ID (v). If

largest -seen (u) < ID (v), then u sets largest -seen (u) to ID (v), and u is eliminated. Next, regardless of

the relative sizes of largest-seen (u) and ID (v), u does one of the following depending on the value of

dir:

Case 1: dir = west:

If k 1, then u sends "Mark-[ID(v),k-l]' to the east.

If k = 1, then u does not send a Mark message.

Case 2: dir = north:

If k *1, then u sends "Mark_[ID(v),k-l]" to the south.

If k = 1, then u sends "Mark[ ID(v), ce" to the west.
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Case 3: dir = east:

If k 1, then u sends "Mark_[ID (v),k-]" to the west.

If k = 1, then u does not send a Mark message.

Processor u remains live at the end of phase i if either u receives E. from the south after 4ai time units

and does not receive the message "KilliID (u)]," or u receives E, from the west.

4.4 Proof of Correctness

Let z be the processor with the largest identifier in the network.

Lemma 4.1: Processor z executes the procedure FINAL(Case 1.2 of the algorithm).

Proof: Processor z does not execute FINAL only if z is eliminated during some phase i S i*. Since z is

the processor with the largest identifier, z can not be eliminated by receiving an Eliminate message.

Let E, be an Eliminate message that z sends at the start of some phase i. By our choice of z, every

processor v on the path that E, traverses has largest-seen (v) < ID (z). Therefore, E, is never discarded,

and z can not be eliminated by a discard of E.

The only other way that z may be eliminated is if z receives a Kill message K = "Kill_[ID (z)]." By

the algorithm, K was spawned by some processor u * z in the same row Row (z) as z, with

largest-seen (u) = ID (z). Furthermore, u spawned K because u received a message E. =

"Eliminate_[ID (v),klD (z)]" from the direction dir, where 1 < k __ os, and dire {east,south}. By the

algorithm, ID (v) > largest-seen (u ) = 1D (z). Thus, since z has the largest identifier, ID (v) = ID (z), and

E, was sent by z. But an Eliminate message sent by z can not reach a processor u in Row (z) from the

east or from the south, unless u = z. Thus K does not exist.0C

Theorem 4.1: The algorithm elects z as the leader when the algorithm terminates.

Proof: Processor z executes the procedure FINAL because z receives its Eliminate message from the

west in phase i*. Thus, at the start of FINAL, all the processors v in Row(z) have

largest -seen (v) = ID (z), and all the processors except z in Row (z) are eliminated. Suppose that another
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processor u is also live at the start of FINAL. By the algorithm, z and u send final messages to the north.

Since z has the largest identifier, z's Final message will return to z from the south. Either u's Final

message F, is discarded before reaching Row (z), or F, reaches a processor v in Row (z). In the latter

case, F. is discarded since ID (u) is smaller than largest-seen (v) = ID (z). Thus u will be eliminated.

Only z announces itself as the leader.0

4.5 Message Complexity

Lemma 5.1: Let r be a processor. Suppose that some processor receives an Eliminate message E, from

the north or from the east in phase i. Then all the processors r0 in SE (r, a) with ID (ro) < ID (r) are

dead at the start of phase i+1.

Proof: If ro is dead at the start of phase i, then ro is dead at the start of phase i+l. Hence, suppose that

ro is live at the start of phase i. Since there is a processor that receives E, from the north or from the

east in phase i, every processor on the south boundary of SE(r, a') receives Er or Mr. Either Eo is

discarded before Ero reaches some processor on the south boundary of SE(r, a') from the south, or E.0

reaches a processor r I on the south boundary of SE (r, a') from the south. In the later case, r 1 receives

Ero after r I receives either E, or Mr. See Figure 4.4. Thus E,o reaches r I when largest-seen (r1 ) I

ID (r) > ID (ro), and rI discards Ero. Therefore, ro will be dead at the start of phase i +1.0

Lemma 5.2: Let r be a processor live at the start of phase i. Then all the processors ro in NE (r, a') .

NW (r, c) with ID (ro) < ID (r) are dead at the start of phase i +1.

Proof: If ro is dead at the start of phase i, then ro is dead at the start of phase i+l. Hence, suppose that

ro is live at the start of phase i. Since r is live at the start of phase i, every processor on the north

boundary of SE(r, a') receives E, or Mr.

Suppose that ro is in NW (r, a'). Either Er, is discarded before E,o reaches some processor on the

north boundary of SE (r, o), or Ero reaches a processor r I on the north boundary of SE (r, a'). In the later

case, r I receives Ero after r) receives either E, or Mr. Thus ErO reaches r I when largest-seen (r 1 ) >

ID (r) > ID (ro), and r I discards Ero. Therefore. ro will be dead at the start of phase i+l.
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Figure 4.4. Processor ro in SE (r, ct')

Now suppose that ro is in NE (r, Ct'). Either E,, is discarded before E o reaches some processor on

the north boundary of SE (r, ct') from the south, or E o reaches a processor r 1 on the north boundary of

SE(r, oe) from the south. In the later case, rI receives Ero after r I receives either E, or M,. Thus E-o

reaches r I when largest-seen (r 1) >ID(r) > ID(ro), and rI discards Ero . Therefore, ro will be dead at

the start of phase i +I.Cl

Lemma 5.3: Let r be a processor live at the start of phase i. If there is a processor q in SE (r, a') U.j

SW (r, c) live at the start of phase i with ID (q) > ID (r), then r will be dead at the start of phase i + 1.

Proof: Processor r is in NE (q, ce) U NW (q, a'). By Lemma 5.2, r is dead at the start of phase i +1.O

Lemma 5.4: Let r be a processor live at the start of phase i, and let q be a processor in NW (r, c') with

ID (q) > ID (r). Suppose that a processor receives the Eliminate message Eq from the north or from the

east in phase i. Then r will be dead at the start of phase i+1.

Proof: Processor r is in SE(q, o). By Lemma 5.1, r is dead at the start of phase i+l.-]
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Fix processor u to be live at the start of some phase i+l, where 0:< i :< i -1. Thus, in phase i, all

processors on the east boundary of SE (u, o&) receive E. from the north. Thus we can apply

Lemmas 5.1 - 5.4 withr=u. Lemmas 5.5 - 5.10 pertain to u.

Lemma 5.5: All the processors in SE(u, ai) U) NW(u, ai) - [u) are dead'at the start of phase i +1.

Proof: Let uo * u be a processor in SE (u, & ) live at the start of phase i. Since u is live at the start of

phase i+1, ID (u0 ) < ID(u) by Lemma 5.3. Thus u0 is dead at the start of phase i+1 by Lemma 5.1. All

processors in SE (u, c )-[u) are, therefore, dead at the start of phase i +1.

Suppose, contrary to the lemma, a processor u I * u in NW (u, cz) is live at the start of phase i + 1.

Then, by the argument we have just given, since u is in SE (u 1 , a), processor u would be dead at the start

of phase i+1, contrary to the hypothesis. Hence all processors in NW(u,a')-u) are dead at the start of

phase i+l.0

We now show that all processors in SW(u, (7)-.-[u} are dead at the start of phase i+1. Let x be the

processor at the southwest comer of SE (u, a). Since u is live at the start of phase i+1, processor x sends

E,. = "EliminateliD (Iu),o",ID ']" to the north in phase i, where ID' is an identifier of a processor or is

nil. By the algorithm, ID * ID(u).

Lemma 5.6: If ID' = nil in E., then all processors in SW (u, o&)-u) are dead at the start of phase i +1,

Proof: According to the algorithm, processor x sends E,, with ID = nil because x received the message

E,, = "EliminatejlID (u), l,JD '" where ID" is ID (x) or is nil. By the algorithm, x is dead when x sends

E,. Now consider all processors w in SW(u, o&)-{u,x) that are live at the start of phase i. If E is

discarded before E, reaches the south boundary of SE (u, a1), then w is dead at the start of phase i +1.

Thus suppose that E,, reaches some processor u o on the south boundary of SE (u, a'), and that uo does not

discard E . Then largest-seen (uo,i) : ID (w) when E, reaches u. Thus ID in E. is at least ID (w).

Recall that ID" e {nil, ID(x)}. Since ID > ID(w) > nil, ID" = ID (x). Since w #x, ID(x) > ID(w).

By Lemma 5.2, w is dead at the start of phase i+1. Thus all processors in SW(u, ot)-{u,x) are also dead

at the start of phase i+l. Hence all the processors in SW(u, at )-{u) will be dead at the start of phase

i+1.0-
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Now suppose that ID * nil. Thus ID =ID(vo), where v0 is some processor. Since E,, contains

ID (v 0 ), Vo * u. Since ID nil, v0 * x. Note that, by the algorithm, vo must be live at the start of phase

for ID (v0) to be in E,. Lemmas 5.7 - 5.9 pertain to u and vo.

Lemma 5.7: Processor v0 is in SW(u, c').

Proof: Let u0 be the western-most processor on the south boundary of SE (u, c ) with

largest -seen (u o,i) = ID (vo) when u's Eliminate message E, reaches u o. Since largest-seen (uo,i) =

ID(vo), processor Uo received an Eliminate message Evo that contained ID(vo). Therefore, vo is on the

boundary of NW(uo,cz'). Suppose that, contrary to the lemma, vo is not in SW(u, a'). Since vo is on the

boundary of NW(uo, cc), either v0 is on the north boundary of SE(u, ax'), or v0 is on the south bu:,,dary

of SE (u. a). We will show that both cases lead to contradictions.

If vo were on the north boundary of SE (u, a'), then E,, would reach uo after E. reaches u 0 . Hence

largest-seen (u 0, i) * ID (vo) when E reaches u o, a contradiction.

If v0 were on the south boundary of SE (u, c'), then, by our choice of u0 , u0 = v0 . By the

algorithm, vo would send the message "Eliminate_[ID (u),knil]" to the west when vo received E.

Hence E., would not contain ID (vo), a contradiction.O

As in Figure 4.5, let the rectangle SW(u,q,q') denote a rectangular mesh of processors with

processor u at the northeast comer, q+l processors on the east and west boundaries, and q'+l processors

on the north and south boundaries. Let the rectangle NE(u,q,q') denote a rectangular mesh of processors

with processor u at the southwest comer, q+l processors on the east and west boundaries, and q'+l

processors on the north and south boundaries. Recall that u is live at the start of phase i+1.

Lemma 5.8: Processor v0 is not in the rectangle SW(u, a'-1 ,a'i).

Proof: Processor u is live at the start of phase i. Hence u received an Eliminate message E in phase

i-1. Thus all processors b on the east boundary of SW (u, cc -1, c) have largest-seen (b) a ID (u) at the

start of phase i. Since u is live at the start of phase i +1 and v oe SW(u, c'), ID (v o) < ID (u) by Lemma

5.3. Thus if, contrary to the lemma, vo were in SW(u, &I ,cx'), then vo's Eliminate message E o in
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NW(u.q.q) a NE(uq.q)

.. ... .. ..... .... ~W 1  
V. V 1.. ...... .... ...

SW(u.q.q) b SE(u.q.q)

Figure 4.5. The Definitions of NW(u,q,q ), NE(u,q,q ), SE(uq,q ), and SW(u,q,q')

phase i would be discarded when E,0 reached the east boundary of SW(u, cci 1 ,aA), E ° would not reach

the south boundary of SE (u, &), and ID(vo) would not be in E,, a contradiction. Hence v0 is not in

SW(u,o: - ',a6).3

We will need Lemma 5.9 in the proof of Lemma 5.10.

Lemma 5.9: Let v,, be a processor on the west boundary of SE(u, ai). Let wo be a processor in

SW(u, ai), and let r s wo be a processor distinct from u. Suppose that largest-seen (v,,i) = ID (wo) at

some time during phase i. If largest-seen(v,,,i) becomes ID(r), then wo is dead by the time phase i+1
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starts.

Proof: Since v,, changes largest-seen (vi) from ID (wo) to ID (r), by the algorithm, v, receives an

Eliminate message E, from r such that ID (wo) < ID (r).

If v,, receives E, from the north, then wo is in SE(r, oa) since v,, receives Er after v', receives wo's

Eliminate message E o. Since ID (wo) < ID (r), then wo is dead at the start of phase i +1 by Lemma 5.1.

If v., receives E, from the west, then r is in the same row Row(vw) as vw,. Since v,, receives Er after

v, receives Ewo , wo is in Row(vw), and wo is to the east ofr and to the west of v,. Thus Er reaches wo,

and wo will be dead at the start of phase i +1.

Finally, we show that v,, could not have received E, from the east or from the south. If, to the

contrary, v, received E, from the east, then r would be in NW(u, at). By Lemma 5.4, since u is live at

the start of phase i +1, ID (r) < ID (u). Hence E, would be discarded when Er reached the north boundary

of SE (u, at) and before E, reached v,,. If v,, received E, from the south, then r would be in the same

column as v,,. Further, r would be in SE (u, a') or in NW(u, ai). In either case, ID (r) < ID (u) by

Lemmas 5.3 and 5.4, since u is live at the start of phase i+1. If re SE (u, a'), then E, would be discarded

when E, reached the south boundary of SE (u, oe) and before E, reached v,. If re NW (u, a'), then E,

would be discarded when Er reached the north boundary of NW (u, ct) and before E, reached v,,. Thus,

v, would not set largest-seen (v,, i) to ID (r), a contradiction.C

Lemma 5.10: If ot 2, then all processors in SW (u, o') U.j NE (u, a')-{u) are dead at the start of phase

i+1.

Proof: We first show that all processors in SW (u, a)--{u} are dead at the start of phase i + 1. Consider

phase i, and consider all processors w0 in SW (u, a') live at the start of phase i with ID (w0 ) > ID (v0).

We will show that wo's Eliminate message Eo in phase i is discarded before or when Ewo reaches the

south boundary of SE(u, o), and thus wo will be dead at the start of phase 1 +1 If E,, were not

discarded before or when E, o reached the south boundary of SE (u, ce), then, since ID (wo) > ID (vo), E,

would not contain ID (vo); instead, E, would contain ID (wo) or a larger identifier, a contradiction.
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Now consider all processors wo in SW(u, o') live at the start of phase i with ID (wo) < ID (v o). By

Lemma 5.8, vo is not in the rectangle SW(u, ca-' ,c ). Since a < 2,

SW(u, oCi) Q NE (vo,a)UNW(vo,ct').iSE(vo,a -' ,oe)USW(vo, i -1 ,L).

If woeNE(vo,a i) U NW(vo,ct), then wo is dead at the start of phase i+1 by Lemma 5.2.

IfwoeSE(vo,t - t ,a), then wo is dead at the start of phase i+1 by Lemma 5.1.

Now suppose that woeSW(vo,a' -1 ,cx). Since vo is live at the start of phase i, processor vo

received the Eliminate message that v0 sent in phase i-1. Thus all processors v I on the east boundary of

SW(vo,c - ',c) have largest-seen (vl) > ID (vo) > ID(wo) at the start of phase i. Hence, Ewo will be

discarded if E,, reaches the east boundary of SW(vo,ce-' ,a'). Consequently wo will be dead at the start

of phase i+l.

We now show that v0 is dead at the start of phase i +1. Let v, be the first processor on the west

boundary of SE (u, oa) to receive Evo. If Evo is discarded when Eo reaches v, then vo is dead at the start

of phase i+1. Suppose now that v,,, does not discard Evo. When E~o reached v,, processor v,,, set

largest-seen (v,,,i) to ID (v0 ) and eliminated-from (v,) to west. By the algorithm, v, changes

eliminated-from (v,) only if vw changes largest-seen (vv,i). By Lemma 5.9, if largest-seen (vv,i) is

not ID (vo) when E, reaches v,,, then vo is dead at the start of phase i +1. Thus suppose that

eliminated-from(v,,) is west and largest-seen (v.,,i) is ID (vo). By the algorithm, v, sends a Kill

message to v0 in phase i. Thus v0 will be dead at the start of phase i+I.

We have shown so far that all processors in SW(u, cc')-{u} are dead at the start of phase i +1. If a

processor r * u in NE (u, c&) were live at the start of phase i +1, then, by the argument we have just given,

since u is in SW(r,ct) u would be dead at the start of phase i+l, contrary to the hypothesis. Hence all

processors inNE(u, aH)-{u) are dead at the start of phase i+I.O

We say that u generates k messages in phase i if
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(the number of links that u's Eliminate message E, traverses)

+ (the number of links that a Mark message spawned by E, traverses)

+ (the number of links that a Kill message spawned by E. traverses) = k.

Lemma 5.11: The algorithm uses at most 3n messages in phase 0.

Proof: Consider a processor uo. Suppose that vo is the processor immediately to the south of uo, and wo

is the processor immediately to the west of uo. See Figure 4.6. Processor uo generates at most five

messages in phase 0: four Eliminate messages and one Kill message. Suppose that ua generates four or

five messages. Then uo receives uo's Eliminate message EO from the south. If ID (u) were less than

ID (wo), then wo's Eliminate message E o would reach vo before Eo, and Yo would discard EMO. Thus

ID(wo) <ID(u). Hence Uo discards Ewo, and wo generates only one message.

Since every processor uo that generates at least four messages has a processor wo to the west that

generates only one message, the average number of messages per processor in phase 0 is at most three.-

229n
Theorem 5.1: The algorithm uses at most 229n messages.

Proof: Suppose that u is live at the start of phase i, Where 1 ,: i < i. By Lemmas 5.5 and 5.10 with

a5 2, all the processors in SE (u. a - ) U. SW(u. ce- ) . N E(u, c' - 1) U. NW(u, oeaI )-{u) are dead at

I

F- " l iure 4.6. Prcesos 0 u• ndv
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the start of phase i. Hence there are at most ( )2 processors u live at the start of phase i. Processor

u generates at most 5a' messages in phase i, where 1 < i < i*-l. In phase i*, u generates at most a'*

messages. Thus the total number of messages used by the algorithm in phases 0 through i* is 3n +

a l + aA • processors u execute FINAL, and u
+W(' -1+1) (a' - +1)

generates at most -Fn messages in FINAL. Hence the algorithm uses at most n n messages in
(a

i -1+1)2

FINAL. The total number NUM of messages that the algorithm uses satisfies

NUM:< 3n + 5 a n +ce n- n 41

i1 (a- 1+1 2  (a' - +1) (a' -1+1)(

Consider each term in inequality (4.1):

a n + n N'< 2 a'* n 2 =r" logd4l

< 2 oFUn = (,F) = o(n)

Also,

i=lse n 5nat 5n - n

4 5 ano1a+ + Y,___

5 noa + 5ne.2  5n
- + (l)-- - -  + -1 + o(n) (4.2)

-4 (a-I)2  at-i
The value of c that minimizes expression (4.2), subject to I < cc < 2, is t =2. Hence,

NU 229n
NUM <- 229 + o(n).l-'

18

4.6 Time Complexity

Theorem 6.1: The algorithm runs in time O(,n').

Proof: Each phase i lasts 5a time units, where 05 i < i*-. Phases i* and i*+1 last O(-) time units.
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Hence, the running time of the algorithm is

i'-0o(,Fn + i 5 = o( on). 0

4.7 Lower Bounds

For our lower bound proof, we generalize the techniques of Frederickson and Lynch [22].

4.7.1 Assumptions

We now present the assumptions we use to obtain our lower bounds. For convenience, we assume

that each processor is indexed by a unique number chosen from the set (0,1, • • • ,n-1 ). When we say

"processorp" we mean the "processor with index p." The index of a processor is not necessarily the same

as the processor's identifier. We assume that each message that processorp sends contains p's entire

state. The current state of p incorporates all the messages that p received so far as follows. Recall that PN

denotes p's north neighbor, PE denotes p's east neighbor, ps denotes p's south neighbor, and pw denotes

p's west neighbor. Let state(p,i) denote the state of processor p at the start of round i. Then state (p, O) =

(ID (p)); state (p,i) =(s ,sE,SSw,SN), for each round i 'a 1, where:

sE = state (p, i - p );

S= state (pE,i-1) if p received a message from PE in round i -1, SE = nil otherwise;

s =state (ps,i-1) if p received a message from ps in round i -1, s = nil otherwise;

sw = state (pw,i-1) if p received a message from Pw in round i-, Sw = nil otherwise;

SN = state (PN, i-1) if p received a message from PN in round i- 1, SN = n il otherwise.

We say that the two states s and s are order-equivalent provided that s and s are structurally

equivalent, and that if two identifiers in s satisfy one of the order relations <, =, or >, then the

corresponding identifiers in s satisfy the same order relation. An election algorithm is a comparison

algorithm provided that if s and s are order-equivalent processors, then processors with states s and s

transmit messages in the same direction and have the same election status. The algorithm we presented in

Section 4.3 is a comparison algorithm.

h
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4.7.2 Executions

A configuration C of size n is a vector of size n that specifies the state of each processor:, the state of

p is in position p in C. A message vector M of size n is a vector of n 4-tuples that specifies the messages

sent by each processor in one round: position p in C specifies the messages that p sent to p's east, south,

west, and north neighbors. The execution of an election algorithm is a sequence of triples (C I ,,C 2),

where C1 and C2 are configurations, and M is a message vector, all of size n. We require all executions e

to satisfy several properties. First, the initial configuration in e specifies the identifier of each processor.

Second, the second configuration in each triple in e must be the same as the first configuration in the next

triple. Third, let state (p,C) denote the state of processorp in configuration C. The 4-tuple in position p

in M must contain the messages that p sends when p is in state (p, C 1). Finally, C 2 must be the

configuration after C 1 when all the processors receive the messages in M. An execution fragment is any

finite prefix of an execution.

4.7.3 Chains

Let R (pq) be a path that connects processors p and q. Then the length of R (p,q) is the number of

processors in R (p,q), including p and q. We useIR (p,q) Ito denote the length of R (p,q). Let k >_ I be an

integer. We define p's k-diamond to be the set of all processors q such that there exists a path R (p,q) of

length jR(p,q)j< k. Figure 4.7 showsp's 3-diamond.

Let P be p's k-diamond, and Q be q's k-diamond. We call p the center of P and q the center of Q.

Recall that PE (respectively Ps, pw, PN) is p's east (respectively south, west, north) neighbor. Suppose

that e is an execution or an execution fragment. Then an east-chain in e for (P,Q) is a subsequence e11,

ei2 , " " ei., of e such that the following three conditions are true:

(1) There exists a processor p and a path R (p,p) of length k. Path R (p,p ) must be of the form

P P 2 P (k-2) PE P, for some processors p 2 , P 3 , P (k-2).

(2) There exists a processor q' and a path R (q,q') of length k. Path R (q,q') must be of the form

q q2 q(k-2) qE q, for some processors q2, q 3 , • q(k-2).
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Figure 4.7. Processor p's 3-diamond

(3) Letp' bepI.pEbep(k. 1),pbepk, q' beq 1 ,qE beq(k-I), andqbeqk. Letpo besome processor

adjacent to p , and qo be some processor adjacent to q . Then for each step ei, in the chain, a

message is sent either by processorp .il) to processorpj or by processor q (-1) to processor q,.

Thus an east-chain for (P,Q) describes combined information flow to p and q. We call the chain an

east-chain because p or q receives its information from pE or qE, respectively. We use similar definitions

for south-chains, west-chains, or north-chains.

A chain is either an east-chain, a south-chain, a west-chain, or a north-chain. Two k-diamonds P

and Q are order-equivalent provided that if the identifiers of two processors in P satisfy one of the order
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relations <, =, or >, then the identifiers of the corresponding processors in Q satisfy the same order

relation. Two processors p and q are k-equivalent provided that the k-diamonds centered at p and q are

order-equivalent. If P and Q are two k-diamonds, then the states s and t are congruent with respect to

(P,Q) provided that s and t are structurally equivalent, and corresponding positions in s and t contain the

identifiers of processors in corresponding positions of P and Q, respectively.

Lemma 7.1: Let e be an execution fragment of a comparison algorithm. Suppose that k is a positive

integer. Let p and q be any pair of k-equivalent processors, and let P and Q be their respective k-

diamonds. If there are no chains in e for (P,Q), then at the end of e, the states of p and q are congruent

with respect to (P,Q).

Proof: The proof is by induction on the length of e.

Base: e =. Neither p nor q has received any messages in e, so they will remain in states that are

congruent with respect to (P,Q).

Inductive Step I e I > 0. Assume as the induction hypothesis that the result holds for any execution

fragment of length shorter than e i and all values of k. Let e denote e except for e's last step. Then by

the inductive hypothesis, p and q remain in states that are congruent with respect to (P,Q) up to the end of

e. Consider what happens at the last step.

Case 1: All of the following hold:

(a) Either pE and qE are in states that are congruent with respect to (P,Q) just after e, or else neither pE

nor qE sends a message to the west at the last step of e.

(b) Either Ps and qs are in states that are congruent with respect to (P,Q) just after e , or else neither ps

nor qs sends a message to the north at the last step of e.

(cl Either pw and qw are in states that are congruent with respect to (P,Q) just after e, or else neither

pw nor qw sends a message to the east at the last step of e.

(d) Either PN and qjv are in states that are congruent with respect to (P,Q) just after e .or else neither p<

nor qN sends a message to the south at the last step of e.
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In this case, it is easy to see that p and q remain in states that are congruent with respect to (P,Q)

after e. For if PE and qE are in states that are congruent with respect to (P,Q) just after e , then, since the

algorithm is a comparison algorithm, they both make the same decision about whether to send a message

to the west at the last step of e. If they both send a message, then the messages they send contain their

respective states, which are congruent with respect to (P,Q). A similar argument applies to Ps and qs, to

pw and qw, and topv and qN. It follows thatp and q remain in states that are congruent with respect to

(P,Q) after the last step of e.

Case 2: Processors PE and qE are in states that are not congruent with respect to (P,Q) just after e , and at

least one of them sends a message to the west at the last step of e. We wil show that this case leads to

contradictions.

If k = I (i.e., if P and Q consist only of p and q, respectively), then an east-chain for (P,Q) is

produced by the message sent at the last step, a contradiction. So assume that k > 1. Since p and q are

k-equivalent, it follows that pE and qE are (k-1)-equivalent. LetP and Q denote their respective (k-I)-

diamonds. Since the states Of PE and qE just after e are not congruent with respect to (P,Q), they are also

not congruent with respect to (P ,Q). By the inductive hypothesis, there must be a chain in e for

(P,Q). Since at least one of pE and qE sends a message to the west at the last step of e, we obtain an

east-chain in e for (P,Q) by appending this step to e , a contradiction.

Case 3: Processors ps and qs are in states that are not congruent with respect to (P,Q) just after e', and at

least one of them sends a message to the north at the last step of e. This case is similar to Case 2 and

also leads to contradictions.

Case 4: Processors pw and qw are in states that are not congruent with respect to (P,Q) just after e', and

at least one of them sends a message to the east at the last step of e. This case is similar to Case 2 and

also leads to contradictions.

Case 5. Processors PN and qN are in states that are not congruent with respect to (P,Q) just after e', and

at least one of them sends a message to the south at the last step of e. This case is similar to Case 2 and



74

also leads to contradictions.0

Let max -east (e) be the maximum k for which there are order-equivalent k-diamonds P and Q

(possibly with P = Q) such that e contains an east-chain for (P,Q). The quantities max-south (e),

max-west(e), and max-north (e) are defined analogously. Let sum (e) = max-east(e) + max-south (e)

+ max -west (e) + max--north (e).

Lemma 7.2: Let k be a positive integer. Assume that mesh S is such that, initially, every k-diamond has

at least ik order-equivalent k-diamonds. Let e be any execution fragment of a comparison algorithm in S,

and let e be another fragment consisting of all but the last step of e. Assume that sum (e) < k. If some

processorp sends a message in the direction dir at the last step of e, then there are at least ik processors

that send a message in the direction dir, where dir e {east,south,west,north}.

Proof: Processor p has at least ik k-equivalent processors (including p itself). Let q be one of these

processors, and let P and Q be the k-diamonds centered at p and q, respectively. By the definition of

sum (e ), there can not be a chain in e for (P,Q). By Lemma 7.1, processors p and q are congruent with

respect to (P,Q) at the end of e'. By the definition of a comparison algorithm, q also sends a message in

the direction dir at the last step of e.O

Lemma 7.2 is also true when max {max-east(e'), max-south (e), max-west (e),

max-north (e) !5 k.

4.7.4 Replication symmetry

We will prove the lower bound on the number of messages that comparison algorithms require for

election in n-meshes when n is a power of 4. We first assign identifiers that have a large amount of

replication symmetry to the processors in an n-mesh S.

Define a k-moddiamondA to be the set of all processors on the boundary of or enclosed by the

figure in Figure 4.8. We say that the square abcd (in that order) is the center of A. Consider any n-mesh

S, where n = 41, for some 1 >2. Let A I be a (2( - ') - 1)-moddiamond in S. Then the remaining processors

in S form another (2(1-1) - 1)-moddiamond A 2 in S.
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We will assign identifiers to the processors as follows:

(1) Assign a 1(0) to the least significant digit of all the processor identifiers in A 1 (A2).

(2) In what follows we consider A 1 . The same should be done for A,2 . Create 4 (2(1- 2) - 1)-

moddiamonds A (1,o), A (I,), A (1.2), A (1,3) with centers ao bo co do, a I b 1 c 1 d 1, a 2 b2 c2 d 2 , and

a 3 b 3 c3 d3 , respectively, where there are

2(1-2)+l processors between ao and a (including ao and a), and ao is to the north of a.

20-24+1 processors between aI and a (including aI and a), and a I is to the east of a.

2(1-2)+l processors between a 2 and a (including a 2 and a), and a2 is to the south of a.

2(1-2)+l processors between a 3 and a (including a 3 and a), and a 3 is to the west of a.

Assign a 0(respectively 1,2,3) to the second least significant digit of processor identifiers in

A (1.o) (respectively A (1.1),A ( 1 2),A (1.3))-

(3) Recursively create 16 (2('-3)-1)-moddiamonds A (1.0,0),.,4(1,0, 1), A (1,.2), A (1.0.3), A (1,1,o), " A (1,3,3)

For each digit x in { 0,1.2,3 1, assign a 0(respectively 12.3) to the third least significant digit of processor

identifiers in A (1,,. o)(respectively Aa, 1) -4 (1.. 2),,4 (1,., 3)).

(4) Let i -4. Recursively create 4(i -') (2(t''-)-moddiamonds and assign a 0, 1, 2, or 3 to the ith least

significant digit of processor identifiers. The recursion stops after creating l-moddiamonds and assigning

the appropriate digits to the processor identifiers in the 1-diamonds. We then assign the most significant

digits to each processor in the I-moddiamonds as in Figure 4.9. Figure 4. 10 shows the processor

identifiers in a 64-mesh.

4.7.5 Proof of the lower bound

Theorem 7.1: Assume that n is 41, and 1 > 2. Let fl be a comparison algorithm that elects a leader in
57

every synchronous n-mesh. Then there is an execution e of H that uses at least -7n messages.

Proof: Consider the n-mesh S whose processor identifiers are assigned as described in Section 4.7.4. Let

messages(e) denote the number of messages that e uses in S. We will prove the theorem by showing that
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0

Figure 4.9. Processor Identifiers in a 1-moddiamond

messages (e) > n + -- + - +

2 +4 +32

First. we show that messages (e) 2 n. Initiall , no processor knows the identifier of any other

jprocessor. Thus the state of every processorp is order-equivalent to the state of every other processor.

Since 1l is a comparison algorithm, every processor sends a message to the east (respectively

* south,west,north) if, and only if, p sends a message to the east (respectively south,west,north). Thus

messages (e) 2 n.

Second, we show that messages (e) 2 n + --. Let 0 be the first round in 1 I in which p sends a
2

I message. In round 0, if p sends more than one message, then every processor sends more than one

message, and so messages (e) ? 2n. Thus suppose thatp sends only one message in round 0. Without
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Figure 4.10. Processor Identifiers in a 64-mesh

loss of generality, suppose that p (hence every processor) sends the message to the east. Recall that Pw is

p's west neighbor, that state (p,i) is the state of p at the start of round i, and that the state of a processor at

the end of round i is the same as the state of the processor at the start of round i+1. Then state (p. 1) =
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(ID (p),niU,nil,lD (pw),nil). At the end of round 0, there are two types of states. The state (p, 1) is of the

first type if ID(pw) < ID (p). The state (p, 1) is of the second type if ID(pw) > ID (p). Suppose that

state (p, 1) is of the first type, and state (q, 1) is of the second type. The state of every processor at the end

of round 0 is order-equivalent to eitherp orq. By the way we assigned identifiers to processors, it

suffices to compare the most significant digits of the identifiers to determine whether ID (pw) < ID (p).

Thus there are n processors whose states are order-equivalent to state (p, 1), and there are - processors
22

whose states are order-equivalent to state (q, 1). Hence H can not terminate at the end of round 0. Let i

be the first round, after round 0, in which a processor sends a message. Then there will be at least -

messages sent in i I in the same direction. Thus messages (e) ? n +
2

Third, we show that messages (e) > n + 2+ -. If both p and q send messages in round i 1 , then all
2 4

the processors send messages in round i 1 , and so messages (e) -> 2n. If either p or q sends more than one

message in round i 1, then at least -1 processors send more than one message in round i 1, and so

2

messages (e) 2 2n. Thus consider what happens when either q or p sends only one messzge in round i 1 .

We will show that the state of every processor at the end of round i I is order-equivalent to the states of at

least - processors.

Case 1: Suppose thatp sends only one message to the direction dir, and q does not send any message,

where dire {east,south,west,north). There are three subcases:

Case 1.1: dir = east. Then state (p, i +l) =siate (p, 1). Thus there are - processors whose states are

order-equivalent to state (p,i 1+l), namely, the processors whose states were congruent to state (p, 1) at

the beginning of round 1. On the other hand, by the way identifiers are assigned to processors, it suffices

to compare the most significant digits of the identifiers to show that state (q,i 1+l) is order-equivalent to

the states of - processors. Since the state of every processor at the beginning of round 0 is order-

4U
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equivalent to either state (p, 1) or state (q, 1), the state of every processor is order-equivalent to the state

of at least -1 processors at the end of phase i 1.
4

Case 1.2: dir = south. Then state (qi 1+l) = state (q, 1). Thus there are i- processors whose states are

order-equivalent to state (qj 1+1). namely those processors whose states were congruent to state (q, 1) at

the beginning of round 1. On the other hand, by the way identifiers are assigned to processors, it suffices

to compare the most significant digits of the identifiers to show that state (pai i+1) is order-equivalent to

the states of - processors. Thus the state of every processor is order-equivalent to the state of at least n

4 4

processors at the end of phase i 1.

Case 1.3: dir = west or dir = north. By the way identifiers are assigned to processors, it suffices to

compare the most significant digits of the identifiers to show that state (p, i1+l) is order-equivalent to the

states of .- processors, and state (q,i 1+1) is order-equivalent to the states of -1 processors. Thus the state
4 4

of every processor is order-equivalent to the state of at least -1 processors at the end of phase it.

Case 2: Suppose that q sends only one message to the direction dir, and p does not send any message,

where dire feast,south,west,north}. This case is similar to Case 1.

Let i 2 be the first round, after round i 1 , in which a processor sends a message. Since the state of

every processor is order-equivalent to the state of at least -n processors at the end of phase i 1 , there will
4

be at least -1 messages sent in i 2 in the same direction. Hence messages (e) n + -n + n

4 2 4

Finally, we show that messages (e) >_ n + _- + _I + n. As we explained, if a processor sends more
2 4 32

than one message in rounds 0, i 1 , or i2 , then messages (e) " 2n. Thus suppose that all processors send

only one message in each of these rounds Let i3 be the first round, after round i2 , in which a processor

sends a message. Let e be the execution fragment consisting of all the rounds up to, and including,

round i3 -1. By the definitions of sum(e ), i 1 , i2 , and i3 , sum(e) 5 3. By the way identifiers are
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assigned to processors, it suffices to compare the two most significant digits of the identifiers to show that

every 4-diamond has n- order-equivalent 4-diamonds. By Lemma 7.2, there are at least -- messages
32 32

sent in round i3. Thus, messages(e) n +-+ - + -.
.2 4 32

In the proof of Theorem 7.1, we used only the two most significant digits of the processor

identifiers. In the future, we hope to use all of the digits to yield a better lower bound.

I
|
I
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CHAPTER 5

FUTURE WORK

In this chapter, I present some of the problems I hope to solve in the future.

5.1 Problems Associated with Chapter 2

An important problem is to generalize the results of the paper "Memory requirements for agreement

among unreliable asynchronous processes" [2) to the case when a memory cell's value spontaneously

oscillates between several values. There are two reasons to study memory oscillation. First, memory

oscillation models the situation where some faulty cells are repaired on-line while some processes may be

accessing them. Requiring such processes to abort their executions and restart their algorithms would be

inefficient and inconvenient. Second, by examining memory oscillation, I wish to study whether cheap

but possibly faulty memory can be used in place of expensive but reliable memory without significant

performance degradation. Therefore, I plan to formulate lower and upper bounds on the number of

three-valued cells needed in test-and-set agreement protocols when processes die and memory cels fail

undetectably. Elaborate coding schemes do not immediately solve this problem since the processes

cannot set more than one cell at a time, and the processes may die at any step. For the lower bounds, I

will generalize the concept of computation graphs [2) to handle memory failure. A faulty cell will be

modeled as a reliable cell that a Byzantine process p spontaneously writes. Process p does not access any

other cell. For the upper bounds, I intend to build on Jaffe's techniques [31].

5.2 Problems Associated with Chapter 3

Consider a general network in which each edge has a weight that corresponds to the cost of sending

a message along the edge. Minimum weight spanning trees of the network are used for broadcasting in

computer networks with point-to-point links. Tsin (48) presented a distributed algorithm for updating a

minimum spanning tree when a new vertex is added to the underlying graph. I hope to study the problem

of constructing a minimum-weight spanning tree on the network when some of the network links fail

intermittently. Building on the work of Korach, Moran, and Zaks [331, I will first consider the simpler
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problem of constructing spanning trees (not necessarily minimum-weight) on general networks with

faulty links. An algorithm that solves the simpler problem will be an algorithm for election in general

networks with faulty links, since the root of a spanning tree will be the leader of the network. Next, by

using the techniques of Frederickson [21], Gallager, Humblet, and Spira. [24], and Tsin [48], I expect to

generalize the solution of the simpler problem to the problem of constructing minimum-weight spanning

trees when some of the network links may be faulty.

Deadlock detection is afundamental problem in distributed databases and distributed operating

systems. Deadlock occurs when a cycle of n processes Po, P 1 , - " •, P.-I, Po forms such that each Pi

waits for a resource held by P (j+1),,,o ,. I plan to construct deadlock detection algorithms for

asynchronous complete networks with Byzantine links. Complete networks in this case may be either

physical networks or virtual networks at the session layer of the OSI model of computer networks. I

expect to use the techniques of Chandy, Misra, and Haas [10] and Awerbuch and Micali [6].

S.3 Problems Associated with Chapter 4

Peterson (411 proposed an efficient algorithm for election in reliable asynchronous meshes.

Although the algorithm uses 0(n) messages, which is asymptotically optimal, the constant in the big 0

notation is large. Since the number of messages that an algorithm uses is independent of machine

implementations, it is desirable to have a small constant. I plan to improve the lower and upper bounds

on the number of messages for synchronous meshes as a first step in deriving a lower bound and a

matching upper bound on the number of messages in asynchronous meshes. The analysis of the lower

bound given in Chapter 4 can be improved in two ways. First, I hope to have a better analysis of the

number of messages when the processor identifiers are distributed as in Section 4.7.4. Second, I plan to

obtain a distribution of processor identifiers that yields a better lower bound. On the other hand, the

upper bound in Chapter 4 can be improved by using the solutions to the firing squad

problem [261, [381, [501 to efficiently remove the requirement that all the processors start the algorithm

simultaneously.
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