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ABSTRACT

Perhaps the most versatile and efficient method for inferring the particle size distribution function
(PSDF) of aerosol clouds from remote light scattering measurements is the constrained linear inversion
procedure due to Philips and Twomey. However, conventional numerical implementations of this procedure
are subject to the following two problems: (1) an appropriate discrete approximation must be chosen for
the PSDF which adequately achieves the correct balance between the conflicting requirements of resolution
of detail in the PSDF and of efficiency in the computation of the solution and (2) a proper value must be
selected for the Lagrange multiplier (smoothing parameter) that adequately reflects the tradeoff between the
fidelity to the observed optical data and the smoothness of the solution. Consequently, an adequate recovery
of the PSDF, based on the constrained linear inversion procedure, is usually achieved only after a certain
amount of tedious preliminary exploratory analysis.

An alternative implementation of the constrained linear inversion procedure is presented which over-
comes the problems associated with the conventional implementation. Firstly, an explicit analytical (continu-
ous) representation for the solution of the constrained linear inversion procedure is developed which obviates
the need to obtain a discrete approximation for the PSDF. Secondly, an objective procedure, based on the
principle of generalized cross-validation, is utilized for the selection of the proper value for the Lagrange
multiplier. Taken together, these two developments provide the basis for an objective, fully automated im-
plementation of the constrained linear inversion technique. Numerical examples of PSDF inversions, obtained
using the proposed automatic retrieval algorithm, are presented for synthetic aerosol optical extinction and

scattering data.
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INTRODUCTION

1. The determination of the distribution of particle sizes in a polydispersed aerosol cloud, based on a
remote sensing methodology, does not permit a direct measurement of the size spectra. Rather, the infor-
mation concerning the particle size distribution function (PSDF) must be inferred from the light scattering
data (viz., measurements of the way the aerosol cloud scatters electromagnetic radiation) which provide
either the spectral extinction as a function of the incident wavelength and/or the scattered light intensity
as a function of the scattering angle. Given some combination of these measurements, the recovery of the

PSDF of the aerosol cloud is, in essence, an inverse or indirect problem.

2. The retrieval of the aerosol particle size spectra from a finite set of imprecise optical scattering data
is an inherently ill-posed problem in the sense that the solution is both nonunique and unstable (viz., the
solution does not depend continuously on the data). In view of the fact that a knowledge of the PSDF
would aid in the understanding of the various physical and chemical mechanisms and processes which are
responsible for the aerosol microstructure and would permit the development of more efficient and reliable
particle diagnostic methods for the evaluation and assessment of airborne particulate hazards, a considerable
research effort has been directed to the development of algorithms for the reconstruction of the aerosol size

distribution from optical scattering data.

3. The earliest attempt at the specification of a PSDF retrieval algorithm can be attributed to Yamamoto
and Tanaka [1], who formulated a numerical inversion algorithm based on the constrained iinear inversion
procedure originally developed by Philips (2] and Twomey [3] in the United States and, independently, by
Tikhonov [4] in the Soviet Union. The method of constrained linear inversion has subsequently been applied

to the inference of particle size distributions utilizing a myriad of light scatiering measurements, inciuding
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optical depth data obtained as a function of wavelength [5], backscattered radiance measured as a function
of wavelength [6], a combination of optical extinction determined as a function of wavelength and scattered
light intensity determined as a function of scattering angle [7], and spectral light distribution and polarization

distribution obtained as a function of wavelength and scattering angle [8].

4. Without a doubt, the constrained linear inversion procedure, which utilizes the Philips and Twomey
second derivative smoothing constraint, is the most popular procedure for the inference of aerosol size distri-
butions. However, in the implementation of this procedure, it is necessary to adopt a discrete representation
for the PSDF f(r) as well as a difference approximation for the second derivative smoothing functional.
Almost invariably, f(r) is approximated by a piece-wise constant representation whereby the size domain
(range in radii r of the particles) is partitioned into a finite number of intervals over which f(r) is assumed to
be constant. This discretization leads to the following problem: there is no objective procedure for selecting
the correct number of discrete segments to employ in the approximation of f(r). Ideally, the number of
segments must be large enough so that the resulting binning does not lead to a loss of detail in the PSDF
and at the same time not so large that the resulting discretized problem cannot be solved economically
on a computer. Moreover, the constrained linear inversion solution depends critically on the selection of a
proper value for the Lagrange multiplier (smoothing parameter) v that determines the degree of smonthing
to impose on the solution. Again, there is no objective method for the selection of an appropriate value for
7. For the most part, attempts at a resolution to this problem have been based on trial-and-ertor procedures

and/or on empirical rules derived cither from computational experiments or from a sensitivity analysis [7,9].

5. In view of the problems associated with the application of the constrained linear inversion procedure,
Curry and Kiech [10,11] have proposed two alternative procedures for the retrieval of the PSDF from light
scattering data. The first procedure, referred to as the constrained eigenfunction expansion, expresses the
PSDF in terms of the eigenfunctions of a covariance operator constructed from the Mie scattering kernels.
The coefficients in this expansion are determined so that the recovered PSDF is as close to some trial solution
(function) as possible while maintaining the required consistency with the noisy data. The constrained
eigenfunction expansion procedure is actually a generalization of an analytic inversion procedure developed
by Capps, Henning and Hess [12). It is important to note that although the constrained eigenfunction
expansion method does not require a discrete approximation for the PSDF, it still nevertheless requires
the proper selection of the value of the Lagrange multiplier 4. Curry and Kiech proposed that v be found
by application of the Residual Relative Variance method, a process which leads to a somewhat complex
double iterative computational sequence for the solution. The second procedure, designated as the nonlinear
regression method, is precisely as the name implies—the PSDF is postulated to possess a particular functional
form (e.g., log-normal) and the set of parameters associated with this form is then estimated directly from
the data based on the least-squares method. This procedure can yield very good results provided the proper

parametric model is chosen for the PSDF and the correct number of parameters are utilized. However, it
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should be emphasized that the nonlinear regression method can also lead to very poor results if the latter
two criteria are not adequately satisfied. Indeed, in view of the fact that, in most cases, there is no a priori
information on the correct parametric form to use for the PSDF, the nonlinear regression procedure cannot
be recommended for general use (i.e., for “blind” inversion). Moreover, the nonlinear regression method is
computationally intensive due to the nonlinear occurrence of the parameters in the assumed parametric (i.e.,

model) size distribution function.

6. Despite the introduction of the constrained eigenfunction expansion and the norlinear regression
procedures, the constrained linear inversion method still remains by far the most widely employed method
for inferring particle size distributions from optical data. This is because the latter method only requires
that the unknown solution satisfy a weak a prior constraint (i.e., a smoothness constraint) unlike the con-
strained cigenfunction expansion and nonlincar regression methods. Moreover, the constrained linear in-
version method can lead to very good results provided a certain amount of careful preliminary exploratory
analysis is undertaken to sclect the proper discrete representation for the PSDF and the proper value for the
smoothing parameter v. In view of this, it would be desirable to develop a fully automated implementation
of the constrained linear inversion procedure which (1) does not require a discrete representation for the
PSDF, thus obviating the need to select the proper number of discrete segments with which to divide the

size domain, and (2) incorporates an objective method for the selection of the appropriate value for 7.

7. The major feature that distinguish this work from that of previous authors on the implementation
of the constrained linear inversion procedure is the emphasis on the development of a completely automatic
implementation of the procedure that requires little or no vser intervention. Consequently, the purpose of this
paper is to show how to achieve a completely automatic implementation of the constrained linear inversion
procedure. To this end, it is first shown that, for a fixed value of the smoothing parameter v, an analytical
representation for the solution of the constrained linear inversion method can be obtained by utilizing
standard techniques from the theory of abstract Hilbert spaces. This representation expresses the PSDF as
a continuously differentiable function of the radius r and, as such, obviates the requirement for the selection
of an appropriate discrete representation as is required in the usual application of the constrained linear
inversion method. Consequently, the problems stemming from the proper discretization of the PSDF are no
longer an issue. Next, it is shown how the principle of generalized cross-validation can be applied to provide
an objective procedure for the selection of an appropriate value of the Lagrange multiplier (i.e., smoothing
parameter). In this way, the second major problem associated with the application of the constrained linear
inversion procedure can be resolved. Indeed, the coupling of the analytic representation of the PSDF with the
cross-validated selection of the Lagrange multiplier, provides the basis for a fully automatic implementation
of the constrained linear inversion method with no need for a preliminary (exploratory) analysis on the user’s
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MATHEMATICAL FORMULATION OF THE PROBLEM

8. Electromagnetic theory dictates that optical scattering data from a polydispersed aerosol cloud
consisting of an ensemble of homogeneous spherical particles is related to the particle size distribution

function through a Fredholm integral equation of the first kind [13,14]

o(z) = /ﬂ K(z,7)f(r) dr, (1a)

provided that the aerosol cloud is optically thin so that only single scattering occurs and that the particles
comprising the cloud are randomly separated so that only incoherent scattering occurs (i.e., there is no sys-
tematic phase relation between the radiation scattered by the individual particles). In eq. (1a), s(z) denotes
the theoretical (model) optical data (e.g., optical extinction, spectral turbidity, scattered light intensity, etc.)
determined as a function of the wavelength z = A and/or the scattering angle z = #. The kernel function
K(z,r), corresponding to the datum s(z}, represents the scattering, backscatter, or extinction cross sections
for a spherical particle of radius r. This function, which can be evaluated using Mie theory, is also dependent
on the complex index of refraction m of the particle. In the following treatment, it is assumed that m is
known. Finally, f(r) in eq. (1a) denotes the particle size distribution function and Q = [R, R,) specifies

the radii limits R; and R; (i.e., size domain) for f(r).

9. A particular experiment will yield M numerical values of s(z) (e.g., obtained for a finite and discrete
set of measurement variables {z.-}:il) which are contaminated with noise. Consequently, the observational

model relating the measured data D; to the model data s(z;) is given by
D; = s(z;) + ¢, i=12,....M, (1%)

where ¢; is assumed to be a zero-mean measurement error with variance 2. The inverse problem associated
with egs. (1a) and (1b) can now be stated as follows: given a finite set of inaccurate optical scattering data

{D,-}?;l and the errors {o;}:ul in their measurement, determine the PSDF f(r).

10. The most important property to note with regard to this inverse problem is that it is inherently
ill-posed. This translates into the observation that a small random perturbation on the optical data s(z) will
induce unacceptably large variations on the solution f(r). Consequently, a practical solution to the problem
can only be obtained if the ill-posedness is directly confronted and addressed. If this is not done, the
computation of the solution from practical data (cf. eq. (1b)) will invariably lead to wild oscillations in the
PSDF. These oscillations, which are merely artifacts in the solution that have no direct physical significance,
are the manifestations of the ill-posed nature of the problem. To formulate a well-posed problem, Philips
(2] and Twomey (3] have proposed that a regularized solution (or “quasi-solution”) f,(r) be obtained by

minimizing a smoothing functional of the form

Ry(f) = Rus(f) + 1Rs(f), (2a)
UNCLASSIFIED
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where M 2
1 D — 81 &
Rusf) = o 5 B se) (25)
i=1 A

is the usual weighted least-squares discrepancy (misfit) function with the i-th weight chosen to be the inverse

of the variance o? associated with the i-th datum D; and

rst = [ (EL) (29

is a stabilizing functional (penalty term) which measures the degree of smoothness (regularity) in the un-
known PSDF. Note that Rg(f) discriminates against steep curvatures in f(r) and, in this sense at least, the
PSDF obtained by minimizing Rs(f) subject to the constraint that f(r) reproduce the data to within some

expected accuracy, must generate the “fattest” solution consistent with the available data.

11. In eq. (2a), v is a non-negative regularization parameter (Lagrange muitiplier). The smoothing
functional is composed of the linear combination of the data misfit Rys(f) and the roughness mezasure Rs(f),
with the latter weighted by the regularization parameter y. This parameter must be chosen to reflect the
degree of smoothing to be imposed on the required solution and, indeed, as ¥ increases, the roughness term
in eq. (2a) is given an increasing significance (i.e., weight) at the expense of the misfit term. Ideally, the
regularization parameter must be chosen to reflect some desirable compromise between the fidelity with
which the PSDF regenerates the data as measured by the misfit term and the smoothness desired in the
PSDF as measured by the roughness term. It should perhaps be noted that the choice of v is equivalent
to the choice of the misfit tolerance T', which reflects the degree of consistency between the theory and
observations in the form Rys(f) < T. Of course, T (or, equivalently v) must be chosen to adequately reflect
the magnitude of the noise perturbing the data.

12. The problem posed in eq. (2a) is usually solved [2,3,15] by dividing the size domain = [R;, R,)
into N non-intersecting equal-sized intervals Ar; = r; — r;_; (i = 1,2,...,N) with f(r) assumed to be

constant over each interval, viz.
firy=f;,  ria<r<r (3=12,...,N),

where rp = R; and rxy = Rj. The discretization then proceeds as follows. First, the integral of eq. (1a) is

expressed as a summation by utilizing some appropriate quadrature approximation to give
Af=7

where A is the M x N matrix of quadrature coefficients w; K (z,,r;) (i = 1,2,...,M; j =1,2,...,N), w; are
the weights associated with the quadrature rule, f= (f],fg,...,fN)T and §= (s(z;),s(zz),...,s(zM))T.

Second, the roughness measure Rg(f) is replaced by the following second difference approximation :

N~1
R=Y(fisn - 265+ 5i-1)"

=2
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With these appraximations, the smoothing functional of eq. (2a) can now be expressed as the following
discrete representation:

\Wd~ WAf|% ++fTHS, (3)

where W is the M x M diagonal matrix

W = diag{1/01,1/02,...,1/om},

H is an N x N banded matrix of the form

OO O
o0 Q Q@
v OO O
e OO O
OO Q@

oo
OO0 O

0 0 0 0 ¢ 0 0 0 0 ... 1 -2 1
d= (Dy, Da, ... .DM)T is the data vector and || - || denotes the vsual Fuclidean norm. Now, it is easily

shown that the solution vector f which minimizes eq. (3) can be written as
- -1 -
f=((Wa)"(WA) ++H) ™ (WA) Wd (4)

13. The solution embodied in eq. (4) requires that an appropriate discretization be chosen for the PSDF
J(r). Indeed, the value of N must be chosen large enough so that there is no loss of fine structure in f(r).
On the other hand, although f(r) can be represented to an arbitrary degree of accuracy by increasing the
value of N, this incurs the disadvantage of increasing the dimension of the (WA)T (WA) matrix (cf. eq. (4)),
thus making it more costly to invert on a computer. Hence, practical constraints imposed by the capabilities
of the computer determine the upper bound cn the value of N. Moreover, it is important to emphasize
that certain kernel functions K(z,r) such as the backscatter cross section are extremely oscillatory and
erratic in form [14], with the result that a large value of N would be required in order to achieve a good
quadrature approximation for s(z) (cf. eq. (1a)). Under these circumstances, it is necessary for N to be
large and, consequently, it is necessary to deal with the inversion of large dimensional matrices. In light of
these problems, it would be desirable to obtain an analytical representation for the solution of eq. (2a) and
thus do away with the need to implement a discrete approximation for f(r). In so doing, discrete values
of f(r) will only be required for the quadrature approximation of the model optical data and not for the
representation of the PSDF per se. The methodology for achieving this particular goal is presented in the

next section.
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ANALYTICAL REPRESENTATION OF THE SOLUTION FOR THE CONSTRAINED LIN-
EAR INVERSION PROCEDURE

14. An explicit closed-form analytical representation for the form of the PSDF, which minimizes the
smoothing functional R,(f) of eq. (2a), can be obtained by application of certain standard techniques of
Hilbert space theory [16]. From this perspective, it is convenient to visualize each admissible particle size
distribution function f(r) as an element of a real Hilbert space H consisting of all real-valued functions
h(r) defined on Q = [Ry, Ry] (i.e., the size domain) such that (1) A’ = dh/dr is absolutely continuous and
(2) h" = d?h/dr? is an element of £3(R), the space of Lebesque square-integrable functions on Q. It is
convenient to equip the Hilbert space H with the following inner product:
(1,) = w(R)W(Rs) + W (R (R1) + [ (e,

where u,v € H. Note that the norm of an element in 7 is then given by |[u]| = (u, u)!/2. A brief comment is
in order conceruing the present choice of H and the associated inner product. In order to penalize undesirable
undulations in f(r), the constrained linear inversion procedure utilizes the integral of the second derivative
of the PSDF over the size domain as the penalty functional (i.e., stabilizing functional). In view of this, H
should be chosen as the class of all functions which possess a well-defined second derivative and the resulting
norm (actually the norm inherited from the inner product) should be chosen so that it adequately reflects
the “size” of the PSDF with regard to its “roughness”. In this manner, the minimization in H using the
given (i.e., chosen) norm then results in the penalization of the undesirable oscillatory behavior in f(r) in
an entirely natural fashion. With these definitions, the linear functional relationship between the theoretical
datum s{z;) and the PSDF f(r) (cf. eq. (1a)) can be viewed now as a continuous (bounded) linear functional

L; on H so, by virtue of the Riesz Representation Theorem [16], there must exist some g; € M such that

8(zi)=Li(f)-=-/‘)K(I-',")f(")d"=(9i,f) (i=12,...,M). (5)
The elements g; are called the representers for the bounded linear functionals L; (i = 1,2,..., M).
15. To find an analytic representation for the solution to eq. (2a), it is convenient to form two subspaces

from H. First, it is useful to form the finite-dimensional subspace spanned by the representers g; (i =
1,2,...,M) of the problem and define G = sp{g1,92,...,9m} where sp{-} denotes the span of a set of
elements in . Second, an inspection of the stabilizing functional Rs(f) (cf. eq. (2c)) reveals that all
elements of H which cause this functional to vanish (viz., Rs(f) = 0) must belong to a two-dimensional

subspace of H spanned by the two elements

hi(r)=1 and  hy(r)=r-R;.
Consequently, it is useful to define KX = sp{hl,hg}. Note that elements from K are ideal particle size
distribution functions in the sense that they are optimally smooth with respect to the stabilizing functional—

viz., any element k € K results in Rs(k) = 0 and, consequently, these elements are not penalized by the

stabilizing functional.
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16. Now, for a given value of the smoothing parameter v, finding the function £, (r) € # which minimizes
the smouihing functional R,(f) is equivalent to finding the element of 2 which is “closest” to the subspace
K of ideal functions and is, at the same time, consistent with the data misfit constraint embodied by Rys(f)

It is convenient to write the solution f, in the form

2 M
fr= Ebjhj+zd:3i+ﬂ. (6)
i=1

i=1
where o is an element of H which is orthogonal to both G and K, viz. (¢,9;) =0 (i = 1,2,...,M) and
{o,h;) = 0 (j = 1,2). While the form for f, is quite intuitive, it should be noted that this form follows
directly from the Decomposition Theorem [16] for Hilbert spaces. Note that the first term on the right hand
side of eq. (6) is simply a representation of a general element from K. Similarly, the second term on the right
hand side of eq. (6) is a representation of a general element of G. The element o then represents that part of
fy in H which does not lie in either K and/or G. It will now be shown that o must vanish if f, of eq. (6) is
to minimize eq. (2a). Since f, is the “closest” element to K that is consistent with the data constraints, this
requires that the length of the element p = }:“;l a;g; + o be minimized subject to the data constraints (cf.
eq. (6)). However, note that only the first term z‘zl a;g; of p can affect the data misfit since the model data
s(z,) are determined only by the the gi’s (¢f. eq. (5)) and {0,9;) =0 (i = 1,2,..., M). Consequently, as far
as the data misfit constraint is concerned, o can be freely chosen. However, for minimum ||pl|, this requires
that ¢ = 0. As a result, the PSDF f,(r) which minimizes R,(f) for a fixed value of the regularization

parameter v must possess the form

M 2
Fr(r) =Y aigi(r) + Y bihi(r). (M
=1 j=1
17. The undetermined coefficients a; (i = 1,2,...,M) and b; (j = 1,2) in the representation of eq.

(7) can be deiermined as follows. If eq. (7) is substituted into egs. (2a), (2b), and (2¢), it is relatively

straightforward to show that the smoothing functional R,(f) can be expressed as the quadratic form
Ry(f) = M~ (d-Td - Sb)"W?*(d-Ta - Sb) + 1a T3, (8a)

where T is the M x M Gram matrix defined as

i=1,2,...M _
r= (P.'j)le'?,__.M , Ty; = {9i,95). (88)
S is the M x 2 matrix defined as
i =1,2 -
S = (S;; §=mw"M , o Si = {gi, k), (8¢)

and @ and b are M- and 2-tuples, respectively, given by

d= (a;, as, ... ,aM)T and b= (b1, bz)T. (8d)
UNCLASSIFIED
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The data vector d and the diagonal matrix W have already been defined with reference to eq. (3). Now,
differentiating R, (f) in eq. (8a) with respect to the coefficient or parameter vectors & and b and setting the

results to zero, yields the following system of linear equations:
(C+MyW-a+Sb=d, (9a)

sTa=0; (95)

-2 -
(5 (90

where 0 is a 2 x 2 zero matrix and 0 is a 2 x 1 zero vector. The solution of eq. (9c) provides the values of

2
and {bJ }j=l'

or, equivalently, in matrix form

. M
the unknown coefficients {a;}hl

18. Explicit expressions for the coeflicient vectors @ and b can be derived as follows. First, note that the
matrix (I' + MyW~2) is nonsingular since (1) the Gram matrix T is symmetric and non-negative definite

by definition (cf. eq. (8b)), (2) W is positive definite, and (3) v is positive by assumption (i.e., recall that ¥y
1

is the positive regularization parameter). Consequently, if eq. (9a) is premultiplied by ST(I'+ MyW~2)"

one obtains

ST+ ST(T + MyW~2)7'sb = ST(I' + MyW~2?)7'd,
which can be expressed as
— 1 -1 1 -
b= |ST(r+ MyW™2)~ s] sT(r+ MyW-2)7"d, (10a)

on using eq. (9b) and assuming that the matrix S has full rank. Now, @ can be computed from
@= (T + MyW~2)"}(d - S§) (106)

by virtue of eqs. (9a) and (10a). Eqs. (10a) and (10b) provide the coefficients of the desired solution
to the constrained linear inversion problem. Indeed, egs. (10a) and (10b) in conjunction with eq. (7)
provide a continuous representation for the PSDF f,(r) which minimizes R,(f). However, to be able to
utilize this continuous representation, it is necessary to develop explicit expressions for the representers g;

(i=1,2,...,M). The solution of this problem is the subject of the next section.

EXPLICIT COMPUTATION OF THE REPRESENTERS FOR THE CONSTRAINED LIN-
EAR INVERSION PROCEDURE

19. Although the Riesz Representation Theorem guarantees that every bounded linear functional L,

defined on a Hilbert space H possesses a representer g; € H such that L;(f) = (gi, f) for every f € H, the

UNCLASSIFIED
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theorem does not state how such a function can be constructed in general. Hence, it is useful to approach the
problem of the construction of the representers for the constrained linear inversion procedure in the following
heuristic manner. To this end, it is convenient to view the Hilbert space H (defined in the previous section)

as the direct sum of two Hilbert spaces Hg and H; (viz., H = Ho & H;) defined as follows:
Mo = {f : df /dr is absolutely continuous, d*f/dr? = 0}

and

Hy = {f : df /dr is absolutely continuous, d?f/dr® € £7(Q), f(Ry) = 0,df(Ry)/dr = 0}.

Observe that My is a two-dimensional subspace of H which coincides with the subspace K defined earlier.

The inner products on My and H; must be defined as

(f.9)o = f(R1)g(Ry) + f'(R))¢'(Ry), f.9€H,

and

d2f(r) d*s(r)
Tdrz  dr?

respectively, so as to be consistent with the inner product chosen for H (cf. previous section for the definitio.

of this inner product). Then, {f,9) = (Pof, Pog)o + (P1f, Pig)1 (f,g € H), where Py and P, denote the

projection operators from H onto My and H;, respectively.

(frg)lE d f,gGHI:
1]

20. As the first step in the construction of the representers g;, consider the problem of finding functions

L{?) € Mo and kﬁf’ € H; such that

Fy = (K9, f)o,  forany f €M, (11a)
and
f(r’):(lcg),f)l, for any f € H;. (11b)

In the preceding equations, 1’ is an arbitrary fixed point in 2. It should be noted that k,(.f’) and kl(,,l) are simply
the representers for the point evaluation functionals in M, and X, respectively. Due to the simplicity of the
inner product on Ho and in view of the fact that Hy is a two-dimensional space spanned by the functions

hi(r) = 1 and ho(r) = (r — Ry), a little reflection shows that the function lcf?) possesses the form
EP(ry=1+(-R) -R), rreq (12)

That this form for Icg?) (r) is correct can be readily verifed by substitution into eq. (11a).

21. The function kg) (r) is more difficult to determine, but can be found as follows. First, note that eq.

(11b) can be expressed as

)
1= [ PEEOLIO 4 [ G L o, (13)

UNCLASSIFIED
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where G(v/,r) is a Green’s function determined such that
d?G(r’,r) _ , _~_ dG(r,Ry)
——d"2 - 6(" - rl)) G(r )Rl) - 0 - dr ' (]’3b)

where 6(-) denotes the Dirac delta function. The solution of the preceding boundary value problem (i.e., eq.

(13b)) can be easily shown to be given by

ran=40 fR<r<r;
G("')‘{r-r' fRy>r > (14)

That eq. (14) is valid can be easily verified by substituting this expression into eq. (13a) and integrating
the result by parts twice. Now, in light of eq. (13a), kg) (r) is related to the Green’s function as

a2 (r
_Jﬁ(—) = G(r'- r)
or, equivalently, as
kg,l)(r) = / G(r',r")G(r,r") dr". (15)
1]

Inserting eq. (14) into eq. (15) and evaluating the result yields

/' (F = ) (r = ") de" = (r = ROIY = R)/2 = (r— R1)%[6, Ry <<V

kD) = { TRy (16)
/ (=) (r=r")dr = (r- R)(r' - R1)2/2 ~(F=R)3/6, fRa>r>7.
R,
22. Having determined the representers for the point evaluation functionals in Ho and H,, it is now a

simple matter to compute the representers for an arbitrary bounded linear functional in . In particular, one
is interested in the representers g; associated with the data functionals L; defined ineq. (5) (i = 1,2,..., M).
To this purpose, first note that by virtue of eqs. (11a) and (11b), f(+') = (kS‘,’), Pof)o+ (kY , Pif)1 = (ker, f)
with k. = kﬁ‘P + kg) (f € H). Consequently,
s(zi) = (93, f) = Lipy (£(")) = Ligpy(ker, ) = (Lirryker, ),

50

ai(r) = L (b (1) = [ Klaw e ), (170)

i}
where
ko (r) = KO(r) + ED(r) (17b)

and Ly+)(-) denotes the i-th data functional (cf. eq. (5)) operating on what follows (viz., () considered as

a function of . Now, substitution of the functional forms for k$9) and lc,(.}) exhibited by egs. (12) and (16),

respectively, into eq. (17a) leads to the following explicit expression for the representers g::
gi(r) = / K(zi,r')dr' + (r - Ry) /(r' - R K (zi,7')dr'
a Q
r r
+ l(v- - Rl)/ (r- R’ K(zi,r')dr - l/ (' - R) K (zi,r)dr'
2 R, 6 Ry
1 2 [P 1 3 [Re
+30-R) [T - R)K (@) d - G- R) [ k@ (18)
r r
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23. With the analytical form for the representers g; given in eq. (18), it is now possible to compute the
analytical solution for the constrained linear inversion procedure using egs. (7), (8b), (8c), (10a), and (10b).
To simplify the comput:..ional procedure somewhat, it i8 important to observe that the first two terms of
the expression for gi(r) given by eq. (18) are elements from K and, consequently, can be incorporated with
the term E?__:l bjh;(r) € K in the representation of f,(r). Hence, it is convenient to write the representation
for f,(r) as

M 2
£ = Y aigi(r) + Sobihi(r), (19a)
=1 i=1
where

a(r) = %("‘ Ry) /; (v - Rl)zK(zi, r)dr' - -;-/; (r - RI)SK(::.-,r')dr'

R, Ra
+ %(r - Rl)Q/" (¥ — R)K(zi,v)dr' - %(r - Rl)s_/' K(zi,r')dr'. (196)

Observe that gi(r), given by eq. (19b), is simply g;(r) with the component in X removed (viz., §; = Pig;).
The coeflicient vectors & and b, which determine fy(r) in eq. (19a), are still given by eqs. (10a) and (10b).

However, in this case, the elements of the Gram matrix T are given now by

_ _ oL &?gi(r) d?g;(r ..
(gngj)=(ghgj)= #_—gzg—).dr’ ')J=l:2a--')M, (200)
dr dr
with
dz-l'(r) Ra ’ R ’
= i (F = R)K(zi,r')d¥ — (r - Ry) A K(zi,r')dr'. (208)
Furthermore, the elements of the S matrix are unchanged and are given by
{9, hs) = Li(k;) = / K(z:, r)hj(r)dr, i=1,2,... . M;;=12 (20¢)
a
24. In summary then, for a given value of the regularization parameter v, the solution of the constrained

linear inversion procedure (i.e., the particle size distribution function which minimizes the smoothing func-

tional of eq. (2a)) possesses the continuous representation
fy(r) =@T3(r) + ETh(r), req, (21a)
where 3(r) and A(r) are vector-valued functions on § defined as

#(1) = (31(r), ar), .., GM (") (218)
and
R(r) = (ha(r), ha(r)". (21c)

The coefficient or parameter vectors @ and b of eq. (21a) are computed according to eqs. (10a) and (10b)
with the matrix elements of I' and S determined as per eqs. (20a), (20b), and (20c). This solution for the
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PSDF (cf. egs. (2la), (21b), and (21c)) should be contrasted with the conventional approximate form of
the solution represented by eq. (4). Eq. (4) is based on a discrete approximation (i.e., a piece-wise constant
approximation) of the PSDF which requires the selection of an appropriate number of discrete size intervals
(N) to use for the representation of the continuous aerosol particle size distribution. On the other hand,
eqs. (21a)-(21c) constitute a continuous representation of the PSDF which solves the constrained linear
inversion problem. With this solution, there is no direct need to utilize a discrete approximation for f(r)
with its concomitant subjectivity in the selection of N. It is important to note that closed-form expressions
cannot be obtained for the model optical data s(z;) (cf. eq. (1a)) or for the matrix elements I';; of T (cf.
eqs. (20a) and (20b)) and S;; of S (cf. eq. (20c)), so that some form of quadrature rule is required in
the computation. However, even though the quadrature approximation for s(z;) must necessarily involve
the discretization of the PSDF f(r), it should be emphasized that this discretization is only utilized to
obtain an approximation for the model optical data and is not related to the representation of f(r) per
se. In the usual implementation of the constrained linear inversion procedure, the representation of f(r)
as a piecewise-constant function is directly associated with the quadrature approximation for s(z;). In the
present implementation of this procedure, a continuous and exact representation is provided for f(r) and
a discretization of this representation is utilized only for the quadrature approximation of s(z;)—viz., the
discretization is not utilized for the appraximate representation of f(r) as in the usual implementation.
Finally, the computation of the PSDF via eq. (21a) involves the inversion of a matrix of order M, whereas
the computation of the PSDF via eq. (4) requires the inversion of a matrix of order N. In the problem of
the inference »f the PSDF from light scattering data, N (number of size intervals) is almost always larger
than M (number of data points).

SELECTION OF THE REGULARIZATION PARAMETER

25. Before a complete solution can be given for the constrained linear inversion procedure, it is necessary
to address the problem of the proper selection of the regularization (smoothing) parameter v. In this paper, it
is proposed that the generalized cross-validation (GCV) method be utilized for the selection of this parameter.
The GCV method is a rotation-invariant form of the ordinary cross-validation method introduced by Allen
[17]. Indeed, the GCV method has been successfully applied to determining the correct degree of smoothing
of discrete, noisy data using spline functions [18,19] and to the optimal smoothing of probability density
[20] and spectral density estimates [21]. For a detailed theoretical treatment of the properties of the GCV

estimate of a smoothing parameter, the reader should consult Craven and Wahba (19].

26. With reference to the problem treated in this paper, the GCV method specifies that the optimal

estimate ¥ of the smoothing parameter ¥ be chosen to minimize the criterion function

y & (Dy - La(A") ,

V(1) =3 3 vy, (22a)
M k=1 %
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where f{*) denotes the minimizer of the smoothing functional R,(f) (cf. eq. (2a)) with the k-th data point
(i.e., Dy) omitted from the computation. Recall that Ly (k = 1,2,..., M) are the data functionals defined
as per eq. (5). Moreover, in eq. (22a), ug") are weights given by

o= (1-pun) [ (1- gru(pm)). (22

where pai(7) is the kk-th entry of the M x M matrix P(y) defined as

L, (f'r)

L) | e (23)

Ln (f'r) /
and tr(-) denotes the trace operation. It should be noted that the basic logic behind the selection of ¥
to minimize V() stems from the fact that this choice for ¥ minimizes, on the average, the squared error
between the data points D; (k = 1,2,..., M) and the predictors L; (f?)) of these points. Observe that the
predictor for the k-th data point is obtained using the estimate j’-$") of the PSDF which does not involve this

particular data point (i.e., f-?) is the solution to the constrained linear inversion procedure with the k-th

data point omitted).

27. The form of V() given in eqs. (22a) and (22b) is somewhat complex and is not suited for numerical
computations. However, it can be shown [19] that V(v) can be expressed in the following form that is more

amenable to computations:
MY |W(I - P(1))d|iE

3
[M"t.r(l - P('y))]
It should be emphasized that || - ||g in eq. (24) denotes the usual Euclidean norm and not the norm || - ||

Vin = (24)

inherited from the inner product on #. The remaining problem now is to determine the form of the matrix

P(7) for the present problem and to substitute it into eq. (24). To this end, first note that (cf. eq. (19a))

M 2
Li(fy(r) = 3 aila(@(r) + 3 b Le(hi(r))
i=1 j=1

M 2
=Y ailgn,3i) + ) bilae, hs).
i=1 j=1

In view of the preceding expression and the definition of the matrix P(7) given in eq. (23), it follows that

Ll(f'v)

L?(.f‘T) = ra_l_ s; =. P(‘Y)Jv

Lm :(fv)
(1- P(y))d= MyW™24,
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on using eq. (9a). In view of this equation, it follows that the numerator of V(7), as displayed in eq. (24),
can be expressed as follows:
IW (1 - P(1)dli} = (M7)’a" W73, (25)

28. To proceed further, it would be necessary to substitute the expression for @ displayed in eq. (10b)
into eq. (25) and then try to manipulate the result into a computationally useful form. However, it turns out
that the expression of @, as embodied in eq. (10b), is not the most useful form for this purpose. As a result,

it is sensible to consider an alternative, but equivalent, expression for & that will prove to be more amenable

b to simplifications, at least as far as the evaluation of eq. (25) is concerned. To this end, first observe from
% eq. (9b) that & must lie in the null (or annihilator) space of ST so it is possible to express @ as
1 G=Q7 where STQ=0 and T7€RM2 (26)

In eq. (26), Q is an M x (M —2) matrix whose columns span the null space of ST. Again, as in the derivation

} of eq. (10a), it is assumed that the rank of S is two (i.e., S is full rank). Now, if eq. (9a) is premultiplied
by QT and combined with eq. (26), it is easily shown that
-1
i=Q [QT (r+ Myw-?) Q] QTd. (27a)
Moreover, if eq. (9a) is premultiplied by STW?2 and combined with eq. (9b), the following expression for b
4 results:
b= sTw’s)'lsTw2 (d-ra) 27b
4 = ( -ra). (21)
It should be noted that egs. (26), (27a) and (27b) constitute alternative, but equivalent, expressions for &
4 and b contained in eqs. (10a) and (10b).
' 29. It is important to point out that the matrix Q is not uniquely determined by eq. (26). Consequently,
1 it is possible to utilize this fact to choose a convenient form for Q that permits a simplification in the

evaluation of ||W(I — P(7))d]|%. In this connection, it is convenient to choose Q 5o that its columns span

the null space of ST (cf. eq. (26)) and satisfies
QTW-2Q=1 (28a)

With this choice, insertion of eq. (27a) into eq. (25) followed by some simple matrix manipulations leads to

{ the following expression:
: W (1- P(y))dllk = (M 7)’4."T (A +M 71)"5

- 2
) (M7) .z-; o Mﬂ, (28b)

In eq. (28a), an eigenvector-eigenvalue decomposition has been introduced for Q7I'Q, viz.
QTrQ = UAUT, (28¢)

UNCLASSIFIED

s .5 T e
e ~




v

—

-

r - ———— —rr— v — o —r——————y——

UNCLASSIFIED /16
where U is an (M — 2) x (M — 2) orthogonal matrix whose columns are composed of the eigenvectors of
Q7rqQ and

A = diag(M1, A2, .. dw—2), (28d)

is an (M — 2) x (M — 2) diagonal matrix whose diagonal elements are composed of the eigenvalues A;
(i=1,2,...,(M - 2)) of QTT'Q. Moreover, in eq. (28b), the vector { is defined as

- T -
€= (6,6, .- ,m-2) =UTQTd. (28e)
In a similar manner, it is possible to show that the denominator of eq. (24) can be written as follows:

te(I - P(7)) = (M7)te((A + MAD)™)
M-2

=M Y. T +l " (29)

i=1

Now substitution of eqs. (28b) and (29) into eq. (24) finally leads to the following expression for V(y):

_ MBS/ Ot M)
[SH221/ (% + M)

V(r) (30)
In light of eq. (30), it is now relatively easy to obtain a value of y that minimizes V(v) by using a golden
section search in one dimension. This optimal value for ¥ can then be substituted into eqs. (10a) and (10b),
or equivalently, into eqs. (27a) and (27b) for the computation of & and b. Once this is completed, the solution

of the constrained linear inversion procedure can thea be obtained by evaluation of eq. (21a).

ALGORITHM FOR THE AUTOMATIC RECOVERY OF THE PSDF

30. In view of the results obtained in the previous sections, the following algorithm is proposed for the
automatic reconstruction of the PSDF, given a finite number M of discrete, noisy light scattering data D;
along with the standard deviations o; in their measurement. A flowchart of the implementation used to

realize the automatic recovery of the PSDF is given in Fig. 1.

31. Step 1: Compute the matrix elements of ' and S as per egs. (20a), (20b), and (20c). Since the
Mie scattering kernels are complicated functions, these matrix elements cannot be evaluated analytically.
Rather, the computation of these matrix elements must be effected by utilizing an appropriate numerical

quadrature rule.
32. Step 2: Compute the QR decomposition [22) of WS, viz.
R,
WS = (Ql Qz) (o) ,
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where R is a 2 x 2 upper triangular matrix and Q; and Q3 are M x 2 and M x (M —2) matrices, respectively,
such that QTQ; =1, QT Q; = 0, and QF Qz = I. Now observe that matrix WQ3 can be identified with Q
in egs. (26) and (28a) since QT WS = 0 (or, equivalently. ST(WQ;) = 0) and Q7 Q; = QTW2Q =1.

33. Step 3: Compute the eigenvector-eigenvalue decomposition of QTT'Q (cf. eq. (28¢)), construct the
vector £ as per eq. (28e), and compute the GCV criterion function V() using eq. (30). Now apply a golden
section search [23) in one dimension to determine the non-negative value of the smoothing parameter v that

minimizes V(v).

34. Step 4: Using the value of y determined in Step 3, compute the parameter vectors & and & using
either egs. (27a) and (27b) or egs. (10a) and (10b). However, since Q has already been computed in Step
2, it is perhaps more convenient to use eqs. (27a) and (27b) for this computation. Consequently, eqs. (27a)

and (27b) are used in the computation for the present implementation.

35. Step 5: Evaluate the PSDF f,(r) (i.e., the solution of the constrained linear inversion procedure)
using eq. (21a).

36. It is important to note that the bulk of the computations in the preceding algorithm is contained in
Step 1. However, once an experimental design has been specified (i.c., once the wavelengths and scattering
angles at which the scattered light is to be measured have been selected), it is only necessary to compute the
matrix elements of ' and S once since these elements are independeat of the data. These results can then
be saved for utilization in the inversion of all subsequent data sets that adhere to the given experimental
arrangement. Generally speaking, the incorporation of the present algorithm into an Mie scattering-based
particle sizing instrument would involve the a priori computation of the elements of I' and S based on
the experimental configuration of the instrument. These matrix elements would then be stored in the
onboard computer and the implementation of the PSDF inversion algorithm would then essentially involve
the compntaticn of Steps 2 to 5. Moreover, the computation of the matrix elements in Step 1 and of f,(r)
in Step 5 can be efficiently implemented using lookup tables for the relevant Mie kernels. This would allow

for a rapid real-time PSDF inversion using only the capabilities of modern desktop computers.

SOME NUMERICAL EXAMPLES

37. If s(z) in eq. (1a) is identified with the optical extinction of light at the wavelength z = A for a
homogenous, polydispersed aerosol cloud characterized by the particle size distribution function f(=) (~,
equivalently, the normalized number concentration of aerosol particles in the size interval r to r + dr), then
the kernel function K(z,r), corresponding to the Fredholm integral operator that maps f(r) to s(z), is given
by

K(z,r) = xr’Qexi(z,7), (31a)
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where Qext(z,r) is the extinction efficiency factor evaluated using Mie theory (13,14] for a particle of radius r
and wavelength z. Furthermore, if s(z) is identified with the light scattering intensity (i.e., radiance) at the
scattering angle z = # obtained for a fixed wavelength Ao, then the kernel function K(z,r) that transforms

J(r) to s(x) via the Fredholm integral operator assumes the form
Kie.r) = (;\_:)2 (;,!z,r!;—zg(z,r)) , (318)
\ where i1(z,r) and i2(z,r) are the Mie intensity parameters [13,14] for scattered light with perpendicular
and parallel polarization, respectively. It should be noted that the extinction efficiency factor as well as
f the Mie intensity parameters are complicated functions of * and z which are usually expressed as infinite
sums of terms involving the Ricatti-Bessel functions and the Legendre polynomials. Nevertheless, there now
exist very efficient and robust procedures for the evaluation of the Mie kernels [14,24]. Strictly speaking,
it is importait to note that the extinction and scattering parameters also depend on the complex index of
refraction m of the particles. In the following examples, the index of refraction of the particles is assumed to
be known a priori. In particular, all simulations considered are performed assuming that the particles have

a real (viz., the particles are non-absorbing) refractive index m = 1.54.

38. Optical extinction (or turbidity) data were calculated at 15 discrete wavelengths spanning the
interval between z = 0.1 ym and z = 7.5 um for various functional forms of the PSDF f(r). The radii limits
which determine the extent of the size domain for f(r) are taken to be Q = [Ry, Ra] = [0.1pm,5.0pum]. In
addition, light scattering intensity data were generated at Ao = 0.65 um for 15 scattering angles between 0 and
90 degrees. Since eq. (1a) with the kernel functions of eqs. (31a) and (31b) cannot be integrated analytically
due to the complexity of the Mie kernels, it is necessary to calculate the optical data numerically by utilizing
some quadrature rule. The present simulations were generated using Simpson’s rule as the quadrature
formuls. These simulated optical data were then degraded with pseudorandom normally distributed noise
adjusted to correspond to a prescribed level of root-mean-square (RMS) error. These degraded spectral
extinction and scattered radiance data comprised the components of the data vector d (cf. eq. (1b)) of

dimension M = 30 that served as the input to the inversion algorithm.

39. Fig 2 displays the result of the reconstruction of a uniform PSDF given by f(r) = 1.0 for r € Q.
The figure illustrates that for the case of noise-free multispectral extinction and scattered radiance data, the

recovered PSDF coincides exactly with the true (actual) PSDF. The regularization (smoothing) parameter,

computed using the generalized cross-validation procedure, was effectively zero (to within the roundoff errors
of the computer) for the case of noise-free data. Moreover, an examination of the coefficient (parameter)
vectors returned by the retrieval algorithm revealed that @ = 0 and 5 = (1.0,0.0)7, a result which would
yield f(r) = 1.0 exactly as per eq. (21a). The inversion result of this particular example is interesting

because it illustrates the fact that if a solution can be constructed from elements in K that satisfy the

data constraints, that solution is preferably chosen by the algorithm. Recall that the elements in K are the
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preferred solution -andidates since these elements are considered to be optimally smooth with respect to
the stabilizing functional Rs(-) in the sense that Rs(f) = 0 for all f € K. To extend the present noise-free
example, the dashed line in Fig. 3 illustrates the recovered PSDF for the case when the input optical data is
corrupted with 3 percent RMS Gaussian noise. For the case of noisy data, observe that a small component
from G has been selected by the algorithm in addition to the major component from K (i.e., the function
hi(r) = 1 from K). Note, in particular, that although a small component from G has been selected in the
inversion, the regularization parameter selected by the generalized cross-validation procedure yields not only

a relatively smooth solution but also one that provides a good approximation to the true solution.

40. Fig. 3 presents the recovered aerosol particle size distribution functions for the case of a log-normal
distribution possessing a single mode at 0.5 ym. Two inversions were performed for this example: one for
noise-free optical data and one for optical dava that had been degraded with 5 percent RMS Gaussian noise.
Again, the cross-validation procedure selected v & 0 (actually ¥ = 1.2 x 10~?) for the noise-free inversion
example. However, for the noise-corrupted example, the cross-validation procedure provided a value of
3.2 x 1075 for 4. Observe that the inverted PSDFs compare favorably with the true size distribution with
the correct mode determined at 0.5 um. Again, note that the values of ¥ selected by the generalized cross-
validation procedure are appropriate for both the noise-free and noise-corrupted cases since the resulting
solutions obtained using these values appear to be optimally smooth—the selection of v is neither too small
resulting in an undesirable oscillatory behavior in the solution nor too large resulting in the oversmoothing of
the solution with the concomitant loss of relevant detail in the PSDF (e.g., the single mode in the function).
However, it is important to point out that the recovered solution for the case of noise-corrupted dw.ta exhibited
(cf. Fig. 3) negative (and hence, unphysical) values at the tails of the log-normal distribution. This can
probably be attributed to the the fact that the information content embodied in the optical data on the
nature of the distribution in the tails is sinall. Consequently, features in the ends of the distribution cannot
be accurately recovered using only the given noisy optical data. Furthermore, the magnitudes of the small
oscillations which result in the negative values near the ends of the distribution are below the level of noise

corrupting the input data.

41. Fig. 4 displays the recovered particle size distributions for the case of a bimodal log-normal distri-
bution function with a primary mode centered at 0.5 um and a secondary mode centered at 2.0 um. The
inversions were performed on noise-free optical data as well as data that had been corrupted at the 5 percent
RMS noise level. Note that the resulting inverted solutions are good in that both modes in the distribution
have been properly identified. The two peaks in the recovered PSDF fall close to the true values and the areas
under these peaks approximate the actual areas quite well. The values of vy selected by the GCV procedure
appear to provide stable solutions in both cases, although it should be noted that in the noise-corrupted
case, the solution exhibits a small undulation at roughly the position corresponding to the relative minimum

between the two modes. Fig. 5 shows the recovered PSDFs for a Junge-like distribution [25] obtained from
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both noise-free optical data and data that had been degraded with 5.0 percent RMS noise. Both inversion
solutions provide good estimates for the size distribution, although there are some small (minor) oscillations
superimposed on the generally monotonically decreasing trend for the noise-corrupted solution. Fig. 6 dis-
plays the inverted solutions for the case of a Rosin-Rammler distribution [25]. Both noise-free optical data
as well as data corrupted by Gaussian noise at the 5 percent RMS level were employed. Again, note that
the agreement between the inverted and the actual size distributions is good. Indeed, the recovered PSDFs
in both cases reproduce the shape of the true distribution well. This fact, coupled with the observation that
the inverted results are relatively smooth, is evidence that the Lagrange multipliers ¥ have been properly

selected by the GCV method in both the noise-free and noise-corrupted cases.

CONCLUSIONS

42, The purpose of this paper has been to develop an automatic algorithm for the “blind” reconstruction
of particle size distribution functions of polydispersed aerosol clouds, composed of homogeneous spherical
particles of known composition (i.e., of known refractive index), from discrete, noisy light scattering data. The
algorithm is based on an alternative implementation of the popular constrained linear inversion procedure
due to Philips and Twomey. This procedure tries to minimize artifacts (i.e., oscillations) in the solution by
utilizing a “roughness” measure (i.e., stabilizing functional) depending on the second derivative of the PSDF.
The automatic algorithm arises from the attempt to address two major problems that plague conventional
implementations of the constrained linear inversion procedure, namely, the need to select an appropriate
discrete approximation for the PSDF and the importance of obtaining a proper value for the Lagrange
multiplier (i.e., smoothing parameter) that adequately reflects the amount of smoothing to impose on the

solution in relation to the level of noise corrupting the input data.

43. To address the first of these problems, it was shown that an analytic representation for the solution
of the constrained linear inversion procedure can be obtained by application of some standard techniques
from the theory of Hilbert spaces. This representation provides a convenient parametrization for the PSDF
and, consequently, permits the estimation of the entire size distribution rather than merely its values at nodes
corresponding to some discretization of the particle size domain. This differs from the usual implementation
of the constrained linear inversion procedure whereby discrete values are used both for the approximation of
the PSDF and for the quadrature required to evaluate the model optical data. By constrast, in the present
implementation of the procedure, the discrete values of the PSDF are utilized only for the quadrature. The
second problem was addressed by application of the principle of generalized cross-validation, which provides
an objective procedure for the selection of an appropriate value of the Lagrange multiplier. With an ob-
jective method for the computation of the correct value of the smoothing parameter and with the explicit
representation for the PSDF, the reconstruction of the aerosol size distribution function is reduced to the

problem of estimating a set of unknown coefficients whose values then determine the exact functional form of
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the PSDF. This estimation problem can be efficiently resolved as the solution of a system of linear algebraic
equations. It has been demonstrated using synthetic data examples that the automatic implementation of
the constrained linear inversion procedure works well and requires a minimum of user intervention. These
examples seem to indicate that the GCV procedure provides reliable estimates for the regularization pa-
rameter that adequately reflect the noise level corrupting the data. Indeed, the automatic algorithm when
implemented with a lookup table method for the Mie kernels, provides the poesibility for a rapid real-time

PSDF inversion procedure using standard desktop computers.

44. In this paper, the GCV procedure was coupled with an analytic (i.e., exact) representation for the
solution of the constrained linear inversion procedure in order to construct an automatic retrieval algorithm
for the PSDF. However, it is important to emphasize that the GCV procedure can be coupled with other
analytic representations for the PSDF in order to formulate alternative automated recovery procedures.
In this connection, the eigenfunction expansion technique of Curry and Kiech [10,11] can be automated
by interfacing it with the GCV procedure. It is interesting to note that the selection of the regularization
parameter using the GCV procedure is closely related to the the selection using the Residual Relative Variance
(RRV) procedure proposed by Curry and Kiech. Indeed, both procedures attempt to select the regularization
parameter so that the computed “true” predictive root-mean-square error (i.e., the residual error between
the noisy observations and the model observations computed using the true PSDF) is approximately equal to
the experimental error. However, the RRV procedure requires the implementation of a somewhat awkward
double iterative calculation procedure whereby a PSDF inversion computation is required for every iteration
used in finding the optimal value for the regularization parameter. By contrast, the GCV procedure decouples

the iterative computation for the regularization parameter from the PSDF inversion calculation.

45. The primary drawback in the application of the GCV procedure to the constrained linear inver-
sion technique resides in the fact that it is possible to sometimes obtain negative values for the recovered
PSDF. These negative values, which usually arise from high-frequency oscillations exhibited in the tails of
a sharply-peaked distribution (viz., a Gibbs phencmenon) is probably the result of the small information
content present in the data concerning the features in the tails of the distribution. There are two ways to
overcome the negativity in these estimates: (1) by increasing the value of the regularization parameter to
such a point that there are no longer negative values in the reconstructed distribution or (2) by provid-
ing a representation for the PSDF that explicitly incorporates the positivity constraints. The first remedy
provides an indirect method for addressing the negativity problem and has been applied by numerous re-
searchers [5,7,9). Unfortunately, this method may result in an oversmoothing of the PSDF in order to satisfy
the non-negativity constraints. Furthermore, the GCV procedure is no longer applicable to this case. On
the other hand, the second remedy is more attractive in that the non-negativity constraints are directly
applied and the GCV procedure is still applicable. In this connection, the problem needs to be solved with

the constraints @ > 0and b > 0 imposed. Unfortunately, a closed-form solution cannot be written for this
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constrained problem in contrast with the unconstrained problem and an appropriate numerical method needs

to be developed.
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Flowchart of the implementation of the automatic recovery of the
particle size distribution function f7(r).
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Figure 2

Recovered particle size distribution functions f(r) obtained for both noise-free

optical data and data degraded with 3 percent RMS Gaussian noise. Also

shown is the true (actual) size distribution which is uniform over the entire
particle size domain Q.
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Figure 3

Recovered particle size distribution functions obtained from both noise-free
optical data and data corrupted with 5 percent RMS noise. The true size
distribution is a unimodal log-normal distribution with the mode centered at 0.5 um.
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Recovered particle size distribution functions obtained from both noise-free
optical data and data corrupted with 5 percent RMS noise. The true size
distribution is a bimodal log-normal distribution with modes centered
at 0.5 um and 2.0 um.
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Figure 5

Recovered particle size distribution functions obtained from both noise-free
optical data and data corrupted with 5 percent RMS Gaussian noise. The true
size distribution is a Junge-type distribution shown by the solid line.
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Figure 6

Recovered particle size distribution functions obtained from both noise-free
optical data and data corrupted with 5 percent RMS Gaussian noise. The true
size distribution is a Rosin-Rammler distribution shown by the solid line.
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