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ABS CT

Perhaps the most versatile and efficient method for inferring the particle size distribution function

(PSDF) of aerosol clouds from remote light scattering measurements is the constrained linear inversion

procedure due to Philips and Twomey. However, conventional numerical implementations of this procedure

are subject to the following two problems: (1) an appropriate discrete approximation must be chosen for

the PSDF which adequately achieves the correct balance between the conflicting requirements of resolution

of detail in the PSDF and of efficiency in the computation of the solution and (2) a proper value must be

selected for the Lagrange multiplier (smoothing parameter) that adequately reflects the tradeoff between the

fidelity to the observed optical data and the smoothness of the solution. Consequently, an adequate recovery

of the PSDF, based on the constrained linear inversion procedure, is usually achieved only after a certain

amount of tedious preliminary exploratory analysis.

An alternative implementation of the constrained linear inversion procedure is presented which over-

comes the problems associated with the conventional implementation. Firstly, an explicit analytical (continu-

ous) representation for the solution of the constrained linear inversion procedure is developed which obviates

the need to obtain a discrete approximation for the PSDF. Secondly, an objective procedure, based on the

principle of generalized cross-validation, is utilized for the selection of the proper value for the Lagrange

multiplier. Taken together, these two developments provide the basis for an objective, fully automated im-

plementation of the constrained linear inversion technique. Numerical examples of PSDF inversions, obtained

using the proposed automatic retrieval algorithm, are presented for synthetic aerosol optical extinction and

scattering data.
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INTRODUCTION

1. The determination of the distribution of particle sizes in a polydispersed aerosol cloud, based on a

remote sensing methodology, does not permit a direct measurement of the size spectra. Rather, the infor-

mation concerning the particle size distribution function (PSDF) must be inferred from the light scattering

data (viz., measurements of the way the aerosol cloud scatters electromagnetic radiation) which provide

either the spectral extinction as a function of the incident wavelength and/or the scattered light intensity

as a function of the scattering angle. Given some combination of these measurements, the recovery of the

PSDF of the aerosol cloud is, in essence, an inverse or indirect problem.

2. The retrieval of the aerosol particle size spectra from a finite set of imprecise optical scattering data

is an inherently ill-posed problem in the sense that the solution is both nonunique and unstable (viz., the

solution does not depend continuously on the data). In view of the fact that a knowledge of the PSDF

would aid in the understanding of the various physical and chemical mechanisms and processes which are

responsible for the aerosol microstructure and would permit the development of more efficient and reliable

particle diagnostic methods for the evaluation and assessment of airborne particulate hazards, a considerable

research effort has been directed to the development of algorithms for the reconstruction of the aerosol size

distribution from optical scattering data.

3. The earliest attempt at the specification of a PSDF retrieval algorithm can be attributed to Yamamoto

and Tanaka [1], who formulated a numerical inversion algorithm based on the constrained iinear inversion

procedure originally developed by Philips [2] and Twomey [3] in the United States and, independently, by

Tikhonov [4] in the Soviet Union. The method of constrained linear inversion has subsequently been applied

to the inferent, of particle size distributions utilizing a myriad of light scattering measurements, iriciuding
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optical depth data obtained as a function of wavelength [5], backscattered radiance measured as a function

of wavelength [6], a combination of optical extinction determined as a function of wavelength and scattered

light intensity determined as a function of scattering angle [7], and spectral light distribution and polarization

distribution obtained as a function of wavelength and scattering angle [8].

4. Without a doubt, the constrained linear inversion procedure, which utilizes the Philips and Twomey

second derivative smoothing constraint, is the most popular procedure for the inference of aerosol size distri-

butions. However, in the implementation of this procedure, it is necessary to adopt a discrete representation

for the PSDF f(r) as well as a difference approximation for the second derivative smoothing functional.

Almost invariably, f(r) is approximated by a piece-wise constant representation whereby the size domain

(range in radii r of the particles) is partitioned into a finite number of intervals over which f(r) is assumed to

be constant. This discretization leads to the following problenn: there is no objective procedure for selecting

the correct number of discrete segments to employ in the approximation of f(r). Ideally, the number of

segments must be large enough so that the resulting binning does not lead to a loss of detail in the PSDF

and at the same time not so large that the resulting discretized problem cannot be solved economically

on a computer. Moreover, the constrained linear inversion solution depends critically on the selection of a

proper value for the Lagrange multiplier (smoothing parameter) y that determines the degree of smoothing

to impose on the solution. Again, there is no objective method for the selection of an appropriate value for

7. For the most part, attempts at a resolution to this problem have been based on trial-and-error procedures

and/or on empirical rules derived cither from computational experiments or from a sensitivity analysis [7,9].

5. In view of the problems associated with the application of the constrained linear inversion procedure,

Curry and Kiech [10,11] have proposed two alternative procedures for the retrieval of the PSDF from light

scattering data. The first procedure, referred to as the constrained eigenfunction expansion, expresses the

PSDF in terms of the eigenfunctions of a covariance operator constructed from the Mie scattering kernels.

The coefficients in this expansion are determined so that the recovered PSDF is as close to some trial solution

(function) as possible while maintaining the required consistency with the noisy data. The constrained

eigenfunction expansion procedure is actually a generalization of an analytic inversion procedure developed

by Capps, Henning and Hess [12]. It is important to note that although the constrained eigenfunction

expansion method does not require a discrete approximation for the PSDF, it still nevertheless requires

the proper selection of the value of the Lagrange multiplier 7. Curry and Kiech proposed that - be found

by application of the Residual Relative Variance method, a process which leads to a somewhat complex

double iterative computational sequence for the solution. The second procedure, designated as the nonlinear

regression method, is precisely as the name implies-the PSDF is postulated to possess a particular functional

form (e.g., log-normal) and the set of parameters associated with this form is then estimated directly from

the data based on the least-squares method. This procedure can yield very good results provided the vroper

parametric model is chosen for the PSDF and the correct number of parameters are utilized. However, it
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should be emphasized that the nonlinear regression method can also lead to very poor results if the latter

two criteria are not adequately satisfied. Indeed, in view of the fact that, in most cases, there is no a priori

information on the correct parametric form to use for the PSDF, the nonlinear regression procedure cannot

be recommended for general use (i.e., for "blind" inversion). Moreover, the nonlinear regression method is

computationally intensive due to the nonlinear occurrence of the parameters in the assumed parametric (i.e.,

model) size distribution function.

6. Despite the introduction of the constrained eigenfunction expansion and the nonlinear regression

procedures, the constrained linear inversion method still remains by far the most widely employed method

for inferring particle size distributions from optical data. This is because the latter method only requires

that the unknown solution satisfy a weak a prior constraint (i.e., a smoothness constraint) unlike the con-

strained eigenfunction expansion and nonlinear regression methods. Moreover, the constrained linear in-

version method can lead to very good results provided a certain amount of careful preliminary exploratory

analysis is undertaken to select the proper discrete representation for the PSDF and the proper value for the

smoothing parameter -. In view of this, it would be desirable to develop a fully automated implementation

of the constrained linear inversion procedure which (1) does not require a discrete representation for the

PSDF, thus obviating the need to select the proper number of discrete segments with which to divide the

size domain, and (2) incorporates an objective method for the selection of the appropriate value for 7.

7. The major feature that distinguish this work from that of previous authors on the implementation

of the constrained linear inversion procedure is the emphasis on the development of a completely automatic

implementation of the procedure that requires little or no user intervention. Consequently, the purpose of this

paper is to show how to achieve a completely automatic implementation of the constrained linear inversion

procedure. To this end, it is first shown that, for a fixed value of the smoothing parameter -, an analytical

representation for the solution of the constrained linear inversion method can be obtained by utilizing

standard techniques from the theory of abstract Hilbert spaces. This representation expresses the PSDF as

a continuously differentiable function of the radius r and, as such, obviates the requirement for the selection

of an appropriate discrete representation as is required in the usual application of the constrained linear

inversion method. Consequently, the problems stemming from the proper discretization of the PSDF are no

longer an issue. Next, it is shown how the principle of generalized cross-validation can be applied to provide

an objective procedure for the selection of an appropriate value of the Lagrange multiplier (i.e., smoothing

parameter). In this way, the second major problem associated with the application of the constrained linear II /

inversion procedure can be resolved. Indeed, the coupling of the analytic representation of the PSDF with the

cross-validated selection of the Lagrange multiplier, provides the basis for a fully automatic implementation []

of the constrained linear inversion method with no need for a preliminary (exploratory) analysis on the user's

part.
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MATHEMATICAL FORMULATION OF THE PROBLEM

8. Electromagnetic theory dictates that optical scattering data from a polydispersed aerosol cloud

consisting of an ensemble of homogeneous spherical particles is related to the particle size distribution

function through a Fredholm integral equation of the first kind [13,14]

s(z) = fn K(z, r)f(r) dr, (la)

provided that the aerosol cloud is optically thin so that only single scattering occurs and that the particles

comprising the cloud are randomly separated so that only incoherent scattering occurs (i.e., there is no sys-

tematic phase relation between the radiation scattered by the individual particles). In eq. (la), s(z) denotes

the theoretical (model) optical data (e.g., optical extinction, spectral turbidity, scattered light intensity, etc.)

determined as a function of the wavelength z - A and/or the scattering angle x =_ 0. The kernel function

K(z, r), corresponding to the datum s(z), represents the scattering, backscatter, or extinction cross sections

for a spherical particle of radius r. This function, which can be evaluated using Mie theory, is also dependent

on the complex index of refraction m of the particle. In the following treatment, it is assumed that m is

known. Finally, f(r) in eq. (la) denotes the particle size distribution function and f1 - [RI, R2] specifies

the radii limits R, and R2 (i.e., size domain) for f(r).

9. A particular experiment will yield M numerical values of a(z) (e.g., obtained for a finite and discrete
M

set of measurement variables {Zi }=1) which are contaminated with noise. Consequently, the observational

model relating the measured data Di to the model data s(zi) is given by

Di = s(ri) + ci, i = 1,2,...,M, (lb)

where ci is assumed to be a zero-mean measurement error with variance ao'. The inverse problem associated

with eqs. (la) and (lb) can now be stated as follows: given a finite set of inaccurate optical scattering data

{ =Do}=1 and the errors {o.4, 1 in their measurement, determine the PSDF f(r).

10. The most important property to note with regard to this inverse problem is that it is inherently

ill-posed. This translates into the observation that a small random perturbation on the optical data s(z) will

induce unacceptably large variations on the solution f(r). Consequently, a practical solution to the problem

can only be obtained if the ill-posedness is directly confronted and addressed. If this is not done, the

computation of the solution from practical data (cf. eq. (lb)) will invariably lead to wild oscillations in the

PSDF. These oscillations, which are merely artifacts in the solution that have no direct physical significance,

are the manifestations of the ill-posed nature of the problem. To formulate a well-posed problem, Philips

[2] and Twomey [3] have proposed that a regularized solution (or "quasi-solution") f.(r) be obtained by

minimizing a smoothing functional of the form

R.,(f) = RLs((f) + -tRs(f), (2a)

UNCLASSIFIED



UNCLASSIFIED /5

where I

RLS(f) ( "(2b)

is the usual weighted least-squares discrepancy (misfit) function with the i-th weight chosen to be the inverse

of the variance T? associated with the i-th datum Di and

Rs(f) = j (d) dr (2c)

is a stabilizing functional (penalty term) which measures the degree of smoothness (regularity) in the un-

known PSDF. Note that Rs(f) discriminates against steep curvatures in .f(r) and, in this sense at least, the

PSDF obtained by minimizing Rs(f) subject to the constraint that f(r) reproduce the data to within some

expected accuracy, must generate the "flattest" solution consistent with the available data.

11. In eq. (2a), - is a non-negative regularization parameter (Lagrange multiplier). The smoothing

functional is composed of the linear combination of the data misfit RLS(1) and the roughness measure Rs (f),

with the latter weighted by the regularization parameter 7. This parameter must be chosen to reflect the

degree of smoothing to be imposed on the required solution and, indeed, as y increases, the roughness term

in eq. (2a) is given an increasing significance (i.e., weight) at the expense of the misfit term. Ideally, the

regularization parameter must be chosen to reflect some desirable compromise between the fidelity with

which the PSDF regenerates the data as measured by the misfit term and the smoothness desired in the

PSDF as measured by the roughness term. It should perhaps be noted that the choice of - is equivalent

to the choice of the misfit tolerance T, which reflects the degree of consistency between the theory and

observations in the form RLS(f) <T. Of course, T (or, equivalently 7) must be chosen to adequately reflect

the magnitude of the noise perturbing the data.

12. The problem posed in eq. (2a) is usually solved [2,3,15) by dividing the size domain fQ = [RI, R2 ]

into N non-intersecting equal-sized intervals Arj = rj - rj-i (" 1,2,..., N) with f(r) assumed to be

constant over each interval, viz.

f(r)= fj, rj.- <r<r (j=1,2,...,N),

where r0 = R1 and rN = R 2. The discretization then proceeds as follows. First, the integral of eq. (la) is

expressed as a summation by utilizing some appropriate quadrature approximation to give

Af=i

where A is the M x N matrix of quadrature coefficients wjK(zi, ri) (i = 1,2,..., M; j = 1, 2,..., N), wj are

the weights associated with the quadrature rule, f= (f,f2,..., fN)T and g= (s(z),s(z 2 ),. .. ,s(XM)) T .

Second, the roughness measure Rs(f) is replaced by the following second difference approximation:

N-I

R = : Qi - 2fj + j12
j=2
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With these approximations, the smoothing functional of eq. (2a) can now be expressed as the following

discrete representation:

IIWd*- WAfiII + 7fpH (3)

where W is the M x M diagonal matrix

W = diag{l/o1 , 1/02 ,..... I/ M

H is an N x N banded matrix of the form

1 -1 0 0 00 0 0 0... 0
-1 -4 1 0 0 00 0 0 0... 0

-4 6 -4 1 0 0 0 0 0 0 ...H = 1 -4 6 -4 1 0 0 0 0 0 ... .
: : : : : 00000: :...

0 0 0 0 0 0 0 0 0 ... 1 -2 1

d- (D, D2 ....DM)
T is the data vector and ' . E denotes the usual Euclidean norm. Now, it is easily

shown that the solution vector f which minimizes eq. (3) can be written as

f= (HwA)T (WI) H)(WA)-' Wd. (4)

13. The solution embodied in eq. (4) requires that an appropriate discretization be chosen for the PSDF

.f(r). Indeed, the value of N must be chosen large enough so that there is no loss of fine structure in f(r).

On the other hand, although f(r) can be represented to an arbitrary degree of accuracy by increasing the

value of N, this incurs the disadvantage of increasing the dimension of the (WA)T (WA) matrix (cf. eq. (4)),

thus making it more costly to invert on a computer. Hence, practical constraints imposed by the capabilities

of the computer determine the upper bound on the value of N. Moreover, it is important to emphasize

that certain kernel functions K(z,r) such as the backscatter cross section are extremely oscillatory apd

erratic in form (14], with the result that a large value of N would be required in order to achieve a good

quadrature approximation for s(z) (cf. eq. (1a)). Under these circumstances, it is necessary for N to be

large and, consequently, it is necessary to deal with the inversion of large dimensional matrices. In light of

these problems, it would be desirable to obtain an analytical representation for the solution of eq. (2a) and

thus do away with the need to implement a discrete approximation for f(r). In so doing, discrete values

of f(r) will only be required for the quadrature approximation of the model optical data and not for the

representation of the PSDF per se. The methodology for achieving this particular goal is presented in the

next section.
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ANALYTICAL REPRESENTATION OF THE SOLUTION FOR THE CONSTRAINED LIN-

EAR INVERSION PROCEDURE

14. An explicit closed-form analytical representation for the form of the PSDF, which minimizes the

smoothing functional 14(f) of eq. (2a), can be obtained by application of certain standard techniques of

Hilbert space theory [16]. From this perspective, it is convenient to visualize each admissible particle size

distribution function f(r) as an element of a real Hilbert space 71 consisting of all real-valued functions

h(r) defined on Q - [RI, R 21 (i.e., the size domain) such that (1) h' = dh/dr is absolutely continuous and

(2) h" = d2h/dr2 is an element of Z
2(0), the space of Lebesque square-integrable functions on Q. It is

convenient to equip the Hilbert space 74 with the following inner product:

(u, v) = u(R)v(R,) + u'(R,)v'(R,) + j u(r)v"(r) dr,

where u, v E 7. Note that the norm of an element in N is then given by hull = (u, u) 1/ 2. A brief comment is

in order concerning the present choice of N and the associated inner product. In order to penalize undesirable

undulations in f(r), the constrained linear inversion procedure utilizes the integral of the second derivative

of the PSDF over the size domain as the penalty functional (i.e., stabilizing functional). In view of this, ?I

should be chosen as the class of all functions which possess a well-defined second derivative and the resulting

norm (actually the norm inherited from the inner product) should be chosen so that it adequately reflects

the "size" of the PSDF with regard to its "roughness". In this manner, the minimization in ?t using the

given (i.e., chosen) norm then results in the penalization of the undesirable oscillatory behavior in f(r) in

an entirely natural fashion. With these definitions, the linear functional relationship between the theoretical

datum s(zi) and the PSDF f(r) (cf. eq. (la)) can be viewed now as a continuous (bounded) linear functional

Li on Nt so, by virtue of the Riesz Representation Theorem [16], there must exist some gi E 7t such thit

s(z.) = Li(f) K(z, r)f(r) dr = (g,, f) (i = 1,2 .... M). (5)

The elements g, are called the representers for the bounded linear functionals L£ (i = 1, 2.. , M).

15. To find an analytic representation for the solution to eq. (2a), it is convenient to form two subspaces

from Xt. First, it is useful to form the finite-dimensional subspace spanned by the representers g, (i =

1,2,...,M) of the problem and define g = sp{gs,g2,. .. ,gM} where sp(.) denotes the span of a set of

elements in Xt. Second, an inspection of the stabilizing functional Rs(f) (cf. eq. (2c)) reveals that all

elements of %t which cause this functional to vanish (viz., Rs(f) = 0) must belong to a two-dimensional

subspace of 1 spanned by the two elements

hi(r) I= and h2(r) = r - R1.

Consequently, it is useful to define X = sp{h,,h 2}. Note that elements from K are ideal particle size

distribution functions in the sense that they are optimally smooth with respect to the stabilizing functional-

viz., any element k E K results in Rs(k) = 0 and, consequently, these elements are not penalized by the

stabilizing functional.
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16. Non, for a given value of the smoothing parameter , finding the function f, (r) E N which minimizes

the smo%, thing functional R,(f) is equivalent to finding the element of N which is "closest" to the subspace

X of ideal functions and is, at the same time, consistent with the data misfit constraint embodied by RLs(f)

It is convenient to write the solution f, in the form

2 M

E, Z j hj + Ea -i+ 0f, (6)
j=I i=1

where a is an element of 'H which is orthogonal to both G and K, viz. (a,g,) = 0 (i = 1,2_ .. , M) and

(a, hi) = 0 (j = 1,2). While the form for f, is quite intuitive, it should be noted that this form follows

directly from the Decomposition Theorem [16] for lilbert spaces. Note that the first term on the right hand

side of eq. (6) is simply a representation of a general element from K. Similarly, the second term on the right

hand side of eq. (6) is a representation of a general element of g. The element o then represents that part of

f-, in t which does not lie in either K and/or 9. It will now be shown that a must vanish if f., of eq. (6) is

to minimize eq. (2a). Since fy is the "closest" element to K that is consistent with the data constraints, this
requires that the length of the element p - aigi + a be minimized subject to the data constraints (cf.

eq. (6)). However, note that only the first term al aigi of p can affect the data misfit since the model data

s(x,) are determined only by the the gi's (cf. eq. (5)) and (o,gi) = 0 (i = 1,2,..., M). Consequently, as far

as the data misfit constraint is concerned, t, can be freely chosen. However, for minimum lipli, this requires

that ar = 0. As a result., the PSDF fl(r) which minimizes R,(f) for a fixed value of the regularization

parameter 7 must possess the form

M 2

.4(r) = agi(r) + Zbih( (7)
i=1 j=1

17. The undetermined coefficients ai (i = 1,2,...,M) and bi (j = 1,2) in the representation of eq.

(7) can be de~ermined as follows. If eq. (7) is substituted into eqs. (2a), (2b), and (2c), it is relatively

straightforward to show that the smoothing functional Ry(f) can be expressed as the quadratic form

R,(f) = M-
1 (d- ra- sg)Tw2 (

- 
ra- s9) + "},ard, (8a)

where r is the M x M Gram matrix defined as

r = (r ,, ,M r (ggj), (8b)

S is the M x 2 matrix defined as

SMj (i,, hj), (8c)

and d and C are M- and 2-tuples, respectively, given by

= (a ,a2,..., aM)
T  

and b" (bh b2 )T. (8d)
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The data vector d and the diagonal matrix W have already been defined with reference to eq. (3). Now,

differentiating R.(f) in eq. (8a) with respect to the coefficient or parameter vectors d and b and setting the

results to zero, yields the following system of linear equations:

(r +MyW- 2 )i+ SE (9a)

STd= 0; (9b)

or, equivalently, in matrix form

where 0 is a 2 x 2 zero matrix and 0 is a 2 x 1 zero vector. The solution of eq. (9c) provides the values of

the unknown coefficients ai I1 and {b2

18. Explicit expressions for the coefficient vectors d and b can be derived as follows. First, note that the

matrix (I' + M 7 W- 2 ) is nonsingular since (1) the Gram matrix r is symmetric and non-negative definite

by definition (cf. eq. (8b)), (2) W is positive definite, and (3) - is positive by assumption (i.e., recall that y

is the positive regulari7ation parameter). Consequently, if eq. (9a) is premultiplied by S T (r + M 7 W-2) - ,

one obtains

ST S+ sT(r + M 7W- 2) - 'Sb = sr(r + MW-2)-'1,

which can be expressed as

b [sT(r + MIW)'S sT(r + M 7W'd, (10a)

on using eq. (9b) and assuming that the matrix S has full rank. Now, 6 can be computed from

a = (r + MyW2)l(c _Sg) (lob)

by virtue of eqs. (9a) and (10a). Eqs. (10a) and (10b) provide the coefficients of the desired solution

to the constrained linear inversion problem. Indeed, eqs. (10a) and (10b) in conjunction with eq. (7)

provide a continuous representation for the PSDF f.(r) which minimizes Ry(f). However, to be able to

utilize this continuous representation, it is necessary to develop explikit expressions for the representers gi

(i = 1,2. M). The solution of this problem is the subject of the next section.

EXPLICIT COMPUTATION OF THE REPRESENTERS FOR THE CONSTRAINED LIN-

EAR INVERSION PROCEDURE

19. Although the Riesz Representation Theorem guarantees that every bounded linear functional Li

defined on a Hilbert space ?i possesses a representer g E 7 such that L.(f) = (gi, f) for every f E 'H, the
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theorem does not state how such a function can be constructed in general. Hence, it is useful to approach the

problem of the construction of the representers for the constrained linear inversion procedure in the following

heuristic iianner. To this end, it is convenient to view the Hilbert space i (defined in the previous section)

as the direct sum of two Hilbert spaces NO and 7/1 (viz., it = ito (B i) defined as follows:

?tO = {f: df/dr is absolutely continuous, d 'f/dr2 = 0}

and

7/ = {f : df/dr is absolutely continuous, d 2f/dr2 E £(0f), f(R) = 0, df(Rl)/dr = 0}.

Observe that 7O is a two-dimensional subspace of Wt which coincides with the subspace K defined earlier.

The inner products on it 0 and it 1 must be defined as

(f,g)o - f(R 1 )g(RI) + f'(Rl)g'(R1 ), f,g E 7/o

and t dVf(r) d2 '(r)
(f,g)i I *---dr, f,g E ii,

in dr2  dr2

respectively, so as to be consistent with the inner product chosen for i (cf. previous section for the definitio.i

of this inner product). Then, (f,g) = (Pof, Pog)o + (Pif, Pg)i (f,g E it), where P0 and P, denote the

projection operators from i onto it0 and t 1 , respectively.

20. As the first step in the construction of the representers gi, consider the problem of finding functions

rk E ito and k(# E it1 such that

f(r') = (k, ° ), f) o, for any f E io (11a)

and

f(r, ') = (kI), f) , for any f E Wi1 . (llb)

In the preceding equations, r' is an arbitrary fixed point in Q. It should be noted that k',° ) and k( ) are simply

the representers for the point evaluation functionals in it0 and 7i1 , respectively. Due to the simplicity of the

inner product on ito and in view of the fact that it0 is a two-dimensional space spanned by the functions

hi (r) = 1 and h2 (r) E (r - RI), a little reflection shows that the function k(0) possesses the form

k$°,(r) = 1 + (r- Ri)(r' - RI), r,r' E fQ. (12)

That this form for k(?)(r) is correct can be readily verifed by substitution into eq. (1 la).

21. The function k(.)(r) is more difficult to determine, but can be found as follows. First, note that eq.

(lIb) can be expressed as

f(r') = .n d- dr r) G(r', r)d f rd (13a)
U drA dr S S I dr
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where G(r', r) is a Green's function determined such that

d2G(r', r) = 6(r-r'), G(r R,) -0 dG(r, R,) (136)
dr 2  ' - dr (

where 6(.) denotes the Dirac delta function. The solution of the preceding boundary value problem (i.e., eq.

(13b)) can be easily shown to be given by

G(r',r)= 0, if R, r< r'; (14)
G r -K, ifR 2 !r >'.

That eq. (14) is valid can be easily verified by substituting this expression into eq. (13a) and integrating

the result by parts twice. Now, in light of eq. (13a), k)(r) is related to the Green's function as

d2k() (i-)

dr 2  G(r, r)

or, equivalently, as

=, j() G(r', r")G(r, r") dr". (15)

Inserting eq. (14) into eq. (15) and evaluating the result yields

(e ' -r)(r -r") de' = (r- R1) 2 (r, - Rl)/2 - (r- R1)3/6, if R _ < r';
,= , fr(16)

(r ,- r")(r- r")dr" = (r- RI)(r' - Ri)2/2 - (r' - Rl) 3 /6, if R2 > r >'.

22. Having determined the representers for the point evaluation functionals in 7O and Wt1 , it is now a

simple matter to compute the representers for an arbitrary bounded linear functional in i. In particular, one

is interested in the representers gi associated with the data functionals Li defined in eq. (5) (i = 1, 2,..., M).

To this purpose, first note that by virtue of eqs. (Ila) and (1lb), f(r') = (k r,), Pof)0 + (k(), P1 f), = (k,,, f)

with kr, - k(°, + k(1,) (f E W"). Consequently,

s(xi) = (gi, f) =- Li(,,)(f(r')) = Li(r,)(kr' , f) = (L,(r,)kr,, f),

so

g =(r) L,(r')(kr,(r)) = jK(i, r')kr,(r) dr', (17a)

where

kr,(r) = k(?)(r) + kP(r) (17b)

and Li(r1)(.) denotes the i-th data functional (cf. eq. (5)) operating on what follows (viz., (.)) considered as

a function of r'. Now, substitution of the functional forms for k(T) and k(!) exhibited by eqs. (12) and (16),

respectively, into eq. (17a) leads to the following explicit expression for the representers gi:

g (r) K(x, r) dr' + (r - R) j(r' - R,)K(x., r') dr'
R1 r R)2K~ir)r/ 1 r

(r- R1)jr(r'- K(zr')dr' - j ('- Ri)3 K(zx,r')dr'
1 ",1 1 "',

+ 2(r-R)j (r' - RI)K(zi, r')dr' - -(r- R,) 3 K(xi,r')dr'. (18)
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23. With the analytical form for the representers g given in eq. (18), it is now possible to compute the

analytical solution for the constrained linear inversion procedure using eqs. (7), (8b), (8c), (10a), and (10b).

To simplify the comput .innal procedure somewhat, it is important to observe that the first two terms of

the expression for gi(r) given by eq. (18) are elements from I and, consequently, can be incorporated with

the term E2 bjhj(r) E IC in the representation of f,(r). Hence, it is convenient to write the representation

for f.7(r) as
M 2

17(r) = Zao,(r) + b hj(r), (19a)
i--- j=1

where

R(r) 1  - RI) (r' - RI) 2 K(z,, r) dr' - - (xi , r) dr'
2 JR1  6 JR,

+ i(r- Ri)' (r' -RI)K(z,, r')dr' - i(r-R 1 )3 RI) K(zir')dr. (19b)

Observe that ji(r), given by eq. (19b), is simply gi(r) with the component in K removed (viz., j = Pxgi).

The coefficient vectors 5 and b, which determine f.v(r) in eq. (19a), are still given by eqs. (10a) and (10b).

However, in this case, the elements of the Gram matrix r are given now by

(gi, i 9j) = j d2 (r) d2 - , d i,j 12,., M, (20a)(gigJ = g~J) InJ dr2 dr2 -'""

with
d2§i(r) ,R2  R

dr2  ( r  - RI)K(z 1 ,r')dr' - (r - RI) Jr K(z,, r)dr. (20b)

Furthermore, the elements of the S matrix are unchanged and are given by

(gi, hi) = Lj(hi) = L K(zi, r)hj(r)dr, i = 1,2,..., M;j 1,2. (20c)

24. In summary then, for a given value of the regularization parameter f, the solution of the constrained

linear inversion procedure (i.e., the particle size distribution function which minimizes the smoothing func-

tional of eq. (2a)) possesses the continuous representation

f-Y(r) = 5T1(r) + TK(r), r E (, (21a)

where 1(r) and h(r) are vector-valued functions on fQ defined as

I () = ( ,r),O (r,.., ,()) r (21b)

and

K(r) -- (hj(r), h2 (r))T . (21c)

The coefficient or parameter vectors 5 and E of eq. (21a) are computed according to eqs. (10a) and (10b)

with the matrix elements of r and S determined as per eqs. (20a), (20b), and (20c). This solution for the
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PSDF (cf. eqs. (21a), (21b), and (21c)) should be contrasted with the conventional approximate form of

the solution represented by eq. (4). Eq. (4) is based on a discrete approximation (i.e., a piece-wise constant

approximation) of the PSDF which requires the selection of an appropriate number of discrete size intervals

(N) to use for the representation of the continuous aerosol particle size distribution. On the other hand,

eqs. (21a)-(21c) constitute a continuous representation of the PSDF which solves the constrained linear

inversion problem. With this solution, there is no direct need to utilize a discrete approximation for f(r)

with its concomitant subjectivity in the selection of N. It is important to note that closed-form expressions

cannot be obtained for the model optical data s(z1 ) (cf. eq. (la)) or for the matrix elements ri, of r (cf.

eqs. (20a) and (20b)) and Sq of S (cf. eq. (20c)), so that some form of quadrature rule is required in

the computation. However, even though the quadrature approximation for s(zi) must necessarily involve

the discretization of the PSDF f(r), it should be emphasized that this discretization is only utilized to

obtain an approximation for the model optical data and is not related to the representation of f(r) per

se. In the usual implementation of the constrained linear inversion procedure, the representation of f(r)

as a piecewise-constant function is directly associated with the quadrature approximation for s(zi). In the

present implementation of this procedure, a continuous and exact representation is provided for f(r) and

a discretization of this representation is utilized only for the quadrature approximation of s(zi)-viz., the

discretization is not utilized for the approximate representation of f(r) as in the usual implementation.

Finally, the computation of the PSDF via eq. (21a) involves the inversion of a matrix of order M, whereas

the computation of the PSDF via eq. (4) requires the inversion of a matrix of order N. In the problem of

the inference of the PSDF from light scattering data, N (number of size intervals) is almost always larger

than M (number of data points).

SELECTION OF THE REGULARIZATION PARAMETER

25. Before a complete solution can be given for the constrained linear inversion procedure, it is necessary

to address the problem of the proper selection of the regularization (smoothing) parameter -f. In this paper, it

is proposed that the generalized cross-validation (GCV) method be utilized for the selection of this parameter.

The GCV method is a rotation-invariant form of the ordinary cross-validation method introduced by Allen

[17]. Indeed, the GCV method has been successfully applied to determining the correct degree of smoothing

of discrete, noisy data using spline functions [18,19] and to the optimal smoothing of probability density

(20] and spectral density estimates [21]. For a detailed theoretical treatment of the properties of the GCV

estimate of a smoothing parameter, the reader should consult Craven and Wahba [19].

26. With reference to the problem treated in this paper, the GCV method specifies that the optimal

estimate " of the smoothing parameter 7 be chosen to minimize the criterion function

V(y)= 0,2 (22a)
k=1 a'
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where Ak) denotes the minimizer of the smoothing functional )4(f) (cf. eq. (2a)) with the k-th data point

(i.e., Dk) omitted from the computation. Recall that L% (k = 1,2....... M) are the data functionals defined

as per eq. (5). Moreover, in eq. (22a), taj ) are weights given by

wk'~(,) PAk (7)) /(1 - jtr(P(1Y))), (22b)

where pkk(7) is the kk-th entry of the M x M matrix P(7) defined as

L2(f,) = (23)

LM (Q,)

and tr(.) denotes the trace operation. It should be noted that the basic logic behind the selection of -f

to minimize V('y) stems from the fact that this choice for 7y minimizes, on the average, the squared error

between the data points Dk (k = 1, 2,..., M) and the predictors Lk (f(y)) of these points. Observe that the

predictor for the k-th data point is obtained using the estimate A") of the PSDF which does not involve this

particular data point (i.e., Ayh) is the solution to the constrained linear inversion procedure with the k-th

data point omitted).

27. The form of V( 7 ) given in eqs. (22a) and (22b) is somewhat complex and is not suited for numerical

computations. However, it can be shown (19] that V(y) can be expressed in the following form that is more

amenable to computations:
V(,) - M-IIIW(I - P(7 ))d1(4

[M-ltr(I - P(7 ))] " (24)

It should be emphasized that I1 5 I in eq. (24) denotes the usual Euclidean norm and not the norm 1" -1

inherited from the inner product on . The remaining problem now is to determine the form of the matrix

P(7) for the present problem and to substitute it into eq. (24). To this end, first note that (cf. eq. (19a))

M 2

Lk(f.y(r)) = ZaLL (j,(r)) + EbjLk (hi (r))
i=1 j=1

M 2

= Fai(#k,j,) + b(g, h).
i=1 j=-

In view of the preceding expression and the definition of the matrix P(y) given in eq. (23), it follows that

L2( :-) =r5+ s9=. P( 7 )d,

so

(I - P(7))= M 7W- 2 j,
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on using eq. (9a). In view of this equation, it follows that the numerator of V(-f), as displayed in eq. (24),

can be expressed as follows:

I1W(I _ p(yf)).YII2 = (M..,) 2 TW-2i (25)

28. To proceed further, it would be necessary to substitute the expression for d displayed in eq. (10b)

into eq. (25) and then try to manipulate the result into a computationally useful form. However, it turns out

that the expression of 3, as embodied in eq. (10b), is not the most useful form for this purpose. As a result,

it is sensible to consider an alternative, but equivalent, expression for d that will prove to be more amenable

to simplifications, at least as far as the evaluation of eq. (25) is concerned. To this end, first observe from

eq. (9b) that 6 must lie in the null (or annihilator) space of ST so it is possible to express 5 as

d =QV where S T Q=0 and iTERM. - 2 . (26)

In eq. (26), Q is an M x (M- 2) matrix whose columns span the null space of ST
. Again, as in the derivation

of eq. (10a), it is assumed that the rank of S is two (i.e., S is full rank). Now, if eq. (9a) is premultiplied

by QT and combined with eq. (26), it is easily shown that

a= Q[QT(r+ MW-) Q] -'QT(27a)

Moreover, if eq. (9a) is premultiplied by STW2 and combined with eq. (9b), the following expression for C
results:

=-l- (sTw2s)-STW2 (c- ra). 
(27b)

It should be noted that eqs. (26), (27a) and (27b) constitute alternative, but equivalent, expressions for i

and b contained in eqs. (10a) and (10b).

29. It is important to point out that the matrix Q is not uniquely determined by eq. (26). Consequently,

it is possible to utilize this fact to choose a convenient form for Q that permits a simplification in the

evaluation of jIW(I - P(y))dJlj. In this connection, it is convenient to choose Q so that its columns span

the null space of ST (cf. eq. (26)) and satisfies

QTW- 2 Q = I. (28a)

With this choice, insertion of eq. (27a) into eq. (25) followed by some simple matrix manipulations leads to

the following expression:

IIW(I - P(ij))d112 = (My)2 (A + I)
M-2 _ _6 (286)

= (M0 = +

In eq. (28a), an eigenvector-eigenvalue decomposition has been introduced for QTpQ, viz.

QTrQ - UAUT, (28c)
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where U is an (M - 2) x (M - 2) orthogonal matrix whose columns are composed of the eigenvectors of
QTrQ and

A = diag(Ai A2, ... , M-2), (28d)

is an (M - 2) x (M - 2) diagonal matrix whose diagonal elements are composed of the eigenvalues Ai

(i = 1, 2,..., (M - 2)) of QTrQ. Moreover, in eq. (28b), the vector Cis defined as

=( 94 ..,M-2)T = ~ T (28e)

In a similar manner, it is possible to show that the denominator of eq. (24) can be written as follows:

tr(I - P(y)) = (M-y)tr((A + MtI)- )

= (My) A- + My (29)

Now substitution of eqs. (28b) and (29) into eq. (24) finally leads to the following expression for I,(y):

V(Y) = M / + MY)) 2  (30)[~M21(,+ M7)]'

In light of eq. (30), it is now relatively easy to obtain a value of y that minimizes V(-t) by using a golden

section search in one dimension. This optimal value for y can then be substituted into eqs. (10a) and (10b),

or equivalently, into eqs. (27a) and (27b) for the computation of 1 and K Once this is completed, the solution

of the constrained linear inversion procedure can then be obtained by evaluation of eq. (21a).

ALGORITHM FOR THE AUTOMATIC RECOVERY OF THE PSDF

30. In view of the results obtained in the previous sections, the following algorithm is proposed for the

automatic reconstruction of the PSDF, given a finite number M of discrete, noisy light scattering data D,

along with the standard deviations u1 in their measurement. A flowchart of the implementation used to

realize the automatic recovery of the PSDF is given in Fig. 1.

31. Step 1: Compute the matrix elements of r and S as per eqs. (20a), (20b), and (20c). Since the

Mie scattering kernels are complicated functions, these matrix elements cannot be evaluated analytically.

Rather, the computation of these matrix elements must be effected by utilizing an appropriate numerical

quadrature rule.

32. Step 2: Compute the QR decomposition [22] of WS, viz.

w S=(Q1 Q) ...
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where R, is a 2 x 2 upper triangular matrix and Qi and Q2 are M x 2 and Mx (M-2) matrices, respectively,

such that QTQi - I QTQ 2 = 0, and Q2Q 2 = I. Now observe that matrix WQ2 can be identified with Q

in eqs. (26) and (28a) since QTWS = 0 (or, equivalently. ST(WQ2 ) = 0) and Q1Q _ QTW-Q = I.

33. Step 3: Compute the eigenvector-eigenvalue decomposition of QT rQ (cf. eq. (28c)), construct the

vector "as per eq. (28e), and compute the GCV criterion function V( 7 ) using eq. (30). Now apply a golden

section search [23] in one dimension to determine the non-negative value of the smoothing parameter 7 that

minimizes V( 7 ).

34. Step 4: Using the value of -' determined in Step 3, compute the parameter vectors 5 and b using

either eqs. (27a) and (27b) or eqs. (10a) and (10b). However, since Q has already been computed in Step

2, it is perhaps more convenient to use eqs. (27a) and (27b) for this computation. Consequently, eqs. (27a)

and (27b) are used in the computation for the present implementation.

35. Step 5: Evaluate the PSDF fy(r) (i.e., the solution of the constrained linear inversion procedure)

using eq. (21a).

36. It is important to note that the bulk of the computations in the preceding algorithm is contained in

Step 1. However, once an experimental design has been specified (i.e., once the wavelengths and scattering

angles at which the scattered light is to be measured have been selected), it is only necessary to compute the

matrix elements of r and S once since these elements are independtat of the data. These results can then

be saved for utilization in the inversion of all subsequent data sets that adhere to the given experimental

arrangement. Generally speaking, the incorporation of the present algorithm into an Mie scattering-based

particle sizing instrument would involve the a priori computation of the elements of r and S based on

the experimental configuration of the instrument. These matrix elements would then be stored in the

onboard computer and the implementation of the PSDF inversion algorithm would then essentially involve

the computatien of Steps 2 to 5. Moreover, the computation of the matrix elements in Step 1 and of fy.(r)

in Step 5 can be efficiently implemented using lookup tables for the relevant Mie kernels. This would allow

for a rapid real-time PSDF inversion using only the capabilities of modern desktop computers.

SOME NUMERICAL EXAMPLES

37. If s(r) in eq. (la) is identified with the optical extinction of light at the wavelength z - X for a

homogenous, polydispersed aerosol cloud characterized by the particle size distribution function f(-) -:,

equivalently, the normalized number concentration of aerosol particles in the size interval r to r + dr), then

the kernel function K(r, r), corresponding to the Fredholm integral operator that maps f(r) to s(z), is given

by

K(x,r) = sr 2Qet(Zr), (31a)
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where Q.xt(z, r) is the extinction efficiency factor evaluated using Mie theory [13,14] for a particle of radius r

and wavelength z. Furthermore, if s(z) is identified with the light scattering intensity (i.e., radiance) at the

scattering angle z = 0 obtained for a fixed wavelength A0, then the kernel function K(z, r) that transforms

f(r) to s(z) via the Fredhoim integral operator assumes the form

K(z,r)= (0)2 (i(Zr)+i2 (Z'r)) (31b)

where i1 (z, r) and i2(X, r) are the Mie intensity parameters [13,14] for scattered light with perpendicular

and parallel polarization, respectively. It should be noted that the extinction efficiency factor as well as

the Mie intensity parameters are complicated functions of r and z which are usually expressed as infinite

sums of terms involving the Ricatti-Bessel functions and the Legendre polynomials. Nevertheless, there now

exist very efficient and robust procedures for the evaluation of the Mie kernels [14,24]. Strictly speaking,

it is importa _t to note that the extinction and scattering parameters also depend on the complex index of

refraction m of the particles. In the following examples, the index of refraction of the particles is assumed to

be known a priori. In particular, all simulations considered are performed assuming that the particles have

a real (viz., the particles are non-absorbing) refractive index m = 1.54.

38. Optical extinction (or turbidity) data were calculated at 15 discrete wavelengths spanning the

interval between z = 0.1 pm and z = 7.5 pm for various functional forms of the PSDF f(r). The radii limits

which determine the extent of the size domain for f(r) are taken to be fl _ [RI, R2] [0.1pm,5.0pm]. In

addition, light scattering intensity data were generated at A0 = 0.65 pm for 15 scattering angles between 0 and

90 degrees. Since eq. (la) with the kernel functions of eqs. (31a) and (31b) cannot be integrated analytically

due to the complexity of the Mie kernels, it is necessary to calculate the optical data numerically by utilizing

some quadrature rule. The present simulations were generated using Simpson's rule as the quadrature

formula. These simulated optical data were then degraded with pseudorandom normally distributed noise

adjusted to correspond to a prescribed level of root-mean-square (RMS) error. These degraded spectral

extinction and scattered radiance data comprised the components of the data vector d (cf. eq. (lb)) of

dimension M = 30 that served as the input to the inversion algorithm.

39. Fig 2 displays the result of the reconstruction of a uniform PSDF given by f(r) = 1.0 for r E 11.

The figure illustrates that for the case of noise-free multispectral extinction and scattered radiance data, the

recovered PSDF coincides exactly with the true (actual) PSDF. The regularization (smoothing) parameter,

computed using the generalized cross-validation procedure, was effectively zero (to within the roundoff errors

of the computer) for the case of noise-free data. Moreover, an examination of the coefficient (parameter)

vectors returned by the retrieval algorithm revealed that " = 6 and b = (1.0,0.0)T, a result which would

yield f(r) = 1.0 exactly as per eq. (21a). The inversion result of this particular example is interesting

because it illustrates the fact that if a solution can be constructed from elements in KZ that satisfy the

data constraints, that solution is preferably chosen by the algorithm. Recall that the elements in X are the
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preferred solution :andidates since these elements are considered to be optimally smooth with respect to

the stabilizing functional Rs(.) in the sense that Rs(f) = 0 for all f E X. To extend the present noise-free

example, the dashed line in Fig. 3 illustrates the recovered PSDF for the case when the input optical data is

corrupted with 3 percent RMS Gaussian noise. For the case of noisy data, observe that a small component

from 9 has been selected by the algorithm in addition to the major component from K (i.e., the function

hi(r) = 1 from X). Note, in particular, that although a small component from g has been selected in the

inversion, the regularization parameter selected by the generalized cross-validation procedure yields not only

a relatively smooth solution but also one that provides a good approximation to the true solution.

40. Fig. 3 presents the recovered aerosol particle size distribution functions for the case of a log-normal

distribution possessing a single mode at 0.5 pm. Two inversions were performed for this example: one for

noise-free optical data and one for optical da., that had been degraded with 5 percent RMS Gaussian noise.

Again, the cross-validation procedure selected -t f 0 (actually 7 = 1.2 x 10- 9) for the noise-free inversion

example. However, for the noise-corrupted example, the cross-validation procedure provided a value of

3.2 x 10- 1 for y. Observe that the inverted PSDFs compare favorably with the true size distribution with

the correct mode determined at 0.5/pm. Again, note that the values of 7 selected by the generalized cross-

validation procedure are appropriate for both the noise-free and noise-corrupted cases since the resulting

solutions obtained using these values appear to be optimally smooth-the selection of 7t is neither too small

resulting in an undesirable oscillatory behavior in the solution nor too large resulting in the oversmoothing of

the solution with the concomitant loss of relevant detail in the PSDF (e.g., the single mode in the function).

However, it is important to point out that the recovered solution for the case of noise-corrupted dta exhibited

(cf. Fig. 3) negative (and hence, unphysical) values at the tails of the log-normal distribution. This can

probably be attributed to the the fact that the information content embodied in the optical data on the

nature of the distribution in the tails is small. Consequently, features in the ends of the distribution cannot

be accurately recovered using only the given noisy optical data. Furthermore, the magnitudes of the small

oscillations which result in the negative values near the ends of the distribution are below the level of noise

corrupting the input data.

41. Fig. 4 displays the recovered particle size distributions for the case of a bimodal log-normal distri-

bution function with a primary mode centered at 0.5 pm and a secondary mode centered at 2.0 pm. The

inversions were performed on noise-free optical data as well as data that had been corrupted at the 5 percent

RMS noise level. Note that the resulting inverted solutions are good in that both modes in the distribution

have been properly identified. The two peaks in the recovered PSDF fall close to the true values and the areas

under these peaks approximate the actual areas quite well. The values of 7 selected by the GCV procedure

appear to provide stable solutions in both cases, although it should be noted that in the noise-corrupted

case, the solution exhibits a small undulation at roughly the position corresponding to the relative minimum

between the two modes. Fig. 5 shows the recovered PSDFs for a Junge-like distribution [25] obtained from
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both noise-free optical data and data that had been degraded with 5.0 percent RMS noise. Both inversion

solutions provide good estimates for the size distribution, although there are some small (minor) oscillations

superimposed on the generally monotonically decreasing trend for the noise-corrupted solution. Fig. 6 dis-

plays the inverted solutions for the case of a Rosin-Rammler distribution [25]. Both noise-free optical data

as well as data corrupted by Gaussian noise at the 5 percent RMS level were employed. Again, note that

the agreement between the inverted and the actual size distributions is good. Indeed, the recovered PSDFs

in both cases reproduce the shape of the true distribution well. This fact, coupled with the observation that

the inverted results are relatively smooth, is evidence that the Lagrange multipliers y have been properly

selected by the GCV method in both the noise-free and noise-corrupted cases.

CONCLUSIONS

42. The purpose of this paper has been to develop an automatic algorithm for the "blind" reconstruction

of particle size distribution functions of polydispersed aerosol clouds, composed of homogeneous spherical

particles of known composition (i.e., of known refractive index), from discrete, noisy light scattering data. The

algorithm is based on an alternative implementation of the popular constrained linear inversion procedure

due to Philips and Twomey. This procedure tries to minimize artifacts (i.e., oscillations) in the solution by

utilizing a "roughness" measure (i.e., stabilizing functional) depending on the second derivative of the PSDF.

The automatic algorithm arises from the attempt to address two major problems that plague conventional

implementations of the constrained linear inversion procedure, namely, the need to select an appropriate

discrete approximation for the PSDF and the importance of obtaining a proper value for the Lagrange

multiplier (i.e., smoothing parameter) that adequately reflects the amount of smoothing to impose on the

solution in relation to the level of noise corrupting the input data.

43. To address the first of these problems, it was shown that an analytic representation for the solution

of the constrained linear inversion procedure can be obtained by application of some standard techniques

from the theory of Hilbert spaces. This representation provides a convenient parametrization for the PSDF

and, consequently, permits the estimation of the entire size distribution rather than merely its values at nodes

corresponding to some discretization of the particle size domain. This differs from the usual implementation

of the constrained linear inversion procedure whereby discrete values are used both for the approximation of

the PSDF and for the quadrature required to evaluate the model optical data. By constrast, in the present

implementation of the procedure, the discrete values of the PSDF are utilized only for the quadrature. The

second problem was addressed by application of the principle of generalized cross-validation, which provides

an objective procedure for the selection of an appropriate value of the Lagrange multiplier. With an ob-

jective method for the computation of the correct value of the smoothing parameter and with the explicit

representation for the PSDF, the reconstruction of the aerosol size distribution function is reduced to the

problem of estimating a set of unknown coefficients whose values then determine the exact functional form of
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the PSDF. This estimation problem can be efficiently resolved as the solution of a system of linear algebraic

equations. It has been demonstrated using synthetic data examples that the automatic implementation of

the constrained linear inversion procedure works well and requires a minimum of user intervention. These

examples seem to indicate that the GCV procedure provides reliable estimates for the regularization pa-

rameter that adequately reflect the noise level corrupting the data. Indeed, the automatic algorithm when

implemented with a lookup table method for the Mie kernels, provides the possibility for a rapid real-time

PSDF inversion procedure using standard desktop computers.

44. In this paper, the GCV procedure was coupled with an analytic (i.e., exact) representation for the

solution of the constrained linear inversion procedure in order to construct an automatic retrieval algorithm

for the PSDF. However, it is important to emphasize that the GCV procedure can be coupled with other

analytic representations for the PSDF in order to formulate alternative automated recovery procedures.

In this connection, the eigenfunction expansion technique of Curry and Kiech [10,11] can be automated

by interfacing it with the GCV procedure. It is interesting to note that the selection of the regularization

parameter using the GCV procedure is closely related to the the selection using the Residual Relative Variance

(RRV) procedure proposed by Curry and Kiech. Indeed, both procedures attempt to select the regularization

parameter so that the computed "true" predictive root-mean-square error (i.e., the residual error between

the noisy observations and the model observations computed using the true PSDF) is approximately equal to

the experimental error. However, the RRV procedure requires the implementation of a somewhat awkward

double iterative calculation procedure whereby a PSDF inversion computation is required for every iteration

used in finding the optimal value for the regularization parameter. By contrast, the GCV procedure decouples

the iterative computation for the regularization parameter from the PSDF inversion calculation.

45. The primary drawback in the application of the GCV procedure to the constrained linear inver-

sion technique resides in the fact that it is possible to sometimes obtain negative values for the recovered

PSDF. These negative values, which usually arise from high-frequency oscillations exhibited in the tails of

a sharply-peaked distribution (viz., a Gibbs phenomenon) is probably the result of the small information

content present in the data concerning the features in the tails of the distribution. There are two ways to

overcome the negativity in these estimates: (1) by increasing the value of the regularization parameter to

such a point that there are no longer negative values in the reconstructed distribution or (2) by provid-

ing a representation for the PSDF that explicitly incorporates the positivity constraints. The first remedy

provides an indirect method for addressing the negativity problem and has been applied by numerous re-

searchers [5,7,9]. Unfortunately, this method may result in an oversmoothing of the PSDF in order to satisfy

the non-negativity constraints. Furthermore, the GCV procedure is no longer applicable to this case. On

the other hand, the second remedy is more attractive in that the non-negativity constraints are directly

applied and the GCV procedure is still applicable. In this connection, the problem needs to be solved with

the constraints 3 > 0 and C > 0 imposed. Unfortunately, a closed-form solution cannot be written for this
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constrained problem in contrast with the unconstrained problem and an appropriate numerical method needs

to be developed.
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COMPUTE: MATRIX ELEMENTS

rij (Eqs. (20a),(20b))

Sij (Eq. (20c))

READ IN LIGHT SCATTERING

DATA AND STANDARD

DEVIATIONS Di, 'i

COMPUTE: GR DECOMPOSITION

OF WS AND CONSTRUCT

Q

COMPUTE: EIGENVECTOR -

EIGENVALUE DECOMPOSITION

OF QTrQ. FIND MINIMUM

y OF V(y).

COMPUTE: a AND b

(Eqs. (27a) AND (27b))

.I
COMPUTE: PSDF

f'(r) = ;T +(r) + T hI(r)
y

(Eq. (21a))

Figure 1

Flowchart of the implementation of the automatic recovery of the
particle size distribution function f(r).
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Figure 2

Recovered particle size distribution functions f(r) obtained for both noise-free
optical data and data degraded with 3 percent RMS Gaussian noise. Also
shown is the true (actual) size distribution which is uniform over the entire

particle size domain Q.
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Figure 3

Recovered particle size distribution functions obtained from both noise-free
optical data and data corrupted with 5 percent RMS noise. The true size
distribution is a unimodal log -normal distribution with the mode centered at 0.5 Mm.
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Figure 4

Recovered particle size distribution functions obtained from both noise-free

optical data and data corrupted with 5 percent RMS noise. The true size
distribution is a bimodal log-normal distribution with modes centered

at 0.5 pm and 2.0 pm.
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Figure 5

Recovered particle size distribution functions obtained from both noise-free

optical data and data corrupted with 5 percent RMS Gaussian noise. The true
size distribution is a Junge-type distribution shown by the solid line.
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Figure 6

Recovered particle size distribution functions obtained from both noise-free

optical data and data corrupted with 5 percent RMS Gaussian noise. The true
size distribution is a Rosin-Rammler distribution shown by the solid line.
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